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1 Introduction

Many economics and marketing problems such as merger analysis, optimal price setting or assort-

ment choice require estimating demand systems. The existing work on demand estimation mostly

relies on choice models that capture substitution through the similarity of product attributes. This

approach requires the researcher to choose which product attributes to include when modeling de-

mand in a particular product category and to gather data on those attributes. In this paper, we

propose a novel method to estimate demand that leverages texts and images instead of observed

attributes. Texts and images can provide rich information about which products consumers likely

perceive to be close substitutes. Consumer reviews, for example, can reveal whether consumers talk

about two products in a similar way, and product images can reveal which products are visually

similar. Using these unstructured data makes the estimation approach scalable because product de-

scriptions, customer reviews, and images are readily available in the same format across categories.

Our method also allows us to take into account product attributes that are typically unobserved

or hard to quantify, such as products’ aesthetics, which can nevertheless be captured by product

images. We show that this demand estimation approach allows us to estimate flexible substitution

patterns in many product categories at a low computational cost.

To harness information from unstructured data, we first employ a series of machine learning

models to calculate pairwise measures of product similarity. We measure image similarity based

on several pre-trained deep learning models, borrowed from the computer vision literature, that

have been shown to perform well in image classification tasks. Using these models, we translate

images into low-dimensional embeddings and compute similarity between products by calculating

the distance between these products’ vector representations. Similarly, we employ a series of text-

based models to calculate similarity based on product titles, product descriptions, product Q&As,

and customer reviews. We use several models, from simple bag-of-words classifiers to more advanced

BERT-based sentence classifiers that account for the context in which specific words appear. We

calculate similarity from a wide range of text and image models because it is not a priori clear

which similarity measures perform best at explaining substitution in a given setting.

Having constructed similarity measures, we incorporate them into a demand model and let

them inform substitution patterns. Specifically, we employ a paired combinatorial nested logit

model (Small, 1987; Koppelman and Wen, 2000) with an overlapping nest structure, which in-

cludes a separate nest for each product pair. We parameterize the error correlation for a given nest

as a function of the image and text similarities between the two products in this nest. Thus, our

model allows similarity measures to influence error correlations and therefore cross-price elasticities.

Importantly, the combinatorial logit model leads to closed-form expressions for purchase probabili-

ties, thus removing the need to perform the costly numerical integration required for many standard

demand models. This makes estimation computationally light and numerically stable. Because we

construct multiple similarity measures, many of which are highly correlated, we employ a forward

stepwise selection algorithm to select the best-fitting similarity measures.

We apply this estimation method to a dataset constructed from the Comscore Web Behavior
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panel, which describes purchases made in several categories on Amazon.com. We complement

purchase data from Comscore with product images, titles, descriptions, reviews, and Q&As collected

directly from Amazon’s product detail pages. We first assess the performance of the different

similarity measures by including each of them individually in the model. We then compare the fit

of each model to that of a simple logit model, which is nested within the paired combinatorial model.

Based on the Akaike Information Criterion (AIC), we find that many of our 20 similarity variables

improve model fit relative to the logit model. In general, image similarities lead to the largest

fit improvements. Among the text-based similarity measures, the measures based on the simple

bag-of-words model perform best when these models are applied to product titles, descriptions,

and reviews. By contrast, the more complex sentence classifiers perform better when applied to

the texts of Q&As. This varying performance of different similarity measures illustrates that, to

extract information from unstructured data, one needs to consider a range of models and data

types.

Applying a forward stepwise selection algorithm, we find that the best fitting model includes two

image-based similarity variables. We show that this selected model generates cross-price elasticities

that are substantially different from a simple logit and that align with similarity in important

product attributes. At the same time, we find that only around half of the variation in the selected

pairwise variables is explained by how close the products are in the space of observed product

attributes. Thus, our similarity measures partially capture substitution patterns that cannot be

captured with the observed attributes one would typically use in standard demand estimation

approaches.

This paper contributes to an extensive literature on estimating discrete choice demand models.

The idea of introducing correlated error terms into multinomial models dates back to the early work

of Hausman and Wise (1978) and McFadden (1977). Much of the existing empirical work achieves

this by introducing a pre-determined nesting structure or adding random effects to an attribute-

based model (Berry et al., 1995, 2004). Our work is most closely related to a relatively small

set of papers that parameterize the covariance of utility errors with product similarity measures

(Bresnahan et al., 1997; Pinkse and Slade, 2004; Dotson et al., 2018). For example, Bresnahan

et al. (1997) estimate a demand model that allows for error correlations between products that

share observed attributes, and similarly, Pinkse and Slade (2004) and Dotson et al. (2018) model

cross-price elasticities as a function of brand similarities in attribute space. Our approach also

parameterizes cross-price elasticities as a function of product similarities, but we compute these

similarities from text and image data rather than observed attributes. Thus, our estimation method

is more generalizable in that it does not require researchers to collect category-specific attributes.

Several authors estimate a pairwise combinatorial logit model, which we also adopt in our

application. Small (1987) estimates this model in settings where alternatives are naturally ordered

and assumes that utility correlations get weaker for options that are farther apart. Koppelman and

Wen (2000) apply the same model in a setting with only three choices but allow each product pair

to have a different correlation. By contrast, our approach does not require products to be ordered,
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and it can be applied in settings with a larger numbers of alternatives because we model error term

correlations as a function of lower-dimensional text and image similarity measures.

Our work is also related to the emerging literature that uses additional data from texts, images,

or consumer surveys to better estimate substitution patterns.1 Dotson et al. (2019) use image

data for demand estimation but follow a different methodology. They survey participants asking

to rate the appeal of each image and then include the resulting ratings in their demand model

as an additional “attribute.”2 Magnolfi et al. (2022) solicit product comparisons via a survey to

generate data of the form “product A is closer to B than it is to C” and use these data to compute

low-dimensional product embeddings that are later included into the utility function. Although

their method may work well when consumers are familiar with presented products, and therefore

can easily relate them to each other, it may not work as well for new or niche products that are

less known to consumers. Further, both methods require collecting category-specific survey data,

which makes them less scalable than our approach that is based on widely available text and image

data.

Finally, Netzer et al. (2012) use data on the co-occurrence of products mentioned in online

discussion forums to estimate substitution patterns. Although their co-occurence measures resemble

our text similarities, they do not incorporate these measures in demand estimation. Our approach

also does not assume that any particular measure of similarity is a good proxy for the degree of

substitution between products. Instead, we infer from the data which of our candidate similarity

measures provide the largest explanatory power in demand estimation.

