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Abstract

Artificial intelligence (Al) signals are increasingly deployed as human decision-making aids
across many critical applications, but human cognitive biases can prevent them from improv-
ing outcomes. We propose calibrated coarsening—partitioning the signal space into fewer
cells at optimised thresholds—as a way to improve decision-making outcomes while (i) keep-
ing humans in the loop, (ii) modifying signals without deception, and (iii) adapting flexibly to
various cognitive biases and decision-making contexts. Within an optimal information disclo-
sure framework, we derive the approximately-optimal universal coarsened policy for settings
where the designer does not observe the decision-maker’s information. We then empirically
demonstrate in a randomised experiment involving loan specialists that coarsening Al signals
at the theory-derived threshold significantly improves decision-making outcomes, over both
the human-only (based solely on the loan application) and continuous Al (assisted with un-
coarsened Al risk-score) benchmarks. We uncover substantial decision heterogeneity amongst
loan officers, and use a Bayesian hierarchical model to personalise coarsening policies, which

can further improve outcomes as past data become available.

*Contact: ruruhoong@g.harvard.edu. Ruru Hoong is especially indebted to her advisors Katie Coffman, Shane
Greenstein, Jesse Shapiro and David Yang for their support. We further thank John Beshears, Alex Chan, Benjamin
Enke, Christine Exley, Kris Ferreira, Matthew Gentzkow, Yannai A. Gonczarowski, Josh Schwartzstein, and the be-
havioural and labour workshops at Harvard for helpful comments. We thank Philipp Chapkovski and Kirill Odintsov
for helpful assistance. We are grateful for funding from Harvard Business School and Harvard Economics department,
as well as the 2023/2024 NUS Development Grant. This research is also supported by Singapore’s Social Science
Research Council Graduate Research Fellowship (SSRC 2025-004), administered by the Ministry of Education, Sin-
gapore (MOE). Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not reflect the views of funders. The experiments involved in this paper were exempted under
Protocol #IRB24-0395 in April 2024.


https://drive.google.com/file/d/1gnbBdE0kBulNgtzg9BPQtoC5Zq5Vc-N7/view?usp=sharing

1 Introduction

Artificial intelligence (AI) has caught pace with—and in some contexts even surpassed—human
capabilities in data-driven prediction, promising to improve decision making across an array of
important fields from medical diagnosis to managerial decision making (Agrawal et al., 2022).
Yet real-world deployment of Al tools to support human decision-making has frequently yielded
underwhelming results, including in high-stakes contexts like judicial sentencing and healthcare.'

The issue lies not in the AI’s predictive performance, but in the critical role humans play. Al
typically assists rather than replaces human decision-making, as oversight often remains necessary
to implement final decisions—whether due to institutional constraints such as legal liability,> or
technical constraints such as the ability to access information beyond the AI’s scope.> While Al
can offer valuable input, its impact on performance ultimately depends on how humans process
and integrate it into their decision making.

Behavioural science has long established that humans often struggle to process and aggregate
information, documenting how myriad biases and belief misspecifications distort belief updating
(e.g., Tversky and Kahneman 1974; Benjamin 2019). It is therefore unsurprising that even infor-
mative Al predictions can fail to improve outcomes. Since removing humans from the process is
not often an option, a critical challenge arises: how can we improve Al-assisted decision-making
outcomes? Crucially, we want to do so while retaining humans’ final decision rights. Moreover,
we seek to avoid deception, as manipulative strategies have been shown to erode trust and hinder
long-term adoption (Mahmud et al., 2022). Lastly, the solution should be easily tailored to different
biases, which likely vary both between contexts and across individuals within a given context.

We propose calibrated coarsening—i.e., partitioning information into fewer cells at optimised
thresholds—as a broad approach to improving decision-making outcomes that: (i) keeps humans
in the loop, (ii) transparently modifies signals without deception, and (iii) is adaptable to a wide
range of cognitive biases or decision-making contexts. Coarsening is already commonplace in

information-provision settings, from discretised scores to colour-coded risk,* underscoring its in-

le.g., Algorithmic risk assessments have not improved sentencing outcomes (Stevenson and Doleac, 2019; Garrett and
Monahan, 2020; Imai et al., 2023), nor shown clear benefits in clinical and radiological decision-making (Brockle-
hurst et al., 2017; Nunes et al., 2017; Gaube et al., 2021; Agarwal et al., 2023).

2e.g., Clinicians remain liable in clinical settings (Greenes, 2011; Mezrich, 2022; Cestonaro et al., 2023); employers
maintain human involvement to mitigate litigation risks surrounding disparate impact, where a facially neutral proce-
dure disadvantages a protected class per Title VII Civil Rights Act(Kassir et al., 2023); and recent regulations—e.g.,
EU’s Al Act—mandate human oversight in algorithmic decision-making (European Commission, 2024).

3Leading e-commerce firm Zalando uses human oversight in algorithmic pricing for this reason (Huelden et al., 2024).

“E.g., Pretrial risk is scored on a discrete 1-6 scale (see Figure 2 in Angelova et al. (2023)), and dental platform
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tuitive appeal. Yet it is often implemented heuristically rather than systematically. Our contribution
is to provide a principled framework for the calibrated implementation of this familiar practice.

A key advantage of calibrated coarsening is its context-agnostic nature: Al predictions can
be coarsened through a few simple steps, regardless of the forms of human biases at play. This
adaptability is all the more important with rapidly evolving Al technologies: as models evolve, so
do information structures and the way humans update from them. Coarsening can be recalibrated
(i.e., information can be re-partitioned) and therefore seamlessly adjust to these shifts, making it
resilient to inevitable change.

In this paper, we develop a theoretical framework to derive an approximately optimal coars-
ening policy, and empirically validate it in a randomised experiment with 150 professional loan
officers, underwriters, and processors (henceforth, “loan specialists”). Participants in all treat-
ments review loan applications and make approval decisions; conditions vary in whether they
receive an Al signal, and if so, how it is coarsened. We find that coarsening Al signals at the
theory-derived threshold significantly improves approval accuracy, outperforming both human-
only (based solely on the application) and continuous Al (assisted with uncoarsened Al risk-score)
benchmarks. It also reduces time-to-decision, and many participants prefer—and are willing to
pay for—coarsened over full signals. Moreover, we document substantial heterogeneity in spe-
cialist behaviour, suggesting potential further gains from personalisation. To that end, we estimate
a hierarchical Bayesian model to target optimal coarsening policies to individuals based on past
decision data.

How can coarsening signals—making them strictly /ess informative—Ilead to better decisions?
Intuitively, when specialists update their beliefs in ways that deviate from full rationality, they
may make different decisions than a fully Bayesian specialist (representing the optimal bench-
mark) would, even when presented with the same information. We refer to these divergences
as “disagreement regions.” By coarsening information, we can shrink these regions by aligning
the non-Bayesian’s actions more closely with the Bayesian specialist’s actions. For example, if a
Bayesian would approve a loan at a given Al signal but a non-Bayesian would not, we can pool that
signal together with higher ones where both agree to approve, pushing the non-Bayesian towards
approval. The same logic applies in the converse. In both cases, coarsening effectively pools re-
gions of disagreement with adjacent areas of agreement, leading non-Bayesian specialists to make

the same decision as Bayesians more often.

VideaAl colour-codes disease risk into 3 bands instead of providing the raw probabilities (see Appendix Figure 11).



Our theoretical framework generalises this intuition. A Receiver (e.g., loan specialist) takes a
binary action to match a binary state (e.g., approve/deny the loan depending on whether or not they
think it will be repaid). Before taking action, the Receiver first forms beliefs about the state based
on a privately observed human signal (e.g., by reviewing a loan application) and a message from
the Sender (e.g., an Al designer or bank manager). The Sender publicly commits to a disclosure
mechanism mapping signals to messages, privately observes their own Al signal (e.g., a risk score
from AI model output), and generates a message accordingly. While the Sender’s and Receiver’s
incentives are aligned, their beliefs may not be. In particular, the Sender’s objective function is
consistent with the normative benchmark, i.e., Bayesian updating, whereas the Receiver’s beliefs
may deviate arbitrarily from Bayes, subject only to mild continuity and monotonicity conditions.
This belief misalignment results in distorted choices for the Receiver. Therefore, when choosing a
disclosure mechanism, the Sender’s goal is to align the Receiver’s behavior as closely as possible
with the normative Bayesian benchmark.

We first show that when the Sender can condition the disclosure mechanism on the Receiver’s
signal, the optimal mechanism is a binary coarsening of the Al signal that always yields higher
expected utility than full disclosure. We then consider the more realistic case where the Sender
cannot condition the mechanism on the Receiver’s signal. Focusing on binary coarsenings, we
show that the optimal mechanism is approximately the Al-only boundary—the threshold above
which a Bayesian decision-maker relying solely on the Al signal would choose to approve. The
approximation error depends on (i) how different the “adhering types” (those who follow the AI’s
implied recommendation) are from the general population, (ii) how sensitive marginal decision
makers are to small changes around the threshold, and (iii) how likely those marginal decision
makers are to exist (i.e., the density at the margins).

Our first experiment demonstrates the real-world applicability of this approach by empirically
testing whether coarsening signals at the Al-only boundary improves decision-making outcomes.
We ask 150 loan specialists to evaluate approve loan applications they believe will be repaid on
time, and deny otherwise. All specialists review simplified versions of real loan applications,
allowing them to form their own beliefs about the probability of repayment (human signal). In
addition, we generate a risk-score for each application (Al signal), using an Al model we trained
on repayment data from Home Credit.

We randomly assign participants to five treatment conditions varying how the Al signal is

shown: Human-only (no Al), Probability (the raw Al risk-score), and three Binary treatments



which display only whether the Al signal is above or below a given threshold (e.g., “Yes, this ap-
plicant’s Al score is above [threshold]”). The binary thresholds—Low (30%), Medium (50%), and
High (70%)—include one theory-predicted optimal threshold (50%) and two placebo conditions,
enabling us to evaluate the value of theoretically-informed coarsening over arbitrary signal discreti-
sation. Our primary outcome is loan approval accuracy, since participants are incentivised with a
$0.10 bonus for each correct decision (approving a loan that is repaid, denying a loan that is not
repaid). In this experimental setting, the human has no residual information beyond the Al that is,
conditional on the Al signal, the human signal is not predictive of repayment. This reflects a grow-
ing trend in many real-world decision contexts: as data-rich, multi-modal Al systems proliferate, it
is increasingly the case that humans have no systematic informational advantage over AL> Given
our incentive structure and setting, the Binary Medium threshold—the Al-only boundary—serves
as the approximately-optimal benchmark.

We find that providing loan specialists with Al signals coarsened at the Binary Medium thresh-
old significantly improves decision accuracy compared to all other conditions. Participants are 4
percentage points more accurate than under Probability—closing 40% of the gap to the Bayesian
benchmark—and 6 points more accurate than under Human-only, underscoring the power of ef-
fective information design in closing the gap between actual and optimal decision-making.

Coarsening not only improves accuracy but also reduces decision time—a critical factor in
high-throughput settings like loan underwriting. Participants in Binary Medium made decisions
approximately 7% faster than those in the Probability condition, likely due to the reduced cognitive
effort required to interpret a binary recommendation versus a continuous score. Importantly, many
participants preferred coarsened signals: in an incentivised choice task, over half opted for either a
binary signal or no Al assistance over a full probability score. This preference is reflected in their
willingness to pay: those who chose binary signals were willing to forgo over a third of their per-
case bonus to access them. These findings align with literature on aversion to richer information
structures and cognitive processing costs (Guan et al. (2023); Exley and Kessler (2023)). They also
echo interviews we conducted with senior lending professionals, who acknowledged the value of
Al assessments but found Al tools “challenging to use” and easily “overridden”. Taken together,

these findings suggest that simpler, coarsened signals may reduce cognitive burden and encourage

Se.g., In lending, firms like Upstart and ZestAl use models trained on hundreds of variables, often surpassing what
any single underwriter sees—even when in-person interviews are conducted, Al can access video input. In health-
care, clinical decision-support tools embedded in EHRs integrate vitals, labs, clinical history, and imaging in real
time—data that physicians may access, but not process as comprehensively or systematically.



adoption in practice.

Performance gains, however, are not uniform across all specialists, offering insight into the
mechanisms that might be driving the outcome gap and corresponding gains from coarsening.
Gender emerges as a striking moderator: men benefit substantially more from Al assistance, with
improvements nearly four times as large as those for women. This divergence is not due to base-
line differences—both genders perform similarly without Al—but reflects gendered differences in
willingness to adopt and rely on Al advice. A similar pattern holds for experience: specialists
with less industry tenure perform worse unassisted, but improve more with Al, suggesting they are
more open to relying on Al recommendations when lacking effective internal heuristics. Perceived
private information also shapes outcomes—those who believe they possess less insight (over the
Al) are both less accurate at baseline and more responsive to Al, particularly when signals are
coarsened. Finally, consistent with theories of automation neglect,® users who exhibit automation
neglect on a standard bias elicitation fail to incorporate Al input as effectively. These findings
provide strong evidence of heterogeneity, underscoring the potential of leveraging personalisation
(e.g., based on demographic and psychological differences) to further improve outcomes.

To that end, our second set of empirical results documents significant potential gains from
tailoring coarsening policies to individual decision-makers. We estimate a hierarchical Bayesian
model that leverages historical data from an initial experiment to predict each specialist’s deci-
sion accuracy across alternative coarsening policies, allowing us to identify optimal personalised
treatments. Implementing such a personalised approach would reallocate approximately 45% of
specialists to different coarsening thresholds compared to a universal policy assigning the Al-only
boundary (Binary Medium) to the population, yielding a predicted 2.5 percentage point improve-

ment in decision-making accuracy on average.

Related Literature

Calibrated coarsening is not the only way to address biases in human decision-making, though
to our knowledge it is the only one that does so whilst fulfilling the desiderata laid out above.
“Debiasing” in the broader decision-making context has traditionally taken three forms (Roy and
Lerch, 1996): (1) modifying information presentation, (ii) replacing the individual with a model,

and (iii) training people to use the appropriate information processing strategies. Coarsening falls

The tendency to underweight information that is algorithmic in nature, often modeled as under-responsiveness to
signals (e.g., Grether (1992))



within the first. The second is not feasible as it is precisely the constraint we are operating with: in
many situations we cannot replace the human entirely with a model. Indeed, one popular approach
proposes delegation—assigning different cases to either an Al or unassisted human (Raghu et al.,
2019; Mozannar and Sontag, 2020; Athey et al., 2020; Bansal et al., 2021). However, this solution
is infeasible in scenarios where humans must make the final decision, and may furthermore fall
short in fully leveraging the collective information offered by both humans and Al.

The last of these debiasing approaches, training, has been the subject of much literature, most
of which suggesting that it is ineffective unless very extensive (e.g., administering statistic courses)
and that effects—if any—remain domain-specific (Tversky et al., 1982; Fong et al., 1986; Fong and
Nisbett, 1991; Milkman et al., 2009). Several have designed interventions that counter behavioural
biases like confirmation bias (Morewedge et al., 2015; Sellier et al., 2019), but these solutions are
typically context- and bias-specific, limiting their systematic implementation. Determining what
kinds of training are effective is itself costly and challenging—and often yields limited results,
as in the case of correlation neglect (Enke and Zimmermann, 2019). Coarsening, on the other
hand, is easily adaptable, low-cost, and can be integrated into the system regardless of context or
bias—eliminating the need to continually retrain individuals as conditions change.

Our work relates to several fields, including a managerial prediction literature that forecasts
the positive impact of Al on organisational performance and managerial decision-making (Bryn-
jolfsson and McAfee, 2014; Davenport and Kirby, 2016; Daugherty and Wilson, 2018; Choudhary
et al., 2025), where even modest gains in decision accuracy can yield substantial economic returns
(Cockburn et al., 2018; Agrawal et al., 2019). Notably, Agrawal et al. (2022) discuss how Al
advancements may force a decoupling of the fundamental components of decision-making—(AlI)
prediction and (human) judgment’—thereby transforming managerial and organisational struc-
tures. We suggest that a more complete characterisation of this shift must also consider the cog-
nitive biases that shape how humans interpret and act on Al predictions,® and the organisational
tools—e.g., coarsening—available to mitigate them. AI’s purported transformative potential may
therefore be more challenging to realise than appears; our paper offers a practical solution to these
barriers, irrespective of the specific deviations from Bayesian decision-making that underlie them.

Recent work in marketing also shows that hybrid human-AlI approaches can be effective in pric-

ing, hiring and ideation (Karlinsky-Shichor and Netzer, 2024; Chakraborty et al., 2025; Bell et al.,

"Per Agrawal et al. (2022), “judgment” here means human preferences or utility over different outcomes.
8Even individuals who are well-calibrated in their beliefs may nonetheless select actions that misalign with their beliefs
and preferences, resulting in suboptimal decisions.



2024). However, behavioral frictions like algorithm aversion (Dietvorst et al., 2015, 2018; Logg
and Schlund, 2024) often hinder effective implementation. Calibrated coarsening addresses this by
discretising the Al signal space. Discretisation has also been useful in marketing, where restricting
decision spaces—effectively a form of coarsening—has been shown to improve managerial cre-
ativity and decision quality (Sellier and Dahl, 2011), and to benefit personalized marketing; for
example, Zhang and Misra (2024) demonstrate that firms can achieve near-optimal personalisation
with only a limited set of treatment options. We show that optimally coarsening Al outputs can
improve real-world decisions, in a framework that also holds promise for improving outcomes in
contexts like pricing and hiring.

We also contribute to a large body of experiments that investigate the human use of Al —or
more broadly, algorithmic—signals on overall performance and speed (Bundorf et al., 2019; Kiani
et al., 2020; Maron et al., 2020; Bastani et al., 2021; Lai et al., 2021; Balakrishnan et al., 2022; Bier-
mann et al., 2022; Grimon and Mills, 2025; De-Arteaga and Chouldechova, 2020; Lakkaraju and
Farronato, 2022; Imai et al., 2023; Ben-Michael et al., 2024; Kim et al., 2024; Snyder et al., 2024),
as well as identifying who benefits most from their provision (Caplin et al., 2024). A growing sub-
set of this literature pertains to applied Al alignment—how to structure Al inputs and interfaces so
that human users act on them in ways that improve outcomes in practice. This includes work on
behavioural frictions that may impede human-Al performance, including algorithmic appreciation
or over-adherence (Logg et al., 2019; Banker and Khetani, 2019; Bai et al., 2021; Bucinca et al.,
2021; Fugener et al., 2021), rational inattention (Boyaci et al., 2024), prospect theory (Ye et al.,
2022), and correlation neglect (Agarwal et al., 2023). Given the multitude of cognitive biases at
play, a key advantage of coarsening is its ability to simultaneously address many of them. Rather
than seek to isolate and address any single bias, our approach remains agnostic, increasing the ease
with which it can be applied and tailored across contexts and individuals.

