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Abstract

We address this question by deriving tight pricing kernel restrictions from zero-date op-
tions, which are options that expire on the same day they are traded. These restrictions
concern the volatility of small and frequent asset price moves that the equity and options
markets must agree on in a frictionless economy where the two markets are integrated. We
show that violations of such restrictions lead to local arbitrage opportunities that can be ex-
ploited using a static portfolio of zero-date options and a dynamic position in the underlying
asset. These local arbitrage opportunities are characterized by arbitrarily high reward-to-
risk ratios and cause local explosion of conditional moments of the aggregate pricing kernel.
Empirically, we find no evidence of such local arbitrage opportunities. Thus, in spite of
the nontrivial risk premium embedded in zero-date options, their prices correctly reflect the
time-varying volatility of the underlying asset.

Keywords: arbitrage; market segmentation; options; pricing kernel; risk-neutral probability;
stochastic discount factor; stochastic volatility.

1 Introduction

Option prices contain rich information about the pricing of risk, particularly for equilibrium
models that feature volatility and jump risks in asset prices. Earlier work has documented var-
ious puzzling features of observed option data relative to standard asset pricing models. These
include the U-shape pattern of the pricing kernel when projected onto the asset return space as
well as the large returns, compared to investing in the stock market, from selling puts.1 To ratio-
nalize the observed option data, the literature has primarily adopted two different approaches.
The conventional approach involves adding more complicated features to the underlying asset
dynamics and/or generalizing investors’ risk preferences.2 An alternative approach is to view
the equity and options markets as partially segmented (Bates (2022)).

In the partially segmented story, the law of one price need not hold, and option prices might
reflect arbitrage opportunities that cannot be fully eliminated due to factors such as trading
restrictions or capital constraints. Evidence that a significant proportion of option trading is
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†Department of Information Systems, Business Statistics and Operations Management, The Hong Kong Uni-
versity of Science and Technology, e-mail: carstenchong@ust.hk.

‡Department of Finance, Northwestern University, e-mail: v-todorov@kellogg.northwestern.edu.
1See e.g., Jackwerth (2000), Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2002) as well as Coval and

Shumway (2001), Bondarenko (2014) and Or lowski et al. (2024).
2Examples of this line of work include Bollerslev et al. (2009), Drechsler and Yaron (2011), Du (2011), Seo

and Wachter (2019), Eraker and Yang (2022) and Fournier et al. (2024).
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due to retail investors, who prefer cheap speculative investments and lose money on average
(Bryzgalova et al. (2023)), further reinforces the plausibility of such a market segmentation
hypothesis.3 If this turns out to be true, then any effort to rationalize the underlying and option
markets jointly should take this segmentation into account.

The question whether there exists an aggregate pricing kernel that can rationalize observed
prices in both the equity and options markets is a fundamental one in financial economics. It is
well known that a joint pricing kernel, if it exists, implies the absence of arbitrage opportunities
and reflects the marginal utility of wealth of investors in a frictionless market. Characterizing
the properties of the pricing kernel is the cornerstone of modern asset pricing research, see
e.g., the works of Hansen and Jagannathan (1991), Alvarez and Jermann (2005), Hansen and
Scheinkman (2009) and Christensen (2017), as well as the many references therein.

In this paper, we address the question whether the equity and options markets are integrated
or segmented by analyzing high-frequency data on equity prices and prices of options that expire
on the same day they are traded. These options are called zero-date options, or 0DTEs for short.4

Our focus on options with the shortest times to maturity brings a distinct advantage. Mainly, due
to potentially complicated underlying asset dynamics, classical no-arbitrage conditions5 cannot
provide sufficiently tight bounds for options with nontrivial time to expiration, e.g., monthly
options. This has led Cochrane and Saa-Requejo (2000) to propose “no good deal bounds”
instead, that is, to form restrictions for option prices based on ruling out trading strategies that
can generate very high Sharpe ratios. These bounds have been extended by Bernardo and Ledoit
(2000) by ruling out the existence of strategies with high gain-loss ratios.6

In this paper, we show that the concepts of no arbitrage and no good deals converge and
become essentially equivalent for portfolios with an investment horizon that shrinks to zero. In
other words, market segmentation corresponds to the presence of local arbitrage opportunities,
which we define as good deals that can be realized via trading in the underlying asset and options
with a shrinking time to maturity.

We start by recasting the existence of a joint pricing kernel for equity and option prices as a
requirement that the statistical probability measure, P, and the risk-neutral probability measure,
Q (under which option prices are determined), agree about the small and frequent moves in the
asset prices. These can come from diffusive moves but also from small and frequent jumps in the
asset prices. As a result, market integration imposes restrictions on the diffusion coefficient in
the asset price (spot volatility) and the small jumps under P and Q. The law of the big jumps,
on the other hand, remains essentially unrestricted and may differ under P and Q.

In order to draw conclusions about market integration from equity and option prices, it is
therefore crucial to consider option portfolios that can separate big jumps from small jumps. A

3Previous literature detailing occurrences of arbitrage opportunities in other markets include Pontiff (1997) for
mutual funds, Shleifer and Vishny (1997) and Du et al. (2018) for currencies and Lamont and Thaler (2003) for
stocks. Retail investors’ tendency to engage in risky and losing investments has also been documented by Barber
and Odean (2001) and Barberis and Huang (2008) for the stock market and by Xiong and Yu (2011) and Boyer
and Vorkink (2014) for derivatives markets.

40DTEs have increased sharply in popularity recently. Currently, nearly half of the trading volume of all
options written on the S&P 500 index that are traded on the CBOE options exchange is in the zero-date maturity
domain, see the Financial Times article “Zero-day options now account for 50% of S&P options volumes” from
September 25, 2023.

5See e.g., Harrison and Kreps (1979), Harrison and Pliska (1981), Delbaen and Schachermayer (1994) and the
books by Duffie (2010) and Back (2010) for the relation between no-arbitrage (and extensions of this concept)
and the existence of a pricing kernel.

6Almeida and Freire (2022) sharpen the “no good deal bounds” of Cochrane and Saa-Requejo (2000) by
further imposing some economically-motivated (but nevertheless model-based) restrictions on the set of possible
stochastic discount factors.
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number of earlier studies have studied the proximity of option-implied volatility measures (e.g.,
the VIX, CBOE’s volatility index) and historical volatility measures. Since the horizon of the
options used for such measures is nontrivial (e.g., 30 days for the VIX), one typically finds a
gap between the two, which is due to the so-called variance risk premium.7 Without jumps in
asset prices, if there is a pricing kernel relating P and Q, this gap will disappear as the time-
to-maturity of the options shrinks to zero. This, however, is no longer true if there are jumps
in the asset price, and there is plenty of empirical evidence for the latter. In particular, the
presence of jumps drives a wedge between P and Q measures of total return variance, even over
short time horizons, and hence such a gap is no longer an indicator for market segmentation.
Empirically, we also find a gap between a total measure of volatility in the spirit of the VIX,
computed from 0DTEs, and historical volatility.8

Our proposal, therefore, is to consider short-horizon truncated volatility instead, which re-
moves the contribution to price volatility due to big and infrequent asset moves. Risk-neutral
truncated volatility can be spanned from a portfolio of zero-date options with different strikes
in a manner similar to the construction of the VIX index but with significantly less weight
assigned to deep out-of-the-money options. Truncated volatility under P, on the other hand,
can be recovered from high-frequency records of the underlying price in a short time window
prior to observing the options. Market integration then boils down to an agreement between
option-implied and return-based truncated volatilities in the limit as the tenor of the considered
options shrinks to zero. This is something that can be easily assessed empirically.9

By contrast, if there is a gap between truncated volatilities under P and Q, we show that
this gives rise to local arbitrage opportunities involving the options and the underlying asset
markets. These, being good deals over a shrinking time interval, in turn imply that a joint pricing
kernel either does not exist or is highly variable and oscillatory, e.g., with an infinite conditional
variance. In order to construct local arbitrage portfolios that can exploit gaps between P- and
Q-truncated volatilities, we enter a long or a short position in the option portfolio spanning Q-
truncated volatility and a dynamic position in the underlying asset until the time to expiration
of the options. This dynamic portfolio in the underlying asset has a zero cost and eliminates
the directional risk that accumulates in the option portfolio until the expiration date.

Our empirical analysis shows that the answer to the question posed in the title is “Yes”:
Equity and options markets do agree about volatility due to small and frequent moves in the
S&P 500 market index. This is in spite of the nontrivial risk premium embedded in zero-date
options. Thus, the rich information contained in these options can be readily used for studying
properties of the aggregate pricing kernel. From an econometric perspective, our empirical
results justify using estimators of volatility based on short-dated options which are significantly
more efficient than their return-based counterparts, see e.g., Andersen et al. (2017), Todorov
(2019) and Bandi et al. (2023b), among others.

The rest of the paper is organized as follows. We establish the no-arbitrage conditions
relating the P and Q dynamics for the asset price in Section 2. We introduce the notion of
local arbitrage in Section 3 and of truncated volatility in Section 4. Section 5 shows how to
construct local arbitrage portfolios of options and the underlying asset that exploit differences
in perceptions about volatility in the equity and options markets due to small and frequent

7See e.g., Bakshi and Kapadia (2003), Bollerslev et al. (2009), Carr and Wu (2009), Bollerslev and Todorov
(2011) and Drechsler and Yaron (2011).

8This is also in line with the empirical evidence reported in Bandi et al. (2023a), Vilkov (2023) and Almeida
et al. (2024) concerning the variance risk premium in zero-date options.

9By contrast, estimates of the variance risk premium need a dynamic model for volatility in order to form
the expectations of future volatility under P, and this can have a nontrivial impact on the variance risk premium
estimates as documented in Bekaert and Hoerova (2014).
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asset moves. Section 6 makes the local arbitrage portfolios of Section 5 feasible in practice.
We evaluate the various volatility-related trading strategies in Section 7 on simulated data.
Section 8 contains our empirical application. Section 9 concludes. The Appendix contains the
derivation of the theoretical results in the paper as well as additional technical details about the
implementation of the volatility strategies.

2 Asset Price Dynamics and Market Integration

We consider an asset on a finite time interval [0, τ ], where τ > 0. Its price at time t is denoted
by Xt and is defined on a standard probability space (Ω,F ,P) equipped with a right-continuous
filtration (Ft)t∈[0,τ ]. Under the physical probability measure P, we assume that the asset price
evolves according to a general semimartingale process given by

dXt

Xt−
= αtdt+ σPt dWt +

∫
R

(ez − 1)µ̃P(dt, dz), (2.1)

where Wt is a standard P-Brownian motion, µ is an integer-valued measure on [0, τ ] × R that
counts the jumps in the log-asset price, νP(dt, dz) = νPt (dz)dt is the jump compensator measuring
the intensity of jumps of different sizes, and µ̃P = µ − νP is the associated martingale jump
measure.

We further consider standard European-style options written on this asset. As the goal of
this paper is to examine whether the equity and options markets are integrated, we are interested
in the family Q of all risk-neutral probability measures Q that can jointly price the underlying
asset and the associated options, which means that Q is the class of probability measures Q
such that both asset and option prices are martingales under Q if discounted at the risk-free
rate. For simplicity of exposition, and because we only work with short time horizons, we set
the risk-free rate and the dividend yield of the underlying asset to zero throughout the rest of
the paper. In this case, a risk-neutral measure Q ∈ Q satisfies

Xt = EQ
t (Xt+T ), Pt,T (K) = EQ

t (K −Xt+T )+ and Ct,T (K) = EQ
t (Xt+T −K)+, (2.2)

for K > 0 and t, T ≥ 0 with t+ T ≤ τ , where Pt,T (K) and Ct,T (K) denote the prices at time t
of a put and a call option, respectively, with strike K and time to maturity T .10

The risk-neutral measures Q may differ but they must all generate the set of observable
stock prices and options, that is, satisfy (2.2) above. If we assume that we observe the options
on a continuum of strikes covering (0,∞), then due to a well-known result by Breeden and
Litzenberger (1978), all risk-neutral measures Q generate the same Ft-conditional distribution
of Xt+T .

Within the set Q, of special interest are the ones for which the Ft-conditional Q-distribution
of Xt+T is equivalent to its P-counterpart. This is because such equivalence implies the existence
of an aggregate pricing kernel that can rationalize the observed stock price and the options
written on it at time t. In general, P-Q equivalence of the Ft-conditional distribution of Xt+T

does not imply the equivalence of the P and Q probability measures. However, since we let T ↓ 0
in our asymptotic setup later on, we analyze the slightly stronger condition of the equivalence
of the P and Q probability measures. As we show later, the violation of P-Q equivalence of the
probability measures results in the existence of so-called local arbitrage opportunities.

