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1 Introduction

Our society and economy do not exist in isolation; they are inherently connected through
complex networks of relationships and interactions (Banerjee, Chandrasekhar, Duflo, and
Jackson (2013); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2015); König, Rohner, Thoenig,
and Zilibotti (2017); Battaglini, Patacchini, and Rainone (2022)). These networks play a
pivotal role in shaping the decisions and behaviors of individuals, organizations, and insti-
tutions. For example, a consumer’s purchasing decision may be swayed by the opinions of
friends, or a company’s strategic move could be shaped by the actions of competitors within
its network. Understanding the structure and dynamics of these networks is therefore cru-
cial for analyzing how decisions propagate through society and the economy. This makes the
study of network formation—how these networks come into existence, evolve, and influence
behavior—an essential area of inquiry. By estimating and understanding network forma-
tion, we can gain insights into the underlying mechanisms that drive social and economic
phenomena, ultimately leading to more informed decisions and effective policies.

This paper studies efficient estimation and inference in a flexible dyadic network forma-
tion model with observed covariates, unobserved heterogeneity, and nontransferable utilities
(NTU). We consider one single large network which is arguably the most common type of
network data available in empirical studies. By “efficient,” we mean that our proposed esti-
mator achieves the Cramér-Rao lower bound asymptotically, and a computationally efficient
algorithm is provided. By “flexible,” we include both observed pairwise covariates for study-
ing homophily effect and unobserved individual fixed effects that can be arbitrarily correlated
with the observed covariates. Consequently, our model can capture rich forms of heterogene-
ity among agents in the network. Finally, in contrast to a large body of work (e.g., Graham
(2017)) that considers transferable utilities (TU), we model real-world social interactions
by requiring bilateral consent which is captured by NTU. For instance, friendship is usually
formed only when both individuals in question are willing to accept each other as a friend, or
in other words, when both individuals derive sufficiently high utilities from establishing the
friendship. It is even more prominent in business networks since no firm would want to deal
if it incurs a loss from the transaction when there is a lack of mechanism to guarantee profit
redistribution. Moreover, as pointed out by Gao, Li, and Xu (2023), NTU can effectively
incorporate homophily effects on unobserved heterogeneity, which is another advantage over
TU.

The combination of unobserved individual fixed effects and NTU poses significant chal-
lenges for estimation and inference. First, the requirement of bilateral agreement to form a
link under NTU breaks down the additivity in the fixed effects in the utility surplus func-
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tion, i.e., the linking probability between two individuals is no longer additively separable
in their fixed effects, which makes infeasible the arithmetic differencing based methods (e.g.,
Toth (2017); Candelaria (2024)) to cancel out the individual fixed effects. Second, includ-
ing individual fixed effects leads to a high-dimensional optimization problem for maximum
likelihood estimation that is known to suffer from computational inefficiency and instability.
Third, in the presence of high-dimensional fixed effects, it is difficult to verify concavity of the
log-likelihood function, which is required to ensure the existence of the global minimum of
the criterion function. Moreover, with the fixed effects treated as incidental parameters, the
maximum likelihood estimators for the homophily parameters are biased (Moreira (2009)).
Fourth, the Jacobian matrix of the moment equations used to construct moment estimators is
asymmetric due to NTU, making existing methods for asymptotic analysis that works under
TU not directly applicable (e.g., Chatterjee, Diaconis, and Sly (2011); Graham (2017); Yan,
Jiang, Fienberg, and Leng (2019); Candelaria (2024)). Last but not the least, many existing
results are based on the assumption that the distribution of the idiosyncratic shock is logistic
(e.g., Chatterjee, Diaconis, and Sly (2011); Graham (2017); Yan, Jiang, Fienberg, and Leng
(2019)). It is unclear whether the conclusions still hold when a different distribution for the
shock is used. Thus, a new method is called for to deal with these challenges.

In this paper, we propose an easy-to-compute bagging estimator for the homophily pa-
rameters that deals with the issues discussed above. We prove its asymptotic normality,√
N -consistency1, and efficiency. Our paper is the first one in the literature of dyadic net-

work formation with NTU that has inference and efficiency results. The new bagging esti-
mator involves three steps. First, we propose an initial joint method of moments (JMM)
estimator that solves a high-dimensional system of moment equations. The JMM estimator
is not

√
N -consistent, nor is it efficient. Nonetheless, we show that it satisfies the conditions

for Le Cam (1969)’s one-step approximation to the MLE. In this step, we also estimate
the high-dimensional fixed effects and prove their uniform consistency. Second, we plug the
JMM estimator into Le Cam (1969)’s approximation step and obtain the one-step estimator
that is asymptotically equivalent to the MLE. The one-step estimator is—similar to the MLE
(Moreira (2009))—efficient but not

√
N -consistent. To correct for the bias while maintaining

its efficiency, we use the bootstrap aggregating (also known as “bagging”) method from the
machine learning literature (Breiman (1996); Hirano and Wright (2017)) for split-network
jackknife on the one-step estimator to obtain the bagging estimator. As far as we are aware,
the application of the bagging method is novel in the context of network formation literature.
As two extensions, we provide a consistent estimator and prove its asymptotic normality for

1By “
√
N -consistent,” we mean the asymptotic distribution of the estimator after centering at the true

parameter and multiplied by
√
N has mean zero.

3



the average partial effects (APE, see Hughes (2023)) and discuss how misspecification of the
link function affects the analysis, the latter of which is much less considered in this literature
(Graham (2024)).

In simulation studies, we find our proposed estimators for the homophily parameters,
individual fixed effects, and APEs all work well. We present two empirical applications.
First, we apply our method to the risk-sharing network data of Nyakatoke (De Weerdt (2004);
De Weerdt and Dercon (2006); De Weerdt and Fafchamps (2011)) and obtain economically
meaningful results. Our empirical findings complement the results of Gao, Li, and Xu (2023)
by showing that wealth differences do not have a statistically significant impact on the
formation of links. Second, we use the well known microfinance network dataset (Banerjee
et al. (2013, 2024)) to show how our method works in capturing important network features
such as average degree, clustering effect, and number of isolates. By adding only one more
parameter to capture triangles, we find that the extended model captures most network
features well.

We discuss two important limitations of the paper. First, we require correct specification
of the link functions. When the link function is misspecified, we prove theoretical properties
of these estimators in Section 4.2 and provide their finite sample performance in Section 5.3.
Second, we do not consider interdependent link preferences; instead, we focus on modeling
individual heterogeneity via fixed effects and NTU. Following Graham (2017), we briefly
discuss how to test the hypothesis of no interdependent link preferences in Section 7.

1.1 Literature Review

Our paper belongs to the literature that studies dyadic network formation in a single
large network setting. An incomplete list of the papers in this category include Blitzstein
and Diaconis (2011), Chatterjee, Diaconis, and Sly (2011), Yan and Xu (2013), Yan, Leng,
and Zhu (2016a), Graham (2017), Charbonneau (2017), Jochmans (2017), Toth (2017),
Dzemski (2019), Yan, Jiang, Fienberg, and Leng (2019), Gao (2020), Zeleneev (2020), Gao,
Li, and Xu (2023), Hughes (2023), Candelaria (2024), Qu, Chen, Yan, and Chen (2024). See
Graham (2020) for a comprehensive review. Most of the papers in this list except Gao, Li,
and Xu (2023) consider link formation with TU, which generally allows one to cancel out the
individual fixed effects by arithmetic differencing. In a semiparametric network formation
model, Gao, Li, and Xu (2023) propose a logical differencing technique to cancel out the
fixed effects without imposing any distributional assumption on the idiosyncratic shocks.
However, they do not have inference results for the homophily parameters, nor do they have
an estimator for the fixed effects. In contrast, we consider a flexible network formation model
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with known distribution of the idiosyncratic shocks to link formation and prove asymptotic
normality for our estimators of the homophily parameters. We also provide ℓ∞-consistent
estimators for the high-dimensional fixed effects and prove asymptotic normality for the
unconditional APEs. Therefore, we consider our paper to be complimentary to Gao, Li, and
Xu (2023).

Our paper builds on the highly influential paper by Graham (2017) who considers network
formation problem with TU. Graham (2017) proposes a novel tetrad logit estimator, which is
not directly applicable to our setting with NTU even when the link functions are logistic. The
joint MLE of Graham (2017) relies on both the link functions being logistic and TU to solve
for the fixed effects as solutions to a system of fixed point equations. Our one-step estimator
does not require the logistic assumption and we introduce a new stochastic gradient descent
type algorithm to estimate the fixed effects. Furthermore, our method deals with several
theoretical and computational challenges, such as non-concavity of criterion function, non-
stability of optimization procedure, high-dimensionality of parameters, that are common with
MLE’s. Finally, we propose a bagging split-network jackknife estimator that achieves both√
N -consistency and the Cramér-Rao lower bound. More recently, Graham (2024) studies

sparse network asymptotics for logistic regression under possible model misspecification. He
shows that the parameter that indexes the logit approximation solves a particular Kullback–
Leibler Information Criterion minimization problem, and proves asymptotic normality of
the logistic regression coefficients. This paper is different from Graham (2024) in that we
consider network formation with NTU, which is effectively ruled out by his use of composite
likelihood to cancel out the individual heterogeneity.

Our paper is also related to Hughes (2023), who considers a parametric link formation
model with TU and fixed effects and proposes a jackknife estimator for bias-correction.
His results are not directly applicable to NTU due to the asymmetry of the Hessian matrix.
Moreover, we propose a one-step split-network jackknife bagging estimator that both achieves
the Cramér-Rao lower bound and is easy to compute. Recently, Qu, Chen, Yan, and Chen
(2024) study inference in semiparametric formation models for directed networks with TU
and propose a projection approach to estimate the unknown homophily parameters. Their
model of directed network formation with TU and method which relies on the existence of a
special regressor are different from ours. There are also papers dedicated to semiparametric
or nonparametric undirected network formation models with TU and unobserved individual
heterogeneity, e.g., Toth (2017) (maximum rank based method), Gao (2020) (identification
strategy based on an in-fill and out-expansion strategy), Zeleneev (2020) (pseudo-distance
type argument to identify agents with same fixed effect), Candelaria (2024) (special regressor
based method, which is also used in Qu, Chen, Yan, and Chen (2024)). Recognizing the
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possibility that the distribution of idiosyncratic shocks to link formation can be misspecified,
we prove theoretical results under such misspecification, and provide simulation results to
justify the use of our estimator.

The insights from large T panel data literature (e.g., Hahn and Newey (2004); Hahn
and Kuersteiner (2011); Dhaene and Jochmans (2015); Mei, Sheng, and Shi (2024)) shed
light upon important issues in network formation problems. See Fernández-Val and Weidner
(2018) for an excellent review of this literature. Fernández-Val and Weidner (2016) study
nonlinear panel models with large N and T in the context of a broad class of maximum
likelihood models with fixed effects. Their general results are applicable to network data
wherein N and T grow at the same rate in asymptotics. Their key assumptions include that
the log-likelihood function is concave and that certain derivatives of functionals of the fixed
effects satisfy a sparsity assumption, which are different from ours. As a result, their method
differs from ours substantially. It is worth pointing out that in their footnote 8, Fernández-
Val and Weidner (2016) discuss how to avoid ambiguity and arbitrariness in the choice of the
random splitting by repeated sampling, an idea similar to bagging. In contrast, we formally
introduce the bagging technique to achieve bias-correction while maintaining efficiency of the
estimator simultaneously. Furthermore, we provide formal asymptotic results for the bagging
estimator for inference. In another seminal paper, Chen, Fernández-Val, and Weidner (2021)
study nonlinear factor models for panel and network data. They introduce iterative factor
structures to network data, which enables one to capture important network features such
as degree heterogeneity and homophily in latent factors in an unspecified or reduced-form
fashion. They propose an EM-type algorithm for estimating structural parameters and
a separate algorithm for estimating the number of factors. Their method requires that the
covariates and unobserved effects enter conditional likelihood function through a single index,
which rules out network formation with NTU. Moreover, they require concavity on the joint
likelihood function in the single index. Thus, their results are not directly applicable to our
problem.

Our paper is also related to papers that utilize dyadic link formation models to study
structural social interaction models. A few examples include Goldsmith-Pinkham and Im-
bens (2013), Hsieh and Lee (2016), Johnsson and Moon (2021), and Auerbach (2022). In
these papers, the social interaction models are the main focus of identification and estima-
tion, while the link formation models are used mainly as a control function to deal with
network endogeneity or unobserved heterogeneity problems in the social interaction model.
We consider our work to be expanding the tool box for researchers interested in this line
of research to use to control for the confounding factors outlined above. Additionally, since
the homophily parameters and the fixed effects contain important information concerning
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the causal effects with peer effects or spillover effects (e.g., Lewbel, Qu, and Tang (2023);
Jackson, Lin, and Yu (2024)), the method of this paper can be useful to studying such causal
effects. Finally, our paper provides ℓ∞-consistent estimators of the fixed effects, which are
the central object of interest of Jochmans and Weidner (2019) who consider a linear regres-
sion model with network data and individual fixed effects. Their model and method are very
different from ours.

It should be pointed out that in our paper we do not consider link interdependence in
network formation, which is actively studied by the line of econometric literature on strate-
gic network formation models and empirical games. This line of literature primarily uses
pairwise stability (Jackson and Wolinsky (1996)) as the solution concept for network for-
mation, and also often builds NTU into the econometric specification. See, for example,
Miyauchi (2016), de Paula, Richards-Shubik, and Tamer (2018), Leung and Moon (2019);
Leung (2019), Boucher and Mourifié (2017), Mele (2017, 2022), Sheng (2020), Ridder and
Sheng (2020), Gualdani (2021), Chandrasekhar and Jackson (2023), and Menzel (2024). The
authors in these papers study network formation models that account for network externali-
ties, which generate interdependencies in the linking decisions that depend on the structure
of the network. However, this type of models either do not feature or impose distributional
assumption on unobserved individual heterogeneity. Instead, we adopt the “fixed effect” type
of approach and allow them to be arbitrarily correlated with the observable covariates. Fur-
thermore, many of the papers in this line of research require bounded degree (e.g., de Paula,
Richards-Shubik, and Tamer (2018)) or appropriate “rate requirements” on the parameters
governing the probabilities of subgraphs forming (e.g., Chandrasekhar and Jackson (2023)),
which we do not need. Therefore, we consider the two lines of research to be very different.
See de Paula, Áureo (2020) for a detailed comparison between these two lines of research.

The rest of the paper is organized as follows. Section 2 formally introduces a dyadic
model of link formation with covariates, individual fixed effects, and NTU and presents a set
of baseline assumptions. Section 3 presents the estimators for the structural parameters and
fixed effects and derives their theoretical properties. Section 4 extends our theory to discuss
estimation of APEs and model misspecification. Section 5 includes a simulation study.
Section 6 provides two empirical applications. All proofs are relegated to the Appendix.

Notation. Let “ :=” denote a definition and superscript “⊤” denote the transpose of a
vector or a matrix. For an n × 1 vector a = (a1, . . . , an)

⊤, its ℓ1 norm is ∥a∥1 :=
∑n

i=1 |ai|,
ℓ2 norm is ∥a∥2 := (

∑n
i=1 a

2
i )

1/2, and ℓ∞ norm is ∥a∥∞ := max1≤i≤n |ai|. When O(·) (and
other notations for order) is written for a vector (or matrix), it means that each element
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in the vector (or matrix) is of the order in O(·). “plim” refers to the limit in probability,
“ p→” stands for convergence in probability, and “ d→” is the convergence in distribution. For
an n × n matrix A, we write ∥A∥1 := max1≤i≤n ∥A·i∥1, ∥A∥∞ := max1≤i≤n ∥Ai·∥1 and
∥A∥max := max1≤i,j≤n |Aij|, where A·i and Ai· are the ith column and row of A, respectively.
⌊c⌋ denotes the integer part of any number c. To simplify notation, we write Fij(α, β) :=

F (αi + x⊤
ijβ), Fji(α, β) := F (αj + x⊤

jiβ), and pij(α, β) := Fij(α, β)Fji(α, β). We use Fij,
Fji, and pij when the corresponding functions are evaluated at the true values of (α0, β0).
Finally, the abbreviation “w.p.a.1” stands for “with probability approaching 1.”

2 Model and Baseline Assumptions

We consider an undirected2 network formed among agents i ∈ In = {1, . . . , n}. Hence,
there are N =

(
n
2

)
dyads to be linked. Agent i agrees to form a link with j if her utility from

the connection is strictly positive. Let binary random variable Zij denotes agent i’s decision
on whether to link with j, then

Zij := 1(αi0 +X⊤
ijβ0 − ϵij > 0), 1 ≤ i ̸= j ≤ n. (1)

We rule out self-loops, i.e., Zii ≡ 0, i = 1, ..., n. There are three components that determine
the value of Zij: (i) the unobserved fixed effect αi0, which is agent i specific; (ii) dyad-specific
index X⊤

ijβ0 that captures homophily effect in the observable characteristics between any ij

pairs, where Xij ∈ RK is a symmetric function of agent-level characteristics Xi and Xj,
i.e., Xij = g(Xi, Xj) for all i ̸= j,3 and (iii) an idiosyncratic component ϵij with a known
distribution, assumed to be independently and identically distributed across all directed
dyads (i, j). 4

Under NTU, a link Yij between i and j is formed by the following rule:

Yij := Zij · Zji, 1 ≤ i ̸= j ≤ n. (2)

In this model, the utility of two agents are nontransferable, which is different from the
network formation model considered by Graham (2017). Our model is similar to the one

2Our model can be extended to cover directed network by introducing two sets of heterogeneity that
captures in-degree and out-degree separately as in Yan et al. (2019) and Hughes (2023).

3We follow the literature (e.g., Graham (2017)) to make Xij a symmetric function of individual char-
acteristics Xi and Xj . The theoretical results of this paper can be extended to cover the general case in
which Xij is some generic pairwise observable characteristics. In the simulations, we randomly draw the first
coordinate of Xij directly from Bernoulli distribution without generating Xi nor Xj and find the results to
be satisfactory. Nevertheless, allowing for asymmetric Xij ̸= Xji could result in more complications and is
out of scope of this paper. We leave it for future research.

4In principle, we can allow ϵij and ϵji to be correlated, e.g., bivariate normal distribution with a known
correlation coefficient. The analysis goes through with minor changes.
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studied by Gao, Li, and Xu (2023), however the focus is different. In this paper, we use
the information on the distribution of ϵij to estimate β0 from realizations of a single large
network (yij)1≤i,j≤n and (xij)1≤i,j≤n, and conduct asymptotically valid statistical inference.

In what follows, we use bold-case symbols for variables to indicate that its dimension is
dependent on n. For example, the dimension of α = (αi)1≤i≤n is n× 1. Let Y = (Yij)1≤i,j≤n

and X = (Xij)1≤i,j≤n be the n×n adjacency matrix and n×n×k random tensor of covariates,
respectively. Denote their realizations by y = (yij)1≤i,j≤n and x = (xij)1≤i,j≤n, respectively.
Let α0 = (αi0)1≤i≤n. Unless otherwise stated, we maintain the following assumption.

Assumption 1 (Correctly Specified Model). The conditional likelihood of Y = y given
X = x and α = α0 is

Pr(Y = y|X = x,α = α0) =
n∏

i=1

∏
j>i

Pr(Yij = yij|xi, xj, αi0, αj0), (3)

where

Pr(Yij = yij|xi, xj, αi0, αj0) =
[
F (αi0 + x⊤

ijβ0)F (αj0 + x⊤
jiβ0)

]yij
×
[
1− F (αi0 + x⊤

ijβ0)F (αj0 + x⊤
jiβ0)

]1−yij ,
(4)

for all i ̸= j where F (αi0 + x⊤
ijβ0) := Pr(Zij = 1|xij, αi0) and F (·) is known.

Assumption 1 is similar to Assumption 1 of Graham (2017) except for two important
differences. First, under NTU αi0 + x⊤

ijβ0 and αj0 + x⊤
jiβ0 are not additively separable in the

linking probability between i and j, thus the tetrad logit estimator of Graham (2017) does
not apply in our setting. Instead, we propose a one-step split-network jackknife bagging esti-
mator that works with NTU and achieves the Cramér-Rao efficiency bound asymptotically.
Second, we do not specify the functional form of F (·) to be logistic as in the literature (e.g.,
Chatterjee, Diaconis, and Sly (2011); Graham (2017); Qu, Chen, Yan, and Chen (2024)).
Instead, we impose mild conditions on F (·) for our asymptotic analysis in Assumption 3.
Most common distributions including logistic and normal distribution satisfy Assumption 3.
In this regard, we consider Assumption 1 to be more general.

Assumption 1 requires that the ϵij’s are i.i.d. across dyads (i, j), i.e., links are formed
independently of one another conditional on agent attributes. The assumption that links
form independently could be plausible in certain settings, such as risk-sharing networks,
online friendships, trade networks, and conflicts between nation-states. However, it rules
out link interdependencies and thus may not be applicable to certain types of networks
with explicit strategic interactions such as supply chain networks. See the discussion of
Assumption 1 of Graham (2017) for more details on this issue.