There is also an emerging literature that proposes methods to improve the outcomes of collab-
orative human-Al design, including providing explanations and information about when Al errs
and its uncertainty (Bansal et al., 2019; Green and Chen, 2019; McGrath et al., 2020; Lakkaraju
and Bastani, 2020; Taudien et al., 2022), or how to select the best Al model to complement human
decisions (Guo et al., 2025). Several propose using adaptive techniques to accommodate human
information, increase compliance, and optimise when to provide advice (Sun et al., 2022; Caro
and de Tejada Cuenca, 2023; Noti and Chen, 2022; Ibrahim et al., 2021; McLaughlin and Spiess,

2024). We relate most closely to two papers that apply information design to improve human-



Al collaboration. McLaughlin and Spiess (2022) (henceforth MS) study a principal-agent model
where agents incur additional penalties for making an error when deviating from the Al recom-
mendation. MS find that withholding uncertain signals can improve outcomes—effectively a form
of coarsening where extreme signals are pooled into a recommendation while the center is fully
disclosed without a recommendation. In a different model that accounts for a broad range of belief
updating biases, we find that calibrated coarsening can improve outcomes, even when the agent’s
payoff depends only on true and false positives and negatives, rather than on compliance with Al.

Most relevant to our context is concurrent work by Agarwal et al. (2025) (henceforth AMW),
who propose a framework for how and when to automate or assist decisions with Al—including
a form of coarsening that provides the average Al risk-score in each interval. Theoretically, our
papers make substantively different—and non-nested—assumptions: we assume continuity and
monotonicity of actions in signals (i.e., higher signals increase likelihood of Receiver action),
whereas AMW do not impose structure on this mapping. Instead, AMW assume that human judg-
ments depend on the Al prediction only via the resulting posterior on the state. This assumption
fails under Bayesian and quasi-Bayesian (e.g. Grether (1992)) models when human and Al infor-
mation are non-independent conditional on the state—as is the case in our experiment and other
recent work in the area (e.g., Agarwal et al. (2023)).° These distinct modeling choices lead to
different conclusions about when and how coarsening improves outcomes. Empirically, the papers
yield opposing results in different contexts. AMW find in a study of Prolific participants perform-
ing fact-checking tasks that coarsening Al is not beneficial relative to full disclosure. By contrast,
we find in a study of loan specialists with prior industry experience that coarsening improves
decision-making accuracy relative to full disclosure.

Our work also relates to a broader literature in organisational behaviour, psychology, sociology
and other fields on collaboration and the transformation of knowledge (Carlile, 2004; Hardy et al.,
2005; Levina, 2005). There is a burgeoning corpus exploring the role of Al technologies in gener-
ating and evaluating knowledge claims in human-Al collaboration (Faraj et al., 2018; Von Krogh,
2018; Rai et al., 2019; Kellogg et al., 2020; Anthony et al., 2023), and in particular on how in-
dividual users engage with Al tools in practice (Christin, 2020; Pachidi et al., 2021; Lebovitz
et al., 2022), as well as in contexts where fairness and discrimination play critical roles (Kelley

et al., 2022). One strand of this literature also focuses more specifically how individuals seek and

9Examples of other settings in which human and Al information overlap include clinical diagnosis (Jabbour et al.,
2023), child-protection services (Grimon and Mills, 2025), and judicial decision-making (Imai et al., 2023).
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utilise advice (Yaniv, 1997; Yaniv and Kleinberger, 2000; Yaniv, 2004; Surowiecki, 2005; Soll
and Larrick, 2009; Sah and Loewenstein, 2015), where second opinions are shown to be able to
improve judgments as well as outcomes like cancer diagnosis (Staradub et al., 2002; Taylor and
Potts, 2008). Al or algorithmic inputs can also be seen as a form of second opinion. In fact,
our framework broadly applies to any form of human decision-making involving the aggregation
of multiple signals; coarsening any form of second opinion can improve outcomes. We focus
specifically on algorithmic signals because they enable precise, transparent adjustments through
threshold choice. Whereas adjusting the sensitivity or specificity of human second opinions (e.g.,
a radiologist colleague’s input) is difficult, algorithmic models make such adjustments feasible.

Finally, we also rely upon the literature on (non-)Bayesian persuasion and information design
(Kamenica and Gentzkow, 2011; Alonso and Camara, 2016; Kamenica, 2019; Levy et al., 2022;
de Clippel and Zhang, 2022), as well as optimal information disclosure (Kolotilin, 2018). Like
us, Aybas and Turkel (2019) study coarse communication, but in their framework, coarsening is
a constraint on the signal space that limits the Sender persuasion. In our framework, calibrated
coarsening is a tool that can improve welfare by pooling signals to counteract biased belief updat-
ing. More broadly, the persuasion and disclosure literature has been largely theoretical; only a few
studies have applied informational design in empirical settings (Decker, 2022; Xiang, 2024), fewer
still in the context of Al (MS, AMW). Our work is the first to provide experimental evidence that
the implementation of coarsening to address biases indeed improves outcomes.

The paper proceeds as follows. Section 2 presents a model of decision-making and illustrates
how coarsening can address various behavioural biases. Section 3 introduces the loan context.
Section 4 describes our first experiment, which tests a universal coarsening policy with loan spe-
cialists, and Section 5 presents the results. Section 6 introduces a Bayesian hierarchical model of

decision-making and outlines a method for personalising policies. Section 7 concludes.

2 Model

2.1 Basic framework

We focus on binary classification problems where a Receiver (e.g., loan specialist) must choose
between two actions a € {0, 1} (e.g., denying or approving the loan). There is a binary state w €

Q = {0, 1}, which, in our context, reflects the repayment outcome—whether the loan applicant

10



will repay the loan on time.

The Receiver has type r € R C R, which can be interpreted as the human signal the loan
specialist receives based on their review of the loan application. The Sender (e.g., a bank manager
who controls the output of an Al system or the designer/engineer of the system) has type s € S C
R corresponding to the Al signal or risk score of the applicant, which is distributed according to
F,(s). We allow the signals to be correlated even conditional on the state w: conditional on s and
w, r is distributed according to G,(r|s). Both marginals are continuously differentiable and have
strictly positive densities f,(s) and g, (r|s). For notational convenience, we denote distributions
integrating over the state by omitting the subscript w, e.g., g(r|s) = [, g (r|s)P(w) dw.

We assume that the Sender and Receiver are incentive-aligned, and share the same payoff
function conditional on the state, though the framework—and all of the results—still apply if we
relax this assumption and allow the Sender and Receiver to have misaligned utilities. However,
we would then have to handle the Receiver’s potential strategic considerations. Without loss of
generality, we normalize the payoff from inaction (¢ = 0) to 0. The payoff from action (a = 1),

conditional on the state w, is given by:!’
U(w) = —CFp(l — w) +crp - w,

where cpp captures the cost of a wrongly-approved loan (¢ = 1,w = 0), and cyp benefits of
correctly approving an applicant who repays the loan on time (¢ = 1,w = 1).

While payoffs are identical, we allow the Sender’s and Receiver’s beliefs to diverge, which can
in turn generate a wedge between their (subjective) optimal actions. Although the Sender cannot
take actions directly, they can influence the Receiver by publicly choosing a fixed, deterministic
and monotonic information disclosure mechanism ¢ : S — R.

Let 7(r, s) denote the Bayesian posterior over w given the pair of signals r, s. We denote the
posterior induced by a signal r and a message ®(s) (generated by the disclosure mechanism )

by 7e(r, ®(s)).!! The Sender’s objective function aligns with Bayesian updating: given r, their

0This equation is derived by normalising inaction without loss of generality from the utility function given by:
t(alw) = —cpplla =1,w=0) + crplla=1,w=1) — cpyl(a = 0,w = 1) + ernI(a = 0,w = 0)
Formally, the Bayesian posterior given a pair of raw signals is 7(r,s) = %, and the posterior given a

disclosure mechanism @, a signal r and a message ®(s) = k is

fs:@(s):k 77(7“, S)g(T|S)f(S)dS

T2 R = T e ST (5)ds
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posterior belief would be 7(r, s). The Sender is the normative benchmark: Bayesian updating is
the best one can perform given the information available. We assume that the joint distribution of
s and r satisfies the multivariate monotone likelihood ratio property (MLRP) in w. Given that ®
is restricted to be monotonic, this implies the posterior 74 (r, ®(s)) is monotonically increasing in
both ®(s) and r, and continuously differentiable in r, as well as in ®(s) whenever ® is continuous.

The Receiver’s posterior—given a disclosure mechanism ®—on the other hand, is denoted by
7o (r, ®(s)). In the special case where ®(s) = s it is denoted by 7. In general, we allow 7¢
to deviate from Bayesian updating, but remain agnostic about the exact nature of this deviation,
whether driven by belief misspecification or any particular underlying cognitive bias. The only

assumption we impose on 7 is the following:

Assumption 1. For any monotonic disclosure mechanism ®, the Receiver’s posterior 7g(r, ®(s))
is monotonic in both elements, continuously differentiable in r, and continuously differentiable in

®(s) whenever ® is continuous.

Assumption 1 disciplines the Receiver’s bias by preventing the Receiver from, e.g., updating
in the wrong direction, interpreting a higher signal as indicative of a lower likelihood of w = 1.
Most commonly studied models of biased belief updating, such as Grether’s (1992) under- or over-
reaction and correlation neglect (Enke and Zimmermann, 2019), do not violate Assumption 1.

The Sender’s and Receiver’s mappings from signals to posteriors are allowed to depend on
the information disclosure mechanism ® chosen by the Sender (in addition to taking ®(s) as an
argument). Importantly, notice that many standard models of deviations from Bayesian updating—
such as confirmation bias or base-rate neglect—generate a class of posteriors ¢ that are all well
defined and internally consistent for any P.

The timing of the communication game proceeds as follows: the Sender first publicly selects a
disclosure mechanism ®. Next, the state w is realized, and the signals 7 and s are drawn according
to I, and GG,,. The Receiver then observes the pair (®(s),r) and takes an action a. Finally, both
Sender’s and Receiver’s utilities are realised.

We denote the true expected utility given r and s—which also reflects the Sender’s subjective
expected utility—by v(s,r) = E, (U(w)). In contrast, given a mapping ®, and a pair of observed

signals ®(s), r, the Receiver chooses a = 1 iff

E:, (U(w) | ®(s),7) > 0.
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By Assumption 1, we get the following result:

Result 1 (Single crossing). Let ® be a monotonic information disclosure mechanism. Then there
exists a decision boundary bz, (P(s)) such that the Receiver chooses a = 1 if and only if r >

bzs (P(s)), where the boundary bz, (P(s)) is decreasing in O(s).

The decision boundary bz, is a (decision) function induced by a (posterior) function. A
Bayesian Receiver’s decision boundary is denoted by b,. Since in general, bz # b,, the Re-
ceiver’s decisions as a function of the signals deviates from the Bayes-optimal benchmark. This
discrepancy is central to our framework: due to cognitive limitations or misspecified beliefs, the
Receiver makes suboptimal choices. Because decisions based on b, yield the first-best outcomes
from a Bayesian perspective—that is, they are optimal given the (full) available information—the
Sender seeks to design a disclosure mechanism @ such that b5, is as close as possible to b,. We say
that the Sender can fully implement a decision boundary b if there exists a disclosure mechanism
® such that bz, (P(s)) = b(s) for all s € S. In other words, for any pair (s,7), ¢ induces the

Receiver to make the same decision as that implied by the boundary b.

2.2 Disclosure mechanisms
In what follows, we focus on the following disclosure mechanisms:
* A K-coarsening at a set of thresholds T, denoted by @, is a mechanism that generates K
messages M = {0, ..., K — 1}. Each s € S is mapped to a natural number & according to:
Pr(s) =k foralls € [ty,trs1),k €{0,..., K — 1}
where t;, <ty forall k, tg = s, and tx = 5. We denote the K — 1 thresholds chosen by
the Sender to coarsen the signal space by T = {t1,...,tx_1}.

* A full revelation mechanism, denoted by @, is a limit case of a K-coarsening that generates

S|.

a different message for all s € S, i.e., K =

* A full censorship mechanism, i.e. a I-coarsening, denoted by @y, is one that generates the

same message P(s) = m for all for all s € S.

To simplify notation, from this point on when referring to posteriors, we will omit ® from the

subscript (and as noted above, when referring to the posterior under full revelation, we omit the
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subscript altogether). For example, 74, becomes 77, and 7o, 1s simply 7. Additionally, we refer to
the action taken by a type-r Receiver under full censorship—i.e., in the absence of any information
about s—as their default action, denoted by ag(r).'?

For any K-coarsening, a message k € K induces type-r Receivers to choose a = 1 iff » >
Tk = bz, (k). We illustrate these below for 2 and 3-coarsening in Figures la and 1b. Consider for
example the 2-coarsening—or henceforth, binary coarsening—at threshold ¢4, illustrated in Figure
la. This disclosure mechanism generates two messages, 0 for all s € [s, 1), and another message
1 for all € [t1, 5]. This disclosure mechanism pools together all signals below the threshold ¢;, and
all signals above the threshold. A Receiver with r € [y, 1) is said to adhere to the message, since
they choose a = 1 if and only if ®(s) = 1;if r < 7, they will always deny (a = 0), if > r(, they
will always approve (a = 1). Figure 1b has a similar illustration for K = 3.

Importantly, for any given @, the set of K — 1 thresholds 7" and the corresponding set of
K boundaries {ro, ...rx_1} are sufficient to fully characterise the actions of the Receiver, while
imposing minimal structure on the precise updating bias. This later becomes useful in our empirical

setting, where we can directly estimate {ro, ...rx_1} from observed Receiver decisions.

Figure 1: Two examples of K-coarsening mechanisms
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(a) Binary (2-coarsening) (b) Trinary (3-coarsening)

2.3 Optimal mechanisms
2.3.1 Optimal disclosure when 7 = 7

When the Receiver’s and Sender’s full-revelation beliefs are aligned—that is, when the Receiver
acts as a Bayesian updater under full revelation, the Sender’s optimal mechanism becomes straight-

forward: fully reveal the signal, effectively disclosing all the information they possess.

2Formally, ay(r) = 1iff Ez, (U(w) | r,m) > 0. Notice that the default action implicitly depends on 7.

14



Proposition 1. Let 7 = m. Then the Sender’s optimal disclosure mechanism is the full revelation

mechanism P,

Proof in Appendix.

2.3.2 Optimal disclosure with known r

We now extend to the case where 7 # 7, but where the Sender knows r when choosing ®. We
therefore treat r as a known constant for the rest of this sub-section. We denote the inverse bound-
ary, b(r) = b=1(r), i.e., the lowest s that induces a = 1, given r.

We impose the following structure on the Receiver’s posterior (note that results in further sub-

sections do not depend on this assumption):
Assumption 2. For any K-coarsened disclosure mechanism ® and integer k < K — 1:

1. The posterior 7r(k,r) is a weighted average of the posteriors in the pre-image of k,

{7(s,7): 8 € [tp,trs1)}-

2. The posterior Tr(k,r) is continuous and strictly monotonically increasing in the thresholds

tk and tk-i—l-

Part 1 of Assumption 2 restricts the Receiver’s posterior to respect a weak version of the Law of
Total Probability: for any r, when the Receiver learns that s lies on a given segment, the resulting
posterior is some weighted average of the posteriors from each s on that segment. The weights
can be misspecified, as long as they are non-negative and sum to 1. This requires some level
of consistency, and precludes the Receiver from adopting a posterior belief that lies outside the
implied support of s given a coarsened signal. Part 2 ensures that 71 is well-behaved: it prevents
the weights (and hence the posterior) from changing discontinuously in response to local changes
in the thresholds, and ensures that an increase in the segment’s endpoints leads to a higher posterior.
As with Assumption 1, we are not aware of a commonly used model that violates Assumption 2.

We show that when beliefs diverge, the Sender can always do better than fully revealing s.
Proposition 2. Let r € R. If Receiver’s beliefs deviate from Bayes, i.e., T # T, then:
1. The Sender’s optimal disclosure mechanism is a binary coarsening ® .

2. Py« strictly increases the Sender’s expected utility relative to full revelation.
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3. If the Sender’s inverse boundary is higher (i.e., by(r) > bx(r)) and the default is inaction
(i.e., ag(r) = 0) the Sender can fully implement b,. Similarly, if the Sender’s inverse bound-
ary is lower (i.e., by(r) < bz(r)) and the default is to act (i.e., ay(r) = 1), the Sender can

fully implement b,..

Proof in Appendix. In other words, contingent on knowing r, the Sender can always construct
a binary coarsening that strictly improves outcomes over full revelation. Moreover, (1) this is the
optimal mechanism, and (ii) depending on the direction of the deviation and the Receiver’s default

action, full implementation of the Bayesian benchmark may be possible.

Example: Automation Bias (or Neglect) To gain intuition behind this result, we apply it in
a specific, well-documented behavioral bias: automation bias (or neglect), i.e., the tendency to
overweight (or underweight) signals from Al relative to one’s own information, a bias thought
to be prevalent in human-computer interaction decision-making contexts (Alberdi et al., 2009;

Agarwal et al., 2023). It is often modeled using the Grether (1992) framework:

p-g(r' [ s)[fi(s)]”
pgri(r | 8)[f1(s)]* + (1 = p)go(r’ | 5)[fo(s)]*”

T(s,ra) =

where a > 0 captures the subjective weight placed on the Al signal. « > 1 implies automation
bias, over-updating in the direction of the Al signal, whereas o < 1 captures automation neglect,
capturing under-reaction to the Al signal."® In this example, we model the Receiver’s posterior in

the coarsened case, 7, as a (correctly) weighted average of (biased) posteriors:

r(k,r;a) = / w(rys;a) f(s | r k)ds,

ses

where f(- | r, k) is shorthand for the density of s conditional on 7 and ®(s) = k.
In what follows, we assume ag(r) = 0 (the opposite case is symmetric). Denote the Sender’s
inverse boundary by ZA)7r = s*. In words, conditional on 7, the Sender would choose ¢ = 1 iff s >
Notice that an automation biased (neglectful) Receiver has a lower (higher) inverse boundary

s*.
Z;;r(rvs;a). Applying Proposition 2 to our case, we attain the following result:

Result 2. Let o > 0 be the bias parameter characterising the Receiver’s behavior. Then:

3When s and r are jointly normal, automation bias (neglect) is isomorphic to over- (under-) estimating the variance
of the Al signal, treating it as more (less) precise than it actually is.
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1. For any o > 0, the optimal binary coarsening strictly improves the Sender’s utility over full

revelation.
2. There exists @ < 1 such that if o« > @, optimal binary coarsening fully implements b,.

