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Abstract

Fast public transit networks are widely believed to (i) attract more riders and
reduce negative externalities of driving, and (ii) reduce inequality by improving
mobility for the urban poor. But are the transit improvements that are most
effective at increasing transit ridership also more equitable? Combining survey
data with web-scraped counterfactual travel times for millions of trips across 49
large US cities, I estimate a model of travel mode and residential location choice.
I characterize the heterogeneity across income groups and cities in commuters’
marginal willingness to pay for access to faster transit and to increase their transit
ridership. I find that higher-income transit riders sort more aggressively into the
fastest transit routes and are, on average, willing to pay more for faster commutes.
Improvements in transit speed are most effective at generating transit ridership
and welfare gains where transit is already fast (relative to driving), in cities with
a greater share of rail-based transit and where the gains are larger for higher-
income commuters. Transit improvements benefit lower-income commuters more
where transit is relatively slow, in cities with more bus transit, and where the
overall marginal gains are small.
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1 Introduction

In a rapidly urbanizing world, governments and financial institutions are investing large
sums on high-speed inner-city mass transit infrastructure in order to tackle growing
road congestion and to reduce carbon emissions.1 Faster public transit networks are
expected to increase transit ridership and reduce the number of vehicles on the road.
They are also widely believed to reduce inequality by disproportionately improving
mobility and labor market access for the urban poor (Kalachek, 1968). How effective
are improvements in travel speed at increasing transit ridership? How are the ridership
and welfare gains from faster transit travel distributed across rich and poor commuters?
And are the more effective transit improvements also more equitable?

To answer these questions, I develop a discrete choice model of residential location
and travel mode choices within cities that reflect heterogenous preferences over travel
times by high and low income commuters. To estimate the model, I combine census
data on commuting flows and mode choices within US cities with rich web-scraped
travel time and route data for millions of counterfactual commuting choices in order
to derive the demand for access to faster transit and driving commutes. To the best of
my knowledge, this paper is the first to investigate how the demand for faster travel
by transit (relative to driving) varies across cities, across commuting routes within
cities, and by commuter income. In doing so, I show that improvements in transit
speed are most effective at generating overall welfare and transit ridership gains where
they benefit higher income commuters relatively more. So, the most effective transit
improvements (and the ones likely to be realized) are unlikely to be equitable!

My main findings are as follows. First, I find large differences across cities in
commuters’ demand for faster public transit commutes. In particular, the marginal
willingness to pay (MWTP) for faster transit is significantly higher in cities where
transit is already fast (relative to driving) or where a large share of transit usage is via
rail transit. For example, the mean MWTP for a one percent increase in commuting
speeds among transit riders ranges from $374 per year in San Francisco CA (and a value
of travel time saving of around $19 per hour) to just $9 per year in Las Vegas NV.2 These

1For instance, China spent USD 100 billion on rail transit infrastructure in 2017 (OECD, 2019)
and opened over 45 subway lines across 25 cities just between August 2016 and December 2017.
Hannon et al. [2020] estimates cities and transit providers to undertake at least $1.4 trillion in new
mass transit infrastructure investments by 2025. Over $100 billion of it will be committed to mass
transit in North America.

2Differences across cities in incomes and housing costs play an important role. However, for
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differences have important implications for the effectiveness of transit improvements
at attracting new transit riders. For instance, a one percent increase in transit speeds
throughout San Francisco increases transit ridership by roughly 3.5 percentage points
(over 20 percent of baseline transit ridership). In contrast, a one percent increase in
transit speeds in Las Vegas increases transit ridership by only 0.2 percentage points
(or 6 percent). These city-level patterns mask even larger variation by the location
of transit improvements within cities. Most notably, the demand for faster transit is
significantly higher along commuting routes where transit is already fast relative to
driving, such as along rail routes or congested driving routes.

Second, I find that higher income commuters tend to have a higher willingness to
pay for faster travel conditional on travel mode choice. Transit improvements attract
and benefit lower income commuters more where transit is already slow (relative to
driving), as it typically is in most US cities. But transit improvements attract and
benefit higher income commuters more where transit is relatively fast. For instance,
in New York (the city with the fastest transit speeds in my sample), commuters with
annual incomes greater than $75,000 are 67% more likely to switch to riding transit
than commuters with incomes less than $35,000. In contrast, in Los Angeles (where the
transit network is relatively sparse and primarily bus-based), commuters with incomes
greater than $75,000 are only half as likely to switch to transit than commuters with
incomes less than $35,000. Within cities, the income elasticity of demand for faster
transit is positive and higher along commuting routes where transit is relatively fast.
Together with my first set of results, they imply that the transit improvements most
effective at increasing overall welfare and transit ridership are those that benefit and
attract higher income commuters relatively more (such as in cities and along popular
commuting routes where transit is already fast and driving is slow). This result calls
into question the extent to which public transit improvements can be simultaneously
efficient and equitable.

Additionally, this paper makes two distinct methodological innovations. The first is
a data innovation. While we know anecdotally that travel on public transit is typically
slower than on privately-owned vehicles, we have limited understanding of how much
faster public transit trips would be on private vehicles (and vice versa) and how they
compare across cities and across different parts of the same city. Much of our formal

comparison, the MWTP for a one percent increase in commuting speeds for drivers is $302 in San
Francisco CA (lower than the MWTP of transit riders) and $17 in Las Vegas NV (much higher than
the MWTP of transit riders).
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knowledge of travel times to date originates from household travel surveys. But surveys
only impart partial information on selected trips which are not directly comparable
across mode choices.3 This paper innovates by leveraging a newly emerging source of
big data, Google Maps, to predict travel times on both observed and counterfactual
trips by each travel mode between the same sets of origin-destination pairs at the same
time of day.4 The rich variation in travel times across millions of simulated trips allows
me to systematically compare transit and driving travel speeds both across and within
US cities (and across high- and low-income commutes within cities).

The paper’s second methodological innovation is developing an empirical framework
to evaluate the demand for counterfactual transit improvements based off of aggregate
cross-sectional data on commuting behavior. To do so, I build on the discrete choice
framework developed by McFadden [1978] and extended by Bayer et al. [2004] and
Bayer et al. [2007] to recover household preferences for location attributes in the pres-
ence of sorting on unobservables. Income sorting into travel modes and neighborhoods
necessarily induces correlations between location attributes endogenous to incomes and
other unobservable (and observable) location attributes.5 My empirical framework gets
around such endogeneity concerns by allowing choices to condition on unobservable
attributes of travel modes and residential neighborhoods. In addition, my paper ex-
tends on this class of residential sorting models by conditioning out mean preferences
across income groups over the unobservable attributes of travel modes (thus essentially
controlling for the income sorting). Then, preferences over commuting speeds are iden-
tified from the residual variation in individual workers’ commutes to their given work
locations within the city.

Identifying preferences off of net variation in commuting speeds instead of proximity
to transit (as is common among studies of inner-city transit) makes a big difference to
the estimated distributional gains from faster transit: because while poorer commuters
tend to reside closer to transit stops in typically high-density neighborhoods, I show
that richer commuters are the ones who enjoy the fastest transit commutes within cities.
Who benefits more from improvements in transit speed (and how much) depends on

3Self-reported travel times are also subject to recall bias, anchoring and related measurement
concerns.

4Google Maps exploits historical and real-time data from tracking the movement of smartphones
combined with information on transit schedules to predict travel times that have been shown to
credibly capture variation in travel times from real driving trips (Akbar et al., 2023).

5For instance, higher-income neighborhoods may be higher-quality or have higher travel speeds
because of better-funded local amenities and infrastructure.
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how fast transit is (already) relative to driving.
My investigation has important implications for three broad groups of literature.

First, the paper’s findings help us better understand public transit’s role in neighbor-
hood gentrification and inequality. Because poorer commuters have been shown to be
more likely to ride transit and reside near new transit stops (Baum-Snow and Kahn,
2000, 2005, Pathak et al., 2017), public transportation in the US is frequently portrayed
as an inferior good and a poverty magnet (Glaeser et al., 2008). This paper shows that
transit is indeed more likely to attract poorer commuters where it is slow relative
to driving (as it is on most commutes). But as we make transit faster, it becomes
relatively more attractive to the rich (and a normal good). This result is consistent
with recent individual case studies of high-speed transit expansions, which often find
incomes to have gone up in newly transit accessible neighborhoods (Heilmann, 2018)
and richer commuters to have benefited just as much or more (Tsivanidis, 2019). It
may be that realized high-speed transit expansions often attract the rich more because
planners are focusing on efficiency rather than equity (as suggested by my results),
and transit expansions that are more attractive to the poor would also be less effective
overall (as in Gaduh et al., 2020).

Second, this paper informs us of the value of travel time savings on public transit.
Papers comparing the effect of different public transit expansions have overwhelmingly
focused on proximity to transit stations or distance along transit routes assuming
anecdotal or constant speeds (Kahn, 2007, Glaeser et al., 2008, Gu et al., 2021, Pathak
et al., 2017 to name a few). In contrast, my data allows me to directly estimate
preferences for faster transit commute (instead of proximity to transit). There is also
a large literature on measuring people’s opportunity cost of time spent traveling and
using it to inform transportation policies at the intensive margin, such as for congestion
pricing (Small, 2012, Bucholz et al., 2022, Goldszmidt et al., 2020). While the value of
travel time savings (VTTS) has been extensively studied based on driving trips, this
paper tells us about the VTTS on public transit and how it compares to driving across
income brackets and across cities with different transit networks. The distinction proves
important because I estimate VTTS among mass transit riders that are, on average,
half the VTTS among drivers.6

6Craig [2019] also uses residential location and travel mode choices to estimate the value of com-
muting time in Vancouver, but their model does not distinguish the value of time by each mode of
travel. Also, their variation in travel time is based on reported transit schedules and survey-reported
driving times.
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Third, this paper contributes to the literature quantifying the gains from investing
in inner-city mass transit infrastructure. A growing number of case studies of indi-
vidual mass transit expansions investigate transit’s general equilibrium effects on the
spatial distribution of economic activity within cities (Heblich et al., 2020, Severen,
2021, Tsivanidis, 2019, Warnes, 2020). In order to precisely estimate the heterogeneity
in preferences for faster transit commutes, I deviate from these quantitative spatial
models by foregoing much of the restrictions on preferences imposed by their model
structure. Instead, I use a more flexible utility specification that allows me to more
precisely identify the heterogeneity in preferences across income groups and across
space.7 Understanding this heterogeneity is key to be able to generalize case studies to
inform policy making. For instance, how informative are model predictions for one city
about potential transit improvements in another? I show that the demand for faster
commutes varies widely but systematically across cities and across locations within
cities.

This paper focuses only on the direct travel time gains from mass transit improve-
ments, which Tsivanidis [2019] found to have accounted for 60-80% of the total welfare
gains in general equilibrium from expanding Bus Rapid Transit in Bogotá. There are
also studies that explore mass transit’s implications for population decentralization
(Gonzalez-Navarro and Turner, 2018, Lin, 2017), income segregation (Akbar, 2022),
congestion (Anderson, 2014, Gu et al., 2021), car ownership (Mulalic et al., 2020), air
pollution (Gendron-Carrier et al., 2022), property values (Bowes and Ihlanfeldt, 2001,
Cervero and Kang, 2011, Gupta et al., 2022), labor market informality (Zárate, 2020),
gender inequality (Kwon, 2020, Kondylis et al., 2020) and long-term growth of cities
(Heblich et al., 2020) among other things.

The rest of this paper is organized as follows. Section 2 describes the available data
on observed commutes and the data estimation process for counterfactual commutes.
Section 3 documents differences in transit ridership and transit travel times relative
to driving (both across cities and within cities). It also documents differences across
income groups in their access to high-speed transit and driving commuting routes.
Section 4 presents a model of travel mode and residential location choices within cities
and an estimation strategy to identify the demand for faster transit commutes. Section
5 presents the estimated preferences in terms of commuters’ willingness to pay for faster
travel and characterizes the heterogeneous gains in transit ridership and welfare from

7In doing so, I also forego the ability (of these models) to simulate mass transit’s longer term
implications for urban residents beyond the immediate gains from faster travel.
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marginal improvements in transit speeds in different cities.

2 Data

This paper studies the residential neighborhood and travel mode choices of com-
muters in the 2006-10 American Community Survey (ACS). A ‘city’ in this paper is a
metropolitan area (CBSA) and I focus on the 49 metropolitan areas with population
over 300,000 where at least 2% of the commutes are by public transportation.

