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Abstract

How R&D incentives affect individual firms and, in turn, shape aggregate
growth? We develop a novel empirical framework, grounded in endogenous growth
theory, allowing us to measure firms’ responsiveness to R&D incentives and to
aggregate such responses. After validating the predictions of our framework us-
ing three different micro-datasets, we apply it to Compustat data. We find that
(i) ignoring firm heterogeneity severely under-states the aggregate effectiveness of
R&D incentives, (ii) per dollar spent on R&D incentives, young (rather than small)
firms raise aggregate growth the most and (iii) our results are robust to knowledge

spillovers, dynamics and borrowing constraints.
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1 Introduction

With global economic growth forecasted to hit historical lows (see e.g. World Bank,
2025), there is renewed interest in industrial policies aimed at promoting research and
development (R&D). Despite many countries using various tax incentives and subsidies
to spur growth — often targeted at specific groups of firms, e.g., small businesses (see e.g.
OECD, 2023) — little consensus exists about how such policies affect different firms and
how these differences may impact aggregate growth.

This paper studies which groups of firms offer the largest “Bang for the Buck” — a boost
to aggregate growth per dollar spent on R&D incentives. We develop a novel empirical
framework, grounded in modern endogenous growth theory, which allows us to measure
the response of individual firms to R&D incentives and then combine such responses to
estimate the resulting impact on aggregate growth. Importantly, our framework does
not require us to solve complex growth models with heterogeneous firms. Instead, we
analytically derive firm-level sufficient statistics allowing us to handle the full extent of
granular differences across firms observed in the data.

In our framework, individual businesses invest into R&D in order to grow. Aggregate
growth is then a weighted average of firm-level growth rates. To understand how R&D
incentives affect aggregate growth it is, therefore, important to measure firms’ individ-
ual responses (“micro-elasticities”) to tax incentives and subsidies. That said, micro-
elasticities are not the only objects of interest. Our framework highlights that the Bang
for the Buck also depends on firms’ size, growth, R&D expenditures and, importantly,
how all these variables co-vary with firms’ micro-elasticities.

To make headway, we first derive that — under a certain condition, which we show
holds both in the data and in a large class of endogenous growth models — a firm’s
micro-elasticity is completely summarized by a sufficient statistic: the firm-level ratio of
R&D expenditures to profits. We validate this prediction in several micro-datasets by
comparing our estimates of firms’ micro-elasticities - R&D to profit ratios — to established
difference-in-differences approaches which exploit R&D policy variation across countries
or over time (see e.g. Bloom et al., 2002; Hall et al., 2010; Appelt et al., 2025).

The results suggest that our methodology predicts firm responsiveness to R&D incen-
tives well — both on average and across broad groups of firms (e.g. small businesses vs.
large businesses). Compared to existing empirical approaches, however, our framework
wields a crucial advantage — it is applicable at the firm level. This allows us to exploit
the full extent of granularity in firm-level data. To highlight the importance of this fea-
ture, we apply our methodology to Compustat, a popular firm-level dataset. Three key
messages stand out.

First, firm heterogeneity matters. The inability to measure micro-elasticities at the

firm-level — the typical case in the existing literature — under-estimates the impact such



policies have on aggregate growth by a factor of seven. This is because in the data,
firms which are relatively responsive to R&D incentives also tend to be relatively large
and fast growing, strengthening the Bang for the Buck. Second, we show that young
and fast-growing businesses deliver the largest Bang for the Buck. While this contrasts
existing policies which often target small businesses, it aligns well with the established
economic prowess of young firms (see e.g. Haltiwanger et al., 2016). We contribute to this
discussion by showing that young firms are also important propagators of R&D policies.
Finally, we document that our results do not change even when accounting for knowledge
spillovers across businesses, dynamics or borrowing constraints.

More concretely, our analytical approach rests on two ingredients. First, we consider
an environment in which aggregate output is produced by potentially heterogeneous firms.
Therefore, aggregate economic growth is a weighted average of firm-level growth rates
with firms’ sales shares representing the (Domar) weights. Second, we assume that, in
order to grow, firms invest into R&D by optimally balancing associated marginal costs
and benefits. While the former are governed by firms’ cost structures, the latter are
driven by changes in firms’ profits (firm value) stemming from successful innovation.

In this environment, we consider a permanent increase in R&D subsidies and define
the following objects. The “Bang” is the associated impact on aggregate growth. The
“Buck” is the associated impact on aggregate government spending on R&D incentives.
The “Bang for the Buck” is the ratio of the two, measuring how aggregate growth changes
per extra dollar spent on the policy change. Given that aggregates in our framework
are driven by individual firms, a crucial part of our analysis focuses on how individual
businesses respond to changes in R&D incentives.

Instead of relying on policy differences (across space or time) to estimate firms’ re-
sponsiveness, we lean on the fundamental economic tradeoffs inherent to firms’ optimal
R&D decisions. Specifically, as R&D becomes cheaper due to more generous R&D in-
centives, firms optimally increase their investment into innovation. On the one hand,
this comes at higher costs. On the other hand, it increases expected growth and, there-
fore, future profits. How exactly firms balance these (potentially idiosyncratic) trade-offs
informs us about the underlying “micro-elasticity.” In fact, we show analytically that
under a certain condition, firm-level micro-elasticities are fully described by measurable
sufficient statistics: firms’ ratios of R&D expenditures to profits — the two sides of firms’
R&D decisions.!

The condition behind the above result is that, at the firm level, R&D to profit ratios
are constant over time (though potentially heterogeneous across businesses). We vali-

date this condition and the implied micro-elasticities in three different ways. First, we

'In the Appendix, we show that if R&D to profits are not constant at the firm-level, our sufficient
statistics generalize to the ratio of the net present value of future R&D expenditures and firm values.
Using estimates of these generalized sufficient statistics instead does not alter our results.



discuss that this condition does in fact hold in a very wide range of existing endogenous
growth models.? Second, we show that R&D-to-profit ratios are indeed constant at the
firm-level in Compustat data. There is, however, vast heterogeneity in this ratio across
firms. Finally, we use two additional micro-datasets and employ established difference-
in-differences approaches to estimate micro-elasticities for broad groups of firms.®> We
then compare such estimates to our measure of micro-elasticities — average R&D to profit
ratios of the respective groups of businesses. The results show that our methodology does
a good job in capturing firms’ responsiveness to R&D policy changes — both on average
and across different firm groups.

Armed with our micro-elasticities we return to the objects of interest. On the one
hand, we show that the Bang is determined by an interaction of firms’ sales shares, their
growth rates and their micro-elasticities. Intuitively, individual firms can only leave a
mark on aggregate growth if they are sufficiently large, fast-growing, and responsive to
R&D policy changes. On the other hand, the Buck is driven by the interaction of firms
micro-elasticities and R&D shares. Intuitively, an R&D policy change will be particularly
expensive for the government if firms respond to it very strongly, or if the targeted
businesses already receive a large chunk of government resources.

Therefore, a key message emerging from our framework is that micro-elasticities alone
are not sufficient for understanding the aggregate impact of firm-level R&D incentives.
Instead, firms’ size, growth, R&D expenditures and the specific way how these variables
co-vary with micro-elasticities in the cross-section all play important roles. For the same
reason, not being able to measure micro-elasticities at the firm-level — the typical case in
the existing literature — can provide a distorted view of the overall effectiveness of R&D
incentives. To highlight these points, we apply our framework to Compustat, a firm-
level dataset extensively used in the literature to study R&D, firm-level and aggregate
growth (see e.g. Cavenaile et al., 2021; Ignaszak and Sedlacek, 2025).# Three key messages
emerge.

First, firm heterogeneity matters. In the data, firms which are characterized by higher
micro-elasticities also tend to be larger and grow faster. This covariance in key firm
characteristics boosts the aggregate Bang. Quantitatively, ignoring such heterogeneity
understates the aggregate Bang by a factor of seven. In other words, the aggregate impact

of firm-level R&D incentives is potentially much larger than previously thought.’

2Examples of such models include e.g. Klette and Kortum (2004); Luttmer (2007); Lentz and
Mortensen (2008); Luttmer (2010); Mukoyama and Osotimehin (2019). The reason why this condi-
tion holds is so called “perfect scaling” whereby sales and costs grow one-for-one with firm size (see
Akcigit and Kerr, 2018, for a discussion).

3The two datasets are ORBIS, where we follow the cross-country analysis of Appelt et al. (2025), and
BLADE — firm-level data from Australia, which implemented a large R&D policy change in 2012.

4In doing so, we average firm-level outcomes over a period of 5 years to account for time to build in
R&D. Then, we pool all firms and time periods.

SHeterogeneity matters also for the Buck. While responsive firms also tend to be those with larger
R&D shares, this relationship is quantitatively weaker. Put together, ignoring heterogeneity under-

4



Second, we turn our attention to the relative Bang for the Buck for various groups of
firms. This statistic measures how much more (or less) Bang for the Buck the government
could obtain if it were to subsidize only a specific group of firms relative to indiscriminately
handing out R&D subsidies to all businesses. Our results suggest that young and fast-
growing businesses offer the highest relative Bang for the Buck — almost three times as
much compared to a uniform subsidy for all firms. This finding aligns well with existing
evidence on the economic prowess of young firms (see e.g. Haltiwanger et al., 2016) and
newly posits them as key propagators of R&D policies.

While small firms also feature a high relative Bang for the Buck, this result is entirely
driven by the fact that a sizeable fraction of small businesses is young. In fact, there
is essentially no advantage in focusing policy on small-old businesses as they deliver the
same Bang for the Buck as subsidizing all firms indiscriminately.

Finally, we show that accounting for knowledge spillovers, dynamics or borrowing
constraints does not change our results. To incorporate knowledge spillovers, we extend
our analytical result regarding micro-elasticities to allow firm growth to be driven by
“own” R&D efforts and a spillover effect from “external” R&D invested by other firms.
Empirically, we build on Bloom et al. (2013) and measure the technological proximity of
firms using citation-weighted patents and their technological classification. Intuitively,
firms gain relatively more from R&D of other businesses if it is of high quality (more
frequently cited) and in technologically closer fields. While accounting for spillovers
favors R&D intensive businesses, the relative ranking of firm groups does not change.
Young and fast-growing businesses still deliver the largest Bang for the Buck.

To account for dynamics, we classify businesses into our considered groups of firms and
follow them over time. While relative Bangs for the Buck tend to converge as time goes
by, the ranking of firm groups remains unchanged. Young and fast-growing firms remain
to deliver the strongest Bang for the Buck even a decade into the future. Intuitively, even
though firm-level growth tends to be fleeting, businesses increase their sales shares during
growth spurts. Given that both size and growth matter for the aggregate impact, young
and fast-growing businesses tend to retain their strong position in the relative ranking.

Finally, our baseline framework can be viewed as a framework for financially uncon-
strained businesses. This is arguably the relevant setting, given our focus on Compustat
data which includes large, publicly listed, businesses. In addition, Ottonello and Win-
berry (2025) estimate that indeed the majority of innovation in the U.S. is performed
by unconstrained firms. Nevertheless, in the Appendix we show that our results remain
robust to extending our framework to explicitly consider borrowing constraints. While
in this setting more generous innovation subsidies also alleviate credit constraints, this
effect is dwarfed by firms’ primary interest in taking advantage of cheaper R&D costs.

Our paper is related to several strands of the literature. First, it connects to empiri-

predicts the Bang for the Buck by a factor of about six.



cal studies estimating firms’ responsiveness to R&D policies (see e.g. Hall, 1993; Bloom
et al., 2002; Moretti et al., 2019; Dechezlepretre et al., 2023; Fieldhouse and Mertens,
2023; Appelt et al., 2025). Instead, we develop a novel empirical framework allowing
us to estimate micro-elasticities at the firm level. In doing so, we build on endogenous
growth models (see e.g. Grossman and Helpman, 1991; Aghion and Howitt, 1992; Klette
and Kortum, 2004; Lentz and Mortensen, 2005), but “only” use the trade-offs inherent
to firms’ optimal R&D investment to derive the associated micro-elasticities. Finally, we
complement recent model-based evaluations of R&D policies. For instance, while Ace-
moglu et al. (2018) analyze aggregate effects of R&D policies in an environment with
firms of high and low innovative capacity, Atkeson and Burstein (2019) consider the ag-
gregate impact of R&D policies which uniformly raise firms’ innovation rates. In contrast,
our framework does not rely on solving the entire general equilibrium model and, there-
fore, we consider the full extent of firm differences observed in the data and show that
accounting for firm heterogeneity, including in the responsiveness to R&D incentives, is
quantitatively important.

The rest of the paper is organized as follows. Section 2 presents our framework and
provides key analytical results. Sections 3 and 4 describe the data and validate our
assumptions and predictions. Finally, Section 5 presents our main empirical application

and the final section concludes.

2 Analytical Framework

The central goal of this paper is to understand — both theoretically and empirically — how
firm-level R&D subsidies impact aggregate growth. This section develops an analytical

framework underlying our analysis. All proofs are deferred to the Appendix.

2.1 Environment
In what follows, we describe our environment. To ease the notation, we use lower-case

letters to denote firm-level variables and upper-case letters to denote aggregates.

Production. We consider an environment in which heterogeneous firms ¢ combine to

produce aggregate nominal output, Y:

Y:PQ:Z%:ZP@'% (1)

6Conceptually, our paper also relates to Chiavari et al. (2025) who provide an analytical decomposition
of the aggregate return on capital into the contributions of firm-level outcomes.




where P and () are, respectively, the aggregate price level and quantity and where p; and

g; are the respective firm-level price and quantities.

Aggregate and Firm-Level Growth. In this setting, real aggregate growth, G, is
given by:

G = Z MG, (2)

where m; = y;/Y is the market (sales) share of firm ¢ and where g; = dg;/q¢; is firm-level
real output growth. Therefore, aggregate growth G is a weighted average of firm-level
growth rates, where the weights are firms’ sales shares (Domar weights).

We assume that firm-level growth is innovation-driven. In particular, in order to grow
at a rate g;, an individual firm must invest $;(g;) units of a research and development
(R&D) good.” Furthermore, we assume that R&D expenditures are convex in the growth
rate, i.e. 885—;5’”% =; > 1.

Government R&D Incentives. We assume that the government subsidizes a fraction,
7, of firms’ R&D costs.® In this setting, firms’ total expenditures on R&D are given by
si(g;) = (1 — 7)s;(g;). Let us denote the aggregate expenditures on R&D invested by

firms as:

S = Z(l — 7)5i(9:)- (3)

Aggregate expenditures on R&D funded by the government are then given by:
T=> 75(g) (4)

Micro-Elasticities. A key object of our analysis will be the elasticity with which firms’
growth rates respond to changes in government innovation subsidies (i.e. the “price” of
R&D). We refer to this object as the “micro-elasticity:”

_agil
N or gZ

()

€

While firms’ micro-elasticities (5) are key objects of interest, due to data availability
existing studies instead typically estimate elasticities of firms’ R&D expenditures:

- 0si(gi) T

€si =

’ 87’ S'L(gz)

"Expressing R&D investment in units of labor instead does not alter our results.
8We assume that the government funds R&D subsidies by levying lump-sum taxes on the household,
thereby abstracting from possible distortionary effects of raising revenues.

= i€;. (6)




As we discuss in more detail below, existing estimates typically cannot offer informa-
tion on such elasticities at the firm-level. Instead, firms’ elasticities of R&D expenditures

to subsidies are estimated “only” as average values across broad groups of firms.

2.2 Bang for the Buck

With the above structure at hand, we are now ready to define our key statistics.

DEFINITION 1 (Bang for the Buck). Consider a permanent change to the subsidy rate,
dlog(t). Then,
(i) The Bang, B (benefit), is the associated impact response of the aggregate growth rate:

e
~dlogT’

(ii) The Buck, C (cost), is the associated impact response of aggregate government spend-

ing on REID support:
o dlogT

~ dlogT’
(iii) The Bang for the Buck, A (additionality), is the ratio of the Bang and the Buck:

B dG/dlogT
C  dlogT/dlogt

A:

Intuitively, following a permanent change in the R&D subsidy rate, the Bang for the
Buck measures the extent to which aggregate growth changes (on impact) per dollar spent
on government R&D support. Next, we turn to decomposing the Bang for the Buck into

key firm-level components.