In other words, under automation bias (« > 1), binary coarsening can always fully implement
the full-revelation Bayesian benchmark. Under automation neglect (o« < 1), binary coarsening
can always achieve higher utility than full revelation, but full implementation is possible only
when « is sufficiently high. For intuition, since the Receiver chooses a = 0 in absence of Al
information (i.e., ag(r) = 0), a “No” message (P;(s) = 0), which implies lower posterior over
s (and thus w) must also induce a = 0. Moreover, since non-biased (o« = 1) already adhere to
the binary message coarsened at s*, automation-biased agents—who place even greater weight on
Al—are more likely to follow it. This corresponds to the last case in Proposition 2: the default
action is 0, and the Sender’s inverse boundary is higher, enabling full implementation. In contrast,
for sufficiently automation-neglectful agents (i.e., & < @), the Receiver’s signal under-weighting
forces the Sender to pick a threshold higher than s* to induce action, but still improves Sender’s
utility over full revelation.

Figure 2 plots the threshold ¢ against «, in a case where s and r are jointly normal.

Figure 2: Automation neglect when 7 is known: graphical illustration
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Note: The parameters used in this simulation: p = %, s~ N(w,1).
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The blue shaded region represents («, t) pairs where the Receiver would adhere to a coarsened
binary signal at threshold ¢. Since the default action is @ = 0, ¢ must be sufficiently high to induce
action. The red dotted line shows the Receiver’s full-information boundary—above it, they choose
to act. This intersects the Sender-optimal (black dotted) boundary at « = 1, when the Receiver is
unbiased. For @ < 1 (automation neglect), the Receiver underweights s, requiring a stronger signal
to act, so their red line lies above the Sender’s (and vice-versa under o > 1, automation bias). The
optimal threshold is given by the upper envelope of the solid blue line and the Sender-optimal
black-dotted boundary, and always yields higher Sender utility than full revelation. Finally, the
vertical black line at @ denotes the lowest o where the Receiver strictly adheres to the Sender’s
optimal boundary, allowing the Sender to fully implement their preferences. When a < @, the

Sender must raise the threshold above s* to induce the Receiver to act.

2.3.3 Optimal binary coarsening with unknown r

We have previously shown that contingent on knowing r, the Sender can always construct a binary
coarsening that improves outcomes. However, eliciting r and tailoring the threshold for every case
might be impractical. Moreover, measuring r in practice may be noisy, distorted, or biased—even
in absence of strategic considerations. What happens, then, if the Sender does not know 7?

We first consider the optimal binary coarsening ®;,. Recall that the Sender’s subjective ex-

pected utility is given by v(s,r) = E, (U(w)). The Sender then solves:

max V(¢ // (s,r)g(r | s)dr f(s d8+// (s,r)g(r | s)dr f(s)ds
teR ro(t ri(t)

where the first term represents the Sender’s utility from Receiver types who choose to approve the
loan (a = 1) despite receiving a “No” (®,(s) = 0) message, while the second term captures utility
from Receivers who approve after receiving a “Yes” (®;(s) = 1) message.'*

Taking the first-order condition with respect to ¢, we obtain:

ro(t) [1 . v(s,ro(t) g(ro(t) | 5) f(s) ds
+r (¢ ft (s,r1(t)) g(ri(t) | s) f(s)ds

+ f (t) g(r | t)dr f(t) = }Recommendation

Adherence selection

14Graphically, these regions are captured in Figure 1a. The former is denoted by the region to right of 7o (¢ ) and below
threshold ¢1; the latter is the area right of (¢ ), and above threshold ¢;.
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Intuitively, this optimality condition shows two simultaneous effects when the threshold ¢
changes, as illustrated in Figure 3. The first is an adherence selection effect: as the threshold
changes from ¢ to ', the informational content of the binary signal changes and therefore the set of
adhering types [r1(t), ro(t)] shifts to [rq(t"), 7o(t")], captured by the horizontal shift from the solid
to the dashed vertical lines. The second is a recommendation effect: as the threshold changes, the
recommendations—and hence, choices—change, captured by the vertical shift from the solid to
the dashed horizontal line. In other words, shifting the thresholds affects both who follows the

recommendation, and when an action is recommended.

Figure 3: Binary (2-coarsening) when ¢ increases to ¢/

Approve

)
S
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Let { denote the Al-only boundary, defined by condition E,[v(r,)] = 0. t is the Bayesian-
optimal inverse boundary absent any information on 7, i.e., the threshold for s above which the
Sender would choose a = 1, if they knew only s. The following proposition shows that under the

certain conditions described below, the Al-only boundary is approximately the optimal threshold.

Proposition 3. Suppose V (t) is uniformly concave, twice continuously differentiable and that

there exists € such that for t = t,

Lo |ri(t)| x g (rj(t)) <€ j € {0,1} (slow-moving adherence OR wide adherence).

2. | E Ju(rt) | r € [ri(t), ro(t)]] — E[v(r,t)]| < € (symmetric adherence).

Then there exists a constant C' > 0 such that t* satisfies
|[t* — 1| < Ce

Consequently, as € — 0, t* converges to the Al-only boundary t.

1SConcavity of V(t) is assumed to ensure an internal solution for ¢ (a corner solution would imply that full censorship
is optimal).
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Proof in Appendix. Proposition 3 shows that the Sender-optimal threshold equals the Al-only
boundary, plus a deviation term whose size depends on two key factors, corresponding to the two
effects discussed above: first, it depends on how sensitive Receiver adherence is to changes in the
threshold, weighted by the density around the margin. If shifting the threshold has little effect
on the composition of adhering types—either because marginal Receiver types are insensitive, or
because the density of these types is small—the returns to deviating from ¢ to increase adherence
are small. Second, it depends on how representative the adhering Receiver types under ®; are
compared to the overall population. Intuitively, the quality of the recommendation depends on
how similar the adhering set is to the overall population; when they are similar, recommending the
Receiver to act when s >  is close to optimal.

Both conditions of Proposition 3 are likely to hold in many real-world settings, making ¢ a
good approximation for the optimal binary coarsening. First, in practice, adherence is unlikely
to be sensitive to small perturbations in the threshold (e.g., Receivers are unlikely to be sensitive
to a 0.50 vs. 0.52 threshold). Second, non-adhering Receivers likely come from the tails of the
distribution—those with sufficiently strong human signals to overrule the binary message. If the
distribution of 7 is not heavily skewed, the selection effect is likely small: symmetrically excluding
the extremes typically leaves the mean stable. The recommended action for the set of adhering
types is therefore likely similar to that for the full population. Together, these suggest that the

Al-only boundary is a good approximation for the optimal binary signal in many contexts.'®

2.3.4 Optimal binary coarsening with unknown r, and no residual information over Al

Consider the case where the Receiver has no residual information over the Al—that is, the human
signal r provides no additional information about the state beyond the Al signal s, i.e., w(s,7) =
m(s,r") for all r,7’. This is an important case to address in a world of big-data and multi-modal
models: in many decision-making contexts, Al systems now have access to the same—or even
more—underlying data than humans, yet it is still humans who must make the final call.

In the absence of residual human information, the subjective expected utility function simplifies
to v(s,r) = v(s), which in turn simplifies the problem in two ways: (i) the inequality in the second
condition of Proposition 3 holds with equality at ¢ = 0, and (ii) the Al-only boundary is the
threshold # such that v(#) = 0.

160ur simulations support this: across a wide range of parameters and behavioural biases, the optimal binary threshold
typically lies at or near the Al-only boundary.
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Therefore, as long as the first condition of Proposition 3 holds—which is likely in many settings
for the reasons described above—the Al-only boundary is characterised by ¢ satisfying v(t) = 0.
Intuitively, if the Receiver’s human signal has no informational content conditional on the Al
signal, then Bayes-optimal decisions should rely entirely on the Al In this case, whenever the Al
signal suggests a sufficiently high likelihood of w = 1, the Sender wants to shift the Receiver’s
a = 0 (“Deny”) decision to a = 1 (“Approve”). If adherence doesn’t increase substantially when

deviating from the Al-only boundary, it emerges naturally as the optimal decision rule.

Example: Correlation Neglect We illustrate the no residual information case with a simple
example in which r and s are drawn from a highly correlated bivariate normal distribution con-
ditional on the state—reflecting common settings where Al and human experts have substantial
informational overlap. The Receiver is correlation neglectful: although the conditional correlation
is p = 0.8, the Receiver perceives p = 0, treating the signals as conditionally independent.

Figure 4a visualises this example.!” The shading represents the joint signal distribution, and
the grid visualises key benchmarks. Figure 4b shows the human-only case: the Receiver approves
(a = 1) when r > 0.5, and denies (a¢ = 0) otherwise. The lines show (inverse) decision boundaries
in (r, s) space: the blue line (“biased”) shows the correlation neglectful Receiver’s boundary bz,
while the orange line (“Bayes”) shows the Bayesian boundary b,.. For convenience, the axes are
rescaled to reflect posterior probabilities. '8

Since the Receiver has no residual information, the Bayes decision boundary is horizontal,
approving whenever the Al signal implies a posterior above 0.5. In contrast, the biased boundary
is steeper: the Receiver mistakenly treats  and s as independent, effectively double-counting their
own information and placing more weight on it than a Bayesian would. The gap between Bayesian
and biased boundaries, then, is where there is potential for improvement over full revelation. Figure
4c highlights in blue the areas where the biased Receiver disagrees with the Bayesian—denying
when a Bayesian would approve (left) or approving when they would deny (right).

The treatment effect of the binary coarsening depends on the adherence bounds, r(t) and
ro(t), shown as the dotted curves in Figure 4d. For any binary threshold ¢, a Receiver with r €
[r1(t), ro(t)] adheres to the message, and takes their default action otherwise. Figure 4e illustrates

~

the coarsened policy at the Al-only boundary, ¢ = 0.5: a Receiver with r within the adherence

171t is worth noting that Figures 4a-4f, though simulated using an example of correlation neglect, can also be produced
by a range of other biases, e.g., automation neglect.
'8For instance, r = 0.5 means the human signal alone would imply a 0.5 posterior probability.
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Figure 4: Decision boundaries, under no residual information and correlation neglect
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bounds approves whenever s > 0.5, always denies when 7 is below the leftmost adherence bound
(r < r1(0.5)), and always approves when r is above the rightmost adherence bound (r > r4(0.5)).

We can see in the illustrations that the conditions in Proposition 3 are met in this example.
First, the adherence bounds at ¢ = 0.5 lie outside the central mass of the joint distribution of s
and r. This means that a marginal change in ¢ only affects the tails and has a negligible impact on
adherence, satisfying the first part of the proposition. Second, because the Receiver has no residual
information—as reflected in the flat Bayesian boundary at s = (0.5—selection into adherence does
not affect the Al-only recommended action, fulfilling the second condition in Proposition 3.

The blue areas in Figure 4f indicate gains from coarsening at the Al-only boundary (relative
to full revelation); the yellow areas indicate losses. The net effect of coarsening at the optimal
binary threshold ¢, then, depends on the size of these regions, weighted by the density of the
joint distribution of s and r. Whether binary coarsening is indeed the optimal disclosure policy is
therefore an empirical question.

As seen in the following sections, we empirically test this in an experiment with loan special-
ists. We compare decision-making accuracy under binary coarsening at t = t (medium) against
the following benchmarks: full revelation (full access to the Al risk score), human-only (decisions

made without any Al input), and two other binary coarsenings—high (t > t) and low (t < t).

3 Experimental context: Consumer loan approvals

Our randomised experiments test the deployment of coarsened signals in consumer loan approvals,
an important use-case of Al and an industry with a long history of leveraging algorithmic predic-
tions. Financial institutions—and the decision-makers within them—face binary prediction policy
problems: approve loans for applicants likely to repay, and deny otherwise. Since repaid loans not
only generate revenue through interest and fees, but also promote financial inclusion, institutions
are incentivised to approve when timely repayment is expected.

In our experiments, we utilise a dataset of real personal loan and mortgage applications from
the multi-national financial institution Home Credit, which includes a wide range of relevant vari-
ables including: historical loan applications and repayment history, credit bureau records (previous
loans, credits, cash), demographic information (e.g., gender, age, car/house ownership, residential
information, family, education, and employment), credit card information, normalised credit scores

from external sources, amongst others. One advantage of this particular context is that ground truth
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exists: the dataset includes labels for whether or not an applicant repaid their loans on time. Ground
truth for the direct outcome of interest is often unavailable in many other contexts; for example,
clinical outcomes in radiology are hard to come by, and are instead usually defined by averaging
the predictions of “top experts” (Agarwal et al., 2023). Here, our diagnostic standard exactly re-
flects the state(s) of the world that decision-makers care about, such as loan repayment. Given that
our central goal is improving decision-making outcomes in this high-stakes context, having ground
truth is of immense value.

A challenge this introduces, however, is the selective labels problem, where the outcome of
interest is available only for a subset of the population. Specifically, ground truth is observed only
for applicants approved for loans in the original Home Credit setting. Our Al model is trained
on this subset (with repayment as the outcome). However, this is not a significant concern in
our experiment, as participants evaluate a random sample from the Home Credit dataset with an
application distribution that matches that of the Al training data,'” mitigating traditional selective
label concerns. Instead, the primary consideration is of external validity: whether differences in
this application pool (as a result of the initial selected labels) interact with the treatments to skew
results. For this to be an issue, it’s not enough for selected applications to differ from the general
population; these differences would need to differentially affect how loan specialists respond to a
full probability Al score relative to a coarsened signal. While possible, this is unlikely. Moreover,
firms deploying calibrated coarsening typically will have access to richer datasets, including data
on applicants for whom the repayment outcome is unobserved. With these datasets, selective label

issues could be mitigated more directly through reweighting or other causal inference methods.

3.1 Background on algorithmic inputs in consumer loans

Consumer loan underwriting has relied heavily on algorithmic models for decades, most promi-
nently the credit-scoring system FICO introduced in 1989 by Fair, Isaac and Company (FICO,
2024). Algorithmic approaches were met with resistance and skepticism, with one senior mort-
gage banking executive we interviewed describing the initial introduction of the FICO system as
“challenging,” noting that while it has eventually become “an important tool,” it remains “an input
that can be overridden” by human underwriters.

While FICO scores remain widely used, the landscape has since shifted significantly toward in-

190f course, these cases are excluded from the training of the AI model.
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tegrating advanced automated and, increasingly, Al-driven algorithms. For instance, the Government-
Sponsored Enterprises (GSEs) Fannie Mae and Freddie Mac employ automated underwriting sys-
tems like Desktop Underwriter (DU) and Loan Product Advisor (LPA) that generate algorith-
mic signals regarding loan eligibility. These systems summarise recommendations into cate-
gories like “Approve/Eligible,” “Refer,” or “Ineligible” (Freddie Mac, 2025)—effectively a tri-
nary coarsening—which are then provided to lenders to use in decision-making. While DU is not
explicitly Al-driven, LPA has been integrated with third-party Al-powered platforms to enhance
underwriting assessments (BusinessWire, 2021; PRNewswire, 2024). Additionally, third-party Al-
driven firms have grown increasingly prominent. In an interview we conducted, Brent Chandler,
CEO of FormFree, emphasized the growing adoption of Al-generated scores like their product
”RIKI,” particularly highlighting the value of combining diverse algorithmic assessments with tra-
ditional credit scoring methods in order to offer a better understanding of consumers’ ability to pay

back a loan, especially when they may have limited credit history or FICO scores.

3.2 Automated underwriting vs. humans-in-the-loop

Although many consumer credit products—Iike credit card applications and auto loans—are eval-
uated using automated algorithms with minimal human oversight, higher-stakes loans like mort-
gages continue to rely on human decision-makers as final arbiters that use algorithms as advisory
tools. For example, DU and LPA recommendations are being used as input in lending decisions,
but do not replace the lender’s obligation to review and verify borrower documentation and ulti-
mately approve the loan. Importantly, liability still lies with the lenders if they sell non-compliant
loans to Fannie or Freddie—even if DU/LPA recommends “Approve”. Even when a GSE’s system
issues unfavorable recommendations, lenders may still offer portfolio loans at higher interest rates
or with larger down payments. However, it is important to note that the recommendations from
these two underwriting systems also affect the ease with which lenders can subsequently bundle
and resell these loans to GSEs, affecting algorithmic compliance.?”

In practice, concerns over legal liability and regulatory scrutiny—especially around disparate
impact under the Fair Housing Act (FHA) and the Equal Credit Opportunity Act (ECOA) sig-

nificantly constrain the full automation of consumer loan approvals.?! These structures create

0This differs from our experimental context, as algorithmic recommendations directly influence lender prefer-
ences/incentives through secondary market considerations. In contrast, we assume that the preferences over true/false
positives/negatives are not a function of the Al signal.

Yncreased adoption of advanced computational methods—including AI/ML—has attracted much regulatory atten-
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strong incentives for lenders to preserve human involvement in underwriting. While firms could,
in theory, assume liability while still delegating decisions entirely to Al, doing so exposes them
to greater legal risk. Black-box algorithms make it difficult to explain, defend, or audit credit de-
cisions, particularly when challenged by regulators or plaintiffs. Without the ability to produce
a transparent, human-defensible rationale, institutions face higher barriers to defending against
claims of discrimination or unfairness. Thus, in practice, maintaining human oversight remains
the prevailing—and risk-minimising—design.

For instance, Wells Fargo’s Enhanced Credit Score (ECS) algorithm has faced continued scrutiny
through a consolidated class-action lawsuit alleging ECOA and FHA violations (Williams et al. v.
Wells Fargo Bank, N.A., Case No. 3:22-cv-00990-JD (N.D. Cal.)). In fact, Wells Fargo defends
ECS as an internal workflow tool that sorts applicants based on credit risk, assigning higher-risk
applicants to more experienced specialists, thus serving a complementary rather than automated
decision-making role (Bloomberg, 2024). Continued issues of legal liability strongly suggest that
this practice—using algorithmic inputs predominantly in a human-in-the-loop manner—will con-

tinue, especially in a consumer loans context,”? preserving the central role of human underwriters.