On an intuitive level, the P-Q equivalence means that the Fτ -measurable events with zero
probability under P should be precisely those events that are also assigned zero probability under

10A put/call option with these parameters is the right to sell/buy the asset at time t+ T at price K.
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Q. We use Qe to denote the subset of risk-neutral measures in Q that are equivalent to P on Fτ .
If Q ∈ Qe, the asset price Xt is also a semimartingale process under Q, with dynamics given by

dXt

Xt−
= σQt dW

Q
t +

∫
R

(ez − 1)µ̃Q(dt, dz), (2.3)

where WQ
t is Q-Brownian motion, the jump compensator of µ under Q is denoted by νQ and

µ̃Q = µ − νQ is the martingale jump measure under Q. Note that the drift in the dynamics of
X under Q is absent because X is a martingale under Q.

By Girsanov’s theorem, see e.g., Theorem III.3.24 in Jacod and Shiryaev (2003), the equiv-
alence of Q and P on Fτ further implies that

σQt = σPt and νQ(dt, dz) = Yt(z)ν
P
t (dz)dt a.s. for t ∈ [0, τ ], (2.4)

where Yt(z) is a nonnegative predictable function such that∫
|z|<1

|z(Yt(z)− 1)|νPt (dz) <∞ a.s. for t ∈ [0, τ ]. (2.5)

The first of the two conditions in (2.4) is the well-known requirement that the diffusion coeffi-
cients in the dynamics of X must be the same under P and Q. The second condition, together
with (2.5), imposes conditions on how the distribution of asset price jumps can change from P
to Q. This is captured by the nonnegative predictable function Yt(z) that reweighs the inten-
sity of jumps of various sizes under the two probability measures. The requirement for Y only
concerns the frequent and small jumps of Xt (of absolute value less than 1): If

∫
|z|<1|z|ν

P
t (dz) is

finite, then the integral condition in (2.5) is automatically fulfilled as long as Y satisfies minimal
boundedness conditions. If

∫
|z|<1|z|ν

P
t (dz) is infinite, however, then Y must not deviate too

much from 1. Both conditions in (2.4) are intuitive as payoffs that depend on the small and
frequent moves in X should earn no risk premium as the time horizon of these payoffs shrinks.
This is because most of the risk in these payoffs can be hedged by a dynamic position in the
underlying asset at no cost, as we show in the subsequent sections.

Definition 1. We introduce the following two related notions:

1. If for some Q ∈ Q, we have (2.4) together with (2.5), we say that the equity and options
markets agree about volatility.

2. If Qe 6= ∅, we say that the equity and options markets are integrated. If Qe = ∅, we say
that they are segmented.

The first definition explains the question posed in the title of this paper: we are interested in
whether there is a risk-neutral measure that prices both asset and options and that agrees with
P about both diffusive volatility and the small jumps in the asset prices. The motivation behind
the second definition becomes clear once we notice that if Q ∈ Qe, then there is an aggregate
pricing kernel Mt for both asset and option prices such that (2.2) can be rewritten as11

Xt = EP
t (Dt,TXt+T ), Pt,T (K) = EP

t (Dt,T (K −Xt+T )+), Ct,T (K) = EP
t (Dt,T (Xt+T −K)+),

(2.6)

11In probability theory terms, Mt is the Radon–Nikodym derivative of Q|Ft with respect to P|Ft . It is well-
known that Mt is a martingale under P. This fact as well as (2.6) can be found in Chapter III, Section 3, of Jacod
and Shiryaev (2003).
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where Dt,T = Mt+T /Mt denotes the stochastic discount factor. Both Mt and Dt,T depend on
Q but we suppress the dependence in the notation. Therefore, market integration means that
there is an aggregate pricing kernel that can be used to price the considered asset and options
simultaneously. The two markets are segmented in the absence of such a joint pricing kernel.12

Both notions introduced above are local in the sense that they are about what happens in a
local neighborhood of time t.

From the preceding exposition, it is clear that market integration implies that the equity and
options markets agree about volatility. Under reasonable assumptions, one can show that (2.4),
together with a refinement of (2.5), is also sufficient for market integration; see Theorem A.1 in
Appendix A.1. In the case of market integration, if Q ∈ Qe, the stochastic discount factor has
the following properties as the time horizon T shrinks.

Lemma 2.1. If Q ∈ Qe and t ∈ [0, τ), the stochastic discount factor satisfies

Dt,T → 1 a.s. as T ↓ 0. (2.7)

Moreover, if EP
t (|Ms|q) <∞ for some s ∈ (t, τ ] and q ∈ (1,∞), then

EP
t (|Dt,T − 1|q)→ 0 a.s. as T ↓ 0. (2.8)

Intuitively, the result of the above lemma says that since the risks in the asset price are
shrinking asymptotically as T ↓ 0, then the same should happen to their prices. We note in this
regard that in our specification for X, we have ruled out jumps that arrive at predictable times
in [0, τ ] such as those triggered by economic announcements. In the presence of such events,
even over short intervals, the risk in the asset price might be nontrivial and the same applies to
its corresponding price. It is easy to generalize the setup to allow for such event risk. We do
not do this here to keep notation simple as in our application we look at small time intervals
before market close when there are typically no pre-scheduled announcements.

3 Generalized Sharpe Ratios and Local Arbitrage

In this section, we devise a practical criterion that not only can be used to verify from observed
asset and option prices whether (2.4) is satisfied or not, but also allows us to conclude whether
a potential segmentation of the equity and options markets is economically significant. To this
end, we start from a variant of the classical method of Hansen and Jagannathan (1991) to derive
lower bounds on the stochastic discount factor. Instead of estimating the standard deviation
of the stochastic discount factor using the Sharpe ratio of portfolio returns, we consider an
extension due to Snow (1991) that uses reward-to-risk ratios of risky asset positions based on
pth moments.

Definition 2. Given a portfolio with simple return Rt,T from time t to time t + T and some
exponent p ∈ [1,∞), we define the generalized Sharpe ratio (GSR) of order p of this portfolio as

GSRt,T (p) =
EP
t (Rt,T )(

EP
t

(∣∣Rt,T − EP
t (Rt,T )

∣∣p))1/p . (3.1)

12Even if equity and option markets are not segmented, there can be nevertheless partial segmentation where a
segment of the option market, e.g., the one for deep out-of-the-money puts, is separated from the equity market
and the rest of the option market, cf. Almeida et al. (2024). Such partial segmentation of deep out-of-the-money
puts, however, cannot be separately identified using equity and option data alone as there exists a valid aggregate
pricing kernel that can rationalize all observed equity and option prices.
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The case p = 2 corresponds to the Sharpe ratio, SRt,T , that is used in classical mean–
variance portfolio analysis. The case p = 1 corresponds to the mean absolute deviation ratio of
Konno and Yamazaki (1991). By Minkowski’s inequality, we trivially have

GLRt,T ≥ GSRt,T (1) ≥ GSRt,T (p1) ≥ SRt,T ≥ GSRt,T (p2), (3.2)

for any 1 ≤ p1 ≤ 2 ≤ p2 <∞, where GLRt,T denotes the conditional gain-loss ratio of Bernardo
and Ledoit (2000) associated with the return Rt,T . The following result, due to Snow (1991),
gives a lower bound on the variability of the pricing kernel in terms of generalized Sharpe ratios.
We remind the reader that for simplicity, the risk-free rate in our analysis is set to zero.

Lemma 3.1. Consider a portfolio with simple return Rt,T from time t to time t+T and assume
that this portfolio can be priced by some risk-neutral measure Q ∈ Qe, that is,

EQ
t (Rt,T ) = 0. (3.3)

For any p ∈ (1,∞), we have (
EP
t (|Dt,T − 1|q)

)1/q
≥ |GSRt,T (p)|, (3.4)

where Dt,T is the stochastic discount factor associated with Q and q = p
p−1 is the Hölder conjugate

of p.

For the reader’s convenience, we reproduce the short proof in Appendix A.1. The pricing
equation (3.3) automatically holds as a consequence of (2.2) if the payoff of the portfolio is linear
in the considered asset and option prices.

If p = 2, inequality (3.4) reduces to the classical bound of Hansen and Jagannathan (1991):
the conditional standard deviation of the stochastic discount factor Dt,T exceeds the Sharpe
ratio attained by any portfolio that can be priced by Q. For general p ∈ (1,∞), inequality (3.4)
asserts that the qth-order central moment of the stochastic discount factor is bounded from
below by the GSR of order p of any such portfolio, where p and q are related to each other
through the equation 1

p + 1
q = 1. In particular, generalized Sharpe ratios with p ∈ (1, 2) provide

bounds on the moments of the stochastic discount factor of higher order than variance.
The generalized Hansen–Jagannathan bound of Lemma 3.1 means that portfolios with high

GSR imply highly varying pricing kernels. This alone does not constitute an arbitrage oppor-
tunity, or a free lunch with vanishing risk, in the sense of Delbaen and Schachermayer (1994).
Nonetheless, investment opportunities with high Sharpe ratios are “good deals” (Cochrane and
Saa-Requejo (2000)) and, therefore, ought not to exist as investors would be eager to act upon
them. The same clearly applies to portfolios with high generalized Sharpe ratios.

Contrary to the situation on a fixed time interval, as we show below, if a good deal can
be realized over an asymptotically shrinking time interval, that is, if we can find portfolios
whose (generalized) Sharpe ratios exceed a given positive threshold over shorter and shorter
time horizons, then this essentially implies arbitrage.

Definition 3. Given p ∈ (1,∞), we say that local arbitrage of order p exists if for some t ∈
[0, τ) there is a sequence of portfolios with investment horizon T whose returns Rt,T are priced
according to (3.3) by a single risk-neutral measure Q ∈ Q and whose generalized Sharpe ratios
satisfy

lim inf
T↓0

GSRt,T (p) > 0 a.s. (3.5)
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If p = 2, the notion of local arbitrage is related to the concept of quasi-arbitrage by Huberman
and Stanzl (2004). The latter refers to a sequence of portfolios whose Sharpe ratios diverge
to infinity. Clearly, in our context, if there is quasi-arbitrage of order p in the sense that

GSRt,T (p)
P−→∞ as T ↓ 0, we also have local arbitrage of order p. But local arbitrage is strictly

weaker because it already occurs if, for instance, GSRt,T (p) converges in probability to a strictly
positive random variable. The next theorem is the main result of this section and explains why
the situation in Definition 3 essentially constitutes arbitrage.

Theorem 3.2. If for a given risk-neutral measure Q ∈ Q, there is local arbitrage of order
p ∈ (1,∞) at time t ∈ [0, τ) with a sequence of portfolios whose payoffs can all be priced by Q,
then either Q /∈ Qe or EP

t (|Ms|q) =∞ for all s ∈ (t, τ ], where 1
p + 1

q = 1 and M is the aggregate
pricing kernel of Q.

Local arbitrage therefore implies that either there is no equivalent martingale measure that
can price the considered asset and options simultaneously, so that the equity and options markets
are segmented, or the qth moment of the aggregate pricing kernel must be infinite, implying
highly unstable and oscillatory behavior.13 To reach such a strong conclusion, it suffices by
Definition 3 to exhibit a sequence of portfolios with GSR above a strictly positive threshold as
T ↓ 0. For this purpose, a sequence of good deals (uniformly in T ) in the sense of Cochrane and
Saa-Requejo (2000) is sufficient. Therefore, in our asymptotic setup where T ↓ 0, we observe
convergence of two different no-arbitrage related concepts considered in the previous literature:
(strict) no-arbitrage in the sense that there exists an aggregate pricing kernel that can rationalize
observed prices and the absence of good deals (or portfolios with large Sharpe ratios).

In a non-asymptotic setting, or in an asymptotic setting where the time horizon of the
considered portfolios does not shrink, there is a substantial wedge between these two notions, as
we know from previous work, see Cochrane and Saa-Requejo (2000) and Bernardo and Ledoit
(2000) who show that pricing kernel bounds obtained from classical no-arbitrage concepts are
much looser than the no-good-deal bounds. One would have to resort to the stronger notion of
quasi-arbitrage (Huberman and Stanzl (2004)) in the case of a non-shrinking time interval in
order to reach the conclusion of Theorem 3.2.

As Figure 1 shows, the notions of absence of local arbitrage, market integration and agree-
ment about volatility in equity and options markets are essentially equivalent. The equivalence
between market integration and agreement of asset and option prices about volatility follows
from Girsanov’s theorem and its converse in the form of Theorem A.1, which holds under reason-
able regularity assumptions. The main theoretical contribution of the paper is to establish that
these two notions, which are central to the financial economics of equity and options markets, are
equivalent to the absence of local arbitrage opportunities, an economically interpretable criterion
that can be feasibly implemented in practice. One direction is shown in Theorem 3.2: market
integration rules out local arbitrage opportunities as long as the aggregate pricing kernel has a
certain number of finite moments. The other direction is the content of Theorems 5.1 and 5.2
below: a disagreement between P and Q about volatility leads to local arbitrage opportunities,
so an absence of local arbitrage implies that P and Q must agree about volatility.

