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Abstract

Choice alternatives are often multidimensional and risky, but
how to model a decision maker’s evaluation of them is unclear. Three
popular approaches are in sharp contrast: One aggregates all dimen-
sions before evaluating risk, one does it reversely, and one evaluates
each dimension’s risk recursively. We characterize a hierarchical ex-
pected utility model that generalizes these approaches. The decision
maker’s preference reveals how she brackets and orders the dimen-
sions, based on which she evaluates risk recursively. We analyze the
model’s uniqueness properties and characterize several special cases.
We study the model’s implications in contexts of group inequality,
multisource income, and time lotteries.
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1 Introduction

Decision makers often face a variety of alternatives that are complex and
uncertain. The evaluation of such an alternative must take into account
multiple dimensions of the alternative, as well as the associated risk. For
instance, the decision maker may need to evaluate a product that has un-
certain attributes; she may evaluate a job opportunity that generates an
uncertain sequence of future payoffs; or she may assess a policy that in-
duces an uncertain income distribution for multiple individuals. Although
evaluating risky multidimensional alternatives is a fundamental and ubiq-
uitous task in economics, there are ongoing debates regarding how to do
it, and no principles that can reliably elucidate a general solution.

To illustrate, consider the following example. Let (x1, x2) denote the
incomes of individuals 1 and 2, respectively. A policymaker is assessing a
policy that will lead to (0, 1) and (1, 0) with equal probability. She does not
like inequality. Let u(·, ·) be a concave and symmetric function. To evaluate
the policy, she may first use u to evaluate each possible income profile, and
then take the expectation: 1

2u(0, 1) + 1
2u(1, 0). It is well known that this

approach in general captures ex post inequality aversion.1 Alternatively,
she may first compute each individual’s expected income, which is 1/2, and
then use u to evaluate the profile of expected incomes: u(1/2, 1/2). This
approach captures ex ante inequality aversion.2 These two approaches to
evaluating multidimensional risk are both desirable but also incompatible.3

One might assume that what we derive from this example is specific
to inequality aversion, but the same issue occurs in many different con-
texts, including in the evaluation of risky consumption bundles, dynamic

1This formula captures ex post inequality aversion because (1/2, 1/2) is better than
having (0, 1) and (1, 0) with equal probability. Ex post inequality is also called inequality
of outcome.

2This formula captures ex ante inequality aversion because having (0, 1) and (1, 0)
with equal probability is better than having either (0, 1) or (0, 1) with certainty. Ex
ante inequality is also called inequality of opportunity. This formula does not capture
ex post inequality because it does not distinguish between having (0, 1) and (1, 0) with
equal probability and having exactly (1/2, 1/2) with certainty, but the former has ex
post inequality while the latter does not. Conversely, the previous formula is linear in
probability, so having (0, 1) and (1, 0) with equal probability is as good as having either
(0, 1) or (1, 0) with certainty, which renders it unable to capture ex ante inequality.

3See, among others, Fleurbaey (2010), Fudenberg and Levine (2012), Grant et al.
(2010, 2012), and Saito (2013).
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choice, and ambiguity aversion.4 The common theme is that there are
two opposite approaches to evaluating a risky multidimensional alterna-
tive: One first aggregates across dimensions for each possible realization
and then takes expectation (called the first-aggregation-then-expectation
(FATE) approach henceforth), and the other first takes expectation for
each dimension and then aggregates across dimensions (called the first-
expectation-then-aggregation (FETA) approach henceforth). They both of-
ten seem reasonable, yet have behavioral implications that stand in sharp
contrast.

However, the evaluation of a risky multidimensional alternative is not
limited to those two approaches. They evaluate all dimensions of the al-
ternative simultaneously, whether before or after taking expectation. Yet
the decision maker does not necessarily need to do so. Consider a deci-
sion maker who is facing uncertainty over the ratings of a car’s safety and
driving experience. She may want to consider every possible realization of
the safety rating, conditioning on which she then takes into account the
(conditional) uncertainty over the driving experience.5

This third approach is similar to how, in Kreps and Porteus (1978)
and Epstein and Zin (1989), the decision maker evaluates risk recursively.
Consider a two-period example. For every realization of her period-1 con-
sumption x1, the decision maker evaluates the conditional expected utility
of period-2 consumption given x1, denoted by Ux1 . She aggregates x1 and
Ux1 in a possibly nonadditive way. Then, she takes the expectation with
respect to x1.

Clearly, the decision maker may also evaluate multidimensional risk in
ways that differ from these three approaches. For instance, if she is facing
uncertainty over the ratings of a car’s safety, driving experience, and cost,
she may consider every realization of the safety rating, conditioning on
which she may adopt the FETA approach to evaluate the uncertainty over
the driving experience and cost.

In this paper, we introduce the hierarchical expected utility (HEU) repre-
sentation of the decision maker’s preference, which offers a versatile frame-
work capable of accommodating a wide range of behavioral patterns about

4See Online Appendix I for a detailed discussion of these examples.
5See Keeney (1973), Zhang (2023), and Li et al. (2023) for similar ideas.
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the evaluation of multidimensional risk. It also serves as a unifying frame-
work that encompasses the three approaches as special cases. From the
decision maker’s choice behavior, we can identify how she brackets and or-
ders the dimensions when evaluating a risky multidimensional alternative.
This is described by a hierarchy, which is a collection of sets of dimensions
such that any two of them are either nested or disjoint. The HEU repre-
sentation has one main equation that will be applied iteratively to derive
an evaluation of a risky multidimensional alternative.

We discuss some choice behavior that can be captured by the HEU
representation. We illustrate how we can elicit the hierarchy from choice
behavior, and provide an axiomatic characterization of the HEU represen-
tation. We analyze in what sense the HEU representation can be uniquely
identified: Roughly speaking, the Bernoulli indices in the representation are
unique, as in expected utility theory, and a canonical hierarchy, a hierarchy
that (i) highlights the separability (across dimensions) properties of the de-
cision maker’s preference and (ii) avoids labeling redundant conditioning
evaluation of risk, can be uniquely identified.

Within the HEU framework, we characterize the three commonly used
extreme cases: the FATE representation, the FETA representation, and
the recursive representation. We then derive two generalizations of those
special cases. First, the generalized bracketing representation features a
hierarchy that is essentially a partition of the dimensions. Each cell of the
partition is a bracket. The decision maker jointly evaluates the risk over
all dimensions within each bracket, and then aggregates across brackets.6

We discuss how this representation relates to group inequality. Second, the
generalized recursive representation allows the decision maker to evaluate
risk recursively according to a weak order on the dimensions. By compari-
son, the recursive representation implies a linear order on the dimensions.

We apply the HEU representation to two problems. In the first appli-
cation, different dimensions represent different income sources. We assume
that the decision maker’s preference has a generalized bracketing represen-
tation. Within each bracket, she rationally evaluates the risk of the total
income and computes a certainty equivalent. Across different brackets,

6The trivial partition and the finest partition (every dimension is a cell of the parti-
tion) correspond to the FATE representation and the FETA representation, respectively.

3



however, she simply sums the certainty equivalents of all brackets, fail-
ing to consider the interdependence of income risk. We call such behavior
narrow bracketing. We characterize the circumstances under which narrow
bracketing leads the decision maker to choose a distribution of total income
that is stochastically dominated, and when the decision maker prefers to
avoid multidimensional risk. The second application features a setting with
uncertainty over what and when prizes will be delivered. As emphasized
by DeJarnette et al. (2020), the widely used exponentially discounted ex-
pected utility model exhibits risk-seeking behavior in the time dimension.
This is neither natural nor consistent with experimental findings. We ex-
amine how the HEU representation can address various issues pointed out
by DeJarnette et al. (2020).

1.1 Related Literature

Many papers have studied multivariate risk, but most stay within ex-
pected utility theory and focus on analyzing measures of risk attitude
(see Duncan (1977), Eeckhoudt et al. (2007), Grant (1995), Karni (1979),
Keeney (1973), Kihlstrom and Mirman (1974, 1981), Levy and Levy (1991),
Richard (1975), and Schlee (1990)). Some papers deviate from expected
utility theory, but in a way that is more in line with classic non-expected
utility analyses (see, for example, Karni (1989)). Our approach is comple-
mentary to the above. The HEU representation does not necessarily satisfy
independence, and when it violates independence, it is because of the inter-
action between the evaluation of risk and how the decision maker brackets
and orders dimensions—rather than, for example, the Allais paradox.

The FETA representation can capture full narrow bracketing and corre-
lation neglect,7 and the HEU representation allows for more general brack-
eting and correlation preferences. Our paper generalizes Zhang (2023) from
two dimensions to multiple dimensions and allows history-dependent risk
attitudes in the recursive model. By studying computationally tractable
choices, Camara (2021) characterizes a dynamic choice bracketing model
that generalizes full narrow bracketing in a way different from ours. Com-

7See Camara (2021), Ellis and Freeman (2021), Enke and Zimmermann (2019), Levy
and Razin (2015), Read et al. (1999), Thaler (1985), Tversky and Kahneman (1981),
Vorjohann (2023), and Zhang (2023).
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pared with our analysis, independence is maintained in Camara (2021).
Our paper offers a novel solution to two other long-standing problems

in the literature of inequality aversion and the literature of ambiguity aver-
sion. In both cases, there are two well-known incompatible approaches to
model inequality aversion and ambiguity aversion: the ex ante approach
and the ex post.8 The two approaches have rather different behavioral im-
plications. In the context of inequality, they capture inequality of oppor-
tunity (ex ante inequality) and inequality of outcome (ex post inequality)
respectively. In the context of ambiguity, the ex ante approach predicts
that randomization cannot hedge away the effect of ambiguity, while the
ex post approach predicts the opposite. Some papers have attempted to
address such incompatibility. For example, Saito (2013, 2015) characterizes
representations that are weighted averages of the two approaches, and Ke
and Zhang (2020) generalize Saito (2015). The HEU representation offers
a novel way to resolve the conflict between the ex ante and the ex post
approaches. Under a special case of the HEU representation—the general-
ized bracketing representation—within each bracket, it is as if the decision
maker takes the ex ante approach, but across different brackets, it is as if
the decision maker takes the ex post approach.

Our paper is related to the literature on dynamic preferences. As stated
previously, DeJarnette et al. (2020) point out that the exponentially dis-
counted expected utility model implies risk-seeking behavior in the time
dimension, which is neither natural nor consistent with experimental find-
ings. If we cast their solution (see also Kihlstrom and Mirman (1981) and
Dillenberger et al. (2020)) to this problem to our setting, the solution first
aggregates across dimensions (different time periods) via exponential dis-
counting. Then, a Bernoulli index is applied to the aggregation before the
decision maker takes expectation to evaluate the risk. This is similar to
a special case of our FATE representation. Other papers have proposed
opposite approaches, such as Selden (1978) and Selden and Stux (1978),
that are similar to special cases of the FETA representation. Our paper
provides a unifying framework that nests these approaches and the recur-
sive approach (Epstein and Zin, 1989; Kreps and Porteus, 1978) as special

8For ambiguity aversion, see Baillon et al. (2022), Dominiak and Schnedler (2011),
Ke and Zhang (2020), Oechssler et al. (2019), Raiffa (1961), and Saito (2015).
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cases. Notably, in Section 6.2 we show that the recursive approach can
generate a novel solution.

If we view different dimensions in our setup as potentially different
sources of uncertainty, our paper is also related to Ergin and Gul (2009) and
Cappelli et al. (2021). In both papers, the decision maker’s risk attitude
may be source-dependent, and she may evaluate risk source-wise before
across sources, which conceptually is similar to our generalized bracketing
representation. However, different from our representation, how the deci-
sion maker brackets the states into sources in those papers is exogenous.
Chew et al. (2023) also study a source-dependent extension of expected
utility theory. However, different sources are captured by different mixture
operators, rather than dimensions.

2 Setup and Representation

For an arbitrary set Z, let ∆(Z) denote the set of all simple lotteries (prob-
ability measures with a finite support) on Z. Let I = {1, . . . , N} be a finite
set of integers with N > 1. For every i ∈ I, let Xi = [xi, xi] be a nondegen-
erate bounded closed interval in R. Let X =×i∈I Xi. Generic elements of
X are called consequences. Generic elements of ∆(X) are called lotteries.

Fix any A ⊆ I. Let XA =×i∈AXi. We use x, y, z to denote generic
elements of XA and p, q, r, s to denote generic elements of ∆(XA).9 We
denote p ∈ ∆(XA) that yields x ∈ XA with certainty by δx. When there
is no risk of confusion, we identify δx with x, and identify a subscript or
a superscript A ⊆ I with i if A = {i} and with −i if A = {i}c.10 For
any p, q ∈ ∆(XA) and α ∈ [0, 1], we write pαq as shorthand for the convex
combination αp+ (1 − α)q ∈ ∆(XA).

Marginal and conditional distributions. For any A ⊆ B ⊆ I

and p ∈ ∆(XB), we use pA ∈ ∆(XA) to denote p’s marginal distribution
on A, and use xA ∈ XA to denote the restriction of x ∈ XB to A. For
any A,B ⊆ C ⊆ I such that A ∩ B = ∅, p ∈ ∆(XC), and x ∈ XB, let
pA|x ∈ ∆(XA) denote p’s conditional marginal distribution on A given x,
and let EpA|x denote the expectation operator under distribution pA|x. We

9However, only elements in X and ∆(X) are called consequences and lotteries.
10For any A ⊆ I, the set Ac is its complement in I.
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write EpA if B = ∅ and Ep if A = C and B = ∅. For any disjoint subsets
of I, A1, . . . , An, with ⋃n

i=1 Ai = A ⊆ I, and any pi ∈ ∆(XAi
) for every

i ∈ {1, . . . , n}, we use (p1, . . . , pn) to denote the unique q ∈ ∆(XA) such
that q(x) = p1(xA1) × · · · × pn(xAn) for every x ∈ XA.

Preference. The decision maker has a preference ≿ over ∆(X). Its
asymmetric and symmetric parts are denoted by ≻ and ∼, respectively. For
any nonempty A ⊆ I and x ∈ XAc , we define the conditional preference ≿x

on ∆(XA) such that for any p, q ∈ ∆(XA), we have p ≿x q ⇐⇒ (p, x) ≿

(q, x). We define ≻x and ∼x similarly.

2.1 Examples: Two Dimensions and Beyond

Before formally defining the HEU representation of ≿, we introduce some
examples to elucidate its structure. Consider a father who is deciding
whether to take his child on a Disney ride. We begin with two dimensions,
the first measuring how thrilling the ride is, and the second measuring how
entertaining the ride is for two people together rather than one alone. If
the ride is too thrilling, the father will feel nauseated during or after the
ride but the child will be unaffected. The three commonly used approaches
to evaluate multidimensional risk are as follows: For any lottery p,

• FATE: U(p) = Ep u(x1, x2).

• FETA: U(p) = u(Ep1 v(x1), Ep2 w(x2)).

• Recursive: U(p) = Ep2 u(x2,Ep1|x2
vx2(x1)).11

The FATE approach corresponds to expected utility, which is well under-
stood. The FETA approach corresponds to a utility function that aggre-
gates separate evaluation of each dimension’s risk. It describes a father
who evaluates the risk of each measure independently of the other, which
is an example of full narrow bracketing and correlation neglect.

The formula for the recursive approach is well understood in the context
of dynamic choice, but less so in a static setting. In this particular example,
it captures a father who considers every possible realization of his and
his child’s experience x2, and given any x2 he dislikes (if vx2 is concave)

11Alternatively, we can have U(p) = Ep
1 u(x1,Ep

2|x1
vx1(x2)).
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facing additional uncertainty about whether he will feel nauseated or not.
More specifically, suppose p = 1

2δ(0,0) + 1
2δ(1,1), q = 1

2δ(1,0) + 1
2δ(0,1). Then,

p1
2q = 1

4δ(0,0) + 1
4δ(0,1) + 1

4δ(1,0) + 1
4δ(1,1). With this formula, it is possible

that
p ∼ q ≻ p

1
2q.

This is because with r, given any realization of dimension 2, there is still
conditional uncertainty over dimension 1—but with p, q, this is not the
case.

Figure 1 naturally represents how the father evaluates the two dimen-
sions in the three examples above, respectively. As will become clear later,
they correspond to the hierarchies of the three approaches.12

1 2

FATE

1 2

FETA

21

Recursive

Figure 1: The three approaches.

When we have more than two dimensions, it becomes clear that these
three approaches can only capture some rather special cases of a decision
maker’s evaluation of multidimensional risk. For example, suppose that in
addition to the two dimensions described above, a third dimension of the
Disney ride measures how well the ride connects to the stories. In this case,
we may encounter a father who wants to separately consider dimension 1
and dimensions 2 and 3, because these two subsets of dimensions describe
properties of different natures; a father who considers the conditional un-
certainty of dimension 1 given each joint realization of dimensions 2 and 3,
following the same logic of the recursive approach; or a father who consid-
ers every realization of dimension 1 and given each realization, he applies
the FETA approach to evaluate dimensions 2 and 3. Figure 2 provides a
graphic illustration of these examples.

12It may appear that the boxes in Figure 1 have different meanings. For example,
the outer box for FETA does not involve an expectation operator, while the others do.
In fact, they all correspond to equation (1), except that the expectation of the outer
box for FETA is degenerate.
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1 2 3 1 2 3

1 2 3

Figure 2: The top-left figure captures separate evaluations of dimension
1 and dimensions 2 and 3. The top-right figure captures the evaluation
of the risk of dimensions 2 and 3 and the conditional risk of dimension 1
given each realization of dimensions 2 and 3. The bottom figure captures
the evaluation of dimension 1’s risk and the conditional risk of dimensions
2 and 3 separately given each realization of dimension 1.

2.2 Representation

The HEU representation of the decision maker’s preference can capture the
behavior described in all figures of Section 2.1. Those figures are graphical
illustrations of hierarchies. A hierarchy is an important ingredient of the
HEU representation. A collection of nonempty subsets of I, denoted by
H, is a hierarchy if (i) I ∈ H and (ii) for any A,B ∈ H, we have A ⊆ B,
B ⊆ A, or A ∩B = ∅.13 We call the elements of a hierarchy components.

To define the HEU representation, we need a few operators for compo-
nents. For any i ∈ I, let H(i) denote the smallest component in H that con-
tains i. Clearly, H(i) is uniquely defined for every i ∈ I. For any A ∈ H, let
τ(A) = {i ∈ A : A = H(i)}; η(A) = {i ∈ I : A ⊊ H(i)}; and Φ(A) = {B ∈
H : B ⊊ A, and there does not exist any B′ ∈ H such that B ⊊ B′ ⊊ A}.
It is immediate from the definitions that τ(A) = A \ ⋃

B∈Φ(A) B.
To understand the interpretation of τ, η, and Φ, consider dynamic choice

as an analogy and envision the dimensions as time periods. Then, it is as
if τ and η identify dimensions that are currently evaluated (present) and
dimensions whose risk has been resolved previously (history), respectively,
and Φ identifies the components whose risk will be resolved later (future).
To see this more concretely, we apply τ, η, and Φ to the top-left and bottom

13Hierarchies can be equivalently represented using trees.
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examples in Figure 2.

Remark 1. From here on, to simplify the discussion, we may use the
terms “present/current,” “past/history,” and “future” to refer to τ, η, and
Φ, respectively, even when the context is not dynamic choice.

Example 1. In the top-left example in Figure 2, let A = {2, 3} and B =
{1}. Then, H = {I, A,B} is a hierarchy. We have τ(I) = ∅; τ(A) = {2, 3};
and τ(B) = {1}. In this example, the decision maker does not evaluate any
dimension conditioning on another, so η(I) = η(A) = η(B) = ∅. Finally,
Φ(I) = {A,B} and Φ(A) = Φ(B) = ∅.

Example 2. In the bottom example in Figure 2, let A = {2} and B =
{3}. Then H = {I, A,B} is a hierarchy. For component I, the present
dimension is τ(I) = {1}, I’s history η(I) is empty, and I’s future is Φ(I) =
{A,B}. For component A, the present dimension is τ(A) = {2}, the history
is η(A) = {1}, and the future Φ(A) is empty. Similarly, for component B,
τ(B) = {3}, η(B) = {1}, and Φ(B) is empty.

Several notational conventions are useful to understand the definition
of the HEU representation. First, if we encounter x ∈ XA in which A = ∅,
then x will be ignored in the expression. We illustrate what this convention
implies in the following examples:

• For any pA|x in which x ∈ XB and B = ∅, we identify pA|x with pA.

• For any fx in which x ∈ XA and A = ∅, we identify fx with f .

• For any A ∈ H, A ⊆ H, and f : XA × RA → R, if A = ∅, then f ’s
domain is identified with RA.

Second, in the last example, if A = ∅ instead, then f ’s domain is identified
with XA. Last, if we have pA|x in which A = ∅, the conditional expectation
operator EpA|x will be ignored in the expression.