2.1 Commuting flows

Data on the flow of commuters between each pair of residence and work census tracts
comes from the 2006-10 Census Transportation Planning Package (CTPP), which are
aggregations of the ACS microdata for the corresponding years. I use the breakdown
of the population of commuters by their household income bracket and their means
of transportation to work.8 Household income brackets are fixed for all metropoli-
tan areas at (1) under $35,000, (2) $35,000-50,000, (3) $50,000-75,000 and (4) over
$75,000. I restrict my analysis to workers over 16 years old who commute to work
within the extent of my CBSAs and who either drive, ride public transportation or
walk to work.9 For the rest of the paper, I use the term ‘transit’ to refer exclusively
to public transportation.

Across all cities, my sample covers roughly 61 million commutes across 2 million
observed residence-work tract pairs. The vast majority of commuters in each city
choose to drive. The fraction of commutes by transit is 4% in the median CBSA in
my sample and is as high as 31% (in New York, NY). The fraction of commutes by
‘walking’ is around 3% in the median CBSA and as high as 11% (in Boulder, CO).

In addition to the aggregate counts of commuting flows, my analysis relies on hous-
ing expenditure data on individual workers from the 5% sample of microdata from
IPUMS (Ruggles et al., 2019) and aggregate demographic data on residential census
tracts and block groups (with more detailed breakdown on household incomes and

8CTPP data for more recent years do not include these tabulations for the interaction of household
income and means of transportation. Thus, my analysis is limited to ACS years 2006-10.

9Driving pools together both those who ride their own vehicle and those who carpool with others
on privately owned vehicles. Unfortunately, walking includes bicycling as the ACS lumped together
counts of commuters who walk to work with those who bike.
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choices than the CTPP data) from the National Historic Geographic Information Sys-
tem (NHGIS). I use population-weighted centroids and crosswalks between geographies
from the Missouri Census Data Center. To measure housing prices, I use standard-
ized property prices on single-family parcels at the census tract level from Davis et al.
[2021].

2.2 Travel times

The analysis in this paper relies on knowing the travel times faced by each worker from
their observed residential locations and travel modes as well as from (their unchosen)
alternative locations and modes. To construct these counterfactual travel times, I
simulate a series of trips on Google Maps by driving, transit, and walking from every
block group in the CBSA at exactly the same time of the same day. These include
trips to nearby popular shopping malls, restaurants, schools, pharmacies and 15 other
destination types from Google’s directory of “place types” (the exact trip destinations
depend both on the destination’s popularity as a Google search result as well as on
its proximity to the trip origin). I also include trips to the 5 most popular work
destinations in the residential county as well as to the 5 most popular work destinations
from the residential census tract (based on commuting flows observed in the CTPP
data). Then I use the spatial variation in Google’s travel time predictions on these
trips to impute travel times on all possible counterfactual commuting trips.

Google’s travel time predictions on trips by driving and walking are based on their
historical data on smartphone movements.10 In contrast, travel time predictions on
trips by transit are based on schedules shared by local transit authorities (sometimes
in real-time) and the open-source General Transit Feed Specification (GTFS). These
transit travel times include waits between transfers as well as time spent walking to
transit stops. For trips with no viable transit routes nearby, Google returns the pre-
dicted walking times. Since transit travel times are sensitive to the timing of the Google
Maps query and the departure time (which are not planned relative to the transit sched-
ules unlike most real transit trips), I search each trip at five different times of the day
and consider a weighted average of the travel times in subsequent analyses.11 I only
do so for transit trips as the driving and walking travel times returned by Google are

10Google also makes real-time travel time predictions but they are more susceptible to idiosyncratic
shocks and the timing of the data collection.

11The weights are proportional to the hourly frequency of trips (by trip purpose) in the 2017 NHTS.
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already historical weighted averages across time of day and days. Appendix Section
A.1 includes additional details on identifying trip destinations and querying trips on
Google Maps.

Importantly, I need to predict the counterfactual commuting times faced by individ-
ual workers from their observed work tracts to each residential tract within the CBSA
by each travel mode. There are 38 million residence-work location combinations faced
by commuters across my 49 cities. Since the full matrix of possible trips between these
location pairs by each travel mode is too large (and expensive) to query individually
on Google Maps, I rely on an alternative approach that proceeds in three steps. First,
I identify the shortest routes between all trip origin-destination pairs (including for the
non-commuting trips queried on Google Maps) along major road networks downloaded
from OpenStreetMap (OSM) and compute the overlap between these routes and the
city’s tract boundaries. Second, using the 14 million trips for which I have travel times
from Google Maps, I estimate the average speed of travel through each tract by each
mode.12 Third, I use the estimated mode-tract-specific speeds and the overlaps be-
tween tracts and routes to predict travel times on the remaining (commuting) trips. I
repeat the three steps separately for each CBSA.

More precisely, let τcqm denote the travel time on trip q in CBSA c using travel
mode m. I can decompose it into a sum of travel times through each overlapping tract
on its route:

τcqm =
∑
k∈Kc

lckq/sckm (2.1)

where lckq is the trip length overlapping tract k, sckm is the mode-specific travel speed
through tract k, and Kc is the set of census tracts within a convex hull of the CBSA’s
geographic extent. To determine the overlap lckq between trips and tracts, I compute
each trip’s shortest route along the network of non-residential streets and intersect it
with all tract boundaries. Then, using the set of trips for which I also have total trip
travel times τcqm from Google Maps, I estimate travel speeds sckm from (2.1) using an
OLS regression of the trip travel times on the trip lengths overlapping each tract (with
coefficients 1/sckm). I run these regressions separately for each CBSA and travel mode.
Then I plug the estimated speeds into (2.1) to predict travel times on the commuting

12In this version of the paper, the Google Maps travel times to non-residential amenities (such as
restaurants, shopping malls and parks) only serve to help me predict travel times on commutes since
this study focuses only on commuting trips. An extension (in progress) investigates worker preferences
on both commuting trips and trips to amenities.
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trips that did not get queried on Google Maps.13 See Appendix Section A.2 for further
details on estimating tract speeds and commuting times.

As a quality check, I use the estimated speeds to also predict travel times for a
randomly selected test sample of trips for which I already have Google travel times but
which I do not use in the speed estimation. The predicted travel times are strongly
correlated with the Google travel times: for the median city, the correlation for driv-
ing and walking travel times are 95% and 97% respectively. The median correlation
between transit travel times is slightly lower (but still reasonably high) at 84%.

3 Travel Speeds, Mode Choices and Incomes

Henceforth in the paper, trip “distance” refers to the length of the shortest OSM route
and the (average) trip “speed” is this shortest route distance divided by the predicted
travel time. Note that trip distances are not necessarily the traveled road distances
and do not vary with travel modes. Accordingly, trip speeds measure both how fast
one moves along a route as well as the directness of the travel route (relative to the
shortest street route). For example, higher transit speeds on a trip may correspond
to either a more direct transit connection (such as one with fewer detours or less time
spent walking and waiting along the way) or a faster transit route (such as one with
fewer stops in between or by subway instead of bus).14 Similarly, driving speeds reflect
both the directness of chosen driving routes (relative to the shortest route along major
arteries) and how fast traffic flows along these routes. This definition of speed is
arguably the more policy-relevant measure of interest: how well the transit or driving
network connects locations within cities (rather than just how fast vehicles move).

13An advantage of using commuting travel times predicted from these tract-level speeds instead of
travel times directly returned by Google Maps on a trip between the (centroids of) tracts is that they
are less sensitive to how one chooses the precise locations of the trip origins and destinations within
tracts. It pertains even more to transit travel times because transit routes can be sparse and walking
times to and from transit stops can vary significantly depending on where the trip starts and ends.
The tract level speeds smooth out this variation within tracts. So, while the predicted commuting
times may not be the best predictor of actual travel times between the tract centroids, they may be
more representative of average travel times between the tracts.

14The transit speeds do not include scheduling costs related to when to start the trip. For instance,
Google Maps may ask the traveler to start their trip at a particular departure time to have them
coincide with the arrival of a bus or train at the designated stop. The difference between the scheduled
departure time and the time the trip is queried is not included in the travel times. In subsequent
analyses in Section 4 onwards, this schedule cost is covered by travel mode-origin fixed effects. Note,
however, that wait times between transit transfers are included in the travel times.
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Table 1 shows mean travel distances, times and speeds across all commuting trips
in my sample conditional on each commuter choosing their observed residence, work
location and travel mode. On average, drivers reside farther away from work than
transit riders, who reside farther away than walkers. Unsurprisingly, driving commutes
are also faster than transit commutes, which are faster than walking commutes.15 But
regardless of mode choice, higher income commuters tend to commute both longer (in
distance and time) and faster than lower income commuters.

Table 1: Mean distances, times and speeds on observed commutes

Travel
Mode

All com-
muters

<$35k $35k-
$50k

$50k-
$75k

>$75k

Distance (in km)
driving 23.2 20.2 21.4 22.6 24.3
transit 22.6 15.2 17.2 19.4 27.2
walking 8.2 7.7 7.9 8.0 8.7

Travel time (in min)
driving 22.7 20.3 21.2 22.1 23.5
transit 74.5 58.0 62.6 67.4 84.8
walking 87.6 81.4 84.6 85.0 93.8

Speed (in km/h)
driving 55.2 52.6 53.8 54.9 55.9
transit 17.1 14.8 15.6 16.4 18.5
walking 4.9 4.8 4.9 4.9 4.9

Note: Means are over all observed one-way commutes, i.e. conditional on each commuter choosing their observed
residence, work location and travel mode. Table pools together all cities in my sample.

15Recall that walking commuters include bicyclists but the mean travel times and speeds are based
on Google Maps’ predictions for walking. So, the average walker does not actually spend 88 minutes
on commute - many of the longer trips presumably happen via bicycle.
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Table 2: Ranking of cities by mean commuting speeds on transit

Rank City Transit speed
(in km/h)

Ratio of transit
to driving speed

% commuters
riding transit

Rail share of
transit riders

1 New York, NY 20.2 0.35 30.7% 86.7%
2 San Francisco, CA 18.9 0.31 15.5% 51.6%
3 Seattle, WA 17.8 0.30 8.6% 5.2%
4 Chicago, IL 17.7 0.28 11.9% 69.8%
5 Philadelphia, PA 17.1 0.30 9.7% 46.0%

-
10 Atlanta, GA 15.7 0.21 3.5% 30.8%

-
15 Minneapolis, MN 15.1 0.20 4.8% 5.8%

-
26 San Diego, CA 13.9 0.24 3.5% 11.0%

-
37 Austin, TX 12.8 0.21 2.8% 1.1%

-
49 Vallejo-Fairfield, CA 8.8 0.18 2.7% 33.3%

Note: Speeds are relative to shortest road distance (not necessarily the travel distance). Speeds and ratios of
travel times are means across all trips between observed work-residence location pairs (unconditional on travel
mode choice) ignoring the top and bottom 5% of outliers. Rail share is the fraction of transit commutes via rail
transit in the city.

Travel speeds also vary greatly across cities. Table 2 lists the fastest cities by their
mean transit speeds across all observed residence-work location pairs unconditional on
travel mode choice.16 The table also reports the means of transit speeds as a function
of driving speeds on corresponding trips. On average, transit is slower than driving
everywhere. In the fastest transit cities, driving is roughly three times faster than
riding transit. In the slowest transit cities, driving is roughly five times faster. Cities
with relatively faster transit have a higher share of commuters who ride transit. These
cities are also likely to have a higher share of their transit commutes using rail-based
transit as opposed to road-based transit (such as buses). But there are exceptions,
consistent with the speeds reflecting both how fast commuters move along their transit
routes as well as how well-connected transit routes are. Most notably, Seattle WA has
the third highest average transit speed but 95% of its transit commutes are by bus,
whereas Vallejo-Fairfield CA has the lowest average transit speed but a third of its
fewer transit riders are more likely to use commuter rail.

16Appendix Table A.1 shows a complete ranking of all cities by transit speed.
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Figure 3.1: Share of commuters riding transit as a function of travel speeds.
Figure pools together commutes across all cities. Speeds are standardized (to mean 0 and std. dev. 1) across trips

between observed work-residence pairs within each CBSA. Trips at the top and bottom percentiles of speeds are ignored.

White spaces in the graph correspond to 0.1-by-0.1 cells with fewer than 20 commutes.