2 Model

In this section, we describe the demand model framework we use for estimation. We focus on

describing how pairwise measures of product similarity enter the demand model and how they

affect elasticities. In Section 3, we describe how these similarity measures are computed from

product images and texts such as product descriptions and customer reviews.

2.1 Model Setup and Properties

We consider a market where each consumer has unit demand and chooses from the set of J available

products. Consumer i obtains the following utility from purchasing product j:

uij = ūij + εij = δj − α · priceij + εij (1)

where δj is a product fixed effect capturing unobserved quality differences, α denotes the price

coefficient which is assumed to be homogeneous across consumers, priceij is product j’s price that

1An alternative approach, put forth by several papers, has been to use auxiliary search data to inform cross-price
elasticities and analyze product substitution. (Kim et al., 2011; Armona et al., 2021; Amano et al., 2022).

2Sisodia et al. (2022) also extract interpretable product attributes from images, which are then used as an input
to a conjoint analysis.
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consumer i faces when making the choice3, and εij is an idiosyncratic taste shock. For simplicity,

we assume that there is no outside option, so the consumer must choose one of J alternatives.

To model how consumers substitute between products, researchers typically assume that con-

sumers have heterogeneous tastes for observed product attributes xj (Berry et al., 1995). Under

this assumption, heterogeneity in tastes over these attributes implies that products with similar

attributes xj have positively correlated utilities uij . Thus, if the price of some product j increases,

consumers who would normally buy this product will disproportionately substitute to other prod-

ucts whose attributes xk are similar to those of product j. Although our approach is similar in

spirit, we follow a different strategy when modeling the correlations of product utilities. In par-

ticular, we do not include attributes xj in the model and instead directly parameterize the joint

distribution of taste shocks εi1, . . . , εiJ and allow it to depend on product similarity measures.

Following Small (1987) and Koppelman and Wen (2000), we assume a paired combinatorial

logit model – a generalized version of the nested logit model with overlapping nests. The model

includes a separate nest for every product pair. Specifically, we assume that the taste shocks εij

for each product pair (i.e., within each nest) follow a correlated extreme value distribution with

its own correlation parameter parameter λjk. A lower value of λjk implies a stronger correlation

between the taste shocks of products j and k. Thus, one can think about (1 − λjk) as measuring

the degree of substitutability between products j and k. Similar to a standard nested logit model,

the pairwise combinatorial logit model is consistent with utility maximization if 0 < λjk ≤ 1. The

model becomes a simple non-nested logit model when λjk = 1 for all product pairs.

In this model, the purchase probability of consumer i for product j is given by:

pij =

∑
k 6=j exp(ūij/λjk) (exp(ūij/λjk) + exp(ūik/λjk))

λjk−1∑J−1
l=1

∑J
m=l+1 (exp(ūil/λlm) + exp(ūim/λlm)) λlm

. (2)

To gain intuition for this expression, we can re-write it by multiplying the probability that the

consumer chooses some product pair (j, k) containing product j and the conditional probability of

choosing product j from this pair. That is, we can express pij =
∑

k 6=j pij|jk × pijk where the sum

is across all product pairs that include product j and where the two probabilities under the sum

are given by:

pij|jk =
exp(ūij/λjk)

exp(ūij/λjk) + exp(ūik/λjk)
, (3)

pijk =
(exp(ūij/λjk) + exp(ūik/λjk))

λjk∑J−1
l=1

∑J
m=l+1 (exp(ūil/λlm) + exp(ūim/λlm)) λlm

. (4)

Because the denominator in (4) sums over all possible product pairs, the probability pijk resembles

the standard logit probability if we imagine the consumer chooses a product pair (j, k) out of all

3We index prices with i because in the data, different consumers are observed at different points in time and
therefore face different prices.
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possible pairs. Similarly, the probability pij|jk in (3) is the standard logit probability where the

consumer chooses product j conditional on choosing a product from the pair (j, k). Therefore,

intuitively, the purchase probabilities in (2) recognize that the consumer can choose product j after

considering any pair that includes this option, and they compute a weighted sum of correspond-

ing conditional probabilities. We emphasize that these purchase probabilities have closed-form

expressions; therefore, we do not need to approximate them using simulations as is the case in the

commonly used mixed logit specifications.

We also note that it would be straightforward to include observed attributes xj , over which

consumers have heterogeneous preferences, into the utility function (1). In such a model, substi-

tution patterns would be driven by the similarity in observed attributes as well as the similarity

in product-pair-specific variables. For simplicity, we do not introduce such observed attributes and

instead focus on exploring how substitution can be modeled using similarity measures derived from

images and texts.

2.2 Covariance Matrix

To complete the model, we parameterize the correlation parameters λjk to be functions of pairwise

similarity measures. This parameterization avoids the need to nonparametrically estimate all J(J−
1)/2 nesting parameters λjk, which would be computationally prohibitive except for small choice

sets J . More importantly, this specification enables us to model the correlations in utilities uij as

a function of image-based and text-based product similarity measures. We parameterize λjk such

that:

λjk =
1

1 + exp(−θ + w′jkβ)
(5)

where wjk denotes a column vector of pairwise similarity measures. The functional form ensures

that λjk ∈ (0, 1] for any parameter values, thus keeping the specification consistent with utility

maximization. In practice, we normalize wjk such that higher values of variables wjk indicate

higher similarity between products j and k and wjk = 0 captures the case when the two products

are maximally dissimilar. We do not estimate θ and instead set it to a relatively large number so

that substitution patterns collapse to the logit case (λjk = 1) for products that are very dissimilar

and hence have values of wjk close to zero.4 If greater similarity in wjk translates into higher

correlation in utilities λjk, then we expect to find β > 0. In this case, greater similarity leads

products to be closer substitutes, which shifts the model farther away from the logit model with

uncorrelated taste shocks εij .

2.3 Cross-Price Elasticities

As Koppelman and Wen (2000) show, in the paired combinatorial logit model, the cross-price

elasticity of demand for product j with respect to product k’s price is given by:

4In practice, we set θ = 4 in estimation, which generates numerical values of the nesting parameter that are close
to logit (λjk ≈ 1) for very dissimilar products.
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ejk = α× pricek

(
pk +

(
1− λjk
λjk

)
pjk · pj|jk · pk|jk

pj

)
. (6)

For dissimilar products with λjk = 1, this elasticity reduces to the well-known logit elasticity

ejk = α · pricek · pk that depends only on the market share and price of product k. As products

become more similar and λjk decreases, the second term in the brackets also grows, thus reflecting

that these products become closer substitutes. The elasticity formula in (6) is also closely related

to the elasticity formula for the nested logit model with non-overlapping nests. If products j

and k are in the same nest, but neither product is included in any other nest, it follows that

pj = pj|jk · pjk. In this case, the elasticity expression above simplifies to the standard nested logit

elasticity ejk = α · pricek · (pk + (1− λjk)/λjk · pk|jk).