Definition 1. The preference has an HEU representation if there exist a
hierarchy H and functions uA : Xη(A) ×Xτ(A) ×RΦ(A) → R for every A ∈ H
such that, recursively defining for all A ∈ H and x ∈ Xη(A) the function
UA
x : ∆(XA) → R by

UA
x (p) = Epτ(A) u

A( x, y, (UB
(x,y)(pB|y))B∈Φ(A) ), (1)
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the following statements hold for all A ∈ H and x ∈ Xη(A):

1. For any p, q ∈ ∆(XA) and z ∈ X(A∪η(A))c, we have p ≿(x,z) q ⇐⇒
UA
x (p) ⩾ UA

x (q).

2. The function UA
x (δz) is continuous and strictly increasing in z ∈ XA.

We denote the HEU representation by (H, (uA)A∈H).

The first condition in the above definition implies the usual represen-
tation condition: For any lotteries p, q ∈ ∆(X), we have p ≿ q if and only
if U I(p) ⩾ U I(q). Hence, the function U I (UA

x when A = I) represents ≿

and is derived recursively, similar to Kreps and Porteus (1978). The first
condition also implies representation conditions for conditional preferences.
The second condition requires that the representations of conditional pref-
erences are continuous and monotone in the absence of risk. This condition
is useful in the proofs and may be relaxed. It ensures that the set of conse-
quences is sufficiently rich so that for any lottery, we can construct lotteries
with different supports that are indifferent to it.

Although the HEU representation appears complex, its main idea is
simple and similar to Kreps and Porteus (1978). Take any component A
and x ∈ Xη(A) on which evaluation of the dimensions in A conditions. We
can understand equation (1) that evaluates p ∈ ∆(XA) as follows:

UA
x (p) = Epτ(A)︸ ︷︷ ︸

expectation with
respect to risk in

the present dimensions

uA(x, y︸︷︷︸
y ∈ Xτ(A),

the present
dimensions

, (UB
(x,y)(pB|y))B∈Φ(A)︸ ︷︷ ︸

conditional expected
utility of futures

given (x, y)

),

in which x as an argument of uA plays the role of allowing for history
dependence. Figure 3 illustrates how the HEU representation is applied
recursively to the top-left and top-right examples in Figure 2.

One way to interpret the hierarchy is that it captures how the decision
maker analyzes risk. Risk is fully described by the joint distribution over X,
but the decision maker has her own way of understanding risk: She sub-
jectively decomposes the joint distribution into conditional distributions
and/or marginal distributions iteratively. The rationale for the decompo-
sition depends on what the specific dimensions represent. For example,
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sometimes it may capture narrow bracketing (see Sections 2.1 and 6.1),
and sometimes it may capture the decision maker’s subjective perception
of time periods (see Section 5). Based on the decomposition, the decision
maker then evaluates risk recursively according to equation (1). Her risk
attitudes are described by the Bernoulli indices of the HEU representation.

One might wonder whether decomposing risk as described above and
then analyzing risk recursively will be computationally more complex than
the expected utility model. First, for instance, if the decision maker di-
vides a subset of dimensions into several brackets for evaluation, she will
ignore the lottery’s correlation across different brackets (see the discussion
of FETA in Section 2.1), which may simplify the computation.14 It is also
not clear whether conditioning necessarily complicates the computation.
In terms of the formula, it appears more complex, but a more formal con-
clusion will require some analysis of computational complexity, which is
beyond the scope of this paper.

1 2 3

u(U1, U{2,3})

1
U1: expected util-
ity of dimension 1

2 3
U{2,3}: expected util-
ity of dimensions 2, 3

Expectation of u(x2, x3, U
1
x2,x3

)
with respect to dimensions 2, 3

1 2 3

1
U1

x2,x3
: conditional expected util-

ity of dimension 1 given x2, x3

Figure 3: A graphical illustration of how the HEU representation is applied
recursively to the top-left and top-right examples in Figure 2.

On the one hand, equation (1) can be viewed as an extension of the
recursive expected utility formula in the dynamic choice literature (Kreps
and Porteus, 1978; Epstein and Zin, 1989), modified for our setting. On the
other hand, there are several important differences between our approach
and the typical approach used in dynamic choice.

First, in the dynamic choice literature, the choice alternatives them-
14See Camara (2021) for a formal discussion of the connection between narrow brack-

eting and computational tractability.
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selves are often constructed recursively, as in Kreps and Porteus (1978),
following an exogenous linear order on the dimensions such as time. This
structure simplifies the characterization of recursive models. As will be seen
later, identifying the subjective recursive evaluation of risk is more chal-
lenging in our case. By contrast, because our theory applies to many other
settings in which the dimensions are not naturally ordered and we seek to
learn from her behavior how the decision maker structures the dimensions,
we choose not to define our choice domain ∆(×i∈I Xi) recursively. Al-
though the alternatives are not recursively constructed, our approach still
allows the decision maker’s behavior to follow recursive models.

Second, unlike standard recursive models in dynamic choice, the HEU
representation is not necessarily continuous on ∆(X). The reason for the
lack of continuity will be clear when we introduce the continuity axiom in
Section 3.

3 Axiomatic Foundation

Before presenting the axiomatic characterization of the HEU representa-
tion, we first use some examples to illustrate how we can elicit the decision
maker’s hierarchy from her choices. These examples will help us understand
the motivation for our main axiom.

3.1 Elicitation of the Hierarchy

Consider the simplest example in which N = 2 and suppose the decision
maker’s preference has an HEU representation. There are four possible
hierarchies: H1 = {{1, 2}}; H2 = {{1, 2}, {1}}; H3 = {{1, 2}, {2}}; H4 =
{{1, 2}, {1}, {2}}. As discussed in Section 2.1, the hierarchy H1 corre-
sponds to expected utility, which means that the decision maker’s choices
are consistent with independence. It turns out that if the decision maker’s
hierarchy is either H2, H3, or H4, her choices may violate independence,
and different hierarchies lead to different types of violations. This enables
us to infer the decision maker’s hierarchy by observing how her choices
violate independence.
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3.1.1 Violations of Independence Due to Conditioning

If the decision maker decides that dimension j’s risk should be evaluated
conditioning on dimension i’s realization, independence applied to dimen-
sions i and j may not hold, as shown in the example below.

Example 3. Suppose the decision maker’s utility function is

U(p) =
∑
x1

p1(x1)u(x1, p2|x1),

in which u(x1, p2) = x1+(∑
x2 p2(x2)

√
x2)2. That is, the utility of (x1, p2) is

the sum of x1 and the certainty equivalent of p2 under the Bernoulli index
w(z) =

√
z for z ⩾ 0. The corresponding hierarchy is H3 = {{1, 2}, {2}}.

Consider three degenerate lotteries that yield x = (0, 0), y = (−1/2, 1/4)
and z = (0, 4), respectively. We can verify that U(δx) = 0 > U(δy) =
−0.25, but U(δy 1

2δz) = 1.875 > U(δx 1
2δz) = 1, which violates independence.

The reason behind the violation of independence shown in Example 3
is as follows. Because y = (−1/2, 1/4) and z = (0, 4) do not share the same
value in dimension 1, when the decision maker evaluates δy 1

2δz, she thinks of
it as follows: with 50% chance, −1/2 in dimension 1, conditioning on which
1/4 in dimension 2; and with 50% chance, 0 in dimension 1, conditioning
on which 4 in dimension 2. However, because x = (0, 0) and z = (0, 4)
share the same value in dimension 1, when it comes to δx 1

2δz, the decision
maker thinks of it as follows: with certainty 0 in dimension 1, conditioning
on which δ0

1
2δ4 in dimension 2. For δy 1

2δz, the decision maker’s risk attitude
for dimension 2 is never factored in, but for δx 1

2δz, the decision maker will
compute the certainty equivalent of δ0

1
2δ4 in dimension 2.

In this example, the violation of independence is caused by the fact
that one mixture mixes lotteries that do not have overlapping supports in
dimension 1, while the other mixes lotteries that do. Put differently, when
we only mix lotteries that do not have overlapping supports in dimension 1,
we should not expect independence to be violated. This observation leads
to the following definition that tentatively identifies which set of dimensions
is evaluated conditioning on which dimension. For any i ∈ I and pi, ri ∈
∆(Xi), we write pi ⊥ ri if they have disjoint supports.
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Definition 2. For any i ∈ I and A ⊆ I, we write i ⇀ A if for all α ∈ (0, 1),
x ∈ X({i}∪A)c, and p, q, r, s ∈ ∆(X{i}∪A) such that pi ⊥ ri and qi ⊥ si, we
have p ≻x q and r ∼x s =⇒ pαr ≻x qαs. We write i ⇀ j if A = {j}.

In the above definition, the requirements pi ⊥ ri and qi ⊥ si ensure that
the mixtures pαr and qαs do not have overlapping supports in dimension i.
The idea is that if, by avoiding mixing alternatives that have overlapping
supports in dimension i, independence holds on dimensions {i}∪A, then it
is possible that the decision maker evaluates dimensions in A conditioning
on dimension i.

Several observations should be noted. First, if the decision maker’s con-
ditional preference on ∆(XA) always has an expected utility representation,
then i ⇀ A for all i ∈ A. Second, if i ⇀ A, then i ⇀ A ∪ {i} and i ⇀ B

for all B ⊆ A. Third, if we focus on the case in which A is a singleton set,
then ⇀ induces a binary relation on I.

In Example 3, we can verify that 1 ⇀ 2 but 2 ̸⇀ 1, which is consistent
with its hierarchy H3 = {{1, 2}, {2}}.15 Hence, it appears that ⇀ precisely
identifies how the decision maker conducts conditional risk evaluation. This
is not true, however, as shown in the following example in which N = 3.

Example 4. Let N = 3. Suppose the decision maker’s utility function is

U(p) =
∑
x1

v1(x1)p1(x1) ·

√√√√∑
x2

v2(x2)2p2|x1(x2) ·
[∑
x3

v3(x3)p3|x1,x2(x3)
]2
.

The corresponding hierarchy is {I, {2, 3}, {3}}. Intuitively, we should have
1 ⇀ 2, 1 ⇀ 3, and 2 ⇀ 3, and not conversely. However, 3 ⇀ 1 also holds.
To see this, fixing any x2 ∈ X2, for every p{1,3} ∈ ∆(X{1,3}), we have

U((p{1,3}, x2)) =
∑
x1

v1(x1)p1(x1) · v2(x2) ·
∑
x3

v3(x3)p3|x1(x3)

= v2(x2) · Ep{1,3}(v1(x1) · v3(x3)),

which means that focusing on dimensions 1 and 3, the conditional pref-
erence has an expected utility representation. Therefore, we have 1 ⇀ 3

15When verifying whether 2 ⇀ 1 holds, one is allowed to consider mixtures that have
overlapping supports in dimension 1, which causes the property in Definition 2 to fail.
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and 3 ⇀ 1, although the decision maker does not evaluate dimension 1
conditioning on dimension 3.

If ⇀ precisely identifies which dimension is evaluated conditioning on
which other dimension, 3 ⇀ 1 should not hold, but it does because in the
definition of ⇀, when we examine the relation between dimensions 1 and
3, we require that all of the other dimensions have no risk. Therefore, ⇀
may identify conditioning behavior that does not exist.

Our solution to this issue is as follows. In Example 4, we have 1 ⇀

{1, 2, 3} but not 2 ⇀ {1, 2, 3} or 3 ⇀ {1, 2, 3}. We conclude that the
decision maker evaluates dimensions 2 and 3 conditioning on dimension 1.
Next, remove dimension 1 from I and we have 2 ⇀ {2, 3} but not 3 ⇀

{2, 3}. We conclude that given the realization of dimension 1, the decision
maker evaluates dimension 3 conditioning on dimension 2. Comparing
what this procedure tells us with the utility function, we find that we have
identified the decision maker’s conditioning behavior correctly.

3.1.2 Violations of Independence Due to Bracketing

The procedure at the end of the previous subsection relies on—given a
component A under consideration—the existence of a dimension i ∈ A

such that i ⇀ A. What if we cannot find such a dimension? In that
case, the decision maker must have partitioned the dimensions in A into
several parts, and evaluated them separately without conditioning between
different parts. What happens to independence in this case? Return to the
N = 2 case and consider the following example.

Example 5. Suppose the decision maker evaluates a lottery by summing
the certainty equivalents of marginal lotteries in both dimensions:

u−1(Ep1 u(x1)) + u−1(Ep2 u(x2)),

in which u(z) =
√
z for z ⩾ 0. Consider x = (0, 1) and y = (1, 0). They

both have utility 1, but the utility of δx 1
2δy is 1/2.

The above violation of independence differs from that in Section 3.1.1,
because δx and δy do not have overlapping supports in either dimension.
Rather, the violation is caused by the fact that the decision maker neglects
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correlation and evaluates each dimension’s risk separately. This observation
leads to the definition below that identifies which dimensions are evaluated
separately from some other dimensions. When there is no risk, it is similar
to the notion of separability in Debreu (1960) and Gorman (1968).

Definition 3. We say that a proper subset B ⊊ A is isolated in A, denoted
by B ▷ A, if for all x ∈ XAc, r ∈ ∆(XA\B), and p, q ∈ ∆(XA) such that
pA\B = qA\B, we have p ≿x q ⇐⇒ (pB, r) ≿x (qB, r).

Motivated by Example 5, Definition 3 captures two forms of separability
if B ▷ A. First, the decision maker neglects the correlation between risk in
B and risk in A \ B. To see this, let r = pA\B = qA\B and pB = qB. Since
(pB, r) = (qB, r), we must have p ∼x q, which implies that the correlation
between risk in B and in A \ B does not matter. Second, the decision
maker’s evaluation of risk in B is independent of what she faces in A \ B.
To see this, for any s, r ∈ ∆(XA\B), let p = (pB, s) and q = (qB, s). Since
B ▷ A, we have (pB, s) ≿x (qB, s) ⇐⇒ (pB, r) ≿x (qB, r).

In Example 5, we can verify that {1} ▷ {1, 2} and {2} ▷ {1, 2}, which
is consistent with the hierarchy H4 = {{1, 2}, {1}, {2}}.

3.2 Characterization

We impose the following axioms on the decision maker’s preference. We
begin with two standard axioms.

Axiom 1. (Weak Order) The preference ≿ is complete and transitive.

Axiom 2. (Outcome Monotonicity) For all x, y ∈ X, if x ⩾ y and x ̸= y,
then x ≻ y.

We have seen that independence may be violated due to either brack-
eting or conditioning of different dimensions (Section 3.1). However, when
we focus on a single dimension, we require that independence holds.

Axiom 3. (Unidimensional Independence) For all i ∈ I, p, q, r ∈ ∆(Xi),
x ∈ X−i, and α ∈ (0, 1), we have p ≻x q =⇒ pαr ≻x qαr.

Our main axiom relaxes independence across dimensions by drawing
a connection between conditioning and bracketing, which can be revealed
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from choice behavior using ⇀ (Definition 2) and ▷ (Definition 3). Its idea is
simple: If no conditioning, then there must be bracketing. More specifically,
given any set of dimensions A, if no dimension in A is conditioned on when
the decision maker evaluates all the other dimensions in A, then the decision
maker must have partitioned A into several subsets to evaluate separately.
Consequently, every dimension in A must belong to some bracket that is
isolated in A, and the union of those brackets should be A.

Axiom 4. (Separability Under Bracketing) If i ̸⇀ A for all i ∈ A, then⋃
B▷AB = A.

Axiom 4 is satisfied in Example 3, since 1 ⇀ {1, 2}, and in Example 5,
since {1} ▷ {1, 2} and {2} ▷ {1, 2}. We also provide examples that will
show how the above two axioms may be violated in Online Appendix I.2.

The last axiom is continuity. The standard continuity axiom requires
that for every lottery p, the set of lotteries that are weakly better than p

and the set of lotteries that are weakly worse than p are closed. This notion
of continuity may be too demanding in our theory because of conditioning.
Consider the following example.

Example 6. Let N = 2. Again suppose the decision maker’s utility of p is
given by ∑

x1 p1(x1)u(x1, p2|x1), in which u(x1, p2) = x1 +(∑
x2 p2(x2)

√
x2)2.

Consider a lottery that yields (ε, 0) and (0, 4) with equal probability. As
ε converges to 0, its utility converges to 2, but the lottery converges in
distribution to (δ0, q2) with utility u(0, q2) = 1, in which q2 = δ0

1
2δ4.

Nonetheless, the following weaker notion of continuity is orthogonal to
the observation behind Example 6 and should remain valid in our theory.

Axiom 5. (Continuity) For all p, q, r ∈ ∆(X), the sets {α ∈ [0, 1] : pαq ≿
r} and {α ∈ [0, 1] : r ≿ pαq} are closed in [0, 1], and the sets {x ∈ X : x ≿

p} and {x ∈ X : p ≿ x} are closed in X.

The main representation theorem is below. The main idea behind its
proof is essentially the elicitation process described in Section 3.1.

Theorem 1. The preference satisfies weak order, outcome monotonicity,
unidimensional independence, separability under bracketing, and continuity
if and only it it has an HEU representation.
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4 Uniqueness

To what extent can we uniquely identify the hierarchy and the Bernoulli
indices in an HEU representation? To answer this question, we first intro-
duce a useful definition. We say that a hierarchy is tight if for every A ∈ H
that is not I, we have τ(A) ̸= ∅. That is, given any component A that is
not I, there must be some dimension in A that is evaluated currently. The
hierarchies in Figures 1 and 2 are tight.

The first observation is that the decision maker’s preference has an
HEU representation if and only if it has an HEU representation in which
the hierarchy is tight. This observation is not trivial. It is implied by
Lemma 1 in the Appendix.

The second observation is that, fixing a tight hierarchy H, the unique-
ness of the corresponding (uA)A∈H is similar to that in expected utility
theory: Roughly speaking, for all x ∈ Xη(A) and a ∈ RΦ(A), the function
uA(x, ·, a) is unique up to a positive affine transformation.16 The arguments
are standard. We leave the details to Online Appendix III.

Note that it is important to the second observation that the hierarchy
is tight. Consider the example in Figure 4. Because τ({2, 3, 4}) = ∅,
this hierarchy is not tight. It is easy to see that it is without loss of
generality to remove the component {2, 3, 4} from the hierarchy. The reason
is simple: A function that takes the form f(x, g(y, z)) is more restrictive
than a function that takes the form h(x, y, z), and moreover, in the former
case, g is redundant and cannot be jointly identified with f .

1 2 3 4

Figure 4: A hierarchy on I = {1, 2, 3, 4} that is not tight.
16We have referred to all (uA)A∈H as Bernoulli indices by an abuse of terminology. A

function uA is a Bernoulli index if and only if τ(A) ̸= ∅. When τ(A) = ∅, the expectation
operator in equation (1) is degenerate and hence uA is not a Bernoulli index. Given a
tight hierarchy, it is possible when A = I that τ(A) = ∅. In that case, uI is unique up
to a monotone transformation.
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More importantly, we want to analyze the uniqueness of the hierarchy.
We say that the hierarchy is unique if for any HEU representations of ≿,
(H, (uA)A∈H) and (H̃, (vA)A∈H), we have H = H̃. In general, the hierarchy
in the HEU representation is not unique, even if we focus on tight hier-
archies. For instance, if ≿ has an expected utility representation with an
additively separable Bernoulli index, then we can verify that for any tight
hierarchy H, there exists an HEU representation of ≿ with hierarchy H.

However, it is possible to identify a unique canonical hierarchy. The
idea is simple: The canonical hierarchy highlights bracketing and avoids
redundant conditioning. To define it, we need some additional notations.
Let H be the set of all hierarchies H such that (H, (uA)A∈H) is an HEU
representation of ≿ for some (uA)A∈H. We add a superscript to functions
HH, τH, ηH, and ΦH defined in Section 2 to emphasize their dependence
on H.

Definition 4. We say that a tight hierarchy H∗ ∈ H is a canonical hierar-
chy for ≿ if for every A ∈ H∗, the following statements hold:

1. If there exists an H ∈ H such that A ∈ H and τH(A) = ∅, then
τH∗(A) = ∅.

2. If τH(A) ̸= ∅ for all H ∈ H such that A ∈ H, then τH(A) ⊆ τH∗(A)
for all H ∈ H such that A ∈ H.

The motivation for the first statement can be understood using the pre-
vious example in which ≿ has an expected utility representation with an
additively separable Bernoulli index. Recall that in that case, any tight hi-
erarchy H can be used to form an HEU representation of ≿. However, all
but one hierarchies fail to convey the most crucial feature of ≿. When the
Bernoulli index is additively separable, the decision maker’s choice behav-
ior exhibits full narrow bracketing and correlation neglect. The hierarchy
{I, {1}, . . . , {N}} precisely highlights the fact that every dimension has
its own bracket from the decision maker’s point of view—whereas, for in-
stance, the hierarchy {I} treats this example no differently from a generic
expected utility representation. Following our discussion in Section 3.1,
we know that when τH(A) = ∅, the decision maker must have divided the
dimensions in A into groups for separate evaluation. Therefore, the first

20



statement says that whenever the evaluation of A is performed in groups
and A is contained in the canonical hierarchy, the canonical hierarchy must
capture the separate evaluation of A.

