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a b s t r a c t

We propose a Degree-Corrected Block Model with Dependent Multivariate Poisson edges
(DCBM-DMP) to study stock co-jump dependence. To estimate the community structure,
we extend the SCORE algorithm in Jin (2015) and develop a Spectral Clustering On
Ratios-of-Eigenvectors for networks with Dependent Multivariate Poisson edges (SCORE-
DMP) algorithm. We prove that SCORE-DMP enjoys strong consistency in community
detection. Empirically, using high-frequency data of S&P 500 constituents, we construct
two co-jump networks according to whether the market jumps and find that they exhibit
different community features than GICS. We further show that the co-jump networks
help in stock return prediction.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Stock price jumps and co-jumps

Jumps, the sharp discontinuities in asset prices, have drawn considerable attention in recent years. They carry
mportant information especially for financial crises. Bates (1991) shows that the jump component in an option pricing
odel can predict the stock market crash in 1987. Eraker (2004) finds that jump rates increased during the 1987 crash and

he tech bubble burst in 2001–2002. Kou et al. (2017) further distinguish between positive and negative jumps and show
hat negative jump rates increased significantly during the 2008–2009 financial crisis, while the jump sizes changed little
n average. Price jumps play important roles in volatility forecasting and asset pricing. Andersen et al. (2007) find that
eparating price jumps from continuous moves improves volatility forecasting. Bollerslev and Todorov (2011) show that
isk compensation for jumps accounts for a large fraction of risk premia. Jumps are also used in modeling stock returns;
ee, for example, Cremers et al. (2015) and Bollerslev et al. (2015).
With the increasing availability of high-frequency data, important progress has been made in financial econometrics to

nderstand jumps better. For example, Mancini (2009) proposes a threshold method for jump detection. Lee and Mykland
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Fig. 1. Prices of SPDR S&P 500 ETF trust (SPY), Chevron (CVX), Occidental Petroleum (OXY) and Exxon Mobil (XOM) on August 9, 2017, sampled at
-min frequency from 9:30 to 16:00.

2008) develop a test to detect jump arrival times. Aït-Sahalia and Jacod (2009) establish a comprehensive theory about
ump testing and propose a new test for the presence of jumps. Jump tests at the presence of microstructure noise are
tudied in Aït-Sahalia et al. (2012), Lee and Mykland (2012) and Li (2013).
There exists a growing literature on price jump dependence between stocks and the market. Co-jumps between stocks

nd the market have been documented by, for example, Bollerslev et al. (2008) and Gilder et al. (2014). Todorov and
ollerslev (2010) develop a theoretical framework to estimate continuous betas and jump betas of stocks with respect to
market portfolio. Bollerslev et al. (2016) find that the jump betas entail significant risk premia. Li et al. (2017a) propose
n efficient estimator of the jump beta and develop a test for the stability of linear jump regression models. Recent studies
urther contribute to the theoretical development of jump dependence; see, for example, Li et al. (2017b, 2019). These
tudies about jump dependence mainly focus on co-jumps between stocks and the market.
Co-jumps among stocks also bear important information about stocks’ cross-sectional dependence. We show an

xample of stock jumps in Fig. 1. We sampled the prices of SPY, a proxy for the market, CVX, OXY and XOM at 5-min
requency on August 9, 2017. From 10:35 a.m. to 10:40 a.m., the three stocks jumped simultaneously, while SPY did
ot jump. The example suggests that there exist co-jumps among stocks that are not driven by market jumps. To better
nderstand the jump-implied dependence, it is important to study co-jumps among individual stocks even when the
arket does not jump.

.2. Network models for community detection

Network models are powerful tools to describe pairwise relationships of a large number of objects. The seminal
etwork model, the Stochastic Block Model (SBM), was proposed by Holland et al. (1983). An important extension of
BM is the Degree-Corrected Block Model (DCBM) introduced by Karrer and Newman (2011), which allows for degree
eterogeneity.
Community detection is a fundamental problem in network study. In a network with a community structure, nodes can

e partitioned into a small number of disjoint communities. The goal of community detection is to estimate the community
abels. One widely used method in community detection is spectral clustering. Rohe et al. (2011) show consistency of
pectral clustering for SBM. Jin (2015) proposes the Spectral Clustering On Ratios-of-Eigenvectors (SCORE) algorithm
nd shows that it enjoys consistency in community detection for DCBM. Jin et al. (2021a) show that SCORE attains an
xponential rate of convergence for the grouping error and propose a SCORE+ algorithm for networks with weak signals.
here are other developments in community detection under settings such as networks with mixed memberships (Jin
t al., 2017) and topic modeling in textual analysis (Ke and Wang, 2017). Jin et al. (2020) develop a stepwise goodness-
f-fit approach for estimating the number of communities. These studies about community detection focus on network
odels with independent edges.
2
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.3. Our contributions

