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Abstract

Defensive hiring of researchers by incumbent firms with monopsony power reduces
creative destruction. This mechanism helps explain the simultaneous rise in R&D spending
and decline in TFP growth in the US economy over recent decades. We develop a simple
model highlighting the critical role of the inelastic supply of research labor in enabling this
effect. Empirical evidence confirms that the research labor supply in the US is indeed inelastic
and supports other model predictions: incumbent R&D spending is negatively correlated
with creative destruction and sectoral TFP growth while extending incumbents’ lifespan. All
these effects are amplified when ideas are harder to find. An extended version of the model
quantifies these mechanisms’ implications for productivity, innovation, and policy.

Keywords: Productivity growth, innovation, R&D, patents, creative destruction.

JEL Classification: E22, L11, O31, O33.

*We would like to thank Yan Bai, Nick Bloom, Linyi Cao, Jan Eeckhout, Ying Feng, Luis Garicano, Chad Jones,
Joe Kaboski, Peter Klenow, Mingming Ma, Shihui Ma, Yueyuan Ma, Timothy Simcoe, Kjetil Storesletten, Xiaomei Sui,
Chad Syverson, Daniel Xu, Wenjian Xu, Yi Wen, Kai-Jie Wu, Anson Zhou, and seminar participants at the University
of Oxford, Wuhan University, Shanghai Jiao Tong University, CICM Hong Kong, CUHK SZ, SED Barcelona, and
NBER SI (Macroeconomics and Productivity) for helpful comments and suggestions.
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1 Introduction
Creative destruction and productivity growth have sharply declined in the US over the past

two decades, despite a substantial rise in R&D spending and the hiring of specialized workers

(researchers).1 Why has higher R&D spending failed to translate into stronger innovation and

productivity gains? What mechanisms drive this divergence? And what are their implications

for innovation, productivity growth, and economic policy?

We argue that defensive hiring –where incumbents recruit researchers to raise wage costs for

potential entrants– drives this dynamic, though not exclusively. This strategy is most effective

when the researcher labor supply is inelastic and when the incumbent has more value to protect.

Given equal firm value, smaller incumbents raise wages more. We show that defensive hiring

helps explain lower TFP growth alongside higher researcher numbers, specialization, and

compensation in the US from 1929 to 2020.

After presenting motivating, unified evidence on TFP, R&D spending, firm entry, and the

number and compensation of researchers in the US, we start by developing a simple theoretical

model of creative destruction in monopsony markets for researchers based on the Aghion-

Howitt model of Shumpeterian destruction (Aghion and Howitt, 1992). We show that two key

forces operate within this framework. On one hand, incumbent firms want to exploit their

monopsony power by underpaying researchers relative to a competitive market. On the other

hand, they engage in a defensive hiring strategy by employing a large number of researchers at

above-competitive-market wages to reduce the probability that competitors will innovate, thus

decreasing creative destruction.

We characterize the conditions under which defensive hiring outweighs the monopsony-

power mechanism. Specifically, we show that defensive hiring becomes the dominant force

when: (i) the size of innovation is small; (ii) the entrants have low R&D efficiency; and (iii) the

entry cost is high. Since the first two conditions lead to a reduction in the size and likelihood of

innovation, defensive hiring prevails when “ideas are getting harder to find” (Bloom et al., 2020).

Given that the strength of defensive hiring depends crucially on the elasticity of the labor

1We define researchers broadly to include any worker engaged in innovation within a firm, even if not directly
involved in classic R&D. This includes, for example, a systems analyst optimizing logistics or a software engineer
improving operational efficiency.
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supply of researchers, we provide new estimates of level, trend, and variations of the labor

supply among industries. We do so by assembling a novel dataset that combines the innovations

of individual inventors elicited from the universe of patent applications recorded by the US

Patent and Trademark Office for the period 1970-2019 with the returns of those innovations

to the inventors from stock market price data. By linking individual inventors –a proxy for

researchers in the model– to the market value of their patents elicited from stock market prices

–the empirical counterpart of the payoff for conducting research– we establish three new facts:

Fact 1. The labor supply of researchers is inelastic. A 1% increase in the average market value

of patents in a research field (adjusted for the number of coinventors), which is our proxy for

the expected payoff to inventors for undertaking research effort, attracts an additional 0.14% of

inventors applying for patents in the same field.

Fact 2. The elasticity of the labor supply of researchers has decreased over time, from a value

of 0.17 between 1970 and 1995 to 0.07 between 1996 and 2019 (the full sample point estimate

is 0.14, as established in Fact 1). In other words, the labor supply of researchers has become

increasingly inelastic over time.

Fact 3. Since industries are exposed to research fields in different ways, the elasticity of the

labor supply of researchers is strongly heterogeneous across industries.

Furthermore, our simple theoretical model yields four sharp, testable implications of the

impact of R&D by incumbents: (i) it negatively affects new firm entry; (ii) it positively affects

the lifespan of incumbent firms; (iii) it hinders technological growth when the incumbent firms’

R&D efficiencies are sufficiently low; and (iv) these effects are stronger when the supply of

researchers is inelastic.

We test these theoretical predictions by merging our data on patents and stock market returns

on inventions with R&D spending data from Compustat Fundamental Annual data, sectoral

TFP from the Bureau of Labor Statistics covering 90 four-digit NAICS industries, and firm entry

from the Business Dynamics Statistics covering 281 four-digit NAICS industries. By doing so,

we establish three additional new facts that corroborate our theoretical preditions:

Fact 4. Incumbents’ R&D spending negatively predicts the creation of new firms in the same

industry. The prediction is stronger in industries with a lower elasticity of research labor supply.

Fact 5. Incumbents’ R&D spending positively predicts the lifespan of the incumbent firms.
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The prediction is stronger in industries with a lower elasticity of research labor supply.

Fact 6. Incumbents’ R&D spending negatively predicts TFP growth for firms in the same

industry. The prediction is stronger in industries where research labor supply is less elastic.

Having empirically validated our model, we extend it into a quantitative framework to assess

the implications of defense hiring in general equilibrium and conduct counterfactual policy

analysis. In the model, workers choose between research and production occupations. The share

of researchers in total employment depends on the wage gap between these occupations and

workers’ preference distribution. Researchers are randomly assigned to sectors but can switch at

a cost, which endogenously determines the equilibrium elasticity of the research labor supply.

We calibrate the model to US data.

Our quantitative analysis yields six results. First, defensive hiring prevails over monopsony

power when determining researchers’ wages in our calibrated model. Incumbent firms strategi-

cally set higher wages and recruit researchers aggressively, leading to low creative destruction

and business dynamism. This hurts technological growth due to the lower R&D efficiency of

incumbents compared to entrants.

Second, the higher wages set by incumbent firms encourage more workers to choose research

careers. This is a general equilibrium effect that enhances technological growth, similar to a

subsidy for choosing a research occupation. However, this benefit is dominated by the preceding

detrimental effect of defensive hiring on creative destruction.

Third, an increase in the switching cost for researchers, consistent with the deepening

specialization of research (Yang and Borland, 1991), leads to a decline in the elasticity of the

research labor supply, a fall in creative destruction, a rise in the population of researchers, a

higher wage premium for researchers, and a drop in technological growth, broadly consistent

with the empirical patterns in the past few decades. The government can partially reverse the

above trends by reducing switching costs. Policies such as advocating affordable online courses

and promoting interdisciplinary research are likely effective.

Fourth, the motive for defensive hiring is stronger when the R&D efficiency of entrants is

lower. In other words, the incumbent firms would suppress creative destruction more aggres-

sively when ideas are getting harder to find (Bloom et al., 2020).

Fifth, the government can subsidize new entrants and tax incumbents to promote techno-
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logical growth and correct market distortions. Taxing incumbents strengthens the monopsony

effect, curbing defensive hiring. This approach contrasts with traditional models, which propose

subsidizing incumbents to counteract monopsony effects.

Finally, we distinguish between short- and long-run research labor supply elasticities, which

are only mildly correlated across fields and industries. Facts 4-6 hold only for short-run elas-

ticities, suggesting that incumbents’ strategic behavior is driven by short- rather than long-run

factors. To reconcile both observations, we extend our model to allow researchers to shift fields

over time, reducing distortions and moderating excessive wages. Specifically, we identify a new

mechanism: the dynamic attraction effect, where higher wages today draw more researchers in the

future, reducing incumbents’ future value.

Our analysis is related to research on how incumbents’ strategic R&D behavior affects

technological growth. Argente et al. (2020) and Akcigit and Goldschlag (2023) show that large

firms’ R&D spending deters competition without sustaining innovation. Bloom et al. (2020) and

Bilal et al. (2021) find that slower idea generation hinders creative destruction. Cunningham

et al. (2021), Bao and Eeckhout (2023), and Benkert et al. (2023) show that incumbents use R&D

and acquisitions to consolidate market power. We demonstrate that the defensive hiring of

researchers is an effective strategy in monopsony markets with low labor supply elasticity.

We also contribute to the literature on monopsony power. Most research (Azar et al., 2019;

Berger et al., 2022; Manning, 2021) examines classic monopsony markets, where dominant

firms set below-competitive wages while under-hiring workers. Our paper is closer to Parente

and Prescott (1999) and Fernández-Villaverde et al. (2021), who show that dominant firms

expand hiring to reinforce monopsony power in product and labor markets, contrary to classic

monopsony predictions. Unlike prior work focused on declining labor share and rising market

concentration, our paper explores how monopsony power in researchers’ labor market affects

technological growth.

The paper is structured as follows. Section 2 presents motivating evidence. Section 3 develops

a model of creative destruction in monopsonistic research labor markets. The empirical results

are presented in Sections 4 and 5. Section 6 extends the model for quantitative analysis and

policy implications. Section 7 presents the main quantitative results. Section 8 concludes. An

online Appendix provides further details.
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2 Motivating evidence
This section presents a unified analysis of TFP, R&D spending, firm entry, and the number and

compensation of US researchers from 1929 to 2020. Using annual data from multiple sources, we

document a persistent decline in TFP growth and creative destruction despite steady increases

in the number and remuneration of researchers.

Figure 1: TFP growth and the rate of entry of new firms in the US economy
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(B) Firm entry rate has been declining

Panel (A) of Figure 1 presents annual utilization-adjusted TFP growth (solid line), constructed

following Fernald (2014), alongside its HP-filtered trend (dashed line) from 1948 to 2023. The

figure illustrates a gradual decline in TFP growth, consistent with findings from Gordon (2012),

Akcigit and Ates (2021), and Acemoglu et al. (2023).

Panel (B) displays the annual firm entry rate from 1978 to 2018, measured as the ratio of new

firms to total firms in the Business Dynamics Statistics (BDS) dataset administered by the US

Census Bureau. The figure shows a steady decline in firm entry, aligning with findings from

Decker et al. (2020) and Akcigit and Ates (2023).

Panel (A) of Figure 2 presents R&D expenditure as a share of GDP from 1929 to 2020, using

data from the Bureau of Economic Analysis (BEA). The figure shows a mostly uninterrupted rise

in R&D spending over the past century.

Panel (B) of Figure 2 presents the share of researchers in total employment from 2001 to 2022,

showing an upward trend consistent with rising R&D spending.2

2Research occupations include Computer and Mathematical Occupations (occupation code 15-0000) and Life,
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Figure 2: R&D expenditure, number and wage of researchers in the US
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Panel (C) displays the annual number of research doctorate recipients from 1958 to 2022

based on National Science Foundation (NSF) data. The series exhibits a twelvefold increase since

1958, reflecting a sharp rise in the inflow of doctorate researchers, which partially explains the

employment growth in Panel (B).

Panel (D) presents the ratio of median annual wages for research occupations to those of

workers with at least an undergraduate degree, based on Bureau of Labor Statistics (BLS) data

from 2000 to 2022. The figure shows that research occupations have seen faster wage growth

than the broader college-educated workforce.

We quantify wage differences between research and non-research occupations and their

trends by estimating:

ln(Wi,t) = a · ROi,t + b · ROi,t × t + c · Xi,t + ϵi,t,

where the dependent variable is the logarithm of worker i’s annual wage in year t. The key

independent variable, ROi,t, is a dummy equal to one if the worker is in a research occupation.

Physical, and Social Science (occupation code 19-0000). Data are from the BLS.
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The interaction term, ROi,t × t, captures the trend in the research wage premium, with a positive

b indicating a widening gap. The control vector Xi,t includes the logarithm of age, gender,

industry fixed effects, and education-by-year fixed effects.3

With these controls, our estimation captures cross-sectional differences between occupations,

conditional on identical educational attainment and demographic characteristics. Our sample

spans 2001-2019, focusing on workers with a college degree or higher. The data come from the

American Community Survey, accessed via IPUMS.4

Table 1: Research wage premium has been increasing

(1) (2)
Research occupation 0.141*** -7.782***

(0.001) (0.379)
Research occupation×Year 0.004***

(0.0002)
Controls Yes Yes
Industry FE Yes Yes
Education-by-Year FE Yes Yes
Observations 7,480,172 7,480,172

The data span 2001-2019 on a yearly basis, restricted to workers with a college degree or higher. The dependent
variable is the log wage, while the key independent variable is a research occupation dummy, equal to one if the
worker’s occupation is research-related. Control variables include log age and gender.

Table 1 presents the estimation results. Column (1) shows that research occupations earn an

average wage premium of 14.1% over other occupations. Column (2) indicates that this premium

grows at an annual rate of 0.4%, an economically significant increase.

In summary, TFP growth rates and new firm entry have declined significantly, despite

substantial increases in aggregate R&D spending, researcher numbers, and remuneration. Next,

we develop a theory that reconciles these seemingly contrasting empirical patterns.

3 A simple model of creative destruction and monopsony
Building on Aghion and Howitt (2005), we develop a simple model of creative destruction

in a monopsonistic researcher market. The core mechanism stems from the interplay between

3The education-by-year fixed effects account for both differences across education groups and time-varying
education premiums.

