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SUMMARY

This paper proposes a novel time-varying model averaging (TVMA) approach to enhanc-

ing forecast accuracy for multivariate time series subject to structural changes. The TVMA

method averages predictions from a set of time-varying vector autoregressive models using

optimal time-varying combination weights selected by minimizing a penalized local criterion.

This allows the relative importance of different models to adaptively evolve over time in re-

sponse to structural shifts. We establish an asymptotic optimality for the proposed TVMA

approach in achieving the lowest possible quadratic forecast errors. The convergence rate

of the selected time-varying weights to the optimal weights minimizing expected quadratic

errors is derived. Moreover, we show that when one or more correctly specified models ex-

ist, our method consistently assigns full weight to them, and an asymptotic normality for

the TVMA estimators under some regularity conditions can be established. Furthermore,

the proposed approach encompasses special cases including time-varying VAR models with

exogenous predictors, as well as time-varying factor augmented VAR (FAVAR) models. Sim-

ulations and empirical applications illustrate the proposed TVMA method outperforms some

commonly used model averaging and selection methods in the presence of structural changes.
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1 Introduction

There is mounting evidence of structural instabilities in multivariate time series relation-

ships due to factors such as macroeconomic shocks, policy changes, preference shifts, and

technological progress (Gao et al., 2024a,b; Paye & Timmermann, 2006; Stock & Watson,

2007, 2016; Su & Wang, 2017). Studies have observed substantial instability in autoregres-

sive models for macroeconomic series (Primiceri, 2005; Stock & Watson, 1996), stock returns

and cash flows dynamics (Yu & Yan, 2023), exchange rates (Patton, 2006), and climate data

exhibiting time trends (Chen et al., 2022). Popular approaches have emerged to capture the

evolutionary behavior of economic and financial time series, including time-varying vector au-

toregressive (VAR) models with stochastic volatility (Gao et al., 2024a; Primiceri, 2005) and

nonparametric time-varying VAR-type models allowing coefficients to change smoothly over

time (Fu et al., 2024; Yan et al., 2024). Motivated by the flexibility of these nonparametric-

based models, we propose a new model averaging approach for a class of time-varying VAR

models.

Model uncertainty poses another significant challenge in multivariate time series fore-

casting, requiring determination of optimal lagged orders and relevant exogenous predictors

amidst numerous candidate models (Liao et al., 2019; Liao & Tsay, 2020). Model selection

using information criteria like Akaike information criterion (AIC) and Bayesian information

criterion (BIC) overlooks useful alternative models and is sensitive to data perturbations,

causing biased and unstable predictions (Yang, 2003; Yuan & Yang, 2005). Instead, model

averaging offers a sensible approach to mitigating structural instability and model uncertainty

(Ando & Li, 2014; Wan et al., 2010; Zhu et al., 2019). However, most of existing frequentist

strategies, like Mallows criteria (Hansen, 2007; Liao et al., 2021; Liao & Tsay, 2020), cross-

validation (Cheng & Hansen, 2015; Gao et al., 2016; Liao et al., 2019), and forward-validation

(Zhang & Zhang, 2023), are designed to select optimal time-invariant combination weights,

failing to address structural changes and model uncertainty in multivariate time series. In-

tuitively, as the forecasting ability of candidate models fluctuates, it is reasonable to assign
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time-varying weights, allocating higher weights to well-performing models and lower or zero

weights to poorly performing ones at different time periods (Chen & Maung, 2023; Chen

et al., 2024).

In this paper, our attempt is to develop an optimal model averaging method for a class

of time–varying VAR models, which immediately faces some challenges distinct from the

univariate time-varying setting. First, we need to introduce a proper time-varying weight

choice criterion that can effectively capture the cross-sectional dependence dynamics among

the multivariate time series under study, for which existing local weight choice criteria, such

as those discussed in Sun et al. (2021, 2023), and Chen et al. (2024), fail to adequately ad-

dress such issues. Second, there are no distributional results available for model averaging

estimators in multivariate time series settings even with time-invariant weights, not to men-

tion time–varying weights. Third, existing proof techniques for asymptotic optimality and

consistency are no longer applicable for time-varying VAR cases, and new developments are

required for the establishment of such techniques and tools.

To address these challenges, we propose a penalized time-varying model averaging (TVMA)

method within a flexible nonparametric time-varying VAR-based framework. The proposed

time-varying criterion is a weighted local quadratic loss function that (i) utilizes the inverse

of the time-varying covariance matrix to capture cross-dependence; and (ii) employs penal-

ties to reduce model complexity and select important predictors in high-dimensional settings.

This approach allows for the combination of the weights and parameter estimates within the

candidate models to adapt smoothly over time, aligning with the dynamic nature of economic

structures and the evolving predictive capacities of the models. Furthermore, the proposed

approach encompasses scenarios, such as time-varying VAR models with exogenous predic-

tors, as well as time-varying factor-augmented VAR (FAVAR) models. Extensive simulation

studies and real data analyses provide strong empirical support for our method.

It is worth discussing some key references and outlining our contributions in relation to

the most relevant literature.

(i). The proposed weight choice criterion includes the Mallows-type criterion proposed
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by Liao et al. (2019) and Liao & Tsay (2020) for time-invariant VAR models. Meanwhile,

compared with the cross-validation model averaging in Liao et al. (2019), Sun et al. (2021) and

Chen et al. (2024) with time-invariant and time-variant combination weights, respectively,

our method is unified, cost-effective and easy to implement. Our approach is also applicable

to heteroscedasticity cases.

(ii). We demonstrate that the selected TVMA weights are asymptotically optimal in

achieving the lowest possible quadratic loss and consistent even when all candidate models

are misspecified. Instead of imposing high–level stochastic mixing conditions, such as those

discussed in Appendix A of Gao (2007) for time–invariant models, which are not generally

verifiable in such time–varying settings considered in Sun et al. (2021, 2023), and Chen et al.

(2024), we will develop a suite of technologies based on a class of time–varying vector moving

average (VMA(∞)) processes proposed in Gao et al. (2024b) and Yan et al. (2024), which

are of independent interest, and easily verifiable and applicable to many scenarios.

(iii). We then establish the consistency and asymptotic normality of the proposed TVMA

estimator when correctly specified models are included in the candidates. Specifically, the

proposed approach assigns full weight to the correctly specified models. To our knowledge,

these findings on asymptotic consistency and normality are the first to be available in the

relevant multivariate time series model averaging literature, regardless of whether the selected

weights are time-invariant or time-variant.

The rest of this paper is organized as follows. Section 2 introduces the penalized time-

varying model avaraging method in a time-varying vector moving averaging (VMA) frame-

work. Section 3 establishes the corresponding asymptotic properties of the proposed TVMA

estimator, including asymptotic optimality, consistency, convergence rate and asymptotic

normality. Section 4 discusses possible extensions to time-varying VARX models and time-

varying FAVAR models. Section 5 presents simulation studies under various structural

changes, and Section 6 provides the empirical studies. Section 7 concludes. Throughout

the rest of this paper, all convergences occur as the sample size T →∞, and all mathemati-

cal proofs are collected in Appendices A, B and C.
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2 Time-varying model averaging

2.1 Model framework

Suppose the data generating process (DGP) is governed by the following time-varying VAR(∞)

model

yt = µt + εt ≡ a (τt) +
∞∑
j=1

Aj(τt)yt−j + εt, t = 1, · · · , T, (2.1)

where yt = (yt,1, · · · , yt,K)′ is a vector of K-dimensional observable variables, a (·), Aj (·)

and ω (·) are respectively vector and matrices of K × 1, K ×K and K ×K elements, and

εt = (εt,1, · · · , εt,K)′ = ω(τt)ut. In the relevant literature, such as Gao et al. (2024b), it

is often assumed that a (τ) = a (0) and Aj (τ) = Aj (0) for τ < 0, ω (τ) is an unknown

function that has full row rank uniformly in τ ∈ [0, 1], and Σ (τ) = ω (τ)ω (τ)′ is positive

definite for all τ ∈ [0, 1]. We also assume that each component of ω (τ) is second–order

continuously differentiable on [0, 1], and ω(τ) = ω(0) for τ < 0. The relevant literature also

regularly assumes that {ut}∞t=−∞ is a martingale differential sequence such that E (ut|It−1) =

0, E(utu
′
t|It−1) = IK almost surely, and supt≥1 E‖ut‖s < ∞ for some s > 4, where It−1 =

{us}t−1
s=−∞.

Consider S candidate models with time-varying parameters to approximate the DGP in

(2.1), where S is allowed to diverge with the sample size T . The s–th (1 ≤ s ≤ S) candidate

model is

yt = a (τt) +
s∑
j=1

Aj (τt) yt−j + ε
(s)
t = A(s)′(τt)z

(s)
t−1 + ε

(s)
t , (2.2)

where z
(s)
t−1 =

[
1,y′t−1, . . . ,y

′
t−s
]′

, A(s)(τt) = [a(τt),A1(τt), . . . ,As(τt)]
′, and S + 1 ≤ t ≤ T .

Let Y = (yS+1,yS+2, · · · ,yT )′, µ = (µS+1,µS+2, · · · ,µT )′, and ε = (εS+1, εS+2, · · · , εT )′.

We note that our framework allows for both nested and non-nested candidate models. With-

out loss of generality, we present the case of nested candidate models as a simple case.

