
ar
X

iv
:2

40
2.

12
60

7v
1 

 [
ec

on
.E

M
] 

 2
0 

Fe
b 

20
24

Inference on LATEs with covariates*

Tom Boot

University of Groningen

t.boot@rug.nl

Didier Nibbering

Monash University

didier.nibbering@monash.edu

February 21, 2024

Abstract

In theory, two-stage least squares (TSLS) identifies a weighted average of covariate-specific local

average treatment effects (LATEs) from a saturated specification without making parametric as-

sumptions on how available covariates enter the model. In practice, TSLS is severely biased when

saturation leads to a number of control dummies that is of the same order of magnitude as the

sample size, and the use of many, arguably weak, instruments. This paper derives asymptotically

valid tests and confidence intervals for an estimand that identifies the weighted average of LATEs

targeted by saturated TSLS, even when the number of control dummies and instrument interac-

tions is large. The proposed inference procedure is robust against four key features of saturated

economic data: treatment effect heterogeneity, covariates with rich support, weak identification

strength, and conditional heteroskedasticity.
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1 Introduction

With endogenous treatment and a binary instrument, Imbens and Angrist (1994) show that the two-

stage least squares (TSLS) estimand has a causal interpretation as a local average treatment effect

(LATE). Recently, Blandhol, Bonney, Mogstad, and Torgovitsky (2022) point out that the causal in-

terpretation of the TSLS estimand is lost if we linearly include controls unless this is a correct para-

metric assumption. In the absence of a credible justification to linearly include the controls, Angrist

and Imbens (1995) show that TSLS can consistently estimate a weighted average of LATEs provided

that the number of possible values of the vector of controls is fixed: a researcher can select a satu-

rated specification that includes (i) a dummy for each unique realized value of the vector of control

variables and (ii) interactions of the instrument with these dummies. However, in most empirical

settings the vector of controls has rich support, and saturated TSLS breaks down. As a result, ap-

plied work continuous to use the more parsimonious linear specification at the risk of targeting a

non-causal estimand.

In this paper we propose a new method for inference in saturated specifications that do not re-

quire parametric assumptions even when the support of the controls is rich. More specifically, this

method provides asymptotically valid tests and confidence intervals for an estimand that identifies

the weighted average of LATEs targeted by saturated TSLS, allowing the number of control dummies

and instrument interactions to be large. As saturated specifications contain only dummy variables,

we can provide low-level assumptions for our results. The most important and rather mild assump-

tion is that each covariate group contains at least two individuals for which the instrument is active

and two for which the instrument is inactive. Settings with multiple or multivalued instruments also

reduce to this setting as in that case dummies for each value of the instrument are interacted with

the control dummies (Angrist and Imbens, 1995).

The proposed inference procedure is robust against four key features of saturated economic

data: treatment effect heterogeneity, many control dummies and instrument interactions, weak

identification strength, and conditional heteroskedasticity. While methods exist to address each of

these features individually, we are the first to tackle their combination by building upon two recent

advances in the literature. First, Chao, Swanson, and Woutersen (2023) propose an estimator for a

homogeneous slope coefficient under many weak instruments in a panel data setting where fixed

effects take the role of control dummies. We show that this estimator can consistently estimate a

weighted average of LATEs in the setting of saturated instrumental variable estimation (SIVE). Sec-

ond, in a setting with a fixed number of control dummies and instrument interactions, Kleibergen

and Zhan (2021) propose a variance estimator for the score of the continuous updating objective

function that is robust to treatment effect heterogeneity. While the SIVE estimator is very different

from continuous updating, we use analogous ideas to formulate a heterogeneity robust variance

estimator. We show that in the setting we consider, the assumptions in both papers can be relaxed

to allow for the number of control dummies and instrument interactions to be asymptotically non-

negligible relative to the sample size.

To highlight our contribution, we discuss the four features of the data we consider in turn. First,

the inference method is robust to fully heterogeneous treatment effects. Imbens and Angrist (1994)

focused attention on allowing for treatment effect heterogeneity in the estimation stage. In our set-

ting with multiple instrument interactions, this heterogeneity is equally important in the inference

stage as it affects the variance of the estimator. As such, we cannot use standard variance estima-
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Table 1: Empirical examples from Blandhol et al. (2022): sample size and covariate values

Sample size Covariate values Ratio

Gelbach (2002) 440 186 0.42

Dube and Harish (2020) 107 11 0.10

Card (1995) 1780 238 0.13

Angrist and Krueger (1991) 329,463 659 0.002

Note: sample size is the effective sample size as reported in Blandhol et al. (2022) after accounting for

perfect multicollinearity in the first stage. Covariates/Instruments indicates the number of distinct

values of the available vector of controls, which equals the number of instrument interactions.

tors for TSLS with multiple instruments, as they rely on the assumption of homogeneous treatment

effects. A notable exception is the TSLS variance estimator proposed by Lee (2018), which how-

ever is not robust to the large number of instrument interactions in typical saturated specifications.