Components of the Bang for the Buck. The following proposition describes how
the Bang and the Buck relate to firm-level variables. In anticipation of our empirical
application, we also define the Bang and the Buck for mutually exclusive groups of firms
Q, where the set of all firms is given by 2 = U.();. In addition, for tractability we also

make the following assumption:

AssuMPTION 1 (Common R&D cost elasticity). Assume that the convexity of RED costs

is common to all firms, i.e. V; = for all i.

Note that Assumption 1 does not preclude firm-level R&D cost functions to differ
across businesses. This can happen if firms differ in the efficiency with which they innovate
(level of the cost function). Importantly, in Section 4 we directly estimate v from the

data and show that it varies relatively little in the cross-section.



PROPOSITION 1 (The Bang and the Buck). In the environment described above, the Bang

and the Buck are given by the following expressions:

B = Z By, = Z mM;gi€i, (7)
k

i€
CIZCkZZH(l‘H/JQ)a (8)

k icQ
where m; = y;/Y are firm-level market (sales) shares, r; = s;/S are firm-level RED
shares, k indicates mutually exclusive firm groups € and where By = Zier m;g;€; and

Cy = Zz‘er ri (1 4+ 1€;) are, respectively, the group-specific Bang and Buck.

The first part of Proposition 1 makes clear that the Bang is determined by a com-
bination of firms’ sales shares, m;, their growth rates, g; and their micro-elasticities, ;.
Intuitively, an individual firm can leave a mark on aggregate growth only if it is sufficiently
large, fast-growing and responsive to the policy change.

The second part of Proposition 1 shows that the Buck is a combination of firms’ R&D
shares, s;, and micro-elasticities, ¢;. Intuitively, a given policy change will be particularly
expensive if firms respond strongly to it and if affected businesses already receive a large
chunk of R&D incentives. The latter, given by firms’ R&D shares can be viewed as a
measure of “policy exposure.”

Put together, Proposition 1 highlights that understanding the aggregate impact of
changes in R&D incentives does not depend solely on firms’ responsiveness (micro-
elasticities). Instead, it is necessary to take into account the joint distribution of four
firm-level elements: (i) micro-elasticities, ¢;, (ii) sizes, m;, (iii) growth rates, g;, and (iv)
R&D expenditures, r;. The following proposition makes explicit how these firm-level

factors drive the Bang and the Buck.

PROPOSITION 2 (Components of the Bang and the Buck). (a) The Bang (7) can be

expressed as:

B = ngmka@%, (9)
k
where each group-specific Bang is driven by four components:
i) growth (size-weighted): g, =3 ;cq, 3-9i
i) size: my = 0 Ui/Y =Yi/Y
ii1) average micro-elasticity: €, = Nik Zieﬂk €

i) heterogeneity (in growth): 0 =1+ COVfgiaEk)y

Ghek
where Ny denotes the number of firms in group k and where §g¥ = Nikzmﬂk Yig; are

average output changes in group k.



(b) The Buck (8) can be expressed as driven by three components:
C=> r(L+yed;), (10)
k

where each group-specific Buck is driven by three components:
i) RED “exposure”™ ry =73 cq si/S = Sk/S
i) average micro-elasticity: €, = Nik > icq, €

iii) heterogeneity (in RED): 03 = 1 + )

Sk€k

where s, = Nik Zier s; are average RED expenditures in group k.

Proposition 2 puts forward a convenient decomposition of the Bang and the Buck
into average values of each of the components and the influence of firm heterogeneity.
Intuitively, the Bang is higher if responsive firms (those with high ¢;) are also large
and/or fast growing businesses, i.e. cov(g¥,e¢) > 0. On the other hand, the Buck is
higher if responsive firms are also R&D intensive, i.e. cov(s,e) > 0. Therefore, key to
understanding the aggregate effect of R&D incentives is the ability to measure micro-

elasticities at the firm-level. We turn to this next.

2.3 Firm-Level Micro-Elasticities

The previous paragraphs put forward the potential importance of accounting for firm-level
heterogeneity in responsiveness to R&D subsidy changes. However, existing estimates
typically do not offer such a high degree of granularity. Instead, micro-elasticities are
typically estimated for all firms as a whole or for broad groups of businesses (e.g. small
vs large).

In this subsection, we propose a novel approach for obtaining measures of micro-
elasticities for individual firms. In contrast to existing empirical approaches which rely
on geographical or time variation in R&D policies, our methodology rests on key economic
tradeoffs firms face when deciding on R&D investment. These tradeoffs lie at the heart
of modern theories of endogenous growth. However, our approach will not require us to

solve such complex models with heterogeneous firms.

Optimal R&D Investment. Consider that firms choose R&D investment (firm-level
growth) optimally to maximize their value, v;. The latter is the discounted present value

of all future profits:

it

v;(¢i4) = max Z ﬁfm(qi,m),
j=0

10



where §; € (0,1) is a discount factor, potentially also reflecting firm exit, and where
mi(Git) = 70(qit) — si(gie) are profits with 79(g;+) indicating “operational profits” which
are, by construction independent from R&D subsidies. In this setting, R&D investment

(firm-level growth) satisfies the following optimality condition:

ZW%W (1)

21+ zt

Equation (A13) shows that optimal innovation decisions balance marginal costs and ben-
efits of R&D. The former are governed by firms’ R&D cost functions. The latter are
driven by the effect innovation has on all future profits — summarized in (A13) by the
elasticities € 4.

In what follows, we use equation (A13) to derive firms’ responsiveness to a change in

R&D subsidies. First, however, we make the following assumption:

AssumMPTION 2 (Constant R&D-to-profits at the firm-level). Assume that at the firm

level, the ratio of RED expenditures to profits is constant, i.e. s;4/m;s = s;/m; for any t.

While Assumption 2 posits that R&D-to-profits are constant at the firm-level, they
may well differ across firms. Such heterogeneity is governed by firms’ individual R&D cost
functions and innovative capacity. In Section 4, we discuss the validity of this assumption
and show that it holds in a large class of endogenous growth models. Importantly, we
also show that it also holds in the data.

The following proposition describes the nature of micro-elasticities at the firm-level.

ProproSITION 3 (Firm-level micro-elasticities). Under Assumptions 1 and 2, firm-level
micro-elasticities are given by:
€& = j—ﬁ (12)
Proposition 3 shows that firm-level micro-elasticities are given by their R&D-to-profit
ratio and proportional to the R&D cost elasticity. Intuitively, as R&D becomes cheaper
due to more generous subsidies, firms optimally increase their investment into innovation.
On the one hand, this comes at higher costs. On the other hand, it increases expected
growth and, therefore, future profits. The precise way how firms balance these trade-offs
is informative about their underlying “micro-elasticity.”” The above proposition states
that, under Assumption 2, firms’ micro-elasticities are in fact proportional to the two
sides of their R&D balancing act — the ratio of R&D expenditures to profits.
Note further that both R&D expenditures and profits are directly observable in readily
available firm-level datasets. This makes our measure of micro-elasticities particularly
appealing. Therefore, given an estimate of the R&D cost elasticity which we discuss

below, our framework is capable of considering the full extent of firm-level heterogeneity

11



observed in the data.?

2.4 Spillovers

Up until now, we have assumed that firm-level growth is affected solely by firms’ own
R&D investment. In this subsection, we extend our analysis to allow for external effects,

i.e. spillovers from R&D investment of other firms.

Impact of External R&D. To analyze how spillovers may affect the Bang for the
Buck, let us consider that firm-level growth is partially driven by R&D expenditures
(and therefore growth) of other firms:

<=

1
i = g+ g = mosi(9) ¥+ ne Y aiysi(g)®, (13)
i#i

ext
si

own

where ¢f

is growth driven by the firm’s own R&D efforts, 7. is the extent to which “ex-
ternal” R&D of other firms affects the growth rate of firm 7 and where a; ; are “technology-
proximity and quality-adjusted” weights. The latter summarize not only how closely firm
1 is related to firm j in terms of their technological fields, but also the quality of R&D
conducted by firm j. The following proposition describes the micro-elasticity and the

Bang for the Buck under spillovers.

PROPOSITION 4 (Spillovers). In the environment described above, micro-elasticities with

spillovers can be expressed as

e = wie + (L —w) Y _ 03¢, (14)
J#i
where w; = g7""/g; is the fraction of “own-growth”, € is defined in (12) and o;; =
Oéiijj(Qj)i/Siext are technology-proximity and quality-adjusted RED shares of other firms,
1
where SF*t = Z#i i jsi(g;)* .
The Bang for the Buck is then given by

spill
Aspz'll _ Zz migieip

. (15)

Proposition 4 first shows that the micro-elasticity of firm ¢ which takes spillovers into

account is a weighted average of the firm’s individual micro-elasticity, ¢;, and that of all

9In the Appendix we show that Proposition 3 holds also in models in which R&D investment is risky
and when at the firm level R&D-to-profits follow a random walk, rather than being fixed. In addition,
the Appendix also provides a brief description of a workhorse model of endogenous growth in which
Proposition 3 holds.
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other businesses. However, micro-elasticities of all other businesses influence firm ¢ only
to the extent that they are technologically close, 0;;, and to the extent that external
R&D drives some of firm i’s growth, 1 —w;. Finally, note that the spillover elasticity only
enters the Bang, but not the Buck. The reason is that while R&D investment of a given
firm may influence any other business, the government always subsidizes each firm only

once.

Spillovers and Subsidizing Only a Subset of Firms. Next, let us consider the
case when only firms of a particular group, €2, are subsidized. The following proposition
shows how we can decompose the group-specific Bang for the Buck into contributions of
“own” R&D investment, internal and external spillovers and how all these relate to the

case which ignores spillovers.

PROPOSITION 5 (Bang for the Buck with & without Spillovers). For firm group Q, we

can write the Bang for the Buck which accounts for spillovers as

(16)

) Bown Bint Bext
Azpzll:Ak(k L bt k>7

By, By,

where Ay = By/Cy is the group-specific Bang for the Buck without spillovers with By
and Cy defined in (9) and (10), respectively, and where BY*™ = 3 ;.o migiwie;, is the
“own” BCLTLg, Blzcnt — Z

> e, Migi(L —wj) Xicq, 0jai€i is the “external” Bang.

ica, Mi0i(1—wi) D2 cq, 14 0465 18 the “internal” Bang and Bi* =

The proposition makes clear how accounting for spillovers relates to the Bang for
the Buck which ignores the effects firm innovation has on R&D of other businesses.
Specifically, the “own” Bang is a scaled-down version of the Bang without spillovers,
where the scaling depends on the extent to which firms’” drive their own growth, w;. The
internal Bang is a spillover effect from other firms within the subsidized group k. Finally,
the external Bang quantifies how subsidizing firms in group k& impacts growth of other

firms outside the subsidized group.

3 Data and Measurement

A major advantage of our approach is that all objects of interest are measurable with
readily available data. Therefore, for our application we choose Compustat, a widely
used firm-level dataset which covers publicly traded firms in the U.S. economy. In what
follows, we describe the nature of the firm-level information, sample selection and the

definitions of firm groups in Compustat. We defer further details to the Appendix.
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3.1 Firm-Level Sales, R&D and Profits

As explained in the previous section, our main analysis relies “only” on three firm-level
variables: R&D expenditures, sales (growth) and profits. In the Appendix, we show that
our main results are unchanged when considering employment growth, instead of sales

growth, and when employing alternative definitions of firm profits.

Sample selection. Our primary sample period is 1980-2019 when R&D coverage is
high. During this period, Compustat firms accounted on average for 75% of annual
aggregate R&D investment and 60% of real GDP.

In our application, we focus on the intensive margin of R&D and, therefore, restrict
our attention to firms with non-negative R&D expenditures and profits.!® In addition,
to deal with outliers, we winsorize firms at the top 1% distribution of the R&D-to-
profits (s;/m;), sales (y;) and the sales growth rate (g;). The percentiles are computed
as averages in a given industry-period cell to avoid an imbalanced sample that leans on
certain industries or periods of time.

Following the convention in the literature, we drop firms in agriculture, finance, in-
surance, real estate and public utilities. In addition, we drop observations with missing
industry classifications, negative sales and observations in which acquisition expenses ex-
ceed 10% of revenues. We do the latter in order to control for the mergers and acquisitions

for which measured growth may only be the result of acquiring a different business unit.

Measurement. For all our results, we average each firm-level variable of interest over
a certain time window in order to smooth variation, but also to allow for potential lags
between R&D investment and growth. In our baseline specification, we average each

wpn
]

outcome over non-overlapping 5-year periods so that subscript in the theory developed
in Section 2 corresponds to a firm-window cell. After such time averaging, we pool all
observations.!!

Firm-level sales shares are given by m; = v;/(D>_,v:), where we use Compustat
sales to measure y;. Similarly, firm-level R&D shares are measured analogously as
r; = si/(30; 8i), where s; is given by Compustat xrd.'? Firm-level growth rates are com-

puted as the growth rate between average sales in the first and last five years of the

0Tndeed, Dechezlepretre et al. (2023) find that the extensive margin does not respond to R&D in-
centives and, in our theoretical framework, firms only conduct R&D if they expect positive benefits —
proxied by firm profits. Nevertheless, in the Appendix, we show that our results remain unchanged even
when including firms with negative profits.

"For example, s; would correspond to arithmetic mean of R&D expenditure of the first firm in our
sample in the period 1980 to 1984. The mean R&D expenditures for this firm in period 1985 - 1989 are
treated as an independent observation in the pooled dataset. In the Appendix, we show that our results
are robust to using annual observations.

12Tn the Appendix, we show that our results are unchanged when we, instead, consider nominal GDP
and aggregate expenditures on R&D from the National Accounts as measures of aggregate output and
R&D expenditures.
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decade window, ¢g; = 10g(23:5 Yitts) — log(Z?:O Yit+;). Finally, for our main analysis,
we define profits as sales - cogs - xrd, where cogs are costs of goods sold, a measure

of variable cost.!?

3.2 Micro-Elasticities

As shown in Proposition 3, micro-elasticities are given by e; = s;/ Wiﬁ. As mentioned
earlier, in (17) we use xrd to measure s; and sales - cogs - xrd to measure ;. In
addition, for our baseline results, we follow the literature and set 1) = 2 (see e.g. Hall
et al., 2001; Blundell et al., 2002; Bloom et al., 2002). In Section 4 we estimate v directly
using data on patents and show that it is not statistically different from 2 and that it

varies relatively little across industries.

Firms with negative growth rates. Notice that our micro-elasticities are positive,
indicating that firms grow faster as a result of cheaper (more subsidized) R&D. However,
in the data, some firms report negative growth rates. In order to retain the property that
more favorable R&D incentives lead to improved growth (even if initially negative), we

define micro-elasticities in the Bang, B =Y, m;g;el as follows:

i 9i =0,
=y Y (17)
—¢; when g; < 0.

In this way, an increase in the subsidy rate boosts growth in businesses which are expand-
ing and slows the contractions in firms with negative growth rates.!* Importantly, note
that the Buck remains to feature ¢; = s;/m;, as more favorable R&D incentives increase

firms’” expenditure on R&D, irrespective of whether they are growing or shrinking.

3.3 Spillovers

Seminal contributions of Jaffe (1986) and Bloom et al. (2013) document sizable techno-
logical spillovers between firms. Therefore, we follow Bloom et al. (2013) and use data

on patenting activity to measure technological spillovers between firms.

Technological Proximity. In particular, we use patent data collected by Kogan et al.

(2017) which includes the technology classifications, so-called CPC codes.’ Following

13Following common practice in the literature (see e.g. De Loecker et al., 2020), we deflate nominal
variables with the GDP deflator (2012-based, BEA code A191RD). Note further that since our focus
is on governmental policies aimed at R&D, it is precisely accounting-based R&D spending which is of
primary interest (in contrast to “undeclared” innovation or innovation output such as patents).

14Tn the Appendix, we show that very similar results are obtained when dropping firms with negative
growth rates altogether, in which case ¢ = ¢;.

15CPC stands for the Cooperative Patent Classification which is patent classification standard jointly
managed by the European Patent Office and the US Patent and Trademark Office. Examples of 3-digit
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Bloom et al. (2013), we use CPC codes to measure closeness between firms in the tech-
nology space and to quantify R&D spillovers.

Towards this end, we classify each patent using 3-digit CPC codes into one of 130
technology classes. Next, for each firm we compute the share of patents in all technology
classes and compute the un-centered correlation between firm ¢’s and firm j’s patent

shares denoted by @; ;.'°

Quality Adjustment. Building on Bloom et al. (2013), we account for firm’s impor-
tance in the patenting network by weighting each observation by the total patent citations
accrued to the given firm.