4Data are available only in decennial intervals before 2000. Including these earlier data would likely show an
even steeper growth in the research wage premium, as research-related occupations generally had lower wages
relative to non-research occupations during that period.
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defensive hiring and inelastic researcher supply. Our framework explains the patterns in Section

2 and yields testable predictions on creative destruction and technological growth, analyzed in

Sections 4 and 5. Section 6 extends the model to explore its quantitative and policy implications.

3.1 Incumbents and entrants

The economy consists of J sectors, each with an incumbent firm holding monopoly power

and producing one unit of non-storable goods at a unitary marginal cost. The incumbent sets the

price at χ > 1, earning an operating profit (i.e., profit before R&D expenses) π = χ − 1. Since

sectors are symmetric, we omit the sectoral index.

The incumbent faces competition from an infinite number of entrants. Both incumbents and

entrants hire researchers to innovate and produce the same good at a unitary marginal cost but

with improved quality. Higher quality increases the value of output by γ > 1.

If the incumbent innovates, it retains its position and earns a new operating profit γπ. If

neither the incumbent nor an entrant innovates, the incumbent remains but earns only π. The

incumbent’s innovation probability is f I = ϕnI , where nI is the number of researchers hired, and

ϕ > 0 represents R&D efficiency.

If an entrant innovates, creative destruction occurs: the entrant displaces the incumbent,

becomes the new market leader, and sells at price χ > 1 with operating profit γπ − ι, where ι is

a fixed entry cost. The incumbent and unsuccessful entrants then earn zero profits and exit.5

Each sector has a continuum of potential entrants with stochastic R&D efficiency k > 0,

distributed by the c.d.f. Ψ(k). The total measure of potential entrants is ψ = Ψ(+∞). Without

loss of generality, we assume each entrant hires one researcher at the sectoral wage w.

Since free entry drives profits to zero in equilibrium, entrants must have a sufficiently high

probability of innovating (k) to remain in the market. We determine k below when deriving the

model equilibrium. Thus, the employment of researchers by entrants is:

nE =
∫ +∞

k
1dΨ(k) = ψ − Ψ(k), (1)

and the innovation probability for entrants is:

fE =
∫ +∞

k
kdΨ(k). (2)

5We assume ϕ and nI keep f I within (0,1). Also, each period is short enough that only either the incumbent or
the entrant can innovate per period. This common assumption simplifies algebra without affecting results.

9



The expected growth rate of output in each sector, g = γ( f I + fE), equals the value of the

innovated output times the probability of innovation from either the incumbent or the entrant.

3.2 The supply of researchers

The aggregate supply of researchers is fixed at N, and the labor supply, N(w), in each sector

is proportional to the sectoral-to-aggregate wage ratio:

N(w) =
N
J

( w
W

)η
, (3)

where W is the aggregate wage index taken as given by firms.

The parameter η > 0 controls the elasticity of sectoral labor supply for researchers, generating

the standard positively sloped supply curve, i.e., N′(w) > 0. For now, N and η are exogenously

given. However, in the quantitative version of the model, they will be endogenously determined.

The labor market clears in each sector, i.e., N(w) = nI + nE.

3.3 The Stackelberg two-stage hiring game

The incumbent strategically hires researchers, as the established wage affects both researcher

supply and entrants’ innovation probability, threatening its survival. Hiring follows a Stackelberg

two-stage game. In the first stage, the incumbent sets w, determining the sector’s researcher

supply. In the second stage, entrants hire from the remaining researcher pool, taking w as given,

while the incumbent hires the remaining researchers.6 We solve for equilibrium by backward

induction.

Stage 2: Entry decision of the entrants. A potential new firm enters the economy if its

expected profit, k(γπ − ι)− w, is positive. By free entry, there is an R&D efficiency threshold,

k(w) that ensures zero expected profits:

k(w) = w/(γπ − ι). (4)

Firms above this threshold will enter and innovate; firms below it will not.

By combining equations (2)-(4), we find that a higher equilibrium wage reduces the measure

of entry and suppresses the process of creative destruction by lowering the profitability of new

6Alternatively, we can assume the incumbent hires first, followed by the entrants, with the incumbent com-
mitting to hiring any remaining researchers. In equilibrium, no researchers will remain after the entrants’ hiring
process.
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entrants:

n
′
E(w) = − Ψ

′
(k)

γπ − ι
< 0 and f

′
E(w) = − kΨ

′
(k)

γπ − ι
< 0. (5)

No entrant has an incentive to deviate from the wage w set by the incumbent. First, in

equilibrium, all researchers are employed at w, so they will not accept a lower wage. Second,

since entrants can hire researchers at w, raising wages above it would only reduce their profits.

Thus, each entrant sets its wage at w to maximize profits.7

Stage 1: Wage setting of the incumbent. The incumbent firm selects the number of re-

searchers and sets the wage to maximize its profits:

max
w,nI

ϕnIγπ + [1 − ϕnI − fE(w)]π − nIw, (6)

subject to the market-clearing condition in the sectoral labor market:

nI(w) = N(w)− nE(w). (7)

In equation (6), ϕnI is the probability that the incumbent firm successfully innovates, yielding

the profit γπ. The second term captures the profits when neither the incumbent nor the entrants

successfully innovate, which occurs with probability 1 − ϕnI − fE(w), resulting in the continua-

tion of the initial profit π. The third term accounts for the wage cost of research labor.8 From

now on, we will write equation (6) as (γ − 1)ϕπnI(w) + [1 − fE(w)]π − nI(w)w.

Since we already saw that N′(w) > 0 and n′
E(w) < 0, we get:

n′
I(w) = N′(w)− n′

E(w) > 0, (8)

i.e., the hiring of the incumbent firm is positively related to w. In other words, the incumbent firm

must hire more workers to increase w, or, conversely, it must increase w to hire more workers.

Combining equations (4) and (8), we derive the impact of hiring researchers by the incumbent

firm on the probability of creative destruction:

d fE

dnI
=

d fE/dw
dnI/dw

=
f ′E(w)

N′(w)− n′
E(w)

< 0. (9)

Equation (9) yields three results. First, increased incumbent hiring lowers creative destruction.

Second, this effect is stronger when the sectoral research labor supply is inelastic, i.e., N′(w) is

7For potential entrants that do not enter at wage w (i.e., k(γπ − ι)− w < 0), offering a higher wage w′ > w does
not incentivize entry, as k(γπ − ι)− w′ < k(γπ − ι)− w < 0.

8Equation (6) also includes the implicit term fE(w) · 0, reflecting that the incumbent firm exits the market and
earns zero profit with the probability of creative destruction, fE(w).
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low. Third, the deterrent effect intensifies when entrants’ innovation is highly wage-sensitive,

i.e., the absolute value of f ′E(w) is high. Using equation (5), this occurs when the expected profits

from innovation (γπ − ι) are low or when potential entrants are concentrated near the entry

threshold (Ψ′(k)).

3.4 Optimal conditions for the incumbent firm

Before solving the two-stage hiring game and deriving the model equilibrium, we first

analyze optimality in competitive and classic monopsony markets, which serve as benchmarks

for the game’s solution.

Competitive market. In this case, the incumbent firm takes w as given and chooses nI by

maximizing profits:

max
nI

(γ − 1)ϕπnI + (1 − fE)π − nIw, (10)

yielding the standard optimality condition that equates w to the marginal product of researchers

(mpr):

wage︷︸︸︷
w =

mpr︷ ︸︸ ︷
(γ − 1) ϕπ .

Classic monopsony market. In this case, the incumbent firm internalizes the effect of w

on labor supply but still takes the probability of creative destruction, fE, and the hiring by the

entrants, nE, as given:

max
w

(γ − 1)ϕπnI(w) + (1 − fE)π − nI(w)w,

where nI(w) = N(w)− nE.

The optimality condition is:

wage︷︸︸︷
w =

mpr︷ ︸︸ ︷
(γ − 1) ϕπ −

monopsony︷ ︸︸ ︷
nI(w)

N′(w)
, (11)

which mirrors the competitive case but includes an additional term that lowers the wage and

captures the monopsony power. This distortion is stronger when the labor supply is inelastic,

i.e., when N′(w) is low.9 In this case, a decrease in the elasticity of the sectoral research labor

supply lowers wages and reduces researcher hiring, contradicting observed trends.

9This condition is just the classic wage markdown formula,
[
1 + 1

η · nI(w)
N(w)

]
w = (γ − 1)ϕπ.

12



The two-stage game. Now the incumbent firm internalizes the effect of w on the entrants’

innovation probability, fE, through its effect on the number of researchers, nE. Thus, the

incumbent’s problem is still

max
w

(γ − 1)ϕπnI(w) + [1 − fE(w)]π − nI(w)w,

where nI(w) = N(w)− nE(w), but now we differentiate with respect to w in fE(w) and nE(w).

The resulting optimality condition is:

wage︷︸︸︷
w =

mpr︷ ︸︸ ︷
(γ − 1) ϕπ −

monopsony︷ ︸︸ ︷
nI(w) +

defensive hiring︷ ︸︸ ︷
f ′E(w)π

n′
I(w)

(12)

Compared to the classic monopsony result in equation (11), we now have an additional

term, f ′Eπ, which reflects the incumbent’s incentive to raise wages to deter entry (recall that

f ′E < 0 and n′
I(w) > 0). This reduces the probability of creative destruction, fE, by increasing the

R&D efficiency threshold for potential entrants to achieve zero expected profit. We refer to this

mechanism as defensive hiring.

The relative strength of the two opposing forces determines whether the incumbent firm

would set a higher or lower wage than in the competitive case.

Case 1: nI > | f ′Eπ|. When incumbent employment is high relative to | f ′Eπ|, wage costs

become critical. The classic monopsony incentive dominates, leading the firm to under-hire and

set a lower wage than in the competitive case, increasing firm entry. This effect is amplified

when the labor supply elasticity of researchers, N′(w), is low, as it reduces the denominator

of equation (12). Conversely, when the labor supply of researchers becomes infinitely elastic

(N′(w) → +∞), the distortion disappears, and the model converges to the competitive case.

Case 2: nI < | f ′Eπ|. When incumbent employment is low relative to | f ′Eπ|, wage costs matter

less, leading the incumbent to over-hire and set a higher wage than in a competitive market,

restricting entry. As before, this effect is stronger when N′(w) is low. Notably, our analysis

suggests that, given on the same level of π, smaller incumbents are more likely to engage in

defensive hiring than larger ones.

To understand better when nI < | f ′Eπ|, we combine equations (4) and (5), yielding:

f ′Eπ = − πwΨ
′
(k)

(γπ − ι)2 . (13)
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Equation (13) shows that the incumbent over-hires researchers relative to the competitive econ-

omy when: (i) innovation size, γ, is small; (ii) the fixed cost for new entrants, ι, is high; and (iii)

the density of potential entrants near the entry threshold, Ψ
′
(k), is high. Additionally, defensive

hiring intensifies when the labor supply is inelastic.

Condition (iii) aligns with the empirical evidence that ideas are becoming harder to find

(Bloom et al., 2020). Potential entrants near the entry threshold typically have lower R&D

efficiency, leading to a more left-skewed distribution and greater difficulty in discovering ideas.

This allows incumbents to deter new entrants more effectively. Additionally, condition (i) holds

when good ideas are becoming scarcer.

The relationship between defensive hiring and technological growth. While defensive

hiring stifles creative destruction, its overall effect on technological growth is ambiguous, as it

increases the incumbent’s innovation rate, f I ,. The net impact on technological growth depends

on the R&D efficiency of the incumbent relative to that of marginal entrants.

Suppose incumbents in all sectors raise wages by ∆w, leading to an increase in the technolog-

ical growth rate:

∆g = γ(∆ f I + ∆ fE) =
(ϕ − k)Ψ

′

γπ − ι
∆w, (14)

showing that defensive hiring reduces technological growth if and only if ϕ < k. While ϕ is

exogenous, k is determined endogenously by the free-entry condition (4): w/(γπ − ι). A high k

(i.e., a greater likelihood that defensive hiring harms technological growth) results from a low

innovation size γ, low innovation profit π, or high fixed cost ι.

Defensive hiring hinders technological growth when: (i) the incumbent’s R&D efficiency

is low; (ii) innovation size is small; (iii) innovation profit is low; and (iv) the fixed cost for

successful entrants is high. While our model abstracts from occupational choices between R&D

and non-R&D roles, it is likely that, in practice, defensive hiring raises R&D wages, attracting

more workers to the field. We defer the discussion of this general equilibrium effect to Section 6.

4 The elasticity of researcher labor supply
Our theory identifies the elasticity of researcher labor supply as a key factor linking defensive

hiring and creative destruction. In this section, we show that this elasticity is low on average,

has declined over time, and varies across research fields and industries. These facts suggest that
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defensive hiring is a significant?and increasingly important?mechanism in the data.

Data on inventors and patents’ value. Obtaining a comprehensive account of all workers

involved in R&D within an economy is challenging. For instance, is a human resources specialist

hiring scientists for a research lab part of R&D? Not directly, yet the specialist is essential for the

lab’s functioning. Given these complexities, we follow a common approach in the literature and

focus on inventors –a subset of “core” researchers– as a proxy measurement of all researchers.

We obtain inventor data from patent application records compiled by the US Patent and

Trademark Office (USPTO). The dataset spans 1970 to 2019, covering over seven million inventors

and eleven million patent applications. These applications are categorized into 132 Cooperative

Patent Classification (CPC) classes (e.g., Organic Chemistry), which we refer to as research

fields.10 Approximately 64% of applications are successfully granted.

Our first objective is to measure how inventors allocate their research labor across fields. Let

mt(ζ) be the number of patent applications filed by inventor ζ in year t. Assuming inventors

distribute effort equally across patents and normalizing annual research effort to one, ζ spends

1/mt(ζ) units of labor per patent.

We define ωk,t(ζ) as the subset of inventor ζ’s patent applications in field k. For patents

classified in multiple fields, we assign a weight of 1/ni, where ni is the number of fields patent i

belongs to. Thus, by working on patent i ∈ ωk,t(ζ), inventor ζ contributes 1/[mt(ζ)ni] units of

labor to field k. Inventor ζ’s research labor supply to field k is then:

lk,t(ζ) = ∑
i∈ωk,t(ζ)

1
mt(ζ)ni

,

and the total research labor supply to field k is the sum of lk,t(ζ) across inventors Lk,t = ∑ζ lk,t(ζ).