We propose a network model, Degree-Corrected Block Model with Dependent Multivariate Poisson edges (DCBM-DMP).
he proposed model reflects a dependent feature of edges in real-world networks. We apply our network model to study
airwise jump dependence among a large number of stocks, where the nodes of the network are stocks, and the edges
re measured by pairwise co-jumps.
In terms of statistical theory, we extend the SCORE algorithm in Jin (2015) and develop a Spectral Clustering On Ratios-

f-Eigenvectors for networks with Dependent Multivariate Poisson edges (SCORE-DMP). We prove strong consistency
f SCORE-DMP for the proposed dependent networks. In particular, we prove that it achieves zero grouping error
symptotically.
Empirically, we analyze the co-jump networks of S&P 500 Index constituent stocks using high-frequency data from

anuary 2003 to December 2020. Specifically, we use 5-min data to detect jumps in stocks and the market. According to
hether the market jumps, we construct two co-jump networks and apply SCORE-DMP to estimate their community
tructures. We find that the co-jump networks contain important community information that cannot be explained
y industrial classifications. Moreover, the two networks have different community features such as the number of
ommunities, the magnitude of community co-jump intensities, and how the stocks are grouped.
Finally, we find that the detected communities in the co-jump network learned under the scenario when the market

oes not jump help predict stock returns. We study a return-prediction model which combines the community structure
f the co-jump network with firm characteristics. We show that our model significantly improves the return forecasting
ccuracy both statistically and economically over the benchmark model which does not incorporate co-jump network
nformation.

The rest of the paper is organized as follows. In Section 2, we present the main theoretical results. Section 3 is devoted
o empirical analysis. Section 4 contains concluding remarks. Proofs are given in Appendix A of the online supplementary
aterials. Simulations and additional empirical results are collected in Appendices B – E of the online supplementary
aterials.
The following notation is used throughout the paper. For any vector x, let xi be the ith entry of x. The ℓ2 norm of x is

efined as ∥x∥ =

√∑
x2i . For any matrix M =

(
Mij
)
, its spectral norm is defined as ∥M∥ = max∥x∥≤1∥Mx∥; the Frobenius

norm is defined as ∥M∥F =

√∑
i,j M

2
ij ; the maximum norm is defined as ∥M∥max = maxij|Mij|. Denote by Mi· the ith row

of M, λk(M) the kth largest eigenvalue in absolute value of M, and λmin(M) the minimum eigenvalue in absolute value
of M. We use

p
−→ and

d
−→ to represent convergence in probability and convergence in distribution, respectively. For two

sequences of positive real numbers an and bn, we write an ≍ bn if bn/c ≤ an ≤ cbn for some constant c ≥ 1. Finally, c
stands for a generic positive constant that may change in various scenarios.

2. Setting and main results

2.1. Continuous-time log price processes with jumps

Consider N log-price processes {(Yi(t))}Ni=1. For each i, suppose that the log-price process is an Itô semimartingale:

dYi(t) = µi(t)dt + σi(t)dBi(t) + κi(t)dJi(t),

where µi(t) is the price drift, σi(t) is the spot volatility, Bi(t) is a standard Brownian motion, (Ji(t) : t ≥ 0) is a Poisson
point process, and κi(t) is the jump size. Define ∆Yi(t) = Yi(t)−Yi(t−), which is nonzero only if there is a jump at time t .

Suppose that we sample stock prices at frequency M . Denote the sth intraday log return on day t for stock i as

ri,t,s = Yi

(
t − 1 +

s
M

)
− Yi

(
t − 1 +

s − 1
M

)
, s = 1, 2, . . . ,M.

The Realized Volatility (RV ) of stock i on day t is RVi,t =
∑M

s=1 r
2
i,t,s. It is known that

lim
M→∞

RVi,t
p
−→

∫ t

t−1
σ 2
i (u)du +

∑
t−1<s≤t

(
∆Yi(s)

)2
,

where
∫ t
t−1 σ 2

i (u)du and
∑

t−1<s≤t

(
∆Yi(s)

)2 are the integrated volatility and quadratic variation due to the jump compo-
nent, respectively. Barndorff-Nielsen and Shephard (2004) introduce the Realized Bipower Variation (BV ):

BVi,t =
π

2
M

M − 1

M−1∑
s=1

|ri,t,s+1||ri,t,s|.