2.4 Comparison to Other Models

Our approach has several advantages over traditional methods that model substitution via observed

product attributes xj . First, it removes the need to collect data on product attributes xj in each

category. Collecting such attributes takes considerable effort, and it is often a subjective process

because researchers need to decide which attributes are the most relevant for consumers. Our

approach removes this attribute selection step, thus reducing the impact of researcher’s choices on

demand estimates. We instead model substitution by using data on images and texts that describe

each product. Because these data are not category-specific, one can easily apply our approach to

any category as long as image and text data are available.

Second, because the researcher can include the same similarity variables wjk regardless of the

category, it is possible to pool data across multiple categories if one is willing to assume that

similarity variables have the same effect on substitution patterns across these markets. Pooling

data across categories can be especially beneficial when researchers have sparse purchase data in

individual categories. It would be difficult to pool data in this way in standard demand models

because each product category would likely have its own unique set of of choice-relevant attributes.

Third, our approach can capture product similarity along dimensions that are difficult to cap-

ture with observed product attributes xj . For example, similar product images might imply that

these products are aesthetically similar, which makes them close substitutes from the consumer’s

perspective. Such visual similarity may not be captured via observed attributes, which are usu-

ally confined to product’s physical characteristics. Modeling substitution from images might be

especially appealing in product categories where product aesthetics strongly influence consumers’

choices (e.g., categories of clothing or home decorations). Textual product descriptions might also

correlate with attributes that are difficult to measure. For example, consumers might write reviews

describing the best uses of a product (e.g., earphones might be more suitable for music or audio

books), which are only indirectly captured by observed attributes.

Several other approaches estimate substitution without relying on observed attributes or prod-

uct similarity measures. Examples include the latent attributes approach used by Ruiz et al. (2017)
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and the latent partitions approach by Smith et al. (2019). These approaches require more data

because substitution patterns are estimated directly from the data without the help of observed

attributes. By contrast, our approach uses data on image-based and text-based similarity measures,

which simplifies estimation by providing a lower-dimensional representation of elasticities.

Finally, our approach is closely related to that of Magnolfi et al. (2022), who use a survey to

directly ask consumers which products are similar to each other. The authors use survey data to

compute product embeddings, which reflect product locations in a low-dimensional representation of

the product space. They demonstrate two ways to use these embeddings in estimation: by including

them in the same way as standard product attributes xj or by using them to directly discipline

the cross-elasticity parameters of a log-linear demand model. In contrast to their approach, we

compute embeddings from unstructured text and image data that are widely available from the

web. In this sense, our approach is more scalable because it does not require researchers to ask

survey questions about each product pair (and each category) included in estimation. Further,

their method is likely to work less well for new or niche products that consumers are unfamiliar

with. By contrast, our method can be applied to any product category as long as researchers can

collect texts or images.

3 Data and Descriptive Statistics

We combine data on online purchases on Amazon.com with the histories of daily prices of Ama-

zon products collected from a third-party database. We also gather product images and textual

descriptions information from product detail pages that consumers visit when making their choices.

3.1 Purchases and Prices

We obtain purchase data from the 2019-2020 Comscore Web Behavior Panel, which contains a

sample of about two million U.S. households. We focus on Amazon.com because the Comscore

dataset contains many more Amazon purchases than purchases from other online retailers. This

high density of Amazon data enables us to identify several product categories where we observe

a sufficient number of purchases for demand estimation. We complement the purchase data with

daily price histories of products collected from the third-party database Keepa.com.

We apply our method to four categories of electronic goods: headphones, tablets, memory cards,

and computer monitors. We selected these categories because they are characterized by frequent

purchases as well as rich temporal variation in prices. Because these four categories can be broadly

classified as “Electronics,” it seems reasonable to pool data across them for estimation. Table 1

shows summary statistics for the four selected categories. We observe in total 2,749 purchases:

1,598 in the category of Headphones, 593 in Tablets, 280 in Memory Cards, and 278 in Monitors.

Because we do not include the outside option in the model (see Section 2.1), we omit category

visits in which consumers did not purchase one of the products we pre-selected in that category.
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Number of Price Price
Category Products Total Average Std. Dev.

Selected Purchases Dollars Dollars

Headphones 28 1598 81.51 12.32
Tablets 8 593 149.31 17.89
Memory Cards 6 280 12.26 1.52
Monitors 9 278 127.00 8.59

Table 1: Descriptive Statistics: Four Selected Categories. The table shows summary statistics

for the four categories selected into our estimation sample. The last column shows the average standard

deviation of prices over time for individual products in that category.

In Appendix A, we provide additional details about the dataset and our category and product

selection process.

3.2 Data on Product Images and Textual Descriptions

We augment the purchase and price data with product similarity variables. These variables fall

into two categories: visual product similarities constructed from product images and text-based

similarities constructed from product names, seller-provided product descriptions, discussions in

the Q&A section, and customer reviews. We collect all relevant image and text data directly from

product detail pages on Amazon.com.5

Figure 1 shows an example of a product detail page. We extract the default product image

shown at the top of the product detail page. Further, we gather textual data from several fields on

the product pages. We collect product titles displayed at the top of the page, and we gather the text

from the bullet points describing the product’s attributes, which we term a “product description”.

We also gather texts from the Q&A section that contains specific questions consumers asked about

the product, as well as the answers posted by the seller or other consumers. Finally, we extract

the texts of the 100 most recent reviews for each product. Because the HTML structure of pages

somewhat varies across categories on Amazon, not all product pages contain all four textual fields,

thus leading to missing data.6 Nevertheless, we observe product titles and at least one other textual

element (descriptions, Q&A, or reviews) for all product categories in our sample.

5We collected most of these data in 2022-2023, whereas our dataset of purchases covers 2019-2020. Because images,
titles, and descriptions are typically provided by sellers, we do not expect these to change over time. By contrast,
customer reviews and Q&As may change. Such temporal changes should not bias our estimation as long as the typical
content in these textual fields is informative about choice-relevant product attributes.

