{HtmlEncodeMultiline(EmailPreheader)}
| ROBUST ANALYSIS OF SHORT PANELS |
|
|
|
|
| ABSTRACT Many structural econometric models include latent variables on whose probability distributions one may wish to place minimal restrictions. Leading examples in panel data models are individual-specific variables sometimes treated as “fixed effects” and, in dynamic models, initial conditions. This paper presents a generally applicable method for characterizing sharp identified sets when models place no restrictions on the probability distribution of certain latent variables and no restrictions on their covariation with other variables. In our analysis latent variables on which restrictions are undesirable are removed, leading to econometric analysis robust to misspecification of restrictions on their distributions which are commonplace in the applied panel data literature. Endogenous explanatory variables are easily accommodated. Examples of application to some static and dynamic binary, ordered and multiple discrete choice and censored panel data models are presented. |
Click here to view the CV. Click here to view the paper. |
|
|
PRESENTER Andrew Chesher University College London |
RESEARCH FIELDS Econometric Theory and Practice Identification Analysis |
DATE: 18 September 2024 (Wednesday) |
VENUE: Meeting Room 5.1, Level 5 School of Economics Singapore Management University 90 Stamford Road Singapore 178903 |
|
|
|
|
| | © Copyright 2024 by Singapore Management University. All Rights Reserved. Internal recipients of SMU, please visit https://smu.sg/emailrules, on how to filter away this EDM. For all other recipients, please click here to unsubscribe. |
|
|
|
|
|
|