They show that BV is consistent in estimating integrated volatility:

lim BVi,t
p
−→

∫ t

σ 2
i (u)du.
M→∞ t−1

3
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n order to detect price jumps, we adopt the thresholding method (Mancini, 2009). Specifically, following Li et al. (2017a,
019), for each stock i, we set a daily threshold level

vi,t = τ ×

(
1
M

)0.49

×

√
min

(
RVi,t , BVi,t

)
,

here τ is a tuning parameter. We set τ = 4 as in Li et al. (2017a). Under some regularity conditions on µi(t) and σi(t),
s M goes to infinity, jumps can be consistently detected; see, Mancini (2009). Denote the total number of detected jumps
or stock i from day 1 to day t as

Ji,t =

∑
1≤d≤t,1≤s≤M

1{|ri,d,s|>vi,d},

here 1{·} is an indicator function. We follow Gilder et al. (2014) and define the co-jumps between any pair of stocks as
he intersection of their jumps. Denote the total number of co-jumps between stocks i and j from day 1 to day t as

CJij,t =

∑
1≤d≤t,1≤s≤M

1{|ri,d,s|>vi,d,|rj,d,s|>vj,d}.

.2. Characteristics of stock jumps and co-jumps

The stock jumps and co-jumps have several notable features.
First, stock jumps are dependent cross-sectionally, which is why we observe co-jumps.
Second, stock co-jumps are also dependent cross-sectionally. For example, if at time t , stocks A and B co-jump, stocks B

nd C co-jump, then stocks B and C co-jump as well.
Third, as we will see in Figs. 3 and 5 in the empirical study, communities exist in the co-jumps, and stocks co-jump

ore frequently within communities than between communities. This is in line with empirical findings in the literature.
or example, Fan et al. (2016) show that there is a block-diagonal pattern in the idiosyncratic correlation matrix of the
&P 500 Index constituent stocks after sorting them into industry groups.
Fourth, in Figs. 2 and 4, we will see that degree heterogeneity exists in individual stock jump intensities. Co-jump

ntensity is not only determined by the community information but also by individual stock jump intensities. In other
ords, even for stocks that are in the same group, the co-jump intensities can be different.
Fifth, as shown in Fig. 1, individual stock jumps may not be driven by the market jumps. It is interesting and informative

o study separately the two scenarios according to whether the market jumps. Moreover, as we will see in Figs. 3 and 5
n the empirical study, the magnitudes of community co-jump intensities for the scenario when the market jumps are
igher than the scenario when the market does not jump. When the market jumps, many stocks co-jump with the market;
hereas when the market does not jump, fewer stocks co-jump as the stock jumps are mainly driven by individual firm
vents.

.3. Modeling co-jump network

Consider a co-jump network N = (V , E), where V = {1, 2, . . . ,N} is the set of stocks, and E is the set of edges
easured by pairwise co-jumps. Suppose that the network has a community structure such that the N stocks can be
ivided into K disjoint communities:

V = V (1)
∪ · · · ∪ V (K ).

Denote an N × 1 vector θ = (θ1, θ2, . . . , θN)T , where θi is the stock jump rate. Define a K × K symmetric and positive
atrix P = (Pkℓ)1≤k,ℓ≤K such that Pkℓ represents the community co-jump intensity between communities V (k) and V (ℓ). In

a given time interval [0, t], we use the following dependent Poisson point processes to describe stock jump and co-jump
processes:

• There is a latent Poisson point process (L(t) : t ≥ 0) with rate θlatent , which can be interpreted as the rate of at least
one jump in all stocks.

• Each individual stock jump process (Ji(t) : t ≥ 0) is a thinned point process: Ji(t) =
∑L(t)

h=1 xi,h, where
{
xi,h
} i.i.d.

∼

Bernoulli (θi/θlatent) and are independent of (L(t) : t ≥ 0). (Ji(t) : t ≥ 0) is a Poisson point process with rate θi.
• The co-jump process between different stocks i and j,

(
CJij(t) : t ≥ 0

)
, is given by CJij(t) =

∑L(t)
h=1 xi,hxj,h, where(

xi,h, xj,h
)
follows a bivariate Bernoulli distribution with P

(
xi,h = 1, xj,h = 1

)
= P

(
xi,h = 1

)
P
(
xj,h = 1

)
θlatentPkℓ =

θiθjPkℓ/θlatent . We have

Cov
(
xi,h, xj,h

)
= P

(
xi,h = 1

)
P
(
xj,h = 1

)
(θlatentPkℓ − 1) .

If θlatentPkℓ > (<, respectively) 1, xi,h and xj,h are positively (negatively, respectively) correlated. If θlatentPkℓ = 1, xi,h
and xj,h are independent. It follows that

(
CJij(t) : t ≥ 0

)
is a Poisson point process with rate θiθjPkℓ. The co-jump

intensities depend not only on community labels but also on individual stock jump intensities.
4
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Given observations during a time interval [0, T ], define an N × N co-jump matrix A(T ) as follows:(
A(T )

)
ii

=
Ji(T )
T

for 1 ≤ i ≤ N, and
(
A(T )

)
ij

=
CJij(T )

T
for 1 ≤ i ̸= j ≤ N. (2.1)

For ease of notation, we will drop T and denote the co-jump matrix as A. We have that E(Aii) = θi, and E(Aij) = θiθjPkℓ if
i ∈ V (k), j ∈ V (ℓ) and i ̸= j.