6In estimation, whenever a pairwise variable wjk is missing, we set the corresponding w′
jkβ to zero in Equation

(5). For models with just one wjk variable, this means that we take the logit case with λjk = 1 as a default when
the pairwise variable is missing.
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Figure 1: Example: Image and Text Data Collected From Product Pages.
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3.2.1 Image-Based Product Similarities

To construct similarity measures from images, we employ a series of deep learning models that

were originally built for object detection and classification tasks. Specifically, we use several pre-

trained models that are available from Keras Deep Learning Library. We use pre-trained models

because our main goal is to develop a general demand estimation method that does not require any

category-specific data. Using pre-trained models also helps us avoid training custom image models

for each category, which makes our estimation approach scalable and computationally light.

We use four different classification models. First, we use VGG19, a very deep convolutional

neural network with 19 layers. VGG19 is one of the most popular algorithms for image classification

that performed well in image classification competitions (Simonyan and Zisserman, 2015). Second,

we use ResNet50, a convolutional neural network that is 50 layers deep. ResNet50 is a “residual

network”, a specific type of artificial neural network that forms networks by stacking residual blocks

(He et al., 2016). Finally, we use InceptionV3 and Xception, convolutional neural networks that are

48 and 71 layers deep (Szegedy et al., 2016; Chollet, 2017). All four models have a high predictive

accuracy of 90-94.5% on the ImageNet validation dataset.7 Because these models perform well

at distinguishing similar objects, we expect them to do well at detecting pairs of products that

consumers perceive as visually similar.

Each model first transforms the original image into a lower-dimensional vector representation

– an “embedding” – and then classifies an image by predicting which object it contains from the

embedding. Originally, these models were trained to classify images into labeled classes of similar

objects (e.g., “cup,” “book,” or “sofa”). However, because our aim is not to label products but

to measure how similar they are, we remove the classification layer from these models and instead

directly work with the embeddings they produce. Specifically, to compute similarity between the

images of two products, we compute the Euclidean distance between the embeddings of these two

images, take its negative, and normalize its value to be between 0 and 1. This process yields four

similarity metrics wjk ∈ [0, 1], one per model, which are then used to parameterize the covariance

parameters λjk in equation (5).

We do not commit to any specific model. Instead, we compute several similarity measures

and let our estimation algorithm select the combination of these measures that performs best at

explaining substitution patterns. We intentionally choose models with different architectures to

generate variation in the image similarity metrics.

3.2.2 Text-Based Product Similarities

Next, we compute text-based similarity measures based on customer reviews, product titles, de-

scriptions, and Q&As. The main idea behind these measures is that, if two products are similar,

7The ImageNet data (https://www.image-net.org/) is used for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) which evaluates algorithms for object detection and image classification, a benchmark in object
category classification (Russakovsky et al., 2015). Accuracy is defined as one minus the top5 mis-classification error
(i.e., the fraction of test images for which the true object class is not among the top 5 classes predicted by the model),
which is the metric used to determine the best performing model in the ILSVRC.
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sellers and consumers will tend to describe them both in similar ways. For example, because

seller-provided product titles often contain a brief description of key attributes (e.g., “Apple iPad

10.2-inch Retina Display, 64GB, 12MP front camera”), the similarity of product titles may indi-

cate the two products share some choice-relevant attributes such as brand, screen size, or camera

resolution. Similarly, consumers might mention in their reviews that a particular tablet is suitable

for kids because it survives most drops and is easy to draw on. If two tablets are characterized

in this way, the textual similarity of their reviews will indicate that these tablets might be close

substitutes.

As with image similarities, we use a sequence of increasingly sophisticated models to compute

text similarities. We use four models, and for each model we compute a distinct text similarity

metric for each type of textual data (i.e, titles, descriptions, Q&A, and reviews). First, we use a

simple bag-of-words count model, which transforms each text into fixed-length vectors by counting

the number of word occurrences. This method does not take the order of words into account and

only measures how often words appear in the document.

Second, we use the same bag-of-words model but with a TF-IDF vectorizer. Although similar

to the previous method, this approach places a large weight on “unique” words – the words that

appear frequently in a given document but infrequently in other documents. This approach leads

to a larger emphasis on words that are unique to a subset of products, thus making it more likely

that our text-based similarities reflect some unique attributes shared between the two alternatives.

Third, we use the Universal Sentence Encoder model (USE), which converts each sentence into

a 512-dimensional sentence embedding. These embeddings are typically used for text classification,

semantic similarity, clustering, and other natural language tasks. We use a pre-trained Universal

Sentence Encoder model based on Cer et al. (2018). In contrast to the bag of words models, this

model accounts for the order of words and the context in which they appear.

Fourth, we use the Sentence Transformer model (ST). Specifically, we use the pre-trained

Sentence-BERT model made available by Reimers and Gurevych (2019). Their model is a more

efficient modification of a widely used BERT network (Devlin et al., 2018), and it is trained to

extract semantically meaningful sentence embeddings. Similar to the Sentence Transformer, this

model also assesses the context in which words appear in sentences.

Before applying these models, we pre-process our text data as described in Appendix B. Using

our text models, we then compute product distance as the Euclidean distance between the two

embeddings extracted from the two products’ textual descriptions. We translate these distances

into similarities in the same way as for the image data (see Section 3.2.1).

3.3 Illustrative Example

To better understand what our similarity measures capture, consider an example from our data

shown in Figure 2. The nodes in this graph correspond to four tablets: two Amazon Fire tablets

with slightly different attributes (such as display size and storage capacity), a kid’s model of Amazon

Fire, and an Apple iPad. We label edges with image and description-based similarities computed
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Figure 2: Illustrative Example: Image and Product Description Similarities of Four
Tablets.

for the corresponding product pairs (see Appendix Figure A1 for the complete product descriptions

of these four tablets).

We find that image and text similarities largely follow the similarity of attributes. Based on

product descriptions, the most similar to the Fire 7 tablet is Fire 8 tablet, another model from

the same brand offering similar technical features. The second most similar product is the Fire 7

Kids tablet, which belongs to the same brand but clearly targets families with kids. Finally, the

least similar to the Fire 7 product is the tablet Apple iPad 9.7, which belongs to a different brand.

Image similarities exhibit similar patterns.

Finally, in Tables 2-3 we show the image and description similarities of all eight tablets included

in our sample. Overall, measures do capture product similarity well. For example, description

similarities are high between the two iPads, among the three models of Amazon Fire, and between

the two Fire tablets for kids. Similarity measures in these cases are around 0.6-0.7, much higher

than for other pairs of products that appear more different from each other. More generally, these

measures seem to perform well at detecting the pairs of products that share key attributes (e.g.,

HD display or screen size), target similar demographics (e.g, families with kids), or have the same

brand.