Assumption 1 also requires the link function F (·) to be correctly specified. It is well-
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known that under regularity conditions MLE will converge to the point that minimizes the
Kullback-Leibler information criterion between the true and the misspecified model (White
(1982)). The issue is further complicated by the high-dimensional individual fixed effects and
NTU of model (4). To our knowledge, the misspecification issue has not been investigated
in the network formation literature. We discuss how model misspecification affects our
theoretical results in Section 4.2 and provide simulation evidence for our estimator under
misspecification in Section 5.

The next two assumptions are needed to facilitate our asymptotic analysis in the next
section.

Assumption 2 (Bounded Support and Random Sampling). Suppose the following conditions
hold:

(a) The true value of agent-level heterogeneity α0 lies in the interior of a compact set
A ⊂ Rn.

(b) The true value of structural parameter β0 lies in the interior of a compact set B ⊂ RK.

(c) Dyad-level characteristics Xij satisfy Xij ∈ X ⊂ RK for some compact set X.

Assumption 2 collects and combines Assumptions 2 and 5(i) of Graham (2017). Assump-
tion 2(a)–(c) collectively imply that probability of linking between dyad (i, j) is uniformly
bounded in [κ, 1−κ] for some κ ∈ (0, 1), which essentially requires the network to be dense.5

The dense network condition is needed so that we can estimate αi0 consistently for each
i.6 It is similar to the estimation of individual fixed effect in large T panel data models.
In simulations we find that asymptotic results hold when the network is fairly sparse. See
Section 5.3 for the simulation results for networks with a density smaller than .1. Note that
our theory in principle can allow the support of Xij to be unbounded; however, it would
introduce more technical complications in deriving the rates of convergence without adding
much theoretical insight since it involves handling the complicated tail behaviors of the ran-
dom variables. Thus, we impose Assumption 2(c), which is similarly assumed in Assumption
2(ii) of Graham (2017), to focus on the main idea of the paper.

5Density of an undirected network is defined as ρn = N−1
∑n

i=1

∑
j>i yij , where N =

(
n
2

)
. A network is

dense if limn→∞ ρn ≥ c > 0 for some constant c.
6The Beta models with logistic link functions studied by Chatterjee, Diaconis, and Sly (2011), Graham

(2017), and Yan, Jiang, Fienberg, and Leng (2019) point out that Assumption 2(a) could be relaxed to be
∥α0∥∞ = O(log(log n)), which allows for sparser networks (but nearly dense). However, this result does not
extend to our setting directly due to NTU and general F (·). Thus, we require dense network in Assumption
2.
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Assumption 3 (Restrictions on F (·)). F (·) is three-times continuously differentiable with
its first to third derivatives f(·) , f (1)(·), and f (2)(·) satisfying

F (αi + x⊤
ijβ) ∈ [c1, 1− c1],

f(αi + x⊤
ijβ) ∈ [c2, 1− c2],

|f (1)(αi + x⊤
ijβ)| ≤ c3, and

|f (2)(αi + x⊤
ijβ)| ≤ c4,

for some constants c1, c2 ∈ (0, 1/2], c3, c4 > 0 and all (α, β) ∈ A×B, xij ∈ X, 1 ≤ i ̸= j ≤ n.

Assumption 3 puts bounds on F (·) and its derivatives. We consider Assumption 3 to be
mild because it is generally satisfied for common distributions such as logistic and normal
distributions when combined with Assumption 2. This Assumption is similar to Assumption
4.3(v) of Fernández-Val and Weidner (2016), which restricts the smoothness of the likelihood
functions. We use Assumption 2 to bound the norm of the Jacobian matrix of the moment
conditions to be presented in the next section.

3 Estimation and Large Sample Properties

In this section, we introduce the one-step split-jackknife bagging estimator for β0 and
prove that it is

√
N -consistent and achieves the Cramér-Rao lower bound asymptotically.

The idea is based on the one–step approximation of the MLE of Le Cam (1969). However,
there are three challenges in applying Le Cam (1969)’s idea to our setting. First, Le Cam
(1969)’s one-step estimator requires an initial estimator of β0. Second, with the inclusion of
the high-dimensional fixed effects α0 into the model (4), the one-step estimator proposed by
Le Cam (1969)—even if successfully constructed—will be

√
N -inconsistent7 with a compli-

cated nonzero mean in the limit after normalization, a problem also shared by the original
MLE of β0 when incidental parameters exist in the model. Moreover, popular debiasing
methods in the literature such as jackknife will inflate the variance of the estimator, making
it asymptotically inefficient.

We provide intuition on how we deal with these challenges here. To address the initial
estimator problem, we propose a joint method of moments (JMM) estimator for β0 (and
the high-dimensional fixed effects α0). We first estimate the high-dimensional fixed effects
α as a function of β. The main deviation from the existing methods (e.g., Theorem 1.5 of
Chatterjee, Diaconis, and Sly (2011) or the fixed point equation (17) of Graham (2017)) in
this step is that we do not rely on ϵij being logistic random variable nor the link formation

7By
√
N -inconsistent, we mean that

√
N
(
β̂ − β0

)
d→ N (µ, V ) as n → ∞ for some µ ̸= 0.
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process being TU. Instead, we construct a set of moment conditions that involves the average
degree sequence for each individual and use a new iterative algorithm to compute α̂ (β) as
a function of β. The new iterative algorithm is inspired by the stochastic gradient descents
method (SGD, Robbins and Monro (1951)).8 We prove existence and uniqueness of α̂ (β),
the solution to a high-dimensional system of moment equations. Our new method can handle
a general class of distributions, not only logistic, as well as NTU.

Once α̂ (β) is obtained, we do not maximize the concentrated log-likelihood function
to estimate β0 because it is hard to verify concavity of the concentrated criterion function
with α̂ (β) plugged in and the maximization can be computationally unstable. Instead, we
construct a new set of finite-dimensional moment conditions to compute β̂JMM, the JMM
estimator for β0. We obtain asymptotic distribution for β̂JMM and prove uniform consistency
for α̂

(
β̂JMM

)
. Then, we plug β̂JMM into the one-step estimator of Le Cam (1969) to obtain

β̂OS and prove its asymptotic normality. Since we have an analytical expression for β̂OS,
there is no need to maximize the log-likelihood function and consequently the computation
is stable and very fast.

To deal with the second issue of the asymptotic bias in β̂OS, we use the bagging method
with split-network jackknife to debiase β̂OS and maintain its efficiency simultaneously. We
prove that the new one-step split-network jackknife bagging estimator, denoted by β̂BG, is
asymptotically normal,

√
N -consistent, and attains the Cramér-Rao lower bound asymptot-

ically. A graphical illustration of the bagging procedure is provided in Figure 1.

3.1 Joint Method of Moments Estimator

We propose a new joint method of moments estimators for both α0 and β0. There are
n+K unknown parameters in our model (4), which requires at least n+K moment equations
for identification. To deal with the challenges caused by the high-dimensionality of α0, we
construct two sets of moment conditions and estimate the parameters sequentially. For each
candidate β, we use the first set of n moment conditions to estimate α0 as a function of β.
Then, we plug the estimated α̂ (β) into the second set of K moment equations to estimate
β0, obtaining β̂JMM.9

Define di :=
∑

j ̸=i Yij as the degree sequence for i = 1, ..., n of the observed network Y.

8Strictly speaking, the algorithm does not comply with the standard definition of SGD as the Jacobian
matrix of the moment conditions is not symmetric. Nonetheless, we use it to motivate the construction of
the moment estimators of the high-dimensional α0.

9In what follows, we use β̂ to denote β̂JMM for notational simplicity whenever there is no confusion.
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The first set of moment conditions concerns the average degree for each individual i:

E
[(

d1 −
∑

j ̸=1 p1j (α0, β0) , · · · , dn −
∑

j ̸=n pnj (α0, β0)
)⊤∣∣∣∣X = x

]
= 0. (5)

The moment condition (5) is used to obtain α̂ as a function of β, i.e., α̂ (β), via a SGD type
algorithm.10 Specifically, we use the following high-dimensional system of equations

m1(α, β) =
(
d1 −

∑
j ̸=1 p1j(α, β), · · · , dn −

∑
j ̸=n pnj(α, β)

)⊤
, (6)

and provide an algorithm to find α̂(β), the root of (6) as a function of β. Let

ri(α, β) = αi + (n− 1)−1

(
di −

∑
j ̸=i

pij(α, β)

)
, i = 1, . . . , n (7)

and r(α, β) =
(
r1(α, β), . . . , rn(α, β)

)⊤. The intuition is, for any i when di is strictly
larger than

∑
j ̸=i pij(α, β), we would like to increase αi such that each pij(α, β) for j ̸= i

is larger, and vice versa. The validity of the argument is guaranteed by the definition
pij(α, β) = F (αi+x⊤

ijβ)F (αj +x⊤
jiβ) and the monotonicity of F (·) by Assumption 3. Then,

starting with an arbitrary initial value α0, we update αk+1(β) = r(αk(β), β) into the next
iteration.

Observe that m1(α, β) is a high-dimensional system of equations that features NTU,
covariates, and possibly non-logistic link functions. In the next theorem, we prove that α̂(β)

exists and is unique for each β around β0 with high probability as n grows.

Theorem 1. Under Assumptions 1–3, as n → ∞, w.p.a.1 α̂(β) exists and is unique for
each β ∈ {β ∈ B| ∥β − β0∥2 < c} for some constant c > 0. Moreover, uniformly across all k,
we have

∥αk+2(β)−αk+1(β)∥1 ≤ δ∥αk(β)−αk−1(β)∥1 and

∥αk+2(β)− α̂(β)∥1 ≤ δ∥αk(β)− α̂(β)∥1,

for some fixed constant δ ∈ (0, 1).

We present the proofs of all the theoretical results of this paper in Appendix B. Theorem
1 guarantees that α̂(β) = limk→∞αk(β) and that the ℓ1-distance between α̂(β) and αk(β)

decreases geometrically after each two iterates. We find that computing α̂(β) is fast in the
simulations, which is another advantage of our SGD algorithm.

10It is worth emphasizing that (5) holds without assuming the distribution of ϵij to be logistic, a condition
that is needed to obtain the fixed point equation of (17)–(18) of Graham (2017) or Theorem 1.5 of Chatterjee,
Diaconis, and Sly (2011). Therefore, we consider (5) to be more general. Moreover, even if ϵij is logistic
random variable, the nonseparability of pij in αi and αj brought about by NTU makes the fixed point
equation of (17)–(18) of Graham (2017) or Theorem 1.5 of Chatterjee, Diaconis, and Sly (2011) not applicable.
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Next, we impose a finite-dimensional orthogonality condition between Xij and (Yij − pij)

over the population of (i, j) dyads:

E [ (Yij − pij (α0, β0))Xij|X = x] = 0. (8)

Let

m2(α, β) =
n∑

i=1

∑
j>i

[yij − pij(α, β)]xij. (9)

Given α̂(β), we solve a concentrated moment equation for β̂:

m2(α̂(β), β) = 0. (10)

Notice that (10) is finite-dimensional, hence it is easy to compute. It is clear that (α̂, β̂) =(
α̂(β̂), β̂

)
.

Before we state the consistency and asymptotic normality results for (α̂, β̂), we combine
m1 and m2 into m for easier exposition of the results:

m(α, β) :=

(
d1 −

∑
j ̸=1

p1j(α, β), · · · , dn −
∑
j ̸=n

pnj(α, β),
n∑

i=1

∑
j>i

[yij − pij(α, β)]xij

)⊤

.

(11)
Then (α̂, β̂) is one root of (11). Although α̂(β) is unique by Theorem 1 for any β around
β0, in principle there could be multiple β̂ that solves (10). However, the next identification
condition guarantees that any β̂ that solves (10) is consistent for β0.

Assumption 4 (Identification). Define the concentrated moment equation

S̄n(β) :=

(
n

2

)−1

E[m2(α(β), β)|x,α0],

where α(β) is the unique root of E[m1(α, β)|x,α0] = 0 for each β ∈ {β ∈ B| ∥β − β0∥2 < c}.
Suppose that for all δ > 0 and for n large enough

inf
β∈B:∥β−β0∥2≥δ

∥∥S̄n(β)
∥∥
2
> 0. (12)

Recall that Theorem 1 guarantees that the high-dimensional moment equation
m1(α, β) = 0 always has a unique solution if ∥β − β0∥2 < c for some constant c. As-
sumption 4 is a local identification condition for the low-dimensional parameter β0, as is
extensively discussed in Chen, Chernozhukov, Lee, and Newey (2014) for nonlinear models
with high-dimensional nuisance parameters. Condition (12) is equivalent to assuming that
β0 is the unique solution to S̄n(β) = 0, which is similar to the widely imposed “unique
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minimizer” condition in M-estimators literature, see Chapter 5 (pg. 45) of Van der Vaart
(2000).

To better understand Assumption (4), consider a (low-dimensional) linear panel data
model with individual fixed effects, yit = αi0 + x⊤

itβ0 + ϵit, i = 1, . . . , n, t = 1, . . . , T . Sup-
pose E[(1, x⊤

it)
⊤ϵit] = 0 in this model. Then, the expected concentrated moment function is

S̄n(β) = (nT )−1E
{∑

i,t

[
yit − αi(β)− x⊤

itβ
]
xit

}
, where αi(β) = αi0 + T−1

∑
t x

⊤
it(β0 − β) is

the solution to E
[∑

t(yit − x⊤
itβ − αi)

]
= 0, i = 1, . . . , n. Then S̄n(β) = (nT )−1

∑
i,t(xit −

x̄i) (xit − x̄i)
⊤ (β − β0) with x̄i = T−1

∑
t xit. Consequently, a sufficient condition for (12)

in this linear panel model example is that the smallest eigenvalue of (nT )−1
∑

i,t(xit −
x̄i) (xit − x̄i)

⊤ (which is also the concentrated Jacobian matrix for β) is strictly large than
0, which is a quite weak identification condition on the design matrix.

We prove that the JMM estimator β̂ converges to β0 in probability as n → ∞. For
the high-dimensional fixed effects, α̂ is consistent in the sense that ∥α̂ − α0∥∞

p→ 0. We
summarize these results in the next theorem.

Theorem 2. If Assumptions 1–4 hold, then

β̂
p→ β0, and ∥α̂−α0∥∞

p→ 0, as n → ∞.

To state the limit distribution of β̂, we introduce more definitions on the Jacobian and
covariance matrices of moment equations (11). Let

J(α, β) := ∇m(α, β) =

(
∇α⊤m1(α, β) ∇β⊤m1(α, β)

∇α⊤m2(α, β) ∇β⊤m2(α, β)

)
=:

(
J11(α, β) J12(α, β)

J21(α, β) J22(α, β)

)
.

be the Jacobian matrix of m(α, β), where we separate it into four blocks according to the
variables of differentiation. In Appendix A, we give explicit expressions of these blocks. It is
worth emphasizing that J11(α, β) ̸= J11(α, β)⊤ and J12(α, β) ̸= J21(α, β)⊤, thus J(α, β) is
asymmetric. The asymmetry implies that m(α, β) can not be written as a gradient function
of any scalar-valued criterion function.

The concentrated Jacobian matrix for β is defined as

Jn(β) :=
∂m2(α̂(β), β)

∂β
= J22(α̂(β), β)− J21(α̂(β), β)J−1

11 (α̂(β), β)J12(α̂(β), β).

Then, we let

V := Var
(
m(α, β)|x,α0

)
=

(
Var(m1) Cov(m1,m2)

Cov(m1,m2)
⊤ Var(m2)

)
:=

(
V11 V12

V⊤
12 V22

)
be the covariance matrix of m(α, β). As we show in Appendix A, V does not depend on
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unknown parameter (α, β) because it is a covariance matrix which cancels out the unknown
parameters by demeaning. Define

Bk0 = lim
n→∞

1

2
√
N

Tr
[
J−1
11 V11

(
J−1
11

)⊤
Rk

]
(13)

where Rk is defined by (68) in the Appendix B. Let B0 = (B10, . . . , BK0)
⊤ and the limiting

variance matrix be

Ω0 := lim
n→∞

N−1J−1
0

[
V22 + J21J

−1
11 V11(J21J

−1
11 )

⊤ − J21J
−1
11 V12 − (J21J

−1
11 V12)

⊤] (J−1
0 )⊤, (14)

where J0 is the probability limit of N−1Jn(β0). We discuss J0 in more details in Appendix
B. If α0 is known, the asymptotic variance of β̂ − β0 becomes J−1

22 V22J
−1
22 and the additional

terms shown in (14) are caused by estimating α0.

Theorem 3. If Assumptions 1–4 are satisfied, then
√
N(β̂ − β0)− J−1

0 B0
d→ N (0,Ω0).

Theorem 3 shows that the JMM estimator β̂ is normal asymptotically, however the limit-
ing distribution does not center around zero. The bias term J−1

0 B0 arises from estimating α0.
Incidental parameter problem is common in the literature of non-linear panel fixed effects
regression with large N and T (e.g., Neyman and Scott (1948); Hahn and Newey (2004)).

Remark 1. It is possible to correct for the bias for β̂ by the split-network jackknife (SJ),
which is inspired by the split-panel jackknife proposed by Dhaene and Jochmans (2015). The
idea is to split the set of agents {1, ..., n} randomly and equally into two disjoint subsets and
estimate β0 twice (denoted by β̂1 and β̂2) using each sub-network formed by the agents from
each subset. Then, the JMM SJ estimator is β̂SJ := 2β̂− 1

2

(
β̂1 + β̂2

)
. We prove in Appendix

B.4 that β̂SJ is
√
N -consistent with 2Ω0 being the asymptotic variance. The inflated variance

arises because we ignore the links between agents from different subsets when computing β̂1

and β̂2.

3.2 One-Step Estimator

Under Assumption 1, the log-likelihood function of (α, β) is

ℓn(α, β) :=
n∑

i=1

∑
j>i

{yij log
[
F (αi + x⊤

ijβ)F (αj + x⊤
jiβ)

]
+ (1− yij) log

[
1− F (αi + x⊤

ijβ)F (αj + x⊤
jiβ)

]
}. (15)
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By maximizing (15) with respect to α and β simultaneously, the maximum likelihood esti-
mator (MLE) is

(α̂MLE, β̂MLE) := arg max
(α,β)∈A×B

ℓn(α, β),

which can be equivalently defined via maximizing a concentrated log-likelihood function

β̂MLE := argmax
β∈B

ℓn(α̂MLE(β), β), where α̂MLE(β) := argmax
α∈A

ℓn(α, β).

Moreover, (α̂MLE, β̂MLE) is also the root of the score function of ℓn(α, β), i.e., s(α, β) =(
s⊤1 (α, β), s⊤2 (α, β)

)⊤
, where

s1(α, β) :=
∂ℓn(α, β)

∂α
=
(∑

j ̸=1
f1j(α,β)[y1j−p1j(α,β)]

F1j(α,β)[1−p1j(α,β)]
, · · · ,

∑
j ̸=n

fnj(α,β)[ynj−pnj(α,β)]

Fnj(α,β)[1−pnj(α,β)]

)⊤
,

s2(α, β) :=
∂ℓn(α, β)

∂β
=

n∑
i=1

∑
j ̸=i

fij(α, β)[yij − pij(α, β)]

Fij(α, β)[1− pij(α, β)]
xij.

It has been well documented in the literature that log-likelihood function can be non-
concave over the parameter space. The non-concavity issue is further exacerbated by the high
dimensionality of α0 of this paper. For example, to compute α̂MLE(β), we need to maximize
ℓn(α, β) with respect to α, an n-dimensional object, for each fixed β. This is numerically
challenging. Instead, we propose a new estimator based on Le Cam’s one-step approximation
(Le Cam (1969)) which does not require concavity of the log-likelihood function, is easy to
compute, and achieves the Cramér-Rao lower bound asymptotically.

To define the one-step estimator, we introduce more definitions on the Hessian matrix
and the information matrix. The Hessian of ℓn(α, β) is defined as

H(α, β) :=

(
∇α⊤s1(α, β) ∇β⊤s1(α, β)

∇α⊤s2(α, β) ∇β⊤s2(α, β)

)
:=

(
H11(α, β) H12(α, β)

H⊤
12(α, β) H22(α, β)

)
.

Define the information matrix as

I(α, β) = −Eβ[H(α, β)|x,α] = Eβ[s(α, β)s(α, β)⊤|x,α],

where Eβ means taking expectation conditional on the population parameter being equal to
β. We partition I(α, β) into four submatrices similarly as before. Following Chapter 4.2 of
Amemiya (1985), we define the concentrated information matrix of β,

In(α, β) = I22(α, β)− I12(α, β)⊤I11(α, β)−1I12(α, β). (16)

The concentrated score function is defined as

sn(α, β) = s2(α, β)− I12(α, β)⊤I11(α, β)−1s1(α, β). (17)
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Finally, we define the one-step estimator β̂OS as

β̂OS = β̂ + In(α̂, β̂)−1sn(α̂, β̂), (18)

with the joint moment estimator (α̂, β̂) from Section 3.1.
Algebra shows

E
[
∂sn(α, β0)

∂α

∣∣∣x,α0

]
= 0n, E

[
∂sn(α, β0)

∂β

∣∣∣x,α0

]
= −In.

Therefore, by a Taylor expansion on the right hand side of (18), we have

β̂OS − β0 ≈ In(α0, β0)
−1sn(α0, β0) (19)

in large samples. To establish (19) rigorously and hence the asymptotic normality of β̂OS, we
need an additional assumption on the behavior of the information matrix. Let wki(α, β) =[
I12(α, β)⊤I11(α, β)−1

]
ki

, the kith element of I12(α, β)⊤I11(α, β)−1.