13In finite dimensions (e.g., if we only consider the price of the underlying asset), it is well known that the absence
of an equivalent local martingale measure implies a free lunch with vanishing risk (Delbaen and Schachermayer
(1994)). In the presence of infinitely many assets (e.g., if we include options with a continuum of strikes and
maturities), the absence of an equivalent local martingale measure almost implies a free lunch; see Cuchiero et al.
(2016) for a precise statement.
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Figure 1: Relationship between market integration, absence of local arbitrage and
agreement about volatility in equity and options markets.

4 Truncated Volatility and P-Q Equivalence

Our goal now is to link the condition in (2.4) to a payoff that depends on the value of the
underlying asset in a local neighborhood of time t. We will then use this connection in the
following section to show the existence of local arbitrage if (2.4) is violated. As already discussed
in Section 2, the condition in (2.4) concerns the small and frequent moves in the asset price,
which is why we aim for payoffs that capture exactly those. A natural candidate would be the
log-price payoff which is behind the construction of the popular VIX index. That is, to consider
log(Xt+T )− log(Xt), for small T . An application of Itô’s formula leads to

− 2

T
EQ
t (log(Xt+T )− log(Xt)) ≈ (σQt )2 + 2

∫
R

(ez − 1− z)νQt (dz), as T ↓ 0. (4.1)

The problem for our purposes is that such a payoff depends on all jumps and not only the
small ones. Indeed, note that the integral above is over the entire real line. Hence, due to the
risk premium for big jumps, EQ

t (log(Xt+T ) − log(Xt)) and EP
t (log(Xt+T ) − log(Xt)) can differ

even in the absence of (local) arbitrage and if T is very small. We confirm that this is the case
empirically later on. Therefore, we consider a different payoff which depends only on the small
and frequent moves in the underlying asset price.

Definition 4. We call truncated volatility the payoff fT (Xt+T ;Xt), where

fT (x;x0) = φ

(
ηT

log(x)− log(x0)√
T

)
(log(x)− log(x0))2, (4.2)

and φ is a truncation function that decays exponentially fast for values of its argument away
from zero and the truncation parameter satisfies ηT ↓ 0 as T ↓ 0.

The conditional expectation of this payoff under S ∈ {P,Q} is given by

TV S
t,T (η) = ES

t

(
φ

(
η

log(Xt+T )− log(Xt)√
T

)
(log(Xt+T )− log(Xt))

2

)
, η ≥ 0. (4.3)
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If ηT ↓ 0 slowly, e.g., if ηT ∼ 1/
√

log(1/T ), one can show the following expansion of truncated
volatility as T ↓ 0:

1

T
TV S

t,T (ηT ) ≈ (σSt )2 +

∫
R
φ(ηT z/

√
T )z2νSt (dz). (4.4)

Unlike the case of the log-price payoff, which depends on the big jumps, the truncated volatility
payoff eliminates the effect of the big jumps and they become negligible as T ↓ 0. The condition
in (2.4), therefore, implies

TV P
t,T (ηT ) ≈ TV Q

t,T (ηT ), as T ↓ 0. (4.5)

Conversely, as we show below, if σPt and σQt are different and/or νPt and νQt differ too much
around zero, then there is ηT such that the above approximate equality does not hold. In this
regard, (4.4) captures the volatility due to small and frequent moves in the asset price.

We can assess the quality of the approximation in (4.5) in a numerical example using the
parametric model from our Monte Carlo experiment that we present in Section 7. In Figure 2,
we plot the ratio TV Q

0,T (ηT )/TV P
0,T (ηT ) for different levels of the truncation parameter in the case

of P-Q equivalence. When we do not truncate (ηT = 0), then there is a significant gap between
the two volatility measures, which is due to the compensation for the big negative jumps in
the underlying asset price. As we increase the level of truncation, the gap between TV P

0,T (ηT )

and TV Q
0,T (ηT ) shrinks in relative terms. This is because truncated volatility depends less on

the “big” jumps in the asset prices. Indeed, for the highest level of truncation considered here,
TV Q

0,T (ηT ) is only around 3% higher than TV P
0,T (ηT ) for T = 30 minutes, which is a negligible

difference. We also note that for every level of truncation ηT > 0, the upward bias in TV Q
0,T (ηT )

due to the compensation for big jumps shrinks in relative terms as T shrinks. For example, for
the highest considered level of truncation, the ratio TV Q

0,T (ηT )/TV P
0,T (ηT ) shrinks from around

1.05 for T equal to 120 minutes to 1.03 for T equal to 30 minutes. We will consider the same
levels of truncation as the ones used in Figure 2 in our applications.
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Figure 2: Risk-Neutral versus True Conditional Expected Truncated Volatility in the
Absence of Arbitrage. The parameter settings for the no-arbitrage scenario are given in the
Monte Carlo study. The conditional truncated volatilities are computed via simulation. The

truncation function is φ(x) = e−x
2

and the truncation parameter is set to ηT =
√
η√

log(1/T )
× 1

σP
0
.
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5 Volatility Arbitrage Portfolios

We are now ready to show that if condition (2.4) does not hold, then this implies the existence of
local arbitrage opportunities involving short-dated options with tenor shrinking to zero. As we
discussed in the previous section, a violation of (2.4) implies that a truncated volatility payoff
will be nontrivial even over shrinking time horizons. In this section, we construct portfolios that
include short-dated options and the underlying asset that yield this truncated volatility payoff,
and we further show that they constitute local arbitrage as the tenor of the options shrinks to
zero if (2.4) is violated.

According to the option spanning results of Bakshi and Madan (2000) and Carr and Madan
(2001), payoffs that are nonlinear in the terminal price (such as truncated volatility) can be
obtained via portfolios of options over a continuum of strikes and with the same expiration date.
More precisely, using Taylor expansion with remainder for the function fT (x;x0) in (4.2), we
obtain

fT (Xt+T ;Xt) = φ(ηT (log(Xt+T )− log(Xt))/
√
T )(log(Xt+T )− log(Xt))

2

=

∫ Xt

0
f ′′T (K;Xt)(K −Xt+T )+dK +

∫ ∞
Xt

f ′′T (K;Xt)(Xt+T −K)+dK.
(5.1)

Note that (K −Xt+T )+ and (Xt+T −K)+ are the payoffs at time t+ T of European-style put
and call options, respectively, written on the asset at time t with strike K and time to maturity
T . This means that the nonlinear payoff fT (Xt+T ;Xt) can be replicated by a static portfolio of
options created at time t. By (2.2), the cost of this portfolio at time t is given by

Ct,T (ηT ) ≡ TV Q
t,T (ηT ) =

∫ ∞
0

f ′′T (K;Xt)Ot,T (K)dK, (5.2)

where Ot,T (K) denotes the price of the out-of-the-money option for strike K. This is either the
call or the put option with the same strike depending on whether the current asset price is below
or above K. Its price is therefore

Ot,T (K) = min{Pt,T (K), Ct,T (K)}.

We can compare the weights assigned to the options with different strikes in the above
portfolio that generates the truncated volatility payoff for different levels of truncation. The
case ηT = 0 (no truncation) corresponds to the second moment of the log-return that has
been studied by Bakshi et al. (2003) (and which is very close to the VIX index discussed above).
Higher truncation means shifting more weight to the smaller moves. As we can see from Figure 3,
this translates into putting higher weights in (5.2) on options with strikes in the vicinity of the
current stock price. Interestingly, the truncated volatility option portfolio assigns negative
weight to options which are slightly away from the money. Intuitively, this removes an upward
bias of at-the-money options due to the the larger asset price jumps. From a practical point of
view, this also implies somewhat higher transaction costs for replicating the truncated volatility
payoff (ηT > 0) versus replicating the total volatility payoff (ηT = 0).

As evident from the figure, the contribution of deep out-of-the-money puts and calls to
the value of the option-based truncated volatility portfolio is negligible. In fact, one can show
that due to the truncation in the payoff fT (Xt+T , Xt), one can consider only integration over
a finite range of strikes covering the current stock price when computing the integral on the
left-hand side of (5.2), without any change to the results that will follow. This is intuitive as
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Figure 3: Weights in Truncated Volatility Option Portfolios. Each point on the figure
represents the fraction of wealth in the truncated volatility option portfolio invested in the
option of the given strike. Options are generated from the no-arbitrage model for the risk-
neutral dynamics given in the Monte Carlo study. The starting value of the underlying price
and the spot volatility are 4,000 and 0.02, respectively. The time to maturity is 2 hours. The
truncation function is φ(x) = e−x

2
and the truncation parameter is set as in (7.5) with η = 0

(blue dots) and η = 1.5 (red dots).

the information contained in deep out-of-the-money puts and calls about the small and frequent
moves in the asset price is negligible as T shrinks.

We can now analyze the properties of the truncated volatility option portfolio. The simple
return of this portfolio is given by

Rt,T =
fT (Xt+T ;Xt)

Ct,T (ηT )
− 1. (5.3)

The conditional expected return of the portfolio is

EP
t (Rt,T ) =

EP
t (fT (Xt+T ;Xt))

EQ
t (fT (Xt+T ;Xt))

− 1. (5.4)

Given the discussion in the previous section, condition (2.4) implies that

EP
t (Rt,T ) ≈ 0, as T ↓ 0, (5.5)

that is, there should be no reward for the risk of this portfolio asymptotically as T ↓ 0. A
violation of (2.4), on the other hand, means that either a long or a short position in the option
portfolio should earn a non-negligible (i.e., non-vanishing) positive return. To check if this is
a local arbitrage opportunity as T ↓ 0, we need to analyze the generalized Sharpe ratio of the
strategy, which we denote by

GSRt,T (p) =
EP
t (Rt,T )(

EP
t

(∣∣Rt,T − EP
t (Rt,T )

∣∣p))1/p . (5.6)
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One can show that even if there is no P-Q equivalence, that is, if (2.4) does not hold, GSR0,T (p)
converges to a finite number. This is sufficient for qualifying as local arbitrage, which by The-
orem 3.2 implies that an aggregate pricing kernel either does not exist or it is not locally
square-integrable (is highly volatile).

We can, however, strengthen the above result by modifying the above option portfolio strat-
egy in a way that leads to even explosive generalized Sharpe ratios as T shrinks. To achieve
this, we need to eliminate the directional risk in the strategy. This can be done by adding a
dynamic portfolio position in the underlying asset, where, at each point in time s ∈ [t, t+T ], the
exposure to the position in the underlying asset is −f ′T (Xs−;Xt). Altogether, the cumulative
realized gains of the combined positions in the options and the underlying asset from t to t+ T
are given by

RGt,T = fT (Xt+T ;Xt)−
∫ t+T

t
f ′T (Xs−;Xt)dXs, (5.7)

while the initial cost of the position is still Ct,T (ηT ). Thus, the cumulative rate of return over
the interval [t, t+ T ] becomes

Rt,T =
RGt,T
Ct,T (ηT )

− 1. (5.8)

We have that
EP
t (Rt,T ) ≈ EP

t (Rt,T ), (5.9)

with the reason for the approximation sign above being due to the equity risk premium in the
underlying asset over the interval [t, t + T ], which shrinks as T ↓ 0.14 However, the wedge
EP
t (Rt,T )− EP

t (Rt,T ) is much smaller than EP
t (Rt,T ) whenever P-Q equivalence fails.

By contrast, adding the dynamic position in the underlying asset significantly reduces the
risk in the option portfolio position and one can show that

EP
t

(∣∣∣Rt,T − EP
t (Rt,T )

∣∣∣p)� EP
t

(∣∣∣Rt,T − EP
t (Rt,T )

∣∣∣p) , (5.10)

for any p ∈ [1, 2). For this reason, we refer to the combined option portfolio position with the
dynamic position in the underlying asset described above as a hedged long position in truncated
volatility. When the signs of the positions in the above strategy are flipped, then this will be
referred to as a hedged short position in truncated volatility.

We denote the (conditional) generalized Sharpe ratio of the hedged long position in truncated
volatility by

GSRt,T (p) =
EP
t (Rt,T )(

EP
t

(∣∣Rt,T − EP
t (Rt,T )

∣∣p))1/p . (5.11)

We will show next that the above reduction in the risk of the strategy leads to explosive
GSRt,T (p) as T shrinks if the P-Q equivalence condition in (2.4) is violated.

5.1 Local Arbitrage When Diffusive Volatility is Different

In this section, we formally show how local arbitrage arises if diffusive spot volatility is different
under the physical and the risk-neutral probability measure. The behavior of the generalized
Sharpe ratio of the hedged positions in truncated volatility when σPt 6= σQt is given in the next
theorem.

14The conditional equity risk premium is given by EP
t

(∫ t+T
t

αsds
)

= Op(T ).