4 Estimation and Results

Recall from Section 3.1 that we have data from four categories, and in each category we observe a

cross-section of consumers’ purchase decisions. Let c = 1, . . . , C index categories and let Yc denote

the set of consumers in category c. Further, assume yij is the indicator that consumer i purchased

product j, P is the matrix of prices, and W is the matrix of similarity measures. Our goal is to

use these data to estimate parameters θ = (α, β, δ) where α is price sensitivity, δ is the vector of
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Fire
Fire Fire Fire 7 iPad HD 8 Dragon iPad

Fire 7 HD 8 HD 10 Kids 10.2 Kids Touch 9.7

Fire 7 1.000 0.747 0.729 0.365 0.505 0.369 0.435 0.248
Fire HD 8 1.000 0.764 0.409 0.486 0.402 0.402 0.237
Fire HD 10 1.000 0.444 0.498 0.449 0.439 0.262
Fire 7 Kids 1.000 0.355 0.701 0.317 0.226
iPad 10.2 1.000 0.362 0.480 0.409
Fire HD 8 Kids 1.000 0.319 0.237
Dragon Touch 1.000 0.361
iPad 9.7 1.000

Model: VGG19

Table 2: Product Image Similarities for Tablets.

Fire
Fire Fire Fire 7 iPad HD 8 Dragon iPad

Fire 7 HD 8 HD 10 Kids 10.2 Kids Touch 9.7

Fire 7 1.000 0.596 0.627 0.318 0.265 0.328 0.361 0.283
Fire HD 8 1.000 0.671 0.308 0.303 0.386 0.393 0.327
Fire HD 10 1.000 0.288 0.313 0.357 0.368 0.329
Fire 7 Kids 1.000 0.100 0.730 0.257 0.110
iPad 10.2 1.000 0.153 0.257 0.710
Fire HD 8 Kids 1.000 0.282 0.167
Dragon Touch 1.000 0.250
iPad 9.7 1.000

Model: Universal Sentence Encoder

Table 3: Product Description Similarities for Tablets.

product fixed-effects, and β is the vector of coefficients on product similarities in (5). We estimate

parameters θ by maximizing the log-likelihood of the data computed as

logL(θ|P,W ) =

C∑
c=1

∑
i∈Yc

J∑
j=1

yij log(pcij(θ))

where pcij(θ) is the purchase probability for product j in category c given by (2). We assume a

uniform price coefficient α and uniform similarity coefficients β in order to pool data across the

four categories. We also normalize the fixed effect of one product in each category to zero to fix

the location of utility. Thus, we estimate in total 47 fixed effects for the 51 products included in

the sample.
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4.1 Specifications Using a Single Similarity Measure

Before turning to our main specification, we start by estimating a sequence of models, each including

only one similarity measure. This analysis helps us explore the informational content of different

similarity measures. The results from these specifications are reported in Table 4. We find that

more than half of all similarity measures lead to a significant improvement in model fit relative to

the standard logit model. However, some measures are more predictive of substitution patterns

than others. For instance, image-based similarity variables lead to the largest AIC improvements.

In fact, the smallest AIC improvement we get from including any image-based similarity exceeds

the largest fit improvement from including any text-based similarity measure.

Among the text-based measures, the results are more sensitive to the exact model and data

type used to compute similarity. For each type of textual data, there is at least one text model for

which the estimated demand model is not statistically distinguishable from a simple logit model

(as indicated by the p-values of the likelihood ratio statistic in column 3). For measures based on

product titles and descriptions, the simple bag-of-word models lead to the largest improvement in

fit. By contrast, for Q&A-based measures, the best fitting similarity measures are those from two

more complex text models, the Universal Sentence Encoder and the Sentence Transformer model.

This is consistent with the fact that product titles and descriptions often simply list the product

specifications and are thus easily captured by bag-of-words models, whereas the more nuanced text

in the Q&As requires more sophisticated models. One might expect the reviews text to also fall

in this latter category, but we find that for that type of data input, all ML models perform fairly

similarly (and none of them substantially improves over logit).

We also report the range of cross-price elasticities generated by each model in the last column

of Table 4. To compute this statistic, we consider an increase in the price of a specific product

and compute the elasticity of demand for other products in the same category with respect to this

price change. We compute the range of these cross-price elasticities for a given product’s price

change, and we then average the result across all products and all four categories in our sample.

As before, we use the simple logit model as a benchmark. Because cross-price elasticities in the

logit model only depend on the price and market share of the product whose price changes, the

range of cross-price elasticities — as defined above — is always zero. To interpret the magnitudes

of these ranges for the different models, note that the average cross-price elasticity is roughly equal

to 0.31 across all estimated models. Compared to this average, the range of cross-price elasticities

induced by including some of the image and text similarities is relatively large with values of up

to 1.002 and 0.709, respectively. Therefore, as Table 4 shows, several similarity measures generate

elasticities that substantially deviate from the IIA-type substitution patterns of the logit model.

4.2 Selection of Similarity Measures

Although several similarity measures improve model fit relative to a simple logit model, many

of them are highly correlated. In Appendix Table A1, we display correlations between the best

fitting metrics based on each of the different data inputs, where the “best fit” is defined based on
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LR Cross-
Included Similarity Measure AIC ∆AIC Test Elast.

P-val Range

Panel A. Image-based similarities
VGG19 12928.99 -30.68 0.000 0.605
ResNet50 12938.14 -21.52 0.000 1.002
Xception 12934.74 -24.92 0.000 0.361
InceptionV3 12928.67 -31.00 0.000 0.792
Panel B. Text-based similarities (titles)
Bag of Words 12942.30 -17.36 0.000 0.567
Bag of Words TF-ID 12956.30 -3.36 0.021 0.034
Universal Sentence Encoder 12959.11 -0.56 0.110 0.703
Sentence Transformer 12961.59 1.93 0.788 0.677
Panel C. Text-based similarities (descriptions)
Bag of Words 12948.76 -10.90 0.000 0.150
Bag of Words TF-ID 12957.86 -1.80 0.051 0.116
Universal Sentence Encoder 12961.67 2.00 1.000 0.001
Sentence Transformer 12957.54 -2.12 0.042 0.037
Panel D. Text-based similarities (Q&A)
Bag of Words 12961.67 2.00 1.000 0.001
Bag of Words TF-ID 12961.62 1.95 0.825 0.003
Universal Sentence Encoder 12948.46 -11.20 0.000 0.270
Sentence Transformer 12947.32 -12.34 0.000 0.188
Panel E. Text-based similarities (reviews)
Bag of Words 12960.31 0.65 0.244 0.040
Bag of Words TF-ID 12958.33 -1.34 0.068 0.709
Universal Sentence Encoder 12961.67 2.00 1.000 0.001
Sentence Transformer 12961.67 2.00 1.000 0.001
Panel F. Logit model (benchmark):
Simple Logit Model 12959.66 0.000