Back to model (2.2), for the s–th candidate model, we make the best use of the local

linear kernel method to estimate A(s)(τt) in the same way as in the relevant literature (see,
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for example, Yan et al. (2024) and Gao et al. (2024b)). Intuitively, when τt is in a small

neighbourhood of τ , we can write (2.1) as follows:

yt ≈
[
A(s)′(τ), lȦ(s)′(τ)

]
z̃

(s)
t−1 + ε

(s)
t , (2.3)

where Ȧ(s)(·) is the first derivative of A(s)(·) and z̃
(s)
t−1 =

[
z

(s)′

t−1,
τt−τ
l

z
(s)′

t−1

]′
. The local linear

estimator of A(s)(τ) is then given by

Â(s) (τ) =
(

I(Ks+1),0(Ks+1)

)(
Z̃(s)′KtZ̃

(s)
)−1

Z̃(s)′KtY, (2.4)

in which Z̃(s) =
(
z̃

(s)
S , z̃

(s)
S+1, · · · , z̃

(s)
T−1

)′
with its dimensionality being (T − S) × 2(Ks + 1),

Kt = diag
{
k(S+1)t, k(S+2)t, . . . , kTt

}
is the weighting matrix with its dimensionality being

(T − S) × (T − S) and (r, t)–element being krt = k((r − t)/(T l)), k (·) is a symmetric and

positive kernel function, and l is a bandwidth.

The estimator of µt in the s–th candidate model is

µ̂
(s)
t = Â(s)′(τt)z

(s)
t−1.

We then have µ̂(s) ≡
(
µ̂

(s)
S+1, µ̂

(s)
S+2, · · · , µ̂

(s)
T

)′
= P(s)Y, where

P(s) =



z
(s)′

S

(
I(Ks+1),0(Ks+1)

)(
Z̃(s)′KS+1Z̃

(s)
)−1

Z̃(s)′KS+1

z
(s)′

S+1

(
I(Ks+1),0(Ks+1)

)(
Z̃(s)′KS+2Z̃

(s)
)−1

Z̃(s)′KS+2

...

z
(s)
T−1

(
I(Ks+1),0(Ks+1)

)(
Z̃(s)′KT Z̃(s)

)−1
Z̃(s)′KT


.

For each t, let the weight vector w =
(
w(1), ..., w(S)

)′
, belonging to the set W = {w ∈

[0, 1]S :
∑S

s=1w
(s) = 1}. Then, the model average estimators of µt and A(τt) at any given

time t can be respectively expressed by

µ̂t(w) =
∑S

s=1
w(s)µ̂

(s)
t , (2.5)

and

Â (τt,w) =
S∑
s=1

w(s)Â(s)(τt). (2.6)
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2.2 Penalized time-varying weight choice criterion

To account for the interrelationships among the univariate time series components, we propose

the following penalized time-varying weight choice criterion:

TVMAt,T (w) = trace
{√

Kt [Y − µ̂ (w)] Σ−1
t [Y − µ̂ (w)]′

√
Kt

}
+ λTK

2

S∑
s=1

w(s)s

=
T∑

r=S+1

krt (yr − µ̂r (w))′Σ−1
t (yr − µ̂r (w)) + λTK

2

S∑
s=1

w(s)s, (2.7)

where µ̂ (w) =
∑S

s=1w
(s)µ̂(s), Σt = Σ (τt), s is the lag order and λT is the tuning parameter.

The penalty term serves as a penalization on the complexity of the candidate models.

It is worth noting that the proposed TVMA criterion nests several existing informa-

tion criteria as special cases in time-invariant settings, i.e., time-invariant parameters with

multivariate least squares estimation, time-invariant w and Σt with an identity matrix Kt.

Specifically, when a single element of the weight vector w equals one with all others being

zero, TVMAt,T (w) reduces to the AIC-type criterion if λT = 2 and BIC-type if λT = ln(T ).

More generally, for w ∈ W , TVMAt,T (w) with λT = 2 becomes the MMA criterion in Hansen

(2007) for the random sampling case, and Liao & Tsay (2020) for the time–invariant multi-

variate time series setting. Furthermore, if K = 1, TVMAt,T (w) reduces to the weight choice

criterion in Zhang et al. (2020) for univariate analysis. Minimizing TVMAt,T (w), we obtain

ŵt = argminw∈WTVMAt,T (w). (2.8)

Then, the time-varying model averaging estimators of µt and A(τt) for any given time point

t are respectively µ̂t(ŵt) and Â(τt, ŵt). The time-varying Σt allows for heteroscedasticity,

and our approach offers a cost-effective and easily implementable alternative to the cross-

validation method (Chen et al., 2024; Liao et al., 2019) in such cases.

However, in practice, Σt is unknown. We explore the proposal of Liao et al. (2019) for

the time–invariant setting to estimate the unknown Σt in the largest model (i.e., the S–th

candidate model if all candidate models are nested) by using the local information. Then,

for any given t, the estimator of Σt is

Σ̂t = (trace(Kt))
−1
(
Y − µ̂(S)

)′
Kt

(
Y − µ̂(S)

)
. (2.9)
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The feasible penalized time-varying weight choice criterion is given by

TVMAF
t,T (w) = trace

{√
Kt [Y − µ̂ (w)] Σ̂

−1

t [Y − µ̂ (w)]′
√

Kt

}
+ λTK

2

S∑
s=1

w(s)s

=
T∑

r=S+1

krt (yr − µ̂r (w))′ Σ̂
−1

t (yr − µ̂r (w)) + λTK
2

S∑
s=1

w(s)s. (2.10)

Accordingly, the corresponding feasible time-varying weight vector is

ŵF
t = argminw∈WTVMAF

t,T (w). (2.11)

Then, the feasible time-varying model averaging estimators of µt and A(τt) for any given

time point t are respectively µ̂t(ŵ
F
t ) and Â(τt, ŵ

F
t ).

3 Asymptotic properties

3.1 Asymptotic optimality

To establish an asymptotic optimality for the proposed TVMA estimators, we consider

the following infeasible locally weighted quadratic error loss:

Lt,T (w) = trace
{√

Kt [µ− µ̂ (w)] Σ−1
t [µ− µ̂ (w)]′

√
Kt

}
. (3.1)

Denote µ∗ (w) =
(
µ∗S+1 (w) ,µ∗S+2 (w) , . . . ,µ∗T (w)

)′
, where µ

(s)∗
t = µ̂

(s)
t

∣∣
Â(s)(τt)=A(s)∗(τt)

,

µ∗t (w) =
∑S

s=1w
(s)µ

(s)∗
t , and A(s)∗ (τt) is defined in Condition (C.1) below. We then define

L∗t,T (w) = trace
{√

Kt [µ− µ∗ (w)] Σ−1
t [µ− µ∗ (w)]′

√
Kt

}
, and ξt,T = infw∈W EL∗t,T (w).

Let ζmin (A) and ζmax (A) represent the minimum and maximum singular values of matrix

A, respectively. The symbols ⊗ and vec signify the Kronecker product and the operation

of stacking all the columns of a given matrix into a vector, respectively. All asymptotic

behaviours below are considered in the context of T →∞.

Condition (C.1). For the s–th candidate model, given any time t, there exists a limit

A(s)∗ (τt) such that
∥∥∥Â(s) (τt)−A(s)∗ (τt)

∥∥∥ = Op

(
S1/2T−1/2l−1/2

)
.

Condition (C.2). Let k (·) be a symmetric and positive kernel function with bounded support

on [−1, 1] and
∫ 1

−1
k (u) du = 1. Moreover, k (·) is Lipschitz continuous on [−1, 1].
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Condition (C.3). The bandwidth l = cT−λ for some positive λ and 0 < c <∞.

Condition (C.4). S →∞, S(T l)−1/2 → 0, λT →∞, SλT ξ
−1
t,T → 0 and S4T lξ−2

t,T → 0.

Remark 1. Condition (C.1) is concerned with the convergence (including the rate) of lo-

cal linear kernel estimation method proposed in Gao et al. (2024b). Following the proofs of

Proposition 1 and Theorem 1.2 of Gao et al. (2024b), it can be shown that Condition (C.1)

is satisfied for the case where S → ∞ and ST−1l−1 → 0. More discussions and verifica-

tions of Condition (C.1) are available in Appendix A. In addition, with the under-smoothing

bandwidth, the squared bias term Â(s) (τt)−A(s)∗ (τt) can be dominated by the variance term

Op

(
S1/2T−1/2l−1/2

)
. Thus, the bias term is ignored in Condition (C.1).

Remark 2. Condition (C.2) includes commonly used kernels with compact support [−1, 1],

such as the Epanechnikov, Uniform and Triangular kernels. Furthermore, Condition (C.2)

implies that
∫ 1

−1
uk(u) du = 0,

∫ 1

−1
u2k(u) du <∞, and

∫ 1

−1
uk2(u) du <∞. Condition (C.3)

includes the commonly used bandwidth l ∝ T−1/5.

Remark 3. Condition (C.4) imposes some restrictions on the speed of growth of the number

of candidate models S, the tuning parameter λT and the limit risk ξt,T . Like Ando & Li

(2014), we consider a case with ξt,T = T 1−δ̃, 0 < δ̃ < 1/2, and then we obtain S = O(T 1/20).