To understand the second statement, consider an example in which
N = 2 and ≿ has an expected utility representation whose Bernoulli in-
dex is not additively separable. It can be shown that ≿ is represented
by HEU representations with any of the following hierarchies: {{1, 2}},
{{1, 2}, {2}}, or {{1, 2}, {1}}. However, the conditioning exhibited in the
second and third hierarchies is redundant. The second statement says that
the canonical hierarchy should avoid exhibiting such redundant condition-
ing.

Our second theorem establishes the existence and uniqueness of the
canonical hierarchy. Its proof is constructive.

Theorem 2. If ≿ has an HEU representation, then there exists a unique
canonical hierarchy for ≿.

5 Special Cases of the HEU Representation

Our framework allows us to characterize several well-known utility repre-
sentations in a novel way. Moreover, it helps us derive useful generalizations
of those representations. We first formally define the three extreme cases
of the HEU representation discussed in the Introduction.

Definition 5. The preference ≿ has a FATE representation if there exists
a continuous and strictly increasing function u : X → R such that for all
p, q ∈ ∆(X),

p ≿ q ⇐⇒ Ep u(x) ⩾ Eq u(x).

The preference ≿ has a FETA representation if there exist continuous and
strictly increasing functions v : RI → R and ui : Xi → R, i = 1, . . . , N ,
such that for all p, q ∈ ∆(X),

p ≿ q ⇐⇒ v(Ep1 u1(x1), . . . ,EpN uN(xN) ) ⩾ v(Eq1 u1(x1), . . . ,EqN uN(xN) ).

The preference ≿ has a recursive representation if it has an HEU repre-
sentation whose hierarchy H is unique and satisfies |H| = N and, for all
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A,B ∈ H, we have A ⊆ B or B ⊆ A.

Clearly, the FATE representation is an HEU representation with hierar-
chy H = {I}, and the FETA representation is an HEU representation with
hierarchy H = {I, {1}, . . . , {N}}. As stated in Section 2.1, the former is an
expected utility representation, and the latter captures full narrow brack-
eting. They correspond to the two commonly used opposite approaches to
evaluate lotteries.

Given a recursive representation with hierarchy H, for any component
A ∈ H, there is only one present dimension in τ(A) and one future com-
ponent in Φ(A). Hence, the recursive representation is analogous to those
of Kreps and Porteus (1978) and Epstein and Zin (1989). The order of the
dimensions, however, is subjective. It is as if dimension τ(I) predates the re-
maining dimensions I1 = I \ τ(I)—which must be a component itself—and
dimension τ(I1) predates the remaining dimensions I2 = I1 \ τ(I1)—which
again must be a component itself—and so on.

The next theorem provides a characterization of these three representa-
tions. The FATE representation obviously can be characterized using inde-
pendence from expected utility theory, but we will provide an alternative
characterization, making use of our framework. Our new characterization
of the FATE representation will help us derive a natural generalization of
it. For any i, j ∈ I, denote i ⇀⇀ j if i ⇀ j and j ̸⇀ i.

Theorem 3. Suppose the preference ≿ has an HEU representation. It has
a FATE representation if and only if i ⇀ I for every i ∈ I. It has a FETA
representation if and only if {i} ▷ I for every i ∈ I. It has a recursive
representation if and only if there exists a bijective function π : I → I such
that π(i) ⇀⇀ π(i+ 1), for all i = 1, . . . , N − 1.

The characterization of the FATE representations is intuitive. One
might wonder whether the following condition characterizes the FETA rep-
resentation: For all i, j ∈ I, we have i ⇀ j ⇐⇒ i = j. The issue with
this idea can be seen by noticing that the expected utility function with
an additively separable Bernoulli index is a special case of the FETA rep-
resentation, and in that case, i ⇀ j for all i, j ∈ I.

For the recursive representation, the permutation function π and the
relation ⇀ indicate the subjective order, following which the decision maker
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conducts the recursive evaluation of a lottery. We provide additional results
in Online Appendix III.2 for the case in which the permutation function
is the identity function. This case will be relevant when, for example, the
dimensions represent (ordered) time periods.

One might conjecture that to characterize the recursive representation,
we simply need ⇀ to induce a linear order on I. This is incorrect. As dis-
cussed in Section 3.1.1 and Example 4, the relation ⇀ does not precisely
identify how the decision maker orders different dimensions. However, it
can be shown that if we observe i ⇀⇀ j, then it must be true that in any
HEU representation of the decision maker’s preference, it is as if dimen-
sion i predates dimension j strictly. This observation is the key to our
characterization above.

We relax the conditions that characterize the FATE, FETA, and recur-
sive representations to derive useful generalizations of them. Consider the
following two representations, whose examples are illustrated in Figure 2.

Definition 6. The preference has a generalized bracketing representation
if there exist a partition {Ai}ni=1 of I and continuous and strictly increasing
functions v : R{Ai}n

i=1 → R and uAi : XAi
→ R, i = 1, . . . , n, such that for

all p, q ∈ ∆(X), we have p ≿ q if and only if

v(EpA1 u
A1(xA1), . . . ,EpAn

uAn(xAn)) ⩾ v(EqA1 u
A1(xA1), . . . ,EqAn

uAn(xAn)).

The preference has a generalized recursive representation if it has an HEU
representation with hierarchy H such that for all A,B ∈ H, we have A ⊆ B

or B ⊆ A.

The FATE representation can be viewed as a generalized bracketing
representation with the trivial partition: The decision maker puts all di-
mensions into one bracket and evaluates the uncertainty over that bracket
jointly. The FETA representation can be viewed as a generalized bracketing
representation with the finest partition, in which every partition element is
a singleton. Every dimension has its own bracket, and the decision maker
evaluates the uncertainty over each bracket separately before aggregating
across brackets. The generalized bracketing representation allows for more
general brackets, such as the top-left example in Figure 2.
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For a recursive representation, there is only one present dimension in
any component. By contrast, for a generalized recursive representation,
there may be multiple present dimensions at any component. This gener-
alization certainly enables us to capture richer behavioral patterns of the
recursive evaluation of risk in static settings, but it also introduces new
ways to model the recursive evaluation of risk in dynamic choice. For ex-
ample, we usually divide the timeline into multiple periods evenly. Under
the recursive representation, how the decision maker brackets and orders
the time periods to evaluate risk recursively coincides with the exogenous
arrangement of time periods: a linear order on the dimensions. Under the
generalized recursive representation, the decision maker may evaluate risk
recursively following her own subjective arrangement of time periods: a
(subjective) weak order on the dimensions. For example, a student may
think of a whole semester as one period but treat each day of a vacation
as one period. In other words, the uncertainty over the semester will be
evaluated jointly, conditioning on which the daily uncertainty during the
vacation will be evaluated recursively.

The next result characterizes the generalized bracketing representation
and the generalized recursive representation.

Theorem 4. Suppose the preference ≿ has an HEU representation. It has
a generalized bracketing representation if and only if for every nonempty
A ⊆ I, if ⋃

B▷AB ̸= A, then i ⇀ A for every i ∈ A. It has a generalized
recursive representation if and only if for every nonempty A ⊆ I, there
exists i ∈ A such that i ⇀ A.

One might conjecture that the characterization of a generalized recur-
sive representation is that ⇀ induces a weak order on I. Again, this is
incorrect, because of the reason discussed in Section 3.1.1 and Example
4. We provide additional results in Online Appendix III.2 for the case in
which the dimensions are exogenously ordered, as in the setting of dynamic
choice.

5.1 Examples: Group Inequality

At the beginning of the Introduction, we discuss the conflict between the
FATE and the FETA approaches; more examples of such conflict are dis-
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cussed in Online Appendix I.1. The generalized bracketing representation
offers a new solution to such conflict. We explain it in the context of
inequality.

Over the last few decades, economists have documented significant
changes in inequality within and between social groups, and proposed mea-
sures that can capture both within-group and between-group inequality to
study them.17 As discussed in the Introduction, the FATE representa-
tion captures ex post inequality aversion, while the FETA representation
captures ex ante inequality aversion, if the relevant functions in those rep-
resentations are concave. The former’s hierarchy is {I} and the latter’s is
H = {I, {1}, . . . , {N}}.

Suppose I = {1, 2, 3, 4}, and interpret the ith component of x ∈ X as
individual i’s income. Let A = {1, 4} and B = {2, 3} represent two social
groups. Suppose the decision maker’s preference has generalized bracketing
representation such that the hierarchy is {I, A,B} and functions uI , uA,
and uB are concave. Suppose δ(0,1,1,0) ∼ δ(1,0,0,1). It can be seen that the
decision maker is averse to ex post inequality for individuals in the same
social group (components A and B):

δ(1/2,1/2) ≻(x2,x3)
1
2δ(0,1) + 1

2δ(1,0) and δ(1/2,1/2) ≻(x1,x4)
1
2δ(0,1) + 1

2δ(1,0).

Moreover, the decision maker is averse to ex ante inequality between social
groups:

1
2δ(0,1,1,0) + 1

2δ(1,0,0,1) ≻ δ(0,1,1,0) ∼ δ(1,0,0,1).

Therefore, the generalized bracketing representation becomes a natural
intermediate case between the FATE and FETA representations, and can
capture the following notion of group inequality: The decision maker cares
about ex post inequality (inequality of outcome) for individuals within the
same group, and cares about ex ante inequality (inequality of opportunity)
across groups.

Note that we may also take the generalized bracketing representation
to a setting with ambiguity. In that case, it will become a natural interme-
diate case between the ex ante approach to evaluate randomization under

17See, among others, Burstein et al. (2019), Darity Jr (2022), Elbers et al. (2008),
La Ferrara (2002), Formby et al. (1989), Gottschalk (1997), and Lemieux (2006).
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ambiguity and the ex post approach. See more discussion in Section 1.1.

6 Applications

6.1 Multisource Income

In this section, we consider a decision maker who receives income from mul-
tiple sources and show how narrow bracketing can induce (i) stochastically
dominated choices and (ii) avoidance of multidimensional risk.

Suppose for some b > 0, Xi = Z = [−b, b] for every i ∈ I. Denote
Z+ = [0, b] and Z− = [−b, 0]. Each element in Z is a monetary prize and
can indicate either a gain or a loss, depending on its sign. For any A ⊆ I,
we interpret p ∈ ∆(XA) as a joint distribution of incomes from sources in A,
which induces a distribution of total income denoted by f [p]. That is, the
probability of total income z ∈ R is f [p](z) = ∑

x∈XA
p(x)1{∑

i∈A xi = z},
in which 1 is the indicator function. To keep notation simple, we only work
with p’s such that f [p] ∈ ∆(Z) throughout this subsection.

Suppose ≿ has the following generalized bracketing representation:

U(p) =
n∑
i=1

c(f [pAi
], u), (2)

in which {Ai}ni=1 is a partition of I, u : Z → R is a continuous and strictly
increasing function, and c(q, u) = u−1(Eq u(x)) is the certainty equivalent
of q ∈ ∆(Z) under the Bernoulli index u.18 Under this representation, the
decision maker classifies income sources into several brackets and evaluates
a lottery by summing the certainty equivalents of the distribution of total
income in each bracket. As a result, her behavior exhibits narrow brack-
eting across different brackets of income sources. We further assume that
u is twice continuously differentiable, and hence the Arrow–Pratt measure
of absolute risk aversion A(x) = −u′′(x)/u′(x) is well defined.19

18In Online Appendix II.1, we characterize the behavioral implications of (2). We
also discuss an alternative formulation and explain why we choose (2).

19Our results remain valid without this assumption, once we replace conditions on A
with alternative definitions of increasing/constant/decreasing absolute risk aversion.
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6.1.1 Violations of Stochastic Dominance

First, we study the connection between narrow bracketing and dominated
choices. For any p, q ∈ ∆(Z), we say that p (first-order) stochastically
dominates q, denoted by p ≻FOSD q, if p ̸= q and ∑

x⩽z q(x) ⩾
∑
x⩽z p(x)

for all z ∈ Z. We say that ≿ satisfies dominance if f [p] ≻FOSD f [q] implies
p ≻ q for all p, q ∈ ∆(ZN) (such that f [p], f [q] ∈ ∆(Z)). This property,
although commonly assumed in economic models, faces challenges from
experimental evidence.20 Consider the following example.

Example 7. Consider the following pair of decisions. Each decision’s risk
will be resolved independent of the other’s, and both choices will impact
your overall payment. Examine both decisions and indicate your preferred
choices.

Decision 1: Choose between
A. A sure gain of $2.40.
B. A 25% chance to gain $10.00, and a 75% chance to gain $0.

Decision 2: Choose between
C. A sure loss of $7.50.
D. A 75% chance to lose $10.00, and a 25% chance to lose $0.

Rabin and Weizsäcker (2009) and Tversky and Kahneman (1981) show
a significant proportion of subjects—at least 28%—choose A in decision 1
and D in decision 2. However, the resulting distribution of total income is
stochastically dominated by that obtained by the combination of B and C:

3
4δ−7.50 + 1

4δ2.50 ≻FOSD
3
4δ−7.60 + 1

4δ2.40,

in which the left-hand mixture results from choosing B and C and the
right-hand from choosing A and D. This violation of dominance is notable
because the combination of B and C is equal to the combination of A and
D plus a payoff of $0.10 with certainty. Such violations are inconsistent
with models that consider only the distribution of total income, including
those that allow violations of dominance.21 By contrast, when the subject

20In the context of dynamic choice, Bommier et al. (2017) also show that many
commonly used recursive models fail to satisfy a version of dominance.

21See, among others, Bell (1985), Kőszegi and Rabin (2007), Loomes and Sugden
(1986), Mononen (2022), and Puri (2022).
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evaluates the two choice problems separately, her choice of A in decision
1 can be rationalized by risk aversion over gains and her choice of D in
decision 2 can be rationalized by risk seekingness over losses, both of which
are commonly observed patterns.22 The next result illustrates the tension
between bracketing and dominance.

Proposition 1. Suppose the preference ≿ is represented by (2). It satisfies
dominance if and only if it is represented by U(p) = Ef [p]u(x).

Proposition 1 states that the decision maker’s behavior satisfies domi-
nance for all lotteries if and only if she is a broad bracketer. That is, she
puts all income sources into one bracket. By comparison, if we only focus
on lotteries with independent marginals like those in Example 7, dominance
can be maintained under narrow bracketing if u exhibits constant absolute
risk aversion (CARA)—i.e., if A(x) is a constant function.23 We say that
≿ satisfies dominance without correlation if f [p] ≻FOSD f [q] implies p ≻ q

for all p, q ∈ ∆(ZN) such that p = (p1, . . . , pN) and q = (q1, . . . , qN).

Proposition 2. Suppose the preference ≿ is represented by (2). It satisfies
dominance without correlation if and only if it is represented by U(p) =
Ef [p]u(x) or u exhibits CARA.

6.1.2 Avoidance of Multidimensional Risk

Another implication of narrow bracketing is that the decision maker may
possess a strict preference regarding whether her income comes from a sin-
gle source or multiple ones. For instance, due to the difficulty of integration
across sources, she may be predisposed to avoid issues that feature multi-
dimensional risk (Heo, 2021). To capture such behavior, we define p as a
single-source lottery if there exist i ∈ I and r ∈ ∆(Z) such that pi = r and
pj = δ0 for all j ̸= i. Since the utility of p is U(p) = Eru(x) according to (2),
we can use elements of ∆(Z) to denote single-source lotteries when there is
no risk of confusion. We say that ≿ satisfies avoidance of multidimensional

22As a concrete example, consider the utility function in (2), in which A1 = {1}, A2 =
{2}, u(x) =

√
x for x ⩾ 0, and u(x) = −2

√
−x for x < 0.

23Mu et al. (2023b) and Rabin and Weizsäcker (2009) have made similar observations.
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risk if f [p] ≿ p for every p ∈ ∆(ZN) such that p = (p1, . . . , pN).24 Similarly,
≿ satisfies avoidance of multidimensional risk for gains/losses if f [p] ≿ p

for every p ∈ (∆(ZN
+ )/for every p ∈ (∆(ZN

− ) such that p = (p1, . . . , pN).

Proposition 3. Suppose the preference ≿ is represented by (2).

1. It satisfies avoidance of multidimensional risk if and only if ≿ is
represented by U(p) = Ef [p]u(x) or u exhibits CARA.

2. It satisfies avoidance of multidimensional risk for gains if and only if
≿ is represented by U(p) = Ef [p]u(x) or A(x) is decreasing in x ∈ Z+.

3. It satisfies avoidance of multidimensional risk for losses if and only if
≿ is represented by U(p) = Ef [p]u(x) or A(x) is increasing in x ∈ Z−.

6.2 Time Lotteries

In this section, we study decisions involving risk about both which and
when prizes will be delivered. Suppose N = 2, X1 = Z = [w, b] ⊂ R++ and
X2 = T = [0, t̄ ] ⊂ R+. Each lottery in ∆(Z × T ) denotes a distribution of
dated prizes. In particular, a time lottery (z, p) ∈ Z × ∆(T ) is a lottery in
which the prize z is fixed and the payment date follows the distribution p.

Suppose the preference ≿ admits an HEU representation and it is a
monotone transformation of the exponentially discounted utility function
in the absence of risk:

U I(δ(z,t)) = ϕ
(
v(z)e−rt

)
, (3)

in which r > 0 and both v : Z → R++ and ϕ : [e−rt̄u(w), u(b)] → R
are strictly increasing and continuous.25 Note that we have not yet fully
specified the HEU representation, and equation (3) differs slightly from

24If we adopt a more stringent notion of avoidance of multidimensional risk by requir-
ing f [p] ≿ p for every p ∈ ∆(ZN ), then the decision maker must be a broad bracketer
as in Proposition 1.

25Fishburn and Rubinstein (1982) show that exponentially discounted utility can be
characterized by the stationarity axiom: For any z, z′ ∈ Z, s, t ∈ T , and τ ∈ R with
s+ τ, t+ τ ∈ T , if (z, t) ∼ (z′, t+ τ), then (z, s) ∼ (z′, s+ τ).
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Definition 1 in that it is strictly decreasing in t in order to capture impa-
tience of the decision maker.26

We say that a decision maker is risk-averse over time lotteries if she
prefers receiving a prize on a sure date rather than on a random date
with the same mean; that is, (z,Ep(t)) ≿ (z, p) for all (z, p) ∈ Z × ∆(T ).
Analogously, she is risk-seeking over time lotteries if the opposite holds.

For now, assume ϕ is affine. If H = {{1, 2}}, the HEU representation
reduces to the widely used exponentially discounted expected utility model
V (p) = Ep[v(z)e−rt]. Because e−rt is convex in t, the decision maker must
be risk-seeking over time lotteries. However, DeJarnette et al. (2020) find
that the majority of their subjects are risk-averse over time lotteries in most
questions in their experiment. To see how other HEU representations can
resolve such inconsistency, suppose H = {{1, 2}, {1}, {2}}. The utility of
a time lottery (z, p) can be written as

U(z, p) = v(z)e−rc(p,u2).

Because (z,Ep(t)) ≿ (z, p) if and only if u2(Ep(t)) ⩽ Epu2(t), risk aversion
and risk seekingness over time lotteries are equivalent to the convexity and
concavity of u2, respectively. The same logic also applies for hierarchy
H = {{1, 2}, {2}}. The following result summarizes these observations.

Proposition 4. Suppose ≿ has an HEU representation (H, (uA)A∈H) and
satisfies (3) in which ϕ is affine. It is risk-averse over time lotteries if and
only if either (i) H = {{1, 2}, {2}} and u2(z, ·) is convex for every z ∈ Z,
or (ii) H = {{1, 2}, {1}, {2}} and u2 is convex.

If we allow ϕ to be nonaffine, H = {{1, 2}} can also accommodate risk
aversion over time lotteries. However, it entails violations of a risky coun-
terpart of impatience (DeJarnette et al., 2020). We say that ≿ satisfies
(nontrivial) stochastic impatience if for all t1, t2 ∈ T , and z1, z2 ∈ Z with
t1 < t2 and z1 > z2, we have δ(z1,t1)

1
2δ(z2,t2) ≿ δ(z2,t1)

1
2δ(z1,t2), and this ranking

is not always indifference. Intuitively, it states that if the decision maker
can pair monetary prizes with payment dates in the presence of risk, she will
prefer to receive the highest prize at the earliest time. DeJarnette et al.