Table 4: Combinatorial Logit Estimation Results. Different rows in Panels A-E show
estimation results for a combinatorial logit model with only one included pairwise variable. Panel
F shows results from a simple logit model as a benchmark for comparison. We report AIC values
(column 1), ∆AIC defined as a change in AIC relative to the simple logit model (column 2),
the p-value of the likelihood ratio statistic for testing each model against the simple logit model
(column 3), and the range of estimated cross-price elasticities (column 4).
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the lowest AIC value reported in column 1 of Table 4. We find a positive correlation between all

measures of similarity. The most strongly correlated variables are those based on product Q&As and

reviews, suggesting that both data types contain somewhat similar information regarding product

substitution. In Appendix Tables A2-A6, we report the correlation matrix for all similarity measures

derived from the same data type. In most cases, we find fairly large positive correlations across

models within a given data type.

To summarize, we find that many similarity measures are highly correlated, with correlations

being particularly high for different models applied to the same data type (e.g., across image

models). Moreover, not all similarity measures improve fit, and there are no clear patterns with

regards to which models or data types perform best. It is therefore not obvious a priori which

product similarity measures should perform best at identifying products that are close substitutes.

We also cannot include all similarity measures as that would likely lead to overfitting. Taken

together, these observations suggest that we need to select similarity variables in a data-driven

way.

To this end, we optimally select similarity measures wjk using a forward stepwise selection

algorithm, a computationally efficient approximation of the best subset of similarity measures.8 To

perform this selection, we only vary which similarity metrics are included in wjk, while leaving the

rest of the model unchanged. We start with a simple logit model where we set λcjk = 1 for all

product pairs in all categories. We then estimate a sequence of models, each including only one

similarity metric wjk, and we select the best-fitting model that yields the largest AIC improvement

relative to logit (this step corresponds to estimating the models in Table 4). Next, we consider

adding one more similarity metric and select the one that yields the largest AIC improvement.

This process is repeated until adding similarity metrics no longer improves AIC or until we run

out of similarity metrics to include.

4.3 Main Specification: Optimally Selected Similarity Measures

We report results from our final specification in Table 5. Our final specification contains two

image-based similarities from models VGG19 and InceptionV3. This result is unsurprising given

that these two image-based similarities achieve the best fit improvement in Table 4 when included

individually, and they are highly correlated with text-based measures.

In Tables 6 and 7, we illustrate the substitution patterns generated by our model for the category

of tablets. We explore substitution patterns by showing the matrices of cross-price elasticities and

diversion ratios, where diversion ratios measure the share of the demand reduction that is diverted

to each alternative when the price of the focal product increases. In both tables, we report the

demand response for the row product to changing the price of the column product. In the case of

diversion ratios, the off-diagonal values add up to one in each column by definition.

8Performing the best subset selection would be infeasible because with 20 similarity metrics, we have 220 =
1, 048, 576 possible models to select from.
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Coeff. S.E.

Price coefficient -0.008 0.001
Image similarity InceptionV3 7.850 5.694
Image similarity VGG19 12.128 4.726
Product FE Yes

Table 5: Estimation Results. The table shows coefficient estimates and their standard errors
from the model selected by the greedy forward algorithm described in Section 4.2.

Elasticities Fire
Fire Fire Fire 7 iPad HD 8 Dragon iPad

Fire 7 HD 8 HD 10 Kids 10.2 Kids Touch 9.7

Fire 7 -0.601 0.509 0.424 0.140 0.199 0.047 0.031 0.098
Fire HD 8 0.315 -1.215 0.337 0.165 0.343 0.042 0.049 0.117
Fire HD 10 0.174 0.251 -1.636 0.237 0.386 0.037 0.034 0.126
Fire 7 Kids 0.151 0.285 0.508 -1.226 0.549 0.042 0.112 0.189
iPad 10.2 0.105 0.235 0.338 0.242 -8.081 0.610 0.970 0.380
Fire HD 8 Kids 0.105 0.164 0.188 0.088 1.601 -2.893 0.578 1.372
Dragon Touch 0.093 0.244 0.204 0.294 2.606 0.661 -2.721 1.054
iPad 9.7 0.210 0.431 0.287 0.279 1.267 1.321 1.127 -13.136

Table 6: Estimated Elasticities in the Category of Tablets. Each entry in the table is
an estimated elasticity of the demand for the row product with respect to the price of the column
product.

Diversion ratios Fire
Fire Fire Fire 7 iPad HD 8 Dragon iPad

Fire 7 HD 8 HD 10 Kids 10.2 Kids Touch 9.7

Fire 7 -1.000 0.465 0.301 0.240 0.109 0.121 0.082 0.121
Fire HD 8 0.464 -1.000 0.263 0.229 0.131 0.108 0.117 0.136
Fire HD 10 0.247 0.217 -1.000 0.254 0.128 0.085 0.066 0.069
Fire 7 Kids 0.145 0.149 0.231 -1.000 0.140 0.058 0.132 0.087
iPad 10.2 0.058 0.079 0.104 0.122 -1.000 0.202 0.275 0.088
Fire HD 8 Kids 0.035 0.028 0.030 0.030 0.151 -1.000 0.197 0.242
Dragon Touch 0.025 0.035 0.031 0.081 0.301 0.247 -1.000 0.258
iPad 9.7 0.027 0.028 0.040 0.045 0.040 0.179 0.132 -1.000

Table 7: Estimated Diversion Ratios in the Category of Tablets. Each entry in the table is
a diversion rate of the demand for the row product with respect to the price of the column product.
Diversion ratios measure the share of the demand reduction that is diverted to each alternative
when the price of the focal product increases.
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In line with the results reported in Table 4, our selected specification generates rich substitution

patterns and substantial deviations from IIA. This pattern can best be gleaned from the elasticity

matrix in Table 6. For example, when Fire 7 becomes more expensive, consumers substitute to

Fire HD 8 or Fire HD 10 with elasticities of 0.315 and 0.174, higher than cross-price elasticities of

demand for other tablets. The lowest cross-price elasticities in that column are those for Dragon

Touch (0.093), iPad 10.2 (0.105), and Fire HD 8 Kids (0.105), consistent with our intuition in

the illustrative example (Section 3.3). Similar patterns hold for other tablets in the assortment.