Note that Condition (C.4) implies that ξt,T → ∞, which indicates that all candidate models

are misspecified. If there were any correctly specified candidate model, the limiting parameter

value A(s)∗ (τt) would coincide with the true parameter value at any time t, and then ξt,T would

not increase with T . Specifically, suppose that the (S0 + 1)–th model is correctly specified,

then it follows that

ξt,T = inf
w∈W

Etrace
{√

Kt [µ− µ∗ (w)] Σ−1
t [µ− µ∗ (w)]′

√
Kt

}
≤ Etrace

{√
Kt

[
µ− µ(S0+1)∗]Σ−1

t

[
µ− µ(S0+1)∗ (w)

]′√
Kt

}
= 0. (3.2)

As a result, Condition (C.4) is violated when one of the candidate models is correctly specified.

Note that Condition (C.4) is concerned with the degree of misspecification which controls

the local distance between the quasi-true value µ
(s)∗
t and the true value µt. This does not
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contradict Condition (C.1). Furthermore, Condition (C.4) is consisent with Condition 3 of

Gao et al. (2023) if S is fixed, with both being weaker than Condition (7) of Ando & Li (2014)

and Condition (A3) of Ando & Li (2017).

Condition (C.5). ζmax

(
Σ̂
−1

t −Σ−1
t

)
ST lξ−1

t,T = op(1).

Condition (C.5)′. ζmax

(
Σ̂
−1

t −Σ−1
t

)
= op(1).

Remark 4. Condition (C.5) is consistent with Condition 5 of Gao et al. (2023) in time-

invariant settings, which restricts the relationship between the largest singular value of Σ̂−1
t −

Σ−1
t , ST l and ξ−1

t,T . Condition (C.5) is weaker than Condition (C.8) of Liao et al. (2019)

and the assumption in the Appendix of Liao & Tsay (2020), which assume the covariance

matrix is consistently estimated. When Σ̂t
p→ Σt, Conditions (C.5) and (C.5)′ hold since the

map A 7→ A−1 is continuous on the set of invertible matrices. When Σ̂t is not a consistent

estimator for Σt, we could restrict the degree of misspecification ξt,T to be large to satisfy

Condition (C.5). More discussions are given in Appendix A.

Theorem 1. Let Conditions (C.1)-(C.5) hold. Then for any given time t, the proposed

feasible TVMA estimator satisfies the asymptotic optimality (OPT) property, i.e.,

Lt,T
(
ŵF
t

)
infw∈W Lt,T (w)

p→ 1, as T →∞. (3.3)

Theorem 1 demonstrates that the feasible TVMA estimator achieves asymptotic optimal-

ity. This is elucidated through the comparison of its local quadratic error loss, which means

its local quadratic error loss is asymptotically equivalent to the infeasible optimal averaging

estimator. This implies that the feasible TVMA estimator is asymptotically optimal within

the class of time-varying model averaging estimators constructed from a set of time-varying

VAR candidate models. Furthermore, in Proposition 1 of Appendix B below, we have also

shown that the infeasible TVMA estimator with ŵt also satisfies the OPT property.

3.2 Convergence of weights

In this section, we establish the consistency of the TVMA estimators. Define the optimal
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weight w0
t = argminw∈WELt,T (w), and ξ̃t,T = minw∈W ELt,T (w). The following conditions

are presented for the establishment of Theorem 2.

Condition (C.6). S → ∞, λT → ∞, S3ξ̃−1
t,T (T l)−2δ = o(1) and S3/2λT ξ̃

−1/2
t,T (T l)−1/2−δ =

o(1), where δ is a positive constant.

Condition (C.7). For some positive constants κ1 and κ2, we have

0 < κ1 < ζmin

(
T−1l−1Λ′ (IK ⊗Kt) Λ

)
≤ ζmax

(
T−1l−1Λ′ (IK ⊗Kt) Λ

)
< κ2 <∞,

with probability approaching 1, where Λ =
(

vec
(
µ̂(1)

)
, . . . , vec

(
µ̂(S)

))
.

Condition (C.8). 0 < κ3 < ζmin

(
Σ̂
−1

t

)
≤ ζmax

(
Σ̂
−1

t

)
< κ4 <∞ with probability approach-

ing 1.

Remark 5. Condition (C.6) restricts the relationship among ξ̃t,T , T l, λT and S. Similar

conditions can be found in Li et al. (2022) and Sun et al. (2023). Condition (C.7) requires

that the minimum and maximum singular values of T−1l−1Λ′ (IK ⊗Kt) Λ are asymptotically

bounded, which is common in the existing literature (Liao et al., 2019). For instance, if Kt

reduces to an identity matrix, Condition (C.7) simplifies to: 0 < κ1 < ζmin (T−1Λ′Λ) ≤

ζmax (T−1Λ′Λ) < κ2 < ∞, which is identical to Condition (C.9) in Liao et al. (2019).

Condition (C.8) imposes regularity assumptions on the minimum and maximum singular

values of Σ̂−1
t , which follows from 0 < ζmin (Σt) ≤ ζmax (Σt) <∞ under Condition (C.5).

Theorem 2. Let Conditions (C.1)-(C.3), and Conditions (C.6)-(C.8) hold. Then there exists

a local minimizer ŵF
t of TVMAF

t,T (w) such that

∥∥ŵF
t −w0

t

∥∥ = Op

(
ξ̃

1/2
t,T (T l)−1/2+δ

)
, (3.4)

where δ is a positive constant given in Condition (C.6).

Theorem 2 shows that the feasibly selected ŵF
t converges to the optimal weight w0

t at

the rate ξ̃
1/2
t,T (T l)−1/2+δ for any given time t. The slower the rate of ξ̃t,T → ∞, the faster

the rate of ŵt converging to w0
t as T → ∞. Additionally, it is worth noting that ξ̃t,T → ∞
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is not a necessary condition for Theorem 2, although it is permitted here. Furthermore, in

Proposition 2 of Appendix B, we have also established that the convergence of the infeasibly

selected weights ŵt remains true for any fixed time t.

We then would like to comment that the proposed averaging prediction asymptotically

allocates all weights to the correctly specified models if they are included in the candidate

model set (i.e., the true models and over-parameterized models). Let D be the subset of

{1, . . . , S} that consists of the indices of the correctly specified candidate models and Dc be

the complement of D. Define

W∗ =

{
w ∈ [0, 1]S :

∑
s∈Dc

w(s) = 1 and
∑
s∈D

w(s) = 0

}

and ξ∗t,T = infw∈W∗ EL∗t,T (w). We further need the following condition.

Condition (C.9). S →∞, λT →∞, SλT
(
ξ∗t,T
)−1 → 0, and S2T 1/2l1/2

(
ξ∗t,T
)−1 → 0.

Remark 6. Condition (C.9) restricts the growth rate of the minimum risk when we consider

only misspecified models as candidate models. Condition (C.9) is equivalent to Condition

(C.4) when D is empty, that is, all candidate models are misspecified and then ξ∗t,T = ξt,T .

In other words, Condition (C.4) is a special case of Condition (C.9). The similar conditions

can be found in Sun et al. (2023) for the univariate time–varying setting.

Theorem 3. Suppose Conditions (C.1)-(C.3), (C.5)′ and (C.9) hold and D is non-empty.

Then for any given time t, we have
∑

s∈D ŵ
F (s)
t

p→ 1 as T → ∞, where ŵ
F (s)
t is the s–th

element of ŵF
t .

Theorem 3 demonstrates that when there are correctly specified models, the proposed

feasible TVMA criteria asymptotically assign all weights to the correctly specified models.

If there is only one correctly specified model, the proposed feasible TVMA would asymptot-

ically select this correctly specified model, which is analogous to the consistency property of

model selection. Furthermore, in Proposition 3 of Appendix B, we have also shown that the

asymptotic convergence of the infeasibly selected weights ŵt remains true for any given time

t.
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Remark 7. Note that we allow DGP to accommodate structural breaks, i.e., Aj (τt) =∑K0+1
i=1 Aj,i (τt) I(ri−1 < τt ≤ ri), where I(·) denotes the indicator function, each element

of Aj,i (τ) is second order continuously differentiable for τ ∈ [0, 1], K0 is a finite and positive

integer that represents the number of (unknown) structural breaks, and 0 < r1 < · · · < rK0 < 1

are the scaled time points of the structural breaks with r0 = 0 and rK0+1 = 1. By allowing for

discontinuities across some regimes, we can deal with significant events such as COVID-19

pandemic. Theorems 1 and 2 remain valid to DGP with structural breaks, when all candidate

models are misspecified and parameters are estimated using local linear estimation.

When the candidate model incorporates structural breaks, Theorem 3 continues to hold.

Consider the scenario where the correctly specified model has a single break. If the break date

is known in advance, one can estimate the parameters of the candidate model by dividing

the sample and conducting separate estimations before and after the break date. In cases

where the break date is unknown, a consistent estimate of the breakpoint can first be obtained,

followed by parameter estimation based on the estimated break date.

3.3 Asymptotic distribution

In this subsection, we analyze the scenario where the set of nested candidate models

encompasses under-fitted specifications, over-fitted specifications, as well as the true models.

For simplicity, we assume that the (S0+1)–th model is the true model, and the s–th candidate

model is under-fitted if s < S0 + 1, while it is over-fitted if s > S0 + 1. In this subsection,

we assume that the number of candidate models S is large but fixed. In other subsections,

however, S is allowed to diverge with the sample size.

Condition (C.10). For any s, A(s)∗ (τ) is second-order continuously differentiable on [0, 1].

Condition (C.11). For any given time t,
√
T l
[
vec
(
Â(s) (τt)−A(s)∗ (τt)− 1

2 l
2c̃2Ä

(s)∗(τt)
)]

d−→

N(0,Ω
(s)
t ) in the s–th candidate model, where Ω

(s)
t is a finite, symmetric and positive definite

matrix, c̃2 =
∫ 1

−1
u2k(u)du and Ä(s)∗ is the second-order derivative of A(s)∗.