We therefore propose a new variance estimator that is robust to treatment heterogeneity when the

number of control dummies and instrument interactions are large.

Second, we allow for the number of control dummies and instrument interactions to be a non-

negligible fraction of the sample size. To illustrate that this matters in practice, consider the four

empirical examples studied by Blandhol et al. (2022): Table 1 shows the number of distinct covari-

ate values and the sample size. We see that the number of covariate values, and hence the number of

control dummies and instrument interactions in a saturated specification, is a substantial fraction of

the sample size. The fact that TSLS is biased when the number of instruments grows proportionally

with the sample size has been shown by Bekker (1994), and alternatives are provided by e.g. Hansen,

Hausman, and Newey (2008); Ackerberg and Devereux (2009); Hausman, Newey, Woutersen, Chao,

and Swanson (2012); Bekker and Crudu (2015). In addition to many instrument bias, Kolesár (2013)

proposes estimators that also remove the bias due to many controls. However, inferential proce-

dures based on these estimators have only been developed under the assumption that the number

of control dummies is a negligible fraction of the sample size (Evdokimov and Kolesár, 2018).

The third feature is that we accommodate weak instrument interactions. In particular, we allow

the first stage signal to decrease to zero asymptotically. A saturated specification exacerbates the

concern of weak identification, as even interacting a strong instrument with control dummies may

result in instrument interactions that are only weakly related to the treatment. The condition that

we impose on the identification strength has been shown by Mikusheva and Sun (2022) to be the

weakest possible. While there is an extensive literature that combines the notion of many and weak

instruments, e.g. Bekker and Kleibergen (2003); Chao and Swanson (2005); Hausman et al. (2012);

Mikusheva and Sun (2022); Crudu et al. (2021); Matsushita and Otsu (2022); Lim et al. (2024), the

focus has been on the linear IV model with a homogeneous slope coefficient.

The fourth feature is that the reduced form errors can be conditionally heteroskedastic. Infer-

ence in the presence of heteroskedasticity is non-trivial under many instruments and many controls

as consistency results underlying the usual robust standard errors do not apply, see for instance

Hausman, Newey, Woutersen, Chao, and Swanson (2012). Our newly proposed variance estimator

employs estimators for the variances and covariances of the first stage and reduced form errors as in

Hartley, Rao, and Kiefer (1969) to allow for heteroskedasticity. These variance estimators were also

recently used by Cattaneo, Jansson, and Newey (2018). Compared to existing methods that allow for
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heteroskedasticity with many instruments, our newly proposed variance estimator is also robust to

many control dummies and heterogeneous treatment effects.

Provided that the weighted average of covariate-specific LATEs as derived by Angrist and Imbens

(1995) is a parameter of interest, this paper presents researchers with an inference framework that

is readily applicable to many empirical instrumental variable estimation problems. Evidently, there

are settings in which a researcher has a different causal parameter in mind. Słoczyński (2020) points

out that in our parameter of interest a larger weight is placed on covariate groups with large vari-

ation in the instrument assignment and a strong first stage. Researchers that are concerned about

this weighting, can use our identification robust methods to perform a subgroup-specific analy-

sis that zooms in on groups with little variation in the instrument. Inference on subgroup-specific

LATEs that are not weighted by the instrument strength may not provide much useful insights, as

any unidentified LATE that receives nonzero weight will trigger the confidence interval to be the

entire real line (Evdokimov and Lee, 2013).