Assumption 5. For (α, β) ∈ A × B, 1 ≤ k ≤ K, and 1 ≤ i ̸= j ≤ n, supk,i |wki(α, β)|
is O (1) and continuously differentiable. Furthermore, the following conditions on wki(α, β)

are satisfied:

(a) supk,i ∥∂wki(α, β)/∂β∥ = O(1),

(b) supk,i |∂wki(α, β)/∂αi| = O(1),

(c) supk,i,j |∂wki(α, β)/∂αj| = O(n−1), i ̸= j.

Assumption 5 is quite mild given that supk,i |wki(α, β)| = O(1) is assumed, which con-
cerns the kith element of I12(α, β)⊤I11(α, β)−1, a well-defined object. To gain some intuition
about Assumption 5(c), consider a classical linear panel data model with additive individual
fixed effects. If there is no interaction between i and j, wki(α, β) will only dependent on αi

and β, hence |∂wki(α, β)/∂αj| = 0, satisfying Assumption 5(c). Therefore, Assumption 5(c)
is used to control for how much the function wki(α, β) depends on αj for j ̸= i.

Let Wk be the n× n matrix of these derivatives with (Wk)ij = ∂wki(α0, β0)/∂αj. Since
we have estimated α0 by the method of moments, a direct plug-in of α̂ introduces bias for β̂OS

asymptotically and we need to specify this bias term. This asymptotic bias is characterized
by Wk and a covariance matrix between m1 and s1, i.e., Cov(m1, s1), whose entries are

[Cov(m1, s1)]ij = Fijfji, and [Cov(m1, s1)]ii =
∑
k ̸=i

fikFki.

More details on how to obtain these results are provided in (79) in Appendix B.5. The
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asymptotic bias b0 := (b10, . . . , bK0)
⊤ for the one-step estimator is defined as

bk0 = lim
n→∞

1√
N

Tr[J−1
11 Cov(m1, s1)Wk], k = 1, . . . , K. (20)

With Assumption 5 in position, we prove the limit distribution of β̂OS in the next theorem.

Theorem 4. If Assumptions 1–5 hold, then
√
N(β̂OS − β0)− I−1

0 b0
d→ N (0, I−1

0 ). (21)

Theorem 4 shows β̂OS achieves the Cramér-Rao lower bound asymptotically. In the proof
of Theorem 4, we show that b0 is O(1) and depends on the covariance matrix between m1

and s1. It is because our plug-in estimator for α is obtained from the moment estimating
equation m1, and the one-step estimator (18) uses information from s1 to concentrate out α.
The more similar between m1 and s1, the harder it is to estimate and control for the fixed
effects simultaneously. This highlights the key difference between our one-step estimator
with high-dimensional fixed effects and many other estimators in the literature with low-
dimensional nuisance parameters.

While being efficient, β̂OS is not
√
N -consistent with an asymptotic bias of I−1

0 b0. In the
next subsection, we use the bagging of split-network jackknife to achieve bias correction and
maintain its efficiency simultaneously.

3.3 Bagging for Split-Network Jackknife Estimators

To debiase β̂OS, one may use the split-network jackknife as discussed in Remark 1. Specif-
ically, let

β̂OS−SJ = 2β̂OS −
1

2

(
β̂OS,1 + β̂OS,2

)
, (22)

where β̂OS,1 and β̂OS,2 are obtained from estimating β0 using two randomly-split half networks,
respectively. Then, it is straightforward to show that

√
N(β̂OS−SJ − β0)

d→ N (0, 2I−1
0 ). (23)

The intuition for the doubled covariance matrix 2I−1
0 in (23) is that by splitting the

network just once we effectively ignore the links formed between agents from each subset.
Furthermore, splitting the whole network randomly may make the SJ estimator computa-
tionally unstable. The inflated covariance matrix is not satisfactory given that the original
one-step estimator achieves the Cramér-Rao lower bound of I−1

0 . Thus, we propose a bagging
method to recover the efficiency of our estimator.

19



To motivate the bagging method, in theory there are a total of Tn :=
(

n
n/2

)
(suppose n is

even for notational simplicity) possible ways to divide the network. However, Tn can be very
large for a moderate choice of n. For example, when n = 100, Tn =

(
100
50

)
≃ 1.009×1029, which

is an astronomical number that beyond the capacity of most modern personal computers.
The bagging method solves this problem by randomly selecting T

′
n ≪ Tn splits of the network

and averaging over all the SJ estimators from these T
′
n splits.

We show that when T
′
n → ∞ and n → ∞, the bagging estimator achieves the Cramér-Rao

lower bound. To prove this claim, first consider the computationally infeasible SJ estimator
based on all Tn splits of the network. Let t = 1, . . . , Tn index all different splits, where each t

creates two equally separated random sets of agents I(t)
1,n and I(t)

2,n that satisfies I(t)
1,n∪I

(t)
2,n = In

and I(t)
1,n ∩ I(t)

2,n = ∅. Suppose the one-step estimators based on sub-networks I(t)
1,n × I(t)

1,n and
I(t)
2,n × I(t)

2,n are β̂
(t)
OS,1 and β̂

(t)
OS,2, respectively. Then, the t-th one-step SJ estimator is

β̂
(t)
OS−SJ := 2β̂OS −

1

2

(
β̂
(t)
OS,1 + β̂

(t)
OS,2

)
. (24)

Define the average of β̂(t)
OS−SJ over all t ∈ {1, ..., Tn} as

β̂Tn
:=

1

Tn

Tn∑
t=1

β̂
(t)
OS−SJ.

To implement the bagging method, we randomly select T ′
n ≪ Tn estimators from{

β̂
(t)
OS−SJ

}Tn

t=1
and take average of them to obtain the one-step split network jackknife bagging

(BG) estimator,

β̂BG :=
1

T ′
n

T ′
n∑

t=1

β̂
(t)
OS−SJ. (25)

Denote the σ-algebra generated by (y,x,α0) as Fn. We have

E
(
β̂BG|Fn

)
=

1

Tn

Tn∑
t=1

β̂
(t)
OS−SJ = β̂Tn . (26)

We provide a graphical illustration of the bagging method in Figure 1.
In the next theorem, we show that the oracle average β̂Tn attains the Cramér-Rao lower

bound, and the bagging estimator β̂BG approximates β̂Tn sufficiently well as T ′
n → ∞. In

Section 5 and 6, we find the finite-sample performance of our BG estimator satisfactory when
T

′
n is set to be around 100, which is significantly smaller than Tn.

Theorem 5. If Assumptions 1–5 are satisfied, then, as n → ∞,
√
N(β̂Tn − β0)

d→ N (0, I−1
0 ), (27)
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...

Figure 1: Summary of bagging procedure

√
N(β̂BG − β̂Tn)

p→ 0, as T ′
n → ∞. (28)

Hence, as T ′
n → ∞ and n → ∞,

√
N(β̂BG − β0)

d→ N (0, I−1
0 ). (29)

Remark 2. Although our BG estimator is inspired by half-panel jackknife from the literature
on panel data (Dhaene and Jochmans (2015)) and can correct for the bias, it is different from
SJ because directly applying SJ doubles the asymptotic variance of the estimator as shown
in Corollary 1. The BG estimator, on the other hand, does not affect the variance as proved
in (29) and is thus efficient. Alternatively, one may be inclined to apply BG to the JMM
estimator directly and bypass Le Cam’s approximation step. Indeed, BG can correct for the
bias of the JMM estimator. However, it cannot make the JMM estimator efficient as Le Cam’s
approximation does. To sum up, applying both Le Cam’s approximation (efficiency) and
BG (bias-correction) to the JMM estimator leads to

√
N -consistent and efficient estimation

of β0.

Remark 3. In a nonlinear panel data model with time and individual fixed effects, Fernández-
Val and Weidner (2016) propose splits along both individual and time dimensions for their
split-sample jackknife estimator. For the individual dimension, Fernández-Val and Weidner
(2016) suggest in their footnote 8 to use the average of all possible Tn partitions and point
out that the average over T ′

n ≪ Tn splits is enough. The objective of their repeated sampling
is to avoid ambiguity and arbitrariness in the choice of the division. In contrast, we propose
the BG estimator for achieving efficiency and bias-correction simultaneously. Furthermore,
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we prove formal asymptotic results for the BG estimator in Theorem 5 for inference.

4 Extensions

4.1 Average Partial Effects

In addition to α0 and β0, researchers and policy makers may be interested in estimating
certain averages over the distribution of exogenous regressors and fixed effects. One leading
example concerns the conditional mean of the outcome given covariates and individual fixed
effects

E [Yij|Xij,α, β] = F (x⊤
ijβ + αi)F (x⊤

ijβ + αj), (30)

where the partial effects are differences or derivatives of (30) with respect to components of
Xij, say Xij,k, the kth coordinate of Xij. We suppress its dependence on Y and X and define
the partial effect of xij,k for dyad (i, j) as

∆ij,k(αi, αj, β) =

pij(αi, αj, βk + x⊤
ij,−kβ−k)− pij(αi, αj, x

⊤
ij,−kβ−k) (b)

βk

[
f(x⊤

ijβ + αi)F (x⊤
ijβ + αj) + F (x⊤

ijβ + αi)f(x
⊤
ijβ + αi)

]
(c)

where “(b)” corresponds to binary xij,k while “(c)” refers to continuous xij,k. Define ∆ij =

(∆ij,1, . . . ,∆ij,K)
⊤. Then, the unconditional APE is

δ0 = E

[
1

N

n∑
i=1

∑
j>i

∆ij(αi, αj, β0)

]
, (31)

where the expectation is taken over (Xi, αi)
n
i=1. Plugging the method of moments estimator

of (α, β) into (31) yields the estimator for the APE

δ̂ =
1

N

n∑
i=1

∑
j>i

∆ij(α̂i, α̂j, β̂). (32)

Define an (infeasible)

∆̄n =
1

N

n∑
i=1

∑
j>i

∆ij(αi0, αj0, β0). (33)

Let the SJ estimator and bagging estimator of the APE be

δ̂SJ := 2δ̂ − 1

2
(δ̂1 + δ̂2) and δ̂BG :=

1

T ′
n

T ′
n∑

t=1

δ̂
(t)
SJ , (34)

respectively. Here,
(
δ̂1, δ̂2

)
are the plug-in estimators based on two sub-networks after a
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random split of the nodes and
{
δ̂
(t)
SJ

}T ′
n

t=1
are split-network jackknife estimators based on T ′

n

random splits. The next theorem shows that δ̂ is
√
n-consistent. We use a central limit

theorem for U-statistics (Theorem 12.3 of Van der Vaart (2000)) to prove it. To make the
result precise, we include asymptotically vanishing bias terms similarly to Theorem 4.2 of
Fernández-Val and Weidner (2016). Additionally, since the bias terms are asymptotically
negligible, the two bias-corrected estimators in (34) do not provide meaningful improve-
ment over the original estimator δ̂. We provide numerical evidence in Section 5 and 6 that
substantiates this claim.

Theorem 6. Define σδ,n := Σ∆

N
+ 4Σδ

n
. If Assumptions 1–4 hold, (Xi, αi)1≤i≤n are i.i.d.

across i, and ∆̄n is a non-degenerate U-statistic, then

σ
−1/2
δ,n

(
δ̂ − δ0 −

1√
N
Bβ −

1√
N
Bα

)
d→ N (0, IK), (35)

with

Bα = lim
n→∞

1

2
√
N
Tr
[
J−1
11 V11

(
J−1
11

)⊤
Rµ

k

]
, Bβ := lim

n→∞
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0 B0, (36)

where Rµ
k , k = 1, . . . , K and (∆α,∆β) are characterized in (90) and (87), respec-

tively. The variance term Σ∆ is defined in (94). The sampling variance Σδ =

E [∆ij(αi, αj, β0)∆ik(αi, αk, β0)], where the expectation is taken over (αi, Xi)
n
i=1.

Furthermore, the bagging estimator δ̂BG satisfies

σ
−1/2
δ,n

(
δ̂BG − δ0

)
d→ N (0, IK).

In Theorem 6, Bβ stems from the bias of the plug-in estimator β̂ while Bα stems from
the incidental parameter bias of plug-in estimator α̂. For the components of σδ,n, Σ∆ is
the asymptotic variance of

√
N(δ̂ − ∆̄n) and Σδ is the asymptotic variance of

√
n(∆̄n − δ0).

Note that in Theorem 6 the rate of convergence of δ̂ is
√
n instead of

√
N . The slower

convergence rate in (35) makes the bias terms introduced by estimating the individual fixed
effects asymptotically negligible.

It is worth pointing out that if one is interested in ∆̄n (e.g., Chen, Fernández-Val, and
Weidner (2021)), the asymptotic result will become

√
N
(
δ̂ − ∆̄n

)
−Bβ −Bα

d→ N (0,Σ∆),

which generalizes Theorem 2 of Chen, Fernández-Val, and Weidner (2021) to the NTU
setting.
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The asymptotic variance Σδ can be estimated by

Σ̂δ =

(
n

3

)−1 n∑
i=1

∑
j>i

∑
k>j

[
∆ij(α̂i, α̂j, β̂)− δ̂

] [
∆ik(α̂i, α̂k, β̂)− δ̂

]
,

which is consistent by the law of large numbers for U-statistics. Although the variance term
Σ∆/N is dominated asymptotically by 4Σδ/n in (35), in simulations we find that including
it improves the coverage probabilities.

4.2 Model Misspecification

The Cramér-Rao lower bound is only defined for correctly specified models. A natural
question is what if the distribution function F (·) of ϵij is misspecified? Graham (2024)
provides an insightful analysis for sparse network formation models with TU. However, this
question has not been studied yet in the literature of network formation with NTU. In this
section, we discuss theoretical properties of our estimators under such misspecification. If the
model used for estimation is misspecified, the estimator of structural parameter in nonlinear
models in general converges to a pseudo value defined as the minimizer of certain criterion
function (for MLE, see White (1982, 1996)) or the solution of a moment equation (for method
of moments).

First, we analyze the pseudo values that our estimators β̂ and β̂OS converge to under
model misspecification. Suppose researchers specify the distribution function of ϵij as G(·)
while the true distribution F (·) differs from G (·) at points with strictly positive probability
measure. For fixed n, we impose the following identification assumption for model misspeci-
fication. Let qij(α, β) := G(αi + x⊤

ijβ)G(αj + x⊤
ijβ) be the misspecified probability of linking

between i and j.

Assumption 6 (Identification under Model Misspecification). For a fixed n, the following
nonlinear function of β:

S̃n(β) :=
n∑

i=1

∑
j>i

[pij(α0, β0)− qij(α(β), β))]xij = 0 (37)

has a unique solution βn∗, and satisfy for any δ > 0 and n large enough,

inf
β∈B:∥β−βn∗∥2≥δ

∥∥∥S̃n(β)
∥∥∥
2
> 0,

where α(β) is the unique solution to the following system of equations(∑
j ̸=1 p1j(α0, β0)−

∑
j ̸=1 q1j(α, β), · · · ,

∑
j ̸=n pnj(α0, β0)−

∑
j ̸=n qnj(α, β)

)⊤
= 0. (38)
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Assumption 6 is the counterpart of Assumption 4 under model misspecification. Simi-
larly to Theorem 1, equation (38) has a unique solution with high probability under mild
conditions on (α0, β0) and β. Thus, Assumption 6 essentially imposes a local identification
condition for the common parameter. Notice that βn∗ depends on the true link function
F (·), misspecified link function G(·), true parameter values (α0, β0), and the covariates
{Xij}i ̸=j. As a result, βn∗ may vary with n. The following theorem demonstrates that the
JMM estimator based on the misspecified link function G (·) will center around βn∗ with a
bias term, and the split-network jackknife procedure removes the bias asymptotically. Let
α∗ := α(βn∗) with α (·) satisfying (38).

Theorem 7 (JMM Estimation under Model Misspecification). If Assumptions 1–3 and 6
hold, then as n → ∞

√
N
(
β̂ − βn∗

)
− J−1

∗ B∗
d→ N (0,Ω∗) .

where J∗, B∗ and Ω∗ are defined similarly to J0, B0 and Ω0 in Section 3.1 except that the
pseudo value (α∗, βn∗) and the misspecified link function G(·) are used in the place of (α0, β0)

and F (·).

Theorem 7 shows that if the researcher believes that the moment equations hold in
population, the JMM estimator is robust under the model misspecification in the sense that
β̂ is consistent for βn∗, which is the unique solution to the (pseudo) population moment
equations (37).

To conduct statistical inference for the JMM estimator under model misspecification, we
need an estimator for the limit covariance matrix Ω∗. Let mij(α̂, β̂) be an (n+K)×1 vector
where: (i) the ith and jth elements are both yij − qij(α̂, β̂); (ii) the (n+ 1)th to (n+K)th
elements are the vector of [yij − qij(α̂, β̂)]x⊤

ij; and (iii) the rest of the coordinates are zero.
Then, we use the plug-in estimator

V̂∗ :=
n∑

i=1

∑
j>i

mij(α̂, β̂)mij(α̂, β̂)⊤.

Further write submatrices of V̂∗ as V̂11∗, V̂12∗, V̂21∗, and V̂22∗, and similarly for Ĵ∗. Note
that J∗ is the concentrated Jacobian matrix for βn∗, while J∗ is the Jacobian matrix for both
α∗ and βn∗. Then, we propose to estimate Ω∗ by

Ω̂∗ := N−1Ĵ−1
∗

[
V̂22∗ + Ĵ21∗Ĵ

−1
11∗V̂11∗(Ĵ

−1
11∗Ĵ21∗)

⊤ − Ĵ21∗Ĵ
−1
11∗V̂12∗ − (Ĵ21∗Ĵ

−1
11∗V̂12∗)

⊤
]
(Ĵ−1

∗ )⊤,

(39)
which is consistent for Ω∗ by the law of large numbers.
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Under the possible model misspecification, our one-step estimator can be expressed as

β̂OS := β̂ +H(α̂, β̂)−1sn(α̂, β̂), (40)

with the pilot moment estimator (α̂, β̂) as before. Note that

H(α, β) := H22(α, β)−H12(α, β)⊤H22(α, β)−1H12(α, β), (41)

is the concentrated Hessian matrix and

sn(α, β) := s2(α, β)−H12(α, β)⊤H11(α, β)−1s1(α, β),

is the concentrated score function. Under model misspecification, β̂OS in (40) centers around

βn⋆ := βn∗ +H(α∗, βn∗)
−1Esn(α∗, βn∗), (42)

which can be seen as a projection of βn∗ by concentrating out the fixed effects. When
the model is correctly specified, (α∗, βn∗) ≡ (α0, β0), thus βn⋆ ≡ βn∗ ≡ β0 because
Esn(α∗, βn∗) = Esn(α0, β0) ≡ 0. Furthermore, our one-step estimator and bias-corrected
estimators in the misspecified case share similar asymptotic properties from their counter-
parts when the model is correctly specified, except that they now center around the projected
pseudo value βn⋆ instead of β0. These results are summarized in the next theorem.

Theorem 8. Suppose all the bounds in Assumption 5 still hold for each element of [H⊤
12H

−1
11 ].

If Assumptions 1–3 and 6 are satisfied, the one-step estimator β̂OS and the bagging estimator
β̂BG satisfy

√
N
(
β̂OS − βn⋆

)
− H−1

∗ b∗
d→ N (0,Γ∗) and

√
N
(
β̂BG − βn⋆

)
d→ N (0,Γ∗),

respectively, where H∗ and b∗ are defined similarly to H0 and b0, but under (α∗, β∗) and
misspecified link G(·). The asymptotic covariance matrix Γ∗ is

Γ∗ := lim
n→∞

N−1H−1
∗

[
I22∗ +H⊤

12∗H
−1
11∗I11∗(H

−1
11∗H

⊤
12∗)

⊤

−H⊤
12∗H

−1
11∗I12∗ − (H⊤

12∗H
−1
11∗I12∗)

⊤

]
(H−1

∗ )⊤. (43)

We point out that the limits of the variance term and Hessian term are functions of
(α∗, βn∗) because βn⋆ is a function of (α∗, βn∗) by (42). Theorem (8) demonstrates that
β̂BG serves as a robust estimator for common parameters under model misspecification in
the following sense. If the model is correctly specified, β̂BG centers around β0 without bias
and achieves the Cramér-Rao lower bound asymptotically. If the model is misspecified,
β̂BG centers around a projected pseudo value with no asymptotic bias and achieves a lower
variance than β̂SJ. Finally, we can estimate I∗ by Î =

∑n
i=1

∑
j>i s(α̂, β̂) and H∗ by plugging
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(α̂, β̂) into (41), which together give a consistent estimator for Γ∗ by (43).

5 Monte Carlo Simulation

We investigate the finite sample performance of our estimators through a comprehensive
set of Monte Carlo experiments. Specifically, we (i) examine the performance of the proposed
estimators for β0, which include the joint method of moments estimator (JMM), Le Cam’s
one-step estimator (OS), and one-step estimator with bagging of split-network jackknife
(BG); (ii) show how these estimators perform when the model is misspecified; (iii) investigate
the performance of these estimators when the network is reasonably sparse; (iv) check how
well the method can estimate individual fixed effect α0; and (v) study the performance of
the estimators for the APEs.