These results are in contrast to a simple logit model, in which the cross-price elasticities in each

column are identical because they only depend on the market share and price of the column product

(the product whose price changes). Hence, the selected model does generate large deviations from

the IIA substitution patterns of a simple logit. The matrix of diversion ratios in Table 7 is an

alternative way to illustrate substitutions patterns (Conlon and Mortimer, 2021). In line with

cross-price elasticities, the diversion ratios also reveal large differences in substitutability across

product pairs.

Finally, we note that the estimated substitution patterns do not perfectly match the patterns

in the selected pairwise variables. This can be gleaned by comparing the elasticity and diversion

matrices in Tables 6 and 7 with Table 2, which shows the values of one of the two similarity

variables selected by our procedure. For instance, while the Fire 7 Kids tablet is most visually

similar to the Fire HD 8 Kids, the elasticities and diversions between these two products are fairly

small. These discrepancies are due to the fact that other factors — specifically, differences in the

products’ average prices and in their vertical qualities, as captured by the product fixed effects —

contribute to the estimated substitution patterns. Thus, substitution patterns are affected, but not

entirely determined, by the selected pairwise variables.

4.4 What Do Pairwise Variables Capture?

In this section, we explore the extent to which the pairwise variables which were selected for our

preferred specification capture similarity in observed product attributes. If our similarity measures

strongly correlate with the similarity in product attributes, our approach should generate similar

cross-price elasticities as a standard characteristics-based demand model with random coefficients.

At the same time, our similarity measures may also partially capture product aspects that are hard

to measure using observed product attributes, such as aesthetic product similarity.

To analyze the role of observed attributes, we take the two image-based similarity measures that

were selected by the forward stepwise selection algorithm and regress them on the similarities in

different product attributes. To implement such a regression, we collect observed product attributes

for all four categories used to estimate our demand model, and we compute a separate similarity

measure for each attribute by taking the absolute value of the difference between the attribute

values for any pair of goods. We obtain between 10 and 12 product attributes across the four

categories. Notably, the sets of product attributes differ across the four categories, which implies

that any product attribute-based model would require estimating different coefficients for different
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categories. In contrast, our approach uses measures of product similarity that are defined for

any category where image and text data are available, thus allowing us to pool information across

categories. Having constructed attribute similarities, we then regress each of the two selected image

similarity metrics on all attribute similarities.9

We present the results from these regressions in Appendix Table A7. We obtain R-squared

coefficients of 0.440 and 0.513 when using each of the two selected similarity measures as the

dependent variable. We conclude that roughly half of the variation in the selected product similarity

measures is explained by similarity in observed product attributes. Our model therefore allows us

to capture additional information about product similarity beyond the information contained in

observed product attributes. We re-iterate that our model is also able to capture variation related

to observed product attributes in a relatively parsimonious way. Whereas our main specification

contains two similarity variables, our dataset includes 10-12 attributes per category. In this case,

standard demand models would require estimating the distribution of random coefficients for each

product attribute, which would involve estimating many more parameters than required by our

method. Standard models would also require the researcher to perform numerical integration,

which is computationally costly in models with many random coefficients.

5 Conclusion

In this paper, we propose a demand estimation method that allows researchers to estimate substitu-

tion patterns from unstructured data such as product descriptions, customer reviews, and product

images. We use a series of machine learning models to obtain measures of similarity from these

data sources. We then estimate a nested logit model with product-pair specific nesting parameters

that depend on the image and text similarities between products. This nested logit model allows

us to include text and image similarities into a micro-founded demand system that exhibits closed-

form expressions for purchase probabilities. We apply our method to a dataset on choices made

by Amazon shoppers across several categories, and we show that our method allows us to recover

flexible substitution patterns.

9More specifically, we regress image similarities on each attribute similarity interacted with a dummy for the
category for which this attribute is defined. The only two attributes that are defined for all four categories are brand
and price. These two similarity measures are not interacted with category dummies.
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Online Appendix

A Data Collection

In this section, we provide additional details on the data sources used in the paper. We obtain

purchase data from the 2019-2020 Comscore Web Behavior Panel, which contains a sample of U.S.

households. Households install software meters on their computers and give Comscore permission

to track all their Internet activity, including all online purchases they make in major online stores.

Because our methodology involves scraping images and textual descriptions of products, it is prac-

tical to focus our analysis on one specific online store. We focus on purchases made on Amazon.com

which accounts for almost 54% of all purchases. The second-largest store, Walmart.com, accounts

only for 8.9% and the third-largest store, Target.com, only for 2.3%. We use the dataset constructed

by (Greminger et al., 2023), who classify over 12 million unique Amazon products into narrowly

defined categories (e.g., “laptops,” “smartphones,” and “tablets”) by combining store-defined cat-

egory labels with detailed browsing data. Their dataset also includes daily product prices collected

from a third-party dataset (Keepa.com). These price data cover around 95% of all unique Amazon

products in the Comscore dataset.

In estimation, we focus on four categories of electronic goods: headphones, tablets, memory

cards, and computer monitors. We select categories using the following process. From the raw

dataset, we drop around 5% of products for which we do not have price data. Then, to keep the

sample of products manageable, in each of the 3,890 categories available in the Comscore dataset,

we select products that were purchased at least 15 times. Both observing enough purchases and

some temporal price variation are critical for obtaining accurate demand estimates. From the

remaining 197 categories, we select the categories of durable goods with the largest number of

observed purchases.10

B Text Processing Steps

Before applying our text models, listed in Section 3.2.2, we pre-process our text data as follows.

Working with product titles is straightforward because each title is a short text that typically

includes only 10-15 words. When assessing similarity based on product descriptions, we merge the

text from all bullet points, and apply our models to the merged text. For customer reviews, we

transform the text of each review into a separate vector of word occurrences or an embedding, and

we average these vectors or embeddings across all reviews of a given product. We then compute

the distance between two products by computing the Euclidean distance between the two averaged

vectors. Finally, for Q&As, we merge each question and its answer into a single text string, and we

then treat each of these Q&A exchanges identically to how we treat customer reviews.