We conduct a series of Monte Carlo simulations which set-up mimics key features of the data

used in Card (1995), and has also been used by Blandhol et al. (2022). The results illustrate that the

estimator we study is median unbiased for a range of values for the instrument strength and the

number of covariate groups. Fully saturated TSLS and various jackknife estimators incur a bias that

increases with the number of covariate groups and as the strength of the instrument decreases. A

t -test using our proposed variance estimator yields close to nominal size control regardless of the

instrument strength when the number of instruments is small. When the number of instruments

increases, the test becomes progressively more conservative under weak instruments, while main-

taining close to nominal size control under strong instruments. The standard t -test based on the

fully saturated TSLS estimator with heteroskedasticity-robust standard errors shows large size dis-

tortions. The exception is the just-identified case where the control can take on only two values, in

which TSLS is known to offer close to nominal size control even under weak instruments (Angrist

and Kolesár, 2023). Finally, we verify numerically that not taking into account treatment heterogene-

ity when estimating the variance indeed leads to an oversized test. This underlines the importance

of not only accounting for treatment effect heterogeneity in the estimation stage, which has been

the main focus of the extant literature, but also in the inference stage.

To illustrate the estimator we briefly revisit the data used by Card (1995) in the specification

selected by Słoczyński (2020). The goal of the study is to estimate the effect of going to college on in-

come, where the endogenous decision of going to college is instrumented by the distance to college.

In particular, we consider a specification with five binary controls and binarize the treatment to hav-

ing some college attendance. We document that unrealistically large estimates are obtained when

the covariate dummies are not interacted with the instruments. The estimator we study yields much

more reasonable point estimates although the effects statistically cannot be distinguished from zero

at conventional significance levels.

The remainder of this article is organized as follows. Section 2 explains the current practice of

inferring LATEs with covariates from the data and its challenges. Section 3 introduces our proposed

causal estimand and its inference procedure, supported by large sample theoretical results. Sec-

tion 4 discusses the Monte Carlo simulations, Section 5 the empirical application, and Section 6

concludes.
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2 LATEs with covariates

Suppose we are interested in the causal effect of a binary treatment Ti on an outcome Yi , for individ-

uals i = 1, . . . , n . For each individual, define the potential outcomes Yi (1) and Yi (0) corresponding to

the values of Yi if individual i is treated or not treated, respectively. Hence, the treatment effect is

defined as Yi (1)− Yi (0). The treatment is potentially endogenous and a binary instrument Qi and a

vector of covariates X i is available to help identifying a causal effect. The developed theory applies

equally well to the extensions to multivalued treatments and instruments in Angrist and Imbens

(1995) as we discuss in Appendix B.

Define X = {x1, . . . , xG } as the set of all possible G unique realizations of X i . Denote the poten-

tial treatment statuses Ti (1) and Ti (0) corresponding to the values of Ti if individual i ’s treatment

assignment is given by Qi = 1 and Qi = 0, respectively. In case the outcome Yi also directly depends

on Qi , its corresponding potential outcomes are given by Yi (Qi , Ti ). If we condition on the covari-

ates, the four instrumental variable assumptions in the Imbens and Angrist (1994) framework are

the following.

Assumption 1

1. Independence: (Yi (q , t ), Ti (q ))⊥Qi |X i for q ∈ {0, 1} and t ∈ {0, 1},

2. Exclusion: P(Yi (1, t ) = Yi (0, t )|X i ) = 1 a .s . for t ∈ {0, 1},

3. Relevance: P[Ti (1) 6= Ti (0)|X i ]> 0 a .s .,

4. Monotonicity: P[Ti (1)≥ Ti (0)|X i ] = 1 a .s ., or P[Ti (1)≤ Ti (0)|X i ] = 1 a .s .

These assumptions allow for complete treatment effect heterogeneity across all individuals, and do

not impose any parametric assumptions. The monotonicity assumption is referred to in Blandhol

et al. (2022) as weak monotonicity, because it allows the effect of the instrument on the treatment to

have a different direction for each covariate group. Strong monotonicity requires P[Ti (1) ≥ Ti (0)] =

1 or P[Ti (1) ≤ Ti (0)] = 1, and therefore assumes that the effect of switching on the instrument on

potential treatment status is (weakly) in the same direction for all individuals.

Within the LATE framework, causal effects are estimated of the form

τ=
∑

g

ω(xg )τ(xg )with
∑

g

ω(xg ) = 1,ω(xg )≥ 0 for g = 1, . . . ,G , and (1)

τ(xg ) =E[Yi (1)− Yi (0)|Ti (1) 6= Ti (0), X i = xg ]. (2)

The causal effect is then a positively weighted average of covariate-specific LATEs. The following

well-known result shows that the covariate group specific LATEs τ(xg ) are indeed identified.