The data generating process (DGP) is as follows. We set β0 = (1,−1)⊤, and draw
the first covariate of Xij as X1,ij

i.i.d.∼ Bernoulli(0.3), X1,ij = X1,ji. This way, we allow
for discrete variable in Xij. For the second covariate of Xij, we draw Xi

i.i.d.∼ U(−0.5, 0.5)

and let X2,ij = |Xi − Xj|. Next, we generate the individual fixed effects by setting αi =

0.75×Xi+0.25×ξi, where ξi
i.i.d.∼ U(−0.5, 0.5) and is independent of everything else. Thus, αi

and Xij are correlated via Xi. The idiosyncratic shock to each dyad, ϵij, is randomly drawn
from standard logistic distribution, independently of Xij, αi, and ξi. Finally, we obtain each
ij pair of the network Y by

Yij = 1(αi +X⊤
ijβ0 + ϵij > 0) · 1(αj +X⊤

jiβ0 + ϵji > 0).

For all the simulations in this paper, we run R = 1, 000 replications. For the baseline
results, we set n = 100 and 200, which is comparable to the size of the dataset we use for
the empirical application. We also conduct simulations for n = 50 to investigate the small
sample performance of the estimator and present these results in Appendix C. To further
investigate the performance of the estimator of the high-dimensional fixed effects, we also let
n = 500 and 1, 000 in Section 5.2. We report mean bias, median bias, standard deviation,
mean absolute bias, median absolute bias, and root mean squared error (RMSE) across R

runs of simulations.

5.1 Common Parameter

Table 1 summarizes the results for the proposed six estimators of the common parameter
β0 for n = 100 and 200 when the link function F (·) is correctly specified. The main
conclusions when n = 100 are as follows. First, in terms of mean bias, the bias-corrected BG
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estimator performs significantly better than JMM and OS. The median bias shows a similar
pattern. These results are consistent with theory prediction because BG uses bagging of split-
network jackknife to achieve bias-correction. Second, BG works very well in simultaneously
achieving bias-correction and low standard deviation, leading to the lowest RMSE among
all estimators. Moreover, in line with the theory, we find that SJ without BG (not reported
in the tables) inflates the variances of JMM and OS estimators by a constant factor of two
in the simulations. Third, the coverage probabilities of the confidence intervals constructed
based on the asymptotic distribution of each estimator are close to the nominal rate. This
result shows that the asymptotic distributions for the proposed estimators of this paper
are good approximation to the true underlying distribution. Fourth, the performance of
β̂2 is worse than that of β̂1 across all estimators in terms of RMSE, likely caused by the
correlation between X2,ij and (αi, αj). Finally, the mean standard errors estimated from the
asymptotic normality results are close to the standard deviations computed from Monte Carlo
simulations across all estimators. We also find that the quantiles of empirical distributions
of all estimators across simulations are well approximated by the quantiles of corresponding
normal distributions. These results provide support for our theory.

When n = 200, the performance of all the estimators improve. RMSE’s, for example,
are about half the size of those when n = 100, which is expected given the

√
N -convergence

rate and
√
N = O (n). The coverage probabilities are also closer to the nominal level when

n = 200 than when n = 100. The main conclusions remain unchanged as when n = 100.

5.2 Individual Fixed Effects

Given the large number of individual fixed effects, we plot histogram of the estimation
error, α̂i − αi0, i = 1, . . . , n. We find that, consistent with our theory, centers of histograms
are around 0 for small n = 100 and 200. As we increase n, the performance of α̂i improves,
as can be seen from Figure 2(c) and (d) for n = 500 and 1, 000, respectively. Moreover, the
range of estimation error shrinks toward 0 as sample size increases, hence having a large
n further reduces the occurrence of extreme values of α̂i and improves uniformity of the
estimates.

5.3 Average Partial Effects, Model Misspecification, and Sparser

Network

Table 2 summarizes the estimation results for the APEs defined in (31). We provide
results for APE for each coordinate of Xij. Across the board we find our plug-in estimator
performs quite well in terms of RMSE and coverage probabilities. We also apply the bagging
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Table 1: Estimation Results of β0

n = 100, density=25% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0304 -0.0288 0.0291 -0.0282 -0.0026 0.0028
Median Bias 0.0302 -0.0345 0.0287 -0.0361 -0.0022 -0.0034
Standard Deviation 0.0594 0.1349 0.0591 0.1352 0.0573 0.1318
Mean Standard Error 0.0568 0.1296 0.0568 0.1293 0.0568 0.1293
Mean Absolute Bias 0.0538 0.1115 0.0532 0.1116 0.0459 0.1058
Median Absolute Bias 0.0453 0.0931 0.0437 0.0938 0.0401 0.0925
RMSE 0.0667 0.1380 0.0659 0.1381 0.0574 0.1318
90% Coverage Rate 84.5 87.8 85.2 87.7 90.1 88.8
95% Coverage Rate 91.0 93.7 91.3 93.6 94.8 94.5

n = 200, density=25% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0142 -0.0171 0.0137 -0.0166 -0.0017 -0.0014
Median Bias 0.0147 -0.0203 0.0137 -0.0181 -0.0019 -0.0029
Standard Deviation 0.0289 0.0652 0.0288 0.0650 0.0284 0.0640
Mean Standard Error 0.0278 0.0636 0.0278 0.0634 0.0278 0.0634
Mean Absolute Bias 0.0259 0.0540 0.0256 0.0536 0.0229 0.0508
Median Absolute Bias 0.0226 0.0460 0.0218 0.0450 0.0193 0.0421
RMSE 0.0322 0.0674 0.0319 0.0670 0.0285 0.0640
90% Coverage Rate 84.4 88.0 84.6 88.2 89.7 90.0
95% Coverage Rate 90.6 94.1 90.8 94.1 95.2 95.7
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Figure 2: Histograms of α̂−α0
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Table 2: Estimation Results of APE

n = 100, Density=25% n = 200, Density=25%

Plug-in Bagging Plug-in Bagging

Xij,1 Xij,2 Xij,1 Xij,2 Xij,1 Xij,2 Xij,1 Xij,2

Mean Bias -0.0028 0.0014 -0.0006 -0.0016 -0.0014 0.0007 -0.0002 -0.0006
Median Bias -0.0032 0.0007 -0.0006 -0.0015 -0.0014 0.0014 -0.0002 -0.0001
Standard Deviation 0.0141 0.0273 0.0144 0.0279 0.0075 0.0142 0.0077 0.0145
Mean Standard Error 0.0148 0.0285 0.0148 0.0285 0.0075 0.0142 0.0075 0.0142
Mean Absolute Bias 0.0114 0.0221 0.0114 0.0226 0.0061 0.0112 0.0062 0.0114
Median Absolute Bias 0.0097 0.0187 0.0091 0.0192 0.0052 0.0093 0.0052 0.0097
RMSE 0.0144 0.0274 0.0144 0.0280 0.0077 0.0142 0.0077 0.0145
90% Coverage Rate 91.0 92.1 91.3 91.3 90.0 90.6 88.7 89.1
95% Coverage Rate 95.3 96.5 95.9 96.2 94.8 94.8 94.9 94.5

Note: true values of APEs are calibrated by a simulation with n = 10, 000 agents for all simulations.

method of split-network jackknife to the estimators of APE and find that it does not achieve
meaningful improvement. This is expected because by Theorem 6, the asymptotic bias
in estimating the APEs is asymptotically negligible and of an order smaller than that in
estimating β.

Table 3 presents the results for estimating the homophily coefficients under misspecifi-
cation of the distribution of ϵij. We draw ϵij from the standard normal distribution, but
“mistakenly” specify the distribution of ϵij as logistic in the estimation. We compare β̂ to
the pseudo true value βn⋆ defined in (42) and find that the results are satisfactory. The
performance of our BG estimator dominates other estimators in terms of bias, variance,
and coverage probabilities, highlighting the efficacy and importance of employing proper
bias-correction procedures.

Finally, we investigate how the method works for sparser networks. Specifically, we lower
the density of the network to be less than 9% by setting αi = 0.75×Xi +0.25ξi − 1, so that
the network formation process is driven more by the homophily effect. Table 4 summarizes
the results. It is clear that the performance of our method is negatively affected by the
sparsity of the network. For example, the RMSE’s of the BG estimators of β1 and β2 are
0.0365 and 0.0851, respectively, when n = 200 and the density of network is 8.63%. In
comparison, when the density of network is 25.4% in Table 1 for n = 200, the RMSE’s are
0.0285 and 0.0640, respectively. With that said, the way we introduce sparsity actually also
increases the correlation between α and X, which in theory also makes it more challenging
to estimate β0. So, we consider the magnitude of the change in performance to be an upper
bound of the effect from a sparser network. We also find that our BG estimator performs
better than other candidates in almost all metrics.
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Table 3: Estimation Results under Model Misspecification

n = 100, density=27% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0611 -0.0570 0.0647 -0.0550 -0.0025 0.0087
Median Bias 0.0608 -0.0568 0.0648 -0.0556 -0.0025 0.0083
Standard Deviation 0.0634 0.1510 0.0636 0.1500 0.0609 0.1441
Mean Standard Error 0.0621 0.1457 0.0636 0.1482 0.0636 0.1482
Mean Absolute Bias 0.0722 0.1279 0.0746 0.1266 0.0484 0.1149
Median Absolute Bias 0.0643 0.1102 0.0662 0.1060 0.0411 0.0980
RMSE 0.0881 0.1614 0.0908 0.1597 0.0609 0.1443
90% Coverage Rate 74.0 87.3 73.1 88.3 90.8 91.7
95% Coverage Rate 84.1 93.0 84.8 93.5 96.9 95.5

n = 200, density=27% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0281 -0.0294 0.0296 -0.0273 -0.0017 0.0014
Median Bias 0.0290 -0.0311 0.0310 -0.0286 -0.0001 0.0006
Standard Deviation 0.0305 0.0766 0.0304 0.0761 0.0298 0.0748
Mean Standard Error 0.0304 0.0748 0.0306 0.0751 0.0306 0.0751
Mean Absolute Bias 0.0345 0.0662 0.0354 0.0650 0.0236 0.0594
Median Absolute Bias 0.0311 0.0589 0.0322 0.0563 0.0197 0.0498
RMSE 0.0415 0.0820 0.0424 0.0809 0.0298 0.0748
90% Coverage Rate 75.7 86.1 75.2 87.5 90.2 90.6
95% Coverage Rate 84.7 92.9 83.9 92.9 95.6 95.7
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Table 4: Estimation Results of β0 under Sparser Network

n = 100, density=8.6% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0447 -0.0825 0.0517 -0.0515 -0.0023 0.0018
Median Bias 0.0446 -0.0802 0.0506 -0.0494 -0.0031 0.0050
Standard Deviation 0.0747 0.1780 0.0749 0.1795 0.0708 0.1700
Mean Standard Error 0.0740 0.1791 0.0742 0.1793 0.0742 0.1793
Mean Absolute Bias 0.0701 0.1582 0.0735 0.1503 0.0564 0.1370
Median Absolute Bias 0.0602 0.1346 0.0622 0.1305 0.0472 0.1179
RMSE 0.0870 0.1962 0.0910 0.1867 0.0709 0.1700
90% Coverage Rate 84.5 85.3 82.3 88.1 91.4 91.2
95% Coverage Rate 91.1 93.4 90.0 94.7 96.4 96.8

n = 200, density=8.6% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0189 -0.0360 0.0215 -0.0221 -0.0035 0.0029
Median Bias 0.0197 -0.0364 0.0221 -0.0242 -0.0025 0.0007
Standard Deviation 0.0373 0.0869 0.0371 0.0871 0.0363 0.0850
Mean Standard Error 0.0359 0.0873 0.0360 0.0872 0.0360 0.0872
Mean Absolute Bias 0.0335 0.0757 0.0346 0.0722 0.0290 0.0679
Median Absolute Bias 0.0288 0.0651 0.0301 0.0628 0.0248 0.0582
RMSE 0.0418 0.0940 0.0429 0.0899 0.0365 0.0851
90% Coverage Rate 83.4 87.0 82.6 89.3 89.4 90.9
95% Coverage Rate 90.4 93.1 89.9 94.1 94.5 96.0
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6 Empirical Illustration

In this section, we provide two empirical applications. First, we apply our method to the
risk-sharing network data of Nyakatoke and obtain economically meaningful results. Our
empirical findings complement the results of Gao, Li, and Xu (2023) by showing that wealth
differences do not have a statistically significant impact on the formation of links. Second,
we use the India microfinance network dataset (Banerjee et al. (2013, 2024)) to show how our
method works in capturing important network features such as average degree, clustering
effect, and percentage of isolates. By adding only one more parameter for modeling triangles,
we find that the extended model captures most network features well.

6.1 Nyakatoke Risk-Sharing Network

As an empirical illustration, we apply our estimation methods to the risk-sharing network
data of Nyakatoke, a small Haya community of 119 households in 2000 located in the Kagera
Region of Tanzania. We investigate how important factors, such as wealth, distance, and
blood or religious ties, are relative to each other in deciding the formation of risk-sharing
links among local residents. A similar exercise has been conducted in Gao, Li, and Xu
(2023), however they only provide point estimates of the homophily coefficients β0. In this
paper, we estimate β0, individual fixed effects α, and the APEs. We also provide confidence
intervals for our estimates based on the asymptotic results provided in Section 3.

6.1.1 Data

The Nyakatoke risk-sharing network data, collected by Joachim De Weerdt in 2000, cover
all of the 119 households in the community. It includes the following: (i) whether or not two
households are linked in the insurance network, (ii) total USD assets and religion of each
household, (iii) kinship and distance between households. See De Weerdt (2004), De Weerdt
and Dercon (2006), and De Weerdt and Fafchamps (2011) for more details. To define the
dependent variable link, the interviewer asks each household the following question:

“Can you give a list of people from inside or outside of Nyakatoke, who you can personally
rely on for help and/or that can rely on you for help in cash, kind or labor? ”

The data contains three answers of “bilaterally mentioned”, “unilaterally mentioned”, and
“not mentioned” between each pair of households. Considering the question is about whether
one can rely on the other for help, we interpret both “bilaterally mentioned” and “unilaterally
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mentioned” as they are connected in this undirected network, meaning that the dependent
variable Yij link equals 1.11

We estimate the coefficients for 3 regressors: wealth difference, distance and tie between
households. Wealth is defined as the total assets in USD owned by each household in 2000,
including livestocks, durables and land. Distance measures how far away two households are
located in kilometers. Tie is a discrete variable, defined to be 3 if members of one household
are parents, children and/or siblings of members of the other household, 2 if nephews, nieces,
aunts, cousins, grandparents and grandchildren, 1 if any other blood relation applies or if
two households share the same religion, and 0 if no blood religious tie exists12. Following the
literature we take natural log on wealth and distance, and we construct the wealth difference
variable as the absolute difference in wealth, i.e.,

w (Xi, Xj) = (| lnwealthi − lnwealthj|, ln-distanceij, tieij)⊤.

Figure 3 shows the structure of the insurance network in Nyakatoke. In the left sub-
figure, each node in the graph represents a household. The solid line between two nodes
indicates they are connected, i.e., link equals 1. The numbers inside each circle represent
the number of links the household has, which is also positively correlated with the size of
the circle. The right sub-figure summarizes the degree distribution for the network. Most
of the households in this network have links between 5 and 13. The maximum degree is 32,
while the minimum is 1.

In the dataset there are 5 households that lack information on wealth and/or distance.
We drop these observations, resulting in a sample size N of 114. The total number of ordered
household pairs is 12,882. Table 5 provides summary statistics for the dataset we use.

6.1.2 Results and Discussion

Table 6 presents the estimation results for the three homophily coefficients using method
of moments (JMM), one-step estimation (OS), and one-step estimation with split-network
jackknife and bagging technique (BG). Since JMM and OS estimators are

√
N -inconsistent

with asymptotic bias, we do not report their p-values. The estimated coefficient for wealth
difference is negative using all three methods. However, it is statistically insignificant based

11In the context of the village economies in our application, we think, at the time of link formation, the
risk-sharing links are less likely (in comparison with the contexts of business or financial networks) to be
driven by efficient arrangements of side-payment transfers, thus satisfying NTU.

12Notice that distance and tie are dyadic characteristics that may not be constructed by individual level
covariates, however, our theory continues to work if we treat them as fixed.
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Figure 3: Nyakatoke Network Structure and Degree Heterogeneity

Table 5: Empirical Application: Summary Statistics

Variable Obs Mean Std. Dev. Min Max

link 12,882 0.0732 0.2606 0 1
|(ln) wealth difference| 12,882 1.0365 0.8228 0.0004 5.8898
(ln) distance 12,882 6.0553 0.7092 2.6672 7.4603
tie 12,882 0.4260 0.6123 0.0000 3.0000
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Table 6: Estimation Results for Nyakatoke Network

JMM OS BG

|(ln) wealth difference| -0.0882 -0.0974 -0.0777
– – (0.2257)

(ln) distance -0.7824 -0.8636 -0.8187
– – (0.0000)

Tie 0.6714 0.6287 0.5817
– – (0.0000)

Note: p-values of two-side t-tests for BG estimator are reported in the parentheses.

on BG, suggesting that wealth difference does not matter statistically to form a link. To
interpret this result, consider two scenarios. One is when two households possess similar
amount of wealth. Then, everything else being equal, they may not be willing to form a
link because the other household may not have the capacity to insure themselves against
unpredictable shocks such as natural disaster or severe diseases. The other scenario is when
there is a huge wealth difference between the two households. Then, by link formation rule
(4) under NTU, the linking decision is likely to be driven by the household with a larger
amount of wealth. It is again unlikely to form a risk-sharing link because the surplus of
the richer household is likely to be negative from the link. Therefore, the net effect of
absolute wealth difference on forming a link is expected to be close to zero. It is clear that
bilateral agreement required to form a link in a model with NTU plays a central role in both
scenarios. Our estimates of the homophily coefficient for the wealth difference are consistent
with these explanations. Note that the estimated coefficient for wealth difference in Gao, Li,
and Xu (2023) is also negative. However, they do not have inference results for the common
parameters, hence cannot evaluate statistical significance of these estimates.

In addition to the wealth difference, we find the estimated coefficient for distance is
significantly negative at -0.8187, while for tie it is significantly positive at 0.5817, both using
BG estimates. The results are economically intuitive. We also estimate the individual fixed
effects αi and plot their distribution in Figure 4. We find that most estimated fixed effects
are in the range of [2, 4], although the maximum α̂i can be as large as 9.5, demonstrating
significant heterogeneity in unobserved characteristics among the households. Finally, we
compute the APEs and summarize the results in Table 7. We find that the APEs of wealth
difference are not significant based on both plug-in and bagging estimators. Distance between
households and social ties, on the other hand, matter more significantly on average to form
a link.
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Figure 4: Histogram of the Estimated Individual Heterogeneity

Table 7: Average Partial Effects for Nyakatoke Network

Plug-in Bagging

|(ln) wealth difference| -0.0065 -0.0083
(0.2124) (0.1126)

(ln) distance -0.0576 -0.0641
(0.0000) (0.0000)

Tie 0.0514 0.0501
(0.0000) (0.0000)

Note: p-values of two-side t-tests are reported in the parentheses.
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6.2 India Microfinance Network

As a second application, we apply our method to the India microfinance network dataset
(Banerjee et al. (2013, 2024)), which contains detailed demographic information about every
household surveyed and their links within each of the 75 villages. A brief discussion of
the data is first provided. Then, we present estimation results for both the homophily
parameters β0 and the individual fixed effects α0 for each village. Finally, we investigate via
a simulation study how our method can capture important network features such as average
degree, clustering effect, and average path lengths that are present in the observed India
microfinance network.

6.2.1 Data

Banerjee et al. (2013) conduct a detailed survey among villagers in India, asking them
about their daily interactions as well as demographic information such as caste, family size,
and wealth with various measures. The survey covers 89.14% of the 16,476 households across
75 Indian villages in the sample. On average, there are n = 220 households in each village.

As for the dependent variable, we follow Chandrasekhar and Jackson (2023) to consider
two types of links, one defined as “information link” if two households exchange advice with
each other and the other as “favor link” if they borrow or lend material goods from each
other. As for the covariates, we use six dyadic variables that are constructed based on the
demographics of each household. The first set of covariates are binary, defined to be 1 if
two households share the same characteristics and 0 otherwise. These binary characteristics
include (1) what caste group the household belongs to, (2) whether the household has access
to electricity, (3) what type of latrine the household uses, and (4) whether the household
owns or rents a house. The second set of covariates include the absolute difference of the
number of beds and the number of rooms between any pair of households. In Table 8, we
present the summary statistics of these variables.

6.2.2 Estimation Results

We estimate α0 and β0 for each of the 75 villages for both the information network and
the favor network based on our BG estimator. Figure 5 and 6 summarize the distribution
of the t-statistics calculated based on the estimated β̂’s for the information network and the
favor network, respectively. Figure 7a and 7b show the distribution of the estimated α̂i for
each network.