4 Experiment I: Design

In our first experiment, we recruit 149 loan specialists to make hypothetical loan approval deci-
sions, aiming to test whether providing signals that are universally coarsened at the model-implied

approximately optimal threshold improves decision-making outcomes.

4.1 Survey overview

Figure 5 summarises the design of our experiment, which took place between October 3 and
November 4, 2024. We recruited a total of 149 US-based participants aged 18 or older, with a

minimum of one year of experience as a loan specialist. Recruitment primarily took place through

tion. The Consumer Financial Protection Bureau (CFPB) explicitly states that advanced technologies do not exempt
institutions from compliance with federal consumer financial laws like ECOA (CFPB, 2025).

22Non-consumer loans like small business loans, on the other hand, receive oversight primarily from the Small Busi-
ness Administration (for SBA-backed loans) or the Federal Trade Commission (FTC), and are subject to less protec-
tion. Even so, The FDIC’s Small Business Lending Survey shows that while automation and financial technology
(FinTech) are increasingly present in small business lending, they primarily serve to augment rather than replace hu-
man decision-making. Approximately 31% of banks reported using FinTech in at least one step of the small business
loan process, with an additional 22% considering its adoption (FDIC, 2024).
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temporary job postings on LinkedIn and Indeed, supplemented by targeted outreach to members
of the National Association of Mortgage Underwriters (NAMU) and the National Association of
Mortgage Processors (NAMP), as well as contract hiring on Upwork. A subset of the loan spe-
cialists were recruited through custom screening on Prolific, with stringent screening processes
implemented to filter out scammers.?* Participants recruited over Prolific additionally met the fol-
lowing requirements: they needed to (1) report over one year of loan-related experience, (2) pass
a check that excludes those who have taken the survey twice or failed the initial screening pre-
viously, and (3) either confirm their years of work experience or specific workplace branch, or
demonstrate familiarity with loan specialist responsibilities in their decision descriptions (e.g., ref-
erence income-to-debt ratio, income stability, capacity, or collateral). Besides the first condition,
these filtering criteria were not made known so as to reduce gaming. Appendix 8.5.1 shows that
our main results remain robust even when Prolific participants are excluded.

Table 1 presents the demographic summary of the 149 participants who completed our exper-
iment. The majority were recruited through Indeed and LinkedIn, including members of NAMU
and NAMP contacted via their LinkedIn groups. All participants—regardless of recruitment channel—
have experience as loan specialists, with an average of 12 years in the field. Additionally, most
reported prior exposure to artificial intelligence, though only a fifth had experience using super-
vised Al models, such as those commonly employed in loan approval predictions.

Once through with screening, qualified participants were directed to complete an online survey
(taking 60 minutes on average) hosted on the Otree platform via Heroku, completing 60 loan ap-
plication decisions, as well as answering additional questions (e.g., demand for Al signals, biases,

demographics, amongst others) detailed in Appendix 8.3.3.

4.2 Loan application decisions

The main thrust of our survey presents participants with binary prediction problems: approve the
loan to applicants expected to make timely payments, and deny the loan otherwise. Participants
are shown part of a real loan application sourced from Home Credit. The experiment consists of
five treatment conditions described in the section below, each containing ten decisions presented
in randomised order. Depending on their assigned treatment group, participants may also receive a

signal from an Al model trained on a loan repayment dataset from Home Credit. After reviewing

BPprolific loan specialists in this experiment were recruited after October 21, 2024, when we updated our pre-
registration to include stringent both pre-screening and post-screening criteria detailed below.
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Table 1: Participant Demographics

Sample Mean or

Percentage
Age 44
Female 58.39%
Bachelor’s Degree or Above 61.07%
Income 107836
Loan Specialist Experience 100.00%
Loan Specialist Years 12
Bank / Credit Union Experience 34.23%
Applied to Loans Before 34.90%
Loan Amount 193615
Used Supervised AI Before 20.81%
Never Used any Al 24.16%
Recruited through LinkedIn (NAMU/NAMP inclusive) and Indeed 64.43%
Recruited through Upwork 9.40%
Recruited through Prolific 26.17%

this information, they are directed to a landing page where they respond to two questions:

* “What do you think is the % chance that the applicant will make their future payments on

time? [Click on the blue bar to choose a number between 0 and 100.]”

* “Do you want to approve this applicant for a loan? [Approve / Deny]”

On this page, participants can view both the application details and the Al signal (if applicable)
and take as much time as they need to submit their answers.

After a practice round of 10 decisions (without Al assistance), participants evaluate 50 loan ap-
plications in the same manner as part of each of the five treatment arms. Before making decisions,
they are briefed on several key aspects of the decision-making environment: (1) the prior, or the
share of applicants in the population expected to repay; (2) their performance in the practice
rounds; (3) details of the AI model, including its training data, score interpretation, performance
metrics, and signal density conditional on repayment outcomes; and (4) details on the assisting
AD’s decision rule and behaviour (e.g., threshold and conditional performance for Binary for-
mats, or average scores by repayment status for Probability scores). Participants can access this
information throughout the experiment via a “More details” tab on the right-hand side. The full
experiment instructions can be found in Appendix 8.3.1.

Incentives are structured to balance the cost between false positives and negatives: a bonus of

$0.10 is awarded for each loan correctly denied (for default applicants) and each loan correctly
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Figure 5: Experiment I survey flow
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approved (for on-time payers). Equalising the costs of false positives and negatives is equivalent
to wanting to maximise accuracy, so for the rest of this section we focus mainly on diagnostic
accuracy as our main result. Elicited posteriors are additionally incentivized via a binarized scoring
rule (Hossain and Okui, 2013). Participants are expected to earn $3-4 in bonuses on average, in

addition to a base rate which varied from $16 (Prolific) to $40 per survey (Indeed, LinkedIn).

4.2.1 Loan application details

Participants are shown the following variables as part of a loan application (see Figure 16 in the
Appendix for an example). These key variables were identified through expert interviews with
loan specialists and results from pilot studies, with a focus on the debt-to-income ratio, months in
employment (relative to age), as well as credit scores from external sources. These are the primary
factors that loan specialists use to assess and make decisions on applications. Variables include:
loan amount, loan annuity, age, months in current employment, income (yearly), and normalized
credit scores from three sources, each ranging from 0-100, with higher values indicating greater

creditworthiness.

4.2.2 Al model details

We train one of the top-performing Al models from a public competition on the Home Credit

dataset of 300,000 loan applicants and their repayment outcomes, as described in 3. The Al model
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has access to all details in the loan application made available to human participants, as is explicitly
made clear in the experimental instructions (see Appendix Figure 12).

The model employs Bayesian optimisation to automate the tuning of hyper-parameters, result-
ing in a cross-validation AUC-ROC score of 0.79. For each loan application, the Al generates a
score from 0-100, which we then convert to the Bayesian posterior probability of repayment (based

on the Al information and prior).

4.3 Treatment conditions

In our main experimental variation, we manipulate the type of Al assistance participants receive (if
any). The treatment conditions are structured as follows: {Human-only, Probability, Binary Low
(30), Binary Medium (50), and Binary High (70)}.

Participants see the loan application in all conditions. In the Human-only condition, partici-
pants make decisions based solely on the loan application information, without any Al assistance.
In the Probability condition, they additionally see the numerical output of the AI model from 0-
100, and are told it is the AI’s estimate of the likelihood it thinks the person would repay the loan on
time. In each of the three Binary conditions, participants are given one of two messages: “Yes, this
applicant’s Al score is above [threshold],” or “No, this applicant’s Al score is below [threshold],”
depending on the specified threshold for that condition (30, 50, or 70). Note that in this setting, the
model-implied approximately-optimal binary treatment is the Binary Medium condition with the
threshold of 50.

To increase power, all participants complete all five decision blocks, which appear in ran-
domised order. The specific loan applications within each block are also randomised, and thus
typically differ across treatment conditions for different individuals. As a robustness check, we
report block-level results in Appendix 8.5.3 and show that Binary Medium (50) consistently out-

performs Probability across all five blocks.

4.3.1 Other sources of randomisation

We also cross-randomise our treatments with case-level randomisation of:

* Order of information presentation: Whether the Al signal or loan application shown first

{AI (10%), Loan (90%)}
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* Elicitation of posterior beliefs before observing the second signal: Whether posterior is
additionally elicited before the second signal shown {Elicit after only (10%), Elicit both
before and after (90%)}

This design enables us to capture the “human signal” in cases where: (i) the posterior is elicited
both before and after the second signal is shown, and (ii), the loan application is presented first.
Randomising these conditions also allows us to test for potential anchoring effects. While our
model does not assume or rule out order effects, it is important we check for it empirically. If
participants systematically respond differentially to treatments depending on whether they see the
loan application or Al signal first, or whether they report their posterior before or after seeing a
second signal, this could bias our estimates of how coarsening affects belief updating and decision
accuracy. Moreover, since we later use elicited posteriors to visualise how people update from
their own signal vs. the Al’s, it is important to know how sensitive these posteriors are to the order
in which information is presented. In Appendix 8.5.2, we show that neither the order of Al signal
presentation nor the timing of posterior elicitation systematically affects participants’ decisions or

final posteriors.

4.4 Empirical strategy

We focus mainly on loan approval accuracy as our main result, given that we incentivise for accu-

racy. Our main specification is as follows:

Yie = Bo+ Y By Treatment); + € )
t

where Y;; denotes the outcome variable for case ¢ decided by loan officer [ in treatment arm ¢,
Treatment}, € {0, 1} indicates that the case i decided by loan officer [ is in the treatment group
t (we set the Binary Medium treatment as the reference base level). We estimate the regression
with and without fixed effects (e.g., case number fixed effects). Identification is established by the
random assignment of the treatment.

Our main objects of interest are the (3; coefficients. In particular, we test the following hypothe-

SES:

* Whether the Binary Medium arm performs differently from the Probability treatment, i.e.,
testing the null hypothesis that SBpropabitiy = 0
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* Whether the Binary Medium arm performs differently from the Human-only treatment, i.e.,

testing the null hypothesis that Syuman-onty = 0

The above tests were pre-registered in our pre-analysis plan (AEARCTR-0013716). We also
documented in the plan that we expected that Binary Medium would perform better than both the
benchmarks above, as well as the Binary High/Low treatment conditions, although we remained

agnostic to whether Binary High/Low would outperform the Human or Probability treatment.

5 Empirical evidence I: Universal calibrated coarsening im-

proves outcomes

We present evidence from Experiment I that providing loan specialists with signals coarsened at
the model-implied approximately optimal threshold leads to better decision-making outcomes than

human judgment alone, or providing access to the full Al output.

5.1 Main results
5.1.1 Impact of coarsening on decision-making outcomes

Our main finding provides empirical evidence that calibrated coarsening improves decision-making.
Figure 6 clearly demonstrates that the Binary Medium (50) treatment outperformed all other treat-
ments, achieving an accuracy of 74%. Table 2 complements this by presenting regression results
from Equation 1, using the Binary Medium (50) treatment as the reference level. Loan specialists
in this condition made, on average, 4 percentage points more correct decisions than those in the
Probability condition (Column 1). This effect remains significant even after controlling for loan
application (case-level) fixed effects (Column 2).

To contextualise the magnitude of these effects, we see that performance under this condition
far exceeds that of the prior of 66% (dotted red line)—the best achievable outcome without in-
formation, obtained by approving every case—as well as the Human-only condition. Moreover, it
substantially narrows the gap to the Bayesian benchmark of 82%, which represents the accuracy a
fully Bayesian agent would achieve with complete access to Al probability signals (dotted green
).24

line).”* Moreover, while providing participants with the full Al score in the Probability condition

24 Note that this is also the Al-only benchmark, as the human does not have residual information over the Al here. The
difference between the prior and the Bayesian benchmark is the value of Al information in our context.
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Figure 6: Decision-making outcomes under different treatment conditions
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Note: Bars represent the share of correct decisions under each treatment condition. Dashed red line indicates the prior;
dashed green line marks the Bayesian benchmark. P-values indicate significance of pairwise differences relative to
Binary Medium (50). Error bars represent 95% confidence intervals.

leads to some improvement over Human-only, the difference is not statistically significant. These
results underscore the effectiveness of calibrated coarsening—closing more than one-third of the
gap between the Probability condition and the Bayesian benchmark, and more than half the gap
between the Human-only condition and the Bayesian benchmark.

The other comparisons underscore the importance of calibrated coarsening as a solution: coars-
ening at the arbitrary alternative thresholds Binary High (70) and Binary Low (30) yields accuracy
rates comparable to the Human-only condition, suggesting that not all forms of coarsening are
beneficial. This underscores the importance of calibrated coarsening: by selecting an optimised
threshold, as in the Binary Medium (50) condition, decision-making performance improves sub-

stantially, bringing participants significantly closer to the Bayesian benchmark.
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Table 2: Decision-making outcomes under different treatment conditions

Dependent variable: Share of Decisions Correct

(1) No Fixed Effects  (2) Case-Level Fixed Effects

Human-Only —0.060"** —0.057***
(0.017) (0.014)
Probability —0.040** —0.029**
(0.017) (0.014)
Binary High (70) —0.072*** —0.058***
(0.017) (0.014)
Binary Low (30) —0.050*** —0.040***
(0.017) (0.014)
Constant 0.738*** 0.699***
(0.012) (0.034)
Observations 7,450 7,450
R? 0.003 0.282
Adjusted R? 0.002 0.277

Note: Regression estimates per Equation 1 of loan approval accuracy by treatment condition, with Binary Medium (50)
as the omitted reference group. Column (1) reports estimates without fixed effects; Column (2) includes application
(case-level) fixed effects. Standard errors in parentheses. *p<0.1; **p<0.05; ***p<0.01

5.1.2 Impact of coarsening on time spent

In addition to improving accuracy, coarsening Al signals can significantly reduce decision time—a
critical consideration in real-world applications where experts’ time is valuable. Figure 7 shows
the average decision time across conditions. We find that participants in the Binary Medium (50)
condition spent 42.6 seconds on each application, making decisions approximately 7% (around 3
seconds per application) faster than those in the Probability condition. This suggests a meaningful
reduction in cognitive load, as individuals no longer need to interpret and calibrate a continuous
score but instead act on a clearly actionable binary recommendation.

This time-savings is particularly important in high-throughput decision environments such as
financial underwriting or medical triage, where expert bottlenecks are costly and reducing time
per case—even marginally—can unlock substantial operational gains. Businesses may sometimes

even care more about throughput than marginal improvements in accuracy, and this is where Al
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Figure 7: Average decision time across treatment conditions
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Note: Bars represent mean decision time (in seconds) across treatment conditions. Participants in the Binary Medium
(50) condition made decisions significantly faster than those in the Probability condition (p = 0.042). Error bars
indicate 95% confidence intervals.

often delivers the most tangible value: by accelerating decisions without sacrificing (and in this
case, improving) performance.

We also observe substantial time savings compared to the Human-only condition, although with
considerable variance in the latter group. Some participants took much longer to reach decisions
when unaided by Al, while others were relatively quick. While our study was not powered to
detect differences in time spent, results suggest that Al tools not only boost performance but can

also streamline workflows, representing large operational gains.

5.1.3 Demand for coarsened Al

It is not enough for a solution to be effective; an important practical question remains: do people
adopt it? Moreover, do people choose the signals that are most effective for them?

At the end of this experiment, participants were given the choice between three options: re-
ceiving no Al assistance, the binary Al signal (at their preferred threshold), or the full probability

score. As shown in Table 3, less than half of the participants chose to receive Al assistance in the

35



form of the probability score, while others preferred less than full information, either opting for no
Al assistance or preferred a binary signal instead.

These preferences are mirrored in participants’ willingness to pay (WTP), which we elicited
in an incentivised manner. Those who declined Al assistance were, on average, willing to pay
less than 10% of the 10-cent per-case bonus (i.e., < $0.01) for binary signals, and would have
to be paid to use a probability score. In contrast, those who opted for binary and probability Al
assistance were willing to forgo non-trivial amounts: 38% (3.8 cents) and 25% (2.5 cents) of their

per-case bonus to access them, respectively.

Table 3: Willingness to Pay and Highest Payoff Treatment, by Choice of Al Assistant

Highest Payoff Treatment
Total Human Only  Binary Prob Mean WTP Binary Mean WTP Prob

Choice of AI  (#) (% total) (% total) (% total) (cents/case) (cents/case)
No Al 35 57 19 13 0.8 (4.48) -0.2 (3.86)
Binary 45 22 31 34 3.8 (4.10) 2.4 (4.04)
Probability 69 22 50 53 3.1 (4.06) 2.5(3.72)

Note: Summary of participants’ choice of Al assistant, their highest payoff treatment, and mean willingness to pay
(WTP), expressed in cents per case.

There is some suggestion that people are selecting into the types of signals that are most effec-
tive for them. The majority of participants for whom the highest payoff treatment was Human-only
chose not to use any AI,> while the majority selected probability scores when they did best with
them. Those who did best in one of the three binary treatments were more mixed, with about half
of them preferring Al assistance in the form of a probability risk score instead of a binary.

In Appendix Table 4, we also explore how demographic characteristics relate to Al assistant
choice. Notably, participants who chose no Al were older on average (47 years vs. 42 and 41 for
the probability and binary groups, respectively), and more likely to report never having used any
Al before (40%, compared to 17% and 22%). This suggests that familiarity with Al, and perhaps
comfort with technology more broadly, plays a role in adoption decisions.

Before asking participants to choose between the three Al assistance types, we also elicited
their ideal binary threshold—i.e., the score above which they would want the model to output a
“Yes, this applicant’s score is above [threshold]” recommendation. Figure 22 in the Appendix

shows the distribution of these thresholds. Choices are skewed to the right of 50: many partici-

BThis may be mechanically correlated, of course, if people who choose not to use Al are the ones who are reluctant
to follow it when forced to use it, leading to lower payoffs under the Human-only treatment.
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pants selected thresholds above the best-performing decision threshold. This pattern may reflect a
tendency to emulate a “cherry-picking” strategy that loan specialists are often trained under, pri-
oritising identification of clearly good applicants (those highly likely to repay) over eliminating

lemons.