Lemma 1 Assume that E[Yi |Qi , X i ] is almost surely bounded. Under Assumption 1 it holds that

E[Yi |Qi = 1, X i = xg ]−E[Yi |Qi = 0, X i = xg ]

E[Ti |Qi = 1, X i = xg ]−E[Ti |Qi = 0, X i = xg ]
=τ(xg ). (3)

This result is discussed in Angrist and Pischke (2009), among others. For completeness, we provide

a short proof in Appendix C.1.

In practice, the number of observations in each covariate-group is usually small, and the mo-

ments in Lemma 1 cannot be accurately estimated. This provides a researcher with two options.
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First, we can maintain the focus on the LATE parameters, and use an (estimated) propensity score

to aggregate the covariate specific LATEs. However, the propensity score can be difficult to esti-

mate and limited overlap produces substantial statistical challenges. To avoid having to estimate

the propensity score, an attractive option is to rely on regression to estimate a weighted average of

the covariate group specific LATEs as the parameter of interest, where the weights are automatically

selected through the regression model that is specified.

In this paper we focus on the regression approach. There are then several strategies for esti-

mating the causal effect in (1). First, we can make a parametric assumption that restricts how the

covariates enter the model. The default option is to include the covariates linearly in the first and

second stage. Blandhol et al. (2022) shows that if this parametric assumption is incorrect, then TSLS

has no causal interpretation.

To avoid parametric assumptions, a substantial and active literature considers semiparametric

estimators (Abadie, 2003), or non-parametric estimators (Frölich, 2007). In particular, recent de-

velopments highlight the potential of machine learning techniques as non-parametric estimators

for the effect of the controls on the outcome, endogenous treatment and instrumental variable, e.g.

Chernozhukov et al. (2018). However, these algorithms need to attain a particular convergence rate,

and it is not immediately clear whether the required conditions are met under weak identification

(Mikusheva and Sun, 2023).

Finally, we can saturate the specification as suggested by Angrist and Imbens (1995). If we sat-

urate, the two stage least squares estimator will only be consistent if the number of possible values

of the covariate vector is fixed. However, say we have 10 binary controls, then this already gives us

1,024 possible values of the covariate vector. To accommodate cases with increasingly rich support

of the covariates, we propose a new procedure that allows for reliable inference in saturated specifi-

cations. The only material additional assumption that we make is that in each covariate group there

are at least two individuals for each value of the instrument.

2.1 Saturating the covariates

Angrist and Imbens (1995) show that τ can be estimated by TSLS in saturated specifications: the

first stage includes dummies for each possible value of X i and a full set of interactions between

these dummies and the instrument, and the second stage includes the treatment variable and the

control dummies. By including dummies for each possible value of the covariates, no parametric

assumptions are required. To be more precise, define the G ×1 vector Wi has elements Wi g = 1[X i =

xg ], indicating the covariate group of individual i . The G × 1 vector Zi contains the instrument

interactions Zi g = Qi1[X i = xg ]. Note that
∑

g Wi g = 1 and
∑

g Zi g = Qi . Define ng =
∑

i Wi g as

the number of individuals in covariate group g , and mg =
∑

i Zi g as the number of individuals in

covariate group g with an active instrument.

Both the full set of covariate group indicators and the full set of instrument interactions are re-

quired for nonparametric estimation of τ by TSLS (Blandhol et al., 2022). This ensures that the con-

ditional expectation of the instrument given the covariate groups E[Qi |X i ] is linear in the covariate

group indicators. This allows for correctly partialling out the covariates, which otherwise may in-

duce negative weights into τ. Without the instrument interactions, the first stage does not neces-

sarily reproduce the direction of the monotonicity assumption in all covariate groups. With a binary

instrument, omitting the instrument interactions requires the direction of the monotonicity to be

invariant to the covariate group.
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It is clear that saturation can only work if we observe each covariate value more than once. More-

over, to achieve identification each covariate groups has to include both individuals with an active

and an inactive instruments. The setup we consider, with many control dummies and many in-

strument interactions, requires the number of observations in each group to satisfy the following

assumption.

Assumption 2 Group sizes: mg ≥ 2 and ng −mg ≥ 2 for all g = 1, . . . ,G .

This assumption is rather mild. It requires that both the number of individuals with an active in-

strument and nonactive instrument has to be larger than one in each covariate group.