Our second goal is to examine what determines an inventor’s allocation of research labor to a

specific field. A natural candidate is the expected monetary payoff from research.11 We assume

that an inventor’s monetary payoff is proportional to the patent’s market value, adjusted for

the number of coinventors and their labor contributions. This assumption is justified by the

10We exclude applications filed after 2019, as many remain ungranted due to the lengthy examination process.
We also exclude applications with unidentified CPC classes. Our results remain robust when defining research
fields using the United States Patent Classification, which offers broader coverage for patents filed before 2001 but
was largely phased out after 2013.

11Other factors include intrinsic motivation, curiosity, reputation, and social responsibility, which are difficult to
measure and beyond this paper’s scope.
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role that stocks and options play in researchers’ compensation in many industries. Additionally,

bonuses, wage raises, and promotions are often linked with a researcher’s contribution to firm

value. Moreover, in models where a worker (an inventor) and a firm negotiate compensation

via Nash bargaining, the worker’s gain from effort (developing a patent) is proportional to the

firm’s incremental value (the patent’s market value).12

Under this assumption, the payoff per unit of research effort on patent i is:

wi =
vi

∑ζ∈Φi
1/mt(ζ)

, (15)

where vi is the real market value of patent i, as constructed by Kogan et al. (2017), based on stock

price reactions to USPTO patent announcements and Φi denotes the set of coinventors of patent

i. As discussed, 1/mt(ζ) represents each coinventor ζ’s effort on patent i, making ∑ζ∈Φi
1/mt(ζ)

the total effort across all coinventors.

Akcigit and Goldschlag (2023) propose an alternative measure of inventors’ monetary payoff

using tax data. While wages provide an accurate measure of the contemporaneous “wage

component,” they do not capture changes in expected future income linked to research efforts,

such as promised wage increases, promotions, or non-wage compensation (e.g., stocks and

options). These elements are crucial to inventors’ total monetary payoff and are likely to comove

with, and thus be reflected in, a patent’s market value. Hence, we consider our measure

complementary to that of Akcigit and Goldschlag (2023).

Finally, we compute the average payoff to research effort in field k as:

Wk,t = pk,t
∑i∈Ωk,t

wi/ni

∑i∈Ωk,t
1/ni

, (16)

where pk,t is the fraction of successfully patented applications, adjusting for the difficulty of

obtaining a patent. Ωk,t denotes the set of patents in field k, and ni is the number of fields patent i

belongs to. We weight patents by 1/ni, assigning greater importance to more specialized patents

(i.e., those with lower ni) within a given research field.

12Appendix C uses simulations to show a strong positive correlation between researcher compensation and the
market value of innovation (the theoretical counterpart of the patent), supporting our use of patent market value as
a proxy for monetary payoffs in our regressions.
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Fact 1: The research labor supply is inelastic on average

First, we examine the relationship between expected research income and the labor supply at

the extensive margin of researchers. Specifically, we analyze how a transitory increase in the

market value of patents in a given field affects the research labor supply in that field.

We estimate the elasticity of labor supply, η, our key parameter of interest, by running:

∆ ln (Lk,t) = α + η∆ ln (Wk,t) + χt + γk + ϵk,t, (17)

where Lk,t denotes total research labor supply in field k in year t, and Wk,t represents the monetary

payoff to research. The subscript t corresponds to the year patent applications are filed, typically

after research projects conclude. We assume researchers form expectations about future payoffs

that are, on average, accurate –a standard rational expectations assumption. Specifically, when

choosing labor supply in year t − m (where m is the research project’s duration), they anticipate

future payoffs, {Et−m (Wk,t)}k, which equal realized payoffs, {Wk,t}k, plus an unforecastable

error term.

The regression includes year fixed effects, χt, and research field fixed effects, γk, to control

for persistent differences in research labor supply across fields. Since labor supply and expected

payoffs generally trend upward at varying rates across fields, simple time fixed effects cannot

fully account for these differences. Thus, we take the first difference of the log of both variables

to ensure stationarity.

A concern with equation (17) is that both Lk,t and Wk,t may be jointly affected by shifts in

labor supply, biasing η downward. For instance, increased graduate fellowships or H1B visas

in STEM fields expand the supply of researchers while also prompting firms to initiate more

projects and hire more researchers per project. These effects boost innovation probabilities but

reduce the individual payoffs in equation (16). Expanding research projects may also lower

the patent success rate, pk,t, as similar ideas compete for a fixed number of granted patents.

Moreover, hiring more researchers per project reduces per-inventor payoffs, wi, by increasing

the denominator in equation (15).

To address endogeneity, we instrument Wk,t using two instrumental variables. The first is

the average patent value in each research field, unadjusted for the number of inventors and

the success rate, Ŵk,t =
∑i∈Ωk,t

vi/ni

∑i∈Ωk,t
1/ni

. By construction, Ŵk,t is positively correlated with Wk,t
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and remains unaffected by researchers’ labor supply influencing the patent success rate or the

effective number of coinventors.

The second instrument is the average lagged size of innovating firms (i.e., firms employing

the inventors), measured by their average real output, Ŷk,t =
∑i∈Ωk,t

Yi,t−1/ni

∑i∈Ωk,t
1/ni

, where Yi,t−1 is the

lagged annual real output of patent i’s innovating firm. The rationale for this instrument is that

larger firms commercialize patents on a larger scale, increasing their value. Crucially, the lagged

size of innovating firms is likely exogenous to researchers’ labor supply. To ensure stationarity,

we take the first difference of the log of both instrumental variables.

Column (1) of Table 2 presents estimation results for the full sample. A 1% increase in the

market value of patents within a research field corresponds to a 0.14% rise in research labor

supply. This elasticity is notably lower than those reported for broader occupations. For instance,

Arcidiacono et al. (2020) find that a 1% increase in expected earnings raises the subjective

probability of choosing an occupation by 0.74%, based on a survey of undergraduate students.

Table 2: The market value of patents and the number of inventors: panel estimation

(1) (2) (3)
Periods 1970-2019 1970-1995 1996-2019
∆ln (Wk,t) 0.14*** 0.17*** 0.07***

(0.01) (0.01) (0.01)
Research field FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 5,770 2,721 3,049

Note: The data span 1970-2019 on a yearly basis. The dependent variable is the log change in researcher supply,
while the independent variable is the log change in the expected value of patent applications. The instrumental
variables are the log changes in unadjusted average patent value and the average size of innovating firms.

This lower elasticity is intuitive, as shifting to a new research field requires significant time,

training, and expertise. Our findings align with those of Myers (2020), who shows that scientists

exhibit low willingness to alter their research direction in response to higher funding.

Fact 2: The elasticity of research labor supply is decreasing over time

To examine how the elasticity of researchers’ labor supply evolves, we estimate equation (17)

separately for periods before and after 1995, the midpoint of our sample. Columns (2) and (3)

of Table 2 report the results. The coefficient on ln (Wk,t) is 0.17 for the pre-1995 period, slightly

higher than the full-sample estimate (0.14). In contrast, for 1996-2019, the estimate falls to 0.07.
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Figure 3: Research labor supply elasticity has been declining
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Note: Point estimates of η from 1975 to 2015 with 95% confidence intervals, estimated using 10-year rolling
windows.

At a finer level, Figure 3 plots point estimates of research labor supply elasticities from 1975

to 2015, with 95% confidence intervals, using 10-year rolling windows. Consistent with Table 2,

research labor supply has become increasingly inelastic in recent decades.13

Why is η declining? One possibility is that the persistence of expected research payoffs

–reflecting “technology life cycles” (Abernathy et al., 1978)– has weakened, discouraging invest-

ment in specialized knowledge. To test this, we compute the standard deviation of ∆ ln(Wk,t)

within 10-year rolling windows for each field k and average them to construct an aggregate

volatility index, volt. If technology cycles were less persistent, we would expect volt to trend

upward. However, Figure 4 shows no such trend. Instead, volatility has declined, except during

1985-2000, partly aligning with the dot-com bubble.

An alternative explanation is the increasing specialization of research fields, which raises the

short-run costs of switching between them. Technological advancements have made discovery

tools and methodologies more complex, requiring greater specialization to drive innovation.

Additionally, solving multifaceted problems often necessitates collaboration across fields, making

researcher networks more critical. Since these networks take time to develop, they introduce an

additional entry barrier, further reducing the elasticity of researcher supply.

13The 10-year windows are [1970, 1984], [1985, 1994], . . . , [2010, 2019].
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Figure 4: Volatility of research payoff growth
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Note: Standard deviation of research payoff growth rate, estimated with 10-year rolling windows.

Short-run elasticity vs. long-run elasticity. By differencing research labor supply and

expected payoffs while controlling for research field fixed effects, our empirical design in

equation (17) estimates the short-run elasticity of research labor supply. Results in Table 2 and

Figure 3 show, for instance, that a doubling of expected payoffs in mRNA vaccine research

(driven by its surging market value during the Covid-19 pandemic) would attract 14% more

researchers compared to the previous year, holding average expected payoff growth in other

fields constant (via time fixed effects). The low short-run elasticity of research labor supply may

reflect short-term barriers to entering new fields due to increasing knowledge specialization.

These estimates differ from the long-run elasticity, which reflects persistent differences in

research labor supply across fields due to sustained gaps in expected payoffs. For example,

how many more researchers have entered artificial intelligence over the past decade, given its

consistently higher payoffs relative to other fields?

To assess the long-run elasticity of research labor supply and its trend, we estimate the

following panel regression for each 10-year window from 1980 to 2015:

∆10 ln (Lk,t) = αl
d + ηl

d∆10 ln (Wk,t) + χt + γk + ϵl
k,t, d ∈ {1980, 1985, . . . , 2015}. (18)

Here, ∆10 ln (Lk,t) and ∆10 ln (Wk,t) denote the 10-year growth rates of research labor supply

and expected monetary payoff to research, respectively. As in regression (17), we instrument
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∆10 ln (Wk,t) using the 10-year growth rates of the average unadjusted patent value (Ŵk,t) and

the average real output of innovating firms (Ŷk,t).

Figure 5: Long-run research supply elasticity has been declining
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Note: Point estimates of long-run research labor supply elasticity (circle marker) from 1980 to 2015 with the 95%
confidence intervals (shaded area), estimated with 10-year rolling windows.

Figure 5 shows point estimates (circle markers) of the long-run elasticity of research labor

supply from 1980 to 2015, with 95% confidence intervals (shaded area). Two key findings emerge.

First, long-run elasticity has declined, mirroring the short-run trend. Second, long-run elasticities

(0.12-0.3) exceed short-run elasticities (0.05-0.18), as learning barriers are lower over time. While

a biologist cannot shift to computer science in a year, an undergraduate in biology can do so in

graduate school if the expected payoff justifies it.

Fact 3: The elasticity of research labor supply is heterogeneous

The elasticity of research labor supply may vary across fields. Some fields are more accessible,

allowing new entrants to quickly master frontier knowledge and innovate, leading to high labor

supply elasticity. In contrast, fields with steep learning curves or highly specialized knowledge

favor incumbents, making entry more difficult and resulting in a lower elasticity of labor supply,

particularly in the short run.

To quantify the field-specific elasticity of research labor supply, we estimate the regression

for each of 127 research fields:

∆ ln (Nk,t) = αk + ηk∆ ln (Wk,t) + ϵk,t,
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where ηk, our coefficient of interest, measures the elasticity of research labor supply in field

k. Consistent with our previous analysis, we instrument ∆ ln (Wk,t) using log changes in the

unadjusted average patent value and the average size of innovating firms.

Panel (A) of Figure 6 presents the distribution of ηk across 129 CPC classes, highlighting

substantial variation in ηk across fields.14 For instance, Electronic Circuitry exhibits the highest

elasticity at ηk = 2.27, while Static Stores has the lowest positive elasticity at ηk = 0.016. A few

fields show negative elasticities, likely due to measurement errors.

Figure 6: Estimates for the elasticities of the labor supply of researchers across fields and
industries
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Panel (A) estimates across fields (CPC classification); Panel (B) estimates across industries (four-digit NAICS
industry classification). x-axis: estimates of ηk, y-axis: frequency.

Industries vary in their exposure to research fields. For example, patents filed by firms in

Nursing and Residential Care Facilities (a four-digit NAICS industry) are predominantly in

Organic Chemistry. These differences imply that research labor supply elasticities also vary

across industries. We define industry j’s research labor supply elasticity as ηj = ∑k ωj,kηk, where

ωj,k represents industry j’s exposure to research field k, measured as the fraction of its patents

belonging to field k, ensuring ∑k ωj,k = 1.15 Panel (B) of Figure 6 displays the distribution of ηj

across 297 four-digit NAICS industries, revealing substantial variation in research labor supply

elasticity across industries.

Analogously, we estimate the long-run field-specific elasticity of research labor supply, ηl
k,

14For 3 out of 132 CPC classes, elasticities could not be estimated due to insufficient observations.
15An alternative approach assigns weights using textual analysis of patent documents to assess industries’

technological components, as in Goldschlag et al. (2020).
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with the regression:

∆10 ln(Nk,t) = αl
k + ηl

k∆10 ln(Wk,t) + ϵk,t,

and compute the long-run industry-specific elasticity of research labor supply ηl
j = ∑k ωj,kηl

k.

Column (1) of Table 3 shows that long-run elasticities are positively correlated with short-run

elasticities across fields, though the correlation is modest, (R2 = 0.1). This weak relationship may

stem from differences in entry barriers across time horizons. Column (2) indicates that long-run

elasticities are weakly and negatively correlated with short-run elasticities across industries. As

we will show later, only short-run elasticities influence incumbent firms’ strategic R&D decisions.