13



Theorem 5.1. Suppose that Q ∈ Q is such that σPt 6= σQt for some t ∈ [0, τ). Further suppose
that we have a continuous record of the asset price X over the interval [t, t + T ] as well as the
prices Ot,T (K) at time t of out-of-the-money options expiring at time t + T over a continuum
of strikes K ∈ (0,∞), so that we can form the truncated volatility portfolio whose return from
time t to time t + T is given by (5.8). Under Assumptions 1 and 2 detailed in Appendix A.3
and if ηT ∼ η/

√
log T−1 for some η > 0, we have

|GSRt,T (p)| P−→∞ (5.12)

as T → 0 for all p ∈ [1, 2). For p = 2, we have

|GSRt,T (2)| = |SRt,T |
P−→ |(σPt )2 − (σQt )2|

σPt (
∫
R z

2νPt (dz))1/2
. (5.13)

In particular, we have local arbitrage of order p for any p ∈ (1, 2].

We note that the Sharpe ratio of the strategy does not explode as T shrinks but the gener-
alized Sharpe ratio for values of p ∈ (1, 2) does. The reason for this is the jumps in the asset
price. Their effect on the portfolio returns is dampened but not completely eliminated. This is
due to their impact on the dynamic position in the underlying asset. When we consider higher
moments of the portfolio returns, the jump contribution increases and this is the reason for the
different asymptotic behavior of |GSRt,T (p)| for p < 2 and p = 2. Nevertheless, |GSRt,T (2)|
does not shrink as T shrinks, which is enough to constitute a local arbitrage opportunity. This
makes intuitive sense as other portfolios typically have a shrinking Sharpe ratio over such short
time horizons as we consider here. A long (or short) static position in the underlying asset is
one such example. But also the hedged volatility position without truncation, i.e., the position
with truncation parameter η set to zero, has a shrinking Sharpe ratio. One can show that in
the setting of Theorem 5.1, the Sharpe ratio |SRη=0

t,T | of this strategy behaves like

|SRη=0
t,T |√
T

→
|(σPt )2 − (σQt )2 +

∫
R z

2(νPt (dz)− νQt (dz))|∫
R z

4νPt (dz)
, as T → 0. (5.14)

In words, the Sharpe ratio of the hedged volatility strategy shrinks at rate
√
T . In Figure 4, we

plot the asymptotic approximations for the Sharpe ratios of the hedged long or short positions
in truncated volatility, with and without truncation, when σPt 6= σQt . We use the parametric
model in the Monte Carlo to generate the figure. This model matches key features of real data
and hence the numbers in Figure 4 are representative of the possible Sharpe ratios that can be
achieved if σPt 6= σQt (without taking into account trading costs). As seen from the figure, even
relatively small differences in σPt and σQt can generate very high Sharpe ratios using the hedged
truncated volatility strategy with η > 0. The Sharpe ratio of the strategy without truncation
(η = 0) is also large when T is relatively high but it quickly drops when T becomes small. The
reason for this is that the payoff of this position is significantly exposed to big jumps in the asset
price.

5.2 Local Arbitrage When Small Jumps are Different

In this section, we show how to construct local arbitrage portfolios if the physical and risk-
neutral probability measures differ in the distribution of small asset price jumps. Note that this
can occur only if assets have jumps of infinite variation. This is rarely the case for most models
in finance considered in prior work. Nevertheless, we consider this case for completeness.
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Figure 4: Sharpe Ratios of Volatility Trading Strategies for Different Horizons. The
parameter settings for the different scenarios are given in the Monte Carlo study. The Sharpe
ratios of the strategy with truncation (η > 0) and without truncation (η = 0) are computed
using the asymptotic limits in (5.13) and (5.14). Blue line corresponds to η > 0 and red line to
η = 0. The per-period Sharpe ratios are annualized by multiplying them by

√
252.

To this end, we set up a multi-period version of the volatility arbitrage portfolio from Sec-
tion 5.1 and consider kn time points τi = t+ (i− 1)τ , i = 1, . . . , kn, where τ ≥ T . For example,
if T is the time to maturity of zero-date options, τ could be the length of one trading day. Now,
at each time point τi, we invest in the volatility arbitrage portfolio from Section 5 (without
compounding, to simplify the analysis), so that the return of this strategy after kn periods is

R(kn)
T =

kn∑
i=1

Rτi,T , Rτi,T =
RGτi,T
Cτi,T (ηT )

− 1, (5.15)

where

RGτi,T = fT (Xτi+T ;Xτi)−
∫ τi+T

τi

f ′T (Xt−;Xτi)dXt (5.16)

and

Cτi,T (ηT ) =

∫ ∞
0

f ′′T (K;Xτi)Oτi,T (K)dK. (5.17)

While the number of periods kn increases to infinity asymptotically, we assume that knτ → 0,

which means that we are still looking to detect local arbitrage violations with R(kn)
T .

Theorem 5.2. Suppose that σP = σQ for some Q ∈ Q but νPt and νQt differ at time t ∈ [0, τ)
in such a way that either βP 6= βQ or cPt 6= cQt for the jump measure parameters introduced in
Assumption 4. Further suppose that we have a continuous record of the asset price X over the
time intervals [τi, τi + T ] and a record of the out-of-the-money option prices Oτi,T (K) at time
τi over a continuum of strikes K ∈ (0,∞) for all i = 1, . . . , kn, so that we can form the multi-
period truncated volatility portfolio whose return is given by (5.15). Under Assumptions 3 and
4 detailed in Appendix A.3 and if ηT ∼ ηT 1/6 for some η > 0, kn ∼ θT−κ for some θ > 0 and
κ ∈ [2

3 , 1) and τ = O(T ), then the generalized Sharpe ratio of the multi-period portfolio satisfies

|GSR(kn)
t,T (p)| =

|EP
t (R(kn)

T )|
(EP

t (|R(kn)
T − EP

t (R(kn)
T )|p))1/p

P−→∞, (5.18)
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for all p ∈ [1, βP], implying the existence of local arbitrage of any order p ∈ (1, βP].

Remark 1. In the situation of Theorem 5.2, one can show that if σPt 6= σQt , then (5.18) holds
irrespective of whether (βP, cPt ) 6= (βQ, cQt ) or not. Therefore, the multi-period hedged volatility
portfolio is able to exploit local arbitrage violations no matter whether they are due to differences
in volatility or small jumps.

Remark 2. Our proof of Theorem 5.2 shows that it suffices to choose κ ∈ (1− β
3 , 1). The proof

can also be refined to show that if φ satisfies |φ(x)−1| ≤ C1 exp(−C2/|x|2) for |x| ≤ 1 and some
C1, C2 > 0, then the assertion of Theorem 5.2 continues to hold for ηT ∼ η/

√
log T−1 (as in

Theorem 5.1) and κ ∈ (1− β
2 , 1).

6 Implementing Volatility Arbitrage Strategies

In the previous section, we showed how to take advantage if equity and option markets disagree
about volatility due to frequent and small asset moves. In reality, the underlying asset is
traded discretely (even though this can happen at a very high frequency), options are observed
on a discrete strike grid, and there are nontrivial bid–ask spreads when trading options and
the underlying asset. All this has the potential to reduce the profitability of local arbitrage
portfolios (cf. Pontiff (1996)). In addition, the investor needs to use past information to decide
if there are local arbitrage opportunities. In this section, we take care of all of these issues to
propose volatility arbitrage trading strategies that are feasible in practice and which allow us,
as econometricians, to decide if such local arbitrage opportunities exist empirically.

6.1 Transaction Costs

We start with the option portfolio that replicates the truncated volatility. We assume that at
time t, we have access to options on the asset expiring at time t+ T on the discrete strike grid

Kt,1 < · · · < Kt,Nt , (6.1)

for some positive integer Nt. Our estimate of TV Q
t,T (ηT ) is then given by

T̂ V
Q
t,T (ηT ) =

Nt∑
j=2

f ′′T (Kt,j−1;Xt)Ot,T (Kt,j−1)(Kt,j −Kt,j−1). (6.2)

In the above, we assume that we have access to the true option price. In reality, investors face
nontrivial bid–ask spreads when trading options. We can then form two estimates of TV Q

t,T (ηT ):

one that corresponds to a long position in truncated volatility, denoted by T̂ V
Q
t,T (ηT )a, and

another one that corresponds to a short position in truncated volatility, denoted by T̂ V
Q
t,T (ηT )b.

We have
T̂ V

Q
t,T (ηT )b < T̂V

Q
t,T (ηT )a,

with the gap determined by the bid–ask spreads in options markets.
For our volatility strategy, we need to enter into a dynamic position in the underlying asset.

Instead of trading continuously, investors trade at intervals of length 0 < ∆n < T in practice.
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This leads to the following feasible counterpart of RGt,T from (5.7):

R̂Gt,T =

Nt∑
j=2

f ′′T (Kt,j−1;Xt)Ôt+T (Kt,j−1)(Kt,j −Kt,j−1)

−
kn∑
j=1

f ′T (Xt+(j−1)∆n
;Xt)(Xt+j∆n −Xt+(j−1)∆n

),

(6.3)

where kn ∼ T/∆n. The first part of the realized gains is due to the payoffs of the static position
in the portfolio of options. Here, Ôt+T (K) is the payoff of the option at expiration. The
second part is due to the cumulative gains from trading the underlying asset. This part can be
represented equivalently as

− f ′T (Xt+kn∆n ;Xt)Xt+kn∆n +

kn∑
j=1

(f ′T (Xt+j∆n ;Xt)− f ′T (Xt+(j−1)∆n
;Xt))Xt+j∆n . (6.4)

The first component in the above expression is the value of the position in the underlying asset
at the terminal date t+ T , while the second one contains the gains/losses from rebalancing the
position in the underlying asset over the time window [t, t + T ]. When trading the underlying
asset, investors have to deal with bid–ask spreads. We account for that by using Xb

t+j∆n
if the

position at time t + j∆n is short and Xa
t+j∆n

if the position at time t + j∆n is long, where

Xb
t+j∆n

and Xa
t+j∆n

denote the best bid and best ask, respectively. For the amount held in the

underlying asset at each point in time, we use the mid-quote 0.5×Xb
t+j∆n

+ 0.5×Xa
t+j∆n

.
We can derive an asymptotic approximation for the size of the trading costs due to the

dynamic trading part of the strategy.

Lemma 6.1. Let D̂TCt,T denote the trading costs due to the dynamic trading part of the above
strategy, that is,

D̂TCt,T = |f ′T (Xt+kn∆n ;Xt)|εt+kn∆n +

kn∑
j=1

|f ′T (Xt+j∆n ;Xt)− f ′T (Xt+(j−1)∆n
;Xt)|εt+j∆n , (6.5)

where εt+j∆n = Xa
t+j∆n

−Xt if the position at time t+ j∆n is short and εt+j∆n = Xb
t+j∆n

−Xt

if the position at time t + j∆n is long. If the true underlying asset price is the mid-quote and
positive and the relative bid–ask spread is a constant denoted with rba, that is,

Xs =
1

2
(Xa

s +Xb
s) and rba =

Xa
s −Xb

s

Xs
for all s ∈ [t, t+ T ],

then √
∆n

T
D̂TCt,T

P−→ rba

√
2

π
σPt , as ∆n, T → 0 and ∆n/T → 0. (6.6)

The lemma, which is proved in Appendix A.4, leads to the approximation

D̂TCt,T ≈
T√
∆n

rba

√
2

π
σPt . (6.7)

We note that the size of the transaction costs are governed by the diffusive volatility and do
not depend on the level of truncation in the volatility arbitrage strategy. This is because the
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frequent moves in the asset price, which trigger most of the rebalancing of the position in the
underlying asset, are dominated by the diffusive part of the price. Naturally, the transaction
costs are higher for higher rebalancing frequency.

The above approximation of the trading costs due to trading in the underlying asset can
allow us to gauge their effect on the profitability of the volatility arbitrage strategies. For this,
purpose, in Figure 5 we plot the relative transaction costs due to the dynamic part of the
position. The latter are computed by dividing D̂TC0,T by T × (σP0 )2. These numbers should be
compared with the relative expected gains of the trading strategy without trsaction costs which
are given by max{(σQ0 /σP0 )2 − 1, 1 − (σP0/σ

Q
0 )2}. For generating the numbers in the figure, we

have set T to 30 minutes, ∆n to 5 minutes, and rba to the median value we find in the real
data in our empirical application. As seen from the figure, even though the bid–ask spreads
for trading in the underlying asset are relatively small, they nevertheless generate nontrivial
transaction costs for the volatility arbitrage strategy. These costs are bigger for smaller values
of volatility, which suggests that potential arbitrage violations will be harder to exploit for lower
levels of volatility.
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Figure 5: Relative Transaction Costs due to Stock Trading. The time window is T = 30
minutes and ∆n corresponds to 5 minute frequency of rebalancing. The relative bid–ask spread
(i.e., bid–ask spread over mid-quote) for trading in the underlying asset is set to 2×2.1326e−05.
The transaction cost due to trading in the underlying asset is computed using the asymptotic
result in (6.7). It is converted to a relative one by dividing by T × (σP0 )2.