26It is easy to modify Definition 1 to accommodate this: We assume that uI is strictly
decreasing in the second argument and all other Bernoulli indices are strictly increasing.
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(2020) show that the incompatibility between stochastic impatience and
any violation of risk-seeking behavior over time lotteries persists in both
expected utility theory with general discount functions and a broad class
of non-expected utility models. The next result states that the HEU repre-
sentation can address such incompatibility if and only if H = {{1, 2}, {2}}.
That is, the decision maker acts as if she evaluates risk in money and the
conditional risk in time given each realization of money.

Proposition 5. Suppose ≿ has an HEU representation (H, (uA)A∈H) and
satisfies (3). It satisfies stochastic impatience and is risk-averse over time
lotteries if and only if H = {{1, 2}, {2}}, u2(z, ·) is convex for all z ∈ Z,
and ϕ is a nontrivial convex transformation of ln.27

It is worth noting that the HEU representation with H = {{1, 2}, {2}}
can also accommodate risk attitudes over the time dimension that are non-
uniform or depend on the monetary prize (DeJarnette et al., 2020; Mu
et al., 2023b). We conclude with a parametric example of Proposition 5.

Example 8. Suppose the preference ≿ is represented by

U(p) = Ep1
[ v(z)
Ep2|z [ert]

]
. (4)

This is an HEU representation with H = {{1, 2}, {2}}, u2(z, t) = ert, and
ϕ(a) = a. Because u2(z, ·) is convex and ϕ is a strictly convex trans-
formation of ln, Proposition 5 ensures that (4) is risk-averse over time
lotteries and hence can serve as an alternative to the exponentially dis-
counted expected utility model without compromising stochastic impatience
or introducing additional free parameters.

On the domain of time lotteries Z × ∆(T ), (4) can be rewritten as
U(z, p) = v(z)e−rψr(p), in which ψr(p) = 1

r
lnEp[ert]. Note that ψr is a

monotone additive statistic in Mu et al. (2023b).28 Since stochastic im-
patience is not well defined on Z × ∆(T ), the representation (4) can be

27A function f defined on B ⊆ R++ is a nontrivial convex transformation of ln if
there exists a convex and nonaffine function g such that f(x) = g(ln(x)) for all x ∈ B.

28Mu et al. (2023b) characterize monotone additive statistics as weighted averages
over ψr across different r. In our HEU model, ψr cannot be replaced with a general
monotone additive statistic because of the axiom of unidimensional independence.
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interpreted as a generalization of a monotone stationary time preference
in Mu et al. (2023b) to the set ∆(Z × T ), which allows exploration of the
interaction between stochastic impatience and risk attitudes toward time.

7 Conclusion

This paper proposes and axiomatizes a flexible framework to study pref-
erences over risky multidimensional alternatives. The interaction between
risk evaluation and how the decision maker brackets and orders dimensions
in the evaluation process is encapsulated by a hierarchy, which can be re-
vealed from the decision maker’s choice behavior. We discuss in what sense
the HEU representation is unique, characterize several special cases of it,
and study applications of multisource income and time lotteries.

In Online Appendix II, we discuss several extensions of our applica-
tions. For multisource income, we consider an alternative model of narrow
bracketing (Camara, 2021; Vorjohann, 2023) that involves adding expected
utilities instead of certainty equivalents, as in (2). We also propose a notion
of comparative avoidance of multidimensional risk and study a generaliza-
tion with background risk (Freeman, 2015, 2017; Mu et al., 2023a). For
time lotteries, we discuss how the recursive representation in Proposition
5 can be extended to a setting in which the decision maker may receive
multiple prizes over time. In Online Appendix I.2, we discuss two exam-
ples that also generalize the FATE, FETA, and recursive approaches, but
in ways that differ from the HEU representation. We discuss which of our
axioms are not satisfied by these examples.

A Proofs

A.1 Proof of Theorem 1

Checking the necessity of the axioms is routine (yet nontrivial in our case).
Below, we show that assuming tightness of hierarchies is without loss of
generality and leave the rest of the proof of the necessity of the axioms to
Online Appendix IV.
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Lemma 1. The preference ≿ has an HEU representation if and only if it
has an HEU representation in which the hierarchy is tight.

Proof of Lemma 1. It suffices to prove the “only if” part. Suppose ≿ has
an HEU representation (H, (uA)A∈H). Define H′ = {A ∈ H : τH(A) ̸= ∅} ∪
{I}. It is easy to check that H′ is a tight hierarchy and HH(A) = HH′(A),
τH(A) = τH′(A), and ηH(A) = ηH′(A) for every A ∈ H′. Hence, we can
omit the superscripts for these three functions. For each A ∈ H′, we define
ûA : Xη(A) ×Xτ(A) ×RΦH′ (A) → R as follows: For any x ∈ Xη(A), y ∈ Xτ(A),
and a ∈ ×B∈ΦH′ (A) U

B
x,y(XB) (UB

x,y’s come from the HEU representation
(H, (uA)A∈H)), we can find z ∈ ×B∈ΦH′ (A) XB such that aB = UB

x,y(δzB
)

for every B ∈ ΦH′(A). Let ûA(x, y, a) = UA
x (δy, δz) and define ÛA

x as in
Definition 1. Clearly, ÛA

x = UA
x . Extending ûA to its full domain trivially,

we obtain (H′, (ûA)A∈H) as an HEU representation of ≿ in which H′ is
tight.

Next, we focus on the proof of the sufficiency of the axioms. For every
A ⊆ I, denote M(A) = {i ∈ A : i ⇀ A} .

Step 1: Preliminary results.
We present several lemmas that will be useful in later steps. Most

proofs of these lemmas are deferred to Online Appendix IV.2. First, the
conditional preference on each dimension has an expected utility (EU) rep-
resentation.

Lemma 2. For any i ∈ I and x ∈ X−i, the conditional preference ≿x on
∆(Xi) has an EU representation with a continuous and strictly increasing
Bernoulli index vi|x, which is unique up to a positive affine transformation.

The second lemma strengthens Axiom 2 (outcome monotonicity). For
any A ⊆ I and p ∈ ∆(XA), we denote by supp(p) the support of p—i.e.,
supp(p) = {x ∈ XA : p(x) > 0}. For any p ∈ ∆(XA) and x ∈ XA, we say
that p dominates x if p ̸= δx and yi ⩾ xi for all i ∈ A and yi ∈ supp(pi).
Similarly, x dominates p if p ̸= δx and xi ⩾ yi for all i ∈ A and yi ∈ supp(pi).
The dominance relation is weak if we allow for the possibility that δx = p.

Lemma 3. (i) For any A ⊆ I, p ∈ ∆(XA), and x′ ∈ XAc, if p dominates
x, then p ≻x′ x, and if x dominates p, then x ≻x′ p. (ii) For any A ⊆ I,
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p ∈ ∆(XA), x′ ∈ XAc, and x, y ∈ XA such that p dominates y and is
dominated by x, there exists some z ∈ XA such that p ∼x′ z and x ⩾ z ⩾ y.

An immediate corollary of Lemma 3 is that for any p ̸= x = (xi)i∈A, x =
(xi)i∈A, we have x ≻ p ≻ x and the set {yi : y ∼ p} is uncountable for each
i. The next result studies properties of the binary relation ▷.

Lemma 4. (i) If B ▷ A, B′ ▷ A, and B∩B′, B \B′, B′ \B are nonempty,
then B ∩ B′ ▷ A,B \ B′ ▷ A, and B′ \ B ▷ A. (ii) If A = ⋃

B▷AB, then
there exists a nontrivial partition {Bk}nk=1 of A such that Bk ▷ A for every
k = 1, . . . , n.

We say that A is bracket separable if there exists a nontrivial partition
{Bk}nk=1 of A such that Bk ▷ A for all k = 1, . . . , n. In this case, we call
{Bk}nk=1 a bracket partition of A. Lemma 4 establishes the equivalence be-
tween bracket separability and the condition A = ⋃

B▷AB. The next result
guarantees that a bracket separable set has a “finest” bracket partition.

Lemma 5. If A is bracket separable, then A must have a bracket partition
{Ak}nk=1 in which Ak is not bracket separable for all k = 1, . . . , n. Moreover,
such {Ak}nk=1 is unique and is finer than any other bracket partition of A.29

Proof of Lemma 5. Suppose that A has a bracket partition {Ak}nk=1 in
which A1 is bracket separable with bracket partition {Bk}mk=1. We claim
that {Ak}nk=2 ∪ {Bk}mk=1 is a bracket partition of A. To see this, note that
for all p ∈ ∆(XA) and x ∈ XAc , we have p ∼x (pA1 , . . . , pAn).

According to the definition of bracket partition and Lemma 3, there ex-
ists xAk

∈ XAk
for every k ⩾ 2 such that (pA1 , . . . , pAn) ∼x (pA1 , xA2 , . . . , xAn).

Then, given (x, (xAk
)nk=2) ∈ XAc

1
, since {Bk}mk=1 is a bracket partition of A1,

p ∼x (pA1 , xA2 , . . . , xAn)
∼x (pB1 , . . . , pBm , xA2 , . . . , xAn)
∼x (pB1 , . . . , pBm , pA2 , . . . , pAn).

The last indifference relation holds, since {Ak}nk=1 is a bracket partition.
29For two partitions {Ak}n

k=1 and {Bl}m
l=1 of the same set A, we say that {Ak}n

k=1
is finer than {Bl}m

l=1 if for every Ak there exists some Bl such that Ak ⊆ Bl.
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Fix any k ∈ {1, . . . ,m}. We want to show that Bk ▷ A. For any
x ∈ XAc , r ∈ ∆(XA\Bk

), and p, q ∈ ∆(XA) such that pA\Bk
= qA\Bk

, we
have

p ≿x q

⇐==⇒ (pBk
, pA1\Bk

, pA\A1) ≿x (qB1 , pA1\Bk
, pA\A1)

A1 ▷ A⇐====⇒ (pBk
, pA1\Bk

, xA\A1) ≿x (qBk
, pA1\Bk

, xA\A1)
by definition⇐========⇒ (pBk

, pA1\Bk
) ≿(x,xA\A1 ) (qBk

, pA1\Bk
)

Bk ▷ A1⇐=====⇒ (pBk
, rA1\Bk

) ≿(x,xA\A1 ) (qBk
, rA1\Bk

)
by definition⇐========⇒ (pBk

, rA1\Bk
, xA\A1) ≿x (qBk

, rA1\Bk
, xA\A1)

A1 ▷ A⇐====⇒ (pBk
, rA1\Bk

, rA\A1) ≿x (qBk
, rA1\Bk

, rA\A1)
A1 ▷ A⇐====⇒ (pBk

, r) ≿x (qBk
, r).

Hence, Bk ▷ A for every k and {Ak}nk=2 ∪ {Bk}mk=1 is a bracket partition of
A. Continue this process until all elements in the bracket partition of A1

are not bracket separable, and then repeat this procedure for other Ak’s.
After finitely many steps, we will end up with a bracket partition of A
in which none of its elements is bracket separable, since singleton sets are
not bracket separable and A is finite. For simplicity, we still denote it by
{Ak}nk=1.

Consider a different bracket partition {Bl}ml=1. If {Ak}nk=1 is not finer
than {Bl}ml=1, then there exist Ak and Bl1 , . . . , Blt with t ⩾ 2 such that
Ak ∩ Bli ̸= ∅ for all i = 1, . . . , t and Ak ⊆ ⋃t

i=1 Bli . By Lemma 4,
(Ak ∩ Bli) ▷ A for all i = 1, . . . , t, which implies that Ak has a bracket
partition {Ak ∩ Bli}ti=1, a contradiction. Hence, {Ak}nk=1 is finer than any
other bracket partition {Bl}ml=1. Moreover, there must exist some bracket
separable B1 with a bracket partition being a subset of {Ak}nk=1. This en-
sures the uniqueness of the bracket partition in which all elements are not
bracket separable.

We call {Ak}nk=1 in Lemma 5 the finest bracket partition of A. The
final lemma states that if i ⇀ A, then we can find a representation of the
conditional preference on {i} ∪ A with certain linearity properties.
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Lemma 6. Let B = {i}∪A. If i ⇀ A, then for every x ∈ XBc, there exists
a function Ux : ∆(XB) → R such that (i) p ≿x q if and only if Ux(p) ⩾

Ux(q) for all p, q ∈ ∆(XB); (ii) Ux(pαq) = αUx(p) + (1 − α)Ux(q) for all
α ∈ (0, 1) and p, q ∈ ∆(XB) with pi ⊥ qi; (iii) the function wx : XB → R
defined by wx(y) = Ux(δy) for every y ∈ XB is continuous and strictly
increasing; and (iv) Ux is unique up to a positive affine transformation.

Step 2: Construct a (tight) hierarchy H.

Consider the following procedure to construct a tight hierarchy H:
Stage 0. We start with H0 = {I}.

Stage 1. Consider the following cases:

(1) If I is bracket separable, then denote by {Ak}nk=1 the finest bracket
partition of I as defined in Lemma 5. Note that Ak is not bracket
separable for every k. Let H1 = {Ak}nk=1 and move to the Stage 2.

(2) If I is not bracket separable, then I ̸= ⋃
B▷I B (Lemma 4) and the

contrapositive of Axiom 4 (separability under bracketing) implies
M(I) = {i ∈ I : i ⇀ I} ̸= ∅. Write M(I) = {l1, . . . , ln}. De-
note A1 = I \ {l1} and Ai = Ai−1 \ {li} for i = 2, . . . , n. Note that
An = I \M(I).

(i) If An = ∅, then n ⩾ 2 and denote H1 = {A1, . . . , An−1}. The
procedure terminates.

(ii) If An ̸= ∅ is not bracket separable, then let H1 = {A1, . . . , An}
and move to Stage 2.

(iii) If An ̸= ∅ is bracket separable, then denote by {Bk}mk=1 the
finest bracket partition of An as defined in Lemma 5. Let H1 =
{A1, . . . , An−1, B1, . . . , Bm} and move to Stage 2.

Stage t ⩾ 2. Consider any A ∈ Ht−1 such that |A| ⩾ 2 and A is
smallest. That is, there is no A′ ∈ Ht−1 such that A′ ⊊ A. For instance,
in case (2.ii) and case (2.iii) of Stage 1, A1, . . . , An−1 will not be smallest.
There may be multiple smallest elements in Ht−1. By construction, A is
not bracket separable. Again by Axiom 4 (separability under bracketing),
with an abuse of notation, M(A) = {l1, . . . , ln} for some n ⩾ 1. Again
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with an abuse of notation, denote A1 = A \ {l1} and Ai = Ai−1 \ {li} for
i = 2, . . . , n. Note that An = A \M(A).

(i) If An = ∅, then n ⩾ 2 and let {A1, . . . , An−1} ⊆ Ht.

(ii) If An ̸= ∅ is not bracket separable, then let {A1, . . . , An} ⊆ Ht.

(iii) If An ̸= ∅ is bracket separable, then let {A1, . . . , An−1, B1, . . . , Bm} ⊆
Ht, in which {Bk}mk=1 is the finest bracket partition of An as defined
in Lemma 5.

Repeat the process for all smallest A ∈ Ht−1 such that |A| ⩾ 2. Then, we
obtain all elements of Ht. Move on to Stage t+ 1.

This procedure terminates in finitely many stages n when all smallest
sets in ⋃n

t=0 Ht are singleton. Define H = ⋃n
t=0 Ht. We claim that H is

a tight hierarchy. First, I ∈ H0 ∈ H. Second, by construction, any two
elements A and B in the same Hk are either disjoint or satisfy A ⊆ B or
B ⊆ A. Now consider any A ∈ Hk and B ∈ Hk′ with k < k′. Then we
can find a unique smallest B′ ∈ Hk such that B ⊊ B′. Either B′ ⊆ A, in
which case B ⊊ A, or B′ ∩ A = ∅, in which case B ∩ A = ∅. Thus H is a
hierarchy. Finally, observe that for all A ∈ H \ {I}, we have A = H(i) for
some i ∈ I. Hence, H is a tight hierarchy.

Step 3: Construct the Bernoulli indices associated with each A ∈ H.
By construction, τ(A) is a singleton set for every A ∈ H with A ̸= I.

Denote τ(A) = {iA}. We start with any smallest A ∈ Hn, which must be a
singleton set A = τ(A) = {iA}. By the construction of H and the definition
of a bracket partition, ≿z=≿z′ on ∆(XA) for any z, z′ ∈ XAc such that
zη(A) = z′

η(A). In other words, the conditional preference ≿z only depends
on zη(A). By Lemma 2, there exists uA : Xη(A) ×XiA → [0, 1] such that for
all z ∈ Xη(A) and z′ ∈ X(A∪η(A))c , (i) uA(z, · ) : XiA → [0, 1] is continuous
and strictly increasing, and satisfies uA(z, xiA) = 1, uA(z, xiA) = 0; and (ii)
if one defines UA

z : ∆(XiA) → [0, 1] by UA
z (p) = Ep(uA(z, y)), then for all

p, q ∈ ∆(XiA), p ≿(z,z′) q if and only if UA
z (p) ⩾ UA

z (q). The normalization
uA(z, xiA) = 1 and uA(z, xiA) = 0 works since uA(z, · ) is unique up to a
positive affine transformation by Lemma 2. Clearly, UA

z (δx) = uA(z, x) is
continuous and strictly increasing in x ∈ XA.
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Next, we define the Bernoulli index for every A ∈ Hn that is not the
smallest recursively. Suppose all components in Φ(A) are smallest in Hn.
Again by the construction of H and the definition of a bracket partition,
≿z=≿z′ on ∆(XA) for any z, z′ ∈ XAc such that zη(A) = z′

η(A). Since
iA ⇀ A, for any z ∈ Xη(A) and z′ ∈ X(A∪η(A))c , Lemma 6 ensures the
existence of UA

z : ∆(XA) → [0, 1] such that (i) p ≿(z,z′) q if and only
if UA

z (p) ⩾ UA
z (q) for all p, q ∈ ∆(XA); (ii) UA

z (pαq) = αUA
z (p) + (1 −

α)UA
z (q) for all α ∈ (0, 1) and p, q ∈ ∆(XA) with piA ⊥ qiA ; and (iii)

the function wAz : XA → [0, 1] defined by wAz (y) = UA
z (δy) is continuous

and strictly increasing, and satisfies wAz (xA) = 1 and wAz (xA) = 0. Define
uA : Xη(A) ×Xτ(A) × [0, 1]Φ(A) → [0, 1] by

uA( z, y, (UB
(z,y)(pB))B∈Φ(A) ) = UA

z (δy, p)

for all z ∈ Xη(A), y ∈ Xτ(A), and p ∈ ∆XA\τ(A) . The function uA is well
defined because UB

(z,y)(δxB
) = 1, UB

(z,y)(δxB
) = 0 for every B ∈ Φ(A), and

(δy, p) ∼z (δy, (pB)B∈Φ(A)) following the definition of a bracket partition.
Since UA

z (δxA
) = wAz (xA) = 1 and UA

z (δxA
) = wAz (xA) = 0, we know that

uA(z, xτ(A), a) = 1 if aB = 1 for every B ∈ Φ(A) and uA(z, xτ(A), a) = 0 if
aB = 0 for every B ∈ Φ(A). It is easy to see that UA

z is onto. Also, for any
p ∈ ∆(XA), we have the recursive equation

UA
z (p) = Epτ(A)U

A
z (δy, pA\τ(A)|y) = Epτ(A) u

A( z, y, (UB
(z,y)(pB|y))B∈Φ(A) ). (5)

Now consider any A ∈ Hn such that uB and UB
z have been defined for

all B ∈ Φ(A) and z ∈ Xη(B). Repeating the previous procedure, we can
construct uA : Xη(A) × Xτ(A) × [0, 1]Φ(A) → [0, 1] and UA

z : ∆(XA) → [0, 1]
for every z ∈ Xη(A) such that (i) p ≿(z,z′) q if and only if UA

z (p) ⩾ UA
z (q)

for all p, q ∈ ∆(XA) and z′ ∈ X(A∪η(A))c ; (ii) UA
z (δx) is continuous and

strictly increasing in x ∈ XA; (iii) UA
z and uA(z, ·) are onto; and (iv) for

any p ∈ ∆(XA), the recursive equation (5) holds. Following this procedure,
we can define uA and UA

z for all A ∈ Hn and z ∈ Xη(A).
By induction, suppose for some t ⩾ 2 we have defined uA and UA

z for all
A ∈ ⋃n

i=t Hi and z ∈ Xη(A) that satisfy conditions (i)–(iv) above. Consider
A ∈ Ht−1. Since t ⩾ 2, we know A ̸= I and M(A) = {iA}. Begin with A
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being smallest in Ht−1. Either |A| = 1 or Φ(A) ⊆ ⋃n
i=t Hi. In both cases

we can repeat the previous construction for components in Hn. Hence, we
can define uA and UA

z for arbitrary A ∈ Ht−1 and z ∈ Xη(A) recursively
that satisfy conditions (i)–(iv) above.