Table 3: Long-run vs. short-run elasticities

(1) (2)
Dependent variables Short-run field elasticity Short-run industry elasticity
Long-run field elasticity 0.20***

(0.05)
Long-run industry elasticity -0.08*

(0.05)
Adj R-squared 0.10 0.01
Observations 129 297

The dependent variables are the short-run field- and industry-specific elasticities of research labor supply. The
independent variables are their corresponding long-run elasticities.

Alternative measurement of researchers’ labor supply and payoff. An alternative measure

of innovators’ labor supply is employment in research occupations, which we link to payoffs us-

ing the BLS Occupational Employment Survey (OES). This dataset provides annual employment

and wage data at the 3-digit NAICS industry and detailed occupation levels since 2001. Research

occupations include Computer and Mathematical Occupations (15-0000) and Life, Physical,

and Social Science Occupations (19-0000). Unlike inventors, who can work in any occupation,

research occupation workers may not produce patents (e.g., they may publish academic papers).

While inventors are the closest empirical counterpart to researchers in our model, research

occupation data serve as a complementary measure.

We estimate the labor supply elasticity for any occupation group Ω using:

∆ ln
(
empi,j,t

)
= α + η∆ ln

(
wi,j,t

)
+ χt + γi + κj + ϵi,j,t, (19)

where i ∈ Ω, and the dependent variable is the employment growth rate for occupation i in
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industry j. The key independent variable is the real wage growth rate.

Using current wages (wi,j,t) offers greater accuracy and avoids assumptions about stock

market efficiency. However, wages capture only a fraction of the total payoff (Wi,j,t), which also

includes future wages and non-wage components such as bonuses and promotions.

To address endogeneity from exogenous shifts in the labor supply curve, we instrument

wage growth using a Bartik instrument (Bartik, 1991; Blanchard and Katz, 1992), constructed as:

̂∆ ln(wj,t) = ∑
p

sj,p · ∆ ln(wp,t),

where sj,p denotes industry j’s employment share in state p in 2000, capturing its initial geo-

graphical distribution and predetermined exposure to regional income growth. The variable

∆ ln(wp,t) is the growth rate of real personal income per capita in state p, shaped by sectoral and

occupational wage growth, demographic trends, migration, and living cost changes. The moti-

vation for this instrument is that neither sj,p nor ∆ ln(wp,t) is likely to be significantly influenced

by exogenous changes in the employment growth of any specific occupation-industry cell.

Table 4: The labor supply and wage for research and non-research occupations

(1) (2) (3)
Occupations All Research occupations Non-research occupations
∆ln

(
wj,t
)

19.35*** 2.57 20.36***
(5.91) (2.46) (6.56)

Industry FE Yes Yes Yes
Occupation FE Yes Yes Yes
Time FE Yes Yes Yes
Observations 322,498 2,031 320,467

The data span 1970-2019 with yearly observations. The dependent variable is the log change in the number of
employees. The independent variable is the log change in the mean annual wage. The instrumental variable is a
Bartik instrument based on the geographical exposure of the industries in 2000.

Column (1) of Table 4 shows that a 1% increase in occupation-industry-specific wage growth

corresponds to a 19.35% rise in employment growth. Column (2) reports results for research

occupations, where the wage growth coefficient is smaller and not statistically significant.

Column (3) shows that for non-research occupations, the estimate is statistically significant

and exceeds the full-sample estimate. These findings suggest that research labor supply is

considerably more inelastic than that of non-research occupations.

A key limitation of using current wages to measure the payoff is the omission of future wages
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and non-wage compensation. This makes the estimated elasticity sensitive to wage rigidity and

payment structures. This issue is particularly relevant when examining cross-industry variations

in research labor supply elasticities, as industries differ in compensation schemes.

Therefore, in the next section, we use research labor supply elasticities estimated from

inventor data to test the paper’s main mechanism.

5 The effects of R&D by incumbent firms
This section establishes three key facts about the impact of incumbent firms’ R&D on firm

entry and industry TFP. First, incumbent R&D spending deters new firm entry within the same

industry. Second, higher R&D investment slows sectoral productivity growth. Third, R&D

extends a firm’s lifespan by increasing productivity and limiting competition. These effects are

stronger in industries with low research labor supply elasticity. Since these findings align with

our model’s predictions, we interpret them as evidence supporting the empirical relevance of

defensive hiring.

We use three datasets to assess the impact of incumbent firms’ R&D on firm entry and firm-

and industry-level TFP. Our primary firm-level dataset, Compustat Fundamental Annual, tracks

listed firms’ sales, profits, employment, and R&D expenditures from 1950 to 2021. We focus on

domestic firms, excluding international and multinational companies with at least one foreign

segment. For domestic firms, we set negative R&D expenditures to zero, winsorize the top 1%

of the R&D distribution, and add one unit to all expenditures to preserve firms with zero R&D

when taking logarithms.

We obtain sectoral TFP data from the Bureau of Labor Statistics (BLS), which provides annual

series from 1987 to 2019 for 90 four-digit NAICS industries, primarily in manufacturing (e.g.,

Plastics Product Manufacturing).

For firm entry, we use the Business Dynamics Statistics (BDS) dataset from the US Census

Bureau, which reports firm counts by age group (0 to 26+ years) at the industry level. This

dataset spans 281 four-digit NAICS industries from 1978 to 2019. We classify zero-age firms as

new entrants and compute the entry rate as their share of total firms.
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Fact 4. Incumbent R&D negatively predicts firm entry for industries with

inelastic research labor supply

First, we examine the relationship between incumbent R&D and new firm entry by estimating

the following regression at the four-digit NAICS industry level:

Entryj,t+5 = α + βR&Dj,t + γj + χt + ϵi,j,t, (20)

where the dependent variable, Entryj,t+5, is industry j’s average entry rate from t + 1 to t + 5,

measured as the share of newly created firms among all firms in the BDS dataset. The key

independent variable, R&Dj,t, is the logarithm of total R&D expenditure by incumbent firms in

industry j. Industry and year fixed effects, γj and χt, control for unobserved heterogeneity.

Column (1) of Table 5 reports the estimation result: a 1% increase in incumbent firms’ R&D

predicts a 0.76 percentage point decline in firm entry within the same industry over the next five

years –an economically significant effect.

Table 5: Incumbent R&D expenditure and firm entry: panel estimation

(1) (2) (3) (4)
Dependent variable Entry rate (t+5), BDS Listing rate (t+5), Compustat
R&Dj,t -0.76*** -1.68*** -0.66*** -1.26***

(0.07) (0.13) (0.08) (0.14)
R&Dj,t × ηj 1.80*** 1.08***

(0.13) (0.22)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.82 0.83 0.61 0.62
Observations 1,339 1,339 1,696 1,677

The data span 1970-2019 with yearly observations. The dependent variable is the average entry rate over the next
five years. The key independent variables are the average R&D expenditure of incumbent firms (R&D) and the
research labor supply elasticity (η).

Next, we examine how research labor supply elasticity moderates the impact of incumbent

firms’ R&D on firm entry by including an interaction term, R&Dj,t × ηj, in the regression.

Column (2) presents the results. The positive coefficient on the interaction term suggests that

the negative relationship between incumbent R&D and firm entry is stronger in industries with

inelastic research labor supply (i.e., low ηj). For instance, a 1% increase in incumbent R&D

spending predicts a 2.45% decline in firm entry over the next five years when research labor
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supply is fully inelastic (ηj = 0). Conversely, in industries with high ηj, the relationship weakens

or even turns positive.

A key concern with including the interaction term is that the industry-specific elasticity of

research labor supply (ηj) may correlate with other industry characteristics, such as size. In this

case, the positive coefficient on R&Dj,t × ηj could reflect differences in the effect of incumbent

R&D on firm entry across these characteristics rather than labor supply elasticity.

Table 6: Research supply elasticity and industry characteristics: cross-sectional analysis

(1) (2) (3) (4) (5)
Dep var Value-added Research emp share Wage Employment HHI
ηj -0.64 -0.17 -0.21 0.09 -131.10

(1.09) (0.84) (0.16) (0.68) (131.58)
Observations 49 79 79 79 65

The dependent variables are the value-added to GDP ratio, the employment share of research-related occupations,
the log of industry average wage, the log of industry employment, and the Herfindahl-Hirschman Index. The
variable ηj is the elasticity of research labor supply.

To address this concern, we regress industry characteristics on ηj. These characteristics

include the industry value-added to GDP ratio (measuring size), the employment share of

research-related occupations (researcher supply), log industry average wage (proxy for tech-

nology level), log industry employment (labor market scale), and the Herfindahl-Hirschman

Index (HHI) (industry concentration). Table 6 shows that none of these controls are significantly

correlated with ηj, suggesting that the positive coefficient on R&Dj,t × ηj is unlikely driven by

industry characteristics.16

Finally, we examine whether incumbent R&D negatively correlates with the industry’s listing

rate –the probability that an unlisted firm goes public, reflecting growth opportunities for

younger, smaller firms. To test this, we replace the dependent variable in equation (20) with the

five-year average listing rate (new listings as a share of total listings).

Columns (3) and (4) of Table 5 show that high incumbent R&D predicts a lower listing

rate. This effect is stronger in industries with an inelastic research labor supply, as indicated

by the positive coefficient on the interaction term. These findings suggest that incumbent R&D

16While ηj could, in principle, influence industry characteristics such as researcher supply and concentration,
these factors are largely shaped by technological intensity and entry barriers. Thus, their observed correlation with
ηj is insignificant.
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spending hinders competitors from becoming publicly traded, particularly in industries where

research labor supply is inelastic.17

Fact 5. R&D by the incumbent negatively predicts productivity growth for

industries with inelastic research labor supply

Next, we show that incumbent R&D negatively affects the productivity growth of other firms

in the same industry, particularly in industries with a low elasticity of research labor supply.

We measure the spillover effect of listed companies’ R&D on the productivity growth of other

listed firms in the same industry by estimating the firm-level regression:

∆z−i,j,t+5 = α + βR&Di,j,t + γj + χt + ϵi,j,t, (21)

where the key independent variable, R&Di,j,t, is the logarithm of R&D expenditure for listed

company i. The dependent variable, ∆z−i,j,t+5, represents the labor productivity growth of all

other listed firms in industry j from t to t + 5.

The average labor productivity of listed firms in industry j, excluding company i, is calculated

as:

z−i,j,t =
∑i′∈Ψj,t\i yi′,j,t

∑i′∈Ψj,t\i li′,j,t
,

where Ψj,t\i is the set of listed firms in industry j with employment data, excluding firm i. Here,

yi′,j,t and li′,j,t denote company sales and employment, respectively. Consequently, ∆z−i,j,t+5 is

computed as (z−i,j,t+5/z−i,j,t − 1)/5.

Column (1) of Table 7 shows that a listed company’s R&D expenditure is negatively correlated

with labor productivity growth in other listed firms within the same industry. This relationship

arises from two opposing forces. On one hand, R&D reduces researcher availability, limiting

productivity growth when labor supply is scarce. On the other hand, R&D fosters productivity

through knowledge spillovers, especially among technologically proximate firms (Bloom et al.,

2013; Fernández-Villaverde et al., 2024). However, the negative spillover effect prevails.

Next, we show that this negative effect is particularly pronounced in industries with an

inelastic research labor supply. Specifically, we examine how research labor supply elasticity

17As a robustness check, Table B.5 in Appendix B confirms that the results remain significant when using entry
and listing rates over the next one and three years as alternative dependent variables.
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Table 7: Incumbent R&D expenditure and sectoral productivity: panel

(1) (2) (3) (4)
Dependent variable ∆z−i,j,t+5 ∆zj,t+5
R&Di,j,t -0.09* -0.24**

(0.05) (0.10)
R&Di,j,t × ηj 0.22*

(0.13)
R&Dj,t -0.01* -0.03***

(0.004) (0.01)
R&Dj,t × ηj 0.03**

(0.01)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.14 0.14 0.56 0.56
Observations 39,299 39,271 589 589

The data span 1970-2019 with yearly observations. The dependent variable is the productivity growth rate
(percentage points). The key independent variables are R&D expenditure (R&D) and research labor supply
elasticity (η).

moderates the spillover effect of firms’ R&D on other firms’ productivity growth by including

an interaction term, ηj × R&Di,j,t, in the regression. This term captures how a firm’s R&D and

research labor supply elasticity jointly influence the productivity of other listed firms.

The positive interaction term in Column (2) of Table 7 indicates that a firm’s R&D exerts a

stronger negative spillover on other firms’ productivity growth in industries with a low elasticity

of research labor supply. A 1% increase in a listed company’s R&D spending corresponds to a

0.24% decline in labor productivity growth for other listed firms when research labor supply is

fully inelastic (ηj = 0), a stronger effect than the unconditional estimate in Column (1).

Since incumbent R&D negatively predicts both the productivity growth of other incumbents

and firm entry in industries with an inelastic research labor supply, it follows naturally that

incumbent R&D should also negatively predict industry TFP growth in such industries.

To test this hypothesis, we use four-digit NAICS industry-level data to estimate the regression:

∆zj,t+5 = a + bR&Dj,t + cηj × R&Dj,t + γj + χt + ϵj,t, (22)

where the dependent variable, ∆zj,t+5, represents industry j’s yearly TFP growth from t to t + 5,

as constructed by the BLS. The key independent variable, R&Dj,t, is the logarithm of total R&D

expenditure by listed companies in industry j.
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Column (3) of Table 7 shows that listed companies’ R&D expenditure negatively predicts

industry TFP growth, with a 1% increase in R&D spending associated with a 0.01 percentage

point decline in yearly TFP growth over the next five years. Column (4) further indicates that this

negative relationship is significantly stronger in industries with inelastic research labor supply.

Specifically, when ηj = 0, a 1% increase in R&D spending corresponds to a 0.03 percentage point

decline in yearly TFP growth –three times the unconditional estimate in Column (3).

At first glance, this result may seem to contradict the view that R&D drives economic growth.

However, two factors clarify this interpretation. First, our regression omits positive R&D

spillover effects across industries, which play a crucial role in growth (Cai and Li, 2019). Second,

industry fixed effects remove the stable, positive R&D-productivity growth relationship across

industries. Notably, excluding these fixed effects turns the R&D coefficient positive, consistent

with Jones and Williams (1998, ft. 14, p. 1131), who find that the R&D-productivity link depends

on long-run cross-industry comovement.