Within cities, the likelihood of riding transit depends on the speed of transit relative
to driving. Figure 3.1 plots commuters’ probability of riding transit (on the z-axis)
against commuting speeds by driving and transit between their observed residence-
work location pair (on the x- and y-axes). I standardize the transit and driving speeds
within each city so that we are comparing mode choices across locations within (and
not across) cities. Conditional on driving speed, transit ridership is higher on trips
(i.e., residence-work location pairs) where transit is relatively fast. Also, conditional
on transit speed, transit ridership is higher on trips where driving is slow. As such,
transit and driving are substitutable alternatives: commuters choose more of one when
the price of travel (in terms of inverse travel speeds) on the other is higher.
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(a) High-income share of transit riders by their com-
muting speed

(b) High-income share of drivers by their commuting
speed

Figure 3.2: Share of commuters who are high-income by (standardized) speed
of travel. The figures pool together commutes across all CBSAs. Horizontal axis depicts travel speeds on chosen

mode standardized (to mean 0 and std. dev. 1) across all observed commutes on the same made within each CBSA.

Trips at the top and bottom percentiles of speeds are ignored. Speed, in this context, is the shortest road distance

divided by travel time. Confidence intervals are in grey.

The income composition of transit riders also varies systematically over travel
speeds. As shown in Figure 3.2a, higher income transit riders are more likely to enjoy
faster transit commutes within a city.17 A similar pattern can be observed for drivers.
Figure 3.2b shows that higher income drivers are more likely to enjoy the fastest driving
commutes (but the mean differences are smaller than among transit riders). These pat-
terns could be due to an income-elastic preference for faster commutes that is missed
if we focus only on travel times instead of speeds. As explored further in Apprendix
Section A.5, when commuters travel faster, they also commute longer. And, as seen in
Table 1, higher income commuters have higher average travel times (and distances) on
their chosen travel mode despite higher travel speeds.

17The observed relationship is robust to alternative high income cutoffs too besides $50,000.
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Figure 3.3: Mean incomes of commuters as a function of driving and transit
speeds. Figure pools together commutes across all cities. Household incomes are means across commutes of medians

of income brackets (based on micro-data). Speeds are standardized (to mean 0 and std. dev. 1) across trips between

observed work-residence pairs within each CBSA. Trips at the top and bottom percentiles of speeds are ignored. White

spaces in the graph correspond to 0.1-by-0.1 cells with fewer than 20 commutes.

Having said that, unconditional on mode choice, higher income commuters are more
likely to sort into commutes where driving is fast. Figure 3.3 shows average commuter
incomes by driving and transit speeds between their work and residence (with redder
shades now depicting higher mean commuter incomes). Given both driving and transit
commutes appear to be normal goods and driving is typically faster (cheaper in time)
than transit, it is unsurprising that average commuter incomes are higher where driving
is faster. In a few cases, incomes are also high where transit is fast and driving is not.
Income sorting across locations appear to be reflective of heterogeneous preferences
over commuting speeds and travel modes, but the sorting could also be driven by
preferences over other spatially correlated features. The following section proposes an
empirical framework to isolate the extent to which the observed income sorting into
work-residence location pairs and travel modes can inform us about the gains from a
faster transit network.
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4 A model of travel mode and residential location

choice

Suppose each city is composed of a fixed population of heterogeneous workers, a set
of residential neighborhoods n and work locations j, and three modes of travel m ∈
M = {driving, transit,walking}. Workers classify under one of four income groups y,
each with a fixed population in the city and a different distribution of jobs across work
locations. Each worker i is exogenously assigned a work location and an income wi,
and choose their residential neighborhood and mode of travel to maximize their gains
from shorter commutes given heterogenous preferences over mode and neighborhood
characteristics. The rest of this section characterizes (and parameterizes) the worker’s
decision problem and outlines a strategy to estimate the preference parameters from
available data.

4.1 Specification

Work locations determine the set of commuting times workers face to each residential
neighborhood by each travel mode, and workers from different income groups may
have different preferences over these commuting times. For instance, if higher income
commuters have a higher opportunity cost of time, they are likely to have a stronger
preference for shorter commutes. Commuting times (in log) can be decomposed into
the (log) distance Djn from work to residential neighborhoods minus the (log) average
speed Sjmn along the route on the chosen travel mode. The utility gain from commuting
distance Djn at speed Sjmn is denoted:

αS
mySjmn − αD

y Djn

where parameters αS
my and αD

y dictate the income group-specific preferences over speeds
and distances (respectively). Note that when αS

my = αD
y , they are just the coefficient

on (log) commuting time. But I allow preferences over speed αS
my to also vary with

the choice of travel mode m. The value of travel time spent riding the transit may
differ from the time spent driving (or walking), and consequently, so may preferences
for travel times savings on each travel mode (and differentially across income groups).

On the other hand, parameters αD
y reflect the net gains from shorter commutes

unconditional on mode choice. Since workers have different work locations within the
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city, they differ in their distances to high quality residential neighborhoods and, con-
sequently, in their accessibility gains from a longer commuting distance. So, αD

y also
encapsulate differences in the geography of high- and low-income jobs within the city.
Workers from an income group with more jobs farther away from desirable neighbor-
hoods are likely to be more willing to commute longer and have a smaller αD

y .18

Neighborhoods differ in their supply of developable land and a competitive housing
market determines the equilibrium housing prices pn (per unit of space) faced by the
neighborhood’s residents. While prices depend on the aggregate demand for housing
space in each neighborhood, each worker takes these prices as given when making
housing consumption and location choices. Housing is a normal good and individual
demand for housing space is increasing with income and decreasing with the price of
housing. More specifically, conditional on residing in neighborhood n, the housing
consumption of worker i is:

h(pn, wi) = (pn)
αh(wi)

αw (4.1)

where αh < 0 is the price elasticity and αw > 0 is the income elasticity of housing
demand.

Net of preferences over housing costs and commuting times, each worker’s prefer-
ences over neighborhoods and travel modes can be decomposed into two components:
a common preference across all workers in an income group and an idiosyncratic pref-
erence. Let δmny denote the income group-specific utility from choosing neighborhood
n and travel mode m. This utility shifter captures differences across modes in the
monetary cost of travel (such as of vehicle ownership or transit fare) that affects each
income group differently. They also capture differences in the quality of residential
amenities (such as schooling and crime) as well as in location-specific attributes of
travel (such as convenience of parking or waiting at the nearest transit stop). The lat-
ter may include differences in how well (on average) the commuting mode connects the
residential neighborhood to non-commuting destinations and non-residential amenities
such as restaurants and shopping malls. While the (unobserved) mode choices on non-
commuting trips may be different from the observed mode choice on commutes, the
gains from owning a vehicle or a bus pass are greater when they improve access to

18Alternatively, if jobs are more substitutable across space (e.g. in terms of wages) for one income
group, they may have a stronger preference for more centrally located jobs and a higher αD

y . Modeling
the geography of jobs (and work location choices) explicitly is beyond the scope of this paper.
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more than just the immediate work location.
Workers also have idiosyncratic preferences over neighborhood-mode alternatives

and I let ϵimny denote their idiosyncratic utility gains from choosing neighborhood n

and mode m. Assume ϵimny are random draws from a type 1 extreme value (T1EV or
Gumbel) distribution that is identical across workers and independent of their com-
muting and housing preferences. Together with the aforementioned deterministic com-
ponents of utility, workers’ choices in equilibrium maximize the following (indirect)
utility function:

Umn|ijy ≡ αS
mySjmn − αD

y Djn +
(wi)

1−αw

1− αw

− (pn)
1+αh

1 + αh

+ δmny + ϵimny (4.2)

The parameters αw and αh determine the diminishing marginal utility from higher
incomes and the marginal disutility from higher housing prices (respectively). The
housing demand function in (4.1) follows from Roy’s Identity.19

Preference parameters αS
my, αD

y , αw and αh may vary across cities, but I drop the city
subscripts to simplify notation. That means preferences over commuting and housing
depend on city-level attributes such as (but not limited to) the spatial distribution of
high- and low-income jobs with respect to the travel network and city-level housing
constraints. These city-level attributes are exogenous with respect to each worker’s
decision problem.

Finally, given the distribution of the logit error term ϵimny, the probability of a
worker from income group y and work location j choosing mode m and neighborhood
n is

πmn|jy =
exp

(
Vmn|jy

)∑
m′∈M

∑
n′ exp

(
Vm′n′|jy

) (4.3)

where Vmn|jy ≡ αS
mySjmn − αD

y Djn + δmny −
(pn)

1+αh

1 + αh

4.2 Identification

In applying this utility specification to data, I address three important empirical chal-
lenges to identifying preferences for faster commutes. First, travel times on commutes

19By Roy’s Identity:

h(p, w) = − dU/dp

dU/dw
= (pn)

αh(wi)
αw
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depend on both the spatial distribution of transportation infrastructure (such as tran-
sit routes and highways) and the spatial distribution of jobs relative to residential
neighborhoods. If work locations for higher income groups are farther away from de-
sirable residential neighborhoods, they may appear to have a smaller disutility from
longer commutes despite having a higher opportunity cost of travel time. Decompos-
ing commuting times into shortest-route road distances Djn and mode-specific speeds
Sjmn allows me to isolate the two effects and identify preferences over access to faster
commutes conditional on proximity to jobs. Furthermore, conditional on the income
group-specific fixed effects, I am identifying the coefficient on speed using variation
across individuals in the same income group.

Second, commuting speeds may be correlated with other (unobservable) attributes
of residential neighborhoods and travel modes. For example, if transit planners are
more likely to expand high-speed transit routes into neighborhoods with attributes
more desirable to the rich, then unless I control for these correlated neighborhood
attributes in my regression, higher income commuters would appear to have a higher
coefficient on transit speed than they actually do. My inclusion of alternative-specific
constants for each income group δmny (fixed effects) essentially controls for preferences
over unobservable neighborhood-mode attributes.

Third, commuting speeds may be systematically correlated with the locations of
high- and low-income jobs. For example, if work locations of some income groups
are better connected by high-speed transit than driving relative to the work loca-
tions of others, then these income groups would appear to have a higher coefficient
on transit speed than they actually do. To address this concern, I standardize the
commuting speeds and distances faced by each worker to mean 0 (and standard devi-
ation 1) conditional on travel mode. In doing so, any mean preference for one travel
mode over another within an income group y is absorbed by the group’s corresponding
alternative-specific constant δmny. So, conditional on commuting distance and income
group-alternative-specific constants, the coefficients on speed αS

my are the gains from
shorter commuting time identified off of mode-specific variation in speeds to different
work locations in the city.20

In addition to the coefficients on commuting speed, I need to estimate housing
demand parameters αw and αh to be able to compare preferences for access to faster
commutes in terms of workers’ willingness to pay for housing. This exercise poses two

20Later on, I transform the speeds and distances back to their unstandardized levels for evaluating
willingness to pay and transit ridership responses to a percent change in travel speeds.
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additional econometric challenges. First, the price elasticity of housing demand αh is
not identifiable from the utility specification because housing prices pn are necessarily
correlated with neighborhood characteristics captured by the fixed effects δmny. Second,
the choice probabilities in (4.3) do not inform us at all about the income elasticity of
housing demand αw. So, I need to identify these parameters separately. To do so, I
exploit the housing expenditure patterns of a representative micro-sample of each city’s
working population. Consider the log of the housing demand function in (4.1), which
I can rewrite as a linear relationship between the log of total housing expenditure as a
share of income (on the left) and the logs of housing prices and incomes (on the right):

ln

(
hinpn
wi

)
= (1 + αh) ln(pn) + (αw − 1) ln(wi) (4.4)

Then the price and income elasticities of housing demand follow directly from the
coefficients of (log) price and (log) income above.

4.3 Estimation

Estimation of the model parameters proceeds separately for each city and in two stages.
The first stage estimates the housing demand parameters αw and αh using micro-data
on individual housing expenditures in an OLS estimation based on (4.4). For each
worker in the census micro-sample, I observe both precise household incomes and the
share of that income spent on housing expenditures. I can combine them with tract-
level standardized housing prices from Davis et al. [2021].21 Then I regress the log of
housing expenditure share on log housing price and log household income as below.

ln

(
HousingExpShare

)
= ᾱh ln

(
Price

)
+ ᾱw ln

(
Income

)
(4.5)

where the coefficients are ᾱh = 1 + αh and ᾱw = αw − 1. See Appendix Section A.3
for estimation details and results. Having estimated αh, the housing price component
of each worker’s choice probabilities −(p1+αh

n )/(1 + αh) is just a neighborhood-specific
constant from here on.