The induction works for A ∈ ⋃n
i=1 Hi and I if τ(I) ̸= ∅. If instead

τ(I) = ∅, then I is bracket separable and Φ(I) = {A1, . . . , Am} is the finest
bracket partition of I. For any p ∈ ∆(X), we have p ∼ (pA1 , . . . , pAm) ∼
(xA1 , . . . , xAm), in which UAi(δxAi

) = UAi(pAi
) for all i = 1, . . . ,m. Since ≿

restricted to degenerate lotteries X is continuous and monotone, Debreu’s
Theorem implies that there exists a continuous and strictly increasing func-
tion wI : X → [0, 1] such that wI(x) = 1, wI(x) = 0, and x ≿ y if and only
if wI(x) ⩾ wI(y) for all x, y ∈ X. Define uI : [0, 1]Φ(I) → [0, 1] by

uI(UA1(δxA1
), . . . , UAm(δxAm

)) = wI(x)

for all x ∈ X. Because UAi(δxAi
) = 1, UAi(δxAi

) = 0, and UAi(δxAi
) is

continuous and strictly increasing in xBi
∈ XBi

for all i = 1, . . . , K, the
function uI is well defined, continuous, strictly increasing, and satisfies
uI(1, . . . , 1) = 1, uI(0, . . . , 0) = 0. Define U I : ∆(X) → [0, 1] by

U I(p) = uI(UA1(pA1), . . . , UAm(pAm))

for every p ∈ ∆(X) and we know that U I represents ≿.
To conclude, (H, (uA)A∈H) is an HEU representation of ≿. Indeed, it is

a normalized HEU representation defined in Online Appendix III.
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Online Appendix

Online Appendix
(For Online Publication Only)

This online appendix to “Decision Making Under Multidimensional Risk”
is organized as follows. Section I includes additional examples. Section II
provides a detailed discussion of brief remarks on the applications in Sec-
tion 6. Section III provides additional results on the uniqueness of Bernoulli
indices and the characterization of (generalized) recursive preferences with
an exogenous order on dimensions. Section IV contains omitted proofs.

Online Appendix I: Additional Examples

I.1: More on the FATE and FETA Approaches

The two commonly used and yet opposite approaches to evaluate a risky
multidimensional alternative, the FATE and the FETA approaches, have
appeared in many different contexts, in addition to the inequality aversion
example discussed in the Introduction. Below are a few others.

1. Suppose the decision maker is evaluating a risky consumption bun-
dle that yields (0, 1) and (1, 0) with equal probability. She wants to
use a constant-elasticity-of-substitution function u to aggregate the
quantities of different goods. Should she use the FATE approach
1
2u(0, 1) + 1

2u(1, 0) or the FETA approach u(1/2, 1/2)? The first ap-
proach may seem more natural, but the second may capture narrow
bracketing and correlation neglect, which are often observed in peo-
ple’s choice behavior (Ellis and Freeman, 2021).

2. Consider a risky consumption sequence. If we simply compute the
exponentially discounted expected utility, the decision maker will ex-
hibit risk-seeking behavior in the time dimension, and hence more
general evaluation approaches that can avoid such risk-seeking behav-
ior have been proposed. Some first evaluate risk within each period
and then aggregate across periods, and others first aggregate across
periods and then take expectation. They are incompatible with each
other, and it is not clear which approach is more appropriate.
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3. Choice models under subjective uncertainty face the same dilemma.
Interpret (x, y) as the decision maker’s utility in states 1 and 2, re-
spectively. When the decision maker is ambiguity-averse, whether
to first compute expected utility for each state and then aggregate
(using the maxmin aggregator introduced by Gilboa and Schmeidler
(1989), for example) across states, or to first aggregate across states
and then take expectation leads to opposite predictions about peo-
ple’s preference for randomization/hedging. The prediction of both
approaches have been observed in different experiments.

I.2: Other Ways to Generalize the Three Approaches

We introduce two examples that also generalize the three approaches—
FATE, FETA, and recursive—but in ways that differ from the HEU rep-
resentation. We discuss which of our axioms are not satisfied by these
examples. The first example features a convex combination of the FATE
and FETA approaches.

Example 9. Let N = 2. Suppose the decision maker’s utility function is

U(p) = α Ep
√
x1 + x2 + (1 − α)

√
(Ep1

√
x1)2 + (Ep2

√
x2)2,

in which α ∈ (0, 1). The idea of this utility function is simple, but the de-
cision maker’s preference represented by this utility function violates uni-
dimensional independence and separability under bracketing. To see why
unidimensional independence is violated, fix x2 = 1 and note that the con-
ditional preference ≿x2 is represented by

U(p1, 1) = α Ep1
√
x1 + 1 + (1 − α)

√
(Ep1

√
x1)2 + 1,

which is not a monotone transformation of any expected utility function.

Recall that the FETA approach entails correlation neglect, since the
decision maker ignores the interdependence of risk in different brackets.
The next example combines expected utility with correlation neglect.
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Example 10. Let N = 2. Suppose the decision maker’s utility function is

U(p) =
∑
x1,x2

√
x1 + x2 p1(x1) p2(x2).

When p = (p1, p2), the above equation agrees with an expected utility func-
tion whose Bernoulli index is u(x1, x2) =

√
x1 + x2. For more general

lotteries p, the decision maker is indifferent between p and (p1, p2), which
reflects correlation neglect. Her preference satisfies all axioms in Section
3.2 except for separability under bracketing. To see this, let x = (0, 1) and
y = (1, 0). Then U(x) = U(y) = 1 > U(δx 1

2δy) = U(δ1
1
2δ0, δ1

1
2δ0) = 2+

√
2

4 .
Since x1 ̸= y1 and x2 ̸= y2, we know 1 ̸⇀ {1, 2} and 2 ̸⇀ {1, 2}. Moreover,
the conditional preference ≿xi

on dimension −i clearly depends on xi for
both i = 1, 2, implying that {1} ▷̸ {1, 2} and {2} ▷̸ {1, 2}. Hence, the
preference violates separability under bracketing.

Online Appendix II: More on Applications

II.1: Multisource Income

In this section, we discuss several remarks related to Section 6.1.
First, if the decision maker strictly avoids multidimensional risk for

some p ∈ ∆(ZN) such that p = (p1, . . . , pN), then by Proposition 3, her
preference cannot not be represented by U(p) = Ef [p]u(x) and u does not
exhibit CARA. Hence, Propositions 1 and 2 imply that the decision maker
violates both dominance and dominance without correlation. This ob-
servation reveals a connection between these two implications of narrow
bracketing.

Second, in contrast to the representation in (2), Vorjohann (2023) and
Camara (2021) study an alternative utility function of narrow bracketing:

Û(p) =
n∑
i=1

Ef [pAi
] u(x). (6)

Indeed, (6) is an expected utility function, and hence an HEU representa-
tion with either hierarchy {I} or hierarchy {I, A1, . . . , An}.

Fixing the Bernoulli index u and the brackets {Ai}ni=1, the decision
maker with utility function (6) evaluates and adds up the expected utilities
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of risky income across different brackets, while (2) features the summation
of their certainty equivalents.

When a decision maker faces a tuple of choice problems as in Example 7,
in which choices in one dimension do not affect the availability of options in
other dimensions, both (2) and (6) lead to the same predictions. However,
in other choice scenarios, the decision maker whose preference is represented
by (6) may violate dominance even when there is no risk, while (2) will
not. To illustrate, consider two portfolios with two assets. Portfolio p

delivers $1 in both assets for sure, and portfolio q delivers $2 in asset 1
and $0 in asset 2 for sure. If the decision maker is risk-averse, which
means u is strictly concave, she will strictly prefer P to Q because 2u(1) >
u(0) + u(2), even though both portfolios deliver a total payoff of $2 with
certainty. Building such extreme departures from rationality into agents’
behavior may result in a theory that explains certain anomalies in data at
the expense of creating others that are unlikely to be present. By contrast,
under representation (2), the decision maker will always choose more total
money over less total money in the absence of risk.

Now we axiomatize the narrow bracketing representation (2). For a gen-
eralized bracketing representation characterized in Theorem 4 to take the
functional form (2), two more axioms are necessary. The first is dominance
over deterministic prospects: For any x, y ∈ ZN , we have x ≻ y if and
only if ∑

xi >
∑
yi. This property distinguishes representation (2) from

representation (6). The second is symmetry: ≿i|0=≿j|0 for all i, j ∈ I, in
which ≿i|0 is the conditional preference for marginal lotteries in dimension
i given δ0 in all other dimensions. It guarantees that the risk attitudes are
the same for all sources of income risk. The following proposition states
that these two properties are also sufficient.

Proposition 6. Suppose the preference ≿ has a generalized bracketing rep-
resentation. It admits representation (2) if and only if it satisfies domi-
nance over deterministic prospects and symmetry.

Proof of Proposition 6. The necessity of axioms is trivial, because U(δx) =∑
xi and ≿i|0 is represented by an expected utility function with Bernoulli
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index u for all i. For sufficiency, suppose ≿ is represented by

U(p) = v(EpA1 u
A1(xA1), . . . ,EpAn

uAn(xAn)). (7)

By dominance over deterministic prospects, for every i = 1, . . . , n and
xAi

, yAi
∈ XAi

with ∑
l∈Ai

xl = ∑
l∈Ai

yl, we have uAi(xAi
) = uAi(yAi

).
Then there exists a continuous and strictly increasing function ui such that
uAi(xAi

) = ui(∑
l∈Ai

xl) and hence EpAi
uAi(xAi

) = Ef [pAi
]ui(x). Again by

dominance over deterministic prospects, (7) can be rewritten as

U(p) =
n∑
i=1

c(f [pAi
], ui). (8)

Symmetry implies that we can choose ui to be the same across all i, and
hence (8) reduces to (2). This completes the proof.

Third, we propose a notion of comparative avoidance of multidimen-
sional risk. Since nontrivial avoidance of multidimensional risk for the en-
tire domain is impossible by Proposition 3, we focus on gains. The analysis
for losses is symmetric. Consider two decision makers whose preferences ≿1

and ≿2 can be represented by (2). Index decision maker 1’s utility function
by ({A1

i }ni=1, u
1) and decision maker 2’s utility function by ({A2

j}mj=1, u
2).

We say that ≿1 exhibits stronger avoidance of multidimensional risk for
gains than ≿2 if f [p] ≿2 q =⇒ f [p] ≿1 q for all p, q ∈ ∆(ZN

+ ) such that
p = (p1, . . . , pN) and q = (q1, . . . , qN). When ≿2 satisfies strict avoidance of
multidimensional risk for gains, the above comparison can be characterized
by the coarseness of brackets of the two decision makers.

Proposition 7. Suppose preferences ≿1 and ≿2 are represented by (2) with
parameters ({A1

i }ni=1, u
1) and ({A2

j}mj=1, u
2), respectively, and the Arrow–

Pratt measure of u2 is strictly decreasing for x ⩾ 0. Then ≿1 exhibits
stronger avoidance of multidimensional risk for gains than ≿2 if and only
if (i) u1 is a positive affine transformation of u2 and (ii) {A1

i }ni=1 is a finer
partition of I than {A2

j}mj=1.

Proof of Proposition 7. For necessity, suppose ≿1 exhibits stronger avoid-
ance of multidimensional risk for gains than ≿2. Normalize that u1(0) =
u2(0) = 0 and u1(b) = u2(b) = 1. For any z ∈ Z+, if u1(z) = α > u2(z) = β,
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then choose p, q such that p1 = δbβδ0, q1 = δz, and pi = qi = δ0 for all i > 1.
We have f [p] ≿2 q =⇒ f [p] ≿1 q. That is, Ep1u1(x) = β ⩾ u1(z) = α, a con-
tradiction. A similar contradiction can be derived if u1(z) = α < u2(z) = β.
Hence, u1(z) = u2(z) for all z ∈ Z+. Denote the common Bernoulli
index by u and the Arrow–Pratt measure by A. This proves (i). For
(ii), suppose there exists A1

i such that A1
i ∩ A2

j ̸= ∅ and A1
i ∩ A2

j′ ̸= ∅
for some j ̸= j′. Fix l ∈ A1

i ∩ A2
j and l′ ∈ A1

i ∩ A2
j′ . Since A(x) is

strictly decreasing, we can find r ∈ ∆(Z+), a ∈ Z+, and ε > 0 such that
f [r, δa] ∈ ∆(Z+) and c(r, u) + a < c(f [r, δa−ε], u). Let p, q ∈ ∆(ZN

+ ) such
that pl = f [r, δa−ε], pl′ = δ0, ql = r, ql′ = δa, and pi = qi = δ0 for all i ̸= l, l′.
For decision maker 2, the utility of f [p] is c(f [r, δa−ε], u), which is larger
than c(r, u) + a, the utility of q. However, for decision maker 1, since l, l′

are in the same bracket A1
i , the utility of f [p], c(f [r, δa−ε], u), is smaller

than the utility of q, c(f [r, δa], u). That is, f [p] ≻2 q and q ≻1 f [p], a
contradiction.

For sufficiency, we can normalize u1 = u2 = u. Since {A1
i }ni=1 is finer

than {A2
j}mj=1, for each j, the collection {A1

i : A1
i ∩ A2

j ̸= ∅} is a partition
of A2

j . Following the same proof of Proposition 3 establishes

U1(q) =
n∑
i=1

c(f [qA1
i
], u) ⩽

m∑
j=1

c(f [qA2
j
], u) = U2(q).

Hence, f [p] ≿2 q =⇒ f [p] ≿1 q and ≿1 exhibits stronger avoidance of
multidimensional risk for gains than ≿2.

Finally, we study an example in which the decision maker evaluates
some sources of income recursively. Let dimension 1 represent the back-
ground risk and the other dimensions represent different income sources.
Suppose the decision maker’s utility function is

U(p) = Ep1 v
(
x+

n∑
i=1

c(f [pAi|x], ux)
)
,

in which {Ai}ni=1 is a partition of I\{1}, and v and ux for each x ∈ Z

are continuous and strictly increasing. This is an HEU representation with
hierarchy {I, I\{1}, A1, . . . , An}. Under this representation, the decision
maker evaluates the background risk, and conditioning on each realization
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of the background wealth, she takes the summation of certainty equivalents
of the conditional distribution of total income in each bracket. We allow the
decision maker’s attitude toward income risk to depend on the background
wealth and to differ from the attitude toward background risk. As a result,
the decision maker cares about background risk and can be risk-averse
over small gambles. Note that this is not contradictory to the impossibility
result in Mu et al. (2023), because the decision maker with the above utility
function may violate dominance, as discussed in Section 6.1.

II.2: Time Lotteries

In Section 6.2, we focused on random dated prizes and time lotteries, in
which the decision maker receives a prize in at most one period for each
realization. By Proposition 5, to accommodate stochastic impatience and
risk aversion over time lotteries, the HEU representation should have hier-
archy H = {{1, 2}, {2}}—that is, the decision maker evaluates the risk in
consumption and conditioning on its realizations, she evaluates the condi-
tional risk in time. The utility of p ∈ ∆(X × T ) is

U(p) = Ep1 ϕ
(
v(z) e−r c(p2|z ,u

2(z,·))
)
.

Denote by ψz(a) = u2(z,−1
r

ln a). The above function can be rewritten as

U(p) = Ep1 ϕ
[
v(z) ψ−1

z

(
Ep2|z ψz(e−rt)

)]
. (9)

In this section, we consider an extension of representation (9) that allows
the delivery of multiple prizes over time. Unlike Section 6.2, we consider an
intertemporal setting in which zero consumption is allowed and there are
finitely many periods. That is, Z = [0, b] with b > 0 and T = {1, . . . , N}.
A lottery p ∈ ∆(ZT ) represents a distribution over consumption streams.

We argue that the set of random dated prizes ∆(Z×T ) can be identified
with a subset of ∆(ZT ). To see this, note that each (z, t) ∈ Z × T means
receiving z in period t. If we interpret no consumption in some period as
having consumption 0 in that period, then (z, t) (uniquely) corresponds to
x(z,t) ∈ ZT , in which x

(z,t)
t = z and x

(z,t)
t′ = 0 for all t′ ̸= t. In this way, we

can identify p ∈ ∆(Z×T ) with p̂ ∈ ∆(ZT ) such that p̂ = ∑
(z,t) p(z, t)δx(z,t) .
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Hence, a lottery over dated prizes can be interpreted as a lottery over
consumption streams such that each of the lottery’s realizations only has
nonzero consumption in at most one period. When there is no risk of
confusion, we write ∆(Z × T ) ⊊ ∆(ZT ).

To extend representation (9) from ∆(Z × T ) to ∆(ZT ), the main chal-
lenge is that the same consumption may be received in multiple periods
in one realization of the lottery. For instance, (1, 2, 1) ∈ Z3 represents
a consumption stream in which the decision maker receives 2 in period 2
and 1 in both periods 1 and 3. The following example illustrates how our
generalization of (9) works, which will be formally introduced later.

Example 11. Suppose N = 2 and consider a lottery p over consumption
streams such that p(1, 2) = p(1, 1) = 1/2. Suppose ϕ(a) = a and ψz(a) =
1/a in representation (9). That is, the parameterization is the same as
Example 8. Our generalization of (9) evaluates p as follows:

• There are two possible prizes in p: 1 and 2. In the case of a realized
prize 2, the decision maker receives it in period 2 with certainty, and
the utility given prize 2 is w(2) = v(2)e−2r.

• In the case of a realized prize 1, the decision maker receives it in only
period 1 with probability 1/2 and in both periods 1 and 2 with prob-
ability 1/2. Therefore, the utility should be v(1)e−r with probability
1/2 and v(1)(e−r + e−2r) with probability 1/2. We then apply the risk
preference over time ψz to the distribution over the summation of
discount factors as in equation (9) and obtain the utility given prize
1:

w(1) = v(1)ψ−1
z

(1
2ψz(e

−r)+1
2ψz(e

−r+e−2r))
)

= v(1) 1
1
2e
r + 1

2
1

(e−r+e−2r)
.

• Finally, the utility of p is the weighted sum of utilities given prize 2
and prize 1. To determine the weights, note that prize 2 will show
up with probability 1/2 and prize 1 will show up regardless of the
realization of p. Therefore, the weight for prize 2 is 1/2, the weight
for prize 1 is 1, and the utility of p is U(p) = 1

2 × w(2) + 1 × w(1).

Example 11 illustrates how we decompose a lottery over consumption
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streams into risk in consumption and risk in time. Compared with the
case before the extension (equation (9) in the domain of ∆(X × T )), there
are two main differences. First, we may need to sum up multiple discount
factors before multiplying it by v (the second bullet point above), because
now a prize may show up multiple times in one realization. Second, the
sum of the weights for the prizes may not be equal to 1 (the last bullet
point above).

To emphasize these two differences more formally, consider an arbitrary
p ∈ ∆(ZT ). For any z ∈ Z, denote by µ1 the aggregate distribution of
consumption. That is, the probability of receiving consumption z in at
least one of the T periods is

µ1(z) =
∑

y∈ZT : ∃t
s.t. yt=z

p(y).

The distribution µ1 is a measure of mass at most N that captures the risk
in consumption. In Example 11, µ1(1) = 1 and µ1(2) = 1/2.

Conditioning on some consumption z ∈ Z with µ1(z) > 0, the decision
maker faces uncertainty regarding the delivery date(s) of z, which can be
described as a probability distribution µ2|z over nonempty subsets of T .
That is, µ2|z(B) is the probability for the decision maker to consume z

exactly in periods t ∈ B but not in periods t ∈ Bc. In Example 11,
µ2|1({1}) = µ2|1({1, 2}) = 1/2 and µ2|2({2}) = 1. To further illustrate this
construction, consider more examples with N = 2.

Example 12. (i) Let p ∈ ∆(Z2) such that p(1, 1) = p(0, 0) = 1/2. The
aggregation distribution over consumption is µ1(1) = p(1, 1) = 1/2 and
µ1(0) = p(0, 0) = 1/2. Conditioning on either consumption 1 or 0, the
decision maker receives it for sure in both periods: µ2|1 = µ2|0 = δ{1,2}.

(ii) Let q ∈ ∆(Z2) such that q(1, 0) = q(0, 1) = 1/2. Since the decision
maker receives 1 and 0 in all realizations of consumption streams, µ1(1) =
µ1(0) = 1. Conditioning on either consumption 1 or 0, the decision maker
receives it in either period 1 or period 2 with equal probability 1/2. Hence,
µ2|0 = µ2|1 = δ{1}

1
2δ{2}.

(iii) Let r ∈ ∆(Z2) such that r(1, 1) = r(0, 0) = r(1, 0) = r(0, 1) = 1/4.
The aggregation distribution over consumption is µ1(1) = r(1, 1)+r(1, 0)+
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r(0, 1) = 3/4 and µ1(0) = r(0, 0) + r(0, 1) + r(1, 0) = 3/4. Conditioning on
either consumption 1 or 0, the decision maker receives it in either period 1,
period 2, or both periods, with equal probability 1/3. Hence, µ2|0 = µ2|1 =
1
3δ{1} + 1

3δ{2} + 1
3δ{1,2}.