2.2 Estimation challenges

While saturation results in a causal TSLS estimand if the number of possible covariate values is small,

it is not straightforward to find a causal estimand in the empirically more common setting in which

the controls have rich support. Since each group requires an indicator, and the instrument is inter-

acted with these indicators, this automatically results into a large set of control dummies and a large

set of instruments. In this setting, TSLS is known to be biased, see e.g. Kolesár (2013).

Second, the instrument interactions may weaken the instrument strength. Instrument strength

is measured by the first stage signal, which can be written as FS=
∑

g P[X i = xg ]π(xg )
2
V[Qi |X i = xg ]

with complier shares π(xg ) = P[Ti (1) 6= Ti (0)|X i = xg ] and treatment assignment variationV[Qi |X i =

xg ]. If the complier share and the variation in treatment assignment is homogeneous across covari-

ate groups, that is π(xg ) = π and V[Qi |X i = xg ] = V[Qi ], the strength of the instrument interactions

Z equals the strength of the instrument Q . However, in settings where the proportion of compliers

is large in groups with a low number of treated or untreated units, while the proportion of compliers

is small in groups with a number of treated units close to half of the number of group members, the

first stage is likely weak. It is well known that under a large number of potentially weak instruments

TSLS can be severely biased, see e.g. Bekker (1994) and Chao and Swanson (2005).

2.3 Two-stage least squares

Define the n-dimensional vectors Y = (Y1, . . . , Yn )
′ and T = (T1, . . . , Tn )

′, and the n ×G -dimensional

matrices W = (W ′
1

, . . . , W ′
n
)′ and Z = (Z ′

1
, . . . , Z ′

n
)′. Define the residual maker matrix MW = In −

W (W ′W )−1W ′ with In the n-dimensional identity matrix. The TSLS estimand is commonly defined

as

βTSLS =
E[T ′P Y |Q , X ]

E[T ′P T |Q , X ]
, (4)

where P =MW Z (Z ′MW Z )−1Z ′MW partials out the controls W from the first stage and the second

stage. However, this estimand is problematic when the number of covariate groups is large as the

following result makes precise.

Lemma 2 Under Assumption 1 and 2 it holds that

βTSLS =

∑

g P̃[X i = xg ]π(xg )
2Ṽ[Qi |X i = xg ]τ(xg ) +

1
n

∑

i E[ui ǫi |Qi , X i ]Pi i
∑

g P̃[X i = xg ]π(xg )2Ṽ[Qi |X i = xg ] +
1
n

∑

i E[u
2
i |Qi , X i ]Pi i

, (5)

where P̃[X i = xg ] =
ng

n , π(xg ) = P[Ti (1) 6= Ti (0)|X i = xg ], Ṽ[Qi |X i = xg ] =
mg

ng
(1 − mg

ng
), ui = Ti −

E[Ti |Qi , X i ], ǫi = Yi −E[Yi |Qi , X i ], and Pi i =
∑

g
1

ng
Wi g

(Zi g−P̃[Qi=1|X i=xg ])
2

Ṽ[Qi |X i=xg ]
.
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A proof is deferred to Appendix C.2. Note that P̃[X i = xg ], Ṽ[Qi |X i = xg ], and P̃[Qi = 1|X i = xg ] are

the sample analogues of P[X i = xg ],V[Qi |X i = xg ], and P[Qi = 1|X i = xg ].

Lemma 2 shows that both the second term in the numerator and the second term in the denom-

inator have to go to zero for βTSLS to identify τ. In this case the weights in (1) equal ωTSLS(xg ) =
P̃[X i=xg ]π(xg )

2Ṽ[Qi |X i=xg ]
∑

g P̃[X i=xg ]π(xg )2Ṽ[Qi |X i=xg ]
. It is clear that the additional terms go to zero when Pi i is small. Some inter-

pretation of this result can be obtained by noting that

Pi i =
∑

g

Wi g

�

Zi g

1

mg

ng −mg

ng

+ (1−Zi g )
1

ng −mg

mg

ng

�

. (6)

Hence, for TSLS to have a causal interpretation, in each covariate group the number of individuals

for which the instrument is active (mg ) and the number of individuals for which the instrument is

inactive (ng −mg ) need to be large. This requirement becomes more stringent as the strength of the

instrument interactions measured by
∑

g P̃[X i = xg ]π(xg )
2Ṽ[Qi |X i = xg ] decreases.