The transaction costs due to trading in the options are easier to account for as the position
in the options is static. Assuming constant proportional bid–ask spreads for trading options
with different strikes, the relative transaction costs due to trading options based on numbers
calibrated to the real data used in the application are around 4–6%. These numbers can be added
to those reported in Figure 5 to get the total transaction costs of implementing the volatility
arbitrage strategies. They are nontrivial and determine the size of a potential gap between (σP0 )2

and (σQ0 )2 that cannot be acted upon in practice.
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6.2 Determining the Direction of the Volatility Strategy

Finally, the investor needs to know if the options market over- or under-values volatility. For
this, we need P- and Q-estimates of volatility due to the small and frequent moves in the asset
price at time t using information only up to that time. We denote these estimates with V̂ P

t,T

and V̂ Q
t,T . In general, conditional expectations under P are difficult to estimate as they require

modeling the dynamics of the underlying asset. This is not the case, however, in our situation.
The reason for this is that we need estimates of volatility that is due to the small and frequent
asset price moves. In fact, if there was a continuous price record, then the investor should be
able to infer exactly σPt and νPt (dz), for small z, from the past trajectory of the asset price. In
reality, the econometrician, and possibly the investor as well, has a discrete price record only.

There are various candidates for V̂ P
t,T and V̂ Q

t,T . In Appendix A.2, we present the estimators
that we use in our application. As we show in the Monte Carlo study, they appear to do a good
job in identifying the potential existence of local arbitrage.

Given the volatility estimates V̂ P
t,T and V̂ Q

t,T , the feasible strategy that exploits potential
volatility arbitrage opportunities is given by:

• If V̂ P
t,T < 0.8× V̂ Q

t,T , engage in a hedged short position in truncated volatility.

• If V̂ P
t,T > 1.2× V̂ Q

t,T , engage in a hedged long position in truncated volatility.

We refer to the above strategy as the volatility arbitrage strategy. The reason for multiplying
V̂ P
t,T by 1.2 or 0.8 when deciding whether to go short or long volatility is to account for the

estimation uncertainty in V̂ P
t,T and V̂ Q

t,T as well as for accounting for the transaction costs when
implementing the arbitrage strategies. A more formal approach for dealing with the estimation
uncertainty would be to use the asymptotic distribution of these estimators. Similarly, one can
use the asymptotic approximations for the transaction costs derived above to account for their
effect and determine the rebalancing frequency. To keep things simple, we do not do this here
and leave such analysis for future work.

We compare the above volatility arbitrage strategy with the popular one where one always
sells total volatility, i.e., takes a short hedged position in truncated volatility with truncation
parameter set to zero. We refer to this strategy as selling volatility. Note that this strategy
does not exploit an arbitrage opportunity as it is exposed (loses money) to the big jumps in the
asset price. If we do not hedge the above short position in volatility, as has been often done in
earlier work, then we refer to this strategy as naked selling of volatility.

7 Monte Carlo Study

We now evaluate the performance of the volatility strategies discussed in the previous section
in a simulation study that is designed to mimic the key properties of the real data that we are
going to use later on.

7.1 Model

The dynamics of the underlying stock price under P in the Monte Carlo is given by (2.1) with

αt = 0.05, σPt = σt, dσ2
t = 8(0.02− σ2

t )dt+ 0.2σtdB
P
t , (7.1)

where BP
t is a P-Brownian motion with corr(W P

t , B
P
t ) = −0.9. Our unit of time is one year, so

the above parameters imply a half-life of a volatility shock of approximately one month. The
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jump compensator under P is given by

νP(dt, dz) = νts(dz)σ2
t dt, (7.2)

where νts is the compensator of a tempered stable process given by

νts(dz) = c−
e−λ−|z|

|z|α+1
1{z<0}dz + c+

e−λ+|z|

|z|α+1
1{z>0}dz, c± ≥ 0, λ± > 0, α < 2, (7.3)

with parameters set to

α = −1, c− = 0.1×
(λP−)2−α

Γ(2− α)
, c+ = 0.1×

(λP+)2−α

Γ(2− α)
, λP± = 500. (7.4)

This specification of the jumps corresponds to a time-changed double-exponential jump model
that has been commonly used in existing parametric option pricing work.

Turning next to the risk-neutral probability, we assume that σQt has the same dynamics as
σt above. Furthermore, the jump compensator under Q is the same as its P-counterpart, with
only the parameter λP− changing to λQ−. For the specifications for which there is local arbitrage,

we keep λQ− = λP− while for the ones without such arbitrage opportunities, we determine λQ− from
the value of λP− and (

λP−

λQ−

)2−α

=
0.1 + 0.2× 1.2

0.1
.

This choice of λQ− implies a variance risk premium of 20%, which is similar to that observed in
the real data. Thus, for all model specifications considered in our analysis, there is a variance
risk premium (defined as difference between Q- and P-conditional expectations of future total
return volatility) but its source differs. For the specifications with no arbitrage, the source of
the variance risk premium is the pricing of negative jump risk in the asset price. For the specifi-
cations with local arbitrage opportunities, the variance risk premium is solely due to difference
in diffusive spot volatility. The performance of the different volatility strategies designed in the
previous sections should be able to identify the source of the variance risk premium.

Finally, in the free of arbitrage setting we set σQt = σt, while we generate local volatility
arbitrage opportunities by setting σQt 6= σt. We consider situations in which the option market
either overestimates or underestimates spot volatility.

7.2 Sampling Scheme and Choice of Truncation

The sampling scheme in the Monte Carlo mimics that of the real data we use. More specifically,
we sample the underlying stock price at five second frequency. This corresponds to ∆n =
(1/252)× (1/4680) in a 6.5 hour trading day when using business time convention. The starting
values of the stock price and the volatility are X0 = 4000 and σ0 = 0.02, and we simulate
price and volatility paths over 10,000 days. We generate zero-date option prices given the Q
dynamics of Xt described above at every minute during the trading day. We set the bid/ask
quotes to be 5% below/above the true option price. At each point in time, the available strike
grid is equidistant with mesh of $5. The highest and lowest strikes are determined as the lowest
and highest multiples of $5, respectively, for which the corresponding out-of-the-money option
mid-quote falls below $0.075. Similarly, for the underlying asset, we set the bid and ask to be
2.1326e-05% below and above, respectively, the true price. The size of the relative bid–ask spread
in the underlying asset equals the average one for the data used in our empirical application.
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We use the highest frequency of five seconds when forming our estimates of P-volatility. We
use a coarser frequency of five minutes for the dynamic position in the underlying asset. As
discussed in the previous section, when deciding at what frequency to rebalance the position in
the underlying asset we face a trade-off. A higher frequency means better hedging of the risks
in the option portfolio but this comes at the expense of higher transaction costs. Our choice of
frequency to update the position in the underlying asset aims to strike a balance between these
two effects.

Finally, we use the truncation function φ(x) = e−x
2

and set the truncation parameter ηT in
the following data-adaptive way:

η̂t,T =

√
η

log(1/T )
× 1√

T̂ V
Q
t,T (0)

, (7.5)

for some constant η. We experiment with several different values of η, with higher values
corresponding to more aggressive truncation. The above choice of the truncation parameter
means that the truncation is relative to the overall level of volatility.

7.3 Results

In Table 1, we report the percentage of times our estimates of P- and Q-volatility trigger activa-
tion of the volatility arbitrage strategy. In the case of no arbitrage and when the time horizon
T is relatively long (2 hours), the strategy is erroneously triggered nearly half of the times.
The reason for this is that for such relatively long horizon T , it is difficult to infer from the
data whether the variance risk premium embedded in the options is due to compensation for
big jumps in the asset price or due to the existence of local arbitrage opportunities. When the
horizon T shrinks, this separation is easier. As a result for T equal to 30 minutes, the activation
ratio drops to 10.3% only when markets are free of arbitrage. On the other hand, when there
are large local arbitrage opportunities (σQt deviates from σPt by more than 20%), the arbitrage
volatility strategy is triggered almost every day. The activation ratio naturally drops when the
size of the arbitrage violation gets smaller. This is particularly true for the case σQt = 0.9× σPt
and illustrates the difficulties in identifying the existence of small local arbitrage opportunities
from the data.

In Table 2, we report the performance of the various volatility strategies in terms of annu-
alized Sharpe ratios in the Monte Carlo. The performance of the volatility arbitrage strategy is
computed only on the days when the strategy is triggered. For simplicity, we report only un-
conditional Sharpe ratios. For computing conditional Sharpe ratios, one would need to estimate
the conditional jump distribution which is significantly more difficult. Moreover, in presence of
local arbitrage, the unconditional Sharpe ratio, just like the conditional one, should also remain
high as T shrinks. For brevity, we also do not report estimates of GSR(p), for different values
of p 6= 2. To compare the performance of the different volatility strategies, with and without
local arbitrage, the unconditional Sharpe ratio suffices.

We can draw several conclusions from the reported simulation results. First, when the market
is free of local arbitrage, then the feasible volatility arbitrage strategy always looses money on
average. This is due to the transaction costs. In contrast, the strategy which sells volatility
generates positive and nontrivial Sharpe ratios in this case. Consistent with our theoretical
analysis, the Sharpe ratios of selling volatility shrink as T shrinks. Second, when σPt and σQt
differ by around 10%, then the infeasible volatility arbitrage strategy generates positive Sharpe
ratios as long as the truncation is not too high (i.e., η is below 1.5). The feasible volatility
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Table 1: Monte Carlo Results: Activation Ratios for the Volatility Arbitrage Strat-
egy

Scenario TTM Activation Ratio Scenario TTM Activation Ratio

no arbitrage

30 minutes 10.3%
60 minutes 24.4%
90 minutes 37.8%

120 minutes 48.4%

σQ
t = 1.1× σP

t

30 minutes 51.1%

σQ
t = 1.2× σP

t

30 minutes 83.1%
60 minutes 66.0% 60 minutes 85.2%
90 minutes 71.3% 90 minutes 86.8%

120 minutes 74.0% 120 minutes 87.6%

σQ
t = 0.9× σP

t

30 minutes 44.3%

σQ
t = 0.8× σP

t

30 minutes 99.2%
60 minutes 33.0% 60 minutes 99.2%
90 minutes 28.1% 90 minutes 98.2%

120 minutes 26.2% 120 minutes 96.4%

Note: TTM stands for time to maturity. The activation ratio for each feasible volatility arbitrage
strategy corresponds to the percentage of days that the strategy is implemented from 10,000
days.

strategies also generate positive Sharpe ratios for any considered T when η = 0.5 and for T = 30
minutes when η = 1.0. The comparison of the feasible and infeasible volatility strategy reveals
the cost of learning about the existence of a gap between σPt and σQt . Focusing on the shortest
considered T of 30 minutes, for which our asymptotic analysis should apply best, we can see
that for mild truncation, i.e., η = 0.5, the feasible and infeasible volatility arbitrage strategies
outperform a strategy of hedged selling of volatility if σPt and σQt differ by around 20%. The
gap is not as big as the one reported in Figure 4 and this shows the impact of discrete hedging,
transaction costs and not applying conditioning when computing the Sharpe Ratio.

Overall, the Monte Carlo analysis shows two distinguishing features of the volatility arbitrage
strategies in the presence versus absence of local arbitrage opportunities. One is the fact that,
in the presence of arbitrage, the volatility arbitrage strategies deliver nontrivial Sharpe ratios
even for moderate levels of truncation (η < 1.5). The other is the fact that when there is
a local arbitrage opportunity, the performance of the volatility arbitrage strategies does not
deteriorate as the horizon T shrinks. Finally, and not surprisingly, the gap between the feasible
and infeasible volatility strategies is higher for the smaller local arbitrage opportunities, as they
are harder to detect.