We draw the following conclusions. First, for the first four binary covariates with “same”
in the name which capture whether two households share the same characteristics, the esti-
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Table 8: Summary statistics of Indian networks

Variable Obs Mean Std. Dev. Min Max

Information link 1,238,970 0.0330 0.1787 0 1
Favor link 1,238,970 0.0388 0.1932 0 1
Same caste 1,238,970 0.4828 0.4997 0 1
Same electricity 1,238,970 0.5244 0.4994 0 1
Same latrine 1,238,970 0.6201 0.4854 0 1
Same ownrent 1,238,970 0.8488 0.3583 0 1
Bed number difference 1,238,970 1.0371 1.4439 0 50
Room number difference 1,238,970 1.2789 1.2898 0 18

mated β̂’s are generally significantly positive for both networks with the majority of probabil-
ity mass of the t-statistics lying to the right of 1.645, the 95th percentile of standard normal
distribution. The implication is that two households with the same caste, access to electric-
ity, latrine, own or rent a house are more likely to be linked, which is intuitive. Second, the
opposite pattern is observed for the β̂’s for the last two discrete covariates that capture how
two households differ in the number of beds and rooms for both networks. For example,
in Figure 5, most of the t-statistics are negative, suggesting a negative correlation between
the difference in the number of beds and rooms and the likelihood to be connected for two
households. Third, the t-statistics for the estimated β̂ for “same caste” is much larger in
absolute value than those for the other covariates such as “same electricity” or “room number
difference.” It shows that caste plays a crucial role in determining link formation in Indian
villages. Finally, from Figure 7a and 7b, we observe significant heterogeneity in the distri-
bution of α̂i across individuals among all the villages, which highlights the importance of
allowing for unobserved heterogeneity in the model.

6.2.3 Matching Features of Empirical Network Data

As pointed out by Chandrasekhar and Jackson (2023), a challenge for many network
formation models has been to capture multiple observed features of networks simultaneously.
They show via a simulation study that many network formation models, including stochastic
block model, network formation model with degree heterogeneity (Graham (2017)), latent
space model (Hoff et al. (2002)), and exponential random graph model, struggle to fit those
features that are present in the observed networks in the data. The same rationale applies
to our link formation model with NTU that rules out link interdependencies, which would
naturally produce low clustering coefficient. Nonetheless, we show that it is possible to
resolve this issue by combining it with other independent subgraph formation processes
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Figure 7: Fitted heterogeneity

such as triangle formation that introduces only one more unknown parameter (see Newman
(2009); Karrer and Newman (2010) for this class of models and Chandrasekhar and Jackson
(2023) for an important application and adaptation to econometrics).

We briefly review the features of the graph structure that are included in Table 9. These
features are also used by Chandrasekhar and Jackson (2023) in their Table 1. The first one
is the average degree which is the average number of links for each node. The second is the
clustering coefficient defined by

1

n

n∑
i=1

ci, with ci :=
2
∑

j ̸=i

∑
k>j,k ̸=i YijYjkYki

di(di − 1)
,

where di =
∑

j ̸=i Yij is the degree of node i. It captures the number of triangles that a
node lies in on average. The third and fourth measures include the number of isolated
nodes and the fraction of the nodes that belongs to the giant component of the network,
respectively. The fifth feature is the first eigenvalue of the adjacency matrix, which is a
measure of diffusiveness of a network under a percolation process (Jackson (2008)). The
sixth measure is the second eigenvalue of the stochasticized adjacency matrix13, a concept
closely related to homophily (Golub and Jackson (2012)) and is similarly labeled in Table 9.
Lastly, we consider average path length in the largest component of the graph.

We provide details on how to extend the baseline link formation model (4) to allow for
more clustering effect in Appendix D. The idea is to introduce a separate link formation
mechanism where the outcome binary variable for whether a triangle is formed or not is i.i.d.

13The stochasticized adjacency matrix Ỹ is defined as Ỹij =
Yij∑
k Yik

, where either Yii = 1, or Yik > 0 for
some k ̸= i.
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Bernoulli across the triads (Newman (2009); Karrer and Newman (2010)) with unknown
probability 1 − λn0. Then, the link between each pair of nodes is determined by the max
of the baseline model (4) and the triangle model. For each village, we estimate (α0, λn0, β0)

using the method outlined in Appendix D. Then, for each village we generate 100 simulated
networks based on the extended network formation model. We calculate the seven measures
of network structure discussed above for each simulated network and average it over the
100 replications to get the network statistics of 75 villages. Finally, we present the average
measures and standard errors across the 75 villages. For transparency purpose, we also run
the same exercise with our baseline model (4) only and present the results in Table 9.

Table 9 presents the main results. First, the baseline model (4) can capture most of
the network features except clustering reasonably well. For example, for the information
network, the true average degree is 7.4382 while the simulated average degree is 7.4434 based
on the baseline model. The clustering effect, on the other hand, shows a larger discrepancy
between the truth of 0.2202 and the simulated value of 0.0951 for the information network,
which reveals that dyadic network formation models tend to underestimate the number of
triangles in the network, a challenge that is also shared by classic methods of stochastic
block models with unobserved heterogeneity (e.g., Graham (2017)), latent space model(e.g.,
Hoff et al. (2002)), and exponential random graph model. Second, by extending our model
(4) to include triangles with only one more unknown parameter, the extended model is able
to capture all seven network features very well. Notably, the clustering coefficient simulated
from the extended model (0.1868) is significantly closer to the truth (0.2202) than what
the baseline model generates (0.0951). A similar pattern is observed for the favor network.
Meanwhile, including triangles into the model does not change other network measures,
especially the average degree, by much.

It should be pointed out that we do not have theoretical results for estimating the ex-
tended model. Thus, the results presented in Table 9 is mainly to illustrate the flexibility
of our baseline mode (4) and how to adapt it to capture triangles of a graph. We leave a
thorough investigation of the theoretical properties of the extended model for future research.

7 Conclusion

In this paper, we propose an easy-to-compute bagging estimator for the homophily co-
efficients in a dyadic network formation model with NTU. We show that the proposed bag-
ging estimator has desirable theoretical properties of being asymptotically normal and

√
N -

consistent, as well as achieving the Cramér-Rao lower bound. We also propose uniformly
consistent estimators for the high-dimensional individual fixed effects. Two extensions to
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Table 9: Summary statistics of fitted networks with covariates

Information network Favor network
True Baseline Extended True Baseline Extended

Degree 7.4382 7.4434 7.6757 6.3670 6.3751 6.5948
(2.0282) (2.0118) (2.1508) (2.0063) (1.9955) (2.1624)

Clustering 0.2202 0.0951 0.1868 0.2846 0.0804 0.1728
(0.0517) (0.0426) (0.0578) (0.0514) (0.0427) (0.0655)

Isolates 7.2933 10.5461 9.4551 6.8933 10.9647 10.4915
(4.8049) (6.7639) (6.3471) (4.2851) (6.2719) (6.7905)

% Giant 0.9560 0.9387 0.9455 0.9510 0.9361 0.9398
(0.0260) (0.0340) (0.0327) (0.0519) (0.0287) (0.0322)

Max Eigenvalue 10.7867 11.1938 11.3919 9.0273 9.3499 9.5249
(2.8043) (2.5858) (2.5951) (2.4847) (2.3669) (2.3875)

Homophily 0.8703 0.7527 0.7348 0.9396 0.8135 0.7711
(0.0795) (0.0837) (0.0800) (0.0497) (0.0869) (0.0881)

Ave Path Length 3.0099 2.7826 2.7612 3.5436 3.0037 2.9363
(0.4185) (0.3048) (0.2958) (0.6299) (0.3543) (0.3403)

consider APEs and model specification are presented. The efficacy of all our estimators is
examined via extensive simulations. We find that the estimators perform well under small
sample size, various DGP configurations, relatively sparser network, and model misspecifi-
cation. Finally, two applications of the method to the Nyakatoke risk-sharing network data
and India microfinance network data highlight its usefulness and relevance.

There are several research questions worthy of further examining related to the findings of
this paper. Being the first paper providing estimation and inference results for the homophily
coefficients in a dyadic network formation model with covariates, individual fixed effects,
and NTU, our theoretical analysis relies on the additivity among the index term X

′
β, fixed

effects α, and idiosyncratic shocks ϵ in specifying the utility surplus from the link for each
individual. Additionally, we require the knowledge of the distribution of ϵ. Relaxing these
restrictions is desirable to make the result more robust and reliable, however at the cost of
more complications in deriving the theory and implementation of the methods. We consider
applying the theory of sieve MLE method (Shen (1997); Chen (2007)) to generalize the results
of this paper to be potentially useful and promising. Second, as noted in the introduction, one
limitation of our model is that we exclude interdependencies in link preferences. So, a natural
question to ask is whether it is possible to test for the assumption of no interdependencies
in dyadic network formation models with NTU? Essentially, this boils down to testing the
“neglected transitivity” in link formation process (see Graham (2017); Dzemski (2019) for
the case of TU). It would be useful to adapt existing tests (e.g., the LM test for neglected
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transitivity by Hahn, Moon, and Snider (2017)) to the NTU setting. Perhaps an even more
challenging question is how to do estimation and inference in a dyadic network formation
model with NTU and link dependency. We leave these research questions to future work.
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Appendix

A Matrices and Lemmas

In this Appendix, we first give explicit formulas for the various matrices used in the
main text. Then, we present several lemmas that are used in the following proofs. Recall
some notations: for an n × n matrix A, we write ∥A∥1 := max1≤i≤n ∥A·i∥1, ∥A∥∞ :=

max1≤i≤n ∥Ai·∥1 and ∥A∥max := max1≤i,j≤n |Aij|, where A·i and Ai· are the ith column and
row of A, respectively. In the appendix, we write “an ≍ bn” to denote an = O(bn) and
bn = O(an) simultaneously, use C1, C2, . . . to denote strictly positive and finite constants.

A.1 Definitions of Matrices in the Main Text

Jacobian matrix. First, J11(α, β) is an n × n matrix with its off-diagonal and diagonal
elements equal to

[J11(α, β)]ij = −Fij(α, β)fji(α, β), 1 ≤ i ̸= j ≤ n and

[J11(α, β)]ii = −
∑
j ̸=i

fij(α, β)Fji(α, β), i = 1, . . . , n,

respectively. Clearly, [J11(α, β)]ij ̸= [J11(α, β)]ji. Moreover, there is a specific relationship
between diagonal and off-diagonal elements, i.e.,

[J11(α, β)]ii =
∑
j ̸=i

[J11(α, β)]ji , i = 1, . . . , n.

Hence, J11(α, β)⊤ is asymmetric and diagonally dominant with strictly positive entries by
Assumption 3. We prove that J11(α, β) is invertible under Assumptions 2–3 below.
Next, J12(α, β) is an n×K matrix with its ith row written as

−
∑
j ̸=i

[fij(α, β)Fji(α, β) + Fij(α, β)fji(α, β)]x⊤
ij.

Similarly, J21(α, β) is a K × n matrix and its ith column is −
∑

j ̸=i fij(α, β)Fji(α, β)xij.

Finally,

J22(α, β) = −
n∑

i=1

∑
j ̸=i

fij(α, β)Fji(α, β)xijx
⊤
ij

is a K ×K matrix.

Variance matrix of moment equations. V11(α, β) is an n×n matrix. The off-diagonal
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and diagonal elements of V11(α, β) are

[V11(α, β)]ij =pij(α, β)(1− pij(α, β)), 1 ≤ i ̸= j ≤ n and

[V11(α, β)]ii =
∑
j ̸=i

pij(α, β)(1− pji(α, β)), i = 1, . . . , n,

respectively. V12 is an n×K matrix with its ith row equal to
∑

j ̸=i pij(α, β)(1−pij(α, β))x⊤
ij.

Finally, V22 =
∑n

i=1

∑
j>i pij(α, β)(1− pij(α, β))xijx

⊤
ij.

Hessian matrix. For H11(α, β), an n× n matrix, it has entries:

[H11(α, β)]ij =− fij(α, β)fji(α, β)

(1− pij(α, β))2
, 1 ≤ i ̸= j ≤ n,

[H11(α, β)]ii =
∑
j ̸=i

[
−

f 2
ij(α, β)Fji(α, β)

Fij(α, β)(1− pij(α, β))
+ (yij − pij(α, β))

×
f
(1)
ij (α, β)Fij(α, β)(1− pij(α, β))− f 2

ij(α, β)(1− 2pij(α, β))

F 2
ij(α, β)(1− pij(α, β))2

]
, i = 1, . . . , n.

Next, H12(α, β) is an n×K matrix and its ith row can be written as∑
j ̸=i

[
−(1− yij)

fij(α, β)fji(α, β)

(1− pij(α, β))2
−

f 2
ij(α, β)Fji(α, β)

Fij(α, β)(1− pij(α, β))

+ (yij − pij(α, β))
f
(1)
ij (α, β)Fij(α, β)(1− pij(α, β))− f 2

ij(α, β)(1− 2pij(α, β))

Fij(α, β)2(1− pij(α, β))2
x⊤
ij

]
.

Finally, H22(α, β) equals
n∑

i=1

∑
j ̸=i

[
−(1− yij)

fij(α, β)fji(α, β)

(1− pij(α, β))2
−

f 2
ij(α, β)Fji(α, β)

Fij(α, β)(1− pij(α, β))

+ (yij − pij(α, β))×
f
(1)
ij (α, β)Fij(α, β)(1− pij(α, β))− f 2

ij(α, β)(1− 2pij(α, β))

F 2
ij(α, β)(1− pij(α, β))2

xijx
⊤
ij

]
.

Information matrix. First, I11(α, β) is an n × n matrix with off-diagonal elements and
diagonal elements equal to

[I11(α, β)]ij =
fij(α, β)fji(α, β)

1− pij(α, β)
, 1 ≤ i ̸= j ≤ n, and

[I11(α, β)]ii =
∑
j ̸=i

f 2
ij(α, β)Fji(α, β)

Fij(α, β)(1− pij(α, β))
, i = 1, . . . , n,
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respectively. Next, I12(α, β) is an n×K matrix with its ith row written as∑
j ̸=i

[
fij(α, β)fji(α, β)

1− pij(α, β)
+

f 2
ij(α, β)Fji(α, β)

Fij(α, β)(1− pij(α, β))

]
x⊤
ij.

Finally, I22(α, β) equals
n∑

i=1

∑
j ̸=i

[
fij(α, β)fji(α, β)

1− pij(α, β)
+

f 2
ij(α, β)Fji(α, β)

Fij(α, β)(1− pij(α, β))

]
xijx

⊤
ij.

In what follows, we use the mean value theorem for vector-valued functions in its integral
form, which is also used in Chatterjee et al. (2011). For example,

m1(α̂, β)−m1(α, β) =

[∫ 1

0

J11(α+ t(α̂−α), β)dt

]
(α̂−α) =: J◦

11(α̂,α; β) (α̂−α) .

We write J◦
11(α̂,α; β) as J◦

11(α̂,α) whenever there is no confusion, other integral form
Jacobian matrices are defined similarly. Notice that for each fixed t ∈ (0, 1), we have
[J11(α+ t(α̂−α), β)]ii =

∑
j ̸=i [J11(α+ t(α̂−α), β)]ji, so

[J◦
11(α̂,α)]ii =

∫ 1

0

∑
j ̸=i

[J11(α+ t(α̂−α), β)]ji dt =
∑
j ̸=i

[J◦
11(α̂,α)]ji ,

which implies J◦
11(α̂,α) inherits the diagonally dominant property from J11(α+t(α̂−α), β).

A.2 Analytic Approximation of J−1
11 (α, β)

We adapt Theorem 1 of Yan (2019) to the NTU framework here to provide an analytic
approximation for the inverse of the Jacobian matrix J11(α, β) and bound the approximation
errors. Similar approximation techniques have been used in proving asymptotic normality
for network estimation problems, e.g., Yan and Xu (2013), Yan, Jiang, Fienberg, and Leng
(2019), Graham (2017). We prove that J11(α, β) is non-singular for n large enough and
J−1
11 (α, β) is well approximated by a diagonal matrix.

Lemma 1. (Yan (2019)) Suppose an n×n matrix A = (aij)n×n is invertible with its entries
all positive and aii ≥

∑
j ̸=i aji. Let B = [diag(a11, a22, . . . , ann)]

−1, ∆i = aii −
∑

j ̸=i aji,
M ≡ max{max1≤i ̸=j≤n aij,maxi=1,...,n ∆i}, and m ≡ min1≤i ̸=j≤n aij. If M ≍ 1 and m ≍ 1 we
have

∥A−1 −B∥max = O(n−2). (44)

Proof. The proof is adapted from Yan (2019), for completeness, we present what is different
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from his proof here. Let In be the n× n identity matrix. Define

F = (fij)n×n = A−1 −B, U = (uij)n×n = In −AB, W = (wij)n×n = BU.

Then, we have

F = A−1 −B = (A−1 −B)(In −AB) +B(In −AB) = FU+W. (45)

Some algebra leads to

uij = δij −
n∑

k=1

aikbkj = δij −
n∑

k=1

aik
δkj
ajj

= δij −
aij
ajj

= (δij − 1)
aij
ajj

, (46)

and

wij =
n∑

k=1

bikukj =
n∑

k=1

δik
aii

(δkj − 1)
akj
ajj

=
(δij − 1)aij

aiiajj
. (47)

Recall that m ≤ aij ≤ M and (n− 1)m ≤ aii ≤ (n− 1)M. When i ̸= j, we have

0 <
aij

aiiajj
≤ M

m2(n− 1)2
,

such that for i ̸= j ̸= k, the following bounds hold

wii = 0, |wij| ≤
M

m2(n− 1)2
, |wii − wik| = |wik| ≤

M

m2(n− 1)2
,

|wij − wik| ≤ max(wij, wik) ≤
M

m2(n− 1)2

It follows that

max(|wij|, |wij − wik|) ≤
M

m2(n− 1)2
, for all i, j, k. (48)

We use (45) to obtain a bound for the approximate error ∥F∥max. By (45) and (46), for any
i ≤ n, we have

fij =
n∑

k=1

fikukj + wij =
n∑

k=1

fik(δkj − 1)
akj
ajj

+ wij. (49)

Define fiθ = max1≤k≤n fik and fiξ = min1≤k≤n fik. First, we show that fiξ < 0. Since for any
fixed i, we have

n∑
k=1

fikaki =
n∑

k=1

(
[A−1]ik −

δik
aii

)
aki = 1− 1 = 0.

Hence, fiξ
∑n

k=1 aki ≤
∑n

k=1 fikaki = 0. So, we have fiξ < 0. Similarly, we have that fiθ > 0.
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Recall that

aθθ =
∑
k ̸=θ

akθ +∆θ =
n∑

k=1

(1− δkθ)akθ +∆θ, hence, 1 ≡
n∑

k=1

(1− δkθ)
akθ
aθθ

+
∆θ

aθθ
(50)

for any θ, which yields the following identities

fiξ =fiξ

[
n∑

k=1

(1− δkθ)
akθ
aθθ

+
∆θ

aθθ

]
=

n∑
k=1

fiξ(1− δkθ)
akθ
aθθ

+
fiξ∆θ

aθθ
,

fiξ =fiξ

[
n∑

k=1

(1− δkξ)
akξ
aξξ

+
∆ξ

aξξ

]
=

n∑
k=1

fiξ(1− δkξ)
akξ
aξξ

+
fiξ∆ξ

aξξ
, (51)

where the first and second part of this equation use (50) for aθθ and aξξ, respectively.
By combining (49) with the first part of (51) where we set j = θ in (49), we have

fiθ + fiξ =
n∑

k=1

(fiξ − fik)(1− δkθ)
akθ
aθθ

+ wiθ +
fiξ∆θ

aθθ
. (52)

Similarly, we have

2fiξ =
n∑

k=1

(fiξ − fik)(1− δkξ)
akξ
aξξ

+ wiξ +
fiξ∆ξ

aξξ
. (53)

Subtracting (53) from (52), we have

fiθ − fiξ =
n∑

k=1

(fik − fiξ)

[
(1− δkξ)

akξ
aξξ

− (1− δkθ)
akθ
aθθ

]
+wiθ −wiξ + fiξ

(
∆θ

aθθ
− ∆ξ

aξξ

)
. (54)

Let Ω = {k : (1− δkξ)akξ/aξξ ≥ (1− δkθ)akθ/aθθ} and define λ as the cardinality of Ω. Notice
that 1 − δθθ = 0 and 1 − δξξ = 0, we have θ ∈ Ω and ξ ̸∈ Ω (here we assume that θ ̸= ξ.
Otherwise, when θ = ξ we have fiθ = fiξ = 0, which is trivial.) Consequently, the cardinality
satisfies 1 ≤ λ ≤ n− 1, and then

n∑
k=1

(fik − fiξ)

[
(1− δkξ)

akξ
aξξ

− (1− δkθ)
akθ
aθθ

]
≤
∑
k∈Ω

(fik − fiξ)

[
(1− δkξ)

akξ
aξξ

− (1− δkθ)
akθ
aθθ

]
≤ (fiθ − fiξ)

[∑
k∈Ω akξ

aξξ
−
∑

k∈Ω(1− δkθ)akθ

aθθ

]
≤ (fiθ − fiξ)

[
λM

λM + (n− 1− λ)m
− (λ− 1)m

(λ− 1)m+ (n− λ+ 1)M

]
≤ (fiθ − fiξ)

{
nM − (n− 2)m

nM + (n− 2)m
+

(n− 2)Mm

[(n− 2)m+M ][(n− 2)m+ 2M ]

}
, (55)
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where the last inequality comes from equations (15)-(17) of Yan (2019), which is obtained
by a maximization with respect to λ. Because

fiξ

(
∆θ

aθθ
− ∆ξ

aξξ

)
≤ (fiθ − fiξ)

2M

m(n− 1)
. (56)

Combining (54), (55), and (56), we have

fiθ − fiξ ≤
maxi,j,k |wik − wiξ|

C(n,m,M)
≤ M

m2(n− 1)2C(n,m,M)
,

with

C(n,m,M) = 1− nM − (n− 2)m

nM + (n− 2)m
− (n− 2)Mm

[(n− 2)m+M ][(n− 2)m+ 2M ]
− 2M

m(n− 1)

=
2(n− 2)m

nM + (n− 2)m
− (n− 2)Mm

[(n− 2)m+M ][(n− 2)m+ 2M ]
− 2M

m(n− 1)

≍ 1.

provided that m/M ≍ 1. This proves that for each i, we have maxk=1,...,n |fik| ≤ fiθ − fiξ =

O(n−2) as m,M ≍ 1. Hence, we have shown ∥A−1 −B∥max = ∥F∥max = O(n−2).