5.2 Understanding how participants make decisions

Given that what we care about is decision-making, we want to further understand how our partic-
ipants are making these decisions—for instance, to what extent participants are following the Al
recommendations—and what factors are driving these outcomes.

One important aspect we verify is whether loan specialists behave consistently with the de-
cision rule implied by the incentive structure. Since correct approvals and denials are rewarded
equally, participants should approve when their posterior exceeds 50% and deny otherwise. We
conduct this check to gain insight into whether deviations from the Bayesian benchmark are hap-
pening at the level of belief-updating or inconsistent translation of beliefs into actions. Appendix
Figure 23 shows that for most participants, approve/deny decisions are cleanly separated around
the 50% posterior threshold (“action threshold”)—suggesting that most deviations stem from belief

formation rather than decision noise (conditional on posterior) or mis-calibrated action thresholds.

5.2.1 Algorithmic adherence

Having established that participants generally apply consistent action thresholds, we begin by tak-
ing a deeper dive into how participants react to Al signals. Figure 8 illustrates the share of loans
approved across different treatments and thresholds. On average, loan officers approve 67% of
loans, as indicated by the dashed horizontal line. But we would expect a higher threshold—where
the Al requires a stronger signal to recommend approval—to lead participants to interpret a “Yes”
as a stronger endorsement, increasing approval rates for those cases. Conversely, a lower threshold
should make a “No” message weaker, leading to fewer denials. Figure 8 confirms this expecta-
tion: as the threshold of the binary Al signal increases, loan specialists approve more loans when
the Al recommends “Yes” and deny fewer when it recommends “No”. This trend is evident in
the upward-sloping blue bars as we move from lower to higher thresholds. For the Probability
condition (rightmost cluster), loan approval rates are further broken out by the implied binary rec-

ommendation. For instance, under the Low (30) threshold, the figure plots the approval rate when
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the Al score exceeds 30. The purple bar represents the average loan approval rate across the full

Probability condition.

Figure 8: Loan Approval Rates, by Treatment and (implied) AI Recommendation
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Note: Bars show loan approval rates by treatment. Binary conditions are split by whether the Al recommends ~Yes”
or "No” at thresholds of 30%, 50%, or 70%. Probability is split by whether the Al score exceeds each threshold; the
purple bar shows the overall average. Error bars indicate 95% confidence intervals.

These findings confirm that participants respond to Al-calibrated thresholds rather than treat-
ing all Al recommendations equally. At the same time, the fact that approval rates for Binary No
(when the binary Al recommends “No”) and Binary Yes (when the binary Al recommends “Yes”)
conditions do not fall at 0% and 100%, respectively, shows that loan specialists do not blindly fol-
low Al recommendations. This imperfect adherence suggests that participants are exercising their
own judgment—albeit erroneously in this case, where they don’t have any residual information

over the Al—rather than following the AI’s suggestions.

5.2.2 [Estimating pooled decision boundaries

If participants are not simply following the Al signal, how are they actually making decisions? To
investigate this, Figures 9a-9d present the empirical analgoues of the decision boundary graphs in

Figures 4a-4f in the model section, estimated using our experimental data.
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Figure 9: Pooled Decision boundaries, Visualised Using Experiment Data
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optimal boundary.
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First, we verify the Bayesian decision boundary—the best a decision-maker can do given their
information—represented by the orange line in Figure 9a. For all cases where we have elicited
the human signal over the loan application (1),”° we compute the Bayesian posterior using the
joint distribution of r and s conditional on the state w. We then apply the thresholding rule: a
Bayesian would approve if their posterior probability is greater than 0.5. In the figure, green and
red dots represent cases where the Bayesian would approve and deny, respectively, and the orange
line marks the decision boundary between them. As expected in this setting—where humans have
no residual information over the Al—the Bayesian decision boundary is a flat line around s = 50.
This reflects that a Bayesian decision-maker would perfectly follow the Al signal, approving any
case where the Al score exceeds 50 and denying otherwise, serving as a benchmark to evaluate the
extent to which participant decisions deviate from this ideal behavior.

Next, we estimate the decision boundary of the loan specialists in our experiment. To do this,
we pool together all decisions under the Probability condition where we also elicited the human
signal. This allows us to examine how loan specialists integrate both the human and probability
Al signals in their decision-making process. Using a Nadaraya-Watson kernel with bandwidth
selection via cross-validation, we estimate the probability of approval, Pr(a” = 1 | r, s). To ensure
the estimated probabilities are monotonic with respect to both r and s, we apply the rearrangement
procedure described in Chernozhukov et al. (2009). Finally, we solve for pairs of 7 and s satisfying
Pr(a” =1 r,s) = 0.5, yielding the blue estimated decision boundary in Figure 9b.

There is a clear deviation from the orange Bayesian decision boundary: the blue decision
boundary of pooled loan specialists is steeper, indicating that the loan specialists place greater
weight on their own (human) signal compared to a Bayesian decision-maker. Ideally, to attain
better decision-making outcomes, loan officers should approve cases above the Bayesian line and
deny cases below. Figure 9c highlights the scope for improvement in loan specialists’ decision-
making, with the blue area representing the discrepancy between the Bayesian decision boundary
(orange line) and the estimated decision boundary of loan specialists (blue curve). This misalign-
ment suggests opportunities to refine decision-making by structuring signals in a way that brings
loan specialists closer to Bayesian-optimal behavior.

Examining decisions under the Binary Medium (50) treatment reveals that coarsening the Al

signal can indeed improve decision-making outcomes. Figure 9d illustrates how thresholding the

6Since 90% of cases present the loan application first (before the Al signal), and we independently randomise whether
the posterior is elicited after the first signal in 90% of cases, this results in our observing r for 81% of cases.
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Al signal at the model-implied optimised threshold (s = 50) helps participants adhere more closely
to the Al recommendation within the range of » = 40 to » = 90. Intuitively, because participants
systematically underweight the Al signal relative to their own, pooling a strong Al score (e.g.,
100%) with a marginal one (e.g., 51%) can increase the perceived strength of the latter without
altering the recommendation from the former. As a result, individuals are more likely to follow the
Al when their own signal is sufficiently low (e.g., below r < 90), with similar logic for r» > 40.
Outside this range, however, participants continue to rely on their own human signal, which—when

strong enough—can lead them to override the Al recommendation.

5.2.3 Where loan specialists are performing well

To better understand how coarsening affects different types of decisions, we examine where spe-
cialists are good at or particularly struggle in approving and denying loans. Across treatments,
loan specialists are generally better at correctly approving than correctly denying applicants, con-
sistent with institutional norms that emphasize approving “cherries” over rejecting “lemons.” The
Binary Medium treatment primarily improves performance by reducing false negatives—helping
participants identify and approve creditworthy applicants who might otherwise be denied. This
effect is especially pronounced when participants’ own signal falls in the uncertain range (34—66),
where decision-making is more ambiguous. Full results broken down by true/false positives and

negatives, stratified by Al and human signals, are reported in Appendix Tables 25-27.

5.3 Heterogeneous Treatment Effects (HTEs)

For whom is Al assistance—whether coarsened or not—most effective, and what mechanisms
drive differential responsiveness to AI? To explore these questions, we examine heterogeneous

treatment effects (HTEs), presented with case fixed effects in Appendix 8.4.2.

5.3.1 HTEs by demographics

Gender emerges as a key moderator, with men benefiting significantly more from Al assistance.
The Binary Medium (50) treatment increases their accuracy by 9.5 percentage points over Human-
only, compared to just 2.6 percentage points for women. Similarly, men improve by 4.8 per-
centage points when moving from the Probability condition to Binary Medium (50), whereas the

corresponding gain for women is only 1.4 percentage points. Notably, these differences are not
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driven by baseline disparities, as both genders exhibit similar accuracy levels (64-65%) in the
Human-only condition. Instead, the pronounced gender gap in Al-driven performance gains aligns
with existing literature suggesting that men may be more willing to adopt, adapt to and leverage
Al-generated recommendations effectively (Bick et al., 2024; Carvajal et al., 2024; Humlum and
Vestergaard, 2024; Liu and Wang, 2024).

Other demographic factors also matter. While age does not meaningfully moderate treatment
effects, younger loan specialists—those below the median age—perform better across all treat-
ments, with a 3.9 percentage point advantage in the Human-only condition. Experience, on the
other hand, plays a more pronounced role. Loan specialists with fewer years of experience per-
form significantly worse at baseline, with an 8 percentage point accuracy gap in the Human-only
condition between specialists with low and high years of experience. However, they experience
higher treatment effects, closing about half of this initial gap, suggesting that those with less prior
domain knowledge are more willing to listen to AI’s recommendations, benefitting disproportion-
ately from Al assistance, at least in this context—a finding supported in the literature (Dell’ Acqua
et al., 2023). While overall differences in treatment effects by practice accuracy (proxy for base-
line performance) are modest, there is some variation: those with below-median practice accuracy
benefit slightly more from coarsened signals.

Perceived private information also influences responsiveness to Al. Those with below-median
perceived private information had lower baseline accuracy in the Human-only condition (3 per-
centage points lower). However, they benefited more from Al assistance: the Binary Medium (50)
treatment improved their accuracy by 7.4 percentage points over Human-only, while the Probabil-
ity treatment led to a 3.8 percentage point increase (in contrast to 4.2 and 2.0pp respectively for
those above the median). This pattern is intuitive—individuals who (correctly) recognise their lim-
ited private information are more receptive to Al signals, making them more likely to incorporate

Al assistance effectively, regardless of its presentation format.

5.3.2 HTE:s by cognitive biases

Baseline cognitive biases also shape treatment effects, offering suggestive evidence on which types
of bias are most likely to be at play in this decision context. While we cannot isolate a single domi-
nant bias driving the gap between human-Al performance and the Bayesian benchmark, examining
how different bias measures moderate performance sheds light on the mechanisms through which

Al assistance—whether coarsened or not—yields differential gains.
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For automation bias, baseline accuracy in the Human-only condition is similar across groups,
but the treatment effects are higher for those who face less automation bias (that is, more automa-
tion neglect). In this setting, where there is no residual human information over the Al, there is
no scope for automation bias. Instead, the relevant concern is automation neglect, as specialists
may rely too heavily on their own information rather than following the AI’s signal, which is the
best approach in this context. Our finding that those facing more automation neglect benefit more
from coarsening supports this idea, reflecting insights from the simulated example in Section 2.
When the loan specialist underweights the Al signal, coarsening can help pool signals together
and encourage the specialist to listen more to the Al.

The balls-urns measure shows a stark contrast: those with an above-median parameter—who
exhibit close-to-Bayesian updating or conservatism bias—have much higher baseline accuracy in
the Human-only condition (12.8 percentage points higher) than those below median, who tend to
over-update. However, treatment effects are stronger for the latter group, which aligns with expec-
tations, as individuals who over-update are more sensitive to Al signals. Base-rate neglect also
appears to play a role: those who face above-median base-rate neglect start with lower accuracy in
the Human-only condition and experience a correspondingly larger treatment effect, which makes
sense given that individuals with higher base-rate neglect are discounting priors more, and thus
face greater updating bias. By contrast, the aggregation bias and correlation neglect measures
do not moderate either baseline accuracy or treatment effects.

Together, these findings provide suggestive evidence of the sorts of biases (e.g., automation
neglect, base-rate neglect) that may be driving suboptimal use of Al assistance, and how calibrated

coarsening can help correct these biases.

6 Estimating decision boundaries to personalise policies

The previous section documented substantial heterogeneity in how specialists respond to different
types of Al assistance—across both demographic groups and cognitive biases—suggesting that a
one-size-fits-all approach may leave additional gains on the table. While a universal coarsening
rule (such as the theory-implied Binary Medium) improves average performance, the presence of
systematic heterogeneity raises the possibility of further gains through personalisation. In this sec-
tion, we develop a Bayesian model of decision-making to estimate individual decision boundaries

from past data, with the goal of designing Al-assistance policies tailored to each specialist.
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In brief, the method specifies a prior distribution for the model parameters and a model of
the likelihood function, and applies Bayes’ rule to derive the posterior distribution of the param-
eters, reflecting updated beliefs after seeing the data. Our aim is to design an approach that can
adjust flexibly to individual heterogeneity while performing well under data constraints. In our
setting, we have less than 10 observations per specialist-treatment for which the human signal (r)
is elicited, making traditional estimation methods unreliable. To address the small sample size, we
adopt a hierarchical approach (Gelman et al., 1995; Zitzmann et al., 2021), which does not rely on

asymptotic approximations and can yield more reliable estimates in settings with sparse data.

6.1 Decision model specification

We model loan approval using a latent probit model. Each loan application n is evaluated by a
loan specialist ¢ under treatment condition 7', where T' = {1, ..., t_1 } is the set of thresholds that
coarsen the space under a K-coarsening. Let s,, € S C R be the underlying continuous Al signal

(from the Al output) for application n. We define the treatment-specific Al message ®r(s,,) as:

;

1, if (|T| =1and s, >t;)or (|T| =2 and s, > t3),
P«M(t)a lf|T| =2 andt; < Sp < o,
(I)T(Sn) =
0, if (|T|=1ands, <t;)or(|T| =2 ands, < t;)or|T| =0,
Sn,s if |T| = |5 —1.
\

In other words, when the treatment is binary (i.e., |T| = 1), the Al score is coarsened to {0, 1}
depending on whether s,, falls below or above the threshold ;. When the treatment is trinary (i.e.,
|T| = 2), the two thresholds (¢, ;) demarcate the score distribution into three bands. The low

and high bands are anchored at 0 and 1, while the middle band is mapped to a single constant

. E[sn|tlgsn<t2]7E[sn‘3n<t1}
par(t) = E[sn[sn>t2 |—E[$n]8n<1]

, so that all three support points lie on [0, 1].>” If the treatment
is human-only (i.e., |T| = 0), we set ®r(s,) = 0 for all n. Finally, under full revelation (i.e., no
coarsening), the continuous score is directly revealed by setting ®r(s,,) = s,,.

For each application decision, the loan specialist 7 observes their own human signal r; 7,, €

R C R and the coarsened Al signal ®7(s,,) as defined above, for all loan applications n assigned

2"This ensures that a jump from 0 — y has the same marginal effect on latent approval as from z — 1.
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to them under treatment 7. Based on this information, the specialist makes an approval decision
a;rn € {0,1}. We assume that the binary decision a; 7, arises from a continuous variable Yirn

which is not directly observed, i.e., that a; 7., = 1[y;7,, > 0]. The variable y;., is given by:
yan =a; 7+ Tirn+ Bir - Pr(sn) + €1 €irn ~ N(O, UZT)

a;r ~N(Zi Yo, 02,T> and 31 ~ No.o)(Zi - vs,1, Ug,T)

where o; 7 is a treatment-specific intercept and [3; 1 is the weight assigned to the Al signal. To ac-
commodate specialist-level heterogeneity without overfitting, we employ a hierarchical approach,
allowing specialist-level parameters (o 7, 8; 1) to vary while being informed by population-level
distributions where data is sparse. Specifically, each set of specialist-level effects is drawn from a
normal distribution whose mean depends on specialist-specific covariates Z;, where v, 7 and 7, 1
are the population-level coefficient vectors, and afw and afvT represent residual heterogeneity in
intercepts and slopes, respectively. This structure allows specialists with similar characteristics
to have similar coefficients while still permitting idiosyncratic variation. We assume that both
o, 1, B r are independent of each other and of r,?8 and normalise the coefficient on the human
signal to fix scale.” The term ¢, r,, captures residual idiosyncratic variation in decision-making
not explained by the observed signals, where OS,T represents residual heterogeneity at the decision-
level within treatment 7'.

To reflect the single-crossing property in Result 1 and to prevent illogical decision boundaries
(e.g., where some loan specialists may Deny under a “Yes” message but Approve under a “No”
message), we impose the constraint 3; 7 > 0 for all specialists and treatment conditions, ensuring

that higher Al signals are weakly associated with a higher likelihood of loan approval.

Z8The independence assumption is reasonable given that there is no a priori reason to expect why someone with higher
baseline approval («) should be more/less sensitive to the Al score (3). In practice, omitting correlation between the
coefficients leads to more stable estimates, as there is not enough data to reliably estimate the correlation parameters.
In settings with more data, one could consider relaxing this assumption.

2To ensure stable hierarchical estimation, in practice we fix the coefficient on the human signal to 1/, and work on
a unit-variance probit scale. Dividing the structural equation by o, 1 gives

*
YiTn P >
~ 4 ~ std std
Yirn = p = &+ BrirriTn + Bsir Pr(sn) + € T.n> & Tm ™ N(0,1),
e, T
~ 2 _ 1 2 _ Bir . . ~ 2
where &; = «;/oc 1, BriT = ot Bsi1 = Far This allows us to sample the rescaled coefficients &; and 3, ; T

hierarchically and interpret them directly, while &57T captures the residual decision noise.
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6.2 Decision model estimation

As we wish to retain our flexible conceptual framework and allow people to follow different up-
dating procedures depending on the signal presentation without further structural constraint,*® we
estimate the model separately for each treatment condition 7', allowing the coefficients «; v and
B;.r to vary across both specialists and treatments. As such, we recover one set of decision bound-
ary parameters per specialist-treatment.

Each loan specialist makes 10 loan application decisions in each treatment condition: for our
first experiment, this includes 7' € {30}, {50}, {70}, 0, and S\ {min(S)}. The econometrician
observes D = {a; 1, Il;?}’;W, TiTons Sns Pr(Sn)}, where 7; 7., is the loan specialists’ human signal
when elicited and is only observed when 11;’5%’“ is equal to 1. This occurs completely at random for
90% of the cases—that is, the probability that 7; 7, is unobserved does not depend on any observed

or unobserved variables—so we treat each unobserved signal 7; 7, as a latent variable:

Pirn = 1% Fin + (L= 19%,) Fizn,  Fign ~N(ZI6+ X\, 020),
where 7; 7, is modelled as a function of observable application characteristics X,, (e.g., loan
amount, annuity) and a vector of specialist-specific covariates Z; (e.g., demographics, baseline
biases). The residual idiosyncratic variation is governed by the population-level variance parame-
ter o7, which is allowed to vary across treatment conditions.
From the latent probit model, we can write the conditional probability that loan n is approved—

the decision likelihood—given the model parameters © = {a; 7, Bir, A, 6, 02, 0op}:

obs ~
p(ai,T,n | ﬂi,T,m TiTmy Xny, Zis Or(sn), O)
@ n 1%, P+ (1-19% ) (2] 5+ X3\ +Bi 7 P1(sn) ))
\/UE2¢T+(17]1;')E’%77L) GE,T

= Bernoulli (ai,T,n ‘ <I>(

where ®(-) denotes the standard normal cumulative distribution function. This reflects the full
predictive structure: when the human signal 7; 7, is observed, it enters the model directly; when
unobserved, the model marginalises over the latent signal 7; 7,,. Note that whenever the human

signal is observed (]lffq’in = 1) we also explicitly model #; 1, ~ N/ (ZZT S+ XA UE,T) as part of

je., g is indexed by ® as per our conceptual framework.
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the joint likelihood, via the latent signal model:

N(firn | 216+ XN, 027), i 155, =1,
p(rimm | 1% Pistins Xn, Zi, ©) =
N(fimn | 215+ X, aiT), if 195, = 0,

ensuring that the variance 037T is directly identified from the dispersion of the observed 7; 7,
values around its regression mean. Once JiT is pinned down, the approval likelihood attributes
the remaining unexplained variation to the decision-noise variance aiT, allowing the two variance
components to be separately identified.