Towards this end, let ¢; denote all citation attributed to patents assigned to a given

firm-period cell j. Then, our measure of spillovers benefiting firm 7 is given by proximity-
1

weighted citation-adjusted R&D expenses of all other firms o; = > ay; 8(532? , where
;= &z}j% with C' = Zj c; marking the total citation count. Intuitively, a firm ¢

benefits from R&D expenses of a firm j if the two firms are patenting in the same set of

CPC sectors and if the firm j tends to generate patents with a high citation count.!”

3.4 Firm Groups

To highlight the heterogeneity present in the data, we consider four groups of firms,
commonly discussed in the literature: (i) small and medium-sized enterprises (SMEs),
(ii) R&D-intensive firms, (iii) young firms, and (iv) gazelles.

The first two groups are defined by the respective medians of firm size (sales), and
R&D-to-sales. In each case, the medians are computed individually in each time period -
window in the averaged data or year in the annual data. Young firms are defined as those
weakly less than 6 years after their IPO. To define high-growth firms (“gazelles”), we
follow Haltiwanger et al. (2016). In particular, gazelles are businesses with an annualized

growth rate within our averaging window which weakly exceeds 20%.

4 Validation

In this section, we discuss the empirical relevance of Assumptions 1 and 2. In addition,

we make use of existing studies as well as an independent empirical analysis to validate

CPC codes include “hydraulic engineering; foundations; soil shifting” (CPC code E02) or “electronic
circuitry” (CPC code H03).

T, T}
VTT 1T
to the number of patents granted to firm 4 in a given CPC class. Further details on the patent data,
its matching to Compustat and the construction of technology-proximity weights can be found in the
Appendix.

1"In Appendix D.12, we document that adjusting spillovers for patent value estimated in Kogan et al.
(2017), instead of citation counts, leads to very similar results.

16Formally, Q,;; = where T; is 130 element vector in which each element corresponds
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the predictions of our analytical framework regarding micro-elasticities.

4.1 Assumptions 1: R&D Cost Elasticity

For our baseline results, we follow the existing literature and consider 1) = 2 (see e.g. Hall
et al., 2001; Blundell et al., 2002; Bloom et al., 2002). In what follows, we use Compustat

to directly estimate the R&D cost elasticity on average and across 2-digit industries.

R&D cost elasticity, i: Average for the U.S. economy. As explained in the
previous section, we link firm-level data on innovation inputs - R&D expenses - to the
data on innovation outcomes - patent applications. To estimate the cost elasticity of
R&D, we then follow Hall and Ziedonis (2001) and regress log changes in the counts of

patent applications of firm i on log changes of its R&D expenses:'®

Alog (patentsiﬁt) = 0;+ + BAlog (R&D; 1) + 1, (18)

where patents,, is the total number of patents for which a firm ¢ applied in period
t, 0;+ mark fixed effects (sector, time, firm or their combinations, depending on the
specification), R&D,; represents the sum of a firm’s R&D expenses in period ¢ and 7,
is a residual term. As in our main analysis, we aggregate inputs and outputs over non-
overlapping 5-year windows in order to account for time-to-build in innovation.
Interpreting patents as a measure of growth (innovation intensity), the estimated
coefficient 3 in regression (18) is a measure of the R&D cost elasticity 5 = 1/¢. Table 1
shows the results. For all specifications presented in the table, we cannot reject the null

hypothesis that ¢ = 2 — consistent with the existing literature.

R&D cost elasticity, 1: Heterogeneity across industries. To gauge the extent
of potential heterogeneity in R&D cost elasticities across industries, in the Appendix we
estimate regression (18) individually in each 2 digit SIC sector. The results show that for
the vast majority (77%) of the SIC industries we cannot reject the null hypothesis that
1) = 2. Therefore, in our application to the data in Section 5 we will consider a common

cost elasticity of ¢ = 2.

4.2 Assumption 2: R&D-to-Profits

We begin by inspecting R&D to profit ratios in our Compustat data. Next, we also discuss

how this assumption relates to a wide range of existing endogenous growth models.

18Note that we count only patents that were eventually granted.
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Table 1: R&D cost elasticity in the data

(1) (IT) (I1T)
A log R&D expenses 0.54 053  0.46
(0.03) (0.03) (0.04)

sector-time fixed effects v

sector fixed effects v

time fixed effects v v
firm fixed effects v
Observations 3,217 3,217 3,217
R? 0.40 0.37 0.73
Within R? 0.22 0.22 0.16

Note: Estimated coefficient /3 in regression (18). The coefficient corresponds to the elasticity of patents
(innovation output) to the R&D expenses (innovation inputs). Sample consists of US public firms
matched to patent data in Kogan et al. (2017). We restrict sample to period 1970 - 2019. To allow for
time-to-build in innovation, we aggregate data into non-overlapping 5 year windows. Each observation
corresponds to one firm-window cell. If firm exists for less than 5 years, we retain the firm in the sample
and use the all years in which the firm is observed.

Assumption 2 in the data. To verify the assumption empirically, we utilize the

baseline Compustat sample and estimate the following regression:

log (Siﬂf) = ;¢ + at + pt?, (19)
Tt

where d;, marks fixed effects (sector, firm, cohort, and their combinations depending on

specification) and ¢ denotes time. When we condition on firm or cohort fixed effects,

the regression captures the average evolution of the R&D-to-profits ratio over firms’ life-

cycles.

Table 2 shows the results which indicate that, at the firm-level, R&D-to-profits do
not change noticeably over time. While some of the coefficients are statistically signifi-
cant, none of them are quantitatively large. This can be seen both from extremely low
magnitudes of the within R? statistic and from the low point estimates.

Note further that the estimated variation over firms’ life-cycles is dwarfed by differ-
ences in R&D-to-profit ratios in the cross-section of firms. In particular, the (statistically
insignificant) point estimate in our preferred specification with firm fixed effects (first col-
umn in Table 2) would suggest that R&D to profit ratios change by about 5% every five
years. Given an average R&D to profit ratio of about 20%, this amounts to an increase
of 2 percentage points over a decade. Instead, the inter-quartile range of R&D-to-profit
ratios in the cross-section of firms in our sample lies between 4% and 30%.

Therefore, the dispersion in the R&D-to-profit ratios is primarily driven by cross-

sectional differences, rather than changes occurring over firms’ life-cycles. This is precisely
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Table 2: Within-firm variation in R&D-to-profits ratio

@ (1) (I1T)

time 0.050 0.015 0.069
(0.031) (0.013)  (0.008)

time? -0.001  0.0004 -0.002
(0.002) (0.0007) (0.0005)

firm fixed effects v

cohort fixed effects v

sector fixed effects v v

Observations 12,234 12,234 12,234

R? 0.90 0.34 0.31

Within R? 0.007 0.001 0.01

Note: The dependent variable is log (s’—tt) which implies that we only consider firms with positive R&D

j,
expenses and positive profits. Both outcomes are averaged over non-overlapping 5-year windows and
“time” corresponds to the window index.

the type of heterogeneity that our framework is designed to account for.*

Assumption 2 in existing models. Assumption 2 holds not only in Compustat data
— as shown in the previous paragraphs — but also in a wide range of existing growth
models (see e.g. Klette and Kortum, 2004; Luttmer, 2007; Lentz and Mortensen, 2008;
Luttmer, 2010; Mukoyama and Osotimehin, 2019).

The key reason behind this property is the assumption of “perfect scaling” (see Akcigit
and Kerr, 2018, for a discussion). In such models, R&D costs scale one-for-one with firm
size, resulting in constant shares of costs in profits (and sales). For the same reason, these
models also feature “Gibrat’s law” — the property that growth rates are independent
of firm size (either in the aggregate or at the firm-level if firms are characterized by
permanent heterogeneity). Put together, Assumption 2 holds not only in the data, but

also sits firmly within a very broad range of existing endogenous growth models.

4.3 Proposition 3: Micro-Elasticities

A key advantage of our methodology is the ability to estimate micro-elasticities (i) at
the firm-level, (ii) with readily available data and (iii) without the need for variation in
R&D tax incentives. In what follows, we document that our methodology does in fact
deliver estimates which are very close to those based on existing empirical approaches

which rely on (geographical or time) variation in R&D policies. We do so in two ways.

9Tn the Appendix D.1 we provide further robustness checks, including estimates using annual data,
rather than 5-year averages. These robustness checks indicate that the averaged data provide an upper
bound on the magnitude of the time trends in s/ ratio.
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First, we compare our results to a novel estimate of micro-elasticities using a difference-
in-differences (DiD) approach around a large policy change in Australia. Second, we show

that our estimates also align closely to estimates from existing studies.

Evidence from a policy change in Australia. In what follows, we develop novel
evidence on firms’ micro-elasticities using administrative micro-data from Australia. In
particular, we utilize a major policy change in 2012 which redefined thresholds of firms’
eligibility for government R&D support. We defer most of the details on the institutional
background, data and methodology — a difference-in-differences estimation — to Appendix
D.2.

Evidence from a policy change in Australia: Institutional Background. Like
many other countries, Australia provides R&D support for eligible businesses. Prior
to 2012, businesses with turnover exceeding AUD5 million could deduct 125% of R&D
expenditures from their taxable income. Throughout the sample period, the corporate
tax rate was 30% implying an effective R&D subsidy of 1.25 x 0.3 = 0.375.

In 2012, the government implemented a reform through which the size threshold
increased and the R&D deduction was replaced by a tax offset. In particular, firms
with turnover below AUD20 million were now eligible for a 45% tax offset. By contrast,

businesses with turnover exceeding AUD20 million were eligible for a 40% tax offset.?"

Evidence from a policy change in Australia: Methodology and Data. In the
setting described above, firms with turnover between AUD5 million and AUD20 million
experienced a 20% increase in the effective R&D subsidy rate (changing from 0.375 to
0.45). We will, therefore, compare R&D expenditure among these businesses to firms
with turnover exceeding AUD20 million. For this latter group, the effective R&D tax
subsidy increased by only 6.7% (from 0.375 to 0.4).

In particular, focusing only on firms with turnover exceeding AUD5 million, we esti-

mate the following regression,
log(R&D)iw = a4+ Ylgs5_20mir + ALoo12 + Blgs—20mir X Loor2 + 0i + i, (20)

where R& D;; are expenditures on research and development at firm 7 in year ¢, lgs_o0m 1S
an indicator function equal to 1 for firms with turnover between AUD5 million and AUD20
million,?! 1595 is an indicator function equal to 1 for the post-reform year 2012, d; is a

set of controls and wu;; are residuals. The coefficient of interest is 3, which measures the

200ther policy instruments were in place at the time. We discuss their design, how they may influence
our estimation and other details of Australia’s institutional background in Appendix D.2.

2'We only consider firms that remain in the same turnover category (i.e. AUD5-20 million or AUD20+
million) across both 2011 and 2012 (the vast majority of firms).
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Table 3: Tax elasticity of R&D expenditures: DiD and our approach

(1) (IT) (TIT)
AUDA5-20 million turnover x 2012, 5 0.202 0.203 0.203
(0.048) (0.047) (0.047)

Control for:

Turnover No Yes Yes
Industry f.e. No No Yes
Observations 2820 2820 2820

Notes: Source: Business Longitudinal Analysis Data Environment (BLADE), 2011-2012, Business In-
come Tax and Business Activity Statement, ABS DataLab. Findings based on use of BLADE data.
The table presents estimates from regression (20). Sample of firms with turnover exceeding AUDS5 mil-
lion, that report positive R&D expenditure, positive operating profits and remain in the same turnover
category across both 2011 and 2012. Standard errors are clustered at the firm level.

percent change in R&D expenditures of firms with AUD5 — 20 million turnover, relative
to businesses with turnover exceeding AUD20 million.

To estimate regression (20), we make use of Australia’s administrative firm-level data
— the Business Longitudinal Analysis Data Environment (BLADE) — developed by the
Australian Bureau of Statistics (ABS). Within BLADE, we are able to connect infor-
mation on firms’ R&D expenditures, profits, turnover, industry and age. While R&D
represents expenditures subject to the R&D subsidy, profits are operating profits, as
reported in the firm’s tax statements.

The identifying assumption in our setting is that in the absence of the policy reform,
the R&D expenditure of AUD5 — 20 million turnover firms and AUD204 million turnover
firms would have changed by the same amount (i.e. the parallel trends assumption). As
we show in Appendix D.3, considering a placebo treatment by estimating regression (20)
prior to the policy change delivers 3 coefficients which are statistically not different from

zero. This provides support that the parallel trends assumption holds in our data.

Evidence from a policy change in Australia: Results. Table 3 presents the re-
gression results. In particular, the first row shows the estimated coefficient of interest, (3,
from regression (20) for various specifications. The results indicate that businesses with
turnover between AUD5 and AUD20 million increased their R&D expenditures by about
20 percent more relative to firms with turnover over AUD20 million.

Next, we compare the implied R&D expenditure elasticity to that predicted by our
analytical framework. Towards this end, we first convert the estimated [ coefficients
to R&D expenditure elasticities by using the information on the relative increases in
subsidy rates, ¢, = /(AlogT). Using the estimated standard errors to compute an

upper and lower bound, our results suggest that the R&D expenditure elasticity lies
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Table 4: Tax elasticity of R&D expenditures: Existing studies and our approach

Estimate/Firm group All Small Medium Large
Appelt et al. (2025), ¢, 0.43 -0.60 0.94 -1.29 0.78 - 1.03 0.19 - 0.31
Proposition 3, €, = 1€ 0.50 1.22 0.78 0.28

Notes: The table presents estimates of micro-elasticities. The top row reports the range of estimates
of the elasticity of firms’ R&D expenditures with respect to their price (tax) from Appelt et al. (2025),
Tables 6 and 9, respectively. The latter estimates are based on Orbis data from 11 countries and cross-
country variation R&D subsidies. The bottom row uses the same Orbis country sample and the approach
described in Proposition 3. “All” refers to all businesses in the sample, while “Small”, “Medium” and
“Large” are given by firms with 1-49, 50-249 and 250+ employees, following the definitions in Appelt
et al. (2025). We assume that ¢ = 2.

between ¢, € (1.15,1.87) with a point estimate of about 1.5.22
Finally, to compute the R&D expenditure elasticity using our approach, we employ the
— oz o . —_ 1 _ 11 si
fact that e, = 1€ and lean on Proposition 3 which states that € = § >, &; = TN > =3
The average R&D-to-profit ratio among the treated firms is 0.692. Therefore, using
1 = 2, our approach yields an R&D expenditure elasticity of ¢, = 1.38 which falls well

within the bounds estimated in the data.??

Evidence from Existing Studies: The Case of OECD Countries. In addition
to the above evidence, we follow a recent study by Appelt et al. (2025) in which the
authors estimate the elasticity of R&D expenditures with respect to their (tax) price, i.e.
€;. They do so using firm-level data and cross-country variation in R&D incentives. The
sample consists of 11 OECD countries which offered some form of R&D tax incentive in
the 2000-2021 sample period.?* The baseline estimates of €, range between 0.43 and 0.6.
Very similar values have also been found in a range of other existing studies (see e.g. Hall
and Reenen, 2000; Bloom et al., 2002; Thomson, 2017; Appelt et al., 2019).

As before, the elasticity of R&D expenditures to changes in subsidy rates in our
framework is given by €, = €, where € is the average micro-elasticity of the given set of
firms in the sample. Therefore, to compare the estimates in Appelt et al. (2025), we use
firm-level data from Orbis for the same set of 11 countries. Aside from computing the

average micro-elasticity for all firms, we also use the definitions in Appelt et al. (2025)

22To convert the point estimate of 3 to an R&D expenditure elasticity, we divide by 0.133 which
represents the percentage difference in policy rate increases between the treated and control groups
(0.45/0.375 relative to 0.4/0.375). We obtain the lower and upper bound as (0.202 4 0.048)/0.133.

23In the Appendix, we consider a triple-difference design and estimate that the coefficient of interest,
B, does not vary significantly across different types of firms. The only (borderline) exception are young
businesses which exhibit an R&D expenditure elasticity which is about 26 percent stronger compared to
that of all firms. The elasticity of young firms implied by our approach is about 17 percent stronger.

24The country sample includes Australia, Belgium, Czechia, France, Italy, the Netherlands, New
Zealand, Norway, Portugal, Slovakia and Sweden. The baseline estimates do not account for R&D
incentive uptake since we do not have that information in our micro-data. See Appendix C.4 for details
pertaining to the Orbis dataset.
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to investigate how micro-elasticities differ across broad firm size groups (small, medium
and large businesses).