As we have seen in Table 1, the number of covariate groups is generally large and nonneglible

relative to the number of individuals. In this case, at least a number of covariate groups has to have

a small number of observations, and the additional terms in Lemma 2 do not go to zero. This bias

is known as the many instrument bias of TSLS. Under homogenous treatment effects, and assum-

ing homoskedastic errors, one can follow Bekker (1994) in using LIML to avoid this bias. However,

Kolesár (2013) points out that with treatment effect heterogeneity, the estimand of LIML is generally

not causal.

In Lemma 2 we condition both on the instrument and the covariates. This estimand can gener-

ally be more accurately inferred from the data relative to the unconditional counterpart. This point

is made by Crump et al. (2009) in a regression context. In the IV context, Evdokimov and Kolesár

(2018) show that both the conditional and unconditional estimands are a weighted combination of

covariate specific LATEs, where the unconditional estimand integrates out sampling uncertainty in

the combination weights. As such, confidence intervals for the unconditional estimand are wider.

We focus on the conditional estimand in the subsequent analysis.

2.4 Jackknife instrumental variables estimation

It follows from Lemma 2 that the bias in TSLS is due to the diagonal elements Pi i . A frequently

used approach to reduce many instrument bias is to employ a jackknife-style correction (Angrist,

Imbens, and Krueger, 1999; Ackerberg and Devereux, 2009). In the current setting, we could remove

the diagonal of P , denoted by DP , to obtain an estimand referred to as the JIVE1,

β JIVE1 =
E[T ′(P −DP )Y |Q , X ]

E[T ′(P −DP )T |Q , X ]
. (7)

This diagonal removal has been the basis of recent papers in the literature on identification-robust

inference under many instrument sequences (Mikusheva and Sun, 2022; Crudu, Mellace, and Sán-

dor, 2021; Matsushita and Otsu, 2022). It ensures that the many instrument bias present in TSLS

disappears. However, in the present case it may nevertheless not be an attractive option. With a

potentially large set of control variables, the consequence of removing the diagonal elements Pi i is

that the controls are no longer projected out. Indeed, the following result shows that removing the

diagonal of the projection matrix biases the estimand.
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Lemma 3 Under Assumption 1 and 2 it holds that

β JIVE1 =

∑

g P̃[X i = xg ]π(xg )
2Ṽ[Qi |X i = xg ](1− P̃[Qi = 1, X i = xg ])τ(xg )−BY

∑

g P̃[X i = xg ]π(xg )2Ṽ[Qi |X i = xg ](1− P̃[Qi = 1, X i = xg ])−BT

, (8)

where

BY =
∑

g

P̃[X i = xg ]π(xg )(φg +τ(xg )ψg )Ṽ[Qi |X i = xg ]P̃[Qi = 1, X i = xg ] +
1

n
ψgφg , (9)

BT =2
∑

g

P̃[X i = xg ]π(xg )ψg Ṽ[Qi |X i = xg ]P̃[Qi = 1, X i = xg ] +
1

n
ψ2

g
, (10)

with P̃[Qi = 1, X i = xg ] =
1

mg
,ψg =E[Ti |Zi g = 0, Wi g = 1], and φg =E[Yi |Zi g = 0, Wi g = 1].

A proof is deferred to Appendix C.3. While removing the diagonal elements has removed the many

instrument bias, this is done at a high cost. When the effect of the controls on the treatment and/or

the outcome are large, as measured by φg andψg , the estimand for JIVE1 can be substantially dif-

ferent from τ and seems difficult to interpret.

An alternative jackknife approach is to first partial out the controls before removing the diagonal.

This gives the following estimand labeled JIVE2.

β JIVE2 =
E[T ′MW (P −DP )MW Y |Q , X ]

E[T ′MW (P −DP )MW T |Q , X ]
. (11)

The following theorem shows that this in fact reintroduces the many instrument bias, although it is

smaller than that in TSLS. Also, while the estimand differs from TSLS, the weights on the covariate

specific LATEs continue to be positive.

Lemma 4 Under Assumption 1 and 2 it holds that

β JIVE2 =

∑

g P̃[X i = xg ]π(xg )
2Ṽ[Qi |X i = xg ]τ(xg ) +BY ,1+BY ,2

∑

g P̃[X i = xg ]π(xg )2Ṽ[Qi |X i = xg ] +BT ,1+BT ,2

(12)

where

BY ,1 =−
1

n

∑

g

π(xg )
2
�

1− 3Ṽ[Qi |X i = xg ]
�

τ(xg ), BY ,2 =
1

n

n∑

i=1

E[ui ǫi |X i ,Qi ]

�

2

ng

Pi i −
1

n 2
g

�

,

BT ,1 =−
1

n

∑

g

π(xg )
2
�

1− 3Ṽ[Qi |X i = xg ]
�

, BT ,2 =
1

n

n∑

i=1

E[u 2
i
|X i ,Qi ]

�

2

ng

Pi i −
1

n 2
g

�

.