The second stage estimates parameters αS
my and αD

y together with fixed effects δmny

21I do not observe the workers’ tracts of residence in the microdata. The smallest known geography
of residence is the PUMA, which are slightly larger. So, instead, I assign each worker the expected
housing price experienced by workers in the same income bin and PUMA. See Appendix Section A.3
for details.
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using the data on observed commuting flows and counterfactual travel times in a max-
imum likelihood estimation based on (4.2). The estimation maximizes the probability
that the model correctly matches each worker in the city to their observed neighbor-
hood and mode in the CTPP data. In particular, estimated parameters maximize the
following sum across all workers of the log-likelihood of their observed choices:

L =
∑
y

∑
j

∑
n

∑
m∈M

Pjmny ln
(
πmn|jy

)
(4.6)

where Pjmny is the observed population of commuters in income group y and work
location j who choose mode m and residence n. The estimation procedure then consists
of numerically searching over the twelve αS

my parameters and the four αD
y parameters

as well as the full matrix of fixed effects δmny in order to maximize L.
The set of work locations are the census tracts in the city that receive non-zero

commutes. The choice set of residential neighborhoods in each city is the set of census
tracts with non-zero observed population of workers.22 The number of residential tracts
ranges from 58 in my smallest city (Trenton, NJ) to 3050 in my largest (New York, NY).
So, given the large number of fixed effects to be estimated for every mode, neighborhood
and income group combination, I exploit a contraction mapping approach popularized
by Berry et al. [1995] to speed up convergence to the optimal parameter estimates. See
Appendix Section A.4 for details.

Across all cities, income groups and travel modes, I estimate 588 different coeffi-
cients on commuting speed. To make them comparable across cities and income groups,
I combine the estimated coefficients with my parameter estimates from the first stage to
characterize preferences in terms of the implied marginal willingness to pay (MWTP)
in annual housing costs for faster commutes.23 Appendix Table A.2 reports the distri-
bution of the (raw) estimated coefficients on commuting distance and speed (αD

y and
αS
my) across the 49 cities. The following section explores how the implied MWTP varies

across cities and income groups.

22Commuters with either residence or work location outside of the extent of the city are dropped
from the sample.

23The marginal willingness to pay (MWTP) for higher commuting speed is −dU/dSjmn

dU/dpn
.
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5 Estimated Preferences for Faster Transit

This section presents the estimated preferences for faster transit commutes in three
stages. First, I characterize the value of travel time conditional on travel mode choice.
In other words, how much are transit riders willing to pay for access to faster commut-
ing routes (compared to drivers)? Second, I characterize the marginal propensity of
consumers to ride transit in response to shorter transit travel times. In other words,
how do increases in transit speed affect transit ridership? Third, I combine the two
results to characterize the overall expected welfare gains from increases in transit speed
(unconditional on mode choices) and how these gains compare for rich and poor com-
muters.

5.1 Willingness to pay for faster commutes

Conditional on travel mode choices, the mean estimated MWTP (per year) for a one
percent increase in travel speed on commutes (across all cities) is $98 among transit rid-
ers and $142 among drivers. Assuming workers commute 5 days a week and commutes
make up 35% of their total time spent traveling (based on reported travel times in
the 2017 NHTS)24, the mean MWTP estimates for speed imply a mean value of travel
time savings (VTTS) among transit riders of $7.4 per hour (and roughly 40% of the
median transit rider’s wage). In comparison, the mean VTTS among drivers is $15.5
per hour (which is 86% of the median driver’s wage).25 My mean driving estimates are
similar to contemporary value-of-time estimates from other papers using alternative
methodologies (Small, 2012), such as means of $13-$14 per hour in Prague (Bucholz
et al., 2022) and Vancouver (Craig, 2019). There are no comparable estimates in the
literature of the value of travel time on transit.

As shown in Table 3, the mean estimates mask large variation across cities. The
table reports the mean MWTP for faster travel by mode choice and city ranked by
the MWTP among transit riders.26 Because of the large number of commuting trips
informing these preference estimations, asymptotic standard errors are tiny (typically

24The share of total travel time spent on commutes to work is calculated from the share of reported
travel times spent on trips to work in the 2017 US National Household Travel Survey (NHTS). I assume
increases in travel speed on commutes also increases travel speeds on all other trips at the same rate.

25One reason for the VTTS among transit riders being a smaller share of wages than the VTTS
among drivers is that transit riders are primarily concentrated in higher-income cities. So, across all
cities, the average transit rider has a higher income than the average driver.

26A table of results for the full list of cities is in the Appendix.
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around one cent or less in MWTP) and omitted from the tables.27 Focusing first on
transit users, in San Francisco (the top ranked city on the list), the MWTP for faster
transit is $374 per year, almost four times the average across all commuters. To bench-
mark these magnitudes, consider MWTP estimates for other locational attributes. For
example, Bayer and McMillan [2012] estimate MWTP (per year) in the San Francisco
Bay area of: $236 for access to schools with (1 standard deviation) higher average test
scores, $126 for 10% more college-educated neighborhoods and $436 for neighborhoods
with $10,000 higher average incomes. While city-level MWTP for faster commutes for
drivers are similar in magnitude to those for transit riders, the rank ordering is differ-
ent. When interpreting these preference estimates, bear in mind that they reflect how
aggressively transit riders and drivers bid for access to (and sort into) locations with
faster commutes. So, some of these cross-city differences in mean MWTP also stem
from differences in housing market constraints and urban amenities that make housing
in some cities more expensive than in others.

Table 3: Cities ranked by mean MWTP for faster transit commutes

Rank City MWTP for
faster transit

MWTP for
faster driving

1 San Francisco, CA $ 374 $ 302
2 Seattle, WA $ 188 $ 179
3 New York, NY $ 178 $ 345
4 San Jose, CA $ 169 $ 139
5 Boston, MA $ 148 $ 189
6 Washington, DC $ 129 $ 156
7 Vallejo-Fairfield, CA $ 119 $ 69
8 Chicago, IL $ 116 $ 179
9 Los Angeles, CA $ 114 $ 102

-
20 Miami, FL $ 64 $ 75

-
29 Phoenix, AZ $ 44 $ 47

-
36 Urban Honolulu, HI $ 32 $ 19

-
49 Las Vegas, NV $ 9 $ 17

Note: Cities are ranked by the mean MWTP for faster transit. MWTP
values are means across all commuters for 1% change in travel speed on their
observed commutes (i.e. conditional on commuters choosing their observed
modes and neighborhoods). See mean MWTP estimates for full list of cities
in the Appendix.

27In work in progress, I bootstrap the standard errors with Monte Carlo simulations to derive more
credible estimates.
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Table 4: Mean MWTP for 1% increase in commuting speed

City Mode < $35k $35k-$50k $50k-$75k >$75k

New York
transit $43 $69 $125 $219
driving $134 $211 $273 $401

Los Angeles
transit $42 $62 $80 $146
driving $51 $81 $81 $123

Note: MWTP values are means across all commuters for 1% increase in travel speed
on their observed commutes (i.e. conditional on commuters choosing their observed
modes and neighborhoods). Asymptotic standard errors are less than a cent.

Table 5: Mean relative MWTP across all cities

Mode < $35k $35k-$50k $50k-$75k >$75k

transit 1.00 1.40 2.00 3.24
driving 1.00 1.47 1.86 2.57

Note: Reported values are the MWTP estimates for 1% increase
in commuting speed divided by the lowest income group’s MWTP
and averaged over commutes across all cities.

Incomes are an important determinant of a commuter’s MWTP estimate. Table 4
decomposes the mean MWTP by commuter’s income bracket and reports it for the two
largest cities in my sample. Unsurprisingly, richer transit riders have higher MWTP
for faster transit commutes than poorer transit riders. Also, richer drivers have higher
MWTP for faster driving commutes than poorer drivers. This pattern is consistent
with the rich having a higher overall value of travel time savings than lower income
commuters. When I aggregate my estimates across all commuters, the magnitude of the
income differences are comparable to extant reduced form estimates in the literature.28

Some of the income elasticity of MWTP are undoubtedly due to differences in the
mean ability to pay (and richer commuters generally spending more on housing). More
notably, based on the differences across income brackets, the income elasticity of the
demand for faster travel appears to be higher among transit riders than drivers. Table
5 pools together commuters across all 49 cities and, for comparability across cities,
presents the MWTP estimates as multiples of the lowest income group’s MWTP. The
average transit commuter with income over $75,000 is willing to pay over three times
more for a one percent increase in commuting speed than the average transit commuter
with income below $35,000. This is not just driven by differences in the ability to pay.
The table also shows the relative MWTP across income groups among drivers, and the

28Small [2012] reviews contemporary empirical estimates of value of time savings (VTTS) on com-
mutes and cites income elasticities of VTTS typically between 0.5 and 0.7.
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income elasticity of the willingness to pay for faster commutes is much smaller among
drivers than among transit riders (like in New York and Los Angeles).

Figure 5.1a plots these ‘relative’ MWTP estimates by city against mean transit
speeds relative to driving (from column 4 of Table 2). The rich have higher MWTP for
increase in transit speed relative to the poor in cities with faster transit. This figure
highlights a key finding of my work: transit improvements are relatively more attractive
to the rich when transit is fast. Another dimension of transit which is often associated
with use by the wealthy is rail transit versus bus transit. Rail transit typically has
higher velocity than buses, so the rail composition of a city’s transit network can
proxy for average travel velocity on transit (and an alternative to my measure of travel
speeds). Figure 5.1b plots the ‘relative’ MWTP estimates against each city’s rail share
of transit usage (from column 6 of Table 2). Transit improvements are relatively more
attractive to the rich when transit is more rail-based.

(a) by mean transit speeds (relative to driving) (b) by rail share of transit commutes in the city

Figure 5.1: Mean MWTP for 1% increase in transit speed (relative to lowest
income group). Each observation corresponds to a city. Vertical axis depicts the MWTP for faster transit as

a fraction of the MWTP of commuters with incomes less than $35,000 (indicated by solid black line at 1). Horizontal

axis depicts either (a) the ratio of driving to transit travel times (across all observed commutes) in the city or (b) the

share of transit riders in the city who commute by rail transit. Confidence intervals for each linear fit are shaded in

corresponding color. For commuters with incomes $35k-$75k, figures plot population-weighted means of the MWTP

estimates for the two middle-income groups in my data.
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5.2 Willingness to ride transit

So far, I have focused on heterogeneity in MWTP for transit speed (or, if you will,
the demand for faster travel) among commuters who ride transit. MWTP is central
to evaluating welfare from the perspective of transit users, but transit policy is often
predicated on a broader set of concerns including reducing congestion and climate
change concerns. Evaluating policy along these dimensions requires assessing how
policies impact the decision to use transit instead of driving. To this end, I use
my model to estimate the probability of non-transit commuters switching to riding
transit if transit is made faster. Let Rjny denote the transit ridership among income
group y on commutes between neighborhood n and work location j. I can solve for a
commuter’s marginal willingness to ride transit (or, in aggregate terms, the marginal
change in transit ridership), denoted MWTT, in response to a percent increase in
transit speed on their commuting route.29 The MWTT measures the predicted change
in the probability of transit use along a given work-residence commuting route in
response to a percent increase in speed along the route.

Table 6 reports the mean MWTT across all commuters in a city conditional on
observed residential location choices. The cities at the top of the list, where marginal
improvements in transit speed would be most effective at generating new transit rid-
ership, are likely to be cities with high pre-existing transit ridership (but not always).
The top of the list includes both cities with high rail transit usage among transit riders
(such as Chicago, Washington and Boston) and ones with very low rail transit usage
(such as Seattle, Portland and Pittsburgh).

These cities also attract transit riders at different rates across income groups. Ta-
ble 7 compares the MWTT across income groups for New York and for Los Angeles.
In New York, a one percent increase in transit speeds everywhere increases transit
ridership more among higher income commuters than lower income commuters. How-
ever, the opposite is true in Los Angeles, where lower income commuters are twice as
likely to increase transit ridership. The case of Los Angeles is more common among
other cities, but there is also a generalizable pattern here. Cities with high (baseline)
transit ridership among commuters are more likely to have high MWTT among richer

29Formally, the marginal willingness to ride transit (MWTT) is defined:

MWTTjny =
dRjny

dSjtransitn
≡ d

dSjtransitn

(
πtransitn|jy∑
m∈M πmn|jy

)
= αS

transityRjny(1−Rjny)
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Table 6: Cities ranked by MWTT from 1% increase in transit speeds

Rank City %age pt change in
transit ridership

Baseline transit
ridership (in %)

1 San Francisco, CA 3.52 15.5
2 Chicago, IL 2.97 11.9
3 Washington, DC 2.97 14.5
4 Seattle, WA 2.88 8.6
5 Boston, MA 2.76 12.4
6 Portland, OR 2.22 6.6
7 New York, NY 2.22 30.7
8 Philadelphia, PA 1.81 9.7
9 Pittsburgh, PA 1.77 6.0

-
18 Miami, FL 0.80 3.8

-
25 Urban Honolulu, HI 0.71 8.2

-
34 Phoenix, AZ 0.55 2.3

-
49 Rochester, NY 0.13 2.1

Note: Cities are ranked by the MWTT in response to a 1% increase in transit
speed along all observed commutes (i.e. conditional on commuters choosing their
observed neighborhoods). See mean MWTT for full list of cities in the Appendix.

commuters (relative to the MWTT among poorer commuters). Table 8 groups to-
gether cities by each city’s (baseline) transit ridership. For comparability across cities,
I present the MWTT estimates as fractions of the lowest income group’s MWTT. In
most cities, baseline transit ridership is low and poorer commuters have much larger
MWTT. However, in the five cities where more than 10% of the commutes are by
transit, the MWTT is similar if not larger for richer commuters.