8 Do Equity and Options Markets Agree about Volatility?

8.1 Data

We use three sets of data in the empirical analysis. The first one consists of intraday best bid
and best ask quotes for the SPY ETF tracking the S&P 500 index. This dataset is extracted
from the TAQ database. We sample the SPY every 5 seconds during the trading hours range
of 9:30–16:00 EST. The second dataset consists of prices of zero-date S&P 500 index (SPX)
options. The source of this dataset is the CBOE DataShop. We sample the option prices at one
minute frequency and keep only out-of-the-money options with positive bid quotes. We perform
the analysis at a point in time during the day only if there are at least five strikes with non-zero
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Table 2: Monte Carlo Results: Sharpe Ratios

Scenario TTM Strategy
infeasible vol. arb. feasible vol. arb. selling naked short
η = 0.5 η = 1.0 η = 1.5 η = 0.5 η = 1.0 η = 1.5 volatility volatility

no arbitrage

30 minutes −2.34 −2.56 −2.75 1.15 1.04
60 minutes −1.15 −1.46 −1.64 1.57 1.01
90 minutes −0.54 −1.08 −1.40 2.18 1.20

120 minutes −0.05 −0.84 −1.31 2.63 1.32

σQ
t = 1.1× σP

t

30 minutes 0.90 0.51 0.01 0.68 0.28 −0.19 0.98 0.92
60 minutes 0.92 0.42 −0.16 0.41 −0.04 −0.50 1.22 0.83
90 minutes 1.41 0.68 −0.01 0.54 −0.06 −0.61 1.70 0.98

120 minutes 1.57 0.72 −0.01 0.74 0.08 −0.48 2.03 1.08

σQ
t = 0.9× σP

t

30 minutes 0.98 0.60 0.13 1.06 0.78 0.36 −3.33 −1.95
60 minutes 1.25 0.63 −0.01 1.09 0.57 −0.06 −4.52 −2.16
90 minutes 1.16 0.31 −0.32 0.80 −0.12 −0.80 −5.23 −2.14

120 minutes 1.15 0.16 −0.52 1.26 0.16 −0.67 −5.87 −2.18

σQ
t = 1.2× σP

t

30 minutes 3.71 3.28 2.46 3.62 3.15 2.32 3.33 2.49
60 minutes 4.20 3.47 2.40 3.82 3.17 2.19 4.38 2.49
90 minutes 5.37 4.05 2.59 4.51 3.35 2.06 5.57 2.74

120 minutes 5.92 4.26 2.61 4.97 3.56 2.13 6.45 2.93

σQ
t = 0.8× σP

t

30 minutes 3.62 2.97 1.98 3.63 2.97 1.99 −5.27 −3.23
60 minutes 4.17 3.03 1.74 4.18 3.03 1.74 −7.10 −3.48
90 minutes 4.53 2.72 1.35 4.56 2.74 1.36 −8.27 −3.51

120 minutes 4.64 2.50 1.06 4.64 2.49 1.04 −9.36 −3.60

Note: TTM stands for time to maturity. The reported numbers for each strategy correspond
to annualized Sharpe ratios estimated from 10,000 days of implementing the strategies. The
per-period Sharpe ratios are annualized by multiplying them by

√
252.

bid quotes for out-of-the-money options. The moneyness of the options is determined by implied
forward, which in turn is recovered via put–call parity from pairs of call and put mid-quotes
with the same strike for which the difference in the put–call premium is the smallest in absolute
value. We use three such pairs with smallest put–call premium gap and take the median as
our implied forward estimate. Finally, we obtain closing prices for the S&P 500 index from the
CRSP database.

The sample period for the study is 2020–2023. Prior to Spring 2022, the available SPX option
expiration dates were Monday, Wednesday and Friday. After Spring 2022, there are expiration
dates on every trading day of the week. We remove from the analysis days with partial trading
around holidays. We further remove days with FOMC announcements as the zero-date options
on these days can be partially affected (depending on the time of the day) by the event risk
contained in these announcements. To account for the well-known and pronounced intraday
volatility pattern, we adjust the forecast of volatility V̂ P

t,T by the ratio of the sample average
variance over the period [t, t+kn∆n] by that over the period [t, t−kn∆n] from which the forecast
is constructed.
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8.2 Empirical Evidence

We implement the feasible volatility arbitrage strategies in exactly the same way as in the Monte
Carlo. Our estimates for P- and Q-volatility which determine the activation of these strategies
are plotted in Figure 6. As seen from the figure, for all considered values of T , the estimates V̂ P

t,T

and V̂ Q
t,T are close to each other suggesting no significant local volatility arbitrage opportunities.

2020 2021 2022 2023 2024

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2020 2021 2022 2023 2024

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2020 2021 2022 2023 2024

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

2020 2021 2022 2023 2024

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Figure 6: Risk-Neutral versus True Conditional Expected Truncated Volatility. The

estimates of the conditional expected volatility under P and Q are
√
V̂ P
t,T (blue line) and

√
V̂ Q
t,T

(red line), respectively.

The performance of the various volatility strategies on the real data are reported in Table 3.
They indicate a lack of local arbitrage opportunities due to different perceptions of volatility
by equity and option markets. Indeed, the volatility arbitrage strategies yield negative Sharpe
ratios for all considered levels of η and all horizons T . This performance is in sharp contrast to
that of the hedged selling of volatility strategy which generates high Sharpe ratios. Comparing
the performance of the different strategies on the real data and in the Monte Carlo, we can
conclude that the real data performance is in line with that in the Monte Carlo for the case
σPt = σQt . One notable difference between the performance of the volatility arbitrage strategy in
the real data and in the Monte Carlo for the case σPt = σQt is the slightly higher activation ratios
of the volatility arbitrage strategies in the real data. This reveals the slightly higher level of
uncertainty about short-term future volatility in the real data than in the Monte Carlo, either
due to volatility jumps and/or to time-varying time-of-day volatility effects.

In Figure 7, we display the returns from the different volatility strategies for a horizon of one
hour. We can see from the figure that the volatility arbitrage strategies have nearly symmetric
returns. Also, there is no apparent clustering of the periods when the strategies are inactive.
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Table 3: Empirical Results

Strategy TTM SR % active Skewness Kurtosis

vol. arb., η = 0.5

30 minutes -0.10 (1.22) 71% 0.57 7.62
60 minutes -0.91 (1.90) 68% 0.24 7.87
90 minutes -0.55 (1.48) 62% -0.06 4.84

120 minutes -2.15 (1.95) 61% 0.13 4.12

vol. arb., η = 1.0

30 minutes -0.52 (1.40) 71% 0.61 9.81
60 minutes -1.13 (1.69) 68% 0.23 7.76
90 minutes -0.99 (1.83) 62% -0.89 7.67

120 minutes -2.37 (2.56) 61% -1.48 11.44

vol. arb., η = 1.5

30 minutes -0.79 (1.45) 71% 0.44 11.49
60 minutes -1.14 (1.42) 68% 0.27 6.91
90 minutes -1.08 (1.91) 62% -1.40 11.15

120 minutes -2.40 (2.29) 61% -1.80 13.22

selling volatility

30 minutes 2.56 (2.27) 100% -3.24 23.56
60 minutes 4.73 (3.47) 100% -4.62 42.94
90 minutes 4.15 (4.82) 100% -7.30 106.05

120 minutes 3.61 (4.60) 100% -7.77 108.80

naked short volatility

30 minutes 0.67 (2.27) 100% -8.96 142.82
60 minutes 0.84 (2.05) 100% -7.88 100.79
90 minutes 0.39 (2.25) 100% -11.50 205.48

120 minutes -0.10 (1.99) 100% -11.71 196.30

Note: TTM stands for time to maturity and SR for annualized Sharpe Ratio. The per-period
Sharpe ratios are annualized by multiplying them by

√
252. The numbers in brackets are Newey–

West HAC standard errors.

Finally, the returns from these strategies do not appear significantly fat-tailed. That said, jump
risk is apparently still affecting these strategies, which is in line with our theoretical analysis.
On the other hand, the strategies involving selling of total volatility (the bottom two panels
of the figure) are extremely heavy tailed and highly negatively skewed. The reason for this is
the fact that these strategies are exposed significantly more to the big jumps in the underlying
asset price than the truncated volatility strategies. This is further confirmed by comparing the
skewness and kurtosis of the various strategies reported in Table 3. Thus, in particular, the
high Sharpe ratio that the hedged short volatility strategy generates comes at the cost of very
fat-tailed and skewed distribution.

9 Conclusion

In this paper we consider the question whether equity and option markets are integrated, i.e.,
whether there is an aggregate pricing kernel that can jointly rationalize observed equity and
option prices. We show that such market integration is equivalent to an agreement between the
two markets about the volatility due to small and frequent moves in the asset price. Absence of
such an agreement leads to local arbitrage opportunities, which can be exploited via a portfolio
of short-dated options together with a dynamic position in the underlying asset that aims to
hedge some of the risk in the options. Empirically, we find that, in spite of the large premium
embedded in short-dated S&P 500 index options, their prices correctly reflect the volatility due
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Figure 7: Returns of Volatility Arbitrage Strategies. If a volatility strategy is not activated
on a given day, then we put a return of zero on that day. The time horizon is T = 60 minutes.

to small and frequent asset price moves. Thus, zero-date options are expensive but do not appear
mis-priced.

A Appendix

A.1 Auxiliary Results and Proofs for Sections 2 and 3

We first explain how a refinement of (2.4) and (2.5) can be turned into a necessary and suffi-
cient condition for market integration. As we are only interested in equivalence of P and Q in
restriction to Fτ , there is no loss of generality to assume that F = Fτ and P = P|Fτ .

Theorem A.1. Suppose that G0 is a sub-σ-field of F0, equipped with a probability measure
P0 (initial condition). Further suppose that P is the locally unique probability measure (see
Definition III.2.37 in Jacod and Shiryaev (2003)) that satisfies P|G0 = P0 and that renders X a
special semimartingale15 with local characteristics (BX,P, CX,P, νX,P), where for all t ∈ [0, τ ],

BX,P
t =

∫ t

0
Xsαsds, CX,Pt =

∫ t

0
(Xsσ

P
s )2ds, νX,P(dt, dz) =

[
νPt ◦ (Xt−(ez − 1))−1

]
(dz)dt.

(A.1)

15A semimartingale X is special if it is locally integrable. In this case, it can be decomposed into the sum of a
local martingale and a predictable process of finite variation (called the drift of X). Furthermore, in writing the
semimartingale characteristics of X, one can then take the identity as truncation function (i.e., no truncation),
which is implicitly assumed in (A.1) and (A.2).
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Then Qe is equal to the family of risk-neutral measures Q ∈ Q for which Q|G0 is equivalent to
P0 and X is a martingale under Q with local characteristics (BX,Q, CX,Q, νX,Q) given by

BX,Q
t = 0, CX,Qt =

∫ t

0
(Xsσ

Q
s )2ds, νX,Q(dt, dz) =

[
νQt ◦ (Xt−(ez − 1))−1

]
(dz)dt (A.2)

for t ∈ [0, τ ], where
σQt = σPt and νQt (dz) = Yt(z)ν

P
t (dz), (A.3)

and Yt(z) is a strictly positive predictable function such that P- and Q-almost surely,

∫ τ

0

∫
R

(
αt +

∫
R(ez − 1)(Yt(z)− 1)νPt (dz)

σPt

)2

dt <∞,∫ τ

0

∫
R

(|Yt(z)− 1|2 ∧ |Yt(z)− 1|)νPt (dz)dt <∞.

(A.4)

Proof. Suppose that Q ∈ Qe. By definition, we have P ∼ Q (“P is equivalent to Q”), which im-
plies Q|G0 ∼ P0. Moreover, by Girsanov’s theorem (see Theorem III.3.24 in Jacod and Shiryaev
(2003)), X is a Q-semimartingale with characteristics (BX,Q, CX,Q, νX,Q) where CX,Q and νX,Q

are given by (A.2) and satisfy (A.3) for some nonnegative measurable Yt(z), and

BX,Q
t =

∫ t

0
Xs

(
αs + βsXs(σ

P
s )2 +

∫
R

(ez − 1)(Ys(z)− 1)νPs (dz)

)
ds (A.5)

for some predictable process βt. Because Q ∈ Qe ⊆ Q, we know that X is a Q-martingale, hence
BX,Q ≡ 0, which implies that βt can be chosen such that

βtXt = −
αt +

∫
R(ez − 1)(Yt(z)− 1)νPt (dz)

(σPt )2
, t ∈ [0, τ ]. (A.6)

Together with the assumption P ∼ Q, we can use Théorème 4.1 in Jacod and Mémin (1976)
to deduce that Yt(z) can be chosen as strictly positive and must satisfy (A.4) P- and Q-almost
surely.

Conversely, suppose now that Q ∈ Q satisfies the properties listed in the lemma. By assump-
tion, P is the locally unique probability measure that equals P0 if restricted on G0 and makes X
a semimartingale with local characteristics given in (A.1). Therefore, by Théorème 4.3 in Jacod
and Mémin (1976), we have P ∼ Q, which means Q ∈ Qe.

Proof of Lemma 2.1. Because Q is equivalent to P, we haveMt > 0 almost surely for all t ∈ [0, τ ].
As M is a P-martingale, by right-continuity, we obtain (2.7). To upgrade this to (2.8), by
dominated convergence, it suffices to note that EP

t (supr∈[t,s]|Mr|q) < ∞ by Doob’s martingale

inequality and our assumption that EP
t (|Ms|q) <∞.

Proof of Lemma 3.1. By the definition of the stochastic discount factor, we have

EQ
t (Rt,T ) = EP

t (Dt,TRt,T ),

and therefore,

EQ
t (Rt,T )− EP

t (Rt,T ) = EP
t [(Dt,T − 1)Rt,T ] = EP

t

[
(Dt,T − 1)

(
Rt,T − EP

t (Rt,T )
)]
,
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because EP
t (Dt,T − 1) = 0. Applying Hölder’s inequality, we derive the estimate∣∣∣EP

t

[
(Dt,T − 1)

(
Rt,T − EP

t (Rt,T )
)]∣∣∣

≤
(
EP
t

(∣∣∣Rt,T − EP
t (Rt,T )

∣∣∣p)) 1
p
(
EP
t

(
|Dt,T − 1|

p
p−1

))1− 1
p
.