The results are summarized in Table 4. While the first row reports the range of
estimates of €5 from Appelt et al. (2025), the bottom row computes the same elasticities
using Proposition 3 (and assuming ¢ = 2). The first column reports values for all firms on
average and the remaining columns show the same for small, medium and large businesses
as defined by Appelt et al. (2025).

Overall, these results provide validation for our approach. In particular, our methodol-
ogy does well in capturing the average elasticity of firms’ R&D expenditures with respect
to their price stemming fromn established difference-in-differences designs. As will be-
come clear below, firm heterogeneity plays a key role in our application. Therefore, it is
important that our methodology is validated also in this dimension and not “only” on
average. Encouragingly, columns 3-5 of Table 4 show that our methodology performs

well even for the firm size groups considered in Appelt et al. (2025).

5 Application

This section applies our theoretical framework to readily available firm-level data from
the U.S. — Compustat. In what follows, we report results in three stages. First, we
quantify the importance of firm heterogeneity in driving the Bang for the Buck. Next,
we report the relative Bangs for the Buck for our groups of firms. Finally, we discuss how

accounting for spillovers and dynamics affects our results.

5.1 Importance of Firm Heterogeneity

A key advantage of our methodology is the ability to measure micro-elasticities at the
firm-level. This, in turn, enables us to quantify how the interplay between micro-
elasticities and firm size, growth and R&D expenditures influences the aggregate Bang
for the Buck.

Heterogeneity in Drivers of the Bang and the Buck. Table 5 summarizes the
degree of heterogeneity in key driving forces of the Bang and the Buck. Specifically, the
first column shows average values for firm-level growth and micro-elasticities. Businesses
in our baseline sample grow at an average rate of 9 percent (per 5 years) — noting that
this includes businesses which shrink over time.?® The average micro-elasticity (R&D-
to-profit ratio) is 21 percent in our sample where, as the reader will recall, our sample

excludes businesses with negative profits.

25Note that the Bang uses size-weighted growth rates. The average value of the latter is reported in
Table 7.
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Table 5: Components of the Bang and the Buck: Descriptive Statistics

Cumulative
Percentile Percentile
mean 107" 50" 90" 50t 90t g9t
Growth, g 0.09 -0.11 0.04 0.29 Sales share, m 0.98 0.80 0.38

Micro-elasticities, ¢  0.21  0.02 0.11 0.45 R&D share, r  0.99 0.85 047

Notes: The table reports summary statistics for the baseline sample of U.S. public firms used in the
analysis of Bang for the Buck in the main text. We restrict attention to firms with positive elasticity e.
The sample period is 1980 to 2019. Firm level data is averaged using non-overlapping 5-year windows.
Each observation in the dataset corresponds to a firm-window cell.

However, as the next three columns of Table 5 highlight, these averages hide much
heterogeneity. In particular, the bottom 36 percent of firms do not grow. In contrast,
the fastest decile of firms grow at a pace of 29 percent. Similarly, there is also large het-
erogeneity in firms’ micro-elasticities with a difference between 90th and 10th percentiles
of 43 percentage points.

Finally, using cumulative percentiles, the last three columns show the high levels of
sales and R&D concentration observed in the data. Specifically, the top 1 percent firms

account for 38 (47) percent of all sales (R&D expenditures) in our baseline sample.

Sources of Cross-Sectional Variation of the Bang and the Buck. The previous
paragraphs highlighted the large amount of firm-level heterogeneity in the drivers of the
Bang and the Buck. We now turn to quantifying how this heterogeneity influences the
cross-sectional dispersion in Bangs and Bucks.

Towards this end, we note that the cross-sectional variation in the (log) Bang and the

(log) Buck of individual firms can be written as

var(In B;) = cov(ln B;, Inm;) + cov(In B;, In g;) + cov(In B;, In¢;) (21)
var(In C;) =cov(In C;, Inr;) + cov(Iln C;, In(1 + )¢;)), (22)

Using the above, we can decompose the cross-sectional variation in firm-level Bangs
and Bucks into the contributions of heterogeneity in firm (i) size, (ii) growth, (iii) R&D

6 Table 6 presents the results, where each contribution is

and (iv) micro-elasticities.?
expressed in percent of the overall cross-sectional variation of the Bang and the Buck.
Two patterns stand out.

First, the results suggest that differences in micro-elasticities account for almost 1/4

of the overall variation in firm-level Bangs. Out of the remaining 3/4, differences in firm

26Tn particular, the percentage contributions to the overall cross-sectional variation are simply given
by dividing (21) and (22) with the respective left-hand sides.
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Table 6: Contributions to Cross-Sectional Variation in the Bang and the Buck (in %)

Bang Buck
Sales share, m 51.3
Growth, ¢ 24.3
Micro-elasticity, e 24.4 5.2
R&D share, r 94.8

Note: The table shows the relative contribution of each component to the cross-sectional variation in
the Bang and Buck (equations (21) and (22)), respectively. Values are expressed in percent of overall
cross-sectional variation.

size play a dominant role — accounting for over 50 percent of the overall variation.

Second, heterogeneity in micro-elasticities is completely dwarfed by differences in
R&D shares when it comes to firm-level Bucks. In particular, cross-sectional variation
in R&D expenditure alone accounts for almost 95 percent of the overall differences in
firm-level Bucks.

Therefore, while estimating how firms respond to changes in R&D incentives is im-
portant in its own right, other factors matter as well when it comes to the impact on
aggregate outcomes. In particular, firm size and growth enter as major determinants —

noting that R&D expenses are closely correlated with firm size (correlation coefficient of

0.75).

Importance of Firm Heterogeneity for the Aggregate Bang and Buck. We
now turn to investigating the importance of firm heterogeneity for the aggregate Bang
and Buck. As is described in Proposition 2, what matters for the magnitudes of the
aggregate Bang and Buck is how micro-elasticities co-vary with firm size, R&D investment
and growth rates. The impact of this cross-sectional variation is summarized by the
heterogeneity terms 69 and 6°, respectively.

We begin by visualizing raw Compustat data to gauge the extend of heterogeneity in
the key components of the Bang and the Buck. Figure 1 shows binned scatter plots for
all components of the Bang. In each panel of the figure, we consider percentiles of the
distribution of the variable indicated in the horizontal axis and plot the corresponding
sample average of the variables indicated in the y axis.

Panel (a) presents the distribution of growth rates, g, and (Bang) micro-elasticities,
€B. As can be seen from the Figure, micro-elasticities tend to co-vary positively with
growth rates. Next, Panel (b) presents the distribution of growth rates, g, and firm sizes,
y. We can see that non-linear relationship whereby small firms tend to exhibit extreme
growth rate - either very high or very low - while larger firms are characterized by more
moderate growth rates. In Panel (c), we show a similar inverse-U relationship emerges

B

between micro-elasticities, €”, and firm size, y, albeit somewhat less pronounced.
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Figure 1: Distribution of firm-level drivers of the Bang
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Note: The figure presents binned scatterplots (Cattaneo et al., 2024) for the components of the Bang.
Each dot represents 1% of firm-window observations in Compustat data. In each Panel, markers corre-
spond to a percentiles of the variable indicated in the x axis. The corresponding value on the vertical
axis is the unconditional sample average among firms within a given percentile. In Panel (d), the larger
the size of a marker and the warmer its color, the larger is the market share of firms in the given g-¢?
cell.

Finally, Panel (d) combines all three elements. In particular, we plot micro-elasticities,
P, against growth rates, g, and indicate the share of the total market size by the color
and size of each dot. The larger the size and the warmer the color of each dot, the
larger is the market share of firms which find themselves in the given percentile of growth
rate distribution. As can be seen from Panel (d), market shares tend to be concentrated
among firms which exhibit a positive connection between micro-elasticities and growth
rates. This property of the data will then boost the aggregate Bang — see Proposition 2
and the contribution of heterogeneity, #9.

Next, we turn our attention to the Buck. In Figure 2, we present the relationship
between elasticity € and log R&D share r, i.e., the two components of #°. The figure shows
positive correlation between these two elements of the Buck: more responsive firms are
also more R&D intensive. The size and color of the dots correspond to the relative Bang
in a given cell. Therefore, the panel illustrates the key trade-off in the design of R&D
subsidies: the firms that are most responsive (high €) and are characterized the largest

Bang (large, warm-colored dots) are also the most expensive to support (high values of

T).
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Figure 2: Distribution of firm-level drivers of the Bang for the Buck
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Note: The figure presents binned scatterplots (Cattaneo et al., 2024) for the components of the Buck.
Each dot represents 1% of firm-window observations in Compustat data. Each dot represents 1% of
firm-window observations in Compustat data. In each Panel, markers correspond to a percentiles of the
log R&D share, logr. The corresponding value on the vertical axis is the unconditional sample average
of the elasticity € among firms within a given percentile. The size and color of the marker corresponds
to the relative Bang of all firms in a given cell - the larger the dot and the brighter the color, the larger
the Bang of firms in the given r-e cell.

Therefore, firm heterogeneity will help increase the magnitude of both the Bang and
the Buck. This happens because firms which are relatively more sensitive to R&D incen-
tives (higher micro-elasticities) tend to also grow faster and/or be larger. Similarly, such
firms also tend to command larger R&D shares.

Quantitatively, in our baseline sample #9 = 6.7 and #° = 1.5. Hence, using Proposition
2 suggests that existing approaches — which are unable to measure micro-elasticities at
the firm-level — under-estimate the impact of R&D subsidies on aggregate growth by a
factor of almost 7.2” Our methodology, therefore, suggest that R&D subsidies may be

much more effective at raising aggregate growth than previously thought.

5.2 Relative Bangs for the Buck

We now move to analyzing the potential for targeted R&D policies. We do so by focusing
on the relative Bang for the Buck which measures how much more (or less) Bang for the
Buck a policy maker could get if they targeted only firms in a particular group k, relative
to simply handing out the subsidy indiscriminately to all businesses.

The first three columns of Table 7 report the relative Bang for the Buck, the relative
Bang and the relative Buck. The rows indicate these statistics for selected groups of
businesses and for all firms together. The remainder of the table reports the components

which drive the Bang and the Buck: (i) sales shares, my, (ii) average micro-elasticities, €7

2"In the case of the Buck, the under-estimation factor is given by 1 + ¢ed*/(1 + ). With ¢ = 2,
€ =0.21 and #° = 1.5 this factor is about 1.15.
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(€x), (iii) average sales-weighted growth rates, gi, (iv) R&D shares, 74, (v) heterogeneity
in growth, 67 and (vi) heterogeneity in R&D, 6;.%

Before diving into the results, let us note that our decompositions in Proposition
2 offer intuitive ways of understanding the drivers of the relative Bang for the Buck.
First, if firm group k is characterized by growth rates (gx), micro-elasticities (€7) and
heterogeneity (#9) which is identical to that in the economy as a whole, then By,/B = my,
and Cy/C = 1. Therefore, comparing the relative Bang and Buck to the respective
sales and R&D shares reveals the extent to which a particular firm group “punches above
its weight” in terms of the Bang and Buck. For the same reason, if firm group k£ is
characterized by R&D shares larger than sales shares (ry > my), then it is a relatively
expensive policy target. This is because their weight in aggregate growth is lower than
their exposure to the policy. In what follows, we refer back to these comparisons when

analyzing each group of firms in turn.

R&D intensive firms. The first row of Table 7 shows that focusing innovation sub-
sidies on R&D intensive firms provides a lower Bang for the Buck than when simply
handing out the subsidy indiscriminately to all businesses, i.e. Arp_in./A = 0.94. Look-
ing at the remaining columns reveals the reasons behind this.

On the one hand, R&D intensive firms are twice as responsive to changes in R&D
subsidies (€5, _;;. = 0.12 vs €2, = 0.06) and they grow somewhat faster than the average
firm (grp—_ine. = 0.13 vs gy = 0.09). These features are favorable in terms of the Bang.

On the other hand, however, R&D intensive firms account for over 3/4 of all R&D
expenditures. This out-sized “exposure” to innovation subsidies makes them an expensive
policy target. Put together, while R&D intensive firms have the potential to contribute

substantially to aggregate growth, they do so at a relatively high cost.

Small firms. The second row of Table 7 shows that the Bang for the Buck of small
businesses is about 1/3 larger compared to that of all firms together. At face value, this
may be taken as evidence supporting existing R&D schemes aimed at small and medium
sized enterprises. We revisit this important point below.

Looking at the underlying drivers reveals that the strong relative Bang for the Buck
of small firms is predominantly driven by their high average growth (gsmea = 0.10 vs
gair = 0.04). In fact, small firms punch considerably above their weight as their relative
Bang is more than three times greater than their market share (Bguna/B = 0.07 vs
Msman = 0.02).

28Recall from Section 3.2 that due to the presence of negative growth rates among some businesses,
we separately report average micro-elasticities entering the Bang, EkB and that used in the Buck, €.
Intuitively, the discrepancy between these two disappears for “gazelles” which feature only positive
growth rates, i.e. €2 = ,. Note further that due to rounding of each Bang and Buck component, the
products of the respective components do not exactly deliver the relative numbers reported in the first
three columns. Finally, the Appendix also considers bootstrapped standard errors for our statistics.
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Table 7: Relative Bang for the Buck

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A By/B C,/C my  €r O 67 Tk € s
R&D-int. 0.94  0.78 0.83 0.35 0.12 0.06 4.36 0.78 0.36 1.01
Small 1.39  0.09 0.06 0.03 0.08 0.10 6.50 0.05 0.26 2.03
Young 2.09 0.13 0.06 0.06 0.17 0.11 1.94 0.06 0.26 1.83
Gazelles 2.68 047 0.17 0.08 0.31 0.40 0.76 0.14 0.31 1.61
All 1.00  1.00 1.00 1.00 0.06 0.04 6.69 1.00 0.21 1.50

Note: The first three columns report the relative Bang for the Buck (Ay/A), relative Bang (By/B)
and relative Buck (Cj/C). The next four columns show the drivers of the Bang — sales shares (my),
micro-elasticities (€2), size-weighted growth (g) and growth heterogeneity (67). The last three columns
report the drivers of the Buck — R&D shares (ry), micro-elasticities (€;) and R&D heterogeneity (65).
As explained in the main text, the difference between €2 and € is driven by the presence of firms with
negative growth rates. The rows report values for different groups of firms as defined in the main text.
The final row provides values for all firms as a whole.

The above positive effects are somewhat dampened by the fact that small firms are
relatively expensive as a policy target — they account for more R&D spending then they
do for sales (Tgmau = 0.04 vs mgnay = 0.02). Overall, however, small firms are more

efficient in generating a Bang than they are costly in terms of their Buck.

Young firms. The previous paragraphs suggested that, relative to subsidizing all busi-
nesses indiscriminately, small firms are a more suitable target in terms of their Bang for
the Buck. However, in what follows, we show that young businesses fare even better.
More importantly, we document that the Bang and Buck prowess of small firms is in fact
predominantly driven by their relatively young age.

In particular, businesses which are less than 6 years since their [PO turn out to
generate a Bang for the Buck which is almost sixty percent larger than that of all firms.
Inspecting the underlying drivers reveals that high growth (gyouny = 0.11 vs g = 0.04)
and a high average micro-elasticity (EyBoung = 0.11 vs €8, = 0.06) are the main sources of
this strength.

Since size and age are closely related in the data (correlation coefficient of log sales
and log age of 0.43), it is important for policy makers to understand which characteristic
is the better indicator of a strong relative Bang for the Buck. To investigate this, we
separate the group of small firms into small-young (small businesses which are less than
6 years from their respective IPOs) and small-old (all other small firms).

As we show in more detail in the Appendix D.5, the strong relative Bang for the Buck
of small firms is entirely driven by small-young businesses. In fact, small-old firms are
characterized by a relative Bang for the Buck which is effectively identical to a uniform
subsidy, Asmnai—oa/A = 1.02.

Therefore, according to our framework, age is the more direct indicator of a strong
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Bang for the Buck and would be a better dimension on which to base R&D policies.
This finding parallels with existing research on the importance of distinguishing firm
and age size when analyzing job creation and productivity growth (see e.g. Haltiwanger
et al., 2013). We contribute to this debate by pointing out that young businesses are also
important propagators of R&D policies.