Now we are ready to formally introduce our extension of (9) to ∆(XT ) in
light of Example 11. Consider the following utility function for p ∈ ∆(XT ):

U(p) = Eµ1 ϕ
[
v(z) ψ−1

z

(
Eµ2|z ψz(

∑
t∈B

e−rt)
)]
. (10)

Compared with (9), representation (10) features two differences. First, the
aggregate distribution of consumption µ1 is not necessarily a probability
distribution. Second, µ2|z is a probability distribution over nonempty sub-
sets of T , instead of one over T . Because of the second difference, we also
generalize e−rt to ∑

t∈B e
−rt in order to capture the aggregation over time.

To see why (10) is a natural extension of (9), consider a deterministic
consumption stream x = (x1, . . . , xN). For each t = 1, . . . , N , we have
µ1(xt) = 1 and µ2|xt(Bt) = 1 in which Bt = {t′ ∈ T : xt′ = xt}. Hence,
when ϕ is affine function, the utility of x is

U(x) = Eµ1v(z)
∑
t∈Bt

e−rt =
∑
t

v(xt) e−rt,

which is exactly the exponentially discounted utility of a consumption se-
quence. Indeed, when ψz and ϕ are both affine functions, (10) reduces to
the standard exponentially discounted expected utility model over ∆(XT ):

U(p) = Eµ1 v(z)
(
Eµ2|z

∑
t∈B

e−rt)
)

=
N∑
t=1

e−rt Ept v(xt).

One might have noticed that there is another natural way to apply our
HEU representation to ∆(ZT ), by interpreting different periods as differ-
ent dimensions I = T . As in the discussion of dynamic choice in Section
1.1, our FATE representation corresponds to the generalized expected dis-
counted utility functions of Kihlstrom and Mirman (1981) and Dillenberger
et al. (2020); our FETA representation corresponds to the dynamic ordinal
certainty equivalent model of Selden (1978) and Selden and Stux (1978);
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and our recursive representation corresponds to the recursive models of
Epstein and Zin (1989) and Kreps and Porteus (1978).

Under these two different methods of framing of dimensions, the HEU
representation yields two different preferences. We consider this as a dis-
tinctive feature rather than a limitation of our theory, recognizing that the
framing of dimensions may play a pivotal role in the evaluation process.

Online Appendix III: Additional Results

III.1: Uniqueness Properties of Bernoulli Indices

Suppose that ≿ has an HEU representation (H, (uA)A∈H). We now explore
the uniqueness properties of Bernoulli indices (uA)A∈H by fixing a tight
hierarchy H. For each A ∈ H, we say that the function uA is normalized if
uA is a mapping from Xη(A) ×Xτ(A) × [0, 1]Φ(A) to [0, 1] and uA(x, ·) is onto
for all x ∈ Xη(A). An HEU representation (H, (uA)A∈H) is normalized if uA
is normalized for all A ∈ H. The following result shows that a normalized
HEU representation exists and uA is unique if τ(A) ̸= ∅.

Proposition 8. If ≿ has an HEU representation with a tight hierarchy
H, then it has a normalized HEU representation with hierarchy H. If
(H, (uA)A∈H) and (H, (ûA)A∈H) are both normalized HEU representations
of ≿, then uA = ûA for all A ∈ H \ {I} and uI = ûI if τ(I) ̸= ∅.

Proof of Proposition 8. Suppose that (H, (uA)A∈H) is an HEU representa-
tion for ≿. For each A ∈ H with τ(A) = A and x ∈ Xη(A), we can apply a
positive affine transformation to uA(x, ·) and derive ûA(x, ·) whose image
is [0, 1]. Clearly ûA is normalized. Then we adopt this procedure for other
components inductively and derive a normalized ûA for other A ∈ H. Since
H is tight and ûA(x, ·) is unique up to a positive affine transformation for
all A ∈ H with τ(A) ̸= ∅, we can derive the uniqueness properties of the
normalized HEU representation as stated in the proposition.

III.2: Exogenous Order on Dimensions

In the recursive and generalized recursive representations in Section 5, dif-
ferent decision makers are allowed to order dimensions in different ways.
For instance, when N = 2, both hierarchies {{1, 2}, {1}} and {{1, 2}, {2}}
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are associated with some recursive representations. However, in some ap-
plications, a natural sequentiality is already built into the primitive. For
example, in intertemporal settings, period t is before period t+ 1 for every
t. In this case, it may be reasonable to sharpen predictions of the theory
by imposing the following additional axiom.30

Axiom 6. (Exogenous Order) For every i < N , we have i ⇀ {i+1, . . . , N}.

The following corollary characterizes the implications of Axiom 6. Its
proof is trivial and hence omitted.

Corollary 1. Suppose the preference ≿ has a generalized recursive repre-
sentation. It satisfies exogenous order if and only if it has an HEU represen-
tation with hierarchy H such that H(i+1) ⊆ H(i) for all i = 1, . . . , N−1. If
≿ has a recursive representation, then the above condition can be strength-
ened to H(i+ 1) ⊊ H(i) for all i = 1, . . . , N − 1.

Online Appendix IV: Omitted Proofs

IV.1: Proof of Necessity of Axioms in Theorem 1

Necessity of axioms:
Suppose that ≿ has an HEU representation (H, (uA)A∈H). Define UA

x

as in Definition 1 for all A ∈ H and x ∈ Xη(A). Since U I(δz) is continuous
and strictly increasing in z ∈ X and p ≿ q if and only if U I(p) ⩾ U I(q)
for all p, q ∈ ∆(X), Axiom 1 (weak order) and Axiom 2 (outcome mono-
tonicity) hold. The following lemma guarantees that ≿ satisfies Axiom 5
(continuity).

Lemma 7. (i) For any A ∈ H with τ(A) = A, the function uA(x, y) is
continuous and strictly increasing in y ∈ XA for all x ∈ Xη(A). (ii) For
any A ∈ H with τ(A) ̸= A, the function uA(x, y, a) is continuous and
strictly increasing in a ∈×B∈Φ(A) U

B
x,y(XB) for all x ∈ Xη(A) and y ∈ XA.

(iii) For any A ∈ H, x ∈ XAc and p ∈ ∆(XA), there exists z ∈ XA such
that p ∼x z. (iv) The preference ≿ satisfies Axiom 5 (continuity).

30We can easily accommodate other exogenous orders by relabeling the dimensions.
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Proof of Lemma 7. For any A ∈ H with τ(A) = A and x ∈ Xη(A), we know
uA(x, z) = UA

x (δz), which is continuous and strictly increasing by Definition
1. This proves (i).

For (ii), fix any A ∈ H with τ(A) ̸= A and x ∈ Xη(A) and y ∈ XA. For
any a, a′ ∈×B∈Φ(A) U

B
x,y(XB) with a ⩾ a′ and a ̸= a′, the strict monotonic-

ity and continuity of UB
x,y on XB guarantee the existence of zB, z′

B ∈ XB

for each B ∈ Φ(A) such that zB ⩾ z′
B, (zB)B∈Φ(A) ̸= (z′

B)B∈Φ(A), a =
(UB

x,y(δzB
))B∈Φ(A) and a′ = (UB

x,y(δz′
B

))B∈Φ(A). Then by strict monotonicity
of UA

x on XA, we have

uA(x, y, a) = UA
x (δy, (δzB

)B∈Φ(A)) > UA
x (δy, (δz′

B
)B∈Φ(A)) = uA(x, y, a′).

This implies that uA(x, y, a) is strictly increasing in a. For continuity,
consider any sequence (an)n⩾1 with an ∈×B∈Φ(A) U

B
x,y(XB) and an → a ∈

×B∈Φ(A) U
B
x,y(XB). Again by strict monotonicity and continuity of UB

x,y on
XB, there exist znB, zB ∈ XB for each B ∈ Φ(A) and n ⩾ 1 such that
znB → zB, a = (UB

x,y(δzB
))B∈Φ(A) and an = (UB

x,y(δzn
B

))B∈Φ(A). Then by
continuity of UA

x on XA, we have

uA(x, y, an) = UA
x (δy, (δzn

B
)B∈Φ(A)) → UA

x (δy, (δzB
)B∈Φ(A)) = uA(x, y, a).

Hence, uA(x, y, a) is continuous in a.
Define a partition (Hk)mk=1 of H as follows: H1 = {A ∈ H | τ(A) = A}

and for each k ⩾ 1, Hk+1 = {A ∈ H | A ̸∈ ⋃k
i=1 Hi and Φ(A) ⊆ ⋃k

i=1 Hi}.
The iteration ends at Hm = {I} for some m ≥ 1. We want to show (iii) by
induction on k. For any A ∈ H1 and x ∈ Xη(A), the utility of p ∈ ∆(XA) is
UA
x (p) = Ep uA(x, y). By (i), uA(x, y) is strictly increasing and continuous

in y. Hence, there exists z ∈ XA such that UA
x (p) = UA

x (δz). Now assume
that (iii) holds for all A ∈ ⋃k

i=1 Hi for some k ⩾ 1. Consider any A ∈ Hk+1

and x ∈ Xη(A). The utility of p ∈ ∆(XA) is

UA
x (p) = Epτ(A) u

A( x, y, (UB
(x,y)(pB|y))B∈Φ(A) ).

Since Φ(A) ⊆ ⋃k
i=1 Hi, the inductive hypothesis implies the existence of

zB|y ∈ XB for all y ∈ Xτ(A) and B ∈ Φ(A) such that UB
(x,y)(pB|y) =
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UB
(x,y)(zB|y). We can rewrite UA

x (p) as

UA
x (p) = Epτ(A) U

A
x ( δy, (δzB|y))B∈Φ(A) ),

which is the expected utility of p ∈ ∆(XA) under a continuous and strictly
increasing Bernoulli index. Hence, we can find some z ∈ XA such that
UA
x (p) = UA

x (δz). This proves the inductive hypothesis for A ∈ Hk+1 and
hence (iii) by induction.

For (iv), Axiom 5 (continuity) contains two components. For the second
component, for any p ∈ ∆(X), by (iii), there exists z ∈ X such that
p ∼ z. The sets {x ∈ X : x ≿ p} = {x ∈ X : U I(δx) ⩾ U I(δz)} and
{x ∈ X : p ≿ x} = {x ∈ X : U I(δx) ⩽ U I(δz)} are closed because U I(δy) is
continuous in y ∈ X. To prove the first component, it suffices to show for
any p, q ∈ ∆(X), the function f : [0, 1] → R defined by f(α) = U I(pαq) for
all α ∈ [0, 1] is continuous. Again we will prove it by induction on (Hk)mk=1.
First, for any A ∈ H1 and x ∈ supp(pη(A)) ∪ supp(qη(A)),

UA
x ((pαq)A|x) = EpαqA|xu

A(x, y) = λx(α)UA
x (pA|x) + (1 − λx(α))UA

x (qA|x),

in which λx(α) = αpη(A)(x)
αpη(A)(x)+(1−α)qη(A)(x) . Clearly, UA

x ((pαq)A|x) is continuous
in α. Now assume UA

x ((pαq)A|x) is continuous in α for all A ∈ ⋃k
i=1 Hi

and x ∈ supp(pη(A)) ∪ supp(qη(A)). Consider any A ∈ Hk+1 and x ∈
supp(pη(A)) ∪ supp(qη(A)),

UA
x ((pαq)A|x) =EpαqA|xu

A(x, y, (UB
(x,y)((pαq)B|(x,y)))B∈Φ(A) )

=
∑
y

(pαq)τ(A)|x(y) · uA(x, y, (UB
(x,y)((pαq)B|(x,y)))B∈Φ(A)).

Since uA(x, y, a) is continuous in a by (ii) and Φ(A) ⊆ ⋃k
i=1 Hi, the induc-

tive hypothesis implies that uA(x, y, (UB
(x,y)((pαq)B|(x,y)))B∈Φ(A)) is contin-

uous in α for all y ∈ Xτ(A). In addition, (pαq)τ(A)|x(y) = λx(α)pτ(A)|x(y) +
(1 −λx(α))qτ(A)|x(y) is continuous in α. Hence, UA

x ((pαq)A|x) is continuous
in α for A ∈ Hk+1. By induction, f(α) = U I(pαq) is continuous in α.

By Lemma 1, for the rest of the proof, we assume H is tight.
To verify Axiom 3 (unidimensional independence), fix any i ∈ I and let

A = H(i) ∈ H. For any p, q ∈ ∆(Xi) and x ∈ X−i, we know p ≻x q if
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and only if UA
xη(A)

(p, δxA\{i}) > UA
xη(A)

(q, δxA\{i}). Since UA
xη(A)

(pαr, δxA\{i}) =
αUA

xη(A)
(p, δxA\{i})+(1−α)UA

xη(A)
(r, δxA\{i}) for any r ∈ ∆(Xi) and α ∈ (0, 1),

we conclude that pαr ≻x qαr.
To verify Axiom 4 (separability under bracketing), suppose M(A) =

{i ∈ A : i ⇀ A} = ∅. Identify B as the smallest element of H that includes
A. Clearly A∩ τ(B) = ∅. Then {A∩C : C ∈ Φ(B)} (ignoring empty sets)
is a partition of A. Since B is the smallest element of H that includes A,
there exists at least two different (and hence disjoint) C,C ′ ∈ Φ(B) with
A ∩ C ̸= ∅ and A ∩ C ′ ̸= ∅. Since (H, (uA)A∈H) is an HEU representation
of ≿, we have C ▷ B \ τ(B) for all C ∈ Φ(B) with A ∩ C ̸= ∅ and hence
A ∩ C ▷ A. Since A ⊆ B \ τ(B) = ⋃

C∈Φ(B) C, we have ⋃
B▷AB = A.

IV.2: Omitted Proofs of Lemmas in Appendix A

Proof of Lemma 2. By Axiom 1 (weak order), Axiom 2 (outcome mono-
tonicity) and Axiom 3 (unidimensional independence), ≿x admits an EU
representation with a Bernoulli index vi|x defined on Xi, which is strictly
increasing and unique up to a positive affine transformation. To see that
vi|x is continuous, suppose by contradiction that there exists a sequence
(yn) in Xi such that yn → y ∈ Xi and vi|x(yn) ̸→ vi|x(y). Without loss of
generality and passing to a subsequence if necessary, suppose vi|x(yn) →
a < b = vi|x(y) and vi|x(yn) < (a+ b)/2 for every n ≥ 1. Since ≿i|x admits
an EU representation, we can find r ∈ ∆(Xi) with Er(vi|x) = (a + b)/2.
That is, yn ≺x r ≺x y for every n ≥ 1. Axiom 5 (continuity) implies
that y ≾x r ≺x y, a contradiction. Hence, vi|x is continuous for each
x ∈ X−i.

Proof of Lemma 3. Without loss of generality, we can focus on the case in
which A = I and prove the results using induction on the cardinality of I.
If |I| = 1, then both statements hold trivially by Lemma 2. Now suppose
that both statements hold for |I| ⩽ t for some t ⩾ 1. We need to show
that they hold for |I| = t+ 1.

If ⋃
B▷I B = I, since I is finite, among those proper subsets of I, B’s,

we can find A1, . . . , Am such that ⋃m
i=1 Ai = I. Note that by construction,

Ai ▷ I and |Ai| ⩽ t for all i = 1, . . . ,m. Without loss of generality, we can
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let the union of any m−1 members among A1, . . . , Am be a proper subset of
I. Since A1 ▷ I, we know that p ∼ (pA1 , pAc

1
). Since A2 ▷ I, we know that

p ∼ (pA1\A2 , pA1∩A2 , pA2\A1 , p(A1∪A2)c), and so on. Iteratively, we can derive
a partition {Bk}nk=1 of I such that p ∼ (pB1 , . . . , pBn) := q. Let {Ci

j}
n(i)
j=1 be

a subset of {Bk}nk=1, for all i = 1, . . . ,m, such that Ai = ⋃n(i)
j=1 C

i
j, for all

i = 1, . . . ,m.
If p dominates x, then pBk

= qBk
weakly dominates xBk

for every k

and the dominance is strict for some k∗. For every i, since Ai ▷ I, for
any lottery (rAi

, rAc
i
), ≿’s induced preference on ∆(XAi

) is independent
of rAc

i
. Hence, we can apply the inductive hypothesis to A1 and know

that p ∼ q ≿ (xC1
1
, xC1

2
, . . . , xC1

n(1)
, qAc

1
). Apply the inductive hypothesis

to A2, A3, . . . , Am and follow the same argument iteratively. Then, we can
conclude that p ≿ (xB1 , xB2 , xB3 , . . . , xBn) = x. Note that since at least
one dominance relation is strict. We must have p ≻ x. The proof for the
case in which x dominates p is symmetric and omitted. This proves the
first statement. The second statement can be proved similarly again by
applying the inductive hypothesis to A1, . . . , Am iteratively.

Next, suppose it cannot be the case that ⋃
B▷I B = I. Then, by the

contrapositive of Axiom 4 (separability under bracketing), there exists i ∈ I

with i ⇀ I. Recall that we are using induction on the cardinality of
I. Now for each cardinality of I, we will use another inductive argument
based on the cardinality of supp(pi). If | supp(pi)| = 1, then p = (x, p−i)
for some x ∈ Xi. By Axiom 2 (outcome monotonicity) and applying the
inductive hypothesis to the conditional preference ≿x, the two statements
hold trivially.

Assume that for some n ⩾ 1, the two statements hold if | supp(pi)| ⩽ n.
Suppose | supp(pi)| = n+ 1 and p dominates x. Then, we can choose some
ai ∈ supp(pi) \ {xi} with ai > xi and write p = pi(ai)(δai

, p−i|ai
) + (1 −

pi(ai))p′, in which | supp(p′
i)| = n. Note that (δai

, p−i|ai
) dominates x and p′

weakly dominates x, which implies that p′ ≿ x and (δai
, p−i|ai

) ≻ x. Clearly,
δai

⊥ δxi
and δai

⊥ p′
i. Since ai > xi, by Axiom 5 (continuity) and Axiom 2

(outcome monotonicity), there exists some x′
i > xi and x′ = (x′

i, x−i) such
that (δai

, p−i|ai
) ≻ x′ ≻ x. Using the definition of i ⇀ I, we obtain that

p = pi(ai)(δai
, p−i|ai

) + (1 − pi(ai))p′ ≿ pi(ai)(δai
, p−i|ai

) + (1 − pi(ai))δx ≻
pi(ai)δx′ + (1 − pi(ai))δx. The first relation is ∼ if and only if p′ = x.
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Since x′ and x agree in all dimensions other than i, Lemma 2 implies
pi(ai)δx′ + (1 − pi(ai))δx ≻ x and hence p ≻ x. The case in which x

dominates p is symmetric. This proves the first statement.
For the second statement, suppose that p dominates y and is dominated

by x. By the first statement and Axiom 2 (outcome monotonicity), x ≻ p ≻
x. Denote x0 := x, x1 = (x1, x−1), x2 = (x{1,2}, x{1,2}c), . . . , and xt+1 = x.
Then x0 ≻ x1 ≻ · · · ≻ xt+1. We can find a unique k = 0, . . . , t such that
xk ≿ p ≿ xk+1. By Axiom 5 (continuity), we can find α ∈ [0, 1] such that
p ∼ δxk α δxk+1 , which, by Lemma 2, is indifferent to some z ∈ X. Since
x ≻ p ∼ z ≻ y, again by Axiom 5 (continuity) and Axiom 2 (outcome
monotonicity), there exists z′ ∼ z with x ⩾ z′ ⩾ y. By induction, we
conclude that both statements hold for any finite cardinality of supp(p)
and I. This completes the proof.

Proof of Lemma 4. For the first statement, suppose B ▷ A, B′ ▷ A, and
B ∩B′, B \B′, B′ \B are nonempty. We first verify that B ∩B′ ▷ A. Take
any x ∈ XAc , r ∈ ∆(XA\(B∩B′)), and p, q ∈ ∆(XA) such that pA\(B∩B′) =
qA\(B∩B′). Then pA\B = qA\B and pA\B′ = qA\B′ . Since B ▷ A and B′ ▷ A,
we have

p ≿x q

⇐⇒ (pB, pA\B) ≿x (qB, qA\B)
⇐⇒ (pB∩B′ , pA\(B∪B′), pB\B′ , pB′\B) ≿x (qB∩B′ , qA\(B∪B′), qB\B′ , qB′\B)
⇐⇒ (pB∩B′ , rA\(B∪B′), pB\B′ , rB′\B) ≿x (qB∩B′ , rA\(B∪B′), qB\B′ , rB′\B)
⇐⇒ (pB∩B′ , rA\(B∪B′), rB\B′ , rB′\B) ≿x (qB∩B′ , rA\(B∪B′), rB\B′ , rB′\B)
⇐⇒ (pB∩B′ , r) ≿x (qB∩B′ , r).