Condition (C.12). λT →∞ and λTT
− 1

2 l−
1
2 → 0.
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Remark 8. Condition (C.10) is the same as Assumption 1 in Gao et al. (2024b), which

allows parameter values to change slowly in different small segments of each continuity time

point. Similar conditions are found in Sun et al. (2021, 2023) with K = 1 and local constant

estimators. Condition (C.11) pertains to the asymptotic distribution of the local linear kernel

estimation method established in Theorem 1.2 of Gao et al. (2024b), where S is large but

fixed. Condition (C.12) implies the relationship between λT and T l, which is equivalent to

Condition (C.6) in Sun et al. (2023). For example, λT = ln(T l), Condition (C.12) holds,

which is consistent with Zhang et al. (2020) in time-invariant setting.

Lemma 1. Let Conditions (C.1)-(C.3), (C.5)′, (C.10) and (C.12) hold. Then for any given

time t, we have ŵ
F (s)
t = op(T

− 1
2 l−

1
2 ) for s < S0 + 1.

Lemma 1 implies that, under certain regularity conditions, for any given time t, the time-

varying weights for all under-fitted models, which exclude regressors with nonzero parameters,

converge to zero at a faster rate than stated in Theorem 2. This is consistent with Theorem 1

in Zhang & Liu (2019) for univariate regressions with time-invariant parameters and Lemma

3 in Racine et al. (2023) for nonparametric spline regression models.

Lemma 2. Let Conditions (C.1)-(C.3), (C.5)′, (C.10) and (C.12) hold. Then for any given

time t, we have ŵ
F (s)
t = Op(λ

−1
T ) for s > S0 + 1.

Lemma 2 demonstrates that the proposed TVMA weights for over-fitted models, which

include irrelevant variables but do not omit any relevant ones, are Op(λ
−1
T ). This implies that

the TVMA estimator asymptotically assigns zero weight to all over-fitted models as λT →∞.

Theorem 4. Let Conditions (C.1)-(C.3), (C.5)′ and (C.10)-(C.12) hold. Then for any given

time t, we have

√
T l

[
vec

(
Â
(
τt, ŵ

F
t

)
−A (τt)−

1

2
l2c̃2Ä (τt)

)]
d−→ N(0,Ω

(S0+1)
t ), as T →∞.

Theorem 4 establishes that the proposed TVMA estimator is asymptotically normal with

the same covariance matrix as that for the local linear estimator under the true model (i.e.,

(S0 + 1)–th model). Its proof is given in Appendix C of the supplementary document.
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4 TVMA for time-varying VARX models

In this section, we discuss how to extend our approach to a wider class of time–varying VAR

models. Consider the following DGP:

yt = a (τt) +
∞∑
j=1

Aj(τt)yt−j + Ax(τt)xt + εt = µt + εt, (4.1)

where xt is a m-dimensional vector of stationary exogenous variables and m is fixed, {Ax (τ)}

are the K ×m coefficient matrices and {Ax (τ)} = {Ax (0)} for τ < 0. We also assume that

the roots of Id −
∑∞

j=1 Ay,j (τ)Lj = 0 all lie outside the unit circle uniformly in τ ∈ [0, 1].

The innovation setting follows Section 2.1.

Consider the s–th (1 ≤ s ≤ S) candidate model

yt = a (τt) +

ps∑
j=1

Aj(τt)yt−j + Ax(τt)x
(s)
t + ε

(s)
t = A(s)′(τt)z

(s)
t + ε

(s)
t , (4.2)

where z
(s)
t =

[
1,y′t−1, . . . ,y

′
t−ps ,x

(s)′

t

]′
, A(s)(τt) = [a(τt),A1(τt), · · · ,Aps(τt),Ax(τt)]

′, x
(s)
t is

a subset of xt and S+1 ≤ t ≤ T . Note that our framework covers VAR as well as non-nested

VARX models with time-varying parameters. For each candidate model, the time-varying

parameters are estimated by a local linear method, which is the same as (2.4) in Section 2.

Based on (2.7)-(2.8) and (2.10)-(2.11), we obtain the corresponding infeasible time-varying

weight vector ŵt and feasible time-varying weight vector ŵF
t .

When the VAR-based framework is generalized to the VARX-based framework by incorpo-

rating exogenous predictors, the corresponding asymptotic properties are analogous to those

derived for the VAR-based framework. This is formally stated in the following Corollary.

Corollary 1. Let the dimension of xt increase to infinity at a rate slower than or equal to

the largest lag S. Then the conclusions of Theorems 1-3 remain valid for any given time t

when employing the time-varying vector of weights ŵF
t in the context of time-varying VARX

models.

If the dimension m of xt increases to infinity at a rate slower than or equal to the largest

lag S, Conditions (C.1)- (C.12) still hold, preserving the validity of Theorems 1-3; see more
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discussions on Appendix C. Moreover, if m grows faster than S, we expect similar asymptotic

properties with some modified conditions. For instance, the convergence rate in Condition

(C.1) should change to (S +m)1/2T−1/2l−1/2.

Remark 9. In data-rich environments with numerous predictors, factor models provide an

appealing way to summarize information. These models assume a small set of latent common

factors can explain a large portion of the comovement among observed variables, effectively

reducing dimensionality while capturing core driving forces behind the data interdependencies.

The proposed approach encompasses time-varying FAVAR models; see Appendix A for details.

5 Simulation studies

This section compares the finite sample performance of the proposed TVMA method

against several competing model selection and averaging methods.

5.1 Competing methods

We consider the following alternative model selection and averaging methods, including

information criterition (IC) of Gao et al. (2024b), AIC, BIC, Hannan–Quinn (HQ) of Tsay

(2013), smoothed AIC (sAIC), smoothed BIC (sBIC), smoothed HQ (sHQ), and simple

averaging (SA). Specifically, for the s–th candidate model, the IC used in Gao et al. (2024b)

is IC(s) = ln (RSS (s)) + sχT , where RSS (s) = 1
T−S

∑T
t=S+1(yt − µ̂(s)

t )′(yt − µ̂(s)
t ), χT is the

penalty term, and χT = max
{
l4, ln(T−S)

(T−S)l

}
· ln(ln((T − S)l)) based on Gao et al. (2024b).

In addition, we define Σ̂
(s)

= (T − S)−1
(
Y − µ̂(s)

)′ (
Y − µ̂(s)

)
as the residual covari-

ance matrix from the s–th candidate model. Then for the s–th candidate model, the

three popular order selection criteria (i.e., AIC, BIC, and HQ) are expressed as AIC(s) =

ln
∣∣∣Σ̂(s)

∣∣∣+2sK2/(T−S), BIC(s) = ln
∣∣∣Σ̂(s)

∣∣∣+(ln (T − S))sK2/(T−S), and HQ(s) = ln
∣∣∣Σ̂(s)

∣∣∣+
2(ln ln (T − S))sK2/(T−S). Furthermore, sAIC assigns the weight w

(s)
AIC = exp(−AIC(s)/2)∑S

s=1 exp(−AIC(s)/2)

to the s–th model, and the weights of sBIC and sHQ are defined similarly. We compare the

TVMA approach with these aforementioned competing methods.
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5.2 Multistep prediction and forecast evaluation

For time series models, rolling forecasting is commonly employed for out-of-sample pre-

diction. More specifically, for the s–th (1 ≤ s ≤ S) candidate model, the h–step-ahead

out-of-sample rolling prediction of yT+h is defined as

ŷ
(s)
T+h = â1,s (τT ) +

s∑
j=1

Â1,s
j (τT ) ŷ∗T+h−j, (4.3)

where ŷ∗T+h−j = yT+h−j for h ≤ j, and Â1,s
j together with â1,s are estimated based on

yt = a (τt) +
s∑
j=1

Aj (τt) yt−j + ε
(s)
t , S + 1 ≤ t ≤ T. (4.4)

To compare the forecast accuracies of different model selection and averaging methods,

we compute the ratio of the root mean squared prediction errors (RMSPE),

RMSPE =

√∑D
d=1

∥∥ŷdT+h,k − ydT+h,k

∥∥2
/D√∑D

d=1

∥∥ŷdT+h,k,AIC − ydT+h,k

∥∥2
/D

, (4.5)

where ŷdT+h,k and ydT+h,k respectively denote the forecasts from our interested method and

the true value in the dth replication, ŷdT+h,k,AIC is the forecast from the AIC method which

serves as a popular benchmark approach, and D is the number of replications. A method

with an RMSPE less than 1 outperforms the AIC method. The lower the RMSPE value, the

better the performance of the method under consideration.

5.3 Simulation design and results

We consider two DPGs as follows:

DGP1 (Time-varying VAR in Gao et al. (2024b)):

yt = a(τ) + A1(τ)yt−1 + A2(τ)yt−2 + ηt

with ηt = ω(τ)εt for t = 1, . . . , T , where εt’s are iid draws from N(02×1, I2),

ω(τ) =

1.5 + 0.2 exp(0.5− τ) 0

0.1 exp(0.5− τ) 1.5 + 0.5(τ − 0.5)2

, a(τ) = (0.5 sin(2πττ), 0.5 cos(2πττ))′,
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A1(τ) =

0.8 exp(−0.5 + τ) 0.8(τ − 0.5)3

0.8(τ − 0.5)3 0.8 + 0.3 sin(πτ)

, and A2(τ) =

−0.2 exp(−0.5 + τ) 0.8(τ − 0.5)2

0.8(τ − 0.5)2 −0.4 + 0.3 cos(πτ)

 .
We generate πt by πt = εt,1 + et, where {et} is a sequence of iid standard normal variables.