We estimate the model in Stan using Hamiltonian Monte Carlo (HMC) to jointly sample from
the posterior distribution of all parameters. Given that r is missing completely at random (MCAR),

we sample all model parameters © and latent signals 7; 1, from the joint posterior:

PO, T | 1% iy @ity Xy Ziy Or(sn)) ox

p<ai,T,n | T4, Tyns dr(sn), 0) p(Ti,T,n | 1?%3,n,72i,T,me Zi,0) p(0),
7 G ~—

Vv vV
decision likelihood latent signal model prior

where the first term represents the likelihood of the observed decision given the (partially latent)
human and Al signals, as laid out in the conditional likelihood above; the second is the signal
model for 7; 7,,; and the third encodes priors over all parameters. No adjustment to the likelihood
is needed as the missingness mechanism is ignorable under MCAR (Gelman et al., 1995).

Lastly, we use weakly informative priors to regularise estimation while allowing the data to
drive inference. Specifically, we use N (0, 5) priors for the group-level hyperparameters 7, r and
s, and assign half-Cauchy (0, 2.5) priors for the standard deviations o, 7, 057 and o, following
Gelman’s recommendation for weak regularisation in probit models. We also place data-driven
priors on the human-signal coefficients. Using only observations where the human signal 7 is re-
ported, we regress 7 on the specialist covariates Z; and loan covariates X,,; the resulting point
estimates (5 , 5\) and squared standard errors (62, 57) become the means and variances of our pri-
ors: § ~ N(6,52) and A ~ N[\, 52). The residual signal variance is given a truncated normal

prior o, ~ N(&T, &f,se) 10,00)-
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6.3 Estimating individual specialist decision boundaries

Posterior draws from our hierarchical model allow us to infer each specialist’s decision boundary
under different treatment conditions. Each specialist’s latent decision boundary is defined as the
set of points (r, s) at which their latent utility y7 = 0. We can express this decision boundary for

each treatment as follows:

Probability: a7 +7r + Bir-s =0 = s = —O‘BL;”T fort = S\ {min(S)} and g, # 0

(this is necessarily the case since we impose 3; r > 0 in our estimation).
Human-only Treatment: ro = —«; 1 for t = 0.

Binary Treatments: r, = —«a;7 — Bir,r0 = —a;r fort € {30}, {50}, {70}, recalling that
the actions of the Receivers for each binary treatment are characterised by {1, ro, 1}, where ¢;
is the binary threshold and r € [rq,7() is the region where the specialist would adhere to the Al

recommendation.

Trinary Treatments: o = —OQ4;T — 5@',T: ™ = —o0;7 — Bi,T © (t), o = —o4T fort €
{30, 50}, {50, 70}, where the actions of the Receivers for each trinary treatment are characterised
by {t1,t2,70,71,72}, Where t, t are the thresholds and 7, 71, 7o are the minimum human signals

needed to “Approve” under each induced message.

6.4 Heterogeneity in decision-making: example from Experiment I data

Using data from Experiment I, we estimate the model and draw .S = 1000 posterior samples of the
model parameters. For each specialist-treatment pair, we compute and plot the median decision
boundary in the (r, s)-plane. Specifically, for the Probability treatment, we use the median slope
and intercept; for other treatments, we take the median of each adherence bound (e.g., 7o, 1, etc.).
Each grey line in Figure 10 represents one specialist’s median boundary under a given treatment,
while the solid black line indicates the median boundary across specialists in that treatment.
Visualisations of the individual decision-making boundaries reveal considerable heterogeneity
among specialists. For instance, under Probability (Figure 10a), we observe significant variation

in slopes and intercepts. Specialists with flatter boundaries and intercepts around s = 50 behave
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closer to the Bayesian benchmark (fully flat); in contrast, steeper boundaries reflect greater weight
on the human’s private signal or under-weighting of the AI’s signal. There is also considerable
heteorogeneity in how people respond to treatments; see for example the wide range in adherence
under Binary Medium in Figure 10e. The observed heterogeneity in treatment responses suggests

potential gains from personalisation.

6.5 Personalising policies using decision boundary estimates

Using the specialist-level parameters estimated as described above, we can then evaluate how each
loan specialist would perform under each treatment condition on a shared set of N = 1,000 out-
of-sample loan applications, maintaining the same prior in the population.

First, for each specialist-treatment pair, we draw S posterior samples of the decision parameters

agf%, ﬁi(’ST), A and o () and use these to compute predicted decisions &Es%n for each out-of-

sample loan application n and posterior sample s.

Specifically, for each posterior sample and loan application, we draw the human signal: Tfs%n ~

N (XA + 7,68 aigf )) and then compute the predicted decision dl(s%n =1 [al(s% + ﬁ : rl(fT)m +
Y,
Oe, T

averaging over the evaluation set and posterior draws:

- ®7(s,) > 0]. For each draw, we compute the predicted accuracy for each treatment by

11
Accuracy; ; = SN Z Z 1 [&Z(S%n = yn}

where N is the number of applications and y,, € {0, 1} is the ground-truth label for application 7.
For each specialist, their optimal treatment is the one that maximises this expected accuracy:

topt

i = argmax Accuracy;

Assigning each loan specialist their predicted optimal coarsened treatment results in 30% al-
located to Binary High (70), 15% allocated to Binary Low (30), and 55% retaining the Binary
Medium (50) policy from the generalised assignment. This personalised approach is predicted to
yield a 2.5 percentage point improvement over the generalised policy, highlighting room for fur-
ther improvement of decision-making outcomes by calibrating not just thresholds, but treatments

to individual decision-makers.
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7 Conclusion and Discussion

We show in this paper—both theoretically and empirically—that coarsening Al signals at opti-
mised thresholds can significantly enhance human-AlI collaboration outcomes, including in high-
stakes fields such as loan approvals. We propose a framework for improving decision-making that
keeps humans in the loop, adapts to various forms of human bias, and is applicable across diverse
contexts. This approach addresses the challenge of human cognitive biases that often hinder the
effective use of Al predictions in real-world deployments.

A crucial question is whether our results generalise. To address this, we are conducting fur-
ther experiments in which humans possess private information (e.g., interviews unavailable to the
Al), and empirically testing our personalised thresholds in a two-stage experiment. Additionally,
we are exploring extensions to other domains, including hiring decisions, to assess the broader
applicability of calibrated coarsening in different decision-making contexts.

In conclusion, calibrated coarsening is a practical and effective approach to improving human-
Al decision-making. Future research avenues include scenarios involving strategic considerations,
where the Receiver’s objective function may diverge from that of the Sender’s due to misaligned
incentives or motivated biases, such as those against gender or race in hiring or loan approvals.
Additionally, developing dynamic, adaptive systems that adjust information presentation in real-
time based on decision-maker behavior and context may hold significant promise. Moreover, in
contexts where humans may not need to have final decision rights but may have useful residual
information over the Al, further developing methods to integrate human judgment into automated
Al-human decisions could prove an interesting direction. As human-AlI collaboration evolves, we
believe advancements in information design will be instrumental in shaping the future of work and

decision-making across countless domains.
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8 Appendix

8.1 Real-world Examples of Coarsened Al signals

Figure 11: VideaAl Dental Interface
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8.2 Proofs
Proposition 1

Proof. Fix u(r,s)=v(r,s) forallr € Rand s € S. The Sender’s expected utility under ¢ is given

by:
Eofv] = Eofu] = /ms (/u(r 5) df) 4 (r, 5)

since a message k induces the Receiver r to act if and only if » > r,. Under the full revelation
mechanism, ®, generates the message r*(s) for each s € S. Hence the expected utility of the

Sender under &, is:

Eg [v] = Eg,[u] = /S (/r:(s) a(r, s) df) f(s)ds = /R*XS </7:(5) a(7, s) df) do(r, s),

Recall that r* satisfies u(*(s), s) = 0. Using Fubini’s theorem and the condition @(r*(s), s) = 0,

we can express the difference in expected utilities as:

Eq[v]—Ea[v] = /S / . ( / ;S) (7, 5) df) JD(r. 5)— /5 /W(S) ( /TT*(S) i) df) 4% (r, s)
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By Result 1, we know that @(7, s) > 0 for 7 > r*(s), which implies f;(s) a(r,s)dr >0 forr >
r*(s). Any mechanism ® that differs from ® assigns strictly positive probability to the event
r > r*(s). Otherwise, the term [, . u(r,s)d®(r,s) would be strictly negative rather than zero.
Therefore, the first integral is strictly positive; conversely, the second integral has to be strictly
negative. Therefore, E¢ [u] — Eglu] > 0 for any ® that differs from @, making ®, the optimal

mechanism that maximises the Sender’s expected utility.
O]

Proposition 2

Proof. Fix r. Starting with the first part, assume without loss of generality that the Sender’s full-

revelation (inverse) boundary is higher, i.e., b, () > bz (r). Let

The threshold ¢* is either Sender’s optimal decision boundary, or the highest binary threshold
Sender can set such that the Receiver still adheres to the binary signal. We now prove that t* €
(b(r), be(r)].

First, observe that the Receiver will adhere to the binary signal when the Sender sets the thresh-
old t at the Receiver’s decision boundary, i.e., t = B;r(r). To see why, notice that by Part 1 of
Assumption 2, the Receiver’s posterior is a weighted average of posteriors. When ¢ = Eﬁ(r), the
coarsened signal ®(s) = 0 pools together signals s below the boundary, i.e., 7(r, s) < 7(r,by).
Therefore, any weighted average must satisfy 7o (r,0) < 7(r, b,), and it must be the case that the
Receiver chooses a = 0. Similarly ®(s) = 1 pools together all signals above the boundary, which
implies that the Receiver chooses a = 1. Moreover, by Part 2 of Assumption 2, there exits ®;
with ¢’ close enough to the boundary bx (r) such that the Receiver still adheres to ®,,. Therefore,
t* > ba(r).

Notice that this immediately implies that ¢« improves Sender’s utility over full revelation:
their utility over the segment s € [bz(r),t*] is strictly higher relative to full revelation, and it is
identical everywhere else.

To see why ®;- is optimal, assume by way of contradiction that there exists a monotone coars-
ening ® that dominates ®,«. In particular, & must induce a = 0 at some s’ > t*, but this immedi-

ately leads to a contraction, since by the definition of ¢*, no binary coarsening ¢, can induce a = 0

65



when ®,(s’) = 0, which then implies that no monotone coarsening can induce a = 0 at s’. The
proof for the case b, (1) < bz (r) is symmetric.

Moving on to the last part, first notice that the Sender fully implements their boundary iff
Receiver follows ®; ). Assume ZA)W(T) > I;;r(r), and that the default action is 0. Clearly, the
Receiver chooses a = 0 whenever ®,(s) = 0, since it induces a posterior strictly lower than
the posterior induced by full censorship. Similarly, since b,(r) > bx(r), the Receiver learns that
s > b.(r) > bz (r), and chooses a = 1. Therefore, Receiver adheres the signal. The proof for the

other case is symmetric.
O

Proposition 3

Proof. Recall that the FOC is given by

(s,70(t)) g(ro(t) | s) f(s) ds

+ry(t (s,m1(t)) g(ri(t) | s) f(s)ds

3\\

+A@ o(t,r) g(r | £)dr F(t) =

which we can write as 7((t) Ao (t) + 71 (t) A1 () + f(t)B(t) = 0.

Notice that |v(s, )| is bounded by max{cpp, cpp} = . Therefore, at t =  we have:

|mﬁﬂsv/ g(rod) | 5) £(s) ds < Tg(rolE)).

—00

which, by Condition 1 in the proposition, implies:

For the third term, by Condition 2 and the fact that £, [v(#,7)] = 0 at the Al-only boundary, we
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have:

Therefore,

V(1) < 20e + f(t)e < Che

where C = 20 + sup, f(s).

By the Mean Value Theorem, there exists some { between £ and #* such that:
V/(£) = V'(t")] = V" ()] - [t* — ]
Since V'(t*) = 0, it follows that:

h
- t
[V (@)]

|2

1
€

3

where m > 0 satisfies |V/”(t)| > m (the existence of such m is guaranteed by uniform concavity).
Defining C' = <L yields the desired resul.
[
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8.3 Experiment Design

8.3.1 Experiment I Instructions

Figure 12: Instructions to participants to highlight prior and Al details

Instructions

More details on Al

For the rest of the questions in the survey, we will show you profiles of people who are each applying for a loan.
Imagine you are a loan approval officer who has to decide whether or not to approve/deny the loan.

For each of these people, we will show you:
1. Aloan application like the ones you saw in the practice rounds

2. Additional information from an artificial intelligence (Al) assistant on how likely it thinks the applicant will repay
their loan on time.

Sometimes the Al information will be shown first, and other times the loan application data will be shown first. Based
on this information, you need to decide whether or not to approve the loan for them.

All of the Al assistants come from the same Al model that is trained on a dataset of over 300,000 loan applicants. The
data available to the Al includes all the details available to you -~ like those in the loan applications you saw in the
practice rounds -- and more. More information on the underlying Al model can be found in "More details on Al".

Over the course of this survey, we will show you 51 applications. These applications will be randomly drawn from a sample
where 66.66% of applicants will repay their loan on time. The other 33.33% will not repay their loan on time.

Of the 51 randomly sel: d loan appli you will see, on average, how many of them will not repay their loan on
time?

Please give your answer in the form of a number.
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Figure 13: Detailed instructions give “More details on AI”

Instructions More details on Al

All of the Al assistants come from the same Al model that is trained on a dataset of over 300,000 loan applicants.
The data available to the Al includes details of the loan, applicant demographics (age, gender, education, family, car
and house ownership), employment details, previous Credit Bureau enquiries and loans, normalized credit scores (if
available), and whether or not they repaid their loans on time. The details available to you -- like those in the loan
applications you saw in the practice rounds -- are also available to the Al model.

The score outputted by the Al models represents the implied posterior probability that an individual will repay the
loan. This probability is determined using Bayesian updating, which incorporates both prior information (the initial
likelihoood that any borrower will repay the loan) and new evidence from the Al model.

The model employs Bayesian optimisation to automate the tuning of hyper-parameters, resulting in a cross-
validation AUC-ROC score of 0.79. For each loan application, the Al generates a score from 0-100. More details on
the scores the Al generates, and how they relate to whether or not the applicant repays on time, can be seen in the
graph below.

Density of Al signal by whether or not applicant repaid on time

o

Applicant repayment
. Did not repay on time
. Repaid on time

Density

o

0.00 0.25 0.50 0.75 1.00
Al-generated score
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Figure 14: Instructions for each treatment condition highlight Al performance (Binary Medium
(50) condition shown here as example

Instructions for next 2 tasks More details

Instructions - Assistance from Bailey the Al

For the next 2 questions, you will be provided assistance from an artificial intelligence (Al) named Bailey that will show
you one of two options:

Yes No

This applicant’s This applicant’s

Al score Al score
is above 50 is below 50

Information on the Al-generated assistance
* When the score for an applicant is above 50 out of 100, Bailey the Al will tell you Yes; otherwise, it will tell you No
« For cases where the applicant will repay the loan on time:

o The Al assistant tells you Yes 97% of the time
o The Al assistant tells you No 3% of the time

* For cases where the applicant will not repay the loan on time:

o The Al assistant tells you Yes 47% of the time
o The Al assistant tells you No 53% of the time
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Figure 15: Detailed instructions for each treatment condition (Binary Medium (50) condition
shown here as example

Instructions for next 2 tasks More details

Information on the loan applicants

e On average, about 66.66% of loan applicants will repay their loan on time

Information on the Al-generated assistance

* When the score for an applicant is above 50 out of 100, Bailey the Al will tell you Yes; otherwise, it will tell you No

threshold

Information on performance in practice rounds

* During the practice rounds, you decided on 1 applications, where 66.66% applicants would go on to repay their
loans. Here is how you performed, as well as how Bailey the Al would've performed if it had assisted you:

o Of the 6 applicants who went on to repay the loan on time:

= You correctly approved the loan for 1 out of 6 of them
= Bailey the Al would've told you Yes for 6 out of 6 of them

o Of the 5 applicants who would go on to not repay the loan on time:

= You correctly denied the loan for 0 out of 5 of them
= Bailey the Al would've told you No for 2 out of 5 of them

Next
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Figure 16: Example of first signal (in this case, loan application)

Loan Application More details

Applicant Details Credit Report Scores

Age External Institution 1
=71 out of 100

Months in current employment External Institution 2

=47 =43 out of 100

Income (yearly) External Institution 3
= 270000 =72 out of 100

Loan Details

Loan amount Loan annuity (yearly payment)

= $1035000 =$57924

Loan amount: The amount of credit that will be granted to the applicant if the loan is
approved.

Loan annuity: The yearly payment that the borrower will have to make on a regular basis
(to cover both the principal and interest).

Age: The applicant’s current age.

Months in current employment: The number of months the applicant has been in their
current employment.

Income (yearly): The yearly income the applicant currently earns.

External Institution 1-3: Normalised credit score from external data source #1-3 (e.g.,
FICO, VantageScore), ranging from 0-100, with 100 being the most credit-worthy.
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Figure 17: Example of first “posterior” elicitation

Applicant 1

Given what you currently know, what do you think is the % chance that the applicant will make their future payments on time?
(Click on the blue bar to choose a number between 0 and 100.)