Table B.6 in Appendix B shows that incumbent R&D expenditure is not significantly related

to productivity growth over one- or three-year horizons. This aligns with the notion that

creative destruction and innovation require time to meaningfully impact measured productivity

(Brynjolfsson et al., 2021).

Fact 6. Incumbent R&D increases the lifespan of the incumbent firms in

industries with inelastic research labor supply

Given the adverse impact of incumbent R&D on competitor entry, public listing, and produc-

tivity growth, it follows that R&D likely extends incumbents’ lifespan –a primary concern and

key motivation for defensive hiring.

We test this hypothesis by estimating the following cross-sectional regression:

Li f eExpi,j = α + βR&Di,j + Rvni,j + γj + Birthi,j + ϵi,j, (23)

where the dependent variable, Li f eExpi,j, represents the lifespan of listed company i in industry j,

measured as the number of years between its listing and delisting. The key independent variable,

R&Di,j, is the logarithm of company i’s average R&D expenditure. To ensure comparability

among firms within the same industry and listing year, we control for industry fixed effects, γj,

and listing year fixed effects, Birthi,j. To align with our research labor elasticity measure, we
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restrict the sample to firms listed after 1970 (the start of our patent data) and delisted before 2019

(its endpoint).

Column (1) of Table 8 shows that increasing a company’s R&D expenditure by 10% is

associated with a 0.067-year (0.1 × 0.67) increase in lifespan. This association may suggest that

R&D investments enhance a company’s competitiveness and help mitigate challenges from

potential competitors. Alternatively, it could be that more competitive companies tend to allocate

more resources to R&D and also enjoy longer lifespans as a result of their initial competitiveness.

Column (2) of Table 8 presents results with the interaction term ηj × R&Di,j. The negative

coefficient suggests that R&D has a stronger association with firm lifespan in industries with

a lower elasticity of research labor supply and a weaker association in industries with higher

elasticity. This finding aligns with the causal effect of R&D on lifespan. Intuitively, in industries

with an inelastic research labor supply, incumbents can more effectively leverage monopsony

power to shield themselves from creative destruction. Using the previous calculation, in an

industry with a completely inelastic research labor supply (ηj = 0), a 10% increase in R&D

expenditure extends a firm’s lifespan by 0.083 years.

Table 8: Incumbent R&D expenditure and lifespan of the incumbent firm: cross-sectional analysis

(1) (2)
Dependent variable Lifespan
R&Di,j 0.67*** 0.83***

(0.04) (0.13)
R&Di,j × ηj -0.24**

(0.21)
Industry FE Yes Yes
Cohort FE Yes Yes
Adj R-squared 0.41 0.41
Observations 7,429 7,392

The data span 1970-2019 with yearly observations. The dependent variable is the incumbent firms’ lifespan. The key
independent variables include the logarithm of average R&D expenditure (R&D), research labor supply elasticity
(η), and the logarithm of average revenues from sales (Revenue).

Finally, Tables B.7-B.9 in Appendix B show that Facts 4-6 do not hold for long-run research la-

bor supply elasticities. Specifically, the interaction term between long-run labor supply elasticity

and incumbent R&D (ηl
j × R&Dj,t) is not statistically significant. This finding will motivate the

extension of our quantitative model below to incorporate both margins.
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6 Quantitative general equilibrium model
Empirical evidence from the last two sections motivates extending our model into a general

equilibrium framework for quantitative analysis and policy evaluation. The key extensions

focus on workers. First, we allow occupational choices, making aggregate research labor supply

endogenous to sectoral wages. Second, researchers can switch sectors at a cost, determining

sectoral labor supply elasticity endogenously. Third, switches may be immediate or delayed,

generating different supply elasticities over time, as observed in the data.

6.1 Environment and occupational choice

The economy consists of J sectors (j ∈ {1, . . . , J}), each producing a distinct intermediate

good assembled into homogeneous final goods. A continuum of workers i ∈ [0, L], where L

is total labor supply, choose between two occupations: production (p) or research (r).18 For

simplicity, all workers have homogeneous productivity across occupations.

Consumption of final goods, Ci,t, equals total income: wage (wi,t, which depends on occupa-

tion) plus capital income (Πi,t) from firm ownership. We denote production and R&D wages as

wp
t and wr

t , respectively.

Workers have heterogeneous occupational preferences. Specifically, worker i’s utility is

log(Ci,t) in production and log(Ci,t − di,t) in research, where di,t represents worker-specific costs

for research, such as training and learning, reducing utility. Workers with higher di,t prefer

production over research. We assume di,t increases with worker index i and follows:

di,t = wp
t · (b1 + b2 · i/L) , b2 > 0. (24)

Scaling di,t by wp
t ensures stationarity along the balanced growth path (BGP).

Each period, a threshold i∗(t) determines occupations: workers in [0, i∗(t)] become re-

searchers, while those in (i∗(t), L] enter production. The total number of researchers is Nr
t = i∗(t)

and the total number of production workers is Np
t = L − i∗(t).

Workers at the threshold are indifferent between occupations, equating utilities:

log
(

wp
t + Πi∗(t),t

)
= log

(
wr

t + Πi∗(t),t − di∗(t),t

)
. (25)

The left-hand side represents the utility of a worker choosing production, while the right-hand

18Population is fixed, and relaxing this assumption does not affect the results.
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side represents utility in research. This implies di∗(t),t = wr
t − wp

t , or using equation (24):

wp
t · (b1 + b2 · i∗(t)/L) = wr

t − wp
t .

Substituting i∗(t) = Nr
t gives:

Nr
t

L
=

1
b2

(
wr

t − wp
t

wp
t

)
− b1

b2
, (26)

that is, the researcher share Nr
t /L rises with the wage premium (wr

t − wp
t )/wp

t . The slope 1/b2

determines the elasticity of the aggregate research labor supply, while the intercept −b1/b2

sets its steady-state level. At the end of each period, workers separate from jobs and choose

occupations ex novo.

6.2 The allocation of researchers

After workers make their occupational choices, researchers are randomly and evenly dis-

tributed across the J sectors. This results in an initial sectoral research labor supply of nr
j,t =

nr
t ≡ nr

t in each sector j. In the symmetric equilibrium, wages are equalized across sectors, such

that wr
j,t = wr

t , ensuring that researchers have no incentive to move between sectors.

Next, we derive the sectoral labor supply for researchers. To do this, we allow sector j

to deviate from the homogeneous research wage wr
t by setting wr

j,t ̸= wr
t , while other sectors

maintain wr
−j,t = wr

t . Although this deviation would not occur in a symmetric equilibrium, it is

crucial to understand the impact on sectoral research labor supply, as it plays a significant role

in the incumbent firms’ wage and hiring decisions.

The wage differential between sector j and the other sectors incentivizes researchers to

move from lower- to higher-paying sectors. However, switching sectors incurs a cost, which

determines the extent of the sectoral reallocation of researchers.

Following Alvarez and Shimer (2011), we call researchers who switch to another sector

“switchers.” We denote with mt the measure of potential job switchers:

mt =

nr
t , if wr

j,t < wr
t ,

(J − 1)nr
t , if wr

j,t > wr
t .

In the first case, researchers in sector j (with a measure of nr
t), where the wage is lower, are

the potential switchers. In the second case, researchers in the other sectors (with a measure of
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(J − 1)nr
t) become the potential switchers.

These potential job switchers randomly draw a switching cost from the i.i.d. uniform dis-

tribution U (0, ξt), where ξt is the maximum switching cost, determined by ξt = ξwr
t mt/nr

t ,

where ξ is a parameter that scales the switching cost. A higher ξ makes job switching costlier

and implies a lower measure of job switchers, consequently reducing the elasticity of the labor

supply for researchers. We scale the switching cost with wr
t to preserve stationarity in the BGP.

Consistent with the standard assumption of convex adjustment costs, implying that the marginal

adjustment cost increases in the level of adjustment, we assume that the job switching costs are

proportional to the share of potential job switchers in research labor in each sector, captured by

the term mt/nr
t .

Potential switchers with switching costs below the expected wage increase will choose to

switch. If a researcher pays the cost, the transition occurs with probability q in the current period

and 1 − q in the next. We refer to the former as short-run switchers and the latter as long-run

switchers. The measure of switchers to sector j, denoted m̂j,t, is given by:

m̂j,t =
(wr

j,t/wr
t − 1)nr

t

ξ
. (27)

This measure is positive (negative) if wj,t > wt (wj,t < wt). Its absolute value increases with the

wage gap between sector j and the other sectors and decreases with ξ. Appendix D provides

the full derivation of equation (27). Among switchers, a measure of qm̂j,t arrives in t, while

(1 − q)m̂j,t arrives in t + 1.

The labor supply for research workers in sector j is the sum of the initial research labor supply

nr
t and the inflow of short-run switchers, qm̂j,t, and the inflow of long-run switchers who move

based on decisions made at t − 1, (1 − q)m̂j,t−1: Lj,t = nr
t + qm̂j,t + (1 − q)m̂j,t−1, which can be

rewritten to the more familiar form:

Lj,t − nr
t

nr
t

=

Short-run switchers︷ ︸︸ ︷
1
ξ

(
wr

j,t − wr
t

wr
t

)
+

Long-run switchers︷ ︸︸ ︷
(1 − q)

qξ

nr
t−1
nr

t

(
wr

j,t−1 − wr
t−1

wr
t−1

)
, (28)

where ξ = ξ/q. The detailed derivation of equation (28) is provided in Appendix D. The first

term on the right-hand side of equation (28) represents short-term switchers who move to sector

j based on decisions made at t. The second term represents long-term switchers who move based
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on decisions made at t − 1.19 Equation (28) shows that the short-run elasticity of the sectoral

research labor supply is 1/ξ around the symmetric equilibrium (i.e., wr
j,t = wr

t and L(wr
j,t) = nr

t),

and it is the theoretical counterpart of the parameter η in our empirical analysis (see equation

17). Long-run elasticity is 1/(qξ), and it is the theoretical counterpart of the parameter ηl (see

equation 18).20 Long-run elasticity exceeds short-run elasticity. Both decrease as switching costs

(ξ) rise. Given the same ξ, long-run elasticity decreases as the fraction of short-run switchers (q)

increases.

6.3 The production sectors

Final goods are produced competitively using intermediate inputs, according to the produc-

tion function:

ln(Yt) =
1
J

J

∑
j=1

ln(Yj,t),

where Yj,t is the intermediate input from sector j. Since the model omits investment, and R&D

forgoes using final goods, consumption is equal to output: Ct = Yt.

Profit maximization for the representative final-goods producer implies the demand function

for the intermediate input j, Yj,t =
YtPt
Pj,t

, where Pj,t is the price of intermediate good j charged by

the monopolist producer in sector j, and Pt is the price of final goods, which is our numeraire.

Each sector j comprises an incumbent firm and a continuum of potential entrants that employ

researchers to innovate. The incumbent produces intermediate good j according to the linear

production technology Yj,t = Aj,tLj,t, where Aj,t is sectoral productivity and Lj,t is the labor

input of production workers in sector j.

Sectoral productivity improves with innovation according to the law of motion:

Aj,t =

γAt−1, with probability f j,I,t + f j,E,t,

At−1, with probability 1 − f j,I,t − f j,E,t,
(29)

where γ > 1 is the improvement in the quality of output consequent to the successful innovation,

f j,I,t and f j,E,t are the incumbent’s and entrants’ innovation probabilities, respectively, and At−1

is the common technological frontier of the economy at the end of period t − 1, defined by

19We ignore researchers who qualify as both long-run (with sufficiently low ξi,t) and short-run switchers (with
sufficiently low ξi,t+1), as their measure is negligible.

20The derivation of the model-implied elasticities are provided in Appendix D.
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the highest technology across sectors At−1 = maxj Aj,t−1, which can either be enhanced by

the innovation undertaken by either the incumbent or the entrants or remain the same if the

innovation is unsuccessful:

At =

γAt−1 with probability 1 − ∏J
j=1

(
1 − f j,I,t − f j,E,t

)
,

At−1 with probability ∏J
j=1

(
1 − f j,I,t − f j,E,t

)
,

(30)

where ∏J
j=1

(
1 − f j,I,t − f j,E,t

)
is the probability of unsuccessful innovation across the different

sectors J in period t. Equations (29) and (30) assume that each sector has access to the world

technological frontier achieved in the preceding period t − 1. 21

In the monopolistic-competitive production market, the incumbent sets the price to max-

imize profits. The incumbent’s operating profit, net of R&D expenditures, is equal to πj,t =(
Pj,t − mcj,t

)
Yj,t, where the marginal cost mcj,t is equal to mcj,t =

wp
t

Aj,t
, increasing with the pro-

duction wage (wp
t ) and decreasing with sectoral productivity (Aj,t). The incumbent faces a

competitive fringe of imitators that have access to the technological frontier At−1, and produce

the intermediate good at a higher marginal cost m̂cj,t =
χwp

t
At−1

, since χ > 1.

The incumbent sets the price equal to the imitators’ marginal cost, Pj,t = m̂cj,t, which is

uniform across sectors. Thus, all incumbents charge Pj,t = Pt = 1, implying Yj,t = Yt and

m̂cj,t = 1. This ensures sectoral output is identical, and the production wage is proportional to

the technological frontier, wp
t = At−1/χ. Given wp

t , the incumbent’s marginal cost and operating

profit net of R&D expenditures are:

mcj,t =


1

γχ if innovating,

1
χ if not innovating,

and πj,t =


(

1 − 1
γχ

)
Yj,t if innovating,(

1 − 1
χ

)
Yj,t if not innovating,

respectively.