DGP2 (Bivariate time-varying ARMA (2,1)):

yt = a(τ) + A1(τ)yt−1 + A2(τ)yt−2 + ηt − θηt−1,

with θ =

−0.6 0.3

0.3 0.6

 which is a time–varying version of Liao et al. (2019), and the other

time-varying parameters are the same as in DGP1.

In this context, DGP1 is a time-varying VAR model with finite lag order while DGP2 can

be transformed into a time-varying VAR model with an infinite lag order. Let K = 2, T =

100, 300 and 500, and D=1000. For T = 100, we set S = 5, and for T = 300 and 500, we set

S = 10. The choice of S = 5 when T = 100 is to ensure that we can efficiently estimate the

associated coefficients using local linear method, which is consistent with Liao et al. (2019).

The forecast horizon h =1, 2, 3 and 4. For simplicity, we follow the spirit of Zhang et al.

(2020) to set λT = 2 ln (T l), due to the local linear estimation of time-varying coefficients

with 2s regressors for the s–th candidate model.

Table 1 reports the forecast results under DGP1 with different forecast horizons h and

vector dimensions k (where k = 1, 2). First, TVMA estimator is the top-performing strategy

in the vast majority of cases. For instance, given T = 100, S = 5, k = 1 and h = 1, the RM-

SPE of TVMA is 0.3632, while the RMSPE of the second-best approach is 0.4101, indicating

an improvement of approximately 11%. When T = 100, S = 5, k = 2 and h = 4, the RMSPE

of TVMA is 0.1075, whereas the RMSPE of the second-best approach is 0.1676, suggesting an

improvement of about 36%. Besides, the IC method in Gao et al. (2024b) generally has the

second-lowest RMSPE, while the AIC, BIC, and HQ methods consistently perform poorly.

Furthermore, the SA outperforms the sAIC, sBIC, and sHQ model averaging methods with

time-invariant weights, but it performs worse than the proposed TVMA. This underscores

the importance of time-varying combination weights and reinforces the asymptotic optimality

stated in Theorem 1.

Table 2 reports the RMSPE results under DGP2, which allows for time-dependence among
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innovations and potential endogeneity. Similarly, the average improvements in forecasts using

our TVMA method exist across almost all forecast horizons. However, under DGP2, the IC

method generally does not outperform the sAIC, sBIC, and sHQ methods. Additionally,

when the sample size T is large, the sAIC, sBIC, and sHQ methods often perform better

than the traditional model selection methods, including AIC, BIC, and HQ. One possible

explanation is that the DGP is a time-varying VAR model with an infinite lag order, which

complicates model selection. Consequently, model averaging methods tend to achieve better

forecasting performance than model selection methods.

For roubstness check, we consider different bandwidths and present the related RMSPE

results in Tables D.1-D.6 of Appendix D. The bandwidth selection is based on the rule

l = cT−1/5, where c takes the values 0.75, 1, and 1.25 respectively. It is found that the

forecast performance of TVMA is robust to the choice of bandwidths. Overall, the TVMA

method consistently delivers the best forecasting performance, while the AIC, BIC and HQ

methods frequently produce the poorest results.

6 Empirical application

6.1 Prediction on U.S. macroeconomic dynamic systems

In this section, we employ our TVMA method to the quarterly US macroeconomic data set

from 1959Q1 to 2015Q4, previously analyzed by Hansen (2016) and Liao et al. (2019). The

dependent variables include Gross Domestic Product (GDP), the GDP deflator (GDPD),

and Federal Funds Rates (FF). Consistent with Liao et al. (2019), we implement the same

data transformations detailed therein, set T = 100 and use the same out-of-sample periods

spanning from 1984:Q2+h-1 to 2005:Q4 for h ∈ {1, 2, 3, 4}. We compare our method against

IC, AIC, BIC, HQ, sAIC, sBIC, sHQ and SA, with all methods evaluated on the same set

of candidate nested time-varying VAR models with S = 5. Futhermore, the out-of-sample

period is extendedto 2015Q4. The forecast evaluation criterion used here is the root mean

squared prediction error (rMSPE).
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Tables 3 and 4 report the out-of-sample forecast performance for GDP, GDPD, and FF

forecasts using various methods. For ease of comparison, the best performing strategy in each

case is highlighted in bold. First, it is observed that the TVMA method is consistently ranked

first against the other 8 competing models during different forecast periods. The Diebold-

Mariano test p-values reported indicate that the TVMA’s relative reductions in rMSFE are

statistically significant in a majority of cases. For instance, our proposed approach yields a

near two-fold improvement in out-of-sample forecast precision compared to the IC method

of Gao et al. (2024b) at the one-step-ahead forecast horizon. Second, we document that the

TVMA forecasts frequently dominate the SA forecasts, especially at shorter horizons (e.g.,

h = 1, 2). This finding contradicts the forecast combination puzzle of Stock & Watson (2004),

wherein simple averaging outperforms sophisticated adaptive weighting schemes. For GDP

forecasts at h = 1, the TVMA’s gains range from 19%–54% relative to the SA benchmark.

A potential explanation is that all candidate models are likely misspecified to some degree,

with their relative forecast rankings varying over time. By allowing the weights to adapt

optimally, the TVMA can upweight models during periods when they perform well while

downweighting them when they underperform. Furthermore, the model selection criteria,

including AIC, BIC and HQ, consistently yield the poorest predictive performance. This

highlights the merits of reducing model uncertainty and increasing the robustness of model

averaging.

6.2 Prediction on government spending and GDP

In this section, we apply our method to the U.S. government spending and GDP data analyzed

by Gao et al. (2024b), Blanchard & Perotti (2002), and Ramey & Zubairy (2018). The

prediction of these two variables is crucial, as we follow Ramey & Zubairy (2018) and Gao

et al. (2024b) to measure government spending multipliers, i.e., the change in output resulting

from a one-dollar change in government spending. It is widely acknowledged that government

spending multipliers are essential for fiscal policy analysis since they gauge the extent to which

government purchases can stimulate private activity (Ramey & Zubairy, 2018). The dataset
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comprises observations from 1954:Q1 to 2015:Q4. We consider two variables time-varying

VAR inlcuding government spending and real per capita GDP, both adjusted by dividing by

trend GDP.

The optimal lag based on IC is set to 2, i.e., ŝ = 2, consistent with Gao et al. (2024b). The

existing literature often assumes the lag to vary from 2 to 4, so we set the maximum lag order

S to 5 in our candidate models. We follow Sun et al. (2021, 2023) by using rolling estimation

to forecast the two variables with different forecast horizons, i.e., h = 1, 2, 3 and 4. We

use rMSPE to evaluate the performance of TVMA methods and other alternative methods.

The out-of-sample begins from 1985Q1, 1990Q1, 1995Q1, 2000Q1 and 2005Q1, and all end

at 2015Q4. Furthermore, we also consider two forecast periods: the Great Moderation from

1983Q1 to 2006Q4 and post-Great Moderation from 2007Q1 to 2015Q4.

The forecast results are reported in Tables 5-8. First, it is evident that the rMSFE

obtained from the TVMA approach produces the smallest values across all seven forecast

periods at different forecast horizons. The p-value of the Diebold-Mariano test is almost

smaller than 10%, which provides strong evidence for the superior performance of the TVMA

method to other competing methods. For instance, in Table 5, when h = 4, TVMA’s

predictive performance is approximately 18% to 33% better than that of IC, the second-best

method. Similarly, in Table 6, the improvement ranges from 21% to 26% at the forecast

horizon h = 4. Second, our approach tends to exhibit larger gains over model averaging

schemes with time-varying parameters but constant weights during periods of heightened

economic fluctuations. For instance, relative to methods allowing time-varying coefficients

but constant weights (sAIC, sBIC, sHQ), the TVMA’s forecast accuracy gains for GDP at

h = 1 are substantial at 30% during the volatile “Great Moderation” period, but more

modest at 10% in the “Post Great Moderation”. This highlights the importance of time-

varying weights. A potential explanation is that individual model’s forecast performance can

shift over time, especially in the presence of structural instabilities. Furthermore, the IC

approach frequently delivers the second-best forecast performance in most cases. The sAIC,

sBIC, and sHQ methods outperform the related model selections AIC, BIC, and HQ across

21



all forecast horizons and periods.

7 Conclusion

This paper proposes a novel penalized time-varying model averaging method for a class of

VAR models associated with time–varying features, allowing for the forecast combination

weights to evolve over time. Under a set of general and easily verifiable conditions, we es-

tablish asymptotic properties, including asymptotic optimality, consistency, and asymptotic

normality when both the number of candidate models and the dimension of regressors di-

verge. To our knowledge, we are the first to show that when the set of candidate models

includes correctly specified models, our method consistently assigns all weight to these opti-

mal choices and establish the asymptotic distributions of the combined parameter estimators.

Furthermore, we demonstrate the suitability of the proposed TVMA for time-varying VARX

and time-varying FAVAR frameworks. Simulation studies and empirical applications illus-

trate the superior performance of TVMA compared to other competing model averaging and

model selection methods.