Gazelles. Finally, the most promising group of firms in terms of their relative Bang for
the Buck are gazelles. The key reasons for their strong performance are a high average
micro-elasticity (€1, = 0.31 vs €5, = 0.06) and — by construction — very fast growth
rates (ggazentes = 0.40 vs gu = 0.04). These two forces outweigh the fact that gazelles
are relatively expensive to subsidize (they account for more R&D than they do for sales,
Tgazelles = 0.14 VS Mygzenes = 0.05) and that they are characterized by “unfavorable”
heterogeneity. The latter can be seen from the fact that Hgaze”es < 1, indicating that
large /fast-growing gazelles typically have lower micro-elasticities.

From the considered group of firms, gazelles are by far the most efficient in generating
an aggregate Bang for the Buck — almost three times that of an indiscriminate subsidy of
all firms. Recall that in our analysis gazelles are classified as firms with fast sales growth
— an observable characteristic for policy makers — over a period of (at least) a five year
window. In what follows, we discuss how the persistence of firm growth may affect our

conclusions.

5.3 Spillovers and Dynamics

As a final step in our analysis, we turn to investigating the role of technological spillovers
and dynamics. The former may be particularly important for R&D intensive firms which
account for the vast majority of R&D expenditures. Ignoring possible spillovers may
under-estimate their relative Bang for the Buck. In contrast, the latter may be particu-
larly important when gauging the impact of young and fast-growing firms. Ignoring the
possibly temporary nature of firm growth may over-estimate their relative Bang for the
Buck.

Spillovers. In order to quantify how spillovers affect our results, we must first make a
stand on how important spillovers are for firm-level growth on average. Existing research
suggests that estimating technological spillovers across firms is an imprecise endeavor
which is sensitive to model specifications, levels of aggregation or the particular empirical
measure of spillovers (see e.g. Hall et al., 2010, for a survey). Therefore, in what follows
we lean on recent estimates (see e.g. Matray, 2021; Dyevre, 2024) and offer a range of
possible values for the importance of spillovers for firms’ growth.

Table 8 shows the relative Bang for the Buck which accounts for spillovers. In addition,
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Table 8: Relative Bang for the Buck including spillovers

spill int ext spill int ext

Firm group % Tm B wm A b
w = 0.85 w=0.75

R&D-int. 0.94 0.97 0.09 0.11 0.98 0.16 0.18
Small 1.39 1.19 0.00 0.02 1.06 0.00 0.04
Young 2.09 1.84 0.01 0.04 1.67 0.01 0.07
Gazelles 2.68 2.38 0.02 0.04 2.18 0.03 0.06
All 1.00 1.00 0.17 0.00 1.00 0.29 0.00

The table presents the Bang for the Buck and its components when we account for technological
spillovers between firms. We use the sample of firms that we use for Table 7. A}” U and Ay corre-
spond to Bang for the Buck with and without the spillovers, respectively. The components are, in turn,
B =3 cq, Midi 2 jeqy|zi Oii€ and Bt = > jea, Midj 2oie, Tji€i- Br marks the Bang without
spillovers. The entries in the first two columns are expressed relative to the outcomes under a uniform
subsidy.

building on Proposition 4, we also decompose these values into the separate contributions
of “own” R&D growth, “internal” spillovers within the considered group of firms and
“external” spillovers which provide a boost for firms outside the considered group of
businesses. Note that when considering a uniform subsidy to all firms, external spillovers
are zero by construction.

In particular, the first two columns of Table 8 report the relative Bang for the Buck
with and without accounting for spillovers. As can be seen, R&D intensive businesses are
the only firm group which features a stronger relative Bang for the Buck once spillovers
are taken into account. This reflects our initial conjecture that R&D intensive firms may
have positive growth effects stretching to other businesses and ignoring these connections
under-estimates their contribution to aggregate growth.

Indeed, columns Bj" /By, and B{**/Bj, show that R&D intensive firms are character-
ized by relatively strong internal and especially external spillovers. That said, however,
the magnitude of these effects does not alter our ranking of firm groups. Young firms and
gazelles remain to be two groups of firms with the highest relative Bang for the Buck,

even when accounting for spillovers across firms.

Dynamics. Our baseline results provide the average effects across all firms and time
periods. However, from the standpoint of the policy implementation, it is crucial to un-
derstand how the Bang for the Buck at the firm level changes over time. Are yesteryear’s
gazelles still the most cost-effective firms to support?

To account for possible changes in the relative Bangs for the Buck, we classify firms
into our categories in the same fashion as described in Section 3.4 using annual data.

Then, keeping this classification fixed, we compute the annual relative Bang for the Buck
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Figure 3: Relative Bangs for the Buck: Dynamics

(a) Relative Bangs for the Buck, Unbalanced Panel (b) Relative Bangs for the Buck, Balanced Panel
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Note: The figure reports relative Bangs for the Buck across our firm groups. The classification into
groups is made at ¢ = 0. Then, we evaluate the changes in the Bangs and the Buck for a fixed classifica-
tion. For example, the point on the purple line line with crossed-square markers at Time = 6 corresponds
to the cost-effectiveness of supporting firms that were classified as young 6 years ago. Left panel (a)
shows results for pooled data of all firms. The right panel (b) restricts sample to a balanced panel of
firms that continuously report balance sheet information for at least 10 years.

for each group of firms over the following years and present the results in Figure 3.%°
While the left panel (a) shows results for an unbalanced panel, the right panel (b) does
the same for a balanced panel of firms. That is, we focus on firms that continuously
report balance sheet information for at least 10 years.

Focusing on the unbalanced set of firms (left panel), the results show that relative
Bangs for the Buck tend to converge (with the exception of that of R&D-intensive firms).
However, young, and to a lesser extent fast-growing, firms retain their top ranking. As
discussed previously, the performance of small firms is almost exclusively driven by the
fact that many of them are young. Indeed, small-old firms have a relative Bang for the
Buck which is persistently low. Similar patterns can be observed for the balanced panel,
where conditioning on firm survival only exacerbates the prowess of young businesses.

The reason behind these patterns is that the Bang for the Buck depends on various
firm-level characteristics. Intuitively, as fast-growing firms expand quickly, they gain
market share. Therefore, their weight in the economy remains relatively stable, even

after their initially fast growth dissipates (see the Appendix for further details).

29For example, focusing on the left panel (a), the set of points at ¢ = 0 corresponds to our original
classification using annual data and presented in the Appendix. At ¢ = 1, the figure shows the relative
Bangs for the Buck of subsidies targeted at yesteryear’s gazelles, yesteryear’s young firms and so on.
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5.4 Discussion

This paper develops an empirical framework for analyzing the aggregate impact of firm-
level R&D incentives. The approach relies on fundamental economic trade-offs facing
businesses when deciding on R&D investment and it offers measurable statistics for com-
puting the marginal impact of changes in R&D policies on aggregate outcomes. In this

section, we briefly discuss the robustness of our findings along several dimensions.

Financial Frictions. Our analytical framework is based on firms optimally balancing
the marginal costs and benefits of innovation. R&D subsidies directly affect the latter,
since they make innovation cheaper. However, if firms are credit constrained, then R&D
subsidies may have an additional impact on firms’ decisions through alleviating credit
constraints.

In this sense, our framework can be viewed as one aimed at the set of un-constrained.
Arguably, this is the relevant group of businesses given the strong empirical skewness of
R&D towards large firms (see Table 5). Moreover, Ottonello and Winberry (2025) develop
a model of innovation under financial frictions and use Compustat data to estimate that
indeed “the majority of innovation at a given time is performed by unconstrained firms.”

Nevertheless, in the Appendix we extend our framework to allow for financial con-
straints which are alleviated as firms grow larger. In this setting, firm-level micro-
elasticities are a combination of two factors. First, and as in our baseline analysis, they
depend on R&D-to-profits. Second, because of borrowing constraints, they also depend
on the elasticity of the shadow value of funds with respect to R&D subsidies, € ;.

While €, . is generally unobserved, it is also likely to be dwarfed by firms’ R&D to
profit ratios. To understand this, note that the shadow value of funds simply equals one
for unconstrained firms. In addition, Ottonello and Winberry (2020) estimate an average
excess return on capital (a proxy for the shadow value of funds) of about 5%. Therefore,
considering an extreme upper bound, where a marginal increase in R&D subsidies leads
to complete elimination of all financing constraints, implies €, , =~ —0.05. This extreme

upper bound is only about 1/5 of the average R&D-to-profit ratio in the data.

Technology Spillovers vs Business Stealing. In our approach, we focus on tech-
nological spillovers between businesses, measured by technology-proximity and quality-
adjusted weights, o, ;. At the same time, however, firms may be connected also in the
“product space.” If so, businesses may encounter “business stealing” from firms which
have managed to innovate, rather than reaping positive technological spillovers.

Indeed, according to estimates in Bloom et al. (2013), both types (technology and
product) of spillovers are present in the data. However, technology spillovers are quanti-
tatively much more important. Moreover, R&D intensive firms — which account for the

majority of R&D expenditures — are characterized by the lowest relative Bang for the
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Buck (see Table 7). For these reasons, we focus on the possible positive effects of techno-
logical spillovers, as allowing for business stealing would likely only further decrease the

contribution of R&D intensive firms.

General Equilibrium. The theoretical underpinning of our analysis focuses on the
marginal impact of R&D incentives, holding aggregates (in particular growth) constant.
We make two comments in this regard.

First, survey evidence suggests that firm expectations indeed respond much more
strongly to firm-specific conditions, rather than aggregate developments (see e.g. Born
et al., 2024). Nevertheless, even if firms explicitly account for equilibrium effects when
deciding on innovation, our framework can be viewed as an approximation around the
prevailing balanced growth path, similar to e.g. Atkeson and Burstein (2019).

Second, in our framework aggregate growth affects future profits (through household
demand and factor prices). As long as firm profits respond to aggregate conditions in the
same way, then our conclusions about the relative Bang for the Buck remain unchanged

even when accounting for general equilibrium effects.

6 Conclusion

In this paper, we develop a tractable framework for evaluating the aggregate effectiveness
of firm-level R&D incentives. Our approach — grounded in modern endogenous growth
models — allows us to use readily available data to measure the responsiveness of individual
firms to changes in R&D incentives and to aggregate such responses. We validate our
approach using a range of firm-level datasets and apply our framework to Compustat
data. The results suggest that firm heterogeneity plays a key role in understanding
the aggregate impact of firm-level R&D incentives. In addition, young and fast-growing
firms offer the strongest Bang for the Buck and this conclusion is robust to considering
knowledge spillovers and dynamics.

We believe that our framework opens the door to a range of additional interesting
questions. For instance, are different types of R&D investment associated with different
Bangs for the Buck? Can we search for a well-defined group of firms with the highest
Bang for the Buck which could represent a valid policy target? What is the impact of
non-marginal changes in subsidies? We leave these and other open questions for future

research.
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A Proofs

A.1 Proposition 1
For convenience, let us repeat the key definitions (under Assumption 1):

dG

- Al
dlog 7’ (A1)
dlogT

- A2
dlog 7’ (A2)

T =1y 50, (43)
S=(1-7)) 5(9), (A4)
where we note that both the Bang, B, and the Buck, C, are defined as impact responses,

holding firms’ sales shares fixed. In this setting, the Bang is given by differentiating (A5)

with respect to 7:

dG —Zmia—i]_de e me%dT = ZmiQiEz‘i—T
dT/T Zmlgzew

391 T

Fo . Next, to obtain the

where we have used the definition of our micro-elasticity, ¢; =

Buck, we differentiate (A3) with respect to 7:

indirect effect
direct effect

——
Vo 05,(g:) 0g; ~ 5i(9:)
dT = E Si(gi) +7 ag or dr = § Sl(gl) + T?Z)Ei T dr

%

=5i(9:) =T 3
T —— dr "7 si(9:) dr
1_7_;(1_7')31(91')(14‘7?@)71_7_5'; 5 (1+wez)7_
dT/T

C:W:;WL(].—F#JEZ),

where r; = s;/.5 are firm-level R&D shares and where in the first line we use our definitions
of the R&D cost elasticity, ¢ = %ﬁ”%, and the micro-elasticity, ¢;. In the second
line, we use s;(g;) = (1 — 7)8;(¢g;) and the fact that combining (A4) and (A3) gives
T=r1/(1-1)5S.
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A.2 Proposition 2

Recall that the Bang and the Buck are given by:

B = Z m;gi€,

C:ZTZ(]_ +¢€i),
where m; = y;/Y and r; = s;/S. We can now rewrite the Bang as
o,
Zyzgzez - gilei = - (9Y€ + cov(g”, €))

where we have used the fact that for two variables = and y, Z@]L Yy = T Yy+eov(z,y).

Next, we use the same logic for group-specific Bangs:

1 NNk
Yy Z Yigi€i = 37 N, Z gi€i = — (gyer + cov(gy, €x))
1€Q 1€Qy
ke cov(g};’,e@) NN, 1 ( Cov(gk,ek))
:_g 1+ —7—= i — Yigi€ 1+ i
gk ( 7'e Y N Ny ; * 7'e
Y, Vi ( cov(gy, ek)) _
N v i€k 14+ —— :mgeHQ.
YzerY i e

From the above, we see that B = 3", gemy€,f;. Using the same logic, we can rewrite the

Buck as

C:1+%;si62—1+N—wiZsez—l+w(‘+—COV(_S’€)),

S

where 5 = S/N is average R&D expenditure. Extending the above to group-specific

Bucks, we can write

ZiEQk Si NNk 1

1
Cr =3 Z si (1+ve) = 5 +Y— SN, Si€ =Tk + %@/J (Sk€x + cov(sk, €x))
1€EQ 1€Qy
NN, 1
ot Mogs (10 o)) o NN Lo o () covisk k)
S Sk€k S N Nk Sk€k
1€y
S cov(S,
= + 1V EE, (1 + M) = ri(1 + Yeby).
S Sk€k

From the above, we see that C' =", ri(1 + ¢€,6;).
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A.3 Proposition 3
Recall that firm-level output and profits can be written as:

Qitr1 =Git(1+ gir),

Tt :Wf,t - Si(gi,t)a

where 7f, are “operating profits” which are (by construction) independent of R&D sub-

sidies. Further, note the following relationships hold in this environment:

., :aQi,tJrl qt
o 0% Qi1

_aﬂ'i,t Qi 1 Sit Sit
E7rq - — Evroq - + 6Sq,/_r )

=1,

aqi,t Tt Tt it
azt(ht 8Sitqit :
where €roq = F- w0, and €5, = Bart st Note that both €., and €y, are independent of

7. The former by construction, the latter due to the log-linear nature of how subsidies
enter R&D expenditures.
Suppressing the firm-specific index ¢ to lighten the notation, firms optimally choose

R&D expenditures in order to balance the costs and benefits of growth:

maX Z B Qt—f—g

where (37 is a discount factor (possibly reflecting firm exit). Optimal firm-level growth

rates then satisfy:

s(yg O i1 0Grik1 Og ™ Gtk
y (9¢) =3 e gt +1 011 Zﬁﬁrqtﬂ t+]H] 1 Qe

= —
gt i1 aqt-l—j k=t 0qvr Ogt 1 k=160 qt+k
S(Qt) i 45
Y = b€ 4 A6
gt Z; q,t+j 1 + gt ( )

N J/

marginal cost, MC .V
marginal benefit, MB

Finally, to obtain our micro-elasticity, we use the fact that for marginal changes,
d(1—7) = —dr and we differentiate (A6) with respect to 1 —7. In doing so, we note that
€xq is independent of 7 and that the indirect effects of 7 (operating via changes in future
growth rates, gi+; for j > 0) exactly offset each other thanks to the envelope condition
(a lower price of R&D raises firms’ growth rates, but at the optimum the associated

marginal R&D costs exactly offset the associated marginal profits).
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Therefore, using Assumption 2, what we are left with is given by:

1/} as(gt) 8915 S(Qt) agt j €rq,t+j aﬂ-t—l—]
hd _ 1 —
gt( 8gt ol —1 gt ol —1 Zﬂl‘i‘gtal—’?'d( T)
(0 ( s(g:) gt s(9:) o ) nq,t+j St+j d(1—7)
— | —e +€ J j
gt v g 1—7 g 1—7 Zﬁl‘f‘gt t+7Tt+j -7
w5(9t> Eﬂq t+] S d(l B T)
2 G — 1 J 7Y e Sl
Pl )= Z@ i
SN—— .,
MC ]\?[,B
s 1
— v —1

A.4 Proposition 4
Let us begin by repeating how a firm’s growth depends on its “own” R&D efforts and on
“external” spillovers:
gi =g + gt =g Y aiysi(g;) = g7 + nSe
J#

In this environment, changing subsidies affects firms’ own incentives to conduct R&D,

but it also creates spillover effects from increased R&D of other firms:

spi 81 1 7—1 831 agyer L_10s;0g; | T
gt Z 99T {51 9 BQwZ g _Jﬁ]_

7 (97' gl w z a ;mm j 3gj 87— G
- 1 lfl ) own 1 S g T
_ e Si [P A
B ﬁltbsi wg‘"”” ST TRy Za” % : T] gi
T
= 613 €; —f-ﬁgZQ{iJS] €; —
; Gi
: :
Sewt ’S
—51— € + 52 Sixf € = wi€ + (1 —w;) Zgz‘,j%
wj 1—w; 04,5

A.5 Proposition 5

Let us consider that only group £ of firms is subsidized and that spillover effects exist.