Then we verify B \ B′ ▷ A. The case for B′ \ B is symmetric and hence
omitted. Take any x ∈ XAc , r ∈ ∆(XA\(B\B′)), and p, q ∈ ∆(XA) such
that pA\(B\B′) = qA\(B\B′). Since B ▷ A,B′ ▷ A, and B ∩ B′ ▷ A, we
can use ≿x to represent the conditional preference on ∆(XB),∆(XB′) and
∆(XB∩B′) when there is no risk of confusion. Using the previous argument
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again, p ≿x q if and only if

(pB∩B′ , rA\(B∪B′), pB\B′ , xB′\B) ≿x (qB∩B′ , rA\(B∪B′), qB\B′ , xB′\B).

We want to replace pB∩B′ = qB∩B′ with rB∩B′ without changing the
preference. This can be done immediately if pB∩B′ ∼x rB∩B′ , because
B ∩ B′ ▷ A. Without loss of generality, assume that pB∩B′ ≻x rB∩B′ .
First, by Lemma 3, there exist y, y′ ∈ XB∩B′ such that y ⩾ y′ and y ∼x

pB∩B′ ≻x rB∩B′ ∼x y
′. Since B ∩B′ ▷ A, we have p ≿x q if and only if

(y, rA\(B∪B′), pB\B′ , xB′\B) ≿x (y, rA\(B∪B′), qB\B′ , xB′\B).

Second, if (y′, xB′\B) ≿x (y, xB′\B), then Axiom 5 (continuity) and Axiom
2 (outcome monotonicity) imply that there exists z ∈ XB′\B such that
(y′, z) ∼x (y, xB′\B). Since B ▷ A, B′ ▷ A, and B ∩B′ ▷ A, we know that

p ≿x q

⇐⇒ (y′, rA\(B∪B′), pB\B′ , z) ≿x (y′, rA\(B∪B′), qB\B′ , z)
⇐⇒ (rB∩B′ , rA\(B∪B′), pB\B′ , z) ≿x (rB∩B′ , rA\(B∪B′), qB\B′ , z)
⇐⇒ (rB∩B′ , rA\(B∪B′), pB\B′ , rB′\B) ≿x (rB∩B′ , rA\(B∪B′), qB\B′ , rB′\B)
⇐⇒ (pB\B′ , r) ≿x (qB\B′ , r).

Third, suppose instead (y, xB′\B) ≻x (y′, xB′\B). Then there exist
y′′, y′′′ ∈ XB∩B′\{xB∩B′ , xB∩B′} such that y′′ > y′′′, (y′′, xB′\B) ≻x (y, xB′\B),
and (y′′′, xB′\B) ≺x (y′, xB′\B). For each ŷ ∈ XB∩B′ \ {xB∩B′ , xB∩B′}, let
Γ(ŷ) = {ŷ′ ∈ XB∩B′ : (ŷ, xB′\B) ≻x (ŷ′, xB′\B) ≻x (ŷ, xB′\B)}. By Axiom 5
(continuity), {Γ(ŷ)}y∈XB∩B′ is an open cover of {z ∈ XB∩B′ : y′′′ ≤ z ≤ y′′},
which is a compact set. Hence, it admits a finite subcover. This ensures
the existence of a finite sequence (yk)nk=0 in {z ∈ XB∩B′ : y′′′ ≤ z ≤
y′′} ∪ {y} such that (i) y0 = y, (ii) (yk+1, xB′\B) ∼x (yk, xB′\B) for each
k = 0, . . . , n − 1, and (iii) (y′, xB′\B) ≿x (yn, xB′\B). By applying (ii) and
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the implications of B ▷ A and B′ ▷ A repeatedly, we obtain

p ≿x q

⇐⇒ (y, rA\(B∪B′), pB\B′ , xB′\B) ≿x (y, rA\(B∪B′), qB\B′ , xB′\B)
⇐⇒ (y1, rA\(B∪B′), pB\B′ , xB′\B) ≿x (y1, rA\(B∪B′), qB\B′ , xB′\B)
⇐⇒ (y1, rA\(B∪B′), pB\B′ , xB′\B) ≿x (y1, rA\(B∪B′), qB\B′ , xB′\B)
⇐⇒ (y2, rA\(B∪B′), pB\B′ , xB′\B) ≿x (y2, rA\(B∪B′), qB\B′ , xB′\B)
⇐⇒ (y2, rA\(B∪B′), pB\B′ , xB′\B) ≿x (y2, rA\(B∪B′), qB\B′ , xB′\B)
⇐⇒ · · ·

⇐⇒ (yn, rA\(B∪B′), pB\B′ , xB′\B) ≿x (yn, rA\(B∪B′), qB\B′ , xB′\B).

Since we have (y′, xB′\B) ≿x (yn, xB′\B) by (iii), we can apply the argument
in the previous case to establish that p ≿x q ⇐⇒ (pB\B′ , r) ≿x (qB\B′ , r).
This completes the proof for B \ B′ ▷ A and hence the first statement is
true.

For the second statement, suppose A = ⋃
B▷AB. We can follow the

construction of the partition {Bk}nk=1 of A in the proof of Lemma 3. Then,
the first statement we establish above implies the second.

Proof of Lemma 6. To prove Lemma 6, we need some intermediate results.
Without loss of generality, assume i ̸∈ A.

Lemma 8. Denote B = {i}∪A. If i ⇀ A, then for all α ∈ (0, 1), x ∈ XBc,
and p, q, r, s ∈ ∆(XB) such that pi ⊥ ri and qi ⊥ si, the following properties
hold: (i) p ≻x r =⇒ p ≻x pαr ≻x r; (ii) p ∼x r =⇒ p ∼x pαr ∼x r; (iii)
p ∼x q, r ∼x s =⇒ pαr ∼x qαs; and (iv) p ≻x q, r ≻x s =⇒ pαr ≻x qαs.

Proof of Lemma 8. For (i), we consider four cases. First, if p = xB and r =
xB, then the result is implied by Lemma 3. Second, if p = xB and r ≻x xB,
then by Axiom 5 (continuity) and Axiom 2 (outcome monotonicity), we can
find ε ∈ RB

+ such that εi > 0, εj = 0 for all j ∈ A, and xB ≻x xB − ε ≻x r.
By the definition of i ⇀ A and Lemma 2, we have pαr ≺x δxB

α δxB−ε ≺x

xB = p. As r ≻x xB, we can find y, y′ ∈ XB such that p ≻x y ≻x r ∼x y
′,

yi, y
′
i ̸∈ supp(pi) ∪ supp(ri), yi ̸= y′

i, and yj = y′
j for all j ∈ A. Again by

the definition of i ⇀ A and Lemma 2, pαr ≻x δyαδy′ ≻x y
′ ∼x r. Third,
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if p ≺x xB and r = xB, then the proof is symmetric to the second case.
Finally, if xB ≻x p ≻x r ≻x xB, then the proof is a simple combination of
those of the above two cases.

For (ii), if p ∼x r and pi ⊥ ri, then xB ≻x p ∼x r ≻x xB. By Axiom 5
(continuity) and Axiom 2 (outcome monotonicity), we can find y, y′ ∈ XB

such that y ≻x p ∼x r ≻x y
′, yi ̸= y′

i, and yi, y
′
i ̸∈ supp(pi) ∪ supp(ri).

For any β ∈ (0, 1), by applying (i) twice we get pβδy ≻x p ∼x r ≻x pβδy′ .
Then apply (i) twice for pβδy, q and pβδy′ and we derive (pβδy)αr ≻x r ≻x

(pβδy′)αr. Let β go to 1, and by Axiom 5 (continuity), pαr ≿x r ≿x pαr,
which implies pαr ∼x r ∼x p.

For (iii), if p, r ∈ {xB, xB}, then p = q and r = s and the result is trivial.
Without loss of generality, assume that xB ≻x p ∼x q ≻x xB. Using the
argument in the proof for (ii), we can find y, y′ such that y ≻x p ∼x q ≻x y

′,
yi ̸= y′

i, yi, y′
i ̸∈ supp(pi) ∪ supp(ri), and pβδy ≻x p ∼x q ≻x pβδy′ for

every β ∈ (0, 1). Applying the definition of i ⇀ A twice, we obtain that
(pβδy)αr ≻x qαs ≻x (pβδy′)αr. Let β go to 1, and by Axiom 5 (continuity),
we have pαr ≿x qαs ≿x pαr, which implies that pαr ∼x qαs.

For (iv), it suffices to consider the case that p ≻x q ≻x r ≻x s, as the
other cases are implied by (i). There exists y ∈ XB such that r ∼x y and
yi ̸∈ supp(qi). Applying the definition of i ⇀ A twice, we obtain that
pαr ≻x qαδy ≻ qαs.

The following lemma describes a situation in which independence holds
even if the condition of disjoint supports fails.

Lemma 9. Denote B = {i}∪A. If i ⇀ A, then for all α ∈ (0, 1), x ∈ XBc,
and p, q, r, s ∈ ∆(XB) such that pi ⊥ ri and supp(q) ∪ supp(s) ⊆ {xB, xB},
then p ∼x q, r ∼x s =⇒ pαr ∼x qαs.

Proof of Lemma 9. First, if p, r ∈ {xB, xB}, then p = q, r = s and the
result is trivial. Without loss of generality, assume that xB ≻x p ∼x q ≻x

xB. Then there exists y ∈ XB such that yi ̸∈ {xi, xi} and p ∼x y. Since
p ∼x y, r ∼x s, pi ⊥ ri, and yi ⊥ si, by part (iii) of Lemma 8, we have
pαr ∼x δyαs. Hence, it suffices to show that δyαs ∼x qαs for every y ∼ q

with yi ̸∈ {xi, xi}. As xB ≻x p ∼x q ≻x xB, by Axiom 5 (continuity),
we can find ε ∈ RB

+ and γ ∈ (0, 1) such that εi > 0, εj = 0 for all
j ∈ A, xB − ε ≻x y ≻x xB + ε, and y ∼x q ∼x δxB−ε γ δxB+ε. Denote
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q̂ = δxB−ε γ δxB+ε and qβ = qβq̂ for each β ∈ (0, 1). Part (ii) of Lemma 8
implies that qβ ∼x q ∼x y.

We claim that δyαs ∼x q
βαs for all β, α ∈ (0, 1). To see this, first note

that q(xB) > 0 and q(xB) > 0 as xB ≻x q ≻x xB. Then

qβ = [βq(xB)δxB
+ (1 − β)γδxB−ε] + [βq(xB)δxB

+ (1 − β)(1 − γ)δxB+ε]
∼x [βq(xB) + (1 − β)γ]δxB−ε′ + [βq(xB) + (1 − β)(1 − γ)]δxB+ε′′ ,

in which the indifference follows from part (iii) of Lemma 8, and ε′, ε′′ ∈ RB
+

satisfy ε′
i, ε

′′
i > 0, ε′

j = ε′′
j = 0 for all j ∈ A, and

δxB−ε′ ∼x
βq(xB)

βq(xB) + (1 − β)γ δxB
+ (1 − β)γ
βq(xB) + (1 − β)γ δxB−ε,

δxB+ε′′ ∼x
βq(xB)

βq(xB) + (1 − β)(1 − γ)δxB
+ (1 − β)(1 − γ)
βq(xB) + (1 − β)(1 − γ)δxB+ε.

The existence of ε′, ε′′ is guaranteed by Lemma 2. Denote q̂β := [βq(xB) +
(1−β)γ]δxB−ε′ +[βq(xB)+(1−β)(1−γ)]δxB+ε′′ . Then q̂β ∼x q ∼x y. Note
that

qβαs =
[
α(βq(xB)δxB

+ (1 − β)γδxB−ε) + (1 − α)s(xB)δxB

]
+

[
α(βq(xB)δxB

+ (1 − β)(1 − γ)δxB+ε) + (1 − α)s(xB)δxB

]
.

Again by applying Lemma 2 to the two terms above, respectively, and
applying part (iii) of Lemma 8, we derive

qβαs ∼x

[
α(βq(xB) + (1 − β)γ)δxB−ε′ + (1 − α)s(xB)δxB

]
+

[
α(βq(xB) + (1 − β)(1 − γ))δxB+ε′′ + (1 − α)s(xB)δxB

]
= q̂βαs.

Note that q̂βi ⊥ si, yi ⊥ si, and q̂β ∼x y. Part (ii) of Lemma 8 implies that
δyαs ∼x q̂

βαs ∼x q
βαs, which holds for all α, β ∈ (0, 1). Let β approach 1

and by Axiom 5 (continuity), we conclude that qαs ∼ δyαs. This completes
the proof.

For any p ≻x q, the next result provides sufficient conditions for pαq to
be better as α ∈ (0, 1) increases.
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Lemma 10. Denote B = {i} ∪ A. If i ⇀ A, then for all α, β ∈ (0, 1),
x ∈ XBc, and p, q ∈ ∆(XB) such that α > β, p ≻x q, and pi ⊥ qi, we have
(i) δxB

αδxB
≻x δxB

βδxB
and (ii) pαq ≻x pβq.

Proof of Lemma 10. For (i), first, note that δxB
βδxB

= (δxB
αδxB

)β
α
δxB

. By
Lemma 3, there exists y ∈ XB such that yi ̸= xi, yi ̸= xi, and y ∼x δxB

αδxB
.

By Lemma 9, we have δxB
βδxB

= (δxB
αδxB

)β
α
δxB

∼x δy
β
α
δxB

. Since y ≻x xB

and yi ̸= xi, part (i) of Lemma 8 implies that δy βαδxB
≺x y ∼x δxB

αδxB
.

Hence, δxB
αδxB

≻x δxB
βδxB

.
For (ii), by part (i), we can find unique γ1, γ2 ∈ [0, 1] such that γ1 > γ2

and p ∼x δxB
γ1δxB

≻x q ∼x δxB
γ2δxB

. Then Lemma 9 implies

pαq ∼xδxB
(αγ1 + (1 − α)γ2)δxB

,

pβq ∼xδxB
(βγ1 + (1 − β)γ2)δxB

.

Since α > β and γ1 > γ2, we know that αγ1 + (1 −α)γ2 > βγ1 + (1 − β)γ2

and hence pαq ≻x pβq by part (i).

Now we are ready to prove Lemma 6. For any p ∈ ∆(XB), by Lemma
10, there exists a unique α(p) ∈ [0, 1] such that p ∼x δxB

α(p)δxB
. Define

Ux : ∆(XB) → R such that Ux(p) = α(p) for every p ∈ ∆(XB). Then
Ux(δxB

) = 1 and Ux(δxB
) = 0. Lemma 10 ensures that p ≿x q if and only if

Ux(p) ⩾ Ux(q) for all p, q ∈ ∆(XB). Now we check condition (ii). Fix any
α ∈ (0, 1) and p, q ∈ ∆(XB) with pi ⊥ qi. By definition of Ux, we know
that p ∼x δxB

Ux(p)δxB
and q ∼x δxB

Ux(q)δxB
. Since pi ⊥ qi, Lemma 9

implies pαq ∼x δxB
(αUx(p) + (1 −α)Ux(q))δxB

. Again, the definition of Ux
implies pαq ∼x δxB

Ux(pαq)δxB
. By Lemma 10, we conclude that Ux(pαq) =

αUx(p)+(1−α)Ux(q). Hence, Ux(p) = ∑
yi
Ux(δyi

, pB\{i}|yi
)pi(yi). To verify

(iii), define wx : XB → R in which wx(y) = Ux(δy) for all y ∈ XB. By
Axiom 2 (outcome monotonicity), wx is strictly increasing. To see that wx
is continuous, suppose by contradiction that there exists a sequence (yn)
in XB such that yn → y ∈ XB and wx(yn) ̸→ wx(y). Without loss of
generality and passing to a subsequence if necessary, suppose wx(yn) →
a < b = wx(y) and wx(yn) < (a + b)/2 for all n. By part (ii), we can
find r ∈ ∆(XB) with Ux(r) = (a + b)/2. That is, yn ≺x r ≺x y for all
n. Axiom 5 (continuity) implies y ≾x r ≺x y, a contradiction. Finally,
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by our construction, once Ux(δxB
) and Ux(δxB

) are determined, the utility
function Ux is pinned down. Hence, Ux is unique up to a positive affine
transformation.

IV.3: Proof of Theorem 2

Suppose that ≿ has an HEU representation with a tight H. We start with
two observations. The first is that the conditional preference of ≿ on any
nonempty subset of dimensions also has an HEU representation.

Lemma 11. For any nonempty I ′ ⊆ I and z ∈ XI′c, the conditional
preference ≿z has an HEU representation.

Proof of Lemma 11. Fix any I ′ ⊆ I and z ∈ XI′c . We ignore the de-
pendence of functions on z when there is no risk of confusion. Define
H′ = {A ⊆ I ′ : A ̸= ∅, A = I ′ ∩ B for some B ∈ H}. Clearly H′ is a
hierarchy on I ′. We can similarly define mappings H ′, η′, τ ′, and Φ′. For
any A ∈ H′ and z′ ∈ Xη′(A), denote by BA the smallest component in H
that includes A. Then τ ′(A) ⊆ τ(BA) and η′(A) ⊆ η(BA). Define ÛA

z′ (p)
for each p ∈ ∆(XA) by

ÛA
z′ (p) = UBA

(z′,zη(BA)∩I′c )(p, zBA\A).

Then we recursively define ûA : Xη′(A)×Xτ ′(A)×RΦ′(A) → R, which satisfies

ÛA
z′ (p) = Epτ ′(A) û

A( z′, y, (ÛB
(z′,y)(pB|y))B∈Φ′(A) ).

We can easily verify that (H′, (ûA)A∈H′) is an HEU representation of ≿z.

The second observation describes what happens if some hierarchy in H
contains a bracket separable component.

Lemma 12. Suppose A ∈ H for some H ∈ H. If A is bracket separable,
then there exists H′ ∈ H such that A ∈ H′ and τH′(A) = ∅.

Proof of Lemma 12. Suppose A ∈ H and (H, (uB)B∈H) is an HEU repre-
sentation of ≿. We assume that τH(A) ̸= ∅, since otherwise we can simply
let H′ = H. For any z ∈ XAc , Lemma 11 implies that ≿z has an HEU repre-
sentation with hierarchy HA = {B ⊆ A : B ̸= ∅, B = A∩A′ for some A′ ∈
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H}. Since A is bracket separable, applying our constructive proof of the
sufficiency of Theorem 1 to ≿z generates a different HEU representation
(H′

A, (u′B
z )B∈H′

A
) of ≿z in which τH′

A(A) = ∅. Notably, H′
A does not de-

pend on z and u′A
z is only unique up to a monotone transformation—the

expectation operator in equation (1) for component A is degenerate. De-
fine H′ = H ∪ H′

A \ HA. It is easy to verify that H′ is a hierarchy—and
importantly, is not tight. Let ûB = uB for B ∈ H′ \ H′

A and extend the
domain of (u′B

z )z∈XAc to derive ûB for B ∈ H′
A (and adjust the values of

u′A
z if necessary). Then (H′, (ûB)B∈H′) is also an HEU representation of ≿

such that A ∈ H′ and τH′(A) = τH′
A(A) = ∅.

We are now ready to prove the uniqueness of the canonical hierarchy if
it exists. Suppose that H1,H2 ∈ H are canonical for ≿. For each i = 1, 2,
define Hi

0 = {I} and Hi
k = {A ∈ Hi : A ∈ Φ(B) for some B ∈ Hi

k−1} for all
k ⩾ 1. There exists a unique Ki ⩾ 0 such that Hi

Ki
̸= ∅ and Hi = ⋃Ki

k=0 Hi
k.

Indeed, {Hi
k}

Ki
k=0 is a partition of Hi for both i = 1, 2.

We will show H1
k = H2

k by induction on k ⩾ 0. Clearly, H1
0 = H2

0 = {I}.
Suppose that there exists t ⩾ 0 such that H1

k = H2
k for all k ⩽ t. Fix any

A ∈ H1
t = H2

t . If there exists H ∈ H such that A ∈ H and τH(A) = ∅, then
τH1(A) = τH2(A) = ∅ by the first statement in Definition 4. Since H1,H2

are tight, we must have A = I and t = 0. As a result, Hi
t+1 = ΦHi(I), which

is a bracket partition of I for both i = 1, 2. Any B ∈ Hi
t+1 must not be

bracket separable, since otherwise, by Lemma 12, there exists H′ ∈ H such
that B ∈ H′ and τH′(B) = ∅, which implies τHi(A) = ∅ and contradicts Hi

being tight. By Lemma 5, Hi
t+1 must be the finest partition of I for both

i = 1, 2 and hence H1
t+1 = H2

t+1.
If instead τH(A) ̸= ∅ for every H ∈ H such that A ∈ H, then τH1(A) ⊆

τH2(A) and τH2(A) ⊆ τH1(A) by the second statement in Definition 4.
That is, τH1(A) = τH2(A). Denote this by A′. By the same argument as
in the previous case, ΦH1 ∪ ΦH2 contains no bracket separable components.
Then the following three cases are possible: (i) A \ A′ = ∅, in which case
ΦH1(A) = ΦH2(A) = ∅; (ii) A \ A′ is not bracket separable, in which case
ΦH1(A) = ΦH2(A) = {A \ A′}; and (iii) or A \ A′ is bracket separable, in
which case ΦH1(A) = ΦH2(A) is the finest bracket partition of A \ A′.