These five cities (New York, San Francisco, Chicago, Boston and Washington DC)
also happen to be (among the seven) cities with more rail transit riders than road transit
riders. Since higher income transit riders benefit more from improvements in rail-heavy
transit networks (as I showed in Section 5.1), it is unsurprising that these improvements
also increase transit usage relatively more among higher income commuters.

Table 7: Mean MWTT from 1% increase in commuting speed

City < $35k $35k-$50k $50k-$75k >$75k

New York 1.5% 1.3% 1.9% 2.5%
Los Angeles 1.8% 1.4% 1.2% 0.9%

Note: Table reports percentage point change in total transit ridership
across all commuters in response to 1% increase in transit speeds.
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Table 8: Mean relative MWTT across cities

Cities with . . . < $35k $35k-$50k $50k-$75k >$75k

less than 10% commuters riding transit 1.00 0.61 0.52 0.40
more than 10% commuters riding transit 1.00 0.86 1.15 1.53

Note: Reported values are means across all commuters of their MWTT estimate divided by the lowest income
group’s MWTT over the same commuting route.

(a) by (baseline) share of commuters riding transit (b) by overall MWTT (across all commuters)

Figure 5.2: Mean MWTT from 1% increase in transit speed (relative to
lowest income group). Each observation corresponds to a city. Vertical axis depicts the MWTT for faster

transit as a fraction of the MWTT of commuters with incomes less than $35,000 (indicated by solid black line at 1).

Horizontal axis depicts in log scale either (a) the baseline transit ridership (across all observed commutes) in the city or

(b) the mean MWTT across all commuters. Confidence intervals for each linear fit are shaded in corresponding color.

For commuters with incomes $35k-$75k, figures plot population-weighted means of the MWTT estimates for the two

middle-income groups in my data.

More generally, cities with higher overall (baseline) transit ridership and higher
overall marginal transit ridership (namely higher overall MWTT) have larger relative
MWTT among higher income commuters. Figure 5.2 illustrates this point by plotting
the relative MWTT across income groups as a function of both the city’s overall baseline
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transit ridership and overall MWTT.30 In cities with higher baseline transit ridership
and where transit improvements are most effective at generating new ridership, transit
improvements also increase ridership relatively more among higher income commuters.

Within cities

The data show similar patterns in marginal transit ridership across locations within
cities. So far, the analysis has focused on city-wide improvements in transit speeds. For
evaluating MWTT within cities, I now consider increasing speeds only along particular
commuting routes. To illustrate general patterns, I plot means for the route-specific
results aggregated along two dimensions: (standardized) driving speed and (standard-
ized) transit speed.31 I plot these results for commuters in each of three income brack-
ets. Figure 5.3 shows contour plots for New York and Los Angeles of the MWTT from
an increase in transit speed at different points along the city’s observed commuting
network.32 The x- and y-axes depict existing driving and transit speeds on the route.
The axes scales are fixed so that the colors representing the MWTT are comparable
across income groups and cities.

I highlight two regularities that are clear from these graphs. First, as seen from the
increasingly reddish shades at the top-left of each graph, the maginal gains in transit
ridership are higher along routes where transit is already relatively fast (or driving is
relatively slow). The figures suggest that the relationship between transit ridership and
transit speed is convex. Marginal transit improvements may seem ineffective at the
beginning when transit is slow, but would yield increasingly larger ridership returns.

Second, in New York, the ridership gains among higher income commuters are much
larger (compared to lower income commuters) where driving is relatively slow. Whereas
in Los Angeles, it is the opposite: lower income commuters are the ones more likely
to increase transit ridership along the (relatively) slow driving routes. The graphs
for other rail-transit cities like Chicago, Washington DC and San Francisco with high
overall transit ridership resemble that of New York in that high-income commuters have

30Income differences in mean MWTT across cities are also correlated with mean transit speeds
relative to driving and the city’s rail share of transit usage. Appendix Figures A.3 plot the relative
MWTT across income groups as a function of both the city’s rail share of transit commutes and its
mean transit speed relative to driving.

31As before, for comparability across cities, speeds are normalized across all commutes within each
city.

32Note that the MWTT does not capture commuters moving across residential neighborhoods, and
hence the graphs depict the change in transit ridership among commuters given their (observed) work
and residence. Section 5.3 relaxes this assumption.
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a larger MWTT where driving is relatively slow. Whereas, graphs for most other cities
look like those of Los Angeles where low-income commuters have a larger MWTT when
driving is relatively slow.33 There are, however, exceptions like Seattle (where transit is
fast and only 5% of transit commutes are by rail transit) where the distribution of the
ridership gains for high and low income commuters look similar (see Appendix Figure
A.4).

More generally, the routes where marginal transit improvements are most effective
at generating new transit ridership across all income groups (such as where driving is
relatively slow to begin with) are ones: (a) where the ridership gains are larger among
the rich in high-speed rail-transit cities like New York or (b) where the gains are larger
among the poor in low-speed road-transit cities like Los Angeles.

5.3 Distribution of welfare gains

Finally, what are the welfare gains across income groups from faster transit commutes?
In Section 5.1, I presented the gains from faster travel for transit riders and drivers
conditional on their observed mode and location choices. Now, having characterized
how higher transit speeds affect the probability of riding transit (conditional on neigh-
borhood choices), this section quantifies the average commuter’s expected marginal
gains (in terms of their marginal willingness to pay) from increase in travel speeds
unconditional on their mode and location choice, denoted unconditional MWTP or
’uMWTP’ for short. In other words, I compute the marginal gains from increases in
transit speed for all commuters (not just transit riders) accounting for re-sorting across
both travel modes and residential locations.34

Table 9 compares estimates of uMWTP for a one percent increase in travel speeds
by driving and transit in New York and Los Angeles. The uMWTP for an increase
in transit speeds are an order (or two) of magnitude smaller than the uMWTP for an
increase in driving speeds, which is unsurprising given generally low baseline transit
ridership. Higher income commuters have a higher willingness to pay than lower income
commuters for faster driving commutes, but the income elasticity of the gains from

33While the increase in transit ridership (in terms of percentage point change) is larger among
lower-income commuters, the percentage change from baseline transit ridership is larger among higher
income commuters, who have very low transit usage in cities like Los Angeles.

34Note that welfare gains in this context only refer to the direct utility gains from shorter commuting
times as formalized in Section 4. They do not account for general equilibrium effects, such as through
changes in congestion or the locations of jobs and residential amenities.
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faster transit commutes varies by city. In New York, the uMWTP for faster transit
is higher among richer commuters. Whereas in Los Angeles, the uMWTP for faster
transit is higher among poorer commuters. Table 10 generalizes this result across all
cities and presents the uMWTP estimates relative to that of the lowest income group’s.
As in Los Angeles and New York, higher income commuters consistently benefit more
from increases in driving speeds. However, the lowest income commuters benefit most
on average from increases in transit speeds. And as with transit ridership in the
previous section, the gains from increases in transit speeds are (over four times) larger
for poorer commuters in cities with low baseline transit ridership but (over two times)
larger for richer commuters in cities with high baseline transit ridership.

Table 9: Mean u(nconditional)MWTP for 1% increase in travel speeds

City Mode < $35k $35k-$50k $50k-$75k >$75k

New York
transit $18 $24 $33 $44
driving $131 $231 $316 $478

Los Angeles
transit $2.9 $2.9 $2.2 $0.9
driving $62 $101 $101 $154

Note: uMWTP values are means across all commuters in the income group for 1% change in
travel speeds everywhere. Asymptotic standard errors are less than a cent.

Table 10: Mean relative uMWTP across all cities

Mode < $35k $35k-$50k $50k-$75k >$75k

All cities
driving 1.00 1.56 2.00 2.83
transit 1.00 0.84 0.83 0.92

with less than 10% transit ridership transit 1.00 0.70 0.48 0.24

with more than 10% transit ridership transit 1.00 1.13 1.54 2.33

Note: uMWTP estimates are divided by the lowest income group’s and averaged over commutes across all cities.

How do these distributional effects compare to the overall welfare gains from faster
transit? Table 11 ranks cities by their overall mean uMWTP for faster transit (across
all income groups).35 Cities with higher overall uMWTP (across all commuters) for
faster transit are ones where both overall (baseline) transit ridership and the rail share

35While some of the cross-city differences in the magnitudes of uMWTP may be attributable to
city-specific housing markets, cities with higher uMWTP for faster transit also have higher uMWTP
for transit relative to driving. Column 6 of the table presents the ratio of the uMWTP for faster transit
to the uMWTP for faster driving, and a ranking of cities based on this ratio is strongly correlated to
the ranking presented. See Appendix for a complete ranking of cities by uMWTP for faster transit.
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of transit ridership are high. Most remarkably, the five cities with the highest uMWTP
are also the only cities in my sample where commuters with incomes above $75,000
have a larger uMWTP for faster transit than commuters with incomes below $35,000.
These cities are able to attract disproportionately more high income transit riders (as
seen in Section 5.2), and higher income transit riders have a higher willingness to pay
for faster commutes especially when transit is already relatively fast and rail transit is
more prevalent (as seen earlier in Section 5.1).

More generally, this result reflects the fact that as I move up the ranking of cities,
richer commuters stand to benefit increasingly more (relative to poorer commuters)
from marginal improvements in transit speed. Figure 5.4a illustrates this point by
plotting each city’s mean uMWTP for faster transit of higher income commuters rela-
tive to commuters with incomes below $35,000. The horizonal axis depicts the mean
uMWTP across all commuters (in log scale). Cities with the highest per capita gains
from marginal transit improvements are also ones where the welfare gains are more
likely to accrue to the rich. And these are also the cities where transit improvements
are most effective at generating new transit ridership, as shown in Figure 5.4b. After
all, overall gains in transit ridership are higher when, as shown earlier in Section 5.2,
the gains are also disproportionately higher for the rich than the poor.
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Table 11: Cities ranked by uMWTP for faster transit

uMWTP for faster transit Relative to
driving

Rank City all com-
muters

incomes
<$35k

incomes
>$75k

all com-
muters

1 San Francisco, CA $ 39.82 $ 17.24 $ 46.26 0.118
2 New York, NY $ 38.75 $ 18.22 $ 44.21 0.095
3 Boston, MA $ 16.19 $ 12.90 $ 16.04 0.075
4 Washington, DC $ 14.81 $ 13.86 $ 14.31 0.087
5 Chicago, IL $ 11.44 $ 4.81 $ 16.29 0.053
6 Seattle, WA $ 7.87 $ 9.33 $ 6.96 0.038
7 Philadelphia, PA $ 5.69 $ 8.20 $ 4.49 0.038
8 Portland, OR $ 2.49 $ 4.26 $ 1.67 0.023
9 Pittsburgh, PA $ 2.01 $ 3.51 $ 1.52 0.018

-
21 San Diego, CA $ 0.51 $ 1.37 $ 0.18 0.005

-
35 Phoenix, AZ $ 0.24 $ 0.65 $ 0.10 0.004

-
49 Provo-Orem, UT $ 0.02 $ 0.06 $ 0.00 0.001

Note: Cities are ranked by their mean uMWTP (across all commuters) for 1% increase in transit
speeds. Reported uMWTP values are estimates of mean MWTP across all commuters uncondi-
tional on their choices of mode and neighborhood. Ratio in column 6 divides uMWTP estimates
in column 3 by estimates of the city’s mean uMWTP for 1% increase in driving speeds. See
ranking for full list of cities in the Appendix.