Based on this lemma, we prove that J11(α, β) is non-singular for (α, β) ∈ A × B and
large n.

Lemma 2. Under Assumptions 2 and 3, for n large enough, the Jacobian matrix J11(α, β)

is invertible for all (α, β) ∈ A× B.

Proof of Lemma 2. We partition J11(α, β) into a block matrix as

J11(α, β) =

(
[J11(α, β)](1:n−1)×(1:n−1) [J11(α, β)](1:n−1)×n

[J11(α, β)]n×(1:n−1) [J11(α, β)]nn

)
,

where the subscript denotes the specific rows/columns that each sub-matrix includes. Recall
that [J11(α, β)]ii =

∑
j ̸=i [J11(α, β)]ji, the first sub-matrix [J11(α, β)](1:n−1)×(1:n−1) is strictly

diagonally dominant with all negative entries, hence it is non-singular. Lemma 1 demon-
strates that its inverse can be approximated by diag

(
[J11(α, β)]−1

11 , . . . , [J11(α, β)]−1
n−1n−1

)
with maximum entry-wise error of O(n−2). Under Assumptions 2 and 3, [J11(α, β)]ii ≍
−n, [J11(α, β)]ij ≍ −1, j ̸= i, and

[J11(α, β)]n×(1:n−1) [J11(α, β)]−1
(1:n−1)×(1:n−1) [J11(α, β)](1:n−1)×n

= [J11(α, β)]n×(1:n−1) diag
(
[J11(α, β)]−1

11 , . . . , [J11(α, β)]−1
n−1n−1

)
[J11(α, β)](1:n−1)×n

+O(n−2)× [J11(α, β)]n×(1:n−1) 11
⊤ [J11(α, β)](1:n−1)×n
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=
∑
i ̸=n

[J11(α, β)]ni [J11(α, β)]in∑
j ̸=i [J11(α, β)]ji

+O(n−2)

{∑
i ̸=n

[J11(α, β)]ni

}
×

{∑
i ̸=n

[J11(α, β)]in

}
= O(1).

Thus, we have

[J11(α, β)]nn − [J11(α, β)]n×(1:n−1) [J11(α, β)]−1
(1:n−1)×(1:n−1) [J11(α, β)](1:n−1)×n

≍ −n−O(1) ̸= 0

for n large enough. Finally, by the formula for the determinants of block matrices, we have

det [J11(α, β)]

= det [J11(α, β)](1:n−1)×(1:n−1)

×
{
[J11(α, β)]nn − [J11(α, β)]n×(1:n−1) [J11(α, β)]−1

(1:n−1)×(1:n−1) [J11(α, β)](1:n−1)×n

}
̸= 0.

for n large enough. Hence, J11(α, β) is invertible for large n.

For the inverse of J11(α, β), it is straightforward to verify that −J11(α, β) satisfies con-
ditions in 1. Let T(α, β) = [diag (J11(α, β))]−1. Applying Lemma 1 to −J11(α, β), we have
∥[−J11(α, β)]−1 + T(α, β)∥max= O(n−2) under Assumptions 2 and 3. All of these results
could also be applied to J◦

11(α̂,α), we use T◦(α̂,α) to denote the diagonal approximation
for [J◦

11(α̂,α)]−1.

A.3 Deviation Bound

We give some non-asymptotic deviation bounds in this subsection. The following prob-
abilities are defined conditional on α and x and we suppress such conditioning whenever
there is no confusion. Lemma 3 below controls the deviation of the weighted sum of centered
Bernoulli random variables, i.e.,

∑
j ̸=i λij(yij − pij). This result will be used extensively in

the proof.

Lemma 3. Under Assumptions 2 and 3, and bounded constants maxi,j |λij| < C1, we have

Pr

{
max
1≤i≤n

1

n− 1

∣∣∣∣∣∑
j ̸=i

λij(yij − pij)

∣∣∣∣∣ > C1

√
6 log n

n− 1

}
≤ 2n−2. (57)

Proof. First, notice that |λij(yij−pij)| < 2C1 because yij−pij ∈ (−1, 1); in addition, yij’s are
independent Bernoulli random variables with expectations pij. By Hoeffding’s inequality (see
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Theorem 2.8 of Boucheron, Lugosi, and Massart (2013)) for sum of bounded and independent
random variables, we have

Pr

(
1

n− 1

∣∣∣∣∣∑
j ̸=i

λij(yij − pij)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−(n− 1)t2

2C2
1

)
.

Letting t = C1

√
6(n− 1)−1 log n, we obtain

Pr

(
1

n− 1

∣∣∣∣∣∑
j ̸=i

λij(yij − pij)

∣∣∣∣∣ > C1

√
6 log n

n− 1

)
≤ 2n− 3(n−1)

n−1 = 2n−3.

By Boole’s inequality,

Pr

(
max
1≤i≤n

1

n− 1

∣∣∣∣∣∑
j ̸=i

λij(yij − pij)

∣∣∣∣∣ > C1

√
6 log n

n− 1

)
≤ n · 2n−3 = 2n−2. (58)

We complete the proof.

Based on Lemma 3, we can bound the estimation error of α̂(β0)−α0, which guarantees
that our moment estimator for α0 would be uniformly consistent if β0 were known. This
result can be strengthened to prove the second part of Theorem 2, which we will do in
Appendix B.

Lemma 4. Under Assumptions 2 and 3, for bounded constants maxi,j |λij| < C1, we have

Pr

{∣∣∣∣∣ 1N
n∑

i=1

∑
j>i

λij(yij − pij)

∣∣∣∣∣ > C1

√
2 logN

N

}
≤ (n(n− 1))−1. (59)

Proof. Similar to the proof of Lemma 3, by Hoeffding’s inequality, we have

Pr

(
1

N

∣∣∣∣∣
n∑

i=1

∑
j>i

λij(yij − pij)

∣∣∣∣∣ > t

)
≤ 2 exp

(
−Nt2

2C2
1

)
.

Letting t = C1

√
2 logN

N
, we obtain

Pr

(
1

N

∣∣∣∣∣
n∑

i=1

∑
j>i

λij(yij − pij)

∣∣∣∣∣ > C1

√
2 logN

N

)
≤ 2N−1 = (n(n− 1))−1.

Lemma 5. Under Assumptions 2 and 3, with probability at least 1− 2n−2, we have

∥α̂(β0)−α0∥∞ = O

(√
log n

n

)
,
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and ∥∥∥∥∥√n[α̂(β0)−α0] +

(
J11

n

)−1
m1(α0, β0)√

n

∥∥∥∥∥
∞

= O

(
log n√

n

)
. (60)

Proof. The rest of proof is conditional on the following event, which happens with proba-
bility at least 1− 2n−2 by Lemma (3):

En :=

{
max
1≤i≤n

1

n− 1

∣∣∣∣∣∑
j ̸=i

(yij − pij)

∣∣∣∣∣ ≤
√

6 log n

n− 1
= O

(√
log n

n

)}
.

For any finite n, a first-order Taylor expansion of the estimating equation for α̂(β0),
m1(α̂(β0), β0) = 0, around α0 gives

m1(α̂(β0), β0)−m1(α0, β0) = J◦
11(α̂(β0),α0) (α̂(β0)−α0)

which implies that

α̂(β0)−α0 = − [J◦
11(α̂(β0),α0)]

−1m1(α0, β0) (61)

because m1(α̂(β0), β0) = 0 by the definition of α̂(β0). Recall the diagonal approximation of
[J◦

11(α̂(β0),α0)]
−1 is T◦(α̂(β0),α0). By Lemma 1, we decompose α̂(β0)−α0 into two parts

and apply the triangle inequality:

∥α̂(β0)−α0∥∞
= ∥T◦(α̂(β0),α0)m1(α0, β0) + [J◦

11(α̂(β0),α0)−T◦(α̂(β0),α0)]m1(α0, β0)∥∞
≤ ∥T◦(α̂(β0),α0)m1(α0, β0)∥∞ + ∥[J◦

11(α̂(β0),α0)−T◦(α̂(β0),α0)]m1(α0, β0)∥∞
≤ ∥T◦(α̂(β0),α0)∥∞∥m1(α0, β0)∥∞ + ∥J◦

11(α̂(β0),α0)−T◦(α̂(β0),α0)∥∞∥m1(α0, β0)∥∞,

Let’s analyze the two parts on the right hand side of the last line separately. For the first
part, notice that T◦(α̂(β0),α0) is a diagonal matrix and each diagonal element is of order
O(n−1) uniformly, hence ∥T◦(α̂(β0),α0)∥∞ = O(n−1). Recall the definition of m1(α0, β0)

and by Lemma 3, we obtain

∥T◦(α̂(β0),α0)∥∞∥m1(α0, β0)∥∞ = O(n−1) · max
1≤i≤n

∣∣∣∣∣∑
j ̸=i

(yij − pij)

∣∣∣∣∣ = O

(√
log n

n

)
.

For the second part, by Lemma 1, we know that

∥J◦
11(α̂(β0),α0)−T◦(α̂(β0),α0)∥∞ ≤ n∥J◦

11(α̂(β0),α0)−T◦(α̂(β0),α0)∥max = O(n−1).

Hence we have

∥J◦
11(α̂(β0),α0)−T◦(α̂(β0),α0)∥∞∥m1(α0, β0)∥∞

57



= O(n−1) · max
1≤i≤n

∣∣∣∣∣∑
j ̸=i

(yij − pij)

∣∣∣∣∣ = O

(√
log n

n

)
.

Combining these two results, we have

∥α̂(β0)−α0∥∞ = O

(√
log n

n

)
.

We turn to the proof of (60). By a second-order Taylor expansion, which is also used in
the proof of Lemma 6 of Graham (2017),

m1(α̂(β0), β0)−m1(α0, β0)

= J11(α0, β0)[α̂(β0)−α0] +
1

2

[
n∑

k=1

(α̂k(β0)− αk0)
∂J11(α̃

k, β0)

∂αk

]
[α̂(β0)−α0] (62)

with mean value α̃k lies between α̂(β0) and α0 and it may vary with different k. With a
slight abuse of notation, we write all α̃k as α̃. Because only the kth row and the kth column
of J11(α, β) contain functions of αk, by a direct calculation we summarize the entries of
Λk :=

∂J11(α̃,β0)
∂αk

as

(Λk)pq = 0, p ̸= k and q ̸= k,

(Λk)kl = −fkl(α̃, β0)flk(α̃, β0), l ̸= k,

(Λk)lk = −f
(1)
kl (α̃, β0)Flk(α̃, β0), l ̸= k,

(Λk)kk = −
∑
p ̸=k

f
(1)
kp (α̃, β0)Fpk(α̃, β0).

Hence, let Λ =
∑n

k=1(α̂k(β0)− αk0)
∂J11(α̃,β0)

∂αk
, where its entries are

Λij = −(α̂i(β0)− αi0)fij(α̃, β0)fji(α̃, β0)− (α̂j(β0)− αj0)f
(1)
ji (α̃, β0)Fij(α̃, β0), i ̸= j

Λii = −(α̂i(β0)− αi0)
∑
j ̸=i

f
(1)
ij (α̃, β0)Fji(α̃, β0)−

∑
k ̸=i

(α̂k(β0)− αk0)fik(α̃, β0)fki(α̃, β0).

Define the n× 1 vector

η :=
n∑

k=1

(α̂k(β0)− αk0)
∂J11(α̃, β0)

∂αk

[α̂(β0)−α0],
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its ith element ηi can be calculated as

ηi = Λii · (α̂i(β0)− αi0) +
∑
j ̸=i

Λij · (α̂j(β0)− αj0)

= −
∑
j ̸=i

f
(1)
ij (α̃, β0)Fji(α̃, β0)(α̂i(β0)− αi0)

2

−
∑
j ̸=i

fij(α̃, β0)fji(α̃, β0)(α̂i(β0)− αi0)(α̂j(β0)− αj0)

−
∑
j ̸=i

f
(1)
ji (α̃, β0)Fij(α̃, β0)(α̂j(β0)− αj0)

2.

By Assumption 3, Fij, fij, f
(1)
ij are all bounded by some constants. So, we have

|ηi| ≤ 3(n− 1) ·O(1) · ∥α̂−α0∥2∞,

uniformly for i = 1, . . . , n, which implies that

∥η∥∞ ≤ 3(n− 1) ·O(1) ·O
(
log n

n

)
= O(log n)

because ∥α̂−α0∥∞ = O(
√

(log n)/n). By the triangle inequality,

∥J−1
11 η∥∞ = ∥Tη + (J−1

11 −T)η∥∞ ≤ (∥T∥∞ + ∥J−1
11 −T∥∞)∥η∥∞ = O

(
log n

n

)
.

Finally, from (62), we have∥∥∥∥∥√n(α̂(β0)−α0) +

(
J11

n

)−1
m1(α0, β0)√

n

∥∥∥∥∥
∞

=

∥∥∥∥12√nJ−1
11 η

∥∥∥∥
∞

= O

(
log n√

n

)
.

This completes the proof.

B Proofs of Main Results

In this Appendix, we present proofs of Theorems 1-3, Corollary 1 and Theorems 4-8.

B.1 Proof of Theorem 1

Before the proof of this theorem, we state a different version of Lemma 2.1 of Chatterjee,
Diaconis, and Sly (2011). Given δ > 0, we say an n× n matrix A belongs to the class Gn(δ)

if ∥A∥1 ≤ 1, and for each 1 ≤ i ̸= j ≤ n,

Aii ≤ δ, and Aij ≥ − δ

n− 1
.
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Lemma 6. If A,B ∈ Gn(δ), we have

∥AB∥1 ≤ 1− 2(n− 2)

n− 1
δ2.

Proof. This is equivalent to proving if A,B ∈ Gn(δ), then

∥B⊤A⊤∥∞ ≤ 1− 2(n− 2)

n− 1
δ2,

which is a direct application of Lemma 2.1 of Chatterjee, Diaconis, and Sly (2011).

We prove Theorem 1 based on this lemma.

Proof of Theorem 1. First, we suppose there exists a solution to m1(α, β) = 0. Let
G(α, α̂) be the matrix whose (i, j)th element is

[G◦(α, α̂)]ij =

∫ 1

0

∂ri
∂αj

(tα+ (1− t)α̂)dt.

Then by an integral type of mean value theorem, we have

r(α)− r(α̂) = G◦(α, α̂)(α− α̂).

Notice that for i ̸= j, ∂rj/∂αi = −(n− 1)fij(α, β)Fji(α, β) < 0; while for each i, ∂ri/∂αi =

1− (n− 1)
∑

j ̸=i fij(α, β)Fji(α, β) > 0. Moreover, for each i,

n∑
j=1

∣∣∣∣∂rj∂αi

∣∣∣∣ = ∂ri
∂αi

−
∑
j ̸=i

∂rj
∂αi

≡ 1.

For each i and any α, this proves
∑n

j=1|[G◦(α, α̂)]ji| = 1, i.e., ∥G◦(α, α̂)∥1 = 1. By Assump-
tions 2 and 3, we know that fij(α, β)Fji(α, β) ∈ [c1c2, (1 − c1)(1 − c2)], this demonstrates
that

∂rj
∂αi

≤ − c1c2
n− 1

, and
∂ri
∂αi

≥ c1 + c2 − c1c2 ≥ c1c2,

where the last inequality is because that c1+c2 ≥ 2
√
c1c2 ≥ 2c2c2 provided that c1, c2 ≤ 1/2.

So if we choose δ1 = c1c2 (≤ 1/4), it is obvious that [G◦(α, α̂)]ii < δ1 and [G◦(α, α̂)]ij >

− δ1
n−1

. Therefore, we have proved G◦(α, α̂) ∈ Gn(δ).
By the updating algorithm specified in Section 3.1, after every two updates, we have

∥αk+2(β)− α̂(β)∥1 = ∥r(r(αk(β)))− r(r(α̂(β)))∥1
= ∥G◦(r(αk(β)), α̂(β))(r(αk(β))− α̂(β))∥1
≤ ∥G◦(r(αk(β)), α̂(β))G◦(αk(β), α̂(β))(αk(β)− α̂(β))∥1
≤ ∥G◦(r(αk(β)), α̂(β))G◦(αk(β), α̂(β))∥1∥αk(β)− α̂(β)∥1
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≤
(
1− 2(n− 2)

n− 1
δ21

)
∥αk(β)− α̂(β)∥1,

where the first equality holds by the fact that α̂(β) = r(α̂(β)) which implies α̂(β) is the
fixed point of the updating function, and the last inequality holds by Lemma 6. We write
δ := 1− 2(n−2)

n−1
δ21, the second inequality of Theorem 1 is proved.

The proof of the first inequality is the same as above, thereby omitted for conciseness.
By this result, r(α) is a contraction mapping for (α, β) ∈ A × B. So, if there exists

a solution α̂(β) ∈ A, then the solution is unique. Now we prove of the existence of the
solution, where the main technique is adapted from Yan, Qin, and Wang (2016b) and Yan,
Jiang, Fienberg, and Leng (2019). Define a sequence of Newton iterations α(k+1) = α(k) −
J−1
11 (α

(k), β)m1(α
(k), β), and choose the initial value as α(0) = α0. Following Proposition A.1

of Yan, Qin, and Wang (2016b), in a convex subset D ⊂ A that contains α0 it is sufficient to
establish three facts: (1) J11(α, β) is Lipschitz continuous with Lipschitz constant of order
O(n), (2)

∥∥J−1
11 (α0, β)

∥∥
∞ = O(n−1), and (3)

∥∥J−1
11 (α0, β)m1(α0, β)

∥∥
∞ = O(∥β − β0∥2).

For the first fact, we calculate the derivative of J11(α, β) with respect to α:

∂J11,ij

∂αk

=



−
∑

j ̸=i
∂2pij
∂α2

i
i = j = k,

−∂2pij
∂αi

i ̸= j, k = i,

−∂2pij
∂αj

i ̸= j, k = j,

0 ortherise.

which implies that maxi
∑

j,k

∣∣∣∫ 1

0

∂J11,ij(tα1+(1−t)α2)

∂αk

∣∣∣ = O(n). Hence J11(α, β) is Lipschitz
continuous with Lipschitz constant O(n). The second fact is a direct application of the
inverse approximation Lemma 1. Finally, the third result follows from∥∥[J11(α0, β)]

−1m1(α0, β)
∥∥
∞

≤
∥∥[J11(α0, β)]

−1m1(α0, β0)
∥∥
∞ +

∥∥[J11(α0, β)]
−1 [m1(α0, β)−m1(α0, β)]

∥∥
∞

≤ op(1) +O (∥β − β0∥2)

= Op (∥β − β0∥2) ,

where the first inequality holds by the triangular inequality and the second inequality is
true by Lemma 3 and the Lipschitz continuity of F (·) under Assumption 3. Then, by an
application of Proposition A.1 of Yan, Qin, and Wang (2016b), we have limk→∞α(k) exists
and the limit equals to α̂(β) if ∥β − β0∥2 < c for some constant c > 0.
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B.2 Proof of Theorem 2

Recall the concentrated moment equation and its population counterpart are

Sn(β) :=

(
n

2

)−1

m2(α̂(β), β) and S̄n(β) :=

(
n

2

)−1

E[m2(α(β), β)|x,α0],

respectively, where α(β) is the unique solution to E[m1(α, β)|x,α0] = 0. By Assumption 4,
β̂ and β0 are unique solutions of Sn(β) = 0 and S̄n(β) = 0, respectively.

First, we present a lemma to bound the difference between Sn(β) and S̄n(β) for β ∈ B.

Lemma 7. Under Assumptions 1–4, we have

sup
β∈B

∥∥Sn(β)− S̄n(β)
∥∥
2

p→ 0.

Proof. By the definitions of α̂(β) and α(β), we have m1(α̂(β), β) = 0 and
E[m1(α(β), β)|x,α0] = 0. Thus,∑

j ̸=i

(yij − pij)− (pij(α̂(β), β)− pij(α(β), β)) = 0, i = 1, . . . , n.

By an integral type mean-value theorem, we have

α̂(β)−α(β) = − [J◦
11(α̂(β),α(β))]−1m1(α0, β0),

and recall that J21(α, β) := ∂m2(α,β)
∂α⊤ ,

n∑
i=1

∑
j>i

(pij(α̂(β), β)− pij(α(β), β))xij =m2(α(β), β)−m2(α̂(β), β)

=− J◦
21(α̂(β),α(β)) (α̂(β)−α(β))

=J◦
21(α̂(β),α(β)) [J◦

11(α̂(β),α(β))]−1m1(α0, β0).