The forecast combination method developed in this paper opens up several avenues for

future research. One interesting direction is to develop a time-varying cross-validation ap-

proach to model averaging, which may provide additional benefits in the presence of highly

persistent dependence, albeit at the cost of greater computational complexity. Additionally,

this paper has only considered a global bandwidth for the TVMA estimator, which may be

severely affected by the existence of structural changes. It would be interesting to use a

localized bandwidth at each time point.
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Table 1: Forecast evaluation RMSPE under DGP1

h k TVMA IC BIC HQ sAIC sBIC sHQ SA

T=100, S=5

1 1 0.3632 0.4101 0.9978 1.0000 0.4783 0.4596 0.4707 0.4329

1 2 0.3776 0.4518 0.9983 0.9997 0.4901 0.4713 0.4824 0.4424

2 1 0.2679 0.3066 0.9984 1.0000 0.3866 0.3671 0.3787 0.3416

2 2 0.2253 0.2755 0.9960 1.0000 0.3485 0.3281 0.3401 0.3008

3 1 0.1839 0.2189 0.9398 1.0000 0.3030 0.2814 0.2942 0.2509

3 2 0.1844 0.1962 0.9962 1.0000 0.2968 0.2739 0.2874 0.2365

4 1 0.0276 0.0230 0.9999 1.0000 0.2631 0.2393 0.2534 0.2010

4 2 0.1075 0.1676 0.9999 1.0000 0.2645 0.2408 0.2548 0.2069

T=300, S=10

1 1 0.4073 0.4481 0.9908 1.0000 0.5262 0.5132 0.5209 0.5036

1 2 0.6277 0.6509 0.9973 1.0000 0.7173 0.7088 0.7139 0.6995

2 1 0.4297 0.4601 0.9883 1.0000 0.5527 0.5404 0.5477 0.5311

2 2 0.5930 0.6263 0.9916 1.0000 0.6660 0.6568 0.6622 0.6450

3 1 0.4562 0.4692 0.9903 0.9999 0.6012 0.5881 0.5959 0.5774

3 2 0.7060 0.8265 0.9831 0.9999 0.7162 0.7124 0.7146 0.7093

4 1 0.5763 0.5748 0.9979 0.9999 0.6773 0.6678 0.6735 0.6597

4 2 0.6124 0.6314 0.9971 0.9998 0.7058 0.6978 0.7026 0.6907

T=500, S=10

1 1 0.4931 0.6147 0.9899 1.0004 0.6169 0.6078 0.6133 0.5922

1 2 0.7722 0.8424 0.9984 0.9999 0.8435 0.8382 0.8414 0.8186

2 1 0.6139 0.7625 0.9941 0.9995 0.7090 0.7016 0.7061 0.6836

2 2 0.8679 0.9463 1.0002 1.0000 0.9086 0.9047 0.9071 0.8856

3 1 0.6956 0.7586 0.9945 0.9999 0.7656 0.7599 0.7634 0.7469

3 2 0.8148 0.9485 0.9976 1.0000 0.8667 0.8615 0.8647 0.8408

4 1 0.6787 0.7657 0.9990 1.0000 0.7682 0.7615 0.7656 0.7370

4 2 0.5768 0.6046 0.9990 1.0000 0.6284 0.6238 0.6266 0.6137

Notes:

(1) Eight methods include TVMA, IC in Gao et al. (2024b), BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) RMSPE is computed as RMSPE =

√∑D
d=1‖ŷd

T+h,k−y
d
T+h,k‖2/D√∑D

d=1‖ŷd
T+h,k,AIC−y

d
T+h,k‖2/D

, where ŷdT+h,k and ydT+h,k respectively

denote the forecasts from competing method and the true value in the dth replication, ŷdT+h,k,AIC is the

forecast from the AIC method, and D = 1000 is the number of replications.
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Table 2: Forecast evaluation RMSPE under DGP2

h k TVMA IC BIC HQ sAIC sBIC sHQ SA

T=100, S=5

1 1 0.3995 0.5598 0.9969 1.0000 0.4923 0.4746 0.4851 0.4383

1 2 0.4071 0.5498 0.9987 1.0000 0.5028 0.4857 0.4958 0.4501

2 1 0.2400 0.3229 0.9981 1.0000 0.3774 0.3566 0.3689 0.3198

2 2 0.2287 0.3655 0.9958 1.0000 0.3732 0.3517 0.3644 0.3122

3 1 0.1176 0.2116 0.9873 1.0000 0.2893 0.2664 0.2800 0.2259

3 2 0.0455 0.0821 0.9986 0.9999 0.2657 0.2424 0.2562 0.2036

4 1 0.1491 0.1811 0.9539 1.0000 0.2887 0.2654 0.2792 0.2168

4 2 0.1336 0.1743 0.9717 1.0000 0.2806 0.2569 0.2710 0.2102

T=300, S=10

1 1 0.4490 0.4624 0.9885 1.0000 0.5650 0.5529 0.5601 0.5365

1 2 0.6730 0.7102 0.9953 1.0000 0.7254 0.7169 0.7220 0.7004

2 1 0.4243 0.4275 0.9896 0.9996 0.5647 0.5513 0.5593 0.5323

2 2 0.6159 0.6517 0.9955 0.9998 0.7207 0.7105 0.7166 0.6878

3 1 0.4238 0.4204 0.9942 0.9999 0.5600 0.5471 0.5548 0.5293

3 2 0.6270 0.6391 0.9946 0.9999 0.6767 0.6690 0.6736 0.6583

4 1 0.5142 0.5316 0.9935 1.0003 0.6288 0.6182 0.6245 0.6031

4 2 0.5745 0.5872 1.0008 1.0000 0.6501 0.6405 0.6462 0.6247

T=500, S=10

1 1 0.5046 0.5920 0.9969 0.9992 0.6132 0.6046 0.6098 0.5864

1 2 0.8317 0.9172 0.9992 1.0000 0.8743 0.8699 0.8726 0.8433

2 1 0.5597 0.6880 0.9959 0.9999 0.6723 0.6639 0.6690 0.6391

2 2 0.6908 0.7988 0.9996 1.0000 0.7542 0.7484 0.7519 0.7201

3 1 0.6106 0.7829 0.9968 0.9993 0.6818 0.6746 0.6789 0.6490

3 2 0.7300 0.8689 1.0003 1.0001 0.7729 0.7675 0.7707 0.7405

4 1 0.6258 0.8780 0.9982 1.0000 0.7149 0.7070 0.7118 0.6741

4 2 0.7030 0.9687 0.9993 1.0000 0.6813 0.6766 0.6794 0.6594

Notes:

(1) Eight methods include TVMA, IC in Gao et al. (2024b), BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) RMSPE is computed as RMSPE =

√∑D
d=1‖ŷd

T+h,k−y
d
T+h,k‖2/D√∑D

d=1‖ŷd
T+h,k,AIC−y

d
T+h,k‖2/D

, where ŷdT+h,k and ydT+h,k respectively

denote the forecasts from competing method and the true value in the dth replication, ŷdT+h,k,AIC is the

forecast from the AIC method, and D = 1000 is the number of replications.
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Table 3: Forecast evaluation of different methods during 1984Q2-2008Q4

h TVMA IC AIC BIC HQ sAIC sBIC sHQ SA

GDP

1 rMSPE 0.0068 0.0119 0.0141 0.0141 0.0141 0.0094 0.0089 0.0092 0.0084

p-value 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0004

2 rMSPE 0.0065 0.0132 0.0169 0.0169 0.0169 0.0094 0.0087 0.0091 0.0081

p-value 0.0058 0.0005 0.0005 0.0005 0.0004 0.0009 0.0006 0.0047

3 rMSPE 0.0069 0.0184 0.0223 0.0223 0.0223 0.0112 0.0102 0.0107 0.0091

p-value 0.0336 0.0050 0.0050 0.0050 0.0032 0.0046 0.0036 0.0078

4 rMSPE 0.0079 0.0296 0.0336 0.0336 0.0336 0.0154 0.0137 0.0147 0.0121

p-value 0.1421 0.0647 0.0647 0.0647 0.0293 0.0266 0.0282 0.0264

GDPD

1 rMSPE 0.0019 0.0035 0.0041 0.0041 0.0041 0.0027 0.0026 0.0026 0.0024

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 rMSPE 0.0025 0.0049 0.0062 0.0062 0.0062 0.0037 0.0034 0.0036 0.0032

p-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0003

3 rMSPE 0.0029 0.0069 0.0083 0.0083 0.0083 0.0044 0.0041 0.0043 0.0038

p-value 0.0098 0.0014 0.0014 0.0014 0.0050 0.0082 0.0061 0.0178

4 rMSPE 0.0026 0.0103 0.0133 0.0133 0.0133 0.0058 0.0051 0.0055 0.0046

p-value 0.0459 0.0136 0.0136 0.0136 0.0090 0.0119 0.0099 0.0186

FF

1 rMSPE 0.6097 1.2596 1.3865 1.3865 1.3865 0.9200 0.8683 0.8990 0.8226

p-value 0.0074 0.0022 0.0022 0.0022 0.0126 0.0138 0.0131 0.0170

2 rMSPE 0.8343 1.9881 2.2026 2.2026 2.2026 1.2717 1.1857 1.2364 1.1121

p-value 0.0680 0.0262 0.0262 0.0262 0.0454 0.0524 0.0479 0.0600

3 rMSPE 1.0337 3.3011 3.6663 3.6663 3.6663 1.8674 1.6984 1.7981 1.5472

p-value 0.1699 0.0916 0.0916 0.0916 0.1057 0.1123 0.1080 0.1209

4 rMSPE 1.0114 5.8045 6.1726 6.1726 6.1726 2.7507 2.4181 2.6151 2.1134

p-value 0.2458 0.1807 0.1807 0.1807 0.1814 0.1848 0.1825 0.1860

Notes:

(1) Nine methods include TVMA, IC in Gao et al. (2024b), AIC, BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) The out-of-sample forecast period begins from 1984Q2 and ends at 2008Q4.