In this case, we can write the group-specific Bang as:

“own’ Bang Bpwn “internal” splllover Bang, Bm’ “external” splllover Bang, Be“
spzll § : § : 2 : 2 : § :
B m;g;,wi;€; + ngz 1 - wz Uz,jej + m]g] 0] i€i
1€Q 1€Qy jGQH;ﬁz ]69#1@ 1€Q
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Note that the group-specific Buck is the same as without spillovers. Next, we can write

the group-specific Bang for the Buck with spillovers as follows:

spill own in ex
AZ”“l:ka _ D (Bk +Bkt+Bkt>
Bown Bmt + Bea:t
= k— "k A7
K < 5t B (AT)

B Additional Analytical Results

B.1 Proposition 3: Workhorse Model

We now present an instance of an economic environment that is consistent with Assump-
tions 1 and 2 in the main text. In what follows, we use upper case letters to denote
aggregates, lower case letters for firm-level variables, and Greek letters for time-invariant

parameters. Time is discrete and we use primes to denote next period values.

Production. We assume that there is a continuum of individual firms, indexed by 7,
each producing a differentiated final consumption good, ¥;. The final goods are consumed
by the representative household endowed with constant elasticity preferences of over

consumption bundle,

U=> puC), C= {/C]i"dj] -
t=0 v

where ¢; is the quantity of good 7 consumed by the household and 1 > 1 is the elasticity

of substitution between goods The household faces aggregated budget constraint
A+ /cipl- dj =WN+(1+ R)A,

where A marks the holdings of diversified equity portfolio of all firms in the economy, p; is
the firm-specific goods price (relative to the aggregate price index P which is normalized
to 1), W is the aggregate wage and N is the aggregate labor supply. Without loss of
generality, we assume that the household supplies inealastically one unit of labor.

The optimal consumption choice implies that each firm faces downward sloping de-

mand for their product:
4% =p;"Y, (A8)

and Y is aggregate expenditure. Intermediate goods are produced using a linear tech-
nology combining production labor, n;, and a firm-specific (endogenous) productivity,
a;:

4= o (A9)
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Innovation. Firms strive to improve their own productivity by investing resources into
R&D. Firms invest r; units of labor into R&D in return for a probability z,; with which
they successfully improve upon their current productivity level. We assume that R&D
costs are convex in the innovation probability, z,:
r =Tl (A10)
J T T vrgo
where we assume that v, = 2 and that 7; > 0 is a potentially firm-specific and time-
varying scaling factor described below. If successful, innovations lead to an increase in

firm-level productivity by a factor of (1 + \;), where \; > 0 is a potentially firm-specific

constant:

(A11)

(2

, a;(1+ ;) with probability z,;
a; with probability 1 — z, ;.

Optimality conditions. Let us now describe the optimality conditions characterizing
firms’ choice of the price, production employees and R&D employees, p(a;), n(a;) and

r(a;), respectively, as a function of firms’ productivity a;. The current profit is given by
m(a;) = pla;))™"Y — Wn(a;) — Wr(a;),

Let 3; be firm-specific discount factor that includes also exogenous exit probability. The
outside option of exiting firms is normalized to zero. Exiters are replaced by entrants
who draw initial productivity from the distribution of incumbent firms. The firm value

function becomes
Vi(a;) = m(a;) + Bi [z Vi(ai(1+ N;) + (1 — z;)Vi(a;), ]

where we highlight that firm value functions are allowed to be firm-specific due to the
heterogeneity in the deep parameters governing the technology and discount factors.
The optimal pricing choice is standard and implies a constant markup over the

marginal cost, p(a;) = n—’_7—1aw Consequently, the production labor demand is n(a;) =

p; Y /a; = (n—’_7—1) 7 a’"'W="Y . Finally, the optimal R&D labor satisfies

Equilibrium. Let Q) = [ i a?_l dj} = be the aggregate productivity index. We restrict
attention to balanced growth path equilibria in which all aggregate variables grow at the
same rate as (). In what follows, let us denote stationarized variables by hats, for example
a = a/() marks stationarized productivity.

Now, we introduce key assumption that specifies the shape of the R&D cost function
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T = pi (ZL\i)n_l, where p; is a potentially firm specific, but time-invariant constant. Below,
we show that this is the only functional form consistent with an existence of a balanced

growth path equilibrium (BGP). Before that, let us denote the stationarized profits as

-7
~ a; =171 =1 1 TS agp—
m(a;) = —W( ) =a; w nY( ! ) — Wpja lei
Q n—1/ n-1 ’
The optimality conditions specified in the previous section imply that the firm value
function is proportional to 57-7_1 We prove this claim using a guess and verify method.
Guess that the value function satisfies V = ;a7 for a potentially firm-specific but time

invariant constant v; > 0. Given this guess, the optimal R&D policy implies that (using

'l/)r = 2)
. Bi
o= i
T 2W(1+g)

The resulting z,; is firm-specific, but - crucially - time invariant as it does not depend on

1+ X)7"=1)

the productivity @;. With these intermediate results, the definition of firm value implies

Uzan 1 ’\77 ! |:W1 77Y,u sz( ) + v ( :,1(1 + Ai)ﬁ_l +t1- x:’z)] (A12)

where p* = (n—r’_—1> 7 - 1 and where we used our guess on the functional form of the value
function which we subsequently verified.

Along a BGP equilibrium, all aggregate variables grow at the rate 1 + g equal to the
growth rate of aggregate productivity index @ = [ i a?fl dj] ﬁ To verify this observe
that since all costs are denominated in labor units and aggregate price index is normalized

to unity, the aggregate resource constraint reads C' = Y. Note further that the aggregate
n

n—1

J () ") !

that W = 7’ 1 [f al” ! dj] e 1@ Consequently, the aggregate W= ”T
Next, the labor market clearlng implies that N = 1 = [n(a;)dj + f a;). Using
the optimal policy derived above, we can show that [n(q;)dj = CQ™'. Furthermore,

n—1
Jir(a;)dj = [ ps <%> (x*,)? is stationary. Therefore, the labor demand is constant

X

consumption can be written as C' =

-1
dj] , which implies

along the balanced growth path.

Let us note that the labor market clearing requires that the labor devoted to R&D
is does not grow in a balanced growth equilibrium. This is only feasible if the mass of
researchers required to deliver a given innovation probability grows at the same rate as
the market size. Otherwise, as firms’ profit increase, firms would spent increasing amount
of resources on R&D which violates labor market clearing in the limit. Therefore, the

postulated scaling of R&D cost is necessary condition for the existence of the BGP.

46



The model satisfies Assumptions 1 and 2. Finally, we show that the stylized model
above satisfies our key assumptions. As for Assumption 1, observe that the expected firm
level growth rates is

(afrt —al

14g=-1 Y a4 =),

P
a;

Therefore, log g = log z}; + log[(1 4 ;)" — 1]. With these intermediate results we have

log r; = log p; + log (@;)"" + ¢, (log g — log[(1 + A;)"" — 1])

dlogr;
log g

Consequently, = 1), is common across firms and time invariant as required by
Assumption 1.

As for Assumption 2, it follows that

roonQ W pia?,
w(o) 7 @)/Q oy ()7 - W,

_n_
n—1 n—1

The above expression is independent of firm’s idiosyncratic state a;. Furthermore, all
variables on the right-hand side are constant along the balanced growth path. Conse-
quently, while firm specific, the ratio of R&D expenses to profits in time invariant as

required by Assumption 2.

B.2 Proposition 3: Extensions

In this section, we discuss the extension in which the firm profits follow a stochastic
process, rather than deterministic path as in the baseline framework in the main text.
As before, we assume that firm profits follow additive specification in operating profits
Ty = gy —5i(git). Here 7, denotes a realization of an i.i.d. random variable with a finite
first moment. Any such random variable can always be represented by 77, = 77, + Gy
where 77, is the mean of the process and (;; is a zero-mean, i.i.d. stochastic process.
Therefore, we can represent the stochastic process for profits 7 as the sum of deterministic
component, 7, and stochastic component (.

Consider a firm that maximizes expected present discounted value of all future profits:

(i) = Tglix E Z Bg%z‘(%‘,t—kj)

J=0

where [E; marks the expectation conditional on period-t¢ information set. Next, we state

a stochastic version of Assumption 2

ASSUMPTION 3. Assume that at the firm level, the operating profit is an i.i.d. stochastic
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Tt

process such that E, [i—i | Xi,tfj] =FE, 2t = 2t for alli, all t and all j = 0,1,...,t.
Here, X;;—; a generic idiosyncratic or aggregate variable in the firm problem.

Assume further that g—‘z = 0, that is, the R€D cost are independent of the realization
of profitability shocks.

Note that Assumption 3 implies that

maXEtZﬁ Ur QZ t—i—g maX25 Uy QZ R AN +Et26 Ct-i-]

gi,t =0

—_——
=0

Consequently, under Assumptions 1 and 3,, the optimal R&D investment (firm-level

growth) satisfies the following optimality condition:

€x
Zﬁfl L, (A13)

which is the same condition as (A6). Following the same steps as in Section A.3 delivers

B.3 Financial Frictions

In this Appendix, we extend our baseline framework to allow for financial (or other)
frictions, e.g. along the lines of Ottonello and Winberry (2025). We do so by considering
a “wedge”, A\;; > 1, which enters the condition for optimal innovation decisions. In this

setting, equation (A13) becomes:

€r gt
ZB@ it ] _i ’ 7Tt+j- (A14)

In the terminology of Ottonello and Winberry (2025), A;.4; represents the shadow
value of funds. For unconstrained firms, A;; = 1 and our baseline framework applies. For
constrained firms, A\;; > 1 and firms benefit from innovation not only because growth

increases future profits, but also because it loosens financing constraints. In particular,

zt
8q

also leads to a loosening of financing constraints, €; » , =

< 0. For the same reason, cheaper R&D brought about by more generous subsidies

8>\z,t T
87— )\i,t S O

Next, following the same steps as in A.3 and assuming that ¢; y < 0 is constant over

time, though possibly heterogeneous across firms, we can derive firms’ micro-elasticities
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as:
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C Further Details on Data

C.1 Compustat, Patents and Technology-Proximity

As discussed in detail in Kogan et al. (2017), the inventor of a patented innovation can
assign the granted property rights to another legal entity, for example a corporation.
Therefore, granted patents may have, in addition to the inventor, an assignee, that is,
one or more corporations or persons. Kogan et al. (2017) match corporate assignees of all
U.S. patents to publicly traded U.S. corporations whose stock market returns can be found
in the CRSP database. Finally, using the CRSP identifiers, we match the corresponding
balance sheet information in the Compustat date set. The resulting dataset allows us the
calculate the number of patents for each firm in Compustat.

Following Bloom et al. (2013); Jaffe (1986), we use Cooperative Patent Classification
(CPC) codes to measure similarity between firms in the technology space. We classify
each patent using 3-digit CPC codes into one of 130 technology classes. Next, for each firm
we compute the share of patents in all technology classes and compute the un-centered

T,T!
correlation between firm ¢’s and firm j’s patent shares denoted by «;; = ———
P \/W\/,ITT;7

where T; is a 130 element vector in which each element corresponds to the number of
patents granted to firm ¢ in a given CPC class. Building on Bloom et al. (2013), we
account for the firm’s importance in the patenting network by weighting each observation
by the total citations accrued to the given firm. Let c¢; denote all citations attributed
to patents assigned to a given firm-window cell. We measure spillovers benefiting a

firm ¢ as the proximity—weighted citation-adjusted R&D expenses of all other firms,

DY ;5 (Sggﬁt , where C' =} ¢; marks the total citation count.
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C.2 ABS Data Disclaimer

The results of these studies are based, in part, on data supplied to the ABS under the
Taxation Administration Act 1953, A New Tax System (Australian Business Number)
Act 1999, Australian Border Force Act 2015, Social Security (Administration) Act 1999,
A New Tax System (Family Assistance) (Administration) Act 1999, Paid Parental Leave
Act 2010 and/or the Student Assistance Act 1973. Such data may only used for the
purpose of administering the Census and Statistics Act 1905 or performance of functions
of the ABS as set out in section 6 of the Australian Bureau of Statistics Act 1975. No
individual information collected under the Census and Statistics Act 1905 is provided
back to custodians for administrative or regulatory purposes. Any discussion of data
limitations or weaknesses is in the context of using the data for statistical purposes
and is not related to the ability of the data to support the Australian Taxation Office,
Australian Business Register, Department of Social Services and /or Department of Home
Affairs’ core operational requirements.

Legislative requirements to ensure privacy and secrecy of these data have been fol-
lowed. For access to PLIDA and/or BLADE data under Section 16A of the ABS Act 1975
or enabled by section 15 of the Census and Statistics (Information Release and Access)
Determination 2018, source data are de-identified and so data about specific individuals
has not been viewed in conducting this analysis. In accordance with the Census and
Statistics Act 1905, results have been treated where necessary to ensure that they are

not likely to enable identification of a particular person or organisation.

C.3 BLADE

We use administrative firm tax records provided by the Australian Bureau of Statistics
as part of the Business Longitudinal Analysis Data Environment (BLADE). BLADE
covers the universe of businesses registered for the Goods and Services Tax with total
sales exceeding AUD75,000, but does not include sole traders or partnerships that submit
personal income tax returns instead of business income tax returns. The subset of BLADE
used in this project sources data from the Australian Tax Office for financial years 2010

(July 1 2009-June 30 2010), 2011 and 2012.

Firm-level information. Firm-level R&D is reported in the Business Income Tax
(BIT) dataset, and is an accounting measure of expenditure subject to the R&D subsidy.
Total sales (turnover) are reported in the Business Activity Statement. We define profits
as operating profits, as reported in the BIT. The Longitudinal Indicative data items
are used to categorize firms by industry codes, based on the 2006 Australian and New

Zealand Standard Industrial Classification (ANZSIC). Firm ages are constructed using
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the Business Birthdate dataset.!

C.4 Orbis

Orbis is a dataset managed by Bureau van Dijk that collects balance sheet information
on both private and public companies across all industrialized countries. As of 2022, the
Orbis dataset contains information on around 400 million companies and entities from
more than 200 countries and territories, of which more than 99% are private companies.
To access the Orbis dataset, we use WRDS services which allows us to retrieve up to 10
years of history of company information.

Due to data accessibility limitations, we consider only medium, large, and very large
firms as defined by Bureau van Dijk. Companies are considered to be medium sized when
they match at least one of the following conditions: (i) operating revenue > 1 million
EUR; (ii) total assets > 2 million EUR; (iii) employees > 15. A company would be
considered small if it fails to meet any of the three conditions and would be missing from
our dataset. All remaining companies are included in the dataset available to us.

To retrieve the firm-level data, we filter the database by restricting attention to firm-
year observations with positive R&D expenses and to companies registered in one of
the 11 countries in the Appelt et al. (2025) dataset.? We focus on consolidated balance
sheets (Orbis codes “C1”, “C2”, or “C3”). In calculating the average theoretical elasticity
€ = ;—j we follow the same steps as in the case of the Compustat data. Namely, we define
profits 7; as sales net of cost of goods sold and R&D expenses. We restrict attention to
firms with positive profits, positive revenues and positive cost of goods sold. To account
for outliers, we drop observations with €¢; > 10. The final sample consists of 16,713

firm-year observations.

D Additional Empirical Results

D.1 Validation

Heterogeneity in R&D cost elasticities. As mentioned in the main text, we gauge
the extent of potential heterogeneity in R&D cost elasticities across industries by esti-
mating regression (18) separately for each 2 digit SIC sector. We restrict attention to

sector-decade cells with at least 10 observations with positive R&D.? Figure Al docu-

!There are measurement issues associated with the calculation of firm age. The introduction of the
Goods and Services Tax in 2000 changed the criteria of a business entity, resulting in many firms being
“born” in FY2001. Our definition of a young firm, which is based on median age, means that these
measurement issues do not prove too problematic for our analysis.