(A.7)

As EQ
t (Rt,T ) = 0 by (3.3), we obtain

(
EP
t

(
|Dt,T − 1|

p
p−1

))1− 1
p ≥

∣∣∣EQ
t (Rt,T )− EP

t (Rt,T )
∣∣∣(

EP
t

(∣∣Rt,T − EP
t (Rt,T )

∣∣p)) 1
p

= |GSRt,T (p)|, (A.8)

proving the lemma.

Proof of Theorem 3.2. Suppose that Q ∈ Qe. By Lemma 3.1 and Definition 3, local arbitrage
implies that for a subsequence of time horizons, which we still denote by T ,(

EP
t (|Dt,T − 1|q)

)1/q
≥ |GSRt,T (p)| → Gt(p) a.s. as T ↓ 0,

where Gt(p) denotes the left-hand side of (3.5) and is therefore a strictly positive random
variable. As this contradicts (2.8), the assumptions behind (2.8) must be violated, which means
that we must have EP

t (|Ms|q) =∞ for all s ∈ (t, τ ].

A.2 Estimating Volatility Under P and Q

In this section, we provide the two volatility estimators, V̂ P
t,T and V̂ Q

t,T , that we use to determine
if there is an arbitrage opportunity. These estimators are based on the characteristic function of
the price increments, which, similarly to the truncated volatility, can separate small and frequent
moves from the big and infrequent ones, see Jacod and Todorov (2014) and Todorov (2019). We
start with V̂ Q

t,T . It is given by

V̂ Q
t,T = −2T

û2
t

log
∣∣∣L̂Qt,T (ût)

∣∣∣ , (A.9)

where the risk-neutral characteristic function of the price increments is inferred from the options
via

L̂Qt,T (u) = 1− (u2 + iu)

Nt∑
j=2

eiu(log(Kt,j−1)−log(Xt))

K2
t,j−1

Ot,T (Kt,j−1)(Kt,j −Kt,j−1), (A.10)

and the characteristic exponent is set to

ût =

√
−2T log(0.3)

T̂ V t,T (0)
. (A.11)

This estimator was proposed by Todorov (2019) and the above construction is behind the spot
volatility index reported by the CBOE options exchange.

We continue next with V̂ P
t,T . It is constructed as the return counterpart of the option-based

estimator above. More specifically, we set

V̂ P
t,T = −2Tkn

û2
t

log

∣∣∣∣∣∣ 1

mn

mn∑
j=1

eiût(xt−(j−1)∆n−xt−j∆n )/
√
T

∣∣∣∣∣∣ , (A.12)

where kn = bT/∆nc and mn = 12×180, which corresponds to a window for volatility estimation
of 3 hours. The theoretical properties of V̂ P

t,T are investigated in Jacod and Todorov (2014).

28



A.3 Assumptions and Proofs for Theorem 5.1 and Theorem 5.2

For the proof of Theorems 5.1 and 5.2, we can assume without loss of generality that t = 0 and
that X0 = 1. We also introduce

θ(x) = φ(x)x2 and Φ(η, x)T = φ(ηx/
√
T )x2 =

T

η2
θ(ηx/

√
T ). (A.13)

Then

θ′(x) = φ′(x)x2 + 2xφ(x), θ′′(x) = φ′′(x)x2 + 4φ′(x)x+ 2φ(x),

θ′′′(x) = φ′′′(x)x2 + 6φ′′(x)x+ 6φ′(x), θ(4)(x) = φ(4)(x)x2 + 8φ′′′(x)x+ 12φ′′(x)
(A.14)

and
∂

∂x
Φ(η, x)T =

√
T

η
θ′(ηx/

√
T ),

∂2

∂x2
Φ(η, x)T = θ′′(ηx/

√
T ). (A.15)

By Itô’s formula, the log-price xt = logXt satisfies

dxt = aSt dt+ σSt dW
S
t +

∫
R
zµ̃S(dt, dz), x0 = logX0,

where aSt = αS
t − 1

2(σSt )2 −
∫
R(ez − 1− z)νSt (dz) with αS

t = αt if S = P and αS
t = 0 if S = Q. For

Theorem 5.1, we assume the following conditions on φ and the coefficients of x:

Assumption 1. The function φ(x) is nonnegative, symmetric, equal to unity at zero and twice
continuously differentiable with all its derivatives (including φ itself) decreasing exponentially
fast as |x| → ∞.

Assumption 2. For both S = P and S = Q, we have the following:

1. There is rS ∈ (0, 2) such that for all 0 ≤ s ≤ t,

EP
s

(∫
R
|z|rSνSt (dz)

)
<∞. (A.16)

2. There are positive Ft-measurable random variables Ct, only depending on t, such that

sup
0≤s≤t≤s+1

ES
s(z

4
t ) < Cs for z ∈ {aS, (σS)−4} (A.17)

and
sup

0≤s≤t≤s+1
ES
s((zt − zs)2) ≤ Cs(t− s) for z ∈ {σS, (σS)2} (A.18)

and

sup
0≤s≤t≤s+1

sup
ψ

ES
s

((∫
R
ψt(z)(|z|r

S ∨ |z|2)(νSt − νSs )(dz)

)2
)
≤ Cs(t− s), (A.19)

where in the last line the second supremum is taken over all adapted processes ψ = ψt(z)
that are uniformly bounded by 1.

There are many choices of the truncation function φ that satisfy Assumption 1. For example,
the one that we use in our application is φ(x) = e−x

2
. Assumption 2 is a weak restriction on

the asset price dynamics. This assumption is satisfied by most models considered in finance.
In particular, we do not restrict the activity of the jumps (e.g., jumps of infinite variation are
allowed).
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Proof of Theorem 5.1. We compute the expected return of the hedged truncated volatility port-
folio: By (4.3), (5.2), (5.7) and (5.8), we have

EP
0(R0,T ) =

EP
0(RG0,T )− C0,T (ηT )

C0,T (ηT )

=
TV P

0,T (ηT )− TV Q
0,T (ηT )

TV Q
0,T (ηT )

−
∫ T

0 EP
0(f ′T (Xt;X0)αtXt)dt

TV Q
0,T (ηT )

.

(A.20)

By Itô’s formula, for both S = P and S = Q,

TV S
0,T (ηT ) = ES

0(Φ(ηT , xT )T )

= ES
0

(
1

2

∫ T

0
θ′′( ηT√

T
xt)(σ

S
t )2dt+

√
T

ηT

∫ T

0
θ′( ηT√

T
xt)a

S
t dt

+

∫ T

0

∫
R

[
Φ(ηT , xt + z)− Φ(ηT , xt)−

∂

∂x
Φ(ηT , xt)T z

]
νSt (dz)dt

)

= ES
0

(
1

2

∫ T

0
θ′′( ηT√

T
xt)(σ

S
t )2dt+

√
T

ηT

∫ T

0
θ′( ηT√

T
xt)a

S
t dt

+

∫ T

0

∫
R

∫ 1

0
θ′′( ηT√

T
(xt + vz))(1− v)dv z2νSt (dz)dt

)
.

(A.21)

Note that θ and its derivatives are bounded functions and |θ′(x)| ≤ C|x|. Therefore, by (A.18),
(A.19) and the fact that ES

0(|xt/
√
T |) ≤ (ES

0(|xt/
√
T |2))1/2 ≤ C for all t ∈ [0, T ], we have

1

T
TV S

0,T (ηT ) =
(σS0)2

2T

∫ T

0
ES

0

(
θ′′( ηT√

T
xt)
)
dt

+
1

T

∫ T

0

∫
R

∫ 1

0
ES

0

(
θ′′( ηT√

T
(xt + vz))

)
(1− v)dv z2νS0 (dz)dt+Op(

√
T ).

(A.22)

As θ′′(0) = 2, using the mean-value theorem, we further obtain

1

T
TV S

0,T (ηT ) = (σS0)2 +

∫
R

∫ 1

0
θ′′( ηT√

T
vz)(1− v)dv z2νS0 (dz) +Op(ηT ).

We have
∫ 1

0 θ
′′( ηT√

T
vz)(1− v)dv = φ( ηT√

T
z) and φ(x)→ 0 as |x| → ∞, so the dominated conver-

gence theorem implies that∫
R

∫ 1

0
θ′′( ηT√

T
vz)(1− v)dv z2νS0 (dz) =

∫
R
φ( ηT√

T
z)z2νS0 (dz) = op(1).

In summary, we have shown that

1

T
TV S

0,T (ηT ) = (σS0)2 + op(1). (A.23)

Since σP0 6= σQ0 by assumption, it follows that

EP
0(R0,T ) =

(σP0 )2 − (σQ0 )2

(σQ0 )2
+ op(1). (A.24)
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Next, we turn to the Lp-risk of the hedged volatility portfolio, which is given by

(
EP

0

(
|R0,T − EP

0(R0,T )|p
))1/p

=

(
EP

0

(
|RG0,T − EP

0(RG0,T )|p
))1/p

TV Q
0,T (ηT )

. (A.25)

By (A.14), we have Φ(ηT , xt−+ z)−Φ(ηT , xt−)− ∂
∂xΦ(ηT , xt−)z =

∫ 1
0 θ
′′( ηT√

T
(xt + vz))(1− v)dv.

Thus, Itô’s formula implies that

RG0,T − EP
0(RG0,T )

=
1

2

∫ T

0

[
θ′′( ηT√

T
xt)(σ

P
t )2 − EP

0(θ′′( ηT√
T
xt)(σ

P
t )2)

]
dt

+

∫ T

0

∫
R

[
Φ(ηT , xt− + z)− Φ(ηT , xt−)− ∂

∂x
Φ(ηT , xt−)z

]
µ̃P(dt, dz)

+

∫ T

0

∫
R

∫ 1

0

[
θ′′( ηT√

T
(xt + vz))− EP

0(θ′′( ηT√
T

(xt + vz)))
]

(1− v)dv z2νPt (dz)dt.

(A.26)

We denote the three terms on the right-hand side by I
(1)
0,T (ηT ), I

(2)
0,T (ηT ) and I

(3)
0,T (ηT ), respectively.

By the mean-value theorem, |θ′′( ηT√
T
xt)−θ′′(0)| ≤ C ηT√

T
|xt|, so the first and the third term satisfy

(
EP

0

(
|I(1)

0,T (ηT )|p
))1/p

+
(
EP

0

(
|I(3)

0,T (ηT )|p
))1/p

= Op(TηT ). (A.27)

To analyze the second term, we further split it into the sum of

I
(2,1)
0,T (ηT ) =

∫ T

0

∫
R

[Φ(ηT , xt− + z)− Φ(ηT , xt−)] µ̃P(dt, dz)

=

√
T

ηT

∫ T

0

∫
R

∫ 1

0
θ′( ηT√

T
(xt− + vz)dv zµ̃P(dt, dz),

I
(2,2)
0,T (ηT ) = −

∫ T

0

∫
R

∂

∂x
Φ(ηT , xt−)zµ̃P(dt, dz) = −

√
T

ηT

∫ T

0

∫
R
θ′( ηT√

T
xt−)zµ̃P(dt, dz).

(A.28)

By the Burkholder–Davis–Gundy inequality and (A.19), we have

EP
0

(
|I(2,1)

0,T (ηT )|p
)
≤ CT p/2

ηpT
EP

0

(∫ T

0

∫
R

∣∣∣∣∫ 1

0
θ′( ηT√

T
(xt + vz))dv

∣∣∣∣p |z|pνPt (dz)dt

)

≤ CT p/2

ηpT
EP

0

∫ T

0

∫
R

(∫ ηT |z|√
T

0
|θ′( ηT√

T
xt + sgn(z)u)|du

√
T

ηT |z|

)p
|z|pνPt (dz)dt


≤ CT p/2

ηpT
EP

0

∫ T

0

∫
R

(∫
R
|θ′(u)|du

√
T

ηT |z|

)p−rP (
max
u∈R
|θ′(u)|rP

)
|z|pνPt (dz)dt


≤ CT p−r

P/2

η2p−rP
T

EP
0

(∫ T

0

∫
R
|z|rPνPt (dz)dt

)
= Op(T

1+p−rP/2/η2p−rP
T )

for any p ∈ (rP, 2]. In particular, Jensen’s inequality shows that for all p ∈ [1, 2],(
EP

0

(
|I(2,1)

0,T (ηT )|p
))1/p

≤
(
EP

0

(
|I(2,1)

0,T (ηT )|2
))1/2

= Op(T
3/2−rP/4/η

2−rP/2
T ) = op(T ). (A.29)
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Next, using the Burkholder–Davis–Gundy inequality, (A.19) and the bounds |θ′(x)| ≤ C|x| and
EP

0(|xt/
√
T |p) ≤ C, we derive the estimate

EP
0

(
|I(2,2)

0,T (ηT )|p
)
≤ CT p/2

ηpT
EP

0

(∫ T

0

∫
R
|θ′( ηT√

T
xt)|p|z|pνPt (dz)dt

)
≤ CT p/2

ηpT
EP

0

(∫ T

0

∫
R
|θ′( ηT√

T
xt)|p|z|pνP0 (dz)dt

)
+Op(T

(p+3)/2/ηpT )

≤ CT 1+p/2

∫
R
|z|pνP0 (dz) +Op(T

(p+3)/2/ηpT ) = Op(T
1+p/2)

for all p ∈ (rP, 2]. Therefore, for any p ∈ (rP, 2),(
EP

0

(
|I(2,2)

0,T (ηT )|p
))1/p

= Op(T
1/p+1/2) = op(T ). (A.30)

By Jensen’s inequality, the final bound of the last line extends to all p ∈ [1, 2). For p = 2, we
can use (A.14) to explicitly compute the limit as

EP
0

(
|I(2,2)

0,T (ηT )|2
)

=
T

η2
T

EP
0

(∫ T

0

∫
R
|θ′( ηT√

T
xt)|2z2νP0 (dz)dt

)
+Op(T

5/2/η2
T )

= 2

∫ T

0

∫
R
EP

0((xct)
2)z2νP0 (dz)dt+ op(T

2)

= T 2(σP0 )2

∫
R
z2νP0 (dz) + op(T

2).