(a) by mean uMWTP across all commuters (b) by mean MWTT across all commuters

Figure 5.4: Mean unconditional MWTP for a 1% increase in transit speed.
Vertical axis depicts the income group’s mean (relative to commuters with income below $35,000) and horizontal axis

depicts (in log scale) the mean across all commuters of either (a) uMWTP or (b) MWTT. Each observation corresponds

to a city. Confidence intervals for each linear fit are shaded in corresponding color. For incomes $35k-$75k, I plot

population-weighted averages of the uMWTP of the two middle-income groups in my data.33



6 Conclusion

In this paper, I introduce a methodology for evaluating the demand for faster commutes
by public transit and driving based on observed residential location and travel mode
choices within cities. In doing so, I address two important empirical challenges that
has limited past work on this topic. The first one is a (sparse) data challenge: I need
to compare chosen (and observed) commutes to unchosen (and unobserved) ones. To
measure the latter, I combine millions of scraped trip queries on Google Maps with
data on street networks to predict travel times on all possible alternative commutes
between census tracts in US cities. The second challenge is to disentangle the extent
to which observed choices and the gains from them (as reflected in housing prices)
are due to differences in commuting speeds as opposed to other spatially correlated
features of travel modes and neighborhoods. To that end, I propose a discrete choice
model that complements my rich data environment with detailed fixed effects in order
to identify heterogeneous preferences over commuting speeds. Applying this model to
49 US cities with different transit networks reveals many new insights on the expected
ridership and welfare gains from transit improvements across income groups and cities.

Among other things, I show that the demand for faster transit commutes is small
relative to the demand for faster driving commutes and depends importantly on the
speed of transit relative to driving along commutes as well as on the prevalence of rail
transit in the city. Ridership and welfare gains from transit improvements are larger
for high income commuters in cities with already high transit ridership, relatively fast
transit and high rail transit usage. The opposite is true (that is, larger gains for
lower income commuters) in cities with low baseline transit ridership, relatively slow
transit and low rail transit usage. And because higher income transit riders have a
higher willingness to pay for faster transit commutes, cities where transit improvements
are more attractive to the rich are also the ones where they generate more overall
transit ridership and welfare. While transit improvements are often believed to reduce
inequality in cities, this result suggests that transit improvements most in demand
(and, consequently, more likely to be cost-effective and to be realized) are likely to
trade off equity for efficiency.

While the paper’s findings shed light on several important policy questions, it also
opens up new ones that the paper leaves unanswered. For instance, why are transit im-
provements in rail-transit-heavy cities more likely to benefit the rich? One hypothesis is
that because rail transit expansions can be much costlier than road transit expansions,
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transit planners may be under greater pressure to target efficiency (and high income
commuters) over equity (and low income commuters) when choosing where to improve
rail transit. Whereas, with buses, planners may focus more on equity. They may also
be wary of transit-induced neighborhood gentrification and income segregation in the
city. In ongoing work in progress, I am simulating the effect of counterfactual transit
improvements in US cities on residential location choices in order to study who are
likely to gentrify newly transit-accessible neighborhoods.
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A Appendix

A.1 Defining and simulating trips on Google Maps

This section describes how I sample trip origin-destination pairs and query them on
Google Maps for travel times. These travel times are then used to estimate census tract-
specific travel speeds by each mode as described in Section A.2. To do so credibly, there
needs to be enough trips going through each census tract and the speeds on these trips
need to be representative of trips actually taken (and not just speeds on infrequently
travelled routes). In addition, because transit networks can be sparse, the trips need
to be geographically spread out so that I am not just looking at areas within a tract
far away from (or close to) transit routes.

To that end, a subset of trips are defined to be between the origins and destinations
on trips reported in the 2017 National Household Travel Survey (NHTS). The confi-
dential version of the NHTS (U.S. Department of Transportation) identifies locations
at the block group level, and I define my trips to be between the population-weighted
centroids of these block groups. I ignore round trips and unrepresentative trips (such
as trips by air). NHTS trips span only a few thousand in total across all cities and they
are missing for a sizeable share of my urban block groups. So, I generate additional
origin-destination pairs myself.

For the remainder of my trips, I set the trip origins to be the population-weighted
centroids of each block group with a non-zero residential population within the extent
of my CBSAs. Since block groups are geographically smaller than tracts, I always
guarantee a few trips originating in every tract. Trip destinations are of two types: (1)
centroids of tracts that are popular commuting destinations as observed in the CTPP
and (2) popular non-residential amenities nearby (such as restaurants and shopping
malls). Popular commuting tract destinations include the 5 most popular destinations
from the trip’s tract of origin and the 5 most popular destinations from the trip’s
county of origin.

For trips to amenities, I first gather a dataset of popular amenities (also from
Google). I categorize non-residential amenities into 19 types, each corresponding to
a different Google “place type” on Google’s Places API. These amenity types include
banks, cafes, churches, city hall, convenience stores, doctors, gyms, hospitals, libraries,
mosques, movie theaters, parks, pharmacies, post offices, restaurants, schools, shopping
malls, stadiums, and train stations. I use each of these as search terms to query
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Google’s Places API for the most popular destinations of each type within a fixed
radius of (the centroid of) each block group. On any search Google returns upto
20 places in order of “prominence”, as determined “by a place’s ranking in Google’s
index, global popularity, and other factors.” The search radius determines the average
proximity to the returned destinations. I let the radius vary with the place type being
searched since some types may be sparser across space than others (such as restaurants
are typically more common than stadiums). In setting the search radii, I also try to
mimic the distribution of trip distances observed in the NHTS. For each place, Google
returns geographical coordinates (as well as other data not used in this paper), which
I then use to define trips between each block group centroid and the closest of the
(twenty) returned destinations around it. Sometimes, Google may find no destination
of a particular type around a block group, in which case I choose the closest destination
from the pool of places of that type returned on queries from other block groups in the
city. In total, I defined roughly 2 million origin-destination (O-D) pairs across all cities
to query on Google Maps for travel times. I defined more trips in cities with more
block groups (as per the trip sampling strategy outlined above), which also translates
to more trips in more populated cities.

All trips were queried on weekdays in the middle of June 2018. Google’s travel
time predictions for driving and walking trips are based on its own historical and real-
time data. I only scrape the travel times that are based on historical averages (as
opposed to real-time predictions by Google). These averages do not vary much over
time and should be less susceptible to idiosyncratic shocks at the time of the data
collection. On the other hand, Google’s travel time predictions for transit are based
on transit schedules shared by transit authorities and the GTFS. While the transit
schedule variation is also small across weekdays, they are still sensitive to the trip’s
departure time. So, I repeat each transit trip at roughly 5 different hours of the day
and take a weighted average where the weights are constructed from the distribution
of trip departure times observed in the NHTS.

Not all queries to Google Maps return route results. A small share of driving
queries (less than 1%) and walking queries (less than 2%) return null results, but
roughly a fifth of transit queries return null results. Transit networks are sparse, so
this is unsurprising. In fact, the share of null results would be higher if not for Google
returning the walking routes in most (but not all) of the cases where the trip does not
overlap with any transit route. The rate of queries with non-zero returns varies across

40



and within cities, with more null results farther away from city centers. I impute travel
times on missing trips by assuming people walk the entire trip (straight-line) distance
at a speed that is the 90th percentile of ’effective’ walking speeds across successful trips
in the surrounding tracts. The ’effective’ speed is the straight-line distance covered per
minute and by penalizing the missing trips with a slow walking speed, I implicitly
assume there are obstructions and long detours along the way (that are also leading
Google to not return these as viable travel routes).

A.2 Estimating tract speeds and commuting times

The goal of this exercise is to estimate travel times by driving, transit and walking
between all possible pairings of residential and work tracts within a city. I compute
this matrix of travel times in three steps. First, I identify the shortest routes between all
O-D pairs (including for the non-commuting trips queried on Google Maps) along major
road networks and their overlap with the city’s tracts. Second, using the trips for which
I also have travel times from Google Maps, I estimate tract-level speeds on each travel
mode using a series of OLS regressions. Third, I use the estimated speeds together
with route overlaps with tracts to predict travel times on the remaining (commuting)
trips.

I download the network of major streets in each city from OpenStreetMap (OSM),
a crowd-sourced mapping platform. The street networks cover a 1% buffer zone around
the geographic bounds of trips and includes the following OSM street types: motorways,
trunks, primary, secondary, tertiary and unclassified. To improve the speed of (and
memory constraints from) the millions of shortest route searches, I exclude smaller
residential streets and driveways. As such, my ’shortest routes’ are only along major
streets and may not be the actual shortest route along the entire road network. This is
not a major concern because residential streets tend to be slower and even when they
make up a large portion of the shortest route, they are less likely to be part of the
fastest route (or to be traveled). As such, my routes may even be more representative
of actual traveled routes.

Then I map each trip origin and destination to their nearest point on the street
network and project the entire network as a directional graph of edges along streets and
nodes at street intersections and trip endpoints. Shortest paths between trip endpoints
are computed using NetworkX, a python package. Having identified the shortest routes,
I intersect them at tract boundaries and compute the lengths of the intersections with
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each tract that is within a 1% buffer around the convex hull of the set of tracts in the
CBSA. I ignore a small share of trips with less than 50% overlap with these tracts.
Note that commuting trips are defined to be between the centroids of tracts within
the CBSA and are, hence, always within the convex hull of these tracts. The total
distance along the shortest path on commuting trips is the trip distance measure used
in subsequent analysis from Section 3 onwards.

For estimating tract speeds, I specify a trip’s total travel time as the sum of travel
times through each tract that its route overlaps. As shown in (2.1), I further decompose
each travel time segment into a route distance divided by travel speed. When I know
both the total travel time and the distances traveled through each tract, I can use an
OLS regression to uncover the coefficients on distances which are also the travel speeds
in the corresponding tracts. So, using my set of non-commuting trips for which I have
the Google Maps travel times, I run separate regressions for each city and travel mode
to estimate the tract-specific speeds.

With the large number of tracts to estimate speeds for, the OLS regression faces a
multi-colinearity problem that is more prominent among tracts with limited variation
in trip routes. For example, if two tracts share a large fraction of the trips passing
through them, then it is difficult to isolate the effect that going through each tract
has on the trips’ travel times. In the worst case, some tracts have to be dropped from
the estimation due to perfect colinearity. I assign each dropped tract the median of
estimated speeds of their surrounding tracts. The OLS regression may also estimate
extremely high or low speeds for some less central tracts in the city. So, I truncate the
top and bottom 5% of estimated speeds in each city.

Finally, to predict total travel times on commuting trips, I plug in the estimated
tract speeds along with each trip’s route (length) overlaps with tracts into (2.1).

A.3 Housing demand estimation

I observe annual household incomes and annual housing expenditures in the publicly
available census microdata from IPUMS but not their census tract of residence. The
smallest identifiable geography of residence in the microdata are PUMAs, which are
usually larger than tracts. In order to combine the housing expenditure data with
tract-level standardized housing prices from Davis et al. [2021] to the microdata, I rely
on aggregate tract-level data from NHGIS. In the aggregate data, I observe household
counts by census tract across 16 income brackets, so I can determine the median housing
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prices experienced by households in each bracket. To aggregate the tract level prices for
each income group to the PUMA level, I use a crosswalk from the website of Missouri
Census Data Center that returns the population-weighted overlaps between PUMAs
and tracts. I use these as weights to compute the median housing prices experienced by
households in each income bracket within a PUMA. I merge these PUMA-income-level
average prices to the micro-data to use in the housing demand estimation. As such,
these are not the actual housing prices corresponding to the housing expenditures but
the housing prices likely to be experienced by the median household in the same income
bracket and PUMA.

Once I have incomes, housing expenditures and housing prices for my sample of
individual housesholds, I run the OLS regression in (4.5) separately for each CBSA:
I regress the log share of income spent on housing expenditures (on the left) on log
income and log housing price (on the right). Observations are weighted by survey
weights for households and excludes households with zero housing expenditure and
households at the top and bottome percentiles of the sample’s income distribution.
Sample sizes for the regressions range from around 15,000 households in the smallest
cities to over 700,000 in the largest ones.

Estimated price elasticities of housing demand (αh) range from -0.66 (in Syracuse,
NY) to -0.82 (in San Francisco, CA). Estimated income elasticities of housing demand
(αw) range from 0.4 (in Provo-Orem, UT) to 0.6 (in San Francisco, CA). Figure A.1
compares the predicted (“fitted”) and the observed housing expenditures as a function
of household income, pooling together all cities. My predicted housing expenditures
are too high for household incomes below $15,000 (an artifact of the log-log functional
form) and slightly smaller than those observed for incomes above.