2These countries are Australia, Belgium, Czechia, France, Italy, Netherlands, New Zealand, Norway,
Portugal, Slovakia, Sweden.

3This requirement removes 86 sector-decade cells. The results of the full sample estimation deliver
similar results with a few outlying sectors in terms of point estimates and precision.
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Figure A1l: Cost elasticity of R&D
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The figure presents coefficients of regression 18 individually estimated in each 2-digit SIC sector (blue
dots) and 95% confidence intervals (blue vertical lines). Red shaded area corresponds to 95% confidence
interval of unconditional estimate of § using data pooled over all industries. Black dashed vertical line
corresponds to 8 = 0.5 or, equivalently, ) = 2.

ments that we cannot reject v = 2, a common value used in the literature (see, e.g.,
Acemoglu et al. (2018)), for 20 out of 26 SIC sectors (77%).

Assumption 2. Figure A2 presents the average change Ak% = Zi—i’; — % for various
horizons k. The difference is statistically insignificant at most horizons and in all cases,
quantitatively not meaningful. Panel (a) presents the results for data averaged over 5-year
non-overlapping windows and Panel (b) the results for annual data.

Table A1 presents the estimates in regression (19) using annual data (corresponding
to Table 2 in the main text that presents the results based on averaged data). The results
obtained in annual data provide even stronger support to the assumption of constant s/7

ratio than the results in averaged data.

D.2 Further Details on BLADE Estimation

Institutional background. Prior to the 2012 R&D Tax Incentive reform, Australian
firms were able to deduct 125% of R&D expenditure from taxable income, as well as
an additional 50% of the portion of expenditure exceeding average expenditure over the

previous three years.* Throughout the sample period, the corporate tax rate was 30%

4We assume that there was no systematic difference between treatment and control groups with
respect to the additional deduction in 2011 i.e. relative to average R&D expenditure over the previous
three years, 2011 R&D expenditure was not systematically different between AUD 5-20 million firms and
AUD 20+ million firms. The placebo tests in Table A2 provide support for this assumption.

52



Figure A2: R&D-to-profit ratio varies little over the firm lifecycle.
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The figure presents the predicted level of log(s;/m;) based on estimated regression (19) with firm fixed
effects. In Panel a), the horizontal axis corresponds to 5-year windows over which we averaged all firm-
level outcomes. In Panel b), the horizontal axis corresponds to years. The solid line corresponds the
projected level of the outcome variable. The shaded area marks the confidence interval. The projections
are calculated for a hypothetical firm that is created in ¢ = 0 and lives for T periods (T' = 5 in averaged
and 7' = 11 in annual data). The projections are normalized such that at time zero, the predicted value
is equal to the mean outcome in the sample. The range of the vertical axis corresponds to the top and
bottom quartiles of firm fixed effects in regression (19). The dashed horizontal line marks the sample
mean of the outcome variable.

Table Al: Within-firm variation in R&D-to-profits ratio.

R&D-to-profits

time 0.007 0.004 -0.007
(0.002)  (0.002)  (0.001)

time? -0.0001  -0.0001  0.0001
(0.0001) (0.0001) (0.0001)

firm fixed effects v

cohort fixed effects v

sector fixed effects v v

Observations 66,114 61,905 61,905

R? 0.75 0.38 0.35

Within R? 0.002 0.0010 0.004

Note: The dependent variable is log (;ﬂ—‘t) which implies that we only consider firms with positive
J

s

R&D expenses and positive profits. Index ¢ corresponds to a year and, therefore, the "time” variable
corresponds to normalized firm age.
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implying an effective R&D subsidy of 1.25 x 0.3 = 0.375. Firms with turnover less than
AUDS5 million could instead choose to claim 30% of R&D expenditure as a refundable
tax offset i.e. the firm was entitled to a cash refund of any unused offset amount if the
firm’s tax liability was reduced to zero.

Following the policy change in 2012, firms with turnover less than AUD20 million
were eligible for a refundable 45% tax offset. By contrast, firms with turnover exceeding
AUD20 million were entitled to a non-refundable 40% tax offset.

Firms with turnover between AUD5 million and AUD20 million therefore experienced
a 20% increase in the effective R&D subsidy rate (changing from 37.5% to 45%). In
our baseline difference-in-difference setup, we compare R&D expenditure among these
businesses to firms with turnover exceeding AUD20 million. For this latter group, the

effective R&D tax subsidy increased by only 6.7% (from 37.5% to 40%).

Sample selection. In keeping with the Compustat analysis, we consider firms that
report positive R&D expenditure and positive profits in both 2011 and 2012. To avoid
issues associated with comparing a refundable tax offset to a non-refundable tax offset,
we also drop firms above the 95th percentile of R&D-to-profits (s;/m;) in 2011 i.e. those
firms that do not stand to fully benefit from the non-refundable tax offset.

Further details on estimation methodology. For the purposes of the difference-
in-difference, we only consider firms with turnover exceeding AUD5 million. Depending
on firm profitability and R&D expenditure, firms with turnover less than AUDS5 million
in 2011 may have been better off claiming the refundable tax offset (30%) rather than
the non-refundable tax deduction (37.5%) or vice versa, complicating the calculation of
firm-level responsiveness to the subsequent subsidy change.

We only consider firms that remain in the same turnover category (i.e. AUD5-20
million or AUD20+ million) across both 2011 and 2012 (the vast majority of firms). This
approach ensures that the treatment and control groups are stable over time, and that
the parallel trends assumption is not violated.

To convert the point estimate of 8 from (20) to an R&D expenditure elasticity, we di-
vide by 0.133, which represents the percentage difference in policy rate increases between

the treated and control groups: 0.45/0.375 — 0.4/0.375 = 0.133.°

5The elasticity calculation assumes that firms were not eligible for the additional 50% concession in
2011 i.e. at the firm level, 2011 R&D expenditure did not exceed the average of the previous three years.
Taking the other extreme, we could instead assume that firms fully benefited from the additional 50%
concession in 2011, in which case we would divide by 0.45/0.525 — 0.4/0.525 = 0.095.
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Table A2: Independent Evidence from Micro-Data: Placebo Tests

(1) (IT) (TIT)
AUD5-20 million turnover x 2011, 5 -0.009 -0.012  -0.011
(0.037) (0.037) (0.037)

Control for:

Turnover No Yes Yes
Industry f.e. No No Yes
Observations 3472 3472 3472

Notes: Source: Business Longitudinal Analysis Data Environment (BLADE), 2010-2011, Business In-
come Tax and Business Activity Statement, ABS DatalLab. Findings based on use of BLADE data. The
table presents estimates from regression (20) in the period prior to the policy reform. Sample of firms
with turnover exceeding AUDS5 million, that report positive R&D expenditure, positive operating profits
and remain in the same turnover category across both 2010 and 2011. Standard errors are clustered at
the firm level.

D.3 BLADE Placebo Tests

The key identifying assumption in the difference-in-difference setup is the parallel trends
assumption: in the absence of the policy reform, the R&D expenditure of AUD5-20
million turnover firms and AUD20+ million turnover firms would have changed by the
same amount.

As a placebo test, we estimate regression (20) for 2010 and 2011 i.e. prior to the policy
change in 2012. The sample is chosen in the same fashion as the baseline difference-in-
difference of Table 3.

Table A2 reports the results from the placebo regressions. Reassuringly, prior to the
policy reform, the coefficient of interest is not significantly different from zero across all

specifications.

D.4 Firm Heterogeneity in BLADE

We extend our difference-in-difference approach to examine heterogeneity in the effect of
the subsidy change across different groups of firms. Since our identification strategy is
based on firm size, we are only able to consider heterogeneity in terms of firm age, growth
and R&D intensity among treated firms i.e. AUD5-20 million turnover firms.

We employ the following triple-difference design:

log(R&D)it = fo + 1 Larouwp + B2lss—20mar + B3laoiz (A15)
+ Balcroup X Lgs—20mit + B5Laroup X Laoi2 + @Lgs_o0mir X Laoia

+ £laroup X Lgs—20mi X Loo12 + ws,
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Table A3: Tax elasticity of R&D expenditures: Firm Heterogeneity

All Young Fast-growing R&D-int.

AUDS5-20 million turnover x 2012, ¢ 0.202 0.084 0.201 0.206
(0.048) (0.062) (0.067) (0.108)

AUDA5-20 million turnover x 2012 x Group, & 0.170 -0.020 0.050
(0.100) (0.097) (0.121)

Observations 2820 2820 2682 2820

Notes: Source: Business Longitudinal Analysis Data Environment (BLADE), 2011-2012, Business In-
come Tax and Business Activity Statement, ABS DataLab. Findings based on use of BLADE data. The
table presents estimates from regression (A15). Sample of firms with turnover exceeding AUDS5 million,
that report positive R&D expenditure, positive operating profits and remain in the same turnover cate-
gory across both 2011 and 2012. Firms are classified into groups based on the sample median. Standard
errors are clustered at the firm level.

where Lgroup is an indicator function equal to 1 if firm 7 is a member of the relevant firm
group e.g. young firms. The coefficient of interest is x, which indicates the percentage
change in R&D expenditure among treated units of the relevant firm group, beyond any
pre-existing differences, common time trends, and group-specific time trends.

Table A3 reports the results from regression (A15) across different groups of firms.
With the exception of young firms, the estimates of k are statistically insignificant. Young
businesses exhibit an R&D expenditure elasticity of ¢, = (0.084 + 0.17)/0.133 = 1.91.
By comparison, our approach implies an R&D expenditure elasticity of ¢, = 1.61 (the
average R&D-to-profit ratio among young, treated firms is 0.804).

D.5 Further Empirical Results

Table A4 documents that the relatively good performance of small firms in Table 7 is
purely driven by small-young firms. For completeness, we repeat the remaining entries

in the original table.

D.6 Robustness: Employment Growth

Table A5 shows that if firm-level growth rate g; is measured using employment, rather
than revenues, the results remain quantitatively and qualitatively unchanged. Note that
we have defined gazelles as firms with a high revenue growth, which does not automati-
cally imply rapid employment growth. Nevertheless, gazelles report the highest average
employment growth of the considered firm groups. Similarly, small firms remain defined
as the firms with below median sales. All in all, these results further strengthen our main

message that gazelles and young firms are the most cost-effective firm group to support.
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Table A4: Decomposition of the Relative Bang for the Buck within small firms.

Relative Bang & Buck Bang Components Buck Components
Firm group Ar/A Bp/B Cy/C my €0 Ik o7 Tk €k s
R&D-int. 094 0.77 0.82 0.35 0.12 0.06 4.35 0.77 0.36 1.01
Small 1.39  0.09 0.06 0.03 0.08 0.10 6.50 0.06 0.26 2.03
Young 209 0.13 0.06 0.05 0.17 0.11 1.94 0.06 0.26 1.83

Small and Young 2.37  0.04 0.02 0.01 0.20 0.27 191 0.01 0.30 1.76
Small and Old 1.02  0.05 0.05 0.02 0.03 0.05 23.14 0.04 0.25 2.16
Gazelles 2.68  0.47 0.17 0.08 0.31 040 0.76 0.14 0.31 1.61

All 1.00  1.00 1.00 1.00 0.06 0.04 6.69 1.00 0.21 1.50

Note: The table reproduces Table 7 with addition of two groups of firms small-young and small-old.
The former is defined as all firms below median sales and less than 6 years since IPO. The latter groups
captures all remaining small firms. See also notes to Table 7.

Table A5: Decomposition of the Bang for the Buck for employment-based growth

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A By/B Ci/C me & Gk A Tk € 05
R&D-int. 0.95  0.68 0.72 0.23 0.12 0.08 4.92 0.65 0.63 0.70
Small 1.31  0.06 0.05 0.01 0.06 0.10 17.20 0.03 047 1.82
Young 171 0.17 0.10 0.07 0.14 0.07 4.07 0.07 045 145
Gazelles 2.28 047 0.20 0.08 0.32 0.31 0.71 0.15 0.50 1.25
All 1.00  1.00 1.00 1.00 0.05 0.02 12.58 1.00 0.33 1.05

The table reproduces Table 7 when using employment growth, rather than sales, as the
measure of firm growth. See also the notes to Table 7.
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D.7 Robustness: Operating Profits

Table A6 indicates that our results are robust to an alternative definition of profits.
In the main text, we use a model-consistent measure defined as revenues, less costs of
goods sold and R&D expenses. A broader profitability measure, operating income before
depreciation and amortization (Compustat mnemonic oibdp) includes other expenses,
such as marketing. When using this measure of profitability in the definition of elasticity

€, all results remain qualitatively and quantitatively unchanged.

Table A6: Decomposition of the Bang for the Buck with alternative profit measure.

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A By/B Cy/C my €2 Ik 67 Tk € o3
R&D-int. 0.92  0.76 0.83 0.37 0.05 0.05 14.97 0.78 0.33 1.05
Small 1.04  0.05 0.04 0.02 0.02 0.07 32.49 0.04 0.24 2.10
Young 1.58  0.07 0.04 0.04 0.08 0.10 4.48 0.04 0.25 1.57
Gazelles 234 0.36 0.15 0.12 0.22 0.35 0.69 0.14 0.22 1.75
All 1.00  1.00 1.00 1.00 0.03 0.04 17.81 1.00 0.19 1.53

The results in the table are based on the profits defined as the income before interest and
depreciation. The sample of firms differs from the one underlying Table 7 due to missing
profit data. See also the notes to Table 7.

D.8 Robustness: Definition of Aggregates

Table A7 reports the decomposition of the Bangs for the Buck when we use an alternative
definition of the aggregate variables. For the Domar weights m we use US GDP (as
opposed to the total sales of all firms in our data) and in the R&D r we use the aggregate
R&D spending in the US (as opposed to the total R&D expenses of all firms in our data).

The results are virtually unchanged.

Table A7: Decomposition of the Bang for the Buck with Alternative Aggregates

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A By/B Cy/C my €2 Ok o7 Tk € o;
R&D-int. 094  0.77 0.82 0.35 0.12 0.06 4.35 0.77 0.36 1.01
Small 1.39  0.09 0.06 0.03 0.08 0.10 6.50 0.05 0.26 2.03
Young 2.09 0.13 0.06 0.05 0.17 0.11 1.94 0.0 0.26 1.83
Gazelles 2.68  0.47 0.17 0.08 0.31 0.40 0.76 0.14 0.31 1.61
All 1.00  1.00 1.00 1.00 0.06 0.04 6.69 1.00 0.21 1.50

The table reproduces Table 7 when we use nominal GDP as the denominator in the Domar
weight and the aggregate US-wide R&D spending in the denominator of the R&D shares
r. See also the notes to Table 7.
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D.9 Robustness: Time Averaging

The goal of this section is to document that the results obtained in the main text are not
an artifact of the averaging procedure that we employ. Table A8 presents the results using
annual data rather than averaging over non-overlapping 5-year windows. Fach firm-year
cell is treated as an independent observation. The results in Table A8 are very similar to

those in Table 7 in the main text.

Table A8: Decomposition of the Bang for the Buck using annual data.

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A By/B Cy/C my €& g o7 G o;
R&D-int. 0.87  0.58 0.67 0.21 0.09 0.08 7.99 0.60 0.60 0.73
Small 1.58  0.10 0.06 0.01 0.05 0.18 16.85 0.04 0.46 1.86
Young 2.01 0.22 0.11 0.07 0.16 0.12 3.28 0.09 044 1.31
Gazelles 256  0.44 0.17 0.12 042 0.39 045 0.15 042 1.17
All 1.00 1.00 1.00 1.00 0.05 0.04 10.43 1.00 0.32 1.05

The table reproduces Table 7 when we restrict attention to firms with positive growth
rates. See also the notes to Table 7.

D.10 Robustness: Negative Growth Rates

Table A9 documents that the relative ranking of targeted subsidies remains intact when
we restrict attention to the firms with positive revenue growth rates. Note that the first
column of Table A9 is the same as in the first column of the Table 8 where we report
R&D spillovers. The reason is that we in both cases we use only firms with positive

growth rates.