(3) rMSPE is root mean squared prediction error.
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Table 4: Forecast evaluation of different methods during 1984Q2-2015Q4

h TVMA IC AIC BIC HQ sAIC sBIC sHQ SA

GDP

1 rMSPE 0.0067 0.0186 0.0213 0.0212 0.0213 0.0118 0.0109 0.0115 0.0103

p-value 0.1348 0.0471 0.0484 0.0471 0.0569 0.0576 0.0572 0.0727

2 rMSPE 0.0069 0.0260 0.0296 0.0292 0.0296 0.0144 0.0129 0.0138 0.0120

p-value 0.2129 0.1046 0.1138 0.1046 0.1354 0.1433 0.1383 0.1635

3 rMSPE 0.0078 0.0544 0.0573 0.0560 0.0573 0.0227 0.0198 0.0215 0.0182

p-value 0.2653 0.2208 0.2423 0.2208 0.2105 0.2133 0.2114 0.2245

4 rMSPE 0.0095 0.1405 0.1407 0.1406 0.1407 0.0534 0.0456 0.0502 0.0412

p-value 0.2901 0.2900 0.2909 0.2900 0.2831 0.2829 0.2830 0.2855

GDPD

1 rMSPE 0.0021 0.0045 0.0053 0.0054 0.0053 0.0033 0.0031 0.0032 0.0029

p-value 0.0035 0.0072 0.0062 0.0072 0.0109 0.0096 0.0104 0.0122

2 rMSPE 0.0026 0.0051 0.0066 0.0062 0.0066 0.0038 0.0035 0.0037 0.0033

p-value 0.0000 0.0001 0.0000 0.0001 0.0005 0.0010 0.0006 0.0043

3 rMSPE 0.0028 0.0087 0.0106 0.0086 0.0106 0.0052 0.0047 0.0050 0.0045

p-value 0.0187 0.0159 0.0004 0.0159 0.0233 0.0228 0.0231 0.0467

4 rMSPE 0.0034 0.0154 0.0178 0.0178 0.0178 0.0081 0.0072 0.0077 0.0067

p-value 0.0794 0.0258 0.0254 0.0258 0.0864 0.0960 0.0901 0.1292

FF

1 rMSPE 0.6040 1.2457 1.4886 1.4847 1.4886 0.9195 0.8618 0.8959 0.8166

p-value 0.0012 0.0002 0.0002 0.0002 0.0021 0.0027 0.0023 0.0033

2 rMSPE 0.8319 1.9793 2.2976 2.2655 2.2976 1.2762 1.1794 1.2364 1.1052

p-value 0.0263 0.0075 0.0094 0.0075 0.0144 0.0187 0.0158 0.0217

3 rMSPE 0.9999 3.7415 3.9728 3.8207 3.9728 2.0193 1.8142 1.9355 1.6793

p-value 0.0418 0.0200 0.0293 0.0200 0.0202 0.0222 0.0209 0.0204

4 rMSPE 1.4120 7.1808 7.2800 7.2669 7.2800 3.3600 2.9694 3.2002 2.7214

p-value 0.0720 0.0560 0.0565 0.0560 0.0604 0.0627 0.0612 0.0634

Notes:

(1) Nine methods include TVMA, IC in Gao et al. (2024b), AIC, BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) The out-of-sample forecast period begins from 1984Q2 and ends at 2015Q4.

(3) rMSPE is root mean squared prediction error.
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Table 5: rMSPE of different methods for government spending forecasts

h TVMA IC AIC BIC HQ sAIC sBIC sHQ SA

begin time: 1985Q1

1 rMSPE 0.0021 0.0023 0.0050 0.0050 0.0050 0.0030 0.0029 0.0029 0.0028

p-value 0.2038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

2 rMSPE 0.0035 0.0042 0.0099 0.0099 0.0099 0.0057 0.0056 0.0057 0.0053

p-value 0.0068 0.0006 0.0006 0.0006 0.0054 0.0061 0.0057 0.0070

3 rMSPE 0.0047 0.0057 0.0196 0.0196 0.0196 0.0095 0.0092 0.0094 0.0086

p-value 0.0073 0.0128 0.0128 0.0128 0.0223 0.0231 0.0226 0.0220

4 rMSPE 0.0058 0.0073 0.0402 0.0402 0.0402 0.0157 0.0150 0.0154 0.0138

p-value 0.0129 0.0849 0.0849 0.0849 0.0379 0.0380 0.0379 0.0349

begin time: 1990Q1

1 rMSPE 0.0019 0.0022 0.0046 0.0046 0.0046 0.0028 0.0027 0.0027 0.0026

p-value 0.0432 0.0000 0.0000 0.0000 0.0002 0.0002 0.0002 0.0004

2 rMSPE 0.0032 0.0039 0.0086 0.0086 0.0086 0.0051 0.0050 0.0051 0.0049

p-value 0.0112 0.0005 0.0005 0.0005 0.0084 0.0092 0.0087 0.0112

3 rMSPE 0.0043 0.0054 0.0138 0.0138 0.0138 0.0078 0.0076 0.0077 0.0073

p-value 0.0177 0.0102 0.0102 0.0102 0.0263 0.0274 0.0268 0.0312

4 rMSPE 0.0054 0.0067 0.0225 0.0225 0.0225 0.0114 0.0111 0.0113 0.0105

p-value 0.0291 0.0343 0.0343 0.0343 0.0382 0.0393 0.0387 0.0439

begin time: 1995Q1

1 rMSPE 0.0018 0.0020 0.0039 0.0039 0.0039 0.0025 0.0024 0.0025 0.0024

p-value 0.0906 0.0000 0.0000 0.0000 0.0002 0.0003 0.0003 0.0004

2 rMSPE 0.0031 0.0037 0.0076 0.0076 0.0076 0.0045 0.0045 0.0045 0.0044

p-value 0.0072 0.0019 0.0019 0.0019 0.0169 0.0184 0.0175 0.0205

3 rMSPE 0.0041 0.0053 0.0131 0.0131 0.0131 0.0071 0.0069 0.0070 0.0067

p-value 0.0187 0.0305 0.0305 0.0305 0.0335 0.0346 0.0339 0.0359

4 rMSPE 0.0051 0.0068 0.0226 0.0226 0.0226 0.0106 0.0103 0.0105 0.0100

p-value 0.0505 0.1132 0.1132 0.1132 0.0508 0.0499 0.0504 0.0488

begin time: 2000Q1

1 rMSPE 0.0019 0.0021 0.0034 0.0034 0.0034 0.0024 0.0024 0.0024 0.0024

p-value 0.2648 0.0000 0.0000 0.0000 0.0015 0.0018 0.0016 0.0023

2 rMSPE 0.0032 0.0039 0.0071 0.0071 0.0071 0.0045 0.0044 0.0045 0.0044

p-value 0.0305 0.0073 0.0073 0.0073 0.0266 0.0283 0.0273 0.0305

3 rMSPE 0.0045 0.0056 0.0118 0.0118 0.0118 0.0068 0.0067 0.0067 0.0065

p-value 0.0279 0.0330 0.0330 0.0330 0.0340 0.0345 0.0342 0.0351

4 rMSPE 0.0060 0.0076 0.0186 0.0186 0.0186 0.0097 0.0095 0.0097 0.0093

p-value 0.0555 0.0630 0.0630 0.0630 0.0436 0.0432 0.0434 0.0429

begin time: 2005Q1

1 rMSPE 0.0020 0.0022 0.0032 0.0032 0.0032 0.0024 0.0024 0.0024 0.0024

p-value 0.4717 0.0006 0.0006 0.0006 0.0077 0.0094 0.0083 0.0116

2 rMSPE 0.0034 0.0042 0.0069 0.0069 0.0069 0.0045 0.0045 0.0045 0.0044

p-value 0.1851 0.0499 0.0499 0.0499 0.1231 0.1275 0.1249 0.1325

3 rMSPE 0.0049 0.0059 0.0113 0.0113 0.0113 0.0064 0.0063 0.0064 0.0062

p-value 0.0651 0.0954 0.0954 0.0954 0.1087 0.1088 0.1087 0.1099

4 rMSPE 0.0067 0.0079 0.0172 0.0172 0.0172 0.0090 0.0089 0.0090 0.0087

p-value 0.0401 0.0781 0.0781 0.0781 0.0797 0.0798 0.0797 0.0800

Notes:

(1) Nine methods include TVMA, IC in Gao et al. (2024b), AIC, BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) The out-of-sample forecast period begins from the quarter denoted as “begin time”, and ends at 2015Q4.