6.4 Equilibrium final output

In equilibrium, final output depends on sectoral productivity and the allocation of production

workers. By the law of large numbers, productivity is γAt−1 in the fraction f I,t + fE,t of sectors

with successful innovation, and At−1 in the remaining sectors. Since all sectors share the same

21This simplifying assumption allows us to abstract from the heterogeneity across sectors consequent to the
sectoral stochastic innovations and the delays in the adoption of the latest technology. In this way, the equilibrium
is symmetric, with the same wage for researchers across sectors, and we forgo tracking the distance from the
technological frontier in each sector.
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innovation probability, we omit sector indices for brevity. Let Ls,t and Lu,t denote the allocation

of production workers in sectors with successful and unsuccessful innovation, respectively.

We solve the model by imposing the condition that output is equal across sectors:

At−1Ls,t = γAt−1Lu,t = Yt, (31)

and the labor market for the production workers clears:

Ls,t ( f I,t + fE,t) + Lu,t (1 − f I,t − fE,t) = Np
t , (32)

where Np
t is the total measure of production workers.

Using the equilibrium conditions (31)) and (32), final output is equal to:

Yt =
γAt−1Np

t
( f I,t + fE,t) γ + (1 − f I,t − fE,t)

,

which increases with the past technological frontier, the measure of production workers, and the

size of the innovation.

6.5 Entry decision

Each sector has a continuum of potential entrants with varying R&D efficiency k, distributed

according to the cumulative density function Ψ(k). The total measure of potential entrants is

ψ = Ψ(+∞).

The value of the innovating entrant (VE,j,t) is:

VE,j,t =

(
1 − 1

γχ

)
Yj,t − ιYj,t +

EtVI,j,t+1

1 + rt
,

where (1− 1/γχ)Yj,t is the entrant’s operating profit net of R&D expenditure, and ιYj,t represents

the fixed entry cost. A higher ι raises entry barriers, deterring new firms. VI,j,t+1 is the value of

becoming an incumbent upon successful innovation, discounted by the interest rate rt. The log

utility function implies that the interest rate is proportional to consumption growth, as given by

the Euler equation, rt = − ln(β) + Et∆ ln(Ct+1), where β is the discount factor.

Each entrant employs a unit measure of researchers, compensated at the equilibrium wage.

Entry occurs if the expected value is non-negative. The free-entry condition determines the

threshold R&D efficiency required for entry:

kj,tVE,j,t − wr
j,t = 0, (33)

where kj,t represents the threshold innovation probability for entrants ensuring non-negative
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VE,j,t. This threshold rises with researcher wages wr
j,t and falls with the value of innovation VE,j,t.

The employment of researchers and the probability of successful innovation by entrants are

equal to:

nj,E,t =
∫ +∞

kj,t

1dΨ (k) = ψ − Ψ(kj,t) and f j,E,t =
∫ +∞

kj,t

kdΨ (k) , (34)

respectively. Equations (33) and (34) show that researcher employment and the probability of

successful innovation by entrants decline with the threshold R&D efficiency kj,t and researcher

wages wr
j,t.

6.6 Wage setting of the incumbent

The incumbent selects researcher wages wr
j,t and employment nj,I,t to maximize the firm’s

continuation value, Vj,I,t:

Vj,I,t(wr
j,t−1) = max

wr
j,t

ϕnj,I,t

(
1 − 1

γχ

)
Yj,t +

(
1 − ϕnj,I,t − f j,E,t

) (
1 − 1

χ

)
Yj,t

− nj,I,twr
j,t +

(
1 − f j,E,t

) EtVj,I,t+1(wr
j,t)

1 + rt
, (35)

subject to the market-clearing condition for researchers in sector j: nj,I,t + nj,E,t = L(wr
j,t). Note

that in equation (35), the previous period’s wage is a state variable because it affects the current

research labor supply by influencing long-term switchers from the prior period.

Equation (35) shows that the incumbent’s value comprises four elements: (i) the operating

profit if innovation succeeds, (1 − 1/γχ)Yj,t, occurring with probability ϕnj,I,t, where ϕ is the

incumbent’s R&D efficiency; (ii) the operating profit if neither the incumbent nor entrants inno-

vate, (1 − 1/χ)Yj,t, occurring with probability 1 − ϕnj,I,t − f j,E,t; (iii) researcher wage payments,

nj,I,twr
j,t; and (iv) the discounted continuation value if new entrants fail to innovate and displace

the incumbent, (1 − f j,E,t)Vj,I,t+1/(1 + rt).

For simplicity, we assume the incumbent treats Vj,I,t+1 as exogenous and does not internalize

its innovation’s effect on the technological frontier, At. This assumption is reasonable since a

single firm’s innovation has a negligible effect on the economy’s technological frontier. The

market-clearing condition implies that an increase in researcher wages, wr
j,t, raises the sector’s

labor supply, L(wr
j,t), while reducing entrants’ employment, nj,E,t.
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Substituting the labor market-clearing condition into the Bellman equation (35), we obtain

the incumbent’s first-order condition with respect to the wage:

ϕ
∂nj,I,t

∂wr
j,t

∆πj,t +
d f j,E,t

dwr
j,t

V̂j,t −
∂nj,I,t

∂wr
j,t

wr
j,t − nj,I,t +

(
1 − f j,E,t

1 + rt

)
dEtVj,I,t+1

dwr
j,t

= 0, (36)

where ∆πj,t =
(

1
χ − 1

γχ

)
Yj,t is the incremental profit from the incumbent’s innovation, and

V̂j,t = (1 − 1/χ)Yj,t + EtVj,I,t+1/ (1 + rt) represents the incumbent’s value loss due to creative

destruction. The last term on the left-hand side of equation (36) measures the impact of wages

on the continuation value by attracting long-term switchers to this sector in the next period, a

phenomenon we refer to as the dynamic attraction effect.

The dynamic attraction effect is determined by the envelope condition of the Bellman equation

(35) with respect to the previous period’s wage:
dVj,I,t

dwr
j,t−1

= ϕ
∂nj,I,t

∂wr
j,t−1

∆πj,t −
∂nj,I,t

∂wr
j,t−1

wr
j,t. (37)

This equation has two components: one reflects the effect of the previous wage on the incum-

bent’s current innovation, and the other captures its positive impact on current wage costs.

The sign of the dynamic attraction effect is negative, meaning that a high wage reduces future

value, if ϕ∆πj,t < wr
j,t (the wage exceeds the marginal profit return). Moreover, the magnitude

of the dynamic attraction effect is proportional to ∂nj,I,t/∂wr
j,t−1, as determined by equation (28):

∂nj,I,t

∂wr
j,t−1

=
∂Lj,t

∂wr
j,t−1

=
(1 − q)

qξ

nr
t−1

wr
t−1

, (38)

which declines with the share of short-run switchers q. Intuitively, a lower q increases the

relevance of long-run switchers, strengthening the dynamic effect on the incumbent’s future

value.

Forwarding equations (37) and (38) to the next period and substituting them into equation

(36) yields:

wr
j,t =

mpr︷ ︸︸ ︷
ϕ∆πt −

monopsony︷︸︸︷
nj,I,t −

Defensive hiring︷ ︸︸ ︷
kj,tΨ

′k′j,tV̂t +

Dynamic attraction︷ ︸︸ ︷
Φj,t

(
wr

j,t+1 − ϕ∆πj,t+1

)
Ψ′k′j,t + ∂Lj,t/∂wr

j,t
, (39)

with Φj,t =
(

1− f j,E,t
1+rt

)
(1−q)

qξ
nr

t
wr

t
. Equation (39) indicates that researcher wages consist of four

components: (i) the marginal profit contribution of R&D (mpr), (ii) the “classic monopsony”
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effect, where higher wages reduce profits, (iii) the “defensive hiring” effect, where higher wages

increase survival probability, and (iv) the “dynamic attraction” effect, where higher wages

encourage more hiring in the next period by attracting long-run switchers.

Equation (39) shows that defensive hiring is larger when V̂t (the value to defend) is high.

Moreover, for a given V̂t, defensive hiring is more common when nj,I,t is low (i.e., a smaller R&D

team relative to the researcher pool). This aptly describes top US tech firms: they have large

market valuations but they hire a relatively small share of all relevant researchers, suggesting the

empirical relevance of our model. The influence of the overall distortions caused by defensive

hiring, monopsony power, and dynamic attraction on wages intensifies when the short-run

research labor supply is inelastic, i.e., when ∂Lj,t/∂wr
j,t is low.

6.7 Balanced growth path and calibration

To attain the BGP of the system, we detrend the variables by the growing technological

frontier, At−1. The equilibrium is determined by nine equations governing the nine variables:

wr, k (equivalently, fE), VI , VE, Nr (equivalently, nr, Np, π, and ∆π), nI (equivalently, f I), Y

(equivalently, C), r, and g. Table E.10 in the Appendix summarizes these equations.

We calibrate the model using annual data from 1970-1995, a period characterized by a

relatively high elasticity of researcher labor supply and strong TFP growth, as estimated in

Section 4. This period serves as the benchmark for analyzing the effects of changing the elasticity

of labor supply and policy shifts on equilibrium. Table 9 summarizes our calibration.

We set the discount factor to 0.973, consistent with a 4% risk-free interest rate and a 1.3%

technology growth rate in the BGP, as observed in US data. The number of sectors, J, is set

to two.22 Total population, L, is set to 2, normalizing sectoral population to 1. The imitator

marginal cost, χ = 1.3, replicates the US average markup of 1.3 documented by Hall (2018).

Following Kortum (1997), potential entrants’ R&D efficiency follows a Pareto distribution,

Ψ(k) = ψ[1 − (km/k)λ], where km is the lowest R&D efficiency, λ determines distribution shape,

and ψ is the entrant measure. We normalize km = 0.1 since only ψkλ
m is identifiable (we cannot

separately identify ψ and km). The sector switching cost ξ and the probability of short-run

22Since all sectors adopt the previous period’s technological frontier, BGP growth is approximately γ − 1 and
largely independent of innovation probabilities f I and fE when J is large. A low J ensures f I and fE remain relevant
for growth.
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Table 9: Calibration

Panel (A): Parameters externally calibrated
Parameter Value Description
β 0.973 Discount factor
J 2 The number of sectors
L 2 Population
ξ 3.33 Switching cost
q 0.57 Probability of short-run switching
b2 1/0.74 Coefficient of disutility of research
χ 1.3 Marginal cost of imitators

Panel (B): Parameters internally calibrated
Parameter Value Description
γ 1.053 Innovation size
λ 1.48 Shape of entrants’ R&D efficiency distribution
b1 0.068 Constant term in the disutility of research
ψ 1.49 Measure of potential entrants in each sector
ι 0.57 Fixed cost to the new entrant

switching, q, are set to 3.33 and 0.57, respectively. They jointly match the pre-1995 short-run and

long-run elasticities of research labor supply of 0.17 and 0.3, respectively, as estimated in Section

4.23 The disutility coefficient of research, b2 = 1/0.74, implies an occupational choice elasticity

of 0.74, as estimated by Arcidiacono et al. (2020). We follow standard practice in the literature

and assume low R&D efficiency for incumbents, setting ϕ = km. For example, Akcigit and Ates

(2021) assume that the entrant R&D efficiency is roughly 100 times that of incumbents.

Table 10: Model fit

Moment Model Data
Creative destruction probability 0.13 0.13
Share of research employment 5.5% 5.5%
Research wage premium 12% 12%
Incumbent’s share of research employment 48% 48%
Technological growth rate 0.013 0.013

Five parameters are calibrated internally: innovation size (γ), the shape parameter of the

Pareto distribution (λ), the constant term in the disutility of research (b1), the total measure of

potential entrants (ψ), and the fixed cost for new entrants (ι). These parameters are calibrated to

match five empirical moments: (i) an average entry rate ( fE) of 0.13, as in the BDS data (Figure 1,

23Specifically, the two parameters are solved from 1/ξ = 0.17, 1/qξ = 0.3 and ξ = ξq.
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Panel B); (ii) a research wage premium (wr/wp − 1) of 12%, as observed in the BLS data (Figure

2, Panel D); (iii) a research employment share (n/L) of 5.5%, consistent with BLS data (Figure 2,

Panel B); (iv) an incumbent’s share of research employment of 48%, as documented in Akcigit

and Goldschlag (2023); and (v) a technological growth rate of 1.3% (Figure 1, Panel A). Table 10

shows that our calibrated model successfully replicates these observed moments.

7 Quantitative results
In this section, we first quantify the impact of the declining elasticity of labor supply for

researchers on wages, employment, innovation probability, and research employment share. We

then examine the increasing difficulty of finding ideas and its effects on innovation and creative

destruction, showing how this phenomenon amplifies strategic hiring in the model. Finally, we

study R&D subsidies for both incumbent firms and new entrants and assess the role of dynamic

attraction.

The effect of a higher switching cost. We simulate a 10 percentage point decline in the

short-run elasticity of research labor supply to match the observed drop from 0.17 in the pre-1995

period to 0.07 post-1995, as estimated in Section 4. We implement this decline by increasing

the switching cost ξ from 3.33 to 8.09. This adjustment also implies a reduction in the long-run

elasticity from 0.3 to 0.12, which is consistent with the estimate provided in Section 4.

Table 11: Reduction in the elasticity of researchers’ labor supply of 10 percentage points

(1) (2) (3)
Benchmark High ξ % change

(1) Short-run elasticity of research labor supply 0.17 0.07 -58.8%
(2) Long-run elasticity of research labor supply 0.3 0.12 -58.8%
(3) Incumbent’s share of researchers 48% 54.8% 14.2%
(4) Research wage premium 12% 18.4% 53.4%
(5) Creative destruction probability 0.13 0.126 -3.17%
(6) Share of research employment 5.50% 5.73% 4.23%
(7) Technological growth rate 1.30% 1.27% -2.54%

Table 11 presents the results. Column (1) reports steady-state values in the benchmark case,

Column (2) reflects the high switching cost scenario, and Column (3) shows percentage changes.

Lower elasticity strengthens defensive hiring, leading incumbents to employ more researchers

and raise wages. The incumbent’s share of researchers rises from 48% to 54.8%, while the
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research wage premium increases from 12% to 18.4%.