A.4 Mode and neighborhood choice estimation

Estimation requires numerically searching over parameters αS
my and αD

y and fixed effects
δmny to maximize the sum of log likelihoods L from (4.6). To aid the search process,
I exploit a contraction mapping approach popularized by Berry et al. [1995]. More
specifically, given any realization of the vector of parameters αS and αD, a contraction
mapping is used to calculate the matrix of fixed effects δ that solves the first order
conditions ∂L

∂δ
= 0.

Consider the following first-order Taylor approximation of L as a function of the
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Figure A.1: Predicted vs observed housing expenditures in the microdata. The
fitted regression line is based on the OLS estimation of (4.5). The figure pools together households
across all cities.

fixed effects:

L(αS, αD, δt+1) = L(αS, αD, δt) + (δt+1 − δt)′
∂L(αS, αD, δt)

∂δ

The first order condition to solve for the δt+1 that maximizes this approximation is

∂L(δt+1)

∂δt+1
= 0

Following some algebra, the first order condition simplifies to the following contraction
mapping:

δt+1
mny = δtmny − ln

[∑
j

(∑
m

∑
n

∑
y

Pjmny

)
πmn|jy

/(∑
j

Pjmny

)]

Updating the values of δ as above until convergence maximizes L conditional on pa-
rameters αS and αD. I update parameters αS and αD by the (weighted) gradient of
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the log likelihood with respect to each:

∂L

∂αD
y

=
∑
j

∑
n

∑
m∈M

[
Pjmny − πmn|jy

(∑
m

∑
n

Pjmny

)]
·Djn

∂L

∂αS
my

=
∑
j

∑
n

[
Pjmny − πmn|jy

(∑
m

∑
n

Pjmny

)]
· Sjmn

A.5 Additional tables and figures

Travel distances vs speeds

Figure A.2 shows that average travel distance is increasing with travel speed, suggesting
commuters (on average) travel farther when they can travel faster. Alternatively, longer
trips tend to be faster. This is true for both drivers and transit riders and across all
income groups. However, even conditional on speed, higher income groups appear to
commute slightly longer..

(a) Drivers (b) Transit riders

Figure A.2: Average commuting distances by speed. Distances and speeds are in logs
and standardized across commutes within each CBSA and travel mode. The figures pool together
commutes across all cities in my sample.
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Table A.1: Full ranking of cities by commuting speeds on transit

Rank City Transit speed
(in km/h)

Ratio of transit
to driving speed

% commuters
riding transit

Rail share of
transit riders

1 New York-Newark-Jersey City, NY-NJ-PA 20.2 0.35 30.7% 86.7%
2 San Francisco-Oakland-Hayward, CA 18.9 0.31 15.5% 51.6%
3 Seattle-Tacoma-Bellevue, WA 17.8 0.30 8.6% 5.2%
4 Chicago-Naperville-Elgin, IL-IN-WI 17.7 0.28 11.9% 69.8%
5 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 17.1 0.30 9.7% 46.0%
6 Washington-Arlington-Alexandria, DC-VA-MD-WV 17.0 0.30 14.5% 82.3%
7 Houston-The Woodlands-Sugar Land, TX 16.5 0.21 2.7% 2.5%
8 Denver-Aurora-Lakewood, CO 15.9 0.28 4.9% 16.2%
9 Urban Honolulu, HI 15.8 0.33 8.2% 0.3%
10 Atlanta-Sandy Springs-Roswell, GA 15.7 0.21 3.5% 30.8%
11 Santa Maria-Santa Barbara, CA 15.7 0.28 4.0% 1.3%
12 Los Angeles-Long Beach-Anaheim, CA 15.5 0.27 6.4% 10.9%
13 Boston-Cambridge-Newton, MA-NH 15.5 0.28 12.4% 78.4%
14 St. Louis, MO-IL 15.4 0.23 2.7% 19.5%
15 Minneapolis-St. Paul-Bloomington, MN-WI 15.1 0.20 4.8% 5.8%
16 Portland-Vancouver-Hillsboro, OR-WA 14.9 0.29 6.6% 12.2%
17 Sacramento–Roseville–Arden-Arcade, CA 14.8 0.23 2.8% 18.4%
18 Miami-Fort Lauderdale-West Palm Beach, FL 14.7 0.26 3.8% 14.2%
19 Cleveland-Elyria, OH 14.6 0.21 4.0% 8.3%
20 San Antonio-New Braunfels, TX 14.5 0.23 2.3% 0.3%
21 Milwaukee-Waukesha-West Allis, WI 14.4 0.23 3.8% 1.5%
22 Phoenix-Mesa-Scottsdale, AZ 14.4 0.23 2.3% 2.8%
23 Pittsburgh, PA 14.3 0.25 6.0% 3.0%
24 Boulder, CO 14.2 0.32 5.9% 0.2%
25 Hartford-West Hartford-East Hartford, CT 14.0 0.23 2.9% 6.6%
26 San Diego-Carlsbad, CA 13.9 0.24 3.5% 11.0%
27 Salt Lake City, UT 13.9 0.26 3.5% 16.3%
28 Providence-Warwick, RI-MA 13.8 0.24 2.7% 45.6%
29 Baltimore-Columbia-Towson, MD 13.7 0.25 6.5% 36.0%
30 Eugene, OR 13.7 0.28 4.1% 0.3%
31 Albany-Schenectady-Troy, NY 13.4 0.25 3.2% 6.2%
32 Las Vegas-Henderson-Paradise, NV 13.3 0.27 3.8% 0.2%
33 Buffalo-Cheektowaga-Niagara Falls, NY 13.1 0.23 3.8% 7.2%
34 Bridgeport-Stamford-Norwalk, CT 13.1 0.23 9.7% 83.6%
35 Rochester, NY 13.1 0.19 2.1% 3.5%
36 Madison, WI 13.0 0.23 4.0% 1.1%
37 Austin-Round Rock, TX 12.8 0.21 2.8% 1.1%
38 Tucson, AZ 12.8 0.28 2.6% 0.4%
39 Durham-Chapel Hill, NC 12.6 0.24 4.0% 1.4%
40 Lansing-East Lansing, MI 12.5 0.21 2.4% 0.8%
41 Provo-Orem, UT 12.5 0.26 2.2% 2.0%
42 Syracuse, NY 11.8 0.21 2.2% 1.0%
43 San Jose-Sunnyvale-Santa Clara, CA 11.7 0.24 3.4% 36.9%
44 Trenton, NJ 11.1 0.24 7.6% 73.9%
45 New Haven-Milford, CT 11.1 0.24 3.8% 35.8%
46 Ann Arbor, MI 10.8 0.23 4.1% 1.7%
47 Springfield, MA 10.7 0.21 2.1% 3.2%
48 Savannah, GA 9.9 0.21 2.1% 0.9%
49 Vallejo-Fairfield, CA 8.8 0.18 2.7% 33.3%

Note: Speeds are relative to shortest road distance. Speeds and ratios of travel times are means across all trips between
observed work-residence location pairs (unconditional on travel mode choice) ignoring the top and bottom 5% of outliers. Rail
share is the fraction of transit commutes via rail transit in the city.
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Table A.2: Estimated coefficients αD
y and αS

my on commuting distance and speed

Variable Mode Income Mean p5 p25 Median p75 p95

Distance all

< $35k 1.518 0.971 1.260 1.601 1.686 2.006
$35k-$$50k 1.501 0.911 1.260 1.555 1.700 1.991
$50k-$75k 1.453 0.864 1.142 1.514 1.649 1.947
> $75k 1.421 0.851 1.155 1.465 1.624 1.891

Speed

driving

< $35k 0.301 0.156 0.218 0.293 0.370 0.471
$35k-$$50k 0.310 0.131 0.247 0.303 0.376 0.494
$50k-$75k 0.293 0.083 0.211 0.297 0.380 0.487
> $75k 0.272 0.091 0.201 0.273 0.337 0.484

transit

< $35k 0.271 0.140 0.210 0.271 0.313 0.387
$35k-$$50k 0.241 0.119 0.197 0.220 0.257 0.374
$50k-$75k 0.243 0.087 0.200 0.248 0.282 0.377
> $75k 0.276 0.097 0.225 0.274 0.319 0.478

walking

< $35k -0.155 -0.303 -0.212 -0.153 -0.103 0.010
$35k-$$50k -0.146 -0.364 -0.189 -0.146 -0.086 0.054
$50k-$75k -0.177 -0.408 -0.219 -0.148 -0.115 -0.039
> $75k -0.265 -0.435 -0.321 -0.265 -0.208 -0.137

Note: Table reports the mean, 5th percentile, 25th percentile, median, 75th percentile and 95th percentile
(in that order) of coefficient estimates across all 49 cities. Standard errors on all estimated coefficients are
less than 0.00001.

(a) by mean transit speeds (relative to driving) (b) by rail share of transit commutes in the city

Figure A.3: Mean MWTT from 1% increase in transit speed (relative to
lowest income group). Each observation corresponds to a city. Vertical axis depicts the MWTT for faster

transit as a fraction of the MWTT of commuters with incomes less than $35,000 (indicated by solid black line at 1).

Horizontal axis depicts either (a) the ratio of driving to transit travel times (across all observed commutes) in the city

or (b) the share of transit riders in the city who commute by rail transit. Confidence intervals for each linear fit are

shaded in corresponding color. For commuters with incomes $35k-$75k, figures plot population-weighted means of the

MWTT estimates for the two middle-income groups in my data.
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Table A.3: Cities ranked by mean MWTP for faster transit commutes

Rank City MWTP for
faster transit

MWTP for
faster driving

1 San Francisco-Oakland-Hayward, CA $ 374 $ 302
2 Seattle-Tacoma-Bellevue, WA $ 188 $ 179
3 New York-Newark-Jersey City, NY-NJ-PA $ 178 $ 345
4 San Jose-Sunnyvale-Santa Clara, CA $ 169 $ 139
5 Boston-Cambridge-Newton, MA-NH $ 148 $ 189
6 Washington-Arlington-Alexandria, DC-VA-MD-WV $ 129 $ 156
7 Vallejo-Fairfield, CA $ 119 $ 69
8 Chicago-Naperville-Elgin, IL-IN-WI $ 116 $ 179
9 Los Angeles-Long Beach-Anaheim, CA $ 114 $ 102

10 Sacramento–Roseville–Arden-Arcade, CA $ 101 $ 95
11 Portland-Vancouver-Hillsboro, OR-WA $ 97 $ 94
12 Denver-Aurora-Lakewood, CO $ 94 $ 67
13 San Diego-Carlsbad, CA $ 87 $ 92
14 Boulder, CO $ 85 $ 48
15 Minneapolis-St. Paul-Bloomington, MN-WI $ 78 $ 129
16 Providence-Warwick, RI-MA $ 78 $ 134
17 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD $ 77 $ 123
18 Pittsburgh, PA $ 73 $ 90
19 Houston-The Woodlands-Sugar Land, TX $ 70 $ 70
20 Miami-Fort Lauderdale-West Palm Beach, FL $ 64 $ 75
21 Bridgeport-Stamford-Norwalk, CT $ 64 $ 80
22 Hartford-West Hartford-East Hartford, CT $ 61 $ 74
23 Santa Maria-Santa Barbara, CA $ 61 $ 78
24 Atlanta-Sandy Springs-Roswell, GA $ 59 $ 78
25 Baltimore-Columbia-Towson, MD $ 59 $ 76
26 Savannah, GA $ 52 $ 19
27 New Haven-Milford, CT $ 47 $ 54
28 San Antonio-New Braunfels, TX $ 47 $ 34
29 Phoenix-Mesa-Scottsdale, AZ $ 44 $ 47
30 St. Louis, MO-IL $ 43 $ 47
31 Ann Arbor, MI $ 42 $ 27
32 Albany-Schenectady-Troy, NY $ 41 $ 55
33 Austin-Round Rock, TX $ 39 $ 65
34 Eugene, OR $ 38 $ 26
35 Milwaukee-Waukesha-West Allis, WI $ 35 $ 39
36 Urban Honolulu, HI $ 32 $ 19
37 Durham-Chapel Hill, NC $ 32 $ 56
38 Springfield, MA $ 32 $ 43
39 Madison, WI $ 31 $ 42
40 Trenton, NJ $ 31 $ 45
41 Lansing-East Lansing, MI $ 30 $ 30
42 Cleveland-Elyria, OH $ 30 $ 57
43 Tucson, AZ $ 29 $ 35
44 Salt Lake City, UT $ 28 $ 19
45 Syracuse, NY $ 26 $ 38
46 Provo-Orem, UT $ 22 $ 17
47 Rochester, NY $ 21 $ 50
48 Buffalo-Cheektowaga-Niagara Falls, NY $ 17 $ 36
49 Las Vegas-Henderson-Paradise, NV $ 9 $ 17