(3) rMSPE is root mean squared prediction error. 30



Table 6: rMSPE of different methods for the real per capita GDP

h TVMA IC AIC BIC HQ sAIC sBIC sHQ SA

begin time: 1985Q1

1 rMSPE 0.0075 0.0084 0.0176 0.0176 0.0176 0.0100 0.0097 0.0099 0.0094

p-value 0.0131 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

2 rMSPE 0.0123 0.0151 0.0327 0.0327 0.0327 0.0178 0.0173 0.0176 0.0166

p-value 0.0034 0.0002 0.0002 0.0002 0.0053 0.0069 0.0059 0.0096

3 rMSPE 0.0176 0.0227 0.0509 0.0509 0.0509 0.0293 0.0284 0.0289 0.0271

p-value 0.0108 0.0030 0.0030 0.0030 0.0224 0.0240 0.0230 0.0232

4 rMSPE 0.0244 0.0328 0.0705 0.0705 0.0705 0.0435 0.0423 0.0430 0.0403

p-value 0.0418 0.0034 0.0034 0.0034 0.0278 0.0295 0.0285 0.0287

begin time: 1990Q1

1 rMSPE 0.0080 0.0083 0.0160 0.0160 0.0160 0.0100 0.0099 0.0100 0.0096

p-value 0.4324 0.0000 0.0000 0.0000 0.0010 0.0017 0.0012 0.0035

2 rMSPE 0.0127 0.0150 0.0309 0.0309 0.0309 0.0185 0.0181 0.0183 0.0175

p-value 0.0218 0.0003 0.0003 0.0003 0.0105 0.0125 0.0112 0.0159

3 rMSPE 0.0175 0.0221 0.0488 0.0488 0.0488 0.0296 0.0288 0.0293 0.0276

p-value 0.0204 0.0126 0.0126 0.0126 0.0366 0.0391 0.0376 0.0423

4 rMSPE 0.0225 0.0292 0.0808 0.0808 0.0808 0.0437 0.0424 0.0432 0.0400

p-value 0.0302 0.0593 0.0593 0.0593 0.0549 0.0568 0.0556 0.0583

begin time: 1995Q1

1 rMSPE 0.0073 0.0077 0.0135 0.0135 0.0135 0.0092 0.0090 0.0091 0.0089

p-value 0.3131 0.0000 0.0000 0.0000 0.0015 0.0021 0.0017 0.0031

2 rMSPE 0.0121 0.0140 0.0257 0.0257 0.0257 0.0164 0.0162 0.0163 0.0158

p-value 0.0795 0.0124 0.0124 0.0124 0.0134 0.0142 0.0137 0.0147

3 rMSPE 0.0162 0.0204 0.0469 0.0469 0.0469 0.0256 0.0250 0.0254 0.0244

p-value 0.0546 0.0532 0.0532 0.0532 0.0376 0.0384 0.0379 0.0378

4 rMSPE 0.0201 0.0255 0.0849 0.0849 0.0849 0.0369 0.0357 0.0364 0.0344

p-value 0.0839 0.1270 0.1270 0.1270 0.0563 0.0551 0.0558 0.0533

begin time: 2000Q1

1 rMSPE 0.0078 0.0085 0.0133 0.0133 0.0133 0.0094 0.0093 0.0094 0.0092

p-value 0.1241 0.0002 0.0002 0.0002 0.0093 0.0110 0.0099 0.0134

2 rMSPE 0.0140 0.0165 0.0255 0.0255 0.0255 0.0178 0.0176 0.0177 0.0174

p-value 0.0270 0.0128 0.0128 0.0128 0.0224 0.0234 0.0228 0.0251

3 rMSPE 0.0205 0.0259 0.0423 0.0423 0.0423 0.0278 0.0274 0.0276 0.0270

p-value 0.0224 0.0407 0.0407 0.0407 0.0339 0.0332 0.0336 0.0323

4 rMSPE 0.0275 0.0349 0.0662 0.0662 0.0662 0.0385 0.0379 0.0383 0.0372

p-value 0.1093 0.0503 0.0503 0.0503 0.0274 0.0265 0.0271 0.0258

begin time: 2005Q1

1 rMSPE 0.0082 0.0087 0.0125 0.0125 0.0125 0.0093 0.0093 0.0093 0.0092

p-value 0.3357 0.0076 0.0076 0.0076 0.1336 0.1446 0.1380 0.1600

2 rMSPE 0.0156 0.0186 0.0251 0.0251 0.0251 0.0187 0.0185 0.0186 0.0184

p-value 0.0659 0.0239 0.0239 0.0239 0.1259 0.1328 0.1287 0.1420

3 rMSPE 0.0242 0.0309 0.0408 0.0408 0.0408 0.0297 0.0294 0.0296 0.0291

p-value 0.0225 0.0537 0.0537 0.0537 0.0655 0.0630 0.0645 0.0610

4 rMSPE 0.0346 0.0445 0.0623 0.0623 0.0623 0.0432 0.0428 0.0430 0.0423

p-value 0.1255 0.0361 0.0361 0.0361 0.0026 0.0014 0.0021 0.0008

Notes:

(1) Nine methods include TVMA, IC in Gao et al. (2024b), AIC, BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) The out-of-sample forecast period begins from the quarter denoted as “begin time”, and ends at 2015Q4.

(3) rMSPE is root mean squared prediction error.
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Table 7: Forecast evaluation of different methods for government spending forecasts

h TVMA IC AIC BIC HQ sAIC sBIC sHQ SA

“Great Moderation” 1983Q1-2006Q4

1 rMSPE 0.0022 0.0024 0.0056 0.0056 0.0056 0.0031 0.0030 0.0031 0.0029

p-value 0.1494 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0003

2 rMSPE 0.0032 0.0042 0.0095 0.0095 0.0095 0.0055 0.0053 0.0054 0.0051

p-value 0.0326 0.0054 0.0054 0.0054 0.0076 0.0082 0.0079 0.0092

3 rMSPE 0.0039 0.0051 0.0187 0.0187 0.0187 0.0080 0.0077 0.0079 0.0073

p-value 0.0744 0.0172 0.0173 0.0172 0.0284 0.0286 0.0285 0.0309

4 rMSPE 0.0047 0.0064 0.0327 0.0328 0.0327 0.0121 0.0115 0.0118 0.0107

p-value 0.0882 0.0536 0.0536 0.0536 0.0746 0.0761 0.0752 0.0816

“Post Great Moderation” 2007Q1-2015Q4

1 rMSPE 0.0021 0.0023 0.0035 0.0035 0.0035 0.0026 0.0026 0.0026 0.0025

p-value 0.4569 0.0007 0.0007 0.0007 0.0097 0.0117 0.0105 0.0137

2 rMSPE 0.0037 0.0045 0.0075 0.0075 0.0075 0.0049 0.0048 0.0049 0.0047

p-value 0.1983 0.0492 0.0492 0.0492 0.1310 0.1358 0.1329 0.1413

3 rMSPE 0.0052 0.0064 0.0119 0.0119 0.0119 0.0069 0.0068 0.0068 0.0067

p-value 0.0890 0.0963 0.0963 0.0963 0.1280 0.1289 0.1284 0.1284

4 rMSPE 0.0071 0.0085 0.0180 0.0180 0.0180 0.0095 0.0094 0.0095 0.0092

p-value 0.0455 0.0779 0.0779 0.0779 0.0872 0.0874 0.0873 0.0877

Notes:

(1) Nine methods include TVMA, IC in Gao et al. (2024b), AIC, BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) For the first out of sample forecast, the estimation sample starts from 1954Q1 and ends at 1982Q4-h+1.

(3) rMSPE is root mean squared prediction error.
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Table 8: Forecast evaluation of different methods for the real per capita GDP

h TVMA IC AIC BIC HQ sAIC sBIC sHQ SA

“Great Moderation” 1983Q1-2006Q4

1 rMSPE 0.0085 0.0097 0.0231 0.0231 0.0231 0.0124 0.0120 0.0123 0.0115

p-value 0.1913 0.0000 0.0000 0.0000 0.0069 0.0106 0.0082 0.0185

2 rMSPE 0.0133 0.0185 0.0431 0.0431 0.0431 0.0207 0.0200 0.0204 0.0190

p-value 0.0196 0.0023 0.0023 0.0023 0.0178 0.0194 0.0185 0.0201

3 rMSPE 0.0184 0.0264 0.0583 0.0583 0.0583 0.0307 0.0297 0.0303 0.0284

p-value 0.0548 0.0031 0.0031 0.0031 0.0069 0.0071 0.0070 0.0073

4 rMSPE 0.0288 0.0340 0.0885 0.0884 0.0885 0.0482 0.0465 0.0475 0.0442

p-value 0.4001 0.0068 0.0068 0.0068 0.0221 0.0262 0.0236 0.0343

“Post Great Moderation” 2007Q1-2015Q4

1 rMSPE 0.0088 0.0094 0.0128 0.0128 0.0128 0.0098 0.0098 0.0098 0.0097

p-value 0.3433 0.0162 0.0162 0.0162 0.2277 0.2424 0.2336 0.2634

2 rMSPE 0.0171 0.0204 0.0254 0.0254 0.0254 0.0198 0.0197 0.0198 0.0195

p-value 0.0613 0.0369 0.0369 0.0369 0.2018 0.2096 0.2050 0.2238

3 rMSPE 0.0265 0.0340 0.0409 0.0409 0.0409 0.0312 0.0310 0.0312 0.0308

p-value 0.0231 0.0493 0.0493 0.0493 0.1135 0.1107 0.1125 0.1087

4 rMSPE 0.0378 0.0491 0.0628 0.0628 0.0628 0.0453 0.0450 0.0452 0.0446

p-value 0.1197 0.0259 0.0259 0.0259 0.0001 0.0000 0.0000 0.0000

Notes:

(1) Nine methods include TVMA, IC in Gao et al. (2024b), AIC, BIC, HQ, sAIC, sBIC, sHQ and SA.

(2) For the first out of sample forecast, the estimation sample starts from 1954Q1 and ends at 2006Q4-h+1.

(3) rMSPE is root mean squared prediction error.

33