Higher research wages have two opposing effects on technological growth. First, as shown

in the fifth row, they reduce firm entry, lowering the creative destruction probability from 0.13 to

0.126, which slows growth. Second, as shown in the sixth row, they encourage more workers

to enter research occupations, increasing the research employment share from 5.5% to 5.73%.

However, since these additional researchers are absorbed by incumbents with low R&D intensity,

the positive effect is weak and outweighed by the decline in creative destruction. As a result, the

technological growth rate falls from 1.3% to 1.27% in the high-switching-cost case.

The incumbent’s strategic behavior when ideas are getting harder to find. Next, we examine

how increasing the difficulty of finding new ideas affects the strategic behavior of incumbents.

We capture this by raising the shape parameter of the Pareto distribution for entrants’ R&D

efficiency, λ, from 1.48 to 1.63 (a 10% increase). A higher λ skews the distribution leftward,

increasing the proportion of low-efficiency potential entrants while limiting the number of highly

efficient entrants on average.

Table 12: The effect of a more left-skewed entrant R&D efficiency

(1) (2) (3) (4)
Benchmark High λ High λ and high ξ % change

(1) Shape parameter 1.48 1.63 1.63 0
(2) Short-run elasticity 0.17 0.17 0.07 -58.8%
(3) Long-run elasticity 0.3 0.3 0.12 -58.8%
(4) Incumbent’s share of researchers 48% 36.5% 44.8% 22.93%
(5) Research wage premium 12% 19% 25.3% 33.62%
(6) Creative destruction probability 0.13 0.094 0.091 -3.86%
(7) Share of research employment 5.50% 5.75% 5.98% 4.03%
(8) Technological growth rate 1.30% 0.96% 0.93% -3.02%

Column (2) of Table 12 reports the steady-state values of selected variables when λ is in-

creased, while the switching cost ξ remains at its benchmark value. For comparison, Column (1)

presents results for the benchmark calibration, identical to Column (1) of Table 11.

A higher λ directly reduces the probability of creative destruction from 0.13 to 0.094 (sixth

row, Table 12), leading to a decline in technological growth from 1.3% to 0.96% (eighth row, Table

12).

However, a higher λ also increases the density of potential entrants at the threshold, Ψ′(k),
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since k lies in the lower part of the R&D efficiency distribution. This amplifies the impact of

research wages on firm entry, prompting incumbents to raise wages strategically. As shown in

the fifth row of Table 12, the research wage premium rises from 12% to 19%, indicating stronger

defensive hiring when ideas become harder to find. Consequently, more workers opt for research

occupations, increasing the share of research employment from 5.5% to 5.75%.

Finally, as shown in the fourth row of Table 12, the incumbent’s share of researchers declines

from 48% to 36.5% despite intensified defensive hiring, evidenced by the rising research wage

premium. This seemingly counterintuitive result stems from a general equilibrium effect: lower

creative destruction increases the incumbent’s value, making innovation more attractive to

potential entrants. Consequently, more entrants -albeit less efficient- enter the market and hire

researchers despite higher wages. In summary, our analysis indicates that incumbents raise

wages more aggressively when potential entrants face lower innovation probabilities.

Column (3) of Table 12 shows the results when both ξ and λ are set to high values, while

Column (4) presents the percentage changes from Column (3) to Column (4) due to the increase

in ξ, conditional on a high λ.

The reduced elasticity of research labor supply strengthens defensive hiring incentives,

prompting incumbents to hire more researchers and raise their wages. As in Table 11, higher

switching costs in the high λ environment lead to a reduction in research labor supply elasticity,

an increase in the incumbent’s share of researchers and wage premium, a decline in the prob-

ability of creative destruction, an increase in the share of research employment, and a drop in

technological growth.

However, comparing the final columns of Tables 11 and 12, we observe that the impact

of higher switching costs on the incumbent’s share of researchers, the probability of creative

destruction, and technological growth is stronger in the high λ environment than in the bench-

mark case, even with a milder increase in the wage premium. Intuitively, a high λ means more

potential entrants are near the entry threshold, making research wages more influential on

entry. Consequently, the incumbent’s strategic behavior leads to a sharper decline in entry and

technological growth, further increasing its share of researchers.

In conclusion, our analysis reveals that the strategic behavior of incumbent firms has a more

pronounced impact on firm entry and technological growth when potential entrants face lower
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innovation probabilities.

R&D subsidies. In this subsection, we examine the impact of government-funded R&D

subsidies for both incumbent firms and new entrants at rates τI and τE, respectively. These

subsidies are financed through lump-sum taxes.

The free-entry condition for new entrants is now:

kj,tVE,j,t − (1 − τE)wr
j,t = 0,

and the first-order condition for incumbents is:

(1 − τI)wr
j,t =

mpr︷ ︸︸ ︷
ϕ∆πt −

monopsony︷ ︸︸ ︷
(1 − τI)nj,I,t −

Defensive hiring︷ ︸︸ ︷
kj,tΨ

′k′j,tV̂t +

Dynamic attraction︷ ︸︸ ︷
Φj,t

[
(1 − τI)wr

j,t+1 − ϕ∆πj,t+1

]
Ψ′k′j,t + ∂Lj,t/∂wr

j,t
.

Our first exercise subsidizes new entrants at a rate of τE = 0.1, while keeping the incumbent

subsidy rate at τI = 0. The results appear in the second column of Table 13. The second exercise

subsidizes incumbents at a rate of τI = 0.098, matching the total subsidy in the first exercise,

while setting the new entrant subsidy rate to τE = 0. The results appear in the third column of

Table 13. For reference, the benchmark case with no subsidies is shown in the first column of

Table 13.

Table 13: R&D subsidies

(1) (2) (3)
Benchmark Subs. entrants Subs. incumbents

(1) τE 0 0.1 0
(2) τI 0 0 0.098
(3) Incumbent’s share of researchers 48% 42.1% 53.7%
(4) Research wage premium 12% 12.2% 18.6%
(5) Creative destruction probability 0.13 0.135 0.127
(6) Share of research employment 5.50% 5.51% 5.74%
(7) Technological growth rate 1.30% 1.34% 1.28%

As expected, subsidizing entrants reduces the incumbent’s share of researchers and increases

creative destruction. In contrast, subsidizing incumbents raises their share of researchers and

lowers creative destruction. Since incumbents have low R&D efficiency in our calibration,

subsidizing entrants fosters technological growth, while subsidizing incumbents hinders it.

Subsidizing incumbents raises the wage premium by increasing the demand for researchers
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(a conventional pass-through effect of the subsidy) and reducing classic monopsony concerns,

prompting incumbents to offer higher research wages. Thus, the share of research employment

rises. Conversely, subsidizing new entrants has little effect on the research wage premium or the

share of research employment.

In other words, to foster technological growth and correct market distortions, the government

should subsidize new entrants and tax incumbent firms. These taxes counteract defensive

hiring and reduce overall distortion, even at the cost of amplifying the monopsony effect. In

contrast, traditional models, where monopsony or similar market power is the primary distortion,

recommend subsidizing incumbents to mitigate monopsony. For example, Edmond et al. (2023)

propose subsidizing large firms, with the optimal rate proportional to firm size, as larger firms

tend to have higher markups.

The role of dynamic attraction. To assess the role of dynamic attraction, we shut down

long-run switching by setting q = 1. To maintain short-run elasticity at its original level of 0.17,

we adjust ξ to 1/0.17, resulting in a long-run elasticity of 0.17.

Table 14: Forbidding long-run switching

(1) (2) (3)
Benchmark Short-run switching only % change

(1) Short-run elasticity 0.17 0.17 0
(2) Long-run elasticity 0.3 0.17 -43.3%
(3) Incumbent’s share of researchers 48% 52.4% 9.22%
(4) Research wage premium 12% 16.1% 34.03%
(5) Creative destruction probability 0.13 0.127 -2.01%
(6) Share of research employment 5.50% 5.66% 2.7%
(7) Technological growth rate 1.30% 1.28% -1.61%

Table 14 presents the results. Column (1) reports the steady-state values in the benchmark

scenario, where researchers switch at various horizons. Column (2) displays the outcomes when

researchers can only switch sectors in the current period. Column (3) shows the percentage

changes. Switching at short-run only turns off the dynamic attraction consideration, leading in-

cumbents to employ more researchers and increase wages. The incumbent’s share of researchers

increases from 48% to 52.4%, while the research wage premium increases from 12% to 16.1%.

Consequently, the creative destruction probability decreases from 0.13 to 0.127, decelerating the

technological growth rate from 1.3% to 1.28%. Finally, the higher research wage premium results
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in an increase in the share of research employment from 5.5% to 5.66%.

8 Conclusion
Our analysis highlights the interplay between monopsony power in the labor market for

researchers and the inelastic supply of researchers as a key driver of the persistent decline in

creative destruction and productivity growth, despite rising R&D spending and researcher

employment in the US over the past two decades.

Our theory explains these trends through defensive hiring by incumbent firms, which inter-

nalize the effect of hiring researchers on competitors’ innovation probabilities. In monopsonistic

markets with an inelastic supply of researchers, incumbents overhire to deter entrant innovation

and preserve market dominance. Ideas getting harder to find amplifies this mechanism.

Empirical evidence supports this theory, showing that the elasticity of research labor supply

is low and has declined since the mid-1990s. Moreover, incumbent R&D spending is negatively

correlated with creative destruction and sectoral TFP growth while extending incumbents’

lifespans, effects that are stronger in industries with inelastic researcher supply, consistent with

our model’s predictions.

Our quantitative model shows that higher switching costs for researchers further reduce

labor supply elasticity, slow creative destruction and technological growth, and increase both

researcher employment and wage premiums. Lower R&D efficiency among potential entrants

magnifies these effects, reinforcing the “ideas are getting harder to find” phenomenon we

pointed out above.

These findings highlight promising directions for future research. One possibility is that

inelastic researcher supply results from increasing knowledge specialization. Measuring spe-

cialization, tracking its evolution across fields, and studying its implications for technological

growth in a monopsonistic labor market would be valuable. Another avenue is optimizing

education systems and policies. Could interdisciplinary education, fostering knowledge transfer

and researcher mobility, mitigate incumbents’ strategic hiring? More broadly, could online

education, remote work, or alternative knowledge-sharing counteract the negative effects on

TFP and creative destruction? These questions merit further exploration.
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Online Appendix

A Alternative measurement of researchers’ labor supply and

payoff
In this section, we show that our key results are robust to alternative measures of researchers’

labor supply and payoff. Specifically, as in Goolsbee (1998) and Ekerdt and Wu (2024), one such

measure is employment and wages in research occupations. We obtain these data from the

American Community Survey (ACS) for the years 2001 to 2019, which provides individual-level

information such as annual salary, wage income, occupation, and industry. Research occupations

include Computer and Mathematical Occupations (15-0000) and Life, Physical, and Social Science

Occupations (19-0000). Sixty occupations fall within the research category. Unlike inventors,

who may work in any occupation, individuals in research occupations may not produce patents

(e.g., they may publish academic papers). While inventors are the closest empirical counterpart

to researchers in our model, research occupation data serve as a complementary measure.

At the occupation-year level, we define employment as the number of employed individuals

and wage as the average wage across these individuals. We then estimate the research labor

supply elasticity using:

∆ ln (empi,t) = α + η∆ ln (wi,t) + χt + γi + ϵi,t, (A-1)

where the dependent variable is the employment growth rate for occupation i. The key indepen-

dent variable is the real wage growth rate.

Using current wages (wi,t) provides greater accuracy and avoids assumptions about stock

market efficiency. However, wages capture only a fraction of the total payoff (Wi,t), which also

includes future earnings and non-wage components such as bonuses and promotions.

To address endogeneity from exogenous shifts in the labor supply curve, we instrument

wage growth using a Bartik instrument, constructed as:

̂∆ ln(wi,t) = ∑
j

si,j · ∆ ln(Wk,t),

where the variable Wj, t represents the average patent value in industry j, unadjusted for the

A.1



number of coinventors and granting probabilities, and is primarily driven by industry stock

market valuation. The term si, p denotes occupation i’s employment share in industry j in 2000,

capturing its predetermined exposure to industry stock market valuation growth. The motivation

for this instrument is that neither si,j nor ∆ ln(W j,t) is likely to be significantly influenced by

exogenous changes in the employment growth of any specific occupation.

Table A.1: The labor supply and wage for research occupations

∆ln
(
wj,t
)

0.43
(6.40)

Occupation FE Yes
Time FE Yes
Observations 815

The data span 1970-2019 with yearly observations. The dependent variable is the log change in the number of
employees. The independent variable is the log change in the mean annual wage. The instrumental variable is a
Bartik instrument based on the occupations’ exposure to industries in 2000.

Table A.1 reports that the wage growth coefficient is not statistically significant.

We then estimate the regression for each of esearch occupations:

∆ ln (empi,t) = α + ηi∆ ln (wi,t) + χt + γi + ϵi,t,

where ηi measures the elasticity of research labor supply in occupation i.

We then compute the industry research labor supply elasticity as ηj = ∑i ωj,iηi, where ωj,i

represents industry j’s exposure to research occupation i, measured as the fraction of research

employment in occupation i, ensuring ∑i ωj,i = 1.

Fact 4. Incumbent R&D negatively predicts firm entry for industries with

inelastic research labor supply

Columns (1) and (3) of Table A.2 are identical to Columns (1) and (3) of Table 5. Columns

(2) and (4) show how research labor supply elasticity moderates the impact of incumbent firms’

R&D on firm entry and new firm listing by including an interaction term, R&Dj,t × ηj, in the

regression, where ηj is the research labor supply elasticity estimated from ACS data. The positive

coefficient on the interaction term suggests that the negative relationship between incumbent

R&D and firm entry and listing is stronger in industries with inelastic research labor supply (i.e.,
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low ηj).

Table A.2: Incumbent R&D expenditure and firm entry: panel estimation

(1) (2) (3) (4)
Dependent variable Entry rate (t+5), BDS Listing rate (t+5), Compustat
R&Dj,t -0.76*** -3.37*** -0.66*** -1.38***

(0.07) (0.13) (0.08) (0.33)
R&Dj,t × ηj 0.59*** 0.16**

(0.13) (0.08)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.82 0.83 0.61 0.69
Observations 1,339 803 1,696 987

The data span 1970-2019 with yearly observations. The dependent variable is the average entry rate over the next
five years. The key independent variables are the average R&D expenditure of incumbent firms (R&D) and the
research labor supply elasticity (η).