[ o |

Next

{ 100

Figure 18: Example of second signal (in this case, Al with Binary Medium (50) condition shown
here as example)

Applicant 1

You have to decide whether or not to grant Applicant 1 a loan.

You are given access to a score generated by Bailey the Al assistant that will tell you Yes if it thought the person was likely to
repay the loan on time and No if it thought the person was unlikely to repay the loan on time.

More information on the composition of applicants, and the accuracy of the human-generated risk score, can be found by

clicking "More details".
Al-generated score More details

Yes

This applicant’s

Al score
is above 50
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Figure 19: Approve/deny screen displays both signals again for easy decision-making

What do you think is the % chance that the applicant will make their future payments on time?
(Click on the blue bar to choose a number between 0 and 100.)

[ o |

Do you want to approve this applicant for a loan?

100

Approve
Deny

Applicant Details Credit Report Scores

Yes

This applicant’s

External Institution 1
=71out of 100

Al score
is above 50

Months in current employment External Institution 2

=47 =43 out of 100

Income (yearly) External Institution 3
=270000 =72 out of 100

Loan Details

Loan amount Loan annuity (yearly payment)
=$1035000 =$57924
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8.3.2 Experiment II Additional Instructions

Figure 20: Instructions for Trinary High (50, 70) condition in Experiment II

Instructions for next 2 tasks More details

Instructions - Assistance from Emery the Al

For the next 2 questions, you will be provided assistance from an artificial intelligence (Al) named Emery that will show you
one of three options:

FCTLLT
0 .

SULLTTY
=< .,

100
Uniikedy Ukely
To Repay To Repay

100
Ulkely
To Repay

This applicant’s score is between

0-50

This applicant’s score is between This applicant’s score is between

50-70 70-100

Information on the Al-generated assistance

« For cases where the applicant will repay the loan on time:
o The Al assistant tells you "The applicant's score is between 70 and 100" 73% of the time
o The Al assistant tells you "The applicant's score is between 50 and 70" 18% of the time
o The Al assistant tells you "The applicant's score is between 0 and 50" 9% of the time

« For cases where the applicant will not repay the loan on time:
o The Al assistant tells you "The applicant's score is between 70 and 100" 18% of the time
o The Al assistant tells you "The applicant's score is between 50 and 70" 24% of the time
o The Al assistant tells you "The applicant's score is between 0 and 50" 59% of the time

« More details on the loan applicants, human, and Al-generated assistance can be found by clicking on "More details"
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Figure 21: Instructions for Binary Medium (50) condition in Experiment II

Instructions for next 2 tasks More details

Instructions - Assistance from Bailey the Al

For the next 2 questions, you will be provided assistance from an artificial intelligence (Al) named Bailey that will show you
one of two options:

LA LT 1Ll
. ., . "
K . o “,

Uniikely
To Repay

Uniikely
To Repay

This applicant’s score is between

0-50

This applicant’s score is between

50-100

Information on the Al-generated assistance

« For cases where the applicant will repay the loan on time:
The Al assistant tells you "This applicant's score is between 50 and 100" 91% of the time

The Al assistant tells you "This applicant's score is between 0 and 50" 9% of the time

« For cases where the applicant will not repay the loan on time:
The Al assistant tells you "This applicant's score is between 50 and 100" 41% of the time

The Al assistant tells you "This applicant's score is between 0 and 50" 59% of the time
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8.3.3 Additional survey questions

Demand for AI — At the end of the rounds, we ask participants to choose between having Al
(either in probability or binary form) assist them, or not having Al assistance in two remaining
decisions. For the binary form, they also get to choose their preferred threshold. We then addition-
ally ask for their willingness to pay (in cents) for different types of Al assistance, in the form of a
multiple price list ranging up to 10 cents, the reward for a correct answer, and randomly implement

one row of the multiple price list for the final two decisions.

Perceived private information — At the end of the probability treatment, participants estimate
how many of 10 decisions they believe they will get right, both with and without access to the Al
score alongside the loan application information, as well as how many they believe they will get
right if they only had access to the Al. The difference between these estimates can give us some
insight into the participant’s perceived private information.

You just saw 10 loan applications as well as Dylan the AI’s score for them. Imagine
that you will go through 100 more loan applications.

If you will get both the loan application information and Dylan the AI’s score
[only had access to the Dylan the AI’s score/only had access to the loan appli-
cation itself], how many questions do you think you will get right out of the 100
applications?

Demographics — We collect standard demographic questions (gender, education, age, race/ethnicity,
household income), as well as previous employment in financial institutions, work/certification
experience in loan underwriting and processing, historical experience applying for loans, and fa-

miliarity with AL

Cost ratio — In the experiment, the cost of a true/false positive/negative is given by the incen-
tive structure. To understand the real-world cost ratios that loan specialists might face, at the end
of the experiment we ask participants to imagine they could revise a decision: either denying a
loan that would have been repaid on time, or approving one that would not have. Participants are

asked how much they would hypothetically pay to change their decision.

Biases — Participants answer a series of cognitive questions documented below to establish a base-

line measure of susceptibility to behavioral biases. These questions are adapted from established
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literature and cover questions related to base-rate neglect, correlation neglect, automation bias,
balls-and-urns belief updating, and more general signal aggregation (Enke et al., 2023; Piccione
and Rubinstein, 2024).

It is important to note that all these bias measures were deliberately elicited outside the loan
context to avoid priming participants. While this design choice reduces the risk of demand effects,
it may also attenuate the observed influence of certain biases compared to what would be seen
in the loan context. The extent to which these biases manifest in real-world decision-making
likely depends on how closely the elicitation tasks align with the specific structure of the decision

environment.

8.3.4 Bias elicitations

In all of the bias elicitation questions below, we additionally tell participants how their decision is
incentivised (1 point = 1 cent).

We will pay you more points the closer your decision is to the statistically-correct
percentage chance given the information we provide.

* Specifically, we will pay you 100 points if your decision corresponds to this
correct answer. We subtract 3 points for every percentage point you are away
from the correct answer.

* You cannot make losses, meaning you always earn at least O points.

Base-rate Neglect We utilise a question from the base-rate neglect cognitive task in Enke et al.
(2023), which is a simplified variant of the taxi-cab problem designed to capture responses that
neglect base rates, as introduced in Tversky et al. (1982). In this task, subjects estimate the proba-
bility that a bike is actually defective, given that the base rate for defects is 10% and that a quality
control machine classifies the bike as defective. A common incorrect response, which neglects the
base rate, is 75%, whereas the statistically correct answer is 25%.

The base-rate parameter (BRNN) is estimated by solving the following equation for BRN:

1% (0.75 x 0.10%N +0.25 x 0.977Y) — (0.75 x 0.10%7N)

where X is the subject’s stated probability (in percentage form) that a bike is actually defective.
The resulting BRN parameter indicates how much the subject either underweights or over-

weights the prior probability of a defective bike. An BRN = 1 indicates no base-rate neglect. A
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value between 0 and 1 indicates underweighting of the prior (base-rate neglect), whereas a value
greater than 1 suggests overweighting of the prior. Since a negative parameter (any value of X

exceeding 75) lacks meaningful interpretation, we treat these observations as NA.

Assume that, on average, out of every 100 bicycles produced by a bike manufacturer,
90 are good and 10 are defective.

There is a human quality control worker who inspects bicycles at the end of the pro-
duction line, just as the Al does. However, the worker’s classification can vary from
time to time. On average, the worker correctly identifies a bicycle (as good or defec-
tive) 75 out of 100 times, but misidentifies it 25 out of 100 times.

Now a bicycle produced by the manufacturer has randomly been selected. Next, this
specific bicycle was inspected by the quality control worker, and you have been told
about the worker’s classification below. Based on this classification, your task is to
state the likelihood (percentage chance) that this specific bicycle is actually defective.

You learn that the randomly selected bicycle has been classified as defective by the
quality control worker. What do you think is the likelihood (percentage chance)
that it is actually defective? (Round to the nearest integer.)

Automation Bias We adapt this question from the base-rate neglect cognitive task in Enke et al.
(2023). Automation bias (AB) is calculated as the ratio of the response to the automation bias

question (see below) to the response to the base-rate neglect question (see above):

automationBias

AB

- baseRateNeglect

An AB value of 1 indicates no automation bias. If AB > 1, it suggests automation bias. If

AB < 1, it indicates automation neglect.

Assume that, on average, out of every 100 bicycles produced by a bike manufacturer,
90 are good and 10 are defective.

There is a quality control machine powered by artificial intelligence (Al) that labels
whether bicycles are good or defective at the end of the production process. The
machine’s classification can vary from time to time. On average, the machine correctly
classifies a bicycle (as good or defective) 75 out of 100 times, but incorrectly classifies
it 25 out of 100 times.

Now a bicycle produced by the manufacturer has randomly been selected. Next, this
specific bicycle was run through the quality control machine, and you have been told
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about the machine’s classification below. Based on this classification, your task is to
state the likelihood (percentage chance) that the specific bicycle is actually defective.

You learn that the randomly selected bicycle has been classified as defective by the Al
quality control machine. What do you think is the likelihood (percentage chance)
that it is actually defective? (Round to the nearest integer.)

Correlation Neglect We utilise a question from the correlation neglect cognitive task in Enke
et al. (2023), in which subjects are asked to estimate the weight of a bucket based on provided
estimates from Ann and Charlie. A common incorrect response is to compute the average of 40
and 70, yielding 55, whereas the statistically correct answer is 40. We define the correlation neglect

parameter (C'N) as

_ correlation_neglect

CN
40

A value of C'N closer to 1 is desirable (no neglect), and a value above 1 indicates correlation

neglect.

Three people: Ann, Bob, and Charlie. Each of them is interested in estimating the
weight of a water bucket in pounds.

Ann and Bob both get to take a peek at the bucket. They are equally good at estimating.
Each tends to get their weight estimates right on average, but sometimes they make
random mistakes. Ann and Bob are equally likely to make mistakes in any given
estimate they make.

Ann and Bob both share their estimates with Charlie, who never sees the bucket. Be-
cause he has never seen the bucket, Charlie does not see it either, but you are asked to
produce an estimate of its weight. Now you talk to Ann and Charlie. They share their
best estimates of the weight of the bucket with you:

* Ann’s estimate: 70

¢ Charlie’s estimate: 40

Your task is to estimate the weight of the bucket. What is your best estimate of the
weight of the bucket? (Round to the nearest integer.)

Balls and Urns We utilise a question from the balls-and-urns belief updating task in Enke et al.

(2023). In this task, subjects are asked to indicate the percentage chance that the selected bag
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is the one that contains more red chips, given that the drawn chip is red. Often, subjects exhibit
conservatism bias by providing posterior estimates strictly between 50% and 70%, even though the
Bayesian answer is 70%. We define the belief updating parameter BU as the ratio of the subject’s

response to 70:

B balls_urns

BU
70

A BU value closer to 1 is desirable. In particular, BU values between % and 1 indicate con-

servatism bias, while BU values greater than 1 suggest over-updating. Responses yielding BU

100

values below 22 or exactly ~o are considered anomalous and are treated as NA.

70

There are two bags. One bag contains 70 red chips and 30 blue chips. The other one
contains 30 red chips and 70 blue chips.

We secretly flipped a (fair) coin. If it came up HEADS, we chose the bag with more
red chips. If it came up TAILS, we chose the bag with more blue chips. Therefore,
you do not know which bag was selected.

Next, we drew one chip at random from the bag selected by the coin toss. You will
learn the color of this randomly-drawn chip below, then you need to figure out (in
percent) which bag was selected.

You are told that one red chip has randomly been drawn from the secretly selected
bag. What do you think is the likelihood (percentage chance) that the selected
bag is the one with more red chips? (Round to the nearest integer.)

Aggregation bias We adapt a variant of the leading example of Piccione and Rubinstein (2024) in
order to capture a range of failure to correctly (Bayesian) aggregate signals. The correct answer
here would be 98%, but common failures include taking the minimum (20%), the average (45%),
the maximum (70%), the product (14%), or the the probability of “at least one of the two events”

happening under independence, i.e., the complement of the product of the complements (76%).

aggregation_bias

PR =
70

As subjects rarely answer anything remotely close to correct (98%), we define this term (PR
for Piccione-Rubinstein) to be > 1 for anyone who correctly realises that their posterior should be

higher than the maximum of the two signals, and < 1 if they fail to update in the right direction.
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The proportion of newborns in a country with a specific genetic trait is 1%.

Two screening tests, A and B, are used to identify this trait in newborns. However, the
tests are not perfect.

A study has found that:

* 70% of the newborns who are found to be positive according to test A have the
genetic trait.

* 20% of the newborns who are found to be positive according to test B have the
genetic trait.

The two tests are conditionally independent, meaning:

* When a newborn has the genetic trait, a positive result in one test does not affect
the likelihood of a positive result in the other.

* When a newborn does not have the genetic trait, a positive result in one test does
not affect the likelihood of a positive result in the other.

Suppose that a newborn is found to be positive according to both tests. What is your
estimate of the likelihood (in %) that this newborn has the trait?

8.4 Empirical Evidence

8.4.1 Demand

Table 4: Participant Demographics by Al Assistant Choice

Binary = No AI  Probability

Age (years) 41.51 47.31 43.87
Female (%) 64.44 62.86 52.17
Bank/Credit Union Experience (%) 37.78 31.43 33.33
Applied to Loans Before (%) 37.78 3143 34.78
Loan Amount (USD$) 179365 189439 205203
Loan Specialist Experience (years) 12.09 13.77 11.42
Used Supervised Al Before(%) 24.44 11.43 23.19
Never Used any Al (%) 22.22 40.00 17.39

Note: Summary statistics on participant characteristics, such as age, gender, bank/credit union experience, loan history,
loan amount, loan specialist experience, and previous Al usage, broken down by the type of Al assistant selected:
Binary, No AlI, or Probability. Units in parentheses.
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Figure 22: Chosen binary threshold among participants who opted for a binary Al signal
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Choice of Binary Threshold, for those who demand Binary

Note: Histogram shows the distribution of the binary threshold values selected by participants who opted for a binary
Al signal.

8.4.2 Heterogeneous treatment effects

For the regression tables in the following subsubsection, Column (1) shows coefficients from a
regression of decision accuracy on treatment indicators and case fixed effects for the below me-
dian group. Column (2) shows coefficients from a regression of decision accuracy on treatment
indicators and case fixed effects for the above median group. Column (3) shows the coefficients
on the interaction terms from a regression that includes treatment indicators, above/below median
indicators, treatment x above/below median interactions, and case fixed effects, where only the
interaction coefficients are presented, representing the difference in treatment effects between the
above and below median groups.

Note that any discrepancies between the coefficients in the regression tables (e.g., Table 7) and
the “Overall Accuracy” columns of these true/false positive and negative summary tables (e.g.,
Table 8) arise because the former incorporate case fixed effects, while the latter report simple

means.
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Gender

Table 5: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct

Male Female Difference (2) - (1)
(1) (2 (3)
Human-Only —0.095*** —0.026 0.072**
(0.022) (0.019) (0.036)
Probability —0.048** —0.014 0.036
(0.022) (0.019) (0.022)
Binary High (70) —0.078*** —0.040** 0.037
(0.022) (0.019) (0.022)
Binary Low (30) —0.054* —0.029 0.024
(0.022) (0.019) (0.022)
Constant 0.747** 0.663***
(0.052) (0.044)
Observations 3,100 4,350 7,450
R? 0.304 0.275 0.283
Adjusted R? 0.291 0.266 0.277
Note: “p<0.1; *p<0.05; **p<0.01

Table 6: Share of True/False Positives and Negatives by Treatment and Gender

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
Female
Human Only 49.89 19.77 14.83 15.52 69.66 870
Binary Med (50) 54.61 20.20 12.59 12.59 74.82 683
Probability 49.72 19.10 16.01 15.17 68.82 712
Male
Human Only 46.77 18.55 16.13 18.55 65.32 620
Binary Med (50) 57.98 17.11 14.26 10.65 75.10 526
Probability 52.59 18.84 13.25 15.32 71.43 483
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Age

Table 7: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct
Age (Below Median)  Age (Above Median)  Difference (2) - (1)

(1) (2) (3)
Human-Only —0.056*** —0.058*** —0.003
(0.020) (0.021) (0.035)
Probability —0.031 —0.031 0.0002
(0.020) (0.021) (0.020)
Binary High (70) —0.064*** —0.049** 0.011
(0.020) (0.021) (0.020)
Binary Low (30) —0.020 —0.062*** —0.040**
(0.020) (0.021) (0.020)
Constant 0.716%** 0.679***
(0.047) (0.048)
Observations 3,950 3,500 7,450
R? 0.279 0.300 0.283
Adjusted R? 0.269 0.289 0.277
Note: “p<0.1; *p<0.05; **p<0.01

Table 8: Share of True/False Positives and Negatives by Treatment and Age

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
Age (Above Median)
Human Only 49.14 19.14 16.29 15.43 68.29 700
Binary Med (50) 59.47 18.41 11.15 10.97 77.88 565
Probability 53.20 17.79 14.95 14.06 71.00 562
Age (Below Median)
Human Only 48.10 19.37 14.56 17.97 67.47 790
Binary Med (50) 53.11 19.25 15.22 12.42 72.36 644
Probability 48.82 20.06 14.85 16.27 68.88 633

85



Years of Loan Specialist Experience

Table 9: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct

Exp (Below Median)  Exp (Above Median)  Difference (2) - (1)
(1) (2 (3)
Human-Only —0.072*** —0.037* 0.031
(0.020) (0.021) (0.035)
Probability —0.040** —0.021 0.017
(0.020) (0.021) (0.019)
Binary High (70) —0.089*** —0.019 0.069***
(0.020) (0.021) (0.019)
Binary Low (30) —0.058*** —0.021 0.041*
(0.020) (0.021) (0.019)
Constant 0.680*** 0.722%**
(0.046) (0.049)
Observations 4,200 3,250 7,450
R? 0.277 0.318 0.284
Adjusted R? 0.268 0.307 0.279
Note: “p<0.1; *p<0.05; **p<0.01

Table 10: Share of True/False Positives and Negatives by Treatment and Years of Loan Experience

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
Exp (Above Median)
Human Only 48.62 19.85 17.08 14.46 68.46 650
Binary Med (50) 58.22 18.57 13.15 10.06 76.79 517
Probability 54.08 18.03 13.28 14.61 72.11 527
Exp (Below Median)
Human Only 48.57 18.81 14.05 18.57 67.38 840
Binary Med (50) 54.48 19.08 13.44 13.01 73.55 692
Probability 48.35 19.76 16.17 15.72 68.11 668
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Perceived Private Information