We call our proposed model the Degree-Corrected Block Model with Dependent Multivariate Poisson edges (DCBM-
DMP). This model captures important features in stock jumps and co-jumps, such as cross-sectional dependence,
community structure and degree heterogeneity in individual jump intensities described in Section 2.2.

There are a couple of major differences between DCBM-DMP and SBM/DCBM. First, the edges of DCBM-DMP follow
dependent Poisson point processes. In contrast, the edges of SBM/DCBM are assumed to be independent. Second, we keep
the individual stock jumps in the diagonal of A. In SBM/DCBM, by convention, all diagonal entries of the adjacency matrix
are set to 0.

2.4. Algorithm for community detection in the co-jump network

In order to detect communities in our proposed co-jump network, we extend the SCORE method of Jin (2015) and
propose the following algorithm, which we call Spectral Clustering On Ratios-of-Eigenvectors for networks with Dependent
Multivariate Poisson edges (SCORE-DMP):

Step I Construct the co-jump matrix A defined by (2.1), in which the off-diagonal entries are the pairwise co-jumps
and the diagonal entries are the individual jumps.

Step II Get the largest K eigenvalues in absolute value of A, λ̂1, . . . , λ̂K , arranged in descending order, and the
corresponding eigenvectors, η̂1, . . . , η̂K . The number of communities K is determined by the method in Liu et al.
(2019).

Step III Obtain an N × (K − 1) matrix R̂ with R̂ik = (̂ηk+1)i/(̂η1)i for 1 ≤ i ≤ N and 1 ≤ k ≤ K − 1.
Step IV Apply k-means++ algorithm (Arthur and Vassilvitskii, 2006) to the rows of R̂, and get the estimated communities

V = V̂ (1)
∪ · · · ∪ V̂ (K ).

In community detection, estimating the number of communities is fundamental. For SBM, Lei (2016) proposes an
approach based on a goodness-of-fit test, and Li et al. (2020) develop an Edge Cross-Validation method. Recently, Jin
et al. (2020) develop a method to estimate the number of communities for DCBM with severe degree heterogeneity. The
method applies to networks with independent edges. In this paper, we use the scree-plot method in Liu et al. (2019),
which applies to our dependent case.

Our proposed SCORE-DMP differs from SCORE in the following ways. First, we keep the individual stock jumps in the
diagonal of A. Similar ideas can be found in Ji et al. (2021) that apply SCORE to the adjacent matrix plus a multiple of
the identity matrix and find that it leads to better performance in community detection. Second, we use k-means++

for clustering. Using k-means++ facilitates the theoretical derivation of Theorem 2.2. Numerically, the performance of
k-means++ and k-means are similar.

2.5. Theoretical properties of SCORE-DMP

We impose the following assumptions.

Assumption 1. There exists c > 0 such that c ≤ θi ≤ θlatent ≤ 1/c for all 1 ≤ i ≤ N . The matrix P is a fixed K ×K positive
matrix, and |λmin(P)| > c.

Remark 2.1. There are studies that allow P to vary with N; see, for example, Jin et al. (2017, 2020), and Jin et al. (2021b).
Specifically, Jin et al. (2021b) study the scenario when the eigenvalues of P satisfy ∥θ∥|λK (P)|/λ1(P) → ∞ and show that
the proposed approach enjoys consistency in community detection. For our proposed network model with dependent
edges, the assumption about P can be relaxed to λ1(P) ≍ 1 and |λK (P)| ≫ 1/

√
N . When λK (P) → 0, we need stronger

onditions on the asymptotic sizes of N and T . Specifically, N can grow polynomially with T but not exponentially as in
ssumption 4.

emark 2.2. About the assumption that K is fixed, for the consistency of community detection, the assumption can be
elaxed to (K 9/2√log(N)/T + K 3/N) → 0. The proof will be modified slightly by keeping the multiplicative polynomial
erms involving K in the error bounds such as (A.12), (A.31) and (A.38).

For k = 1, 2, . . . , K , let nk = |V (k)
| be the size of the kth community.

ssumption 2. nk ≍ nℓ for all 1 ≤ k, ℓ ≤ K .

Write D = D , where D =
(∑

θ2
)1/2

/∥θ∥.
( kk)1≤k≤K kk i∈V (k) i

5
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ssumption 3. λ1(DPD) − |λ2(DPD)| ≥ c for some constant c > 0.

Assumption 4. N and T both go to infinity with log(N) = o(T ).