(A.31)

Combining (A.23)–(A.25), (A.27) and (A.29)–(A.31) concludes the proof of the theorem.

For Theorem 5.2, we make the following assumptions.

Assumption 3. The function φ(x) is nonnegative, symmetric, equal to unity at zero, decreas-
ing in |x| and six times continuously differentiable with all its derivatives (including φ itself)
decreasing exponentially fast as |x| → ∞.

Assumption 4. In addition to Assumption 2, assume that under both S = P and S = Q,

|νSt (z : |z| > u)− cStu−β
S
1(0,1)(u)| ≤ c′St (u−r

S ∧ u−r′S), t ∈ [0, τ ], u > 0, (A.32)

where βS ∈ (1, 2), rS ∈ (0, βS), r′S ∈ (4,∞) and cS and c′S are predictable processes such that
(A.17) and (A.18) also hold for z ∈ {cS, c′S}.

Proof of Theorem 5.2. Clearly, we have

EP
0(R(kn)

T ) =

kn∑
i=1

EP
0

(
EP
τi(Rτi,T )

)
(A.33)

and, for p ≥ 1,

EP
0

(∣∣∣R(kn)
T − EP

0(R(kn)
T )

∣∣∣p)1/p
≤ EP

0

(∣∣∣∣∣
kn∑
i=1

[
Rτi,T − EP

τi(Rτi,T )
]∣∣∣∣∣
p)1/p

+ EP
0

(∣∣∣∣∣
kn∑
i=1

[
EP
τi(Rτi,T )− EP

0(Rτi,T )
]∣∣∣∣∣
p)1/p

.

(A.34)
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We first derive an asymptotic expansion of EP
τi(Rτi,T ) and note that (A.20)–(A.22) remain valid

(with obvious modifications to accommodate a general τi). Writing x
(i)
t = xτi+t − xτi and using

Itô’s formula as well as (A.18) and (A.19), we further find that

ES
τi

(
θ′′( ηT√

T
(x

(i)
t + vz))

)
= θ′′( ηT√

T
vz) +

η2
T (σSτi)

2

2T

∫ τi+t

τi

ES
τi

(
θ(4)( ηT√

T
(x(i)
s + vz))

)
ds (A.35)

+
η2
T

T

∫∫ τi+t

τi

∫ 1

0
ES
τi

(
θ(4)( ηT√

T
(x(i)
s + vz + wy))

)
(1− w)dw y2νSτi(dy)ds+Op(

√
T )

for every v ∈ [0, 1]. In the last line, and for the remainder of this proof, we use Op(g(T )) to
denote a random variable whose F0-conditional L1-norm is O(g(T )). Clearly, we have

ES
τi

(
θ(4)( ηT√

T
(x(i)
s + vz + wy))

)
= ES

τi

(
θ(4)( ηT√

T
(x(i),m
s + vz + wy))

)
+Op(ηT

√
T ), (A.36)

where x
(i),m
t = x

(i)
t −

∫ τi+t
τi

aSsds is the martingale component of x(i). Next, writing x
(i),c
t =∫ τi+t

τi
σSsdW

S
s for the continuous martingale part and x

(i),d
t =

∫ τi+t
τi

∫
R zµ̃

S(ds, dz) for the discon-

tinuous martingale part of x, we represent ES
τi(θ

(4)( ηT√
T

(x
(i),m
s + vz + wy)) as a sum of three

terms, which we analyze separately:

ES
τi

(
θ(4)( ηT√

T
(x(i),m
s + vz + wy))

)
= ES

τi

(
θ(4)( ηT√

T
(x(i),c
s + vz + wy))

)
+ ES

τi

(
θ(5)( ηT√

T
(x(i),c
s + vz + wy))

ηTx
(i),d
s√
T

)

+ ES
τi

(
θ(4)( ηT√

T
(x(i),m
s + vz + wy))− θ(4)( ηT√

T
(x(i),c
s + vz + wy))

− θ(5)( ηT√
T

(x(i),c
s + vz + wy))

ηTx
(i),d
s√
T

)
.

(A.37)

By (A.18), the first term on the right-hand side of (A.37) satisfies

ES
τi

(
θ(4)( ηT√

T
(x(i),c
s + vz + wy))

)
= ES

τi

(
θ(4)( ηT√

T
(σSτiW

(i),S
s + vz + wy))

)
+Op(ηT

√
T ),

where W
(i),S
t = W S

τi+t −W
S
τi . The second term on the right-hand side of (A.37) satisfies

ES
τi

(
θ(5)( ηT√

T
(x(i),c
s + vz + wy))

ηTx
(i),d
s√
T

)
= ES

τi

(
θ(5)( ηT√

T
(σSτiW

(i),S
s + vz + wy))

ηTx
(i),d
s√
T

)
+Op(ηT

√
T ).

By the Grigelionis representation theorem for Itô semimartingales (see e.g., Theorem 2.1.2 in
Jacod and Protter (2012)), one can assume that x(i),d is a compensated Poisson integral where
the Poisson measure is independent of W (i),S. So, if we condition on W (i),S, we realize that the
conditional expectation on the right-hand side of the last display is identically zero. We turn
to the third term on the right-hand side of (A.37). By Assumption 3, both θ(5) and θ(6) are
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bounded functions, so it is easily established using Taylor’s theorem that the absolute value of
this term is bounded by

CES
τi

∣∣∣∣∣ηTx(i),d
s√
T

∣∣∣∣∣ ∧
∣∣∣∣∣ηTx(i),d

s√
T

∣∣∣∣∣
2
 ≤ CES

τi

(∣∣∣∣∣ηTx(i),d
s√
T

∣∣∣∣∣
p)

for any choice of p ∈ [1, 2]. Applying the Burkholder–Davis–Gundy inequality in the first step
and Jensen’s inequality and the elementary inequality (a+b)p ≤ ap+bp for p ∈ [0, 1] and a, b ≥ 0
in the second step, we derive the estimates

ES
τi

(∣∣∣∣∣ηTx(i),d
s√
T

∣∣∣∣∣
p)
≤
CηpT
T p/2

ES
τi

((∫ τi+s

τi

∫
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z2µ(dr, dz)

)p/2)

≤
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T p/2

[(
ES
τi

(∫ τi+s

τi

∫
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|z|21{|z|≤T 1/βS}ν

S
r (dz)dr

))p/2
+ ES

τi

(∫ τi+s

τi

∫
R
|z|p1{|z|>T 1/βS}ν

S
r (dz)dr

)]
.

Using (A.32), we have for p = βS that∫
R
|z|βS

1{|z|>T 1/βS}ν
S
r (dz) = βS

∫
R

∫ |z|
0

uβ
S−1du1{|z|>T 1/βS}ν
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∫ ∞
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)du
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) + βS

∫ ∞
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uβ
S−1νSr (z : |z| > u)du

= cSr(1 + log T−1) +Op(1).

(A.38)

Similarly, we have∫
R
|z|21{|z|≤T 1/βS}ν

S
r (dz) = 2

∫ T 1/βS

0
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= 2cSr

∫ T 1/βS

0
u(u−β

S − T−1)du+Op(T
2/rS−1)

=
2βScSr

4− 2βS
T 2/βS−1 +Op(T
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(A.39)

We have thus proved the bound

ES
τi
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βS = Op(T

1−βS/2ηβ
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which in turn shows that
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T
(x(i)
s + vz + wy))

)
= ES

τi

(
θ(4)( ηT√

T
(σSτiW

(i),S
s + vz + wy))

)
+Op(T

1−βS/2ηβ
S

T log T−1).
(A.40)
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Inserting this result in (A.35), we obtain
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By (A.22), it follows that
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We can now determine the leading order terms of 1
T (TV P

τi,T
(ηT ) − 1

T TV
Q
τi,T

(ηT ). Because

σPτi = σQτi by assumption, the first term on the right-hand side of the previous display cancels
out. The second and the fourth term are identical and satisfy∣∣∣∣∣η2
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2
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S

T ).

Using similar arguments, one can derive the same bound for the fifth term on the right-hand side
of the penultimate display. The leading term is the third one. Because

∫ 1
0 θ
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T
vz)(1− v)dv =
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φ( ηT√
T
z) and φ is symmetric and exponentially decreasing by assumption, it can be written as
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(A.41)

Therefore, using the notation β = βP∨βQ and cτi = cPτi1{βP=β}−cQτi1{βQ=β} and recalling (A.23),
we obtain

EP
τi(Rτi,T ) =

1

(σQτi)
2

∫
R
φ( ηT√

T
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Q
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T
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2
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(A.42)

By (A.33) and (A.19), it follows that

1
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(σQ0 )2
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Next, we estimate the Lp-risk of the multi-period hedged volatility portfolio. By (A.18) and
(A.42), the second term on the right-hand side of (A.34) satisfies
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0
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T ). (A.44)

The first term on the right-hand side of (A.34) is a martingale sum, so we can apply the
Burkholder–Davis–Gundy inequality to obtain
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Clearly, we have(
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By Itô’s formula and (A.14),

RGτi,T − EP
τi(RGτi,T )

=
1

2

∫ τi+T

τi

[
θ′′( ηT√

T
x

(i)
t )(σPt )2 − EP

τi(θ
′′( ηT√

T
x

(i)
t )(σPt )2)

]
dt

+

∫ τi+T

τi

∫
R

[
Φ(ηT , x

(i)
t + z)T − Φ(ηT , x

(i)
t )T

]
µ̃P(dt, dz)

+

∫ τi+T

τj

∫
R

[
− ∂

∂x
Φ(ηT , x

(i)
t )T z

]
µ̃P(dt, dz)

+

∫ τi+T

τi

∫
R

∫ 1

0

[
θ′′( ηT√

T
(x

(i)
t + vz))− EP

τi(θ
′′( ηT√

T
(x

(i)
t + vz)))

]
(1− v)dv z2νPt (dz)dt.

We denote the four terms on the right-hand side by I
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the Burkholder–Davis–Gundy inequality implies that for p ∈ [1, 2],(
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Analogously to (A.42), one can show that(
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for all p ∈ [1, 2]. Regarding the other two terms term, we first note that a refinement of (A.38)
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Altogether, we have shown that(
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Next, we turn to I
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+Op(T
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Since θ′′′(0) = 0 and θ(4) is bounded, Taylor’s theorem implies that |θ′′( ηT√
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With the same arguments, one can show that(
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Combining (A.47)–(A.50) and recalling (A.23), (A.45) and (A.46), we conclude that
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(A.51)

In conjunction with (A.44), we have shown that for p ∈ [1, βP],
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Up to now, all the derivations are valid for general kn and ηT (as long as
√
T/ηT → 0). By

specializing the last display to the case where ηT ∼ ηT 1/6 for some η > 0, we obtain
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Further taking kn ∼ θT−κ for some θ > 0 and κ ∈ [2
3 , 1), we have
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which by (A.43) shows that the Lp-risk of the multi-period hedged volatility portfolio is much
smaller asymptotically than the absolute value of the expected gain.
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A.4 Proof of Lemma 6.1

Proof of Lemma 6.1. We suppress the dependence of fT on the second argument (which is always
Xt) in this proof. By assumption, we have εt+j∆n = 1

2rbaXt+j∆n , so
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2
rba

|f ′T (Xt+kn∆n)|Xt+kn∆n +

kn∑
j=1

|f ′T (Xt+j∆n)− f ′T (Xt+(j−1)∆n
)|Xt+j∆n


=

1

2
rbaXt

|f ′T (Xt+kn∆n)|Xt+kn∆n +

kn∑
j=1

|f ′′T (Xt+(j−1)∆n
)||Xt+j∆n −Xt+(j−1)∆n

|


+ op(kn

√
∆n).
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t + op(1), we can use Theorem 7.2.2
in Jacod and Protter (2012) to show that
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As kn ∼ T/∆n, the lemma is proved.
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