Table 11: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct
Perceived (Below Median)  Perceived (Above Median)  Difference (2) - (1)

(D (2) (3)
Human-Only —0.074*** —0.042** 0.035

(0.020) (0.021) (0.035)
Probability —0.038* —0.020 0.020

(0.020) (0.021) (0.020)
Binary High (70) —0.053*** —0.062*** —0.006

(0.020) (0.021) (0.020)
Binary Low (30) —0.044** —0.036* 0.011

(0.020) (0.021) (0.020)
Constant 0.698"** 0.700***

(0.047) (0.049)
Observations 3,800 3,650 7,450
R? 0.293 0.282 0.283
Adjusted R? 0.283 0.271 0.277
Note: “p<0.1; *p<0.05; **p<0.01

Table 12: Share of True/False Positives and Negatives by Treatment and Perceived Private Info

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
Perceived (Above Median)
Human Only 48.22 19.73 15.48 16.58 67.95 730
Binary Med (50) 55.14 18.38 14.17 12.31 73.52 593
Probability 51.45 18.40 14.65 15.50 69.85 587
Perceived (Below Median)
Human Only 48.95 18.82 15.26 16.97 67.76 760
Binary Med (50) 56.98 19.32 12.50 11.20 76.30 616
Probability 50.33 19.57 15.13 14.97 69.90 608
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Baseline Practice Accuracy

Table 13: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct
Prac Acc (Below Median)  Prac Acc (Above Median)  Difference (2) - (1)

(1) (2) (3)
Human-Only —0.062*** —0.045* 0.015
(0.018) (0.025) (0.034)
Probability —0.034* —0.020 0.013
(0.018) (0.025) (0.017)
Binary High (70) —0.063*** —0.048* 0.013
(0.018) (0.025) (0.017)
Binary Low (30) —0.054*** —0.008 0.047**
(0.018) (0.025) (0.017)
Constant 0.708*** 0.680***
(0.041) (0.059)
Observations 5,100 2,350 7,450
R? 0.275 0.313 0.283
Adjusted R? 0.267 0.297 0.277
Note: “p<0.1; *p<0.05; ***p<0.01

Table 14: Share of True/False Positives and Negatives by Treatment and Practice Accuracy

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
Prac Acc (Below Median)
Human Only 46.96 20.49 15.78 16.76 67.45 1020
Binary Med (50) 56.67 18.20 12.62 12.50 74.88 824
Probability 50.86 18.64 14.94 15.56 69.51 810
Prac Acc (Above Median)
Human Only 52.13 16.60 14.47 16.81 68.72 470
Binary Med (50) 54.81 20.26 14.81 10.13 75.06 385
Probability 50.91 19.74 14.81 14.55 70.65 385
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Aggregation bias

Table 15: Decision-making outcomes under different treatment conditions

Dependent variable:

Rubinstein (Below Median)

Share of Decisions Correct

Rubinstein (Above Median)

Difference (2) - (1)

(1) () 3)
Human-Only —0.060*** —0.051* 0.011
(0.018) (0.026) (0.035)
Probability —0.038** —0.011 0.028
(0.018) (0.025) (0.018)
Binary High (70) —0.072*** —0.029 0.044**
(0.018) (0.025) (0.017)
Binary Low (30) —0.057*** —0.006 0.053***
(0.018) (0.025) (0.017)
Constant 0.702%** 0.696***
(0.041) (0.059)
Observations 5,050 2,400 7,450
R? 0.279 0.302 0.283
Adjusted R? 0.271 0.286 0.277
Note: “p<0.1; *p<0.05; **p<0.01

Table 16: Share of True/False Positives and Negatives by Treatment and Rubinstein

Treatment TP TN FpP FN Overall.Accuracy Total.Count
Rubinstein (Below Median)

Human Only 4990 1842 16.24 1545 68.32 1010
Binary Med (50) 55.88 19.88 12.48 11.76 75.76 825
Probability 51.05 19.11 14.92 14.92 70.16 811
Rubinstein (Above Median)

Human Only 45.83 21.04 13.54 19.58 66.88 480
Binary Med (50) 56.51 16.67 15.10 11.72 73.18 384
Probability 50.52 18.75 14.84 15.89 69.27 384
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Balls and Urns (BU)

Table 17: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct

BU (Below Median) BU (Above Median)  Difference (2) - (1)
(1 (2) (3)
Human-Only —0.064*** —0.027 0.032
(0.019) (0.028) (0.037)
Probability —0.027 —0.002 0.023
(0.019) (0.028) (0.019)
Binary High (70) —0.074*** —0.031 0.040**
(0.019) (0.028) (0.019)
Binary Low (30) —0.038** —0.026 0.009
(0.019) (0.028) (0.019)
Constant 0.691** 0.782***
(0.044) (0.066)
Observations 4,300 1,900 6,200
R? 0.288 0.310 0.289
Adjusted R? 0.279 0.289 0.282
Note: “p<0.1; *p<0.05; **p<0.01

Table 18: Share of True/False Positives and Negatives by Treatment and Balls Urns

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
BU (Below Median)
Human Only 47.44 19.30 15.93 17.33 66.74 860
Binary Med (50) 56.01 18.25 14.00 11.74 74.26 707
Probability 53.17 17.97 13.99 14.87 71.13 679
BU (Above Median)
Human Only 50.79 19.21 13.16 16.84 70.00 380
Binary Med (50) 57.81 19.27 10.63 12.29 77.08 301
Probability 49.03 22.08 14.94 13.96 71.10 308
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Automation Bias (AB)

Table 19: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct
AB (Below Median) AB (Above Median)  Difference (2) - (1)

(1) (2) (3)
Human-Only —0.067* —0.022 0.045
(0.017) (0.030) (0.034)
Probability —0.044*** 0.027 0.066***
(0.017) (0.030) (0.017)
Binary High (70) —0.072%* —0.021 0.058"**
(0.017) (0.030) (0.017)
Binary Low (30) —0.040** —0.037 0.008
(0.017) (0.030) (0.017)
Constant 0.706*** 0.668"**
(0.038) (0.070)
Observations 5,650 1,800 7,450
R? 0.290 0.289 0.283
Adjusted R? 0.284 0.267 0.277
Note: “p<0.1; *p<0.05; **p<0.01

Table 20: Share of True/False Positives and Negatives by Treatment and Automation Bias

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
AB (Above Median)
Human Only 50.83 16.67 17.50 15.00 67.50 360
Binary Med (50) 55.56 18.18 14.14 12.12 73.74 297
Probability 52.25 21.80 13.49 12.46 74.05 289
AB (Below Median)
Human Only 47.88 20.09 14.69 17.35 67.96 1130
Binary Med (50) 56.25 19.08 13.05 11.62 75.33 912
Probability 50.44 18.10 15.34 16.11 68.54 906
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Base-rate Neglect (BRN)

Table 21: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct

BRN BRN Difference (2) - (1)
(1) (2) (3)
Human-Only —0.052*** —0.081*** —0.030
(0.018) (0.030) (0.036)
Probability —0.044** —0.001 0.042**
(0.018) (0.030) (0.018)
Binary High (70) —0.071*** —0.038 0.036**
(0.018) (0.030) (0.018)
Binary Low (30) —0.028 —0.064* —0.031"
(0.018) (0.030) (0.018)
Constant 0.706*** 0.674***
(0.042) (0.069)
Observations 4,800 1,850 6,650
R? 0.291 0.274 0.281
Adjusted R? 0.282 0.252 0.275
Note: “p<0.1; *p<0.05; **p<0.01

Table 22: Share of True/False Positives and Negatives by Treatment and Base Rate Neglect

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
BRN (Below Median)
Human Only 49.79 18.96 14.58 16.67 68.75 960
Binary Med (50) 55.10 19.77 12.88 12.24 74.87 784
Probability 50.13 17.79 15.84 16.23 67.92 770
BRN (Above Median)
Human Only 45.14 18.92 18.38 17.57 64.05 370
Binary Med (50) 56.19 18.39 13.04 12.37 74.58 299
Probability 54.39 21.28 11.15 13.18 75.68 296
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Correlation Neglect (CN)

Table 23: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct
CN (Below Median) CN (Above Median)  Difference (2) - (1)

(D (2) (3)
Human-Only —0.068*** —0.060** 0.006

(0.018) (0.027) (0.035)
Probability —0.026 —0.052* —0.029

(0.018) (0.027) (0.018)
Binary High (70) —0.064*** —0.051* 0.011

(0.018) (0.027) (0.018)
Binary Low (30) —0.045* —0.046* —0.003

(0.018) (0.027) (0.018)
Constant 0.697** 0.714***

(0.042) (0.063)
Observations 4,750 2,100 6,850
R? 0.293 0.296 0.290
Adjusted R? 0.285 0.278 0.284
Note: *p<0.1; *p<0.05; **p<0.01

Table 24: Share of True/False Positives and Negatives by Treatment and Correlation Neglect

TN TP FN FP Overall Total
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%) Count
CN (Below Median)
Human Only 47.47 19.47 16.11 16.95 66.95 950
Binary Med (50) 55.27 19.15 14.01 11.57 74.42 778
Probability 52.37 18.16 14.21 15.26 70.53 760
CN (Above Median)
Human Only 51.67 17.86 14.52 15.95 69.52 420
Binary Med (50) 59.76 18.90 11.59 9.76 78.66 328
Probability 47.18 20.47 17.51 14.84 67.66 337
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8.4.3 Effective action thresholds

Figure 23: Loan Specialists’ Effective Action Thresholds
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Note: This figure shows the relationship between the elicited posterior belief and the loan decision (approve/deny) for
each loan specialist. The blue dots represent applications?%it were repaid, and the red dots represent those that were
not repaid. For most participants, decisions are clearly separated around the 50% posterior threshold, indicating that
loan specialists generally follow the decision rule implied by the incentive structure.



8.4.4 Where loan specialists are performing well

Table 25-27 present the shares of true and false positives and negatives across treatments. These
results are broken down by the main treatment arms Binary Medium, Human-only, and Probability,
and further categorised by buckets of Al signals s and human-elicited signals  (where available),
offering insight into how the treatments influence decision-making accuracy across different levels

of signal strength.

Table 25: Share of True/False Positives and Negatives by Treatment

TP TN FP FN Overall
Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%)
Binary Med (50) 56.08 18.86 13.32 11.75 74.94
Human Only 48.59 19.26 15.37 16.78 67.85
Probability 50.88 19.00 14.90 15.23 69.87

As seen in Table 25, regardless of treatment, loan specialists are much better at approving cor-
rectly?! than denying correctly,*? despite the fact that they are incentivised equally for true positives
and true negatives. This aligns with anecdotal evidence of real-life loan specialists’ behavior: they
are often trained to focus on approving applicants based on clear positive indicators, such as meet-
ing thresholds of creditworthiness (e.g., credit scores above a certain range or a debt-to-income
ratio within acceptable limits). There is typically less emphasis on systematically identifying indi-
viduals to reject, leading to a greater focus on approving “cherries” (strong applicants) rather than
identifying “lemons” (poor applicants). The coarsened treatment appears to improve decision-
making primarily by reducing the share of false negatives and increasing true positives. This
suggests that, in this case, the treatment is particularly effective in helping loan specialists identify
and approve creditworthy applicants who might otherwise have been incorrectly denied.

Breaking this down further by the human signal inferred from observing the loan application
(where elicited), Table 26 shows that loan specialists perform worst when their own signal is low
(0-33), i.e., in the implied “Deny” region, and perform best when their own signal is high (67-100).
The Al treatments do not appear to have positive effects on accuracy when the huamn signal is low
(0-33). The Binary Medium treatment offers the greatest improvement (6.6pp over Probability and
8.0pp over Human-only) when the human signal falls in the uncertain range (34-66), suggesting

that this treatment is particularly effective in aiding decision-making under uncertainty by reducing

31True positive rate = TP/(TP+FP), or the sensitivity
3True negative rate = TN/(TN+FN), or the specificity
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Table 26: Share of True/False Positives and Negatives by r Bucket and Treatment

TP TN FP FN Overall
r Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%)
0-33 Binary Med (50) 7.28 50.99 1.99 39.74 58.28
0-33 Human Only 1.13 57.36 0.75 40.75 58.49
0-33 Probability 9.71 49.14 5.71 3543 58.86
34-66  Binary Med (50) 51.81 21.00 14.29 12.91 72.81
34-66 Human Only 45.20 19.67 14.86 20.27 64.86
34-66 Probability 44.40 21.83 14.74 19.03 66.23
67-100 Binary Med (50) 76.73 6.08 15.72 1.47 82.81
67-100 Human Only 75.13 0.72 22.90 1.25 75.85
67-100 Probability 72.93 4.96 18.39 3.72 77.89

the share of cases falsely denied when participants are uncertain.

We can alternatively break this out by the underlying Al risk score of each loan case, as seen in
Table 27. Interestingly, when the Al signal is low, across all treatments there are no true positives
or false negatives—in other words, the Al is very good at picking out lemons. This suggests that
loan specialists would unambiguously benefit from never approving loans with sufficiently low
Al risk scores.* The Binary Medium treatment shows the greatest improvement over Probability
when the Al score falls in the ambiguous range (34-66). Providing a coarsened signal implying a
clear action in these cases is particularly helpful, as the full probability risk score may deliver a

‘weaker’ signal, making loan specialists less likely to align their decisions with the implied action.

Table 27: Share of True/False Positives and Negatives by s Bucket and Treatment

TP TN FP FN Overall
S Treatment (% of total) (% of total) (% of total) (% of total) Accuracy (%)
0-33 Binary Med (50) 0.00 90.52 9.48 0.00 90.52
0-33 Human Only 0.00 80.72 19.28 0.00 80.72
0-33 Probability 0.00 87.12 12.88 0.00 87.12
34-66  Binary Med (50) 41.63 24.65 18.37 15.35 66.28
34-66 Human Only 38.95 21.92 19.57 19.57 60.87
34-66 Probability 35.76 22.08 16.56 25.61 57.84
67-100 Binary Med (50) 75.26 2.56 10.71 11.46 77.83
67-100 Human Only 65.93 4.15 11.53 18.39 70.08
67-100 Probability 73.11 1.97 14.10 10.82 75.08

33Note, of course, that they don’t actually see this signal in the Human-only condition, and only a coarsened version
of the signal in the Binary Medium.
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8.5 Robustness checks
8.5.1 Restricting to LinkedIn (NAMU/NAMP inclusive) and Indeed participants

We conduct a robustness check on the inclusion of Prolific participants who were subject to stricter
screening but recruited through a general-purpose survey platform. While Prolific offers flexibility
and cost advantages, it differs from targeted industry outreach. Our pilots found that recruiting
Prolific participants with Accounting and Business backgrounds (common among loan specialists)
was ineffective due to differences in industry-specific knowledge and decision-making. Only after
implementing rigorous screening did we identify Prolific participants resembling loan specialists,
highlighting the need for targeted recruitment to ensure domain expertise, even at higher cost and

effort.

Table 28: Decision-making outcomes under different treatment conditions

Dependent variable:

Share of Decisions Correct

(D (2)
Human-Only —0.061*** —0.056***
(0.021) (0.018)
Probability —0.040* —0.018
(0.021) (0.018)
Binary High (70) —0.073*** —0.043**
(0.021) (0.018)
Binary Low (30) —0.043** —0.020
(0.021) (0.018)
Constant 0.745*** 0.645**
(0.015) (0.041)
Observations 4,800 4,800
R? 0.003 0.297
Adjusted R? 0.002 0.289

Note: Regression estimates per Equation 1 of loan approval accuracy by treatment condition, restricting data to only
LinkedIn/Indeed recruitment and with Binary Medium (50) as the omitted reference group. Column (1) reports es-
timates without fixed effects; Column (2) includes case-level fixed effects. Standard errors in parentheses. *p<0.1;
**p<0.05; ***p<0.01
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Table 28 presents the results shown in Table 2, restricting data to those recruited over LinkedIn
(NAMU/NAMP inclusive) and Indeed, representing around 65% of our full sample. Our main
results still hold: Binary Medium performs better than both Probability and Human-only. These
differences are significant for Binary Medium vs. Human-only, but due to the smaller sample size

are not significant when compared to Probability.

8.5.2 Whether AI or human signal came first, elicitation of first signal

Recall that we implemented case-level randomisation of (i) order of information presentation:
whether the Al signal or loan application shown first { Al (10%), Loan (90%)}, and (ii) elicitation
of posterior before the second signal: whether posterior is additionally elicited before the second
signal shown {Elicit after only (10%), Elicit both before and after (90%)}.

We conduct robustness checks regressing (i) final loan decision or (ii) final posterior beliefs on
these; as shown in Table 29, neither the order of the Al signal nor the elicitation of posterior beliefs

significantly influences the outcomes.

Table 29: Robustness Checks

Dependent variable:

Loan Decision  Posterior Belief  Loan Decision  Posterior Belief

(D) (2) (3) 4)

Elicitation Order 0.001 —0.424
(0.018) (0.861)

First Posterior —0.023 —1.081

(0.019) (0.898)
Constant 0.680*** 60.454** 0.658"** 59.855"**

(0.018) (0.855) (0.017) (0.815)
Observations 7,450 7,450 7,450 7,450
R? 0.0002 0.0002 0.00000 0.00003
Adjusted R? 0.0001 0.0001 -0.0001 -0.0001

Note: Regression results for the final loan decision (Columns 1, 3) and posterior belief (Columns 2, 4), on whether
or not the Al signal was shown first (Columns 3, 4) and whether posterior beliefs are elicited after the second signal
(Columns 1, 2). Standard errors in parentheses. *p<0.1; **p<0.05; ***p<0.01
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8.5.3 Restricting to each decision block

Figure 24 presents the results shown in Figure 6, breaking down the results by each decision
block. Binary Medium outperforms Probability in all of these decision blocks, indicating that
its advantages hold regardless of order. Two patterns are particularly noteworthy, though it is
important to note these are not statistically significant (we did not plan to be powered for these
differences). First, the highest Human-only accuracy appears in the first decision block, suggesting
that practice on the loan applications—without Al assistance—has an immediate positive effect
that drops after seeing a round of Al signals. Second, accuracy under the Binary Medium condition
improves in later rounds, which may indicate that participants are learning to interpret and apply

the signal more effectively over time.

Figure 24: Decision-making outcomes under different treatment conditions, by decision block
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