Table A9: Decomposition of the Bang for the Buck for g; > 0

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A Bi/B Cy/C my & gy 0] Tk €k o;
R&D-int. 099 0.81 0.81 0.33 037 0.13 1.01 0.76 0.37 1.05
Small 1.52  0.08 0.05 0.02 0.27 0.22 1.24 0.04 0.27 2.00
Young 227 0.15 0.07 0.06 0.28 0.21 0.88 0.06 0.28 1.55
Gazelles 240  0.61 0.25 0.13 031 0.40 0.76 0.21 031 1.61
All 1.00  1.00 1.00 1.00 0.21 0.10 0.91 1.00 0.21 1.3

The table reproduces Table 7 when we restrict attention to firms with positive growth
rates. See also the notes to Table 7.
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D.11 Robustness: Negative Profits

In the main text, we consider only firms with positive profits. The reason is that the
environment used to derive the theoretical R&D elasticity e implicitly assumes that all
firms record positive profit. In this Appendix, we document that our results are robust to
two ways of dealing with firms reporting negative profits. First, adjusting the definition

of the micro-elasticity. Second, using firm value instead.

Including firms with negative profits. If firms report negative profits, their micro-
elasticity would imply a reduction in R&D expenses following a lowering of the price of
innovation. To deal with this, we impose that the micro-elasticity for firms with negative
profits is given by ¢ = —2 > 0. In other words, we treat the R&D-to-profit ratio as
informative about the R&D intensity of firms, but we make sure that the elasticity is

always positive. Table A10 shows that our results hold in the extended sample.

Table A10: Decomposition of the Bang for the Buck including negative profits

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A By/B Cy/C my €& g o7 G o;
R&D-int. 0.88  0.61 0.69 0.21 0.08 0.08 10.12 0.60 0.81 0.62
Small 1.34  0.13 0.10 0.01 0.05 0.19 23.25 0.05 0.65 1.89
Young 1.87  0.25 0.14 0.07 0.18 0.13 3.56 0.09 0.65 1.20
Gazelles 246 045 0.18 0.12 0.59 0.40 0.35 0.15 0.59 0.96
All 1.00 1.00 1.00 1.00 0.04 0.04 12.04 1.00 0.44 0.84

The table reproduces Table 7 when we include firms reporting negative profits. See also
the notes to Table 7.

Using firm value. As a second approach, we consider working with firm value directly.
Let us begin by repeating the R&D optimality condition but where we purposefully work

with firm values:

S(Qt) Ovy Vg
= — = E’U —. A]_6
gt Og; 7 g ( )

The RHS of the above equation is the change in firm value brought about by investing

(8

more into R&D (i.e. growth), where €, , = g—gzg—’; is the associated elasticity. Then, totally

differentiating the above w.r.t. d(1 — 7), noting that at the margin that is equivalent to
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—dT, we can write

Mc VB
s(gt) _1 d(1—71) ‘e oy, 1—7d(1—7)
v gs (v )ﬁ_gtvta(l—ﬂ v 1—7
(6= 1) == 3 PRl - 1),
1 Z'Bj3t+j
6_¢—1 ]Ut (A17)

Notice that under the assumption that s;/m; is constant at the firm level, then the above

boils down to our original micro-elasticity. This is because ) i Blsir; = ; B3 ‘Zf Tirj =
J

=Y i f’miy; = 2v. In other words, the micro-elasticity is the ratio of the net present

value of all future R&D expenditures, relative to firm value.

We measure v; as the company-level consolidated market value.® As for the present
discounted value of future R&D expenses, we assume that the firm expects them to remain
constant over time, Zj s = 1%7 We set the discount factor to f = 0.96. Table
A11 shows that using this alternative measure does not materially change our results.

Table A11: Decomposition of the Bang for the Buck including negative profits, alternative
elasticity measure

Relative Bang & Buck Bang Components Buck Components
Firm group Ax/A By/B Ci/C my €2 Ok 6 T € o;
R&D-int. 0.86  0.54 0.62 0.19 0.14 0.07 542 0.55 0.62 0.69
Small 1.96 0.07 0.04 0.01 0.08 0.18 11.18 0.02 044 1.95
Young 2.23 0.15 0.07 0.04 0.19 0.13 3.00 0.056 044 1.29
Gazelles 2.54 0.46 0.18 0.12 041 0.38 0.46 0.15 041 1.17
All 1.00  1.00 1.00 1.00 0.07 0.05 6.27 1.00 0.31 1.02

The table reproduces Table 7 when we include firms reporting negative profits. To calcu-
late the elasticity, we use formula (A17). In the formula, we let > . 37s;,; = 725 where
£ =0.96. The firm value v is measured as market value. See also the notes to Table 7.

D.12 Robustness: Spillovers with patent value-adjusted R&D

expenses

To quantify technological spillovers between firms, we assume that the extent of spillovers

generated by a firm j on any firm ¢ depends on how close to each other these firms

SWe use Compustat variable mkvalt which captures sum of all issue-level market values, including
trading and non-trading issues. We impute missing values with the product of fiscal year closing price
of the public stock, prcc_f, and the number of common shares outstanding, csho.

"Recall that the time period refers here to an average value within a 5-year window.
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are in the technology space (measured by proximity measure «;; defined in the main
text). Moreover, to accurately gauge the spillovers, we adjust R&D expenses for the
quality of innovation a given firm generates. Intuitively, for a given amount of resources
devoted to R&D, the more technological spillovers generated by a given firm, the more
groundbreaking is the type of innovation in which the firm is engaged. In the main text,
we use citation counts to quantify the quality of R&D expenses in a given firm. In this
appendix, we show that the results remain quantitatively unchanged when we use patent
value estimated in Kogan et al. (2017) as the measure of R&D quality.

Table A12 reports the results. Gazelles remain dominant in terms of their relative
Bang for the Buck. The ranking of firm groups is the same as the baseline specification

in which we used citation counts to measure R&D quality.

Table A12: Relative Bang for the Buck including spillovers with patent value as the
measure of quality

spill int ext spill int ext

Fimgowp 4 gm0 G A
w = 0.85 w=0.75

R&D-int. 0.94 0.96 0.08 0.09 097 0.14 0.15
Small 1.39 1.18 0.00 0.00 1.04 0.00 0.00
Young 2.09 1.80 0.00 0.01 1.61 0.00 0.02
Gazelles 2.68 239 0.02 0.03 220 0.03 0.05
All 1.00 1.00 0.15 0.00 1.00 0.26 0.00

The table presents the Bang for the Buck and its components when we account for technological spillovers
between firms. We use patent values estimated in Kogan et al. (2017) to measure R&D quality. See also
notes to Table 8.

D.13 Standard errors for the relative Bang for the Buck

In this section we quantify the statistical significance of the estimated Bangs for the Buck
and the difference in relative cost-effectiveness of the targeted subsidies between groups
of firms. Let the population value of the Bang and the Buck be denoted by By, = > i, b
and Cj, = > i, G respectively, where €, marks the theoretical population of firms of
type k from which the Compustat data is sampled. Assume that firm level components

are normally distributed. Then, the joint distribution converges in distribution to

L B’f_ék N 0 ’ 0bi  OBCH
Nk C’k—(]k 0 OB.C\k O%,k

. . B*+B,
Consider now the ratio 2t = 27k

* * .
O = Cixcy where B} and C} are zero mean Gaussian random

variables.
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Applying the delta method, we obtain the expression for the asymptotic variance of

the ratio A = Jg—:

— _

var(Ag) = _LQ (U% wt é—gaék - 2&030%) : (A18)
C Ty Cy

Table A13 presents standard errors of the Bangs for the Buck of the form +a/var(Ay),

where var(Ay) is the consistent estimate of var(Ay) defined in (A18), in which population

moments are replaced by sample analogs and where a corresponds to a percentile of the

normal distribution. The implied errors are very tight and all differences between groups

are statistically significant.

Table A13: Asymptotic approximation standard errors for the relative Bang for the Buck.

Ar/A  Lower bound of 95% CI  Upper bound of 95% CI

R&D-int.  0.94 0.93 0.94
Small 1.39 1.39 1.39
Young 2.09 2.08 2.10
Gazelles 2.68 2.65 2.70
All 1.00 1.00 1.00

Notes: The table presents relative Bangs for the Buck and the bootstrap confidence intervals of the form
+1.96+/var(Ay) where var(Ay) is defined in (A18).

However, the resulting confidence intervals may become distorted in finite samples.
By 1+B;/Bk
I Ci 14C; /Cp
C) > 0 in some subgroup k is quantitatively close to zero and therefore highly skewed,

To see why, note that we can write g—z = . If the population value of the cost

the normal approximation is inaccurate. This is precisely the case in our application
where individual values of cost are non-negative, and the sum may be arbitrarily close to

zero. To address potential inaccuracy of the asymptotic first-order approximation (the

delta method), below we provide bootstrap standard errors.

Bootstrap standard errors For each firm group, we draw with replacement obser-
vations from the same firm group to obtain a bootstrap sample of the same size as the
original sample. In each of the 1000 bootstrap samples, we recompute the statistics of
interest. In Table Al4, we report the confidence interval based on the percentiles of the
distribution of bootstrap Bangs for the Buck. While the confidence intervals are much
wider than asymptotic standard errors, our main results remain statistically significant.
Young firms are a statistically significantly more cost-effective target than small firms.
Targeting gazelles is more than twice as cost-effective as the uniform subsidy. R&D in-
tensive firms are a significantly worse target than all other groups of firms we consider in

the application.
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Table A14: Bootstrap standard errors for the relative Bangs for the Buck.

Ar/A  Lower bound of 95% CI  Upper bound of 95% CI

R&D-int.  0.94 0.77 1.12
Small 1.39 1.27 1.54
Young 2.09 1.70 2.61
Gazelles 2.68 2.32 3.12
All 1.00 0.86 1.16

Notes: The table presents relative Bangs for the Buck and the standard errors of the form [q?_g, q§47’f5},

where ¢Z'* is the z-th percentile of the bootstrap distribution of the Bangs for the Buck A;. We use
1000 bootstrap samples.

D.14 Further details on dynamics of the Bangs for the Buck

In this section we present more details pertaining to the dynamics of the estimated Bangs
for the Buck across our firm groups. Our goal is to estimate how the relative Bang and
Buck changes over time for fixed firm groups. In other words, is supporting firms that
were gazelles one year or two years ago as sound a policy as supporting the current
gazelles? To answer this question, we pool all firms and classify them into groups in the
same manner as in Section 3.4. Then, keeping this classification fixed, we track firms
over time and estimate all the components of the Buck and the Bang. For example, we
estimate the efficiency of supporting firms that were gazelles one year ago, two years ago,
etc. Or, in the case of window-averaged data, in the previous window, two windows ago,
etc.

As reported in the main text, young firms tend to exhibit persistently high benefits-
to-cost ratio and stand out as excellent targets for R&D subsidies. Gazelles on the other
hand, while the most cost-effective target from an instantaneous perspective, exhibit a
rapid drop over time in their relative Bang for the Buck. To understand the forces behind
the patterns in the Bangs for the Buck, in this section we present the evolution of the
components of this aggregate measure.

Figure A3 presents the evolution of the components of the Buck and the Buck over
time in an unbalanced panel of firms. Panel (a) reports the components of the Bang.
Sub-panel 1. shows the market share m across firm groups, normalized to 1 at time
t = 0. The panel illustrates that small and young firms initially gain market share, but
all firms converge to a similar size in the long run. Old firms tend to shrink on average,
as illustrated by a sharp decline in the market share of all firms and small-old businesses.
This result is consistent with evidence on the universe of firms in the US, reported in
Haltiwanger et al. (2013): the net growth in the economy is entirely due to young firms.

Next in sub-panel 2., we can see that the size-weighted growth of gazelles drops quickly

over time. In particular, firms that were classified as gazelles 2 years ago grow at a slower
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Figure A3: Persistence of the Bang for the Buck and its components using unbalanced
panel

(a) Drivers of the Bang (b) Drivers of the Buck

2. Weighted growth 1.R&D share 2.Elasticity
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Note: Figure presents components of the Bang and the Buck using annual data and an unbalanced panel
of firms. Sub-panel D. in panel (b) reproduces Panel (a) in Figure 3. See also notes to Figure 3.

rate than those that were small or young two years ago. Small firms exhibit the highest
growth rates from the long run perspective. However, this is driven entirely by the fact
that most of them are young. This can be seen from the poor growth trajectory of small-
old firms. Sub-panel 3. illustrates convergence in Bang-relevant elasticities and sub-panel
4. concludes by plotting the relative Bangs over time.

Next, Panel (b) on the right-hand side reports the components of the Buck and the
total relative Bangs for the Buck in sub-panel 4. Note that sub-panel 4. replicates Panel
(a) in Figure 3. Here, the most striking result is the stable R&D share among gazelles.
Recall from our previous discussion that their the revenue growth and market shares are
gradually declining, reducing the Bang. In combination with their stable R&D share,
this is responsible for the decline in their relative Bang for the Buck visible in sub-panel
4.

Figure A4 presents the same set of results as above, but generated from the balanced
panel of firms. That is, we restrict attention to the set of firms for which we can obtain
all necessary balance sheet items in at least 10 consecutive years. Here sub-panel 4. in
Panel (b) corresponds to the results reported in Figure 3 in the main text. By focusing
on a balanced panel, we select firms based on their ex-post success. This is particularly
visible when inspecting the time paths for young firms: ex-post successful young firms
grow rapidly increasing their market and R&D shares, as can be seen in sub-panels 1. in
Panels (a) and (b) in Figure A4. This elevates their relative Bang for the Buck throughout
the horizon of interest. The dynamics of the remaining firm groups is broadly in line with
the results in the unbalanced panel described above.

For completeness, Figures A5 and A6 report the results based on window averaged
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Figure A4: Persistence of the Bang for the Buck and its components using balanced panel

(a) Drivers of the Bang (b) Drivers of the Buck
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Note: Figure presents components of the Bang and the Buck using annual data and a balanced panel of
firms. Sub-panel D. in Panel (b) reproduces Panel (b) in Figure 3. See also notes to Figure 3.

data using unbalanced and balanced panels, respectively. Here, each time period cor-
responds to a non-overlapping window of 5 years. This means at ¢t = 4, we report the
effectiveness of subsidies targeted at firms that were classified as, say, gazelles using data
from a window 20 years before. Qualitatively, the results are in line with the results when
using annual data that we discussed above.

The key difference that emerges between the results based on annual and averaged
data is that in the latter, gazelles tend to outperform all other firm groups in terms of
the relative Bang for the Buck over the 20-year horizon. The underlying reason is that in
the annual data we classify firms as gazelles whenever their revenue growth rate exceeds
20% in a given year, while in the averaged data gazelles exhibit 20% growth on average
within a 5-year window. The results suggest that a more selective criterion constitutes a

more efficient device for screening firms that are a desirable target for R&D subsidies.

E Further Analytical Details

Disaggregation. The following proposition describes how the Bang and the Buck can

be disaggregated into a weighted average of group-specific components.

PROPOSITION 6 (Disaggregation). Consider groups of mutually exclusive firms indexed
by k=1,2,..., K, such that the set of all firms, €2, is given by Q) = U8, where )y, is the
set of firms belonging to group k.
(i) The Bang is then given by
B =Y mB, (A19)
k
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Figure A5: Persistence of the Bang for the Buck and its components using unbalanced
panel and window-averaged data

(a) Drivers of the Bang (b) Drivers of the Buck
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Note: Figure presents components of the Bang and the Buck using window-averaged data and an unbal-
anced panel of firms. See also notes to Figure 3.

Figure A6: Persistence of the Bang for the Buck and its components using balanced panel
and window-averaged data

(a) Drivers of the Bang (b) Drivers of the Buck
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Note: Figure presents components of the Bang and the Buck using window-averaged data and a balanced
panel of firms. See also notes to Figure 3.

where my, = Zier m; and By = Zz‘eﬂk m;g;€; are the sales shares and the Bang of the
set of firms belonging to group k.
(ii) The Buck is then given by
C=> rC, (A20)
k

where r, = Zier r; and Cpy =6+ Zier ri€; are the RED shares and the Buck of the
set of firms belonging to group k.
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(iii) The Bang for the Buck is then given by

A= wid, (A21)
k

where wy, = Zier m;Cy/C and Ay = By/Cy are the weights and Bang for the Buck of
the set of firms belonging to group k.

Proposition 6 states that the overall Bang and Buck can be expressed as the weighted
average of group-specific Bangs and Bucks where the weights are, respectively, the asso-

ciated sales and R&D shares. A similar disaggregation also holds for the Bang for the
Buck, with weights defined by wy.
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