Denote Ω =
(
Ωij
)
1≤i,j≤N , where Ωij = θiθjPkℓ if i ∈ V (k) and j ∈ V (ℓ). Let the largest K eigenvalues in absolute value

nd the associated eigenvectors of Ω be λ1, . . . , λK , and η1, . . . , ηK , respectively. Define R = (Rik)1≤i≤N,1≤k≤K−1, where
ik = (ηk+1)i/(η1)i.

heorem 2.1. Under Assumptions 1–4, for any constant q > 0, there exist a (K −1)× (K −1) orthogonal matrix H and c > 0
uch that

P

(
∥̂RH − R∥max > c ·

(√
log(N)

T
+

1
N

))
= o

(
1
Nq

)
. (2.2)

emark 2.3. For DCBM with independent edges, the error rate of max1≤i≤N ∥(̂RH)i· −Ri·∥, which is equivalent to the error
ate of ∥̂RH − R∥max since K is fixed, is

√
log(N)/N; see, for example, Jin et al. (2017). For DCBM-DMP, the error rate of

∥̂RH − R∥max is
√
log(N)/T + 1/N , and one needs both N and T to go to infinity in order to consistently estimate R. The

rate in (2.2) is sharp. Specifically, the term
√
log(N)/T comes from the random error of using the eigenvectors of A to

estimate those of E(A), and the term 1/N comes from the difference in the leading eigenvectors between E(A) and Ω .
oth error rates are sharp; see Remark A.1 for more details.

Denote the true labels as g = (g1, g2, . . . , gN)T , and the estimated labels from SCORE-DMP as ĝsc
=
(̂
g sc
1 , ĝ sc

2 , . . . , ĝ sc
N

)T ,
where

gi =

K∑
k=1

k · 1{i∈V (k)}, and ĝ sc
i =

K∑
k=1

k · 1{i∈V̂ (k)}. (2.3)

Following the literature on community detection, we measure the number of mismatched labels by the Hamming error:

HammN (g, ĝsc) = minπ (g)

N∑
i=1

1{(π (g))i ̸=ĝsci }, (2.4)

where π is a permutation of the set {1, 2, . . . , K }.

Theorem 2.2. Under Assumptions 1–4, for any constant q > 0, we have

P
(
HammN

(
g, ĝsc) > 0

)
= o

(
1
Nq

)
. (2.5)

emark 2.4. For DCBM with independent edges, one only needs N to go to infinity to achieve consistent community
etection. For DCBM-DMP, besides requiring N → ∞, we also need T → ∞ to consistently detect the communities. To
ee this, note that all the jump processes are dominated by a single latent point process (L(t)), hence for any fixed T ,
here is a positive probability that there is no jump at all, in which case it is certainly impossible to detect communities.

Theorem 2.2 states that applying our proposed algorithm to the co-jump network model achieves strong consistency
roperty (Zhao et al., 2012). Specifically, as N and T go to infinity, SCORE-DMP attains zero Hamming error with high
robability.
We can also estimate the individual jump intensities θ and the community co-jump intensity matrix P. We estimate

he individual jump intensity θi by Aii for 1 ≤ i ≤ N and estimate P by P̂ = (̂Pkℓ), where

P̂kℓ =

∑
i∈V̂ (k), j∈V̂ (ℓ), i̸=j Aij∑

i∈V̂ (k), j∈V̂ (ℓ), i̸=j AiiAjj
. (2.6)

roposition 2.1. Under Assumptions 1–4, for any constant q > 0, there exists c > 0 such that

P
(
max
1≤i≤N

|Aii − θi| > c ·

√
log(N)

T

)
= o

(
1
Nq

)
, and

P
(

max
1≤k,ℓ≤K

|̂Pkℓ − Pkℓ| > c ·

√
log(N)

T

)
= o

(
1
Nq

)
.

6
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We can further make inference about P. Define a length-K (K + 1) vector ξh = (ykℓ,h, zkℓ,h)T1≤k≤ℓ≤K as follows:

ykℓ,h =
1

|I(k,ℓ)|

∑
(i,j)∈I(k,ℓ)

xi,hxj,h, zkℓ,h =
1

|I(k,ℓ)|

∑
(i,j)∈I(k,ℓ)

(xi,hθj + xj,hθi), and

I(k,ℓ) = {(i, j) : i ∈ V (k), j ∈ V (ℓ), 1 ≤ i ̸= j ≤ N}.

Assumption 5. λmin
(
Cov(ξh)

)
> c for some constant c > 0.

Remark 2.5. Assumption 5 guarantees that there is no strong collinearity among the aggregated group-wise co-jumps
and individual jumps.