Fact 5. R&D by the incumbent negatively predicts productivity growth for

industries with inelastic research labor supply

Table A.3: Incumbent R&D expenditure and sectoral productivity: panel

(1) (2)
Dependent variable ∆zj,t+5
R&Dj,t -0.01* -0.03***

(0.004) (0.01)
R&Dj,t × ηj 0.03**

(0.01)
Industry FE Yes Yes
Time FE Yes Yes
Adj R-squared 0.56 0.56
Observations 589 589

The data span 1970-2019 with yearly observations. The dependent variable is the productivity growth rate
(percentage points). The key independent variables are R&D expenditure (R&D) and research labor supply
elasticity (η).

Column (1) of Table A.3 is identical to Column (3) of Table 7 and shows that listed companies’

R&D expenditure negatively predicts industry TFP growth. Column (2) indicates that this

negative relationship is significantly stronger in industries with inelastic research labor supply.
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Fact 6. Incumbent R&D increases the lifespan of the incumbent firms in

industries with inelastic research labor supply

Column (1) of Table A.4 is identical to Column (1) of Table 8 and shows that increasing a

company’s R&D expenditure is associated with an increase in lifespan. Column (2) of Table

A.4 presents results using the interaction term ηj × R&Di,j. Note that the research labor supply

elasticity is estimated using ACS data from 2001 onward; we focus on firms that were delisted

after 2001, resulting in a smaller sample than in the first column. The coefficient is negative but

not statistically significant.

Table A.4: Incumbent R&D expenditure and lifespan of the incumbent firm: cross-sectional
analysis

(1) (2)
Dependent variable Lifespan
R&Di,j 0.67*** 0.36**

(0.04) (0.17)
R&Di,j × ηj -0.03

(0.04)
Industry FE Yes Yes
Cohort FE Yes Yes
Adj R-squared 0.41 0.79
Observations 7,429 4,627

The data span 1970-2019 with yearly observations. The dependent variable is the incumbent firms’ lifespan. The key
independent variables include the logarithm of average R&D expenditure (R&D), research labor supply elasticity
(η), and the logarithm of average revenues from sales (Revenue).

B Additional figures and tables
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Table B.5: Incumbent R&D expenditure and firm entry: panel estimation

Panel A: One-year Ahead
(1) (2) (3) (4)

Dependent variable Entry rate (t+1), BDS Listing rate (t+1), Compustat
R&Dj,t -0.67*** -1.57*** -0.57*** -1.11***

(0.08) (0.16) (0.15) (0.29)
R&Dj,t × ηj 1.71*** 0.98***

(0.27) (0.45)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.73 0.73 0.37 0.37
Observations 1,608 1,605 2,012 2,009
Panel B: Three-years Ahead

(1) (2) (3) (4)
Dependent variable Entry rate (t+3), BDS Listing rate (t+3), Compustat
R&Dj,t -0.73*** -1.66*** -0.61*** -1.18***

(0.08) (0.15) (0.10) (0.14)
R&Dj,t × ηj 1.80*** 1.05***

(0.25) (0.28)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.78 0.79 0.52 0.52
Observations 1,466 1,466 1,845 1,845

The data span 1970-2019 on a yearly basis. The dependent variable is the average entry rate over the subsequent
five years. The independent variable, R&D, represents the average R&D expenditure of incumbent firms. η denotes
the elasticity of research labor supply.
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Table B.6: Incumbent R&D expenditure and sectoral productivity: panel estimates

Panel A: One-year Ahead
(1) (2) (3) (4)

Dependent variable ∆z−i,j,t+1 ∆zj,t+1
R&Di,j,t -0.033 -0.101

(0.092) (0.18)
R&Di,j,t × ηj 0.096

(0.37)
R&Dj,t -0.006 -0.009

(0.004) (0.009)
R&Dj,t × ηj 0.004

(0.01)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.16 0.16 0.32 0.32
Observations 68,867 68,784 687 687
Panel B: Three-years Ahead

(1) (2) (3) (4)
Dependent variable ∆z−i,j,t+3 ∆zj,t+3
R&Di,j,t -0.054 -0.21**

(0.044) (0.100)
R&Di,j,t × ηj 0.221*

(0.127)
R&Dj,t -0.009** -0.018**

(0.003) (0.008)
R&Dj,t × ηj 0.014

(0.011)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.10 0.10 0.46 0.46
Observations 51,877 51,826 678 678

The data span 1970-2019 on a yearly basis. The dependent variable is the productivity growth rate (percentage
points). The independent variable, R&D, represents R&D expenditure. η denotes the elasticity of research labor
supply.
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Table B.7: Incumbent R&D expenditure and firm entry: panel estimation, long-run elasticity

(1) (2) (3) (4)
Dependent variable Entry rate (t+5), BDS Listing rate (t+5), Compustat
R&Dj,t -0.76*** 0.14 -0.66*** -0.40

(0.07) (0.25) (0.08) (0.25)
R&Dj,t × ηl

j -1.00*** -0.28
(0.27) (0.25)

Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.82 0.82 0.61 0.61
Observations 1,339 1,339 1,696 1,696

The data span 1970-2019 on a yearly basis. The dependent variable is the average rate of entry in the subsequent
five years. The independent variable, R&D, is the average R&D expenditure across incumbent firms. ηl is the
elasticity of research labor supply.

Table B.8: Incumbent R&D expenditure and sectoral productivity: panel estimation, long-run
elasticity

(1) (2) (3) (4)
Dependent variable ∆z−i,j,t+5 ∆zj,t+5
R&Di,j,t -0.09* 0.03

(0.14) (0.10)
R&Di,j,t × ηl

j -0.14
(0.16)

R&Dj,t -0.01* 0.01
(0.004) (0.01)

R&Dj,t × ηl
j -0.02*

(0.01)
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Adj R-squared 0.14 0.14 0.56 0.55
Observations 39,299 39,271 589 589

The data span 1970-2019 on a yearly basis. The dependent variable is the productivity growth rate (percentage
points). The independent variable, R&D, represents R&D expenditure. ηl denotes the long-run elasticity of research
labor supply.
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Table B.9: Incumbent R&D expenditure and lifespan of the incumbent firm: cross-sectional
estimation, long-run elasticity

(1) (2)
Dependent variable Lifespan
R&Di,j 0.67*** 0.43***

(0.04) (0.13)
R&Di,j × ηl

j 0.28**
(0.14)

Industry FE Yes Yes
Cohort FE Yes Yes
Adj R-squared 0.41 0.41
Observations 7,429 7,392

The data span 1970-2019 on a yearly basis. The dependent variable is the lifespan of incumbent firms. The
independent variable, R&D, is the logarithm of average R&D expenditure. ηl denotes the long-run elasticity of
research labor supply.
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C The model-implied wage and value of innovation
Here, we show that researchers’ wages are proportional to the value of innovation, a key

assumption in our empirical analysis.

When an incumbent’s R&D succeeds, its value becomes:

V∗
j,I,t =

(
1 − 1

γχ

)
Yj,t +

Vj,I,t+1

1 + rt
,

which exceeds Vj,I,t (the incumbent’s expected value before innovation) for two reasons. First,

the successful incumbent secures higher profits with certainty. Second, it guarantees survival

into the next period.

The value of innovation is:

∆Vj,I,t = V∗
j,I,t − Vj,I,t,

which, under efficient financial markets, corresponds to the increase in the incumbent’s market

capitalization following the announcement of successful innovation.

Figure C.1: Wage is proportional to the market value of innovation
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To demonstrate that the wage wr
j,t is proportional to the market value of innovation ∆Vj,I,t, we

introduce shocks to γ and rt, allowing the size of innovation and the risk premium to vary across

innovations and incumbent firms. Figure C.1 shows a strong positive relationship between wr
j,t

and ∆Vj,I,t.
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D The derivation of the sectoral research labor supply curve
We assume that the incumbent of sector j deviates from the homogeneous wage in period

t. To derive the multi-horizon labor supply curve, we must specify the full trajectory of the

wage change. We assume the deviation persists until period t + 1, following wr
j,t+1 − wr

t+1 =

ρw(1 + rt)(wr
j,t − wr

t), with ρw ≥ 0. After that, the deviation reverts to zero, i.e., wr
j,t+k = wr

t+k for

k > 1. This simplification is useful, as we only consider immediate and one-period-delayed job

switching. However, our derivation can accommodate more persistent wage changes without

altering the results.

The sectoral labor supply curve for researchers consists of two segments. In the first, the

wage in sector j exceeds that of other sectors, attracting workers from elsewhere. In the second,

the wage in sector j is lower, prompting workers to leave for other sectors. We formally define

these two segments below.

Segment 1: wr
j,t > wr

t . Since sector j offers a higher wage, researchers in the other J − 1

sectors are incentivized to move to sector j. The total measure of potential job switchers is

mt = nr
t(J − 1). Researchers with switching costs ξi,t lower than the sum of discounted wage

differentials q(wr
j,t − wr

t) + (1 − q)(wr
j,t+1 − wr

t+1)/(1 + rt) = [q + ρw(1 − q)](wr
j,t − wr

t). Thus,

the measure of actual job switchers is:

m̂t =

(
wr

j,t/wr
t − 1

ξ/[q + ρW(1 − q)]

)
nr

t , (A-2)

Therefore, the measure of actual short-run (immediate) and long-run (delayed) job switchers is:

m̂s
t = qm̂t = q[q + ρW(1 − q)]

(
wr

j,t/wr
t − 1

ξ

)
nr

t ,

and

m̂l
t = (1 − q)m̂t = (1 − q)[q + ρW(1 − q)]

(
wr

j,t/wr
t − 1

ξ

)
nr

t ,

respectively.

Define ξ = q−1ξ/[q + ρW(1 − q)], the above equations become:

m̂s
t =

(
wr

j,t/wr
t − 1

ξ

)
nr

t , (A-3)
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and

m̂l
t =

(1 − q)
q

(
wr

j,t/wr
t − 1

ξ

)
nr

t , (A-4)

respectively.

Segment 2: wr
j,t < wr

t . Since sector j offers a lower wage, researchers in sector j are incen-

tivized to move to the other J − 1 sectors. The total measure of potential job switchers is mt = nr
t .

Researchers with switching costs lower than q(wr
j,t − wr

t) + (1 − q)(wr
j,t+1 − wr

t+1)/(1 + rt) will

transition to other sectors. The measure of researchers moving from sector j is:

m̂t =

(
1 − wr

j,t/wr
t

ξ/[q + ρW(1 − q)]

)
nr

t .

Therefore, the measure of actual short-run and long-run job switchers is:

m̂s
t = qm̂t =

(
1 − wr

j,t/wr
t

ξ

)
nr

t ,

and

m̂l
t = (1 − q)m̂t =

(1 − q)
q

(
1 − wr

j,t/wr
t

ξ

)
nr

t ,

respectively.

The above equations imply that the labor supply for researchers in sector j is:

Lj,t+1 = nr
t+1 +

1
ξ

(
wr

j,t+1 − wr
t+1

wr
t+1

)
nr

t+1 +
(1 − q)

qξ

(
wr

j,t − wr
t

wr
t

)
nr

t ,

or, equivalently,

Lj,t+1 − nr
t+1

nr
t+1

=
1
ξ

(
wr

j,t+1 − wr
t+1

wr
t+1

)
+

(1 − q)
qξ

nr
t

nr
t+1

(
wr

j,t − wr
t

wr
t

)
, (A-5)

which includes the immediate (short-run) switchers in period t + 1 and delayed (long-run)

switchers whose decisions were made in period t.

Elasticities of research labor supply The short-run elasticity is 1/ξ, which quantifies the

percentage increase in the number of job switchers in period t in response to wage deviations in

period t.

Aligned with our empirical specification, the long-run elasticity captures the comovement
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between the increase in job switchers in period t + 1 and wage deviations in period t + 1 due to

initial wage deviations in period t. It is useful to rewrite equation (A-5) as:

Lj,t+1 − nr
t+1

nr
t+1

=

[
1
ξ
+

(1 − q)
ξqρw(1 + rt)

nr
t

nr
t+1

](
wr

j,t+1 − wr
t+1

wr
t+1

)
,

which implies that the long-run elasticity is 1
ξ +

(1−q)
ξqρw(1+rt)

nr
t

nr
t+1

.

Since the empirical counterpart of research wages is stock prices, it is reasonable to assume

that Et(wr
j,t+1) = wj,t, implying ρw(1 + rt) = 1. We also have nr

t = nr
t+1 on the BGP. Therefore,

the long-run elasticity of research labor supply simplifies to 1/ξ + (1 − q)/(ξq) = 1/(qξ).

Moreover, this implies that ξ = ξ
(

1/q+r
1+rt

)
≈ ξ/q.
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E Summary of the quantitative model

Table E.10: Summary of the quantitative model

Incumbent’s F.O.C. wr = ϕ∆π − nI−kΨ′k′V̂
Ψ′k′+ 1

ξ
nr
wr [1+(

1− fE
1+r )(

1−q
q )]

Entrant’s free-entry condition kVE − wr = 0

Incumbent’s value
VI = ϕnI

(
1 − 1

γχ

)
Y + (1 − ϕnI − fE)

(
1 − 1

χ

)
Y

−nIwr + (1 − fE) (1 + g) VI
1+r

Entrant’s value VE =
(

1 − 1
γχ − ι

)
Y + (1 + g) VI

1+r

Aggregate measure of researchers Nr

L = 1
b2

(
wr−wp

wp

)
− b1

b2

Sectoral research labor market clearance Nr = J · [nI + Ψ (k)]
Output Y = γ(L−Nr)

( f I+ fE)γ+(1− f I− fE)

Interest rate r = −ln (β) + g
Growth rate g = (γ − 1)

[
1 − (1 − f I − fE)

J
]
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