Note: Cities are ranked by the mean MWTP for faster transit. MWTP values are means across
all commuters for 1% change in travel speed on their observed commutes (i.e. conditional on
commuters choosing their observed modes and neighborhoods).
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Table A.4: Cities ranked by MWTT from 1% increase in commuting speed

Rank City %age pt change in
transit ridership

Baseline transit
ridership (in %)

1 San Francisco-Oakland-Hayward, CA 3.52 15.45
2 Chicago-Naperville-Elgin, IL-IN-WI 2.97 11.87
3 Washington-Arlington-Alexandria, DC-VA-MD-WV 2.97 14.46
4 Seattle-Tacoma-Bellevue, WA 2.88 8.63
5 Boston-Cambridge-Newton, MA-NH 2.76 12.43
6 Portland-Vancouver-Hillsboro, OR-WA 2.22 6.57
7 New York-Newark-Jersey City, NY-NJ-PA 2.22 30.74
8 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 1.81 9.66
9 Pittsburgh, PA 1.77 5.97
10 Boulder, CO 1.73 5.93
11 Denver-Aurora-Lakewood, CO 1.57 4.92
12 Baltimore-Columbia-Towson, MD 1.16 6.51
13 Los Angeles-Long Beach-Anaheim, CA 1.11 6.38
14 Minneapolis-St. Paul-Bloomington, MN-WI 1.07 4.76
15 Eugene, OR 1.05 4.11
16 Atlanta-Sandy Springs-Roswell, GA 0.97 3.54
17 Houston-The Woodlands-Sugar Land, TX 0.85 2.66
18 Miami-Fort Lauderdale-West Palm Beach, FL 0.80 3.84
19 Durham-Chapel Hill, NC 0.79 4.02
20 Savannah, GA 0.79 2.14
21 Madison, WI 0.78 4.01
22 Bridgeport-Stamford-Norwalk, CT 0.76 9.73
23 San Antonio-New Braunfels, TX 0.76 2.32
24 Salt Lake City, UT 0.75 3.46
25 Urban Honolulu, HI 0.71 8.18
26 Ann Arbor, MI 0.70 4.06
27 New Haven-Milford, CT 0.69 3.78
28 Sacramento–Roseville–Arden-Arcade, CA 0.69 2.83
29 San Jose-Sunnyvale-Santa Clara, CA 0.66 3.44
30 Tucson, AZ 0.65 2.63
31 Santa Maria-Santa Barbara, CA 0.56 4.01
32 Austin-Round Rock, TX 0.55 2.78
33 St. Louis, MO-IL 0.55 2.69
34 Phoenix-Mesa-Scottsdale, AZ 0.55 2.33
35 San Diego-Carlsbad, CA 0.54 3.52
36 Albany-Schenectady-Troy, NY 0.51 3.24
37 Hartford-West Hartford-East Hartford, CT 0.45 2.86
38 Lansing-East Lansing, MI 0.45 2.40
39 Trenton, NJ 0.39 7.57
40 Vallejo-Fairfield, CA 0.38 2.71
41 Buffalo-Cheektowaga-Niagara Falls, NY 0.38 3.77
42 Provo-Orem, UT 0.36 2.22
43 Milwaukee-Waukesha-West Allis, WI 0.35 3.77
44 Cleveland-Elyria, OH 0.34 4.03
45 Providence-Warwick, RI-MA 0.33 2.72
46 Springfield, MA 0.33 2.08
47 Syracuse, NY 0.26 2.16
48 Las Vegas-Henderson-Paradise, NV 0.21 3.75
49 Rochester, NY 0.13 2.08

Note: Cities are ranked by the MWTT in response to a 1% increase in transit speed along all observed
commutes (i.e. conditional on commuters choosing their observed neighborhoods).
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Table A.5: Cities ranked by unconditional MWTP for faster transit

Rank City
uMWTP for faster transit Relative to

driving

all com-
muters

incomes
<$35k

incomes
>$75k

all com-
muters

1 San Francisco-Oakland-Hayward, CA $ 39.82 $ 17.24 $ 46.26 0.1179
2 New York-Newark-Jersey City, NY-NJ-PA $ 38.75 $ 18.22 $ 44.21 0.0954
3 Boston-Cambridge-Newton, MA-NH $ 16.19 $ 12.90 $ 16.04 0.0750
4 Washington-Arlington-Alexandria, DC-VA-MD-WV $ 14.81 $ 13.86 $ 14.31 0.0868
5 Chicago-Naperville-Elgin, IL-IN-WI $ 11.44 $ 4.81 $ 16.29 0.0534
6 Seattle-Tacoma-Bellevue, WA $ 7.87 $ 9.33 $ 6.96 0.0379
7 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD $ 5.69 $ 8.20 $ 4.49 0.0379
8 Portland-Vancouver-Hillsboro, OR-WA $ 2.49 $ 4.26 $ 1.67 0.0230
9 Pittsburgh, PA $ 2.01 $ 3.51 $ 1.52 0.0181
10 Minneapolis-St. Paul-Bloomington, MN-WI $ 1.59 $ 3.38 $ 0.92 0.0103
11 Los Angeles-Long Beach-Anaheim, CA $ 1.56 $ 2.91 $ 0.89 0.0121
12 Baltimore-Columbia-Towson, MD $ 1.37 $ 4.11 $ 0.55 0.0158
13 Atlanta-Sandy Springs-Roswell, GA $ 0.97 $ 2.37 $ 0.51 0.0101
14 Denver-Aurora-Lakewood, CO $ 0.79 $ 1.75 $ 0.37 0.0104
15 Miami-Fort Lauderdale-West Palm Beach, FL $ 0.72 $ 1.51 $ 0.37 0.0078
16 Boulder, CO $ 0.60 $ 2.75 $ 0.05 0.0120
17 San Jose-Sunnyvale-Santa Clara, CA $ 0.60 $ 2.10 $ 0.15 0.0039
18 Santa Maria-Santa Barbara, CA $ 0.56 $ 1.19 $ 0.26 0.0064
19 Urban Honolulu, HI $ 0.54 $ 3.13 $ 0.24 0.0253
20 Durham-Chapel Hill, NC $ 0.52 $ 1.41 $ 0.11 0.0084
21 San Diego-Carlsbad, CA $ 0.51 $ 1.37 $ 0.18 0.0049
22 Ann Arbor, MI $ 0.50 $ 1.42 $ 0.02 0.0179
23 Bridgeport-Stamford-Norwalk, CT $ 0.50 $ 1.52 $ 0.18 0.0054
24 Sacramento–Roseville–Arden-Arcade, CA $ 0.46 $ 0.90 $ 0.27 0.0042
25 Albany-Schenectady-Troy, NY $ 0.39 $ 2.38 $ 0.04 0.0063
26 Austin-Round Rock, TX $ 0.38 $ 1.24 $ 0.05 0.0052
27 Providence-Warwick, RI-MA $ 0.35 $ 0.87 $ 0.18 0.0022
28 Madison, WI $ 0.35 $ 1.32 $ 0.05 0.0073
29 Houston-The Woodlands-Sugar Land, TX $ 0.35 $ 0.74 $ 0.22 0.0041
30 New Haven-Milford, CT $ 0.34 $ 1.54 $ 0.06 0.0056
31 Hartford-West Hartford-East Hartford, CT $ 0.28 $ 0.86 $ 0.17 0.0032
32 Springfield, MA $ 0.27 $ 1.41 $ 0.02 0.0056
33 Trenton, NJ $ 0.26 $ 1.93 $ 0.00 0.0054
34 Eugene, OR $ 0.25 $ 1.05 $ 0.02 0.0090
35 Phoenix-Mesa-Scottsdale, AZ $ 0.24 $ 0.65 $ 0.10 0.0044
36 Cleveland-Elyria, OH $ 0.22 $ 0.79 $ 0.07 0.0032
37 St. Louis, MO-IL $ 0.21 $ 0.76 $ 0.07 0.0038
38 Buffalo-Cheektowaga-Niagara Falls, NY $ 0.21 $ 0.97 $ 0.02 0.0051
39 San Antonio-New Braunfels, TX $ 0.17 $ 0.51 $ 0.01 0.0044
40 Lansing-East Lansing, MI $ 0.14 $ 0.26 $ 0.14 0.0044
41 Salt Lake City, UT $ 0.09 $ 0.35 $ 0.03 0.0046
42 Savannah, GA $ 0.09 $ 0.23 $ 0.00 0.0045
43 Rochester, NY $ 0.09 $ 0.59 $ 0.01 0.0015
44 Tucson, AZ $ 0.08 $ 0.24 $ 0.01 0.0022
45 Vallejo-Fairfield, CA $ 0.06 $ 0.14 $ 0.01 0.0008
46 Syracuse, NY $ 0.04 $ 0.20 $ 0.00 0.0009
47 Milwaukee-Waukesha-West Allis, WI $ 0.03 $ 0.13 $ 0.01 0.0008
48 Las Vegas-Henderson-Paradise, NV $ 0.03 $ 0.12 $ 0.00 0.0019
49 Provo-Orem, UT $ 0.02 $ 0.06 $ 0.00 0.0012

Note: Cities are ranked by their mean uMWTP (across all commuters) for 1% increase in transit speeds. Reported uMWTP
values are estimates of mean MWTP across all commuters unconditional on their choices of mode and neighborhood. Ratio
in column 6 divides uMWTP estimates in column 3 by estimates of the city’s mean uMWTP for 1% increase in driving
speeds.

50



(a
)

Se
at

tl
e,

In
co

m
es

<
$3

5k
(b

)
Se

at
tl

e,
In

co
m

es
$3

5k
-$

75
k

(c
)

Se
at

tl
e,

In
co

m
es

>
$7

5k

(d
)

B
os

to
n,

In
co

m
es

<
$3

5k
(e

)
B

os
to

n,
In

co
m

es
$3

5k
-$

75
k

(f
)

B
os

to
n,

In
co

m
es

>
$7

5k

F
ig

ur
e

A
.4

:
M

ea
n

M
W

T
T

by
lo

ca
ti

on
of

tr
an

si
t

im
p
ro

ve
m

en
t.

T
he

x-
an

d
y-

ax
es

de
pi

ct
st

an
da

rd
iz

ed
dr

iv
in

g
an

d
tr

an
si

t
sp

ee
ds

(r
es

p.
)

on
th

e
co

m
m

ut
in

g
ro

ut
e.

T
he

z-
ax

is
de

pi
ct

s
th

e
pe

rc
an

ta
ge

po
in

t
ch

an
ge

in
tr

an
si

t
ri

de
rs

hi
p

in
re

sp
on

se
to

a
1%

in
cr

ea
se

in
tr

an
si

t
sp

ee
d

al
on

g
th

e
co

m
m

ut
in

g

ro
ut

e.
T

he
z-

ax
is

co
lo

ur
s

ar
e

fix
ed

ac
ro

ss
al

l
gr

ap
hs

.
Sp

ee
ds

ar
e

st
an

da
rd

iz
ed

(t
o

m
ea

n
0

an
d

st
d.

de
v.

1)
ac

ro
ss

tr
ip

s
be

tw
ee

n
ob

se
rv

ed
w

or
k-

re
si

de
nc

e
pa

ir
s

w
it

hi
n

ea
ch

C
B

SA
..

T
ri

ps
at

th
e

to
p

an
d

bo
tt

om
pe

rc
en

ti
le

s
of

sp
ee

ds
ar

e
ig

no
re

d.
W

hi
te

sp
ac

es
in

th
e

gr
ap

hs
co

rr
es

po
nd

to
0.

1-
by

-0
.1

ce
lls

w
it

h
fe

w
er

th
an

20
co

m
m

ut
es

.

51


	Introduction
	Data
	Commuting flows
	Travel times

	Travel Speeds, Mode Choices and Incomes
	A model of travel mode and residential location choice
	Specification
	Identification
	Estimation

	Estimated Preferences for Faster Transit
	Willingness to pay for faster commutes
	Willingness to ride transit
	Distribution of welfare gains

	Conclusion
	Appendix
	Defining and simulating trips on Google Maps
	Estimating tract speeds and commuting times
	Housing demand estimation
	Mode and neighborhood choice estimation
	Additional tables and figures