10Around 9.8% of purchases in our dataset represent consumers who re-visit the same category to make another
purchase. To keep our analysis simple, we treat such repeat purchases as independent and do not account for this
panel structure in estimation.
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For both bag-of-words approaches, we further pre-process text data by removing stopwords and

lemmatizing words. We remove stopwords using the standard dictionary of common English words

in the NLTK package. We lemmatize words using the WordNet Lemmatizer from the same package,

NLTK. Then, we convert each pre-processed text into a vector of word occurrences (weighted

word occurrences for TF-IDF), and we compute the Euclidean distance between these vectors for

each product pair. In the case of USE and ST models, we first transform each text into a lower

dimensional embedding using a pre-trained model. Because both models have a built-in text pre-

processing step, we apply these models directly to the unprocessed text data.
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Figure A1: Illustrative Example: Images and Product Descriptions of Tablets.
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Images Titles Descr. Q&A Reviews

Image-based similarity 1.000
Text-based similarity (titles) 0.102 1.000
Text-based similarity (descriptions) 0.317 0.265 1.000
Text-based similarity (Q&A) 0.313 0.313 0.060 1.000
Text-based similarity (reviews) 0.260 0.101 0.065 0.602 1.000

Table A1: Correlations Between Different Similarity Metrics. The table displays correla-
tions between the best-fitting (lowest AIC) similarity variables from each of the five groups.

C Correlations between similarity metrics

Text-based similarities (titles) BOW TF-IDF USE BERT

Bag of Words 1.000
Bag of Words TF-IDF 0.424 1.000
Universal Sentence Encoder (USE) 0.011 0.461 1.000
Sentence Transformer (BERT) 0.148 0.553 0.787 1.000

Table A2: Correlations Between Different Text-Based Similarity Metrics (product
titles).

Text-based similarities (descriptions) BOW TF-IDF USE BERT

Bag of Words 1.000
Bag of Words TF-IDF 0.245 1.000
Universal Sentence Encoder (USE) -0.142 0.441 1.000
Sentence Transformer (BERT) 0.177 0.547 0.666 1.000

Table A3: Correlations Between Different Text-Based Similarity Metrics (product
descriptions).

Text-based similarities (Q&A) BOW TF-IDF USE BERT

Bag of Words 1.000
Bag of Words TF-IDF -0.134 1.000
Universal Sentence Encoder (USE) -0.207 -0.047 1.000
Sentence Transformer (BERT) -0.198 -0.040 0.927 1.000

Table A4: Correlations Between Different Text-Based Similarity Metrics (product
Q&A).
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Text-based similarities (reviews) BOW TF-IDF USE BERT

Bag of Words 1.000
Bag of Words TF-IDF 0.201 1.000
Universal Sentence Encoder (USE) 0.580 0.741 1.000
Sentence Transformer (BERT) 0.643 0.738 0.955 1.000

Table A5: Correlations Between Different Text-Based Similarity Metrics (customer
reviews).

Image-based similarities VGG19 ResNet50 Xception InceptionV3

VGG19 1.000
ResNet50 0.661 1.000
Xception 0.380 0.663 1.000
InceptionV3 0.538 0.661 0.706 1.000

Table A6: Correlations Between Different Image-Based Similarity Metrics.
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D Similarity metrics and observed product attributes

(1) (2) (3) (4)
VARIABLES Image Sim VGG19 se Image Sim INC3 se

(Pooled) similarity brand 0.219 (0.017) 0.066 (0.013)
(Pooled) similarity price 0.016 (0.007) 0.049 (0.006)
(Headphones) similarity water proof 0.034 (0.018) 0.044 (0.014)
(Headphones) similarity color 0.018 (0.010) 0.030 (0.008)
(Headphones) similarity connectivity -0.006 (0.020) -0.068 (0.015)
(Headphones) similarity deep bass 0.012 (0.009) -0.004 (0.007)
(Headphones) similarity tanglefree 0.016 (0.026) 0.100 (0.020)
(Headphones) similarity with microphone 0.024 (0.012) 0.010 (0.009)
(Headphones) similarity sweat proof -0.046 (0.018) -0.038 (0.014)
(Headphones) similarity noise reduction -0.009 (0.009) -0.005 (0.007)
(Headphones) similarity number eartips sets -0.002 (0.004) 0.000 (0.003)
(Tablets) similarity memory -0.001 (0.003) -0.004 (0.003)
(Tablets) similarity maximum resolution 0.044 (0.035) -0.112 (0.027)
(Tablets) similarity screen size -0.014 (0.010) 0.020 (0.007)
(Tablets) similarity with case -0.046 (0.016) -0.053 (0.012)
(Tablets) similarity kids subs 0.220 (0.034) 0.016 (0.026)
(Tablets) similarity number of cores -0.006 (0.009) -0.002 (0.007)
(Tablets) similarity battery life -0.007 (0.014) 0.011 (0.011)
(Tablets) similarity front camera mp -0.007 (0.006) -0.021 (0.005)
(Tablets) similarity back camera mp -0.006 (0.007) 0.001 (0.005)
(Memory Cards) similarity micro card 0.227 (0.042) 0.206 (0.033)
(Memory Cards) similarity flash memory type 0.017 (0.121) 0.119 (0.093)
(Memory Cards) similarity uhs speed class 0.035 (0.227) 0.275 (0.175)
(Memory Cards) similarity personal computer 0.048 (0.044) 0.088 (0.034)
(Memory Cards) similarity camera 0.026 (0.045) 0.057 (0.035)
(Memory Cards) similarity laptop -0.122 (0.054) 0.098 (0.042)
(Memory Cards) similarity tablet 0.012 (0.045) -0.009 (0.035)
(Memory Cards) similarity magnetic proof 0.002 (0.051) -0.027 (0.040)
(Monitors) similarity blue light filter 0.013 (0.035) -0.030 (0.027)
(Monitors) similarity frameless 0.038 (0.028) 0.019 (0.022)
(Monitors) similarity tilt adjustment 0.025 (0.037) 0.007 (0.029)
(Monitors) similarity height adjustment -0.168 (0.029) -0.042 (0.023)
(Monitors) similarity flicker free -0.058 (0.026) -0.033 (0.020)
(Monitors) similarity built in speaker -0.142 (0.031) -0.084 (0.024)
(Monitors) similarity wall mountable -0.076 (0.027) -0.030 (0.021)
(Monitors) similarity curved screen -0.028 (0.027) -0.007 (0.021)
(Monitors) similarity adaptive sync -0.025 (0.026) -0.033 (0.020)
(Monitors) similarity refresh rate 0.000 (0.000) 0.001 (0.000)

Observations 710 710
R-squared 0.513 0.440
F-Statistic 17.20 12.81

Standard errors in parentheses

Table A7: Regressions of image similarities selected by the model on the observed
similarities in product attributes.
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