Straightforward algebra then shows

Sn(β)− S̄n(β) =

(
n

2

)−1 n∑
i=1

∑
j>i

[yij − pij − (pij(α̂(β), β)− pij(α(β), β))]xij

=

(
n

2

)−1 n∑
i=1

∑
j>i

(yij − pij)xij −
(
n

2

)−1

J◦
21(α̂(β),α(β))J◦

11(α̂(β),α(β))−1m1(α0, β0)

=

(
n

2

)−1 n∑
i=1

∑
j>i

(yij − pij)xij −
(
n

2

)−1

J◦
21(α̂(β),α(β))T◦(α̂(β),α(β))m1(α0, β0)

+

(
n

2

)−1

J◦
21(α̂(β),α(β))

[
T◦(α̂(β),α(β))− J◦

11(α̂(β),α(β))−1
]
m1(α0, β0)

=: R1 +R2 +R3,
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where T◦(α̂(β),α(β)) = [diag(J◦
11(α̂(β),α(β)))]−1 is the analytic approximation for

J◦
11(α̂(β),α(β)) by Lemma 1.

For R1, by Lemma 4 and the fact that xij is bounded, it is of order Op(
√

(logN)/N).

For R2, notice that T◦(α̂(β),α(β)) is diagonal with [T◦(α̂(β),α(β))]ii = O(n−1) and each
element in J◦

21(α̂(β),α(β)) is of order O(n) uniformly. Thus, by Lemma 3 we have

∥R2∥∞ = Op

(
n−2 · n · n ·

√
log n

n

)
= Op

(√
log n

n

)
.

Finally for R3, we use Lemma 1 to bound it as

∥R3∥∞ ≤
(
n

2

)−1

· n2 · ∥J◦
21(α̂(β),α(β))∥max

· ∥T◦(α̂(β),α(β))− J◦
11(α̂(β),α(β))−1∥max · ∥m1(α0, β0)∥∞

= Op

(
n−2 · n2 · n · n−2 · n ·

√
log n

n

)
= Op

(√
log n

n

)
.

Further notice that these bounds hold uniformly in β, we have completed the proof.

Proof of Theorem 2. By the definitions of β̂ and β0, we have Sn(β̂) = 0 and S̄n(β0) = 0,
combine this fact with Lemma 7, we have∥∥∥S̄n(β̂)

∥∥∥
2
=
∥∥∥S̄n(β̂)− Sn(β̂)

∥∥∥
2
≤ sup

β∈B

∥∥Sn(β)− S̄n(β)
∥∥
2

p→ 0. (63)

By Assumption 4, fix δ > 0, there exists an ϵ > 0 such that ∥β − β0∥2 ≥ δ implies
∥∥S̄n(β)

∥∥
2
≥

ϵ, hence

Pr
(∥∥∥β̂ − β0

∥∥∥
2
≥ δ
)
≤ Pr

(∥∥∥S̄n(β̂)
∥∥∥
2
≥ ϵ
)
≤ Pr

(
sup
β∈B

∥∥S̄n(β)
∥∥
2
≥ ϵ

)
→ 0

by (63).
We turn to the proof of the uniform consistency of α̂. By the integral type mean-value

theorem, we have

α̂−α0 =− [J◦
11(α̂,α0)]

−1m1(α0, β̂)

=− [J◦
11(α̂,α0)]

−1m1(α0, β0)− [J◦
11(α̂,α0)]

−1
(
m1(α0, β̂)−m1(α0, β0)

)
(64)

Following the proof of Lemma 5, we have
∥∥[J◦

11(α̂,α0)]
−1
∥∥
∞ = O (n−1) and ∥m1(α0, β0)∥∞ =

Op

(√
n log n

)
, hence

∥∥[J◦
11(α̂,α0)]

−1m1(α0, β0)
∥∥
∞

p→ 0. Thus, we only need to show that
O(n−1) · ∥m1(α0, β̂)−m1(α0, β0)∥∞

p→ 0. Notice that

∥m1(α0, β̂)−m1(α0, β0)∥∞
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= max
1≤i≤n

∣∣∣∣∣∑
j ̸=i

[
pij(α0, β̂)− pij(α0, β0)

]∣∣∣∣∣
≤ max

1≤i≤n

∥∥∥∥∥∑
j ̸=i

[
fij(α0, β̄)Fji(α0, β̄) + Fij(α0, β̄)fji(α0, β̄)

]
xij

∥∥∥∥∥
2

× ∥β̂ − β0∥2

= O(n)× op(1) = op (n) ,

where we use a Taylor expansion of pij(α0, β) around β0 (β̄ is the mean value which may vary
with i) and the fact that fij and Fij are bounded by Assumption 3. The proof is completed.

B.3 Proof of Theorem 3

Before we prove Theorem 3, we characterize the limit of the concentrated Jacobian ma-
trices. By Lemma 1,

N−1Jn(β) = N−1
[
J22(α̂(β), β)− J21(α̂(β), β)J11(α̂(β), β)−1J12(α̂(β), β)

]
= N−1J22(α̂(β), β)−N−1J21(α̂(β), β)T(α̂(β), β)J12(α̂(β), β)

−N−1J21(α̂(β), β)
(
J11(α̂(β), β)−1 −T(α̂(β), β)

)
J12(α̂(β), β) = Op(1).

Since β̂
p→ β0 and ∥α̂−α0∥∞ = op(1) by Theorem 2, we have

N−1Jn(β̄)
p→ J0 := plimn→∞N−1Jn(β0) (65)

for any β̄ lies between β̂ and β0. The existence of J0 is guaranteed by the identification
Assumption 3.

Now, we turn to the proof of asymptotic normality of our moment estimators.

Proof of Theorem 3. By a first-order Taylor expansion of mn(β̂) = m2(α̂(β̂), β̂) around
β0, we have

mn(β̂)−mn(β0) = Jn(β̄)(β̂ − β0),

where β̄ is a mean-value between β̂ and β0. By mn(β̂) = 0, we obtain
√
N(β̂ − β0) =− [N−1Jn(β̄)]

−1 1√
N
m2(α̂(β0), β0)

=− J−1
0

{
1√
N

n∑
i=1

∑
j>i

[yij − pij(α̂(β0), β0)]xij

}
+ op(1) (66)

in view of (65). Thus, Note that we cannot directly apply standard central limit theorem
(CLT) to the term in the curly bracket of (66) because of the existence of α̂(β0). By a
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third-order Taylor expansion for α̂(β0) around the true value α0, we have

1√
N

n∑
i=1

∑
j>i

[yij − pij(α̂(β0), β0)]xij

=
1√
N
m2(α0, β0) +

1√
N
J21(α0, β0)[α̂(β0)−α0]

+
1

2

{
− 1√

N

n∑
k=1

[α̂k(β0)− αk0]
n∑

i=1

∑
j>i

∂2pij(α0, β0)

∂αk∂α⊤ [α̂n(β0)−α0]xij

}

+
1

6

{
− 1√

N

n∑
k=1

n∑
l=1

[α̂k(β0)− αk0][α̂l(β0)− αl0]
n∑

i=1

∑
j>i

∂3pij(ᾱn, β0)

∂αk∂αl∂α⊤ [α̂n(β0)−αn0]xij

}
=: (I) + (II) + (III) + (IV ) .

(67)
Let’s handle the last term (IV ) first. Since pij(α, β) only contains αi and αj, the last

term (IV ) equals to

(IV ) = − 1

6
√
N

N∑
i=1

∑
j>i



(α̂i − αi0)
3∂

3pij(ᾱ, β0)

∂α3
i

+ (α̂j − αj0)
3∂

3pij(ᾱ, β0)

∂α3
j

+3

(
(α̂i − αi0)

2(α̂j − αj0)
∂3pij(ᾱ, β0)

∂α2
i ∂αj

)
+3

(
(α̂i − αi0)(α̂j − αj0)

2∂
3pij(ᾱ, β0)

∂α2
j∂αi

)


xij.

By Lemma 5, supi |α̂i(β0) − αi0| = Op(
√
(log n)/n). Notice that ∂3pij(ᾱn,β0)

∂α2
i ∂αj

xij is bounded
under Assumptions 2 and 3. Thus, we have

(IV ) = Op

(
1√
N

· n(n− 1)

2
·
(
log n

n

)3/2
)

= Op

(
(log n)3/2

n1/2

)
= op(1).

For (III), we substitute the asymptotic linear approximation of
√
n[α̂(β0) − α0] into

it. After some lengthy algebra, its kth entry, which involves many terms of third order
derivatives, equals to

− 1

2
√
N

Tr
[
J−1
11 V11

(
J−1
11

)⊤
Rk

]
+ op(1),

where elements of Rk for k = 1, . . . , K are

(Rk)ij =
∂2pij(α0, β0)

∂αi∂αj

xij,k, 1 < i ̸= j < n,

(Rk)ii =
∑
j ̸=i

∂2pij(α0, β0)

∂2αi

xij,k, i = 1, . . . , n.
(68)
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Recall the definition of Bk0 in (13), we find that (III) = −B0 + op(1).

We directly substitute the rest of terms, (I) and (II), into (66) and obtain,
√
N(β̂ − β0)− J−1

0 B0

=− J−1
0

{
1√
N
m2(α0, β0) +

1√
N
J21(α0, β0)[α̂(β0)−α0]

}
+ op(1)

=− J−1
0

{
1√
N
m2(α0, β0)−

1√
N
J21J

−1
11 m1(α0, β0)

}
+ op(1).

We check the Lindeberg condition to apply CLT to the first two terms of the last equation.
Define

1√
N

n∑
i=1

∑
j>i

ξij :=− J−1
0

1√
N

{
n∑

i=1

∑
j>i

(yij − pij)xij −
1√
N
J21J

−1
11 m1(α0, β0)

}

=− J−1
0

1√
N

n∑
i=1

∑
j>i

(yij − pij)x̃ij,

(69)

where x̃ij absorbs xij and coefficient of yij − pij from the contribution of J21J
−1
11 m1(α0, β0).

Hence (69) is a weighted sum of yij − pij by the definitions of each component of
J21J

−1
11 m1(α0, β0) at the beginning of Section A. By Assumptions 2 and 3, we have

∥x̃ij∥∞ < ∞. For yij − pij, they are independent across dyads (i, j), 1 ≤ i < j ≤ n

conditional on (x,α) and are bounded by [−1, 1]. Thus, the Lindeberg condition is satisfied.
Further notice that the variance of m2(α0, β0)− J21J

−1
11 m1(α0, β0) is

V22 + J21J
−1
11 V11(J

−1
11 )

⊤J⊤
21 − J21J

−1
11 V12 − (J21J

−1
11 V12)

⊤.

By the Lindeberg-Feller CLT, we have
√
N(β̂ − β0)− J−1

0 B0
d→ N (0,Ω0),

where Ω0 is defined in (14).

B.4 Proof of Asymptotic Distribution of JMM SJ Estimator

Corollary 1. If Assumptions 1–4 hold, then
√
N(β̂SJ − β0)

d→ N (0, 2Ω0). (70)

Proof of Corollary 1 . Using the asymptotic representation for β̂ provided in the proof of
Theorem 3, we have

β̂ − β0 =
J−1
0 B0√
N

+

∑
(i,j)∈In×In;j>i ξij(α0, β0)

N
+ op

(
1√
N

)
, (71)

66



where ξij’s are independent random variables with
∑

(i,j)∈In×In;j>i ξij(α0, β0)/
√
N

d→
N (0,Ω0). Without loss of generality, suppose n is even and I1,n = {1, . . . , n/2}, I2,n =

{n/2 + 1, . . . , n}. Then, for β̂1 and β̂2, we have

β̂1 − β0 =
J−1
0 B0√
N/4

+

∑
(i,j)∈I1,n×I1,n;j>i ξij(α0, β0)

N/4
+ op

(
1√
N

)
, and

β̂2 − β0 =
J−1
0 B0√
N/4

+

∑
(i,j)∈I2,n×I2,n;j>i ξij(α0, β0)

N/4
+ op

(
1√
N

)
,

(72)

where each summation has N/4 independent random variables. Combining (71) and (72),
we have

√
N

 β̂ − β0

β̂1 − β0

β̂2 − β0

−

 J−1
0 B0

2J−1
0 B0

2J−1
0 B0

 d→ N

0,

Ω0 Ω0 Ω0

Ω0 4Ω0 0

Ω0 0 4Ω0


 .

Hence
√
N(β̂SJ − β0) = 2

√
N(β̂ − β0)−

1

2

√
N(β̂1 − β0)−

1

2

√
N(β̂2 − β0)

d→ N (0, 2Ω0) ,

because the linear transformation of jointly normal vectors keeps normality. This completes
the proof.

B.5 Proof of Theorem 4

First, we characterize the partial derivatives of sn(α, β) with respect to α and β. We
rewrite sn(α, β) as

sn(α, β) = s2(α, β)−
n∑

i=1

s1i(α, β)wi(α, β), (73)

where wi(α, β) is the ith column of I12(α, β)⊤I11(α, β)−1. Taking derivatives, we have

∇α⊤sn(α, β) = H12(α, β)⊤ − I12(α, β)⊤I11(α, β)−1H11(α, β)−
n∑

i=1

s1i(α, β)
∂wi(α, β)

∂α⊤ ,

and

∇β⊤sn(α, β) = H22(α, β)− I12(α, β)⊤I11(α, β)−1H12(α, β)−
n∑

i=1

s1i(α, β)
∂wi(α, β)

∂β⊤ .

We prove the following lemma.

Lemma 8. Under Assumptions 1–5, for any β̃ such that ∥β̃ − β0∥2 = Op(N
−1/2), we have

1√
N
∇α⊤sn(α̂(β0), β0) [α̂(β0)−α0]

p→ b0, (74)
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and
1

N
∇β⊤sn(α̂(β̄), β̄) +

1

N
∇α⊤sn(α̂(β̄), β̄)

∂α̂(β̄)

∂β⊤ + I0
p→ 0, (75)

where β̄ lies in the segment between β̃ and β0; b0 is a K × 1 vector of bias terms with its kth
element equal to bk0 = limn→∞

1√
N

Tr[J−1
11 Cov(m1, s1)Wk].

Proof. By the definitions of H12(α, β) and I12(α, β), we have

H12(α, β) + I12(α, β) =


∑

j ̸=1[y1j − p1j(α, β)]z1j(α, β)x⊤
1j

...∑
j ̸=n[ynj − pnj(α, β)]znj(α, β)x⊤

nj

 ,

where zij =
f
(1)
ij Fij(1−pij)−f2

ij(1−2pij)+F 2
ijfijfji

F 2
ij(1−pij)2

and we omit the dependence of zij on α, β for

simplicity. Clearly, N−1/2 ∥H12(α0, β0) + I12(α0, β0)∥max = op(1) by Lemma 5. Hence, by
continuous mapping theorem (CMT) and the fact that ∥α̂(β0)−α0∥∞ = op(1), we have

1√
N

∥H12(α̂(β0), β0) + I12(α̂(β0), β0)∥max

≤ 1√
N

∥H12(α̂(β0), β0)−H12(α0, β0)∥max +
1√
N

∥I12(α̂(β0), β0)− I12(α0, β0)∥max

+
1√
N

∥H12(α0, β0) + I12(α0, β0)∥max

= op(1).

Similarly, we can obtain

1√
N

∥∥I12(α̂(β0), β0)
⊤I11(α̂(β0), β0)

−1[H11(α̂(β0), β0) + I11(α̂(β0), β0)]
∥∥
max

= op(1).

Combining these two bounds, we have

1√
N

∥∥H12(α̂(β0), β0)
⊤ − I12(α̂(β0), β0)

⊤I11(α̂(β̄), β0)
−1H11(α̂(β0), β0)

∥∥
max

≤ 1√
N

∥∥H12(α̂(β0), β0) + I12(α̂(β0), β0)
⊤∥∥

max

+
1√
N

∥∥I12(α̂(β0), β0)
⊤I11(α̂(β0), β0)

−1 [H11(α̂(β0), β0) + I11(α̂(β0), β0)]
∥∥
max

= op(1).

(76)

By Lemma 5, we have
∥∥α̂(β0)−α0 + J−1

11 m1(α0, β0)
∥∥
∞ = op(n

−1/2), which implies that for
any deterministic vector ∥c∥2 = 1,

√
nc⊤(α̂(β0)−α0) = Op(1). (77)
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Combining (76) and (77) yields

1√
N
[H12(α̂(β0), β0)

⊤ − I12(α̂(β0), β0)I11(α̂(β0), β0)
−1H11(α̂(β0), β0)](α̂(β0)−α0) = op(1).

(78)
Next, similar to the process of finding the bias term in the proof of Theorem 3, we have:

− 1√
N

n∑
i=1

s1i(α̂(β0), β0)
∂wki(α̂(β0), β0)

∂α⊤ (α̂(β0)−α0)

=
1√
N

n∑
i=1

s1i(α̂(β0), β0)
∂wki(α̂(β0), β0)

∂α⊤ J11(α̂(β0),α0)
−1m1(α0, β0)

=
1√
N
s1(α̂(β0), β0)

⊤Wk(α̂(β0), β0)J11(α̂(β0),α0)
−1m1(α0, β0)

=
1√
N
s⊤1 WkJ

−1
11 m1 + op(1)

where [Wk(α, β)]ij =
∂wki(α,β)

∂αj
and the last equality holds because ∥α̂(β0) − α0∥∞ = op(1)

and by CMT.
Recall the definition of bk0 in (20), where the entries of the n × n covariance matrix

Cov(m1, s1) can be specified as

[Cov(m1, s1)]ij =E

[(∑
k ̸=i

(yik − pik)

)(∑
k ̸=j

fjk(yjk − pjk)

Fjk(1− pjk)

)]

=
fjiVar(yij)

Fji(1− pij)
= fjiFij, 1 ≤ i ̸= j ≤ n, (79)

[Cov(m1, s1)]ii =E

[(∑
k ̸=i

(yik − pik)

)(∑
k ̸=i

fik(yik − pik)

Fik(1− pik)

)]

=
∑
k ̸=i

fikVar(yik)

Fik(1− pik)
=
∑
k ̸=i

fikFki, 1 ≤ i ≤ n.

We show that bk0 = O(1) for all k. Notice that [Cov(m1, s1)]ij ≍ 1 and [Cov(m1, s1)]ii ≍ n

uniformly by (79). By Assumption 5, [Wk(α, β)]ij = O(n−1) and [Wk(α, β)]ii = O(1)

uniformly. By 1, J−1
11 can be approximated by the diagonal matrix T = [diag(J11)]

−1 with
∥J−1

11 −T∥max = O(n−2). Thus, we have uniformly for all i,

1√
N
[J−1

11 Cov(m1, s1)Wk]ii

=
1√
N
[TCov(m1, s1)Wk]ii +

1√
N
[(J−1

11 −T)Cov(m1, s1)Wk]ii

= O(n−1 · n−1) · [Cov(m1, s1)Wk]ii +O(n−1 · n−2) · [1n1
⊤
nCov(m1, s1)Wk]ii

= O(n−2) ·O(n) +O(n−3) ·O(n2) = O(n−1).
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Taking the trace on both sides, we have

1√
N

Tr[J−1
11 Cov(m1, s1)Wk] = O(n−1) · n = O(1).

Because bk0 is the limit of 1√
N

Tr[J−1
11 Cov(m1, s1)Wk], it is also O(1). Next, we have

− 1√
N
s⊤1 WkJ

−1
11 m1 =

1√
N
Tr(J−1

11 m1s
⊤
1 Wk)

=
1√
N

Tr[J−1
11 Cov(m1, s1)Wk] +

{
1√
N
Tr(J−1

11 m1s
⊤
1 Wk)−

1√
N

Tr[J−1
11 Cov(m1, s1)Wk]

}
(80)

= R1 +R2.

Notice that R1 → bk0 by definition. By the law of large numbers for U-statistics, R2
p→ 0

under Assumption 5. By (78) and (80), we have

1√
N
∇α⊤sn(α̂(β0), β0)(α̂(β0)−α0)

=
1√
N
[H12(α̂(β0), β0)

⊤ − I12(α̂(β0), β0)
⊤I11(α̂(β0), β0)

−1H11(α̂(β0), β0)](α̂(β0)−α0)

− 1√
N

n∑
i=1

s1i(α̂(β0), β0)
∂wi(α̂(β0), β0)

∂α⊤ (α̂(β0)−α0)
p→ b0,

which proves (74).
We now turn to prove (75). Similarly to the characterization of the probability limit of

N−1In(α̂, β̂SJ), we have

1

N

[
H22(α, β)− I12(α, β)⊤I11(α, β)−1H12(α, β)

]
= Op(1).

Then, by the law of large numbers,

1

N

[
H22(α̂(β̄), β̄)− I12(α̂(β̄), β̄)⊤I11(α̂(β̄), β̄)−1H12(α̂(β̄), β̄)

] p→ −I0.

By (64) with β̂ replaced by β0, we have ∥α̂(β0) − α0∥∞ = Op(
√
(log n)/n). Combine this

with Lemma 4 and we have∥∥∥∥∥ 1

N

n∑
i=1

s1i(ᾱ, β̄)
∂wi(ᾱ, β̄)

∂β⊤

∥∥∥∥∥
∞

≤

∣∣∣∣∣ 1N
n∑

i=1

s1i(ᾱ, β̄)

∣∣∣∣∣×
∥∥∥∥∂wi(ᾱ, β̄)

∂β

∥∥∥∥
∞

= op(1).