Proposition 2.2. Under Assumptions 1–5,
√
T (Σ P)

−1/2 (̂Pu − Pu
) d

−→ N (0, I) , (2.7)

where P̂u = (̂P11, P̂12, . . . , P̂kℓ, . . . , P̂KK )T1≤k≤ℓ≤K , and Pu = (P11, P12, . . . , Pkℓ, . . . , PKK )T1≤k≤ℓ≤K , and Σ P is given in (A.50)–
(A.52), and (A.59)–(A.61) of Appendix A.

In practice, the covariance matrix Σ P can be consistently estimated by (A.63)–(A.66) in Appendix A.
We perform simulation studies to evaluate the performance of the proposed estimators and present the results in

Appendix B. The simulation results show that for large N and T , SCORE-DMP has low Hamming errors, P̂ is close to P,
nd the empirical distribution of the standardized errors of P̂ matches well with the standard normal distribution.

. Empirical studies

We perform two empirical studies. First, we use high-frequency data to build two co-jump networks according to
hether the market jumps. We then investigate the community structures of the co-jump networks and compare them
ith the Global Industry Classification Standard (GICS).1 Second, we utilize the community information to predict stock
eturns.

.1. Community detection for co-jump networks

.1.1. Data for co-jump networks
We obtain high-frequency data from the Trade and Quote (TAQ) database. We select the stocks that remained in the

&P 500 Index between January 2003 and December 2020 and use SPDR S&P 500 ETF trust (SPY) as our proxy for the
arket. To strike a balance between reducing the impact of microstructure noise and using as much data as possible, we
ample the prices at 5-min frequency. After excluding the stocks with more than 5% missing data during the period, we
nd up with 190 stocks. We obtain the GICS codes of all the stocks under evaluation from the Compustat database.
To reduce the impact of noisy observations at the market opening and closing, we focus on intraday 5-min returns from

:35 a.m. to 3:55 p.m., resulting in 76 log returns for each stock in a day. Jumps for stocks and the market are detected
y the thresholding method described in Section 2.1. Following Li et al. (2019), we filter the jumps by the following
wo criteria: (1) remove the jumps that occur consecutively within 10 min and have opposite directions; (2) remove the
umps with sizes less than ten basis points. Criterion (1) removes bouncebacks,2 and Criterion (2) removes small jumps
hen the day has a low volatility. For SPY, we originally detect 718 jumps over the 2003–2020 period. After filtering,
here are 682 jumps left.

Besides the market factor, we also analyze the co-jump networks according to whether other factors jump. We provide
ne example in Appendix D.

.1.2. Scenario I: When the market jumps
We first investigate the scenario when the market jumps (Scenario I). As mentioned earlier, during the 2003–2020

eriod, the market jumped 682 times. We construct a co-jump network using the pairwise stock co-jumps that occur
imultaneously with the market jumps. Fig. 2 shows the distribution of the estimated individual stock jump intensities.
e find that the estimated individual stock jump intensities exhibit substantial heterogeneity.
We then use the SCORE-DMP described in Section 2.4 to estimate the communities. The number of communities is

stimated to be five. The clustering results are illustrated in Fig. 3 with details collected in Table 3 of Appendix C.

1 The Global Industry Classification Standard (GICS) is an industry classification system. It defines eleven economic sectors: Energy (EN),
Materials (MT), Industrials (ID), Consumer Discretionary (CD), Consumer Staples (CS), Health Care (HC), Financials (FN), Information Technology
(IT), Communication Services (CM), Utilities (UT) and Real Estate (RE).
2 Aït-Sahalia et al. (2011) define the bounceback to be log returns for two consecutive transactions that are larger than 1% but have opposite

signs. They state that the ‘roundtrips’ are not meaningful transactions.
7
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Fig. 2. The distribution of estimated individual stock jump intensities when the market jumps.

The left panel in Fig. 3 shows the heat map of the clustering. The red squares along the diagonal indicate the estimated
ommunities. Shades of the blocks represent the estimated community co-jump intensities. We rearrange the estimated
ommunity co-jump intensity matrix P̂I such that the diagonal entries of P̂I are in descending order. We find that the
iagonal entries of P̂I are higher than the off-diagonal entries, and the test based on Proposition 2.2 suggests that the
ifferences are mostly statistically significant. The results suggest a strong community structure in the co-jump network.
The right panel in Fig. 3 shows the constituents of each group. We use different colors to represent different GICS

ectors. The order of the groups corresponds to the heat map, where Group 1 is in the lower-left corner, and Group 5 is
n the upper-right corner.

Compared with GICS, we find that the communities in the stock co-jump network have the following interesting
eatures.