Hence, ΦH1 = ΦH2 holds for all A ∈ H1
t = H2

t , which implies H1
t+1 =
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H2
t+1. By induction, H1

t = H2
t for all t ⩾ 0 and hence H1 = H2.

Then we establish the existence of a canonical hierarchy. Denote by
(H, (uA)A∈H) the HEU representation constructed in the proof of the suf-
ficiency of Theorem 1. Recall that H = ⋃n

t=0 Ht in which Ht is the set of
components constructed in each stage 0 ⩽ t ⩽ n. Notice that this proce-
dure may not generate a unique hierarchy, since we apply an arbitrary order
to dimensions in M(A) when |M(A)| ⩾ 2 and hence it is not necessarily the
canonical hierarchy. However, the next lemma provides insights regarding
how to remove components in H to generate a canonical hierarchy.

Lemma 13. Suppose H ∈ H and A ∈ H such that τ(A) ̸= ∅. If A\τ(A) ∈
H and τ(A \ τ(A)) = {i} for some i ∈ M(A), then H \ {A \ τ(A)} ∈ H.

Proof of Lemma 13. Suppose A ∈ H and (H, (uB)B∈H) is an HEU rep-
resentation of ≿, and they satisfy the conditions stated in the lemma.
Denote H′ = H \ {A \ τH(A)}. Then τH′(A) = τH(A) ∪ {i}, ΦH′(A) =
ΦH(A \ τH(A)), and ηH′(A) = ηH(A). The three functions of H and H′

agree on B ∈ H′ \ {A}. Let ûB = uB for all B ∈ H′ \ {A} and define
ûA : XηH′ (A) ×XτH′ (A) × RΦH′ (A) → R by

ûA(z, x, a) = uA
(
z, xτH(A), u

A\τH(A)
(

(z, xτH(A)), xi, a
))
.

Define UB
z and ÛB

z accordingly using the recursive equation (1). It is easy
to see that ÛB

z (δx) = UB
z (δx) for all B ∈ H′, z ∈ XηH(A) and x ∈ XB. This

guarantees that ÛB
z (δx) is continuous and strictly increasing in x ∈ XB.

Moreover, ÛB
z (p) = UB

z (p) for all B ∈ H′ with B ⊊ A, p ∈ ∆(XB) and
z ∈ XηH(B). To show that (H′, (ûB)B∈H′) is an HEU representation of ≿,
it suffices to show that ÛA

z (p) = UA
z (p) for all p ∈ ∆(XA) and z ∈ XηH(A),

since by recursion, it implies that ÛB
z (p) = UB

z (p) for all B ∈ H′ with
A ⊊ B, p ∈ ∆(XB) and z ∈ XηH(B).

Denote A′ = A \ τH(A). Fix z′ ∈ XAc and denote z = z′
ηH(A) ∈ XηH(A).

The utilities of p ∈ ∆(XA) in the two representations are given by

UA
z (p) = EpτH(A) u

A
(
z, y,Epi|y u

A′((z, y), y′, (UB
(z,y,y′)(pB|y,y′))B∈ΦH′ (A))

)
,

ÛA
z (p) = EpτH(A)∪{i} û

A
(
z, (y, y′), (UB

(z,y,y′)(pB|y,y′))B∈ΦH′ (A))
)

= EpτH(A)∪{i} u
A

(
z, y, uA

′((z, y), y′, (UB
(z,y,y′)(pB|y,y′))B∈ΦH′ (A))

)
.
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Note that in the above expressions, y ∈ XτH(A) and y′ ∈ Xi.
Since i ∈ M(A), Lemma 6 ensures the existence of a function Vz :

∆(XA) → R such that (i) p ≿z q if and only if Vz(p) ⩾ Vz(q) for all
p, q ∈ ∆(XA) and (ii) Vz(pαq) = αVz(p) + (1 − α)Vz(q) for all α ∈ (0, 1)
and p, q ∈ ∆(XA) with pi ⊥ qi.

Fix any y ∈ XτH(A) and p ∈ ∆(XA′). Denote supp(pi) = {y′1, . . . , y′n}
such that y′1 < y′2 < · · · < y′n. We can find yk ∈ XτH(A) and y′′k ∈ Xi

for every k ⩾ 1 such that (y, y′k, pA′\{i}|y′k) ∼z (yk, y′′k, pA′\{i}|y′k), elements
in {y1, . . . , yn} are mutually distinct, and elements in {y′′1, . . . , y′′n} are
mutually distinct. Denote q = ∑n

k=1 pi(y′k)·(δyk , δy′′k , pA′\{i}|y′k). Properties
(i) and (ii) ensure that Vz(δy, p) = Vz(q), which implies (δy, p) ∼z q. Since
≿z is also represented by UA

z , we have

UA
z (y, p)

= uA
(
z, y,Epi uA

′((z, y), y′, (UB
(z,y,y′)(pB|y′))B∈ΦH′ (A))

)
= UA

z (q)

=
n∑
k=1

pi(y′k) uA
(
z, yk, uA

′((z, yk), y′′k, (UB
(z,yk,y′′k)(pB|y′k))B∈ΦH′ (A))

)
= Epi uA

(
z, y, uA

′((z, y), y′, (UB
(z,y,y′)(pB|y′))B∈ΦH′ (A))

)
.

The above result holds for all (y, p). Combining the above two sets of
equations, for any r ∈ ∆(XA), we have

UA
z (r) = ErτH(A) u

A
(
z, y,Eri|y uA

′((z, y), y′, (UB
(z,y,y′)(rB|y,y′))B∈ΦH′ (A))

)
= ErτH(A)Eri|y uA

(
z, y, uA

′((z, y), y′, (UB
(z,y,y′)(rB|y,y′))B∈ΦH′ (A))

)
= ErτH(A)∪{i} u

A
(
z, y, uA

′((z, y), y′, (UB
(z,y,y′)(rB|y,y′))B∈ΦH′ (A))

)
= ÛA

z (r).

Hence, ÛA
z (r) = UA

z (r) for all r ∈ ∆(XA) and z ∈ XηH(A). This implies that
(H′, (ûB)B∈H′) is an HEU representation of ≿ and completes the proof.

Consider the following process of removing elements from H. For each
t = 0, . . . , n − 1 and A ∈ Ht such that Φ(A) ⊆ Ht+1, we remove any
B ∈ Φ(A) such that A \ M(A) ⊊ B. By construction of Φ(A) ∈ Ht+1, we
can guarantee that each elimination step satisfies the conditions in Lemma
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13, and hence the resulting hierarchy H′ belongs to H. Moreover, if such
a B exists, then τH′(A) = M(A). Repeat the above process for all t =
0, . . . , n − 1 and A ∈ Ht such that Φ(A) ∈ Ht+1, and denote the resulting
hierarchy by H∗. By repeatedly applying Lemma 13, we know that H∗ ∈ H
and is tight.

It remains to show that H∗ is a canonical hierarchy for ≿. Note that H∗

is tight. Fix any A ∈ H∗. For the first statement in Definition 4, if there
exists H ∈ H with A ∈ H and τH(A) = ∅, then A is bracket separable.
By the construction of H∗, we conclude that A = I and τH∗(A) = ∅. For
the second statement in Definition 4, if τH(A) ̸= ∅ for all H ∈ H such that
A ∈ H, then τH∗(A) = M(A). By the definition of an HEU representation,
i ∈ τH(A) implies i ⇀ A and hence i ∈ M(A). Thus, τH(A) ⊆ τH∗(A).
This completes the proof.

Remark: Indeed, H∗ can be constructed using the following algorithm,
which slightly modifies the one in the sufficiently proof of Theorem 1:

Stage 0. We start with H∗
0 = {I}.

Stage 1. Consider the following cases:

(1) If I is bracket separable, then denote by {Ak}mk=1 the finest bracket
partition of I as defined in Lemma 5. Note that Ak is not bracket
separable for all k. Let H∗

1 = {Ak}nk=1 and move to Stage 2.

(2) If I is not bracket separable—that is, I ̸= ⋃
B▷I B (Lemma 4)—then

the contrapositive of Axiom 4 (separability under bracketing) implies
M(I) = {i ∈ I : i ⇀ I} ≠ ∅.

(i) If I \M(I) = ∅, then the procedure terminates.

(ii) If I\M(I) ̸= ∅ is not bracket separable, then let H∗
1 = {I\M(I)}

and move to Stage 2.

(iii) If I \ M(I) ̸= ∅ is bracket separable, then denote by {Bk}mk=1

the finest bracket partition of I \M(I) as defined in Lemma 5.
Let H∗

1 = {B1, . . . , Bm} and move to Stage 2.

Stage t ⩾ 2. Consider any A ∈ H∗
t−1 such that |A| ⩾ 2. By construc-

tion, A is not bracket separable. Again by Axiom 4 (separability under
bracketing), M(A) ̸= ∅.
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(i) If A \M(A) = ∅, then we make no change.

(ii) If A\M(A) ̸= ∅ is not bracket separable, then let {A\M(A)} ⊆ H∗
t .

(iii) If A \ M(A) ̸= ∅ is bracket separable, then denote by {Bk}mk=1 the
finest bracket partition of A \ M(A) as defined in Lemma 5. Let
{B1, . . . , Bm} ⊆ H∗

t .

Repeat the process for all A ∈ Ht−1 such that |A| ⩾ 2 and we get all
elements in Hk. Move on to Stage t + 1. This procedure terminates in
finitely many stages n. Define H∗ = ⋃n

t=0 H∗
t .

IV.4: Proofs in Section 5

Proof of Theorem 3. First, if ≿ has a FATE representation, then clearly
i ⇀ I for all i ∈ I. If i ⇀ I for all i ∈ I, then M(I) = I. We can
modify the construction procedure in the proof of the sufficiency of The-
orem 1 by following only Stage 0 and case (2.i) of Stage 1. The resulting
hierarchy can be chosen to be H = {I, I \ {N}, . . . , {1, 2}, {1}} and we
can construct Bernoulli indices (uA)A∈H such that (H, (uA)A∈H) is an HEU
representation of ≿ by following the rest of that proof. Then we can apply
Lemma 13 repeatedly to show that H′ = {I} ∈ H and hence ≿ has a FATE
representation.

Second, if ≿ has a FETA representation, then by definition, {{i} : i ∈ I}
is a bracket partition of I, which implies that {i} ▷ I for all i ∈ I. Inversely,
if {i} ▷ I for all i ∈ I, then {{i} : i ∈ I} is the finest bracket partition of I,
which implies that the canonical hierarchy for ≿ is H∗ = {I, {1}, . . . , {N}}.
Hence, ≿ has a FETA representation.

Finally, if ≿ has a recursive representation, then by definition, for any
two different A,B in the canonical hierarchy H∗ (which is also the unique
hierarchy), we have A ⊊ B or B ⊊ A. Moreover, since |H∗| = N = |I|,
we can find a permutation (i.e., a bijective function) π : I → I such
that H∗ = {Ak}Nk=1 in which Ak = {π(N), π(N − 1), . . . , π(k)} for each
k = 1, . . . , N . Since H∗ is the canonical hierarchy, M(Ak) = {π(k)} for all
k = 1, . . . , N . This implies that π(k) ⇀⇀ π(k + 1) for all k = 1, . . . , N − 1.
Now suppose that there exists a bijective function π : I → I such that
π(k) ⇀⇀ π(k + 1), k = 1, . . . , N − 1. Then in any hierarchy H ∈ H, we
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must have H(π(k + 1)) ⊊ H(π(k)) for all k = 1, . . . , N − 1. This implies
that H = {H(π(k))}Nk=1, in which H(π(k)) = {π(N), π(N − 1), . . . , π(k)}
for all k = 1, . . . , N . Indeed, this is the unique hierarchy that can support
an HEU representation of ≿. Hence, ≿ has a recursive representation.

Proof of Theorem 4. If ≿ has a generalized bracketing representation with
partition {Ak}nk=1, then i ⇀ Ak for every i ∈ Ak and k = 1, . . . , n. For any
nonempty A ⊆ I, if ⋃

B▷AB ̸= A—that is, A is not bracket separable—
then A ⊆ Ak for some k = 1, . . . , n, which implies that i ⇀ A for every
i ∈ A.

Conversely, assume that for every nonempty A ⊆ I, if ⋃
B▷AB ̸= A

(that is, if A is not bracket separable), then i ⇀ A for every i ∈ A (that is,
M(A) = A). Denote by H∗ the canonical hierarchy for ≿. By definition, for
any A ∈ H∗ \ {I}, we know that A is not bracket separable, which implies
M(A) = A. Hence, if I is not bracket separable, then H∗ = {I}. If instead
I is bracket separable, then I = H∗ = {I, {Ak}nk=1} in which {Ak}nk=1 is the
finest bracket partition of I. In both cases, ≿ has a generalized bracketing
representation.

If ≿ has a generalized recursive representation with hierarchy H such
that for all A,B ∈ H, either A ⊆ B or B ⊆ A, then we can write H =
{Ak}nk=1 in which An = I and Ak−1 ⊊ Ak for every k = 2, . . . , n. By
the HEU representation, τ(Ak) = Ak \ Ak−1 for every k = 2, . . . , n and
τ(A1) = A1. For any k = 1, . . . , n and i ∈ τ(Ak), we have i ⇀ Ak. For
any nonempty A ⊆ I, denote by k∗ the largest k such that A ∩ τ(Ak) ̸= ∅.
Choose any i ∈ A ∩ τ(Ak∗). Then A ⊆ Ak∗ and i ⇀ Ak∗ , which implies
i ⇀ A.

Conversely, suppose for every nonempty A ⊆ I there exists i ∈ A

such that i ⇀ A—that is, M(A) ̸= ∅. Consider the following induction.
Denote A1 = I. For each 1 ⩽ t ⩽ N − 1, choose any it ∈ M(At) and
denote At+1 = At \ {it}. Let H = {At}Nt=1. Then H is a tight hierarchy,
τ(At) = {it} for each t = 1, . . . , N −1 and τ(AN) = AN . We can follow the
construction of Bernoulli indices in the proof of the sufficiency of Theorem
1 to generate an HEU representation of ≿ with hierarchy H. Hence, ≿ has
a generalized recursive representation.
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IV.5: Proofs in Section 6.1

We first prove Proposition 2.

Proof of Proposition 2. For sufficiency, note that if ≿ is represented by
U(p) = Ef [p]u(x), then ≿ satisfies dominance. Suppose instead u exhibits
CARA—that is, c(q, u) = 1

a
logEq eax for a ̸= 0 or c(q, u) = Eqx. In the

latter case, u is also represented by U(p) = Ef [p]u(x) and hence dominance
holds. In the former case, for any p ∈ ∆(ZN) such that p = (p1, . . . , pN),
we have

U(p) = 1
a

n∑
i=1

logEf [pAi
] eax = 1

a
log

n∏
i=1

Ef [pAi
] eax = 1

a
log Ef [p] eax.

The last equality holds because pAi
and pAj

are statistically independent
for all i ̸= j. Hence, ≿ satisfies dominance without correlation.

For necessity, suppose that ≿ satisfies dominance without correlation
and ≿ is not represented by U(p) = Ef [p]u(x). Then {Ai}ni=1 must be a
nontrivial partition of I. Choose any i ∈ A1 and j ∈ A2 and fix z ∈ X{i,j}c

such that zl = 0 for all l ∈ {i, j}c, we consider the conditional preference ≿z

on ∆(Xi,j) and utility function can be written as Û(p) = c(pi, u) + c(pj, u)
for all p ∈ ∆(X{i,j}). By Proposition 1 of Rabin and Weizsäcker (2009), if
u does not exhibit CARA, then ≿z (and hence ≿) must violate dominance
without correlation, a contradiction. This completes the proof.

Proof of Proposition 1. The sufficiency part is trivial. For necessity, sup-
pose that ≿ satisfies dominance and ≿ is not represented by U(p) =
Ef [p]u(x). Then Proposition 2 implies that u must exhibit CARA. We
can construct ≿z on ∆(Xi,j) as in the proof of Proposition 2, which is rep-
resented by Û(p) = c(pi, u) + c(pj, u). Normalize u(0) = 0. By dominance,
for any x ∈ Z, we have δ(x,0)

1
2δ(0,x) ∼ δ(x,0), which implies u(x/2) = u(x)/2.

Hence, c(q, u) = Eqx and ≿ is represented by U(p) = Ef [p]u(x), which leads
to a contradiction. This completes the proof.

Proof of Proposition 3. Recall that u exhibits CARA if and only if A(x) is
a constant for all x ∈ Z.
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For the first statement, the sufficiency part is trivial. Indeed, by Propo-
sition 2, if ≿ is represented by U(p) = Ef [p]u(x) or u exhibits CARA, then ≿

satisfies dominance without correlation and the decision maker is indifferent
regardless of whether her income comes from one source or multiple sources.
For necessity, suppose that ≿ is not represented by U(p) = Ef [p]u(x). We
can construct ≿z on ∆(Xi,j) as in the proof of Proposition 2, which is rep-
resented by Û(p) = c(pi, u) + c(pj, u). Set pj = δx for some x ∈ Z. Since
both gains and losses are allowed, avoidance of multidimensional risk im-
plies that (pi, δx) ∼ (f [(pi, δx)], δ0)—that is, c(pi, u) + x = c(f [(pi, δx), u]).
Hence, u must exhibit CARA.

For the second statement, suppose ≿ is not represented by U(p) =
Ef [p]u(x). It suffices to show that ≿ satisfies avoidance of multidimensional
risk for gains if and only if A(x) is decreasing in x ∈ Z+. To show the
“if” part, suppose A(x) is decreasing in x ∈ Z+. Then c(q, u) + c(q′, u) ⩽

c(f [(q, q′)], u) for all q, q′ ∈ ∆(Z+). Hence, for any p ∈ ∆(ZN
+ ) such that

p = (p1, . . . , pN), we have

U(p) =
n∑
i=1

c(f [pAi
], u) ⩽ c

(
f

[
(f [pA1 ], . . . , f [pAn ])

]
, u

)
= c(f [p], u),

which implies f [p] ≿ p. To show the “only if” part, we can follow the same
proof idea of the first statement by observing that avoidance of multidi-
mensional risk for gains implies that c(q, u)+x ⩽ c(f [(q, δx)], u) for x ∈ Z+

and q ∈ ∆(Z+). Hence, A(x) is decreasing in x ∈ Z+.
The proof of the third statement is symmetric to that of the second one

and is omitted.

IV.6: Proofs in Section 6.2

Proof of Proposition 4. Suppose H = {{1, 2}} or H = {{1, 2}, {1}}. Since
ϕ is affine, the utility of time lottery (z, p) is v(z)Ep[e−rt], which implies
that the decision maker cannot be risk-averse over time lotteries.

If H = {{1, 2}, {1}, {2}}, then using the arguments before the state-
ment of Proposition 4, we know that ≿ is risk-averse over time lotteries if
and only if u2 is convex.

If H = {{1, 2}, {2}}, the utility of (z, p) is v(z)e−rc(p,u2(z,·)). Compared
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with the case with H = {{1, 2}, {1}, {2}}, the only change is that u2(z, ·)
may depend on z. Hence, ≿ is risk-averse over time lotteries if and only if
u2(z, ·) is convex for all z.

Proof of Proposition 5. Note that our notion of stochastic impatience is
stronger than that of DeJarnette et al. (2020) because we exclude the trivial
case in which the decision maker is always indifferent between the two
options.

If H = {{1, 2}} or H = {{1, 2}, {1}}, then by Propositions 2 and 4 of
DeJarnette et al. (2020), ≿ satisfies stochastic impatience if and only if it
is risk-seeking over time lotteries and not risk-neutral over time lotteries,
which implies that ≿ is not risk-averse over time lotteries.

If H = {{1, 2}, {1}, {2}}, then ≿ violates stochastic impatience, because
the decision maker is indifferent among any pairing between prizes and
payment dates.

If H = {{1, 2}, {2}}, then by Proposition 4, ≿ is risk-averse over time
lotteries if and only if u2(z, ·) is convex for all z ∈ Z. Since the notion
of stochastic impatience only involves lotteries without conditional risk in
the time dimension given each realization of money, ≿ satisfies stochas-
tic impatience if and only if the expected utility function with Bernoulli
index (3) satisfies stochastic impatience, which, by Propositions 2 and 4
of DeJarnette et al. (2020), is equivalent to ϕ being a nontrivial convex
transformation of ln.
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