(13)

The proof is similar as for Lemma 3 and omitted. In this case, the causal estimand still changes

relative to TSLS, but under Assumption 2 the weights on τ(xg ) will lie between 0 and the TSLS

weights. When the noise terms are nonzero we see that the many instrument bias returns. To quan-

tify this bias, consider momentarily a homoskedastic setting whereE[ui ǫi |X i ,Qi ] =σuǫ. We see that

BY ,2 =
σuǫ

n

∑G

g=1
1

ng
compared to the bias in TSLS that is

σuǫ

n

∑G

g=1
1. We conclude that JIVE2 offers a

substantial bias reduction, especially when ng is large. However, under many instruments, ng is

fixed and the bias is of the same order as for TSLS.

3 Saturated instrumental variable estimation

3.1 A causal estimand

We now consider an estimand identical to that of TSLS when the number of possible values of the

vector of controls is fixed, but that does not suffer from the many instrument bias when the number

8



of covariate values grows. Define the matrix V = [Z , W ] consisting of the instrument interactions

and the covariate group indicators, and define the residual maker matrix MZ ,W = I −V (V ′V )−1V ′.

The SIVE estimand is specified as

β SIVE =
E[T ′(P −MZ ,W D MZ ,W )Y |Q , X ]

E[T ′(P −MZ ,W D MZ ,W )T |Q , X ]
, (14)

where D is a diagonal matrix with diagonal elements such that Pi i = [MZ ,W D MZ ,W ]i i . It follows

that (14) is a jacknife estimand, which removes the diagonal of P and hence the bias in the TSLS

estimand. At the same time, by pre- and post-multiplying D by MZ ,W , the controls are projected

out correctly and the bias in JIVE is prevented. In addition to the controls, MZ ,W also projects out

the instrument interactions, removing the bias in the TSLS estimand.

The SIVE estimator has been proposed by Chao, Swanson, and Woutersen (2023) as Fixed Effect

Jackknife IV (FEJIV). They show that the diagonal elements of D can be obtained by solving a system

of linear equations with a unique solution, and derive consistency results in a linear instrumental

variable regression with fixed effects using panel data with many weak instruments. Within our sat-

urated setting, we can derive a closed-form expression for D , and show that the estimator identifies a

weighted average of covariate-specific LATEs. These results require a different, but arguably weaker

set of assumptions. For instance, we allow the number of control dummies and instrument inter-

actions to be asymptotically non-negligible relative to the sample size, and Assumption 2 relaxes

Assumption 6 in Chao et al. (2023) that requires mg ≥ 3 and ng −mg ≥ 3.

The following result shows that the diagonal matrix D in (14) exists under Assumption 2 and its

elements are available in closed form.

Lemma 5 Under Assumption 2, it holds that if D is a diagonal matrix with elements

Di i =
∑

g

1

ng

Wi g

�
ng −mg

mg − 1
Zi g +

mg

ng −mg − 1
(1−Zi g )

�

(15)

then Pi i = [MZ ,W D MZ ,W ]i i with P =MW Z (Z ′MW Z )−1Z ′MW and MW = In −W (W ′W )−1W ′.

The proof is deferred to Appendix C.4. The result shows that when the number of covariate values

is small and both mg and ng −mg are large, the diagonal elements Di i are small and the estimator

reduces to the TSLS estimator.

Because the term that is substracted in the numerator and denominator of (14) is orthogonal to

the instruments and controls, it is straightforward to establish that the SIVE estimand has a causal

interpretation that is identical to the unbiased TSLS estimand, without requiring the number of

control dummies or instrument interactions to be small.

Theorem 1 Under Assumption 1 and 2 it holds that

β SIVE =

∑

g P̃[X i = xg ]π(xg )
2Ṽ[Zi |X i = xg ]τ(xg )

∑

g P̃[X i = xg ]π(xg )2Ṽ[Zi |X i = xg ]
=
∑

g

ω(xg )τ(xg ). (16)

The proof is deferred to Appendix C.5.