The first two groups match largely with GICS but are different from GICS in the following ways. First, Group 1 mainly
omprises the stocks from Utilities. Besides Utilities, Group 1 also includes Newmont (NEM) fromMaterials, which extracts
atural gas. The Utilities companies such as Duke Energy Corporation (DUK) are mainly engaged in electricity and natural
as services. Thus, for stocks in Group 1, there is a supply chain relationship between natural gas extraction and use.
econd, the majority of the Financials stocks are in Group 2, and the remaining stocks are split into Groups 3–5.
The remaining three groups have mixed sector constituents. There are interesting supply chain relationships for the

tocks within each group that cannot be explained by GICS. In Group 3, the Materials companies, International Flavors
nd Fragrances (IFF) and Ecolab (ECL), are major suppliers of flavors and water, which are the raw materials for the
ood companies that account for a large proportion of Consumer Staples in Group 3. In Group 4, the Energy companies
uch as ConocoPhillips (COP) are suppliers of oil and gas products, which are heavily consumed by the airline and
erospace manufacturer like Southwest Airlines (LUV), and Northrop Grumman Corporation (NOC) from Industrials. In
roup 5, the Information Technology companies such as Qualcomm (QCOM) and Xilinx (XLNX) are the main suppliers
f semiconductors, which are used by the analytical instruments manufacturing companies like Agilent (A) from Health
are.

.1.3. Scenario II: When the market does not jump
Next, we consider the scenario when the market does not jump (Scenario II). We construct a co-jump network under

his scenario. Fig. 4 shows the distribution of estimated individual stock jump intensities. Again, we see that under
cenario II, individual jump intensities show substantial heterogeneity.
The number of communities is estimated to be seven. The clustering results are illustrated in Fig. 5. The diagonal entries

f the community co-jump intensity matrix P̂II are again mostly statistically significantly higher than the off-diagonal
ntries. The specific classifications for all stocks are collected in Table 4 of Appendix C.
We have the following observations about the communities in the co-jump network under Scenario II.
The first two groups with the strongest community co-jump intensities match the Energy and Utilities sectors.
The remaining five groups are different from GICS. The Financials sector stocks are mainly in Group 3. Group 4 includes

he Information Technology stocks. Besides the Information Technology sector, Group 4 also includes the e-commerce
ompany eBay (EBAY) from Consumer Discretionary. Group 5 is the retail group. It contains retail companies such as
est Buy (BBY) from Consumer Discretionary and Walmart (WMT) from Consumer Staples. Industrials and Materials are
erged into Group 6. These stocks are naturally connected in manufacturing processes using materials such as steel.
roup 7 mainly comprises stocks that are less sensitive to the economy, for example, stocks from Consumer Staples and
ealth Care.

.1.4. Comparison between Scenario I and Scenario II
From Sections 3.1.2 and 3.1.3, we see that the networks under Scenario I and Scenario II have distinct features.
8
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Fig. 3. Clustering results when the market jumps. Left panel: the heat map of the clustering. Shades of the blocks represent the estimated community
co-jump intensities. The estimated five groups are ordered according to their estimated community co-jump intensities from the highest (Group 1)
to the lowest (Group 5). Right panel: the group labels (x-axis) and the number of stocks in each group (y-axis). Different colors represent different
GICS sectors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. The distribution of the estimated individual stock jump intensities when the market does not jump.

Fig. 5. Clustering results when the market does not jump. Left panel: the heat map of the clustering. Shades of the blocks represent the estimated
ommunity co-jump intensities. The estimated five groups are ordered according to their estimated community co-jump intensities from the highest
Group 1) to the lowest (Group 7). Right panel: the group labels (x-axis) and the number of stocks in each group (y-axis). Different colors represent
ifferent GICS sectors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

First, the estimated numbers of communities are different. When the market jumps, the co-jump network has five
ommunities. When the market does not jump, there are seven communities. The difference suggests that the market

umps weaken the community structure.

9



Y. Ding, Y. Li, G. Liu et al. Journal of Econometrics 239 (2024) 105420

t
s

m
c

3

3

w
o

w
t
m
c
e

t
(
a
d
c

i

3

s
s
d
w
T
o

3

b
f

b

Second, the magnitudes of the estimated community co-jump intensities are different. The entries of P̂I range from 11
o 27, while the entries of P̂II are smaller and range from 0.23 to 0.88. This can be due to that when the market jumps,
tocks are more likely to co-jump with the market.
Third, the stocks are grouped differently. For example, when the market jumps, the stocks in the Energy sector are

erged with other sectors. When the market does not jump, they form one group. The difference suggests that the
o-jumps under the two scenarios are generated by different mechanisms.