Hence,
1

N
∇β⊤sn(α̂(β̄), β̄) + I0 = op(1). (81)
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Finally, by (76) and the parallel steps to the proof of (74), we have

1

N
∇α⊤sn(α̂(β̄), β̄)

∂α̂(β̄)

∂β⊤ =
1

N
∇α⊤sn(α̂(β̄), β̄)J11(α̂(β̄), β̄)−1J12(α̂(β̄), β̄) = op(1). (82)

Combining (81) and (82) completes the proof of (75).

With a direct application of this lemma, we prove the asymptotic normality of β̂OS.

Proof of Theorem 4. First, by the definition of β̂OS, we have

β̂OS = β̂ + In(α̂, β̂)−1sn(α̂, β̂)

with the joint moment estimator α̂ := α̂(β̂). Similarly to the proof of Theorem 3, by a
first-order Taylor expansion of sn(α̂, β̂) around β0 followed by a first-order Taylor expansion
of sn(α̂(β0), β0) around α0 as well as the fact that N−1In(α̂, β̂)

p→ I0, we have
√
N(β̂OS − β0)

=
1√
N
I−1
0 sn(α̂(β0), β0)

+ I−1
0

[
1

N
∇β⊤sn(α̂(β̄), β̄) +

1

N
∇α⊤sn(α̂(β̄), β̄)

∂α̂(β̄)

∂β⊤ + I0

]√
N(β̂ − β0) + op(1)

=
1√
N
I−1
0 sn(α0, β0) +

1√
N
I−1
0 ∇α⊤sn(ᾱ, β0)(α̂(β0)−α0)

+ I−1
0

[
1

N
∇β⊤sn(α̂(β̄), β̄) +

1

N
∇α⊤sn(α̂(β̄), β̄)

∂α̂(β̄)

∂β⊤ + I0

]√
N(β̂ − β0) + op(1).

(83)

By (74) of Lemma 8, we have 1√
N
∇α⊤sn(ᾱ, β0)(α̂(β0)−α0)

p→ b0. By (75) of Lemma 8,

1

N
∇β⊤sn(α̂(β̄), β̄) +

1

N
∇α⊤sn(α̂(β̄), β̄)

∂α̂(β̄)

∂β⊤ + I0 = op(1).

Hence, using the result that
√
N(β̂ − β0) = Op(1) by Theorem 3, we simplify (83) as

√
N(β̂OS − β0) =

1√
N
I−1
0 sn(α0, β0) + I−1

0 b0 + op(1)

=
1√
N
I−1
0

n∑
i=1

∑
j>i

sij(α0, β0) + I−1
0 b0 + op(1), (84)

where sij(α0, β0) is dyad (i, j)’s contribution to the asymptotic representation. Then, by the
Lindeberg-Feller CLT, as in the proof of Lemma 3, we have the stated asymptotic normality.

71



B.6 Proof of Theorem 5

Proof. By (84), we have,
√
N(β̂OS − β0) = I−1

0 b0 +
1√
N
I−1
0

∑
(i,j)∈In×In;j>i

sij(α0, β0) +R(y,x,α0),

where R(y,x,α0) is the residual term which has been shown to be op(1) in the proof of
Lemma 8. Thus, the one-step estimators based on sub-networks can be written as√

N/4(β̂
(t)
OS,1 − β0) = I−1

0 b0 +
1√
N/4

I−1
0

∑
(i,j)∈I(t)

1,n×I(t)
1,n;j>i

sij(α0, β0) +R(y
(t)
1 ,x

(t)
1 ,α

(t)
0,1),

√
N/4(β̂

(t)
OS,2 − β0) = I−1

0 b0 +
1√
N/4

I−1
0

∑
(i,j)∈I(t)

2,n×I(t)
2,n;j>i

sij(α0, β0) +R(y
(t)
2 ,x

(t)
2 ,α

(t)
0,2),

where α
(t)
0,1 is the sub-vector of fixed effects indexed by I(t)

1,n and the other notations are
defined similarly. Hence, we have

√
N(β̂

(t)
OS−SJ − β0) =

2√
N
I−1
0

∑
(i,j)∈I(t)

1,n×I(t)
2,n

sij(α0, β0) +R(t)(y,x,α0), (85)

with R(t)(y,x,α0) := 2R(y,x,α0) −
[
R(y

(t)
1 ,x

(t)
1 ,α

(t)
0,1) +R(y

(t)
2 ,x

(t)
2 ,α

(t)
0,2)
]
/2, which is

also op(1). Notice that R(t)(y,x,α0) is a continuous and bounded function of its argu-
ments, which means that max1≤t≤Tn

∥∥R(t)(y,x,α0)
∥∥
2
≤ R∗(y,x,α0) for some function

R∗(y,x,α0) = op(1). Hence, we have
∥∥∥T−1

n

∑Tn

t=1R(t)
∥∥∥
2
≤ R∗ = op(1). Then, taking

average of (85) over all 1 ≤ t ≤ Tn yields

√
N(β̂Tn − β0) =

2√
N
I−1
0

1

Tn

Tn∑
t=1

∑
(i,j)∈I(t)

1,n×I(t)
2,n

sij(α0, β0) +
1

Tn

Tn∑
t=1

R(t)(y,x,α0)

=
2√
N
I−1
0

n∑
i=1

∑
j ̸=i

(
n−2

n/2−1

)(
n

n/2

) sij(α0, β0) + op(1)

=
1√
N

× n

n− 1
I−1
0

n∑
i=1

∑
j>i

sij(α0, β0) + op(1)
d→ N (0, I−1

0 ),

where the second equality holds because for each (i, j), i ̸= j, there are
(

n−2
n/2−1

)
different splits

among them. This proves the first result.
Conditional Fn, random draws

√
Nβ̂

(t)
OS−SJ, t = 1, . . . , T ′

n are independent and uniformly
distributed over {

√
Nβ̂

(s)
OS−SJ}

Tn
s=1, which is a finite set for any fixed n. Hence, the law of large

numbers implies that
√
N(β̂BG − β̂Tn) = op(1) as T ′

n → ∞, where the randomness comes
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from the independent draws. This proves the second result. Combing it with the first result
gives

√
N(β̂BG − β0) =

√
N(β̂BG − β̂Tn) +

√
N(β̂Tn − β0)

d→ N (0, I−1
0 )

as T ′
n → ∞ and n → ∞. This completes the proof.

B.7 Proofs of Results in Section 4

Proof of Theorem 6. We decompose δ̂ − δ0 as

δ̂ − δ0 =
(
δ̂ − ∆̄n

)
+
(
∆̄n − δ0

)
.

The second term is a U-statistics

∆̄n − δ0 =

(
n

2

)−1 n∑
i=1

∑
j>i

[∆ij(αi0, αj0, β0)− E∆ij(αi0, αj0, β0)]

with the kernel ∆ij(αi0, αj0, β0)− E∆ij(αi0, αj0, β0). So, if

Σδ = Cov(∆ij(αi0, αj0, β0),∆ik(αi0, αk0, β0))

exists, by Theorem 12.3 of Van der Vaart (2000), we have
√
n(∆̄n − δ0)

d→ N (0, 4Σδ). (86)

Next, for the first term, notice that α̂ ≡ α̂(β̂) and we can decompose it as

√
N
(
δ̂ − ∆̄n

)
=

1√
N

n∑
i=1

∑
j>i

[
∆ij(α̂i(β̂), α̂j(β̂), β̂)−∆ij(αi0, αj0, β0)

]
=

1√
N

n∑
i=1

∑
j>i

[
∆ij(α̂i(β̂), α̂j(β̂), β̂)−∆ij(α̂i0(β0), α̂j0(β0), β0)

]
+

1√
N

n∑
i=1

∑
j>i

[∆ij(α̂i0(β0), α̂j0(β0), β0)−∆ij(αi0, αj0, β0)]

:= U1 + U2,

where U1 captures the variation from β̂, and U2 captures the variation from α̂(β0).

Let us define

∆β(α, β) :=
1

N

n∑
i=1

∑
j>i

∂∆ij

∂β
(αi, αj, β), ∆α(α, β) :=

1

N


∑

j ̸=1
∂∆1j

∂α1
(α1, αj, β)
...∑

j ̸=n
∂∆nj

∂αn
(αn, αj, β)

 .

(87)
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For U1, a first-order Taylor’s expansion around β0 yields

U1 =
1√
N

{
n∑

i=1

∑
j>i

∂∆ij

∂β⊤ (α̂i(β̄), α̂j(β̄), β̄) +
n∑

i=1

∑
j ̸=i

∂∆ij

∂αi

(α̂i(β̄), α̂j(β̄), β̄)
∂α̂i

∂β⊤ (β̄)

}
(β̂ − β0)

=
{
∆β(α̂(β̄), β̄)⊤ −∆α(α̂(β̄), β̄)⊤J11(α̂(β̄), β̄)−1J12(α̂(β̄), β̄)

}√
N(β̂ − β0)

= (∆⊤
β −∆⊤

αJ
−1
11 J12)

√
N(β̂ − β0) + op(1), (88)

where β̄ lies in the segment between β̂ and β0; the last equality uses the fact that β̄
p→ β0

and
∥∥α̂(β̄)−α0

∥∥
∞

p→ 0.

For U2, a third-order Taylor expansion yields

U2 =
√
N∆⊤

α(α̂(β0)−α0)

+
1

2

{
1√
N

n∑
k=1

[α̂k(β0)− αk0]
n∑

i=1

∑
j>i

∂2∆ij(α0, β0)

∂αk∂α⊤ [α̂(β0)−α0]

}

+
1

6

{
1√
N

n∑
k=1

n∑
l=1

[α̂k(β0)− αk0][α̂l(β0)− αl0]
n∑

i=1

∑
j>i

∂3∆ij(ᾱ, β0)

∂αk∂αl∂α⊤ [α̂(β0)−αn0]

}
.

(89)

Similarly to the proof of Theorem 3, we can show that the second term of (89) converges in
probability to a bias term Bα defined by (36) and

(Rµ
k)ij =

∂2∆ij,k(α0, β0)

∂αi∂αj

, 1 < i ̸= j < n,

(Rµ
k)ii =

∑
j ̸=i

∂2∆ij,k(α0, β0)

∂2αi

, i = 1, . . . , n.
(90)

The last term of (89) is op(1) (equivalent to the limit of part (IV) of (67)). Additionally,
from the proofs of Theorems 2 and 3, we have

√
N(β̂ − β0)− J−1

0 B0 = −J−1
0

{
1√
N
m2(α0, β0)−

1√
N
J21J

−1
11 m1(α0, β0)

}
+ op(1) (91)

and ∥∥α̂(β0)−α0 + J−1
11 m1(α0, β0)

∥∥
∞ = op(n

−1/2). (92)

Substituting (91) and (92) into (88) and (89) respectively, we have

√
N(δ̂ − ∆̄n)−Bβ −Bα = − (∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0

{
1√
N
m2(α0, β0)−

1√
N
J21J

−1
11 m1(α0, β0)

}
−

√
N∆⊤

αJ
−1
11 m1(α0, β0) + op(1)

= − 1√
N
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0 m2(α0, β0)
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+
1√
N

[
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0 J21 −N∆⊤

α

]
J−1
11 m1(α0, β0) + op(1)

where Bβ is defined by (36) in the main text.
Finally, by the Lindeberg-Feller CLT, we have

√
N(δ̂ − ∆̄n)−Bβ −Bα

d→ N (0,Σ∆) (93)

with

Σ∆ = lim
n→∞

1

N

{
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0 V22

[
(∆⊤

β −∆⊤
αJ

1
11J12)J

−1
0

]⊤
+
[
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0 J21 −N∆⊤

α

]
J−1
11 V11

{[
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0 J21 −N∆⊤

α

]
J−1
11

}⊤
−
[
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0 J21 −N∆⊤

α

]
J−1
11 V12

[
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0

]⊤
−
{[

(∆⊤
β −∆⊤

αJ
−1
11 J12)J

−1
0 J21 −N∆⊤

α

]
J−1
11 V12

[
(∆⊤

β −∆⊤
αJ

−1
11 J12)J

−1
0

]⊤}⊤ }
. (94)

Combining (86) and (93), and notice that δ̂−∆̄n is uncorrelated with ∆̄n−δ0 asymptotically,
we have (

Σ∆

N
+

4Σδ

n

)−1/2(
δ̂ − δ0 −

1√
N
Bβ −

1√
N
Bα

)
d→ N (0, IK).

The proof of asymptotic normality of δ̂BG is similar to the proof of Theorem 1 and
Theorem 5 since we have proved the asymptotic normality of the plug-in estimator δ̂. So,
we omit it here.

Proof of Theorem 7. Most of steps are basically same with what we have done in the
proofs of Theorems 2–3 and Corollary 1, the difference is that we need to replace (α0, β0)

with (α∗, βn∗). For conciseness, we omit these repetitive steps.

Proof of Theorem 8. Similarly, most of steps are same with the proofs of Theorem 4 and
Theorem 5, we just need to replace (α0, β0) with (α∗, βn⋆). We also omit these repetitive
steps.

C Additional simulation results

In Tables 10–12, we present the simulation results of β0 and APEs for smaller networks
with n = 50. The main conclusions drawn in Section 5.1–5.3 remain roughly unchanged,
although the smaller sample size does increase the standard deviations of the estimates as
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Table 10: Estimation Results of β0

n = 50, density=25% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0599 -0.0713 0.0570 -0.0724 -0.0104 -0.0027
Median Bias 0.0568 -0.0670 0.0534 -0.0712 -0.0137 -0.0003
Standard Deviation 0.1262 0.2632 0.1258 0.2650 0.1185 0.2527
Mean Standard Error 0.1180 0.2720 0.1183 0.2712 0.1183 0.2712
Mean Absolute Bias 0.1116 0.2158 0.1100 0.2178 0.0960 0.1999
Median Absolute Bias 0.0946 0.1818 0.0914 0.1811 0.0842 0.1722
RMSE 0.1397 0.2727 0.1381 0.2748 0.1189 0.2527
90% Coverage Rate 83.3 90.1 83.4 90.5 90.5 92.9
95% Coverage Rate 90.1 94.9 90.6 94.3 95.2 96.4

n = 50, density=8.5% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.0940 -0.1948 0.1131 -0.1279 -0.0116 -0.0013
Median Bias 0.0915 -0.2097 0.1145 -0.1396 -0.0110 -0.0116
Standard Deviation 0.1651 0.4027 0.1641 0.4140 0.1475 0.3716
Mean Standard Error 0.1576 0.3833 0.1587 0.3842 0.1587 0.3842
Mean Absolute Bias 0.1528 0.3567 0.1614 0.3434 0.1186 0.2913
Median Absolute Bias 0.1324 0.2990 0.1439 0.2772 0.0985 0.2423
RMSE 0.1900 0.4473 0.1993 0.4333 0.1480 0.3716
90% Coverage Rate 83.2 85.9 80.8 86.4 91.5 92.1
95% Coverage Rate 89.5 91.5 89.4 92.8 96.5 95.8

expected. Overall, we find the performance of our BG estimators to be satisfactory under a
very small sample size of n = 50.

D Additional Details of India Microfinance Network Ap-

plication

D.1 Combining triangle and fitting empirical networks

In this section, we show how to extend our baseline model (4) to capture the formation of
triangles in a graph explicitly, using a method similar to what Chandrasekhar and Jackson
(2023) propose. Then, we provide a minimum distance estimator based on the moment
conditions from the extended model.

Consider two independent subgraph formation processes. The first one is our basic
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Table 11: Estimation Results of β0 under Misspecification

n = 50, density=25% JMM OS BG

β1 β2 β1 β2 β1 β2

Mean Bias 0.1388 -0.1288 0.1470 -0.1264 -0.0056 0.0268
Median Bias 0.1401 -0.1291 0.1453 -0.1204 -0.0038 0.0361
Standard Deviation 0.1365 0.2927 0.1388 0.3239 0.1399 0.3033
Mean Standard Error 0.1273 0.2766 0.1377 0.3067 0.1377 0.3067
Mean Absolute Bias 0.1611 0.2541 0.1668 0.2601 0.1048 0.2240
Median Absolute Bias 0.1470 0.2105 0.1494 0.2138 0.0909 0.1819
RMSE 0.1946 0.3198 0.2022 0.3476 0.1400 0.3045
90% Coverage Rate 68.8 84.9 71.5 87.1 92.4 92.1
95% Coverage Rate 79.2 90.6 82.4 93.0 96.7 96.2

Table 12: Estimation Results of APE

n = 50, density=25% Plug-in Bagging

Xij,1 Xij,2 Xij,1 Xij,2

Mean Bias -0.0063 0.0046 -0.0023 -0.0048
Median Bias -0.0047 0.0065 -0.0019 -0.0043
Standard Deviation 0.0295 0.0578 0.0304 0.0600
Mean Standard Error 0.0296 0.0576 0.0296 0.0576
Mean Absolute Bias 0.0240 0.0457 0.0243 0.0471
Median Absolute Bias 0.0197 0.0371 0.0209 0.0382
RMSE 0.0302 0.0580 0.0305 0.0602
90% Coverage Rate 89.9 90.1 89.7 88.9
95% Coverage Rate 94.3 94.9 94.3 93.5
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link-based model (4) with individual heterogeneity to generate {Yij}1≤i<j≤n. The second
process—independent of the first one—is the formation of triangles {Tijk}1≤i<j<k≤n, where
Tijk = 1 if the links between nodes i, j, k are all connected and Tijk = 0 otherwise. Suppose

Tijk
i.i.d.∼ Bernoulli(1− λn0), 1 ≤ i < j < k ≤ n,

where λn0 → 1 (hence 1 − λn0 → 0) as n → ∞, which holds true in general for most
networks as argued by Chandrasekhar and Jackson (2023). The observed network, denoted
by {Y ob

ij }1≤i<j≤n, is then generated by

Y ob
ij = 1 (Yij = 1 or Tijk = 1 for some k ̸= i, j) . (95)

In the extended model (95), there are a total of n+K+1 unknown parameters, consisting of
the heterogeneity vector α0, common parameter β0, and triangle formation parameter λn0.

The observed links in model (95) are dependent across dyads because of the existence
of triangle formation. Due to the dependence among the links, it is generally impossible to
write the joint likelihood function of the observed network directly. Therefore, we propose
a minimum distance estimator based on certain moment conditions (Menzel (2016) and
Chandrasekhar and Jackson (2023)). The idea is to first solve for α̂ as a function of β and
λ. Then, we estimate β and λ jointly by minimizing the weighted average of the Euclidean
distance between the observed number of triangles and its expectation and the norm of the
sample analogue of the moment conditions for β.

Specifically, for each i, the expectation of degree dobi :=
∑

j ̸=i y
ob
ij is

(n− 1)−1E
[
dobi |X = x

]
= 1−

(
1− 1

n− 1

∑
j ̸=i

pij(α0, β0)

)
λn−2
n0 . (96)

Similar to we show in Section 3.1, the corresponding moment conditions (96) induce a SGD
algorithm for solving α̂(λn, β) as a function of (λn, β), i.e., we may modify (7) to be

ri(α, λn, β) = αi + λ−(n−2)
n

(
(n− 1)−1dobi − 1

)
+ 1− 1

n− 1

∑
j ̸=i

pij(α, β),

and iterate it until convergence.
Next, the expectation of the average number of triangles in the observed network is

hn(α0, λn0, β0)

:=

(
n

3

)−1

E

[ ∑
1≤i<j<k≤n

Y ob
ij Y ob

jk Y
ob
ki |X = x

]
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= 1−

(
1−

(
n

3

)−1 ∑
1≤i<j<k≤n

pij(α0, β0)pjk(α0, β0)pki(α0, β0)

)
λn0

[
1− (1− λn−3

n0 )3
]
.

Finally, the moment condition for the common parameter β is

m2(α0, β0) =
n∑

i=1

∑
j>i

[yobij − (1− (1− pij(α0, β0))λ
n−2
n0 ]xij.

With α̂(λn, β), we estimate (λ̂n, β̂) by a minimum distance estimator:

(λ̂n, β̂) := arg min
λn∈(0,1),β

wT

∣∣∣∣∣
(
n

3

)−1 ∑
1≤i<j<k≤n

yobij y
ob
jky

ob
ki − hn (α̂(λn, β), λn, β)

∣∣∣∣∣+∥m2(α̂(λn, β), β)∥1 ,

where wT is the weight of moment condition for triangle count. In the empirical application,
we set it to be 10. Moreover, to improve computational efficiency, we set λ′

n = λn−2
n and use

λn[1− (1− λn−3
n )3] ≈ λ′

n(3− 3λ′
n + λ′

n
2)

because λn0 is close to 1 in theory. In the implementation of this algorithm, we estimate λ̂′
n

first and then let λ̂n = (λ̂′
n)

1/(n−2). The resulting estimator is (α̂, λ̂n, β̂) := (α̂(λ̂n, β̂), λ̂n, β̂),
which is used to simulate the networks for the India microfinance network application. Fi-
nally, we compute the characteristics of the simulated networks and summarize the results
in column “Extended” of Table 9.
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