.2. Stock return prediction

.2.1. Model
Several studies in the literature such as Lewellen (2015) model stock returns with lagged firm-level characteristics:

rt = γ01 + Zt−1γ + εt , (3.1)

here rt ∈ RN×1 is the excess returns of N stocks, γ0 ∈ R is the intercept term, 1 is a length-N vector with all entries being
ne, Zt−1 ∈ RN×p contains p firm-level characteristics, γ ∈ Rp×1 is the coefficient vector of characteristics, and εt ∈ RN×1

is a random error term that is independent of Zt−1.
The analysis in Section 3.1 reveals that the stock co-jump networks have community structures. We study the

following return-prediction model, which combines the community information in the co-jump network with firm-level
characteristics,

rt = γ01 + γ1ΓPΓ Txt−1  
network effect

+Zt−1γ + εt , (3.2)

here Γ is an N × K membership matrix, (Γ )ik = 1{i∈V (k)}, xt−1 ∈ RN×1 is a firm-level characteristic vector on which
he network effect acts, and γ1 ∈ R is the network effect parameter. Because the majority of stock jumps are non-
arket related, we use the co-jump network under the scenario when the market does not jump. The network effect
omponent describes how cross-sectional information influences each stock. Specifically, ΓP represents the community
ffect for each stock, and Γ Txt−1 transforms the firm-level characteristics into a community-level characteristic vector.

The network effect component of (3.2) is similar to that of the network vector autoregressive model with community
structure (CNAR) studied in Chen et al. (2020). There are two main differences between model (3.2) and CNAR. First, CNAR
applies network effect to rt−1. In contrast, (3.2) can apply network effect to any firm-level characteristic. Second, in (3.2), P
is the community co-jump intensity matrix from our proposed co-jump network, while in CNAR, it is treated as a
parameter in the regression model that needs to be estimated.

3.2.2. Data for return prediction
We use monthly returns of S&P 500 Index constituent stocks from January 2003 to December 2021. The data are

obtained from CRSP. To calculate the excess returns, we use the Treasury-bill rate as the risk-free rate. We obtain the
high-frequency data of the stocks from TAQ for network construction. For firm-level characteristics, we select three
characteristics that have been documented to be helpful in predicting stock returns: log market capitalization (Size), Book-
o-Market ratio (B2M) and one-month cumulative return (Mom); see, for example, Jegadeesh and Titman (1993), Lewellen
2015) and Green et al. (2017). We get monthly Size and Mom data from CRSP and annual B2M data from Compustat. To
void forward-looking bias, we lag the annual B2M data by six months. For each month, we winsorize each characteristic
ata at 1% and 99% and standardize them to have zero mean and unit standard deviation in the cross-section. For missing
haracteristics, we replace them with 0.
The benchmark model (3.1) only uses Size, B2M and Mom as predictors. For model (3.2), besides the predictors used

n the benchmark model, we apply the community effect to Size (Network-Size).

.2.3. Parameter estimation and return prediction
We perform return forecasting with a rolling window scheme. The training sample size is 120 months, and the out-of-

ample testing period is from January 2013 to December 2021. The models are re-estimated every year. For each year, we
elect the stocks that remained in the S&P 500 Index in the past 120 months with less than 5% missing high-frequency
ata. The parameters in model (3.1) are estimated by the ordinary least squares method. For model (3.2), as the rolling
indow moves, we re-estimate the number of communities, use SCORE-DMP to estimate Γ , and use (2.6) to estimate P.
hen we use the ordinary least squares method to estimate the remaining parameters, γ0, γ1 and γ in (3.2). At the end
f each month, we get one-month-ahead stock return forecasts.

.2.4. Performance evaluation metrics and prediction results
We use the following two metrics to evaluate the prediction performance of the Network-Size model and the

enchmark model: out-of-sample R2 and Sharpe ratio of zero-net portfolio based on predicted returns; see Appendix E.1
or a more detailed description of the performance evaluation metrics.

We have the following findings. First, the Network-Size model improves the out-of-sample R2 compared with the

enchmark model (2.673% vs. 2.637%). The improvement is statistically significant based on the Diebold–Mariano

10
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est (Diebold and Mariano, 2002). Second, the Sharpe ratio of the zero-net Network-Size portfolio is about 0.3 higher
han the benchmark portfolio (1.159 vs. 0.839). The above results demonstrate the superior prediction performance of
he network-based model.

The detailed analysis of the return prediction results is collected in Appendix E.2.

. Conclusion

We propose a model, DCBM-DMP, to study the stock co-jump dependence. The proposed model differs from the
tandard DCBM in that it has dependent edges. To detect the communities, we extend the SCORE algorithm in Jin (2015)
nd propose a SCORE-DMP algorithm. We prove that SCORE-DMP achieves strong consistency in detecting communities
or our proposed model. Empirically, we construct two co-jump networks according to whether the market jumps. The
esults show that the co-jump networks have important community information that cannot be explained by GICS.
he co-jump networks also provide a novel perspective to study the dependence among a large number of stocks. We
urther study a return-prediction model which combines the community structure of the co-jump network with firm
haracteristics. We find that adding the co-jump network community information improves return prediction accuracy.
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