3.2 Inference on the estimand

While having a causal estimand is a crucial first step, we also need to be able to infer the estimand

from the data. In this section, we therefore consider the testing problem

H0 : β SIVE =β0 against H1 :β SIVE 6=β0, (17)

9



for a given β0. We develop a test statistic that is valid when treatment effects are heterogeneous, the

number of values xg that the control vector can take is non-negligible relative to the sample size,

identification is weak, and the errors are heteroskedastic. The testing procedure is standard and

based on the fact that under H0,

(β̂ SIVE−β0)
Æ

V[β̂ SIVE|Q , X ]
→d N (0, 1). (18)

Here, β̂ SIVE is simply the sample analogue of (14) and given by,

β̂ SIVE =
T ′(P −MZ ,W D MZ ,W )Y

T ′(P −MZ ,W D MZ ,W )T
. (19)

The crucial part to make the test operational is to find an appropriate estimator for the variance of

β̂ SIVE. Denote by ui = Ti −E[Ti |Qi , X i ], ǫi = Yi −E[Yi |Qi , X i ] and vi = ǫi − uiβ
SIVE. We propose the

following variance estimator.

V̂[β̂ SIVE|Q , X ] =
(Y −T β̂ SIVE)′ADσ̂2

u
A(Y −T β̂ SIVE) +T ′ADσ̂2

v
AT + 2(Y −T β̂ SIVE)′ADσ̂u v

AT

(T ′AT )2
, (20)

where A = P −MW ,Z D MW ,Z with D as defined in Lemma 5, and Dσ̂2
u

, Dσ̂2
v

and Dσ̂u v
are diagonal ma-

trices with [Dσ̂2
u
]i i = σ̂

2
u ,i

, [Dσ̂2
v
]i i = σ̂

2
v,i

, [Dσ̂u v
]i i = σ̂u v,i on their respective diagonals. The testing

procedure is completed by defining the estimators [σ̂2
u
]i , [σ̂2

v
]i , and [σ̂u v ]i , for σ2

u ,i
= E[u 2

i
|Qi , X i ],

σ2
v,i
= E[v 2

i
|Qi , X i ], and σu v,i = E[ui vi |Qi , X i ], respectively. In the presence of many instruments,

standard heteroskedasticity robust Eicker-Huber-White variance estimators are inconsistent (Cat-

taneo et al., 2018). We therefore consider the Hartley et al. (1969) variance estimators, also discussed

in the previous section:

σ̂2
u ,i
= e ′

i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z T ⊙MW ,Z T ),

σ̂2
v,i
= e ′

i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z (Y −T β̂ SIVE)⊙MW ,Z (Y −T β̂ SIVE)),

σ̂u v,i = e ′
i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z (Y −T ˆβ SIVE)⊙MW ,Z T ).

(21)

We show that when β̂ SIVE is replaced by its population counterpartβ SIVE, the estimators are unbiased

conditional on the instrument and covariates. This removes the main driver of the inconsistency of

standard heteroskedasticity robust variance estimators. We show below that when using (21) and

(20) in the test (18) leads to a conservative test under weak identification.

One issue with the estimators in (21) is that they require a strengthening of Assumption 2 to

mg ≥ 3 and ng −mg ≥ 3 for the inverse of MW ,Z ⊙MW ,Z to exist. Instead, we can use the following

estimators on the individuals with an instrument status that is only shared with one other individual

in the same covariate group:

σ̂2
u ,i
= 4e ′

i
(MW ,Z T ⊙MW ,Z T ),

σ̂2
v,i
= 4e ′

i
(MW ,Z (Y −T β̂ SIVE)⊙MW ,Z (Y −T β̂ SIVE)),

σ̂u v,i = 4e ′
i
(MW ,Z (Y −T ˆβ SIVE)⊙MW ,Z T ).

(22)

These estimators can be shown to generate a positive bias in the variance estimator (20). Hence, the

presence of many small groups will make the inference procedure more conservative.
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3.3 Assumptions

To study the asymptotic properties of the test statistic in (18) with variance estimator (20), we im-

pose the following assumptions. Throughout, C denotes a generic positive constant that can differ

between occurrences.

Assumption 3

The error terms (ui ,ǫi ) are independent across i , conditionally on Q and X , and for all i it holds that

almost surely

1. E[Yi |Qi , X i ] is almost surely bounded.

2. E[ui |Q , X ] = 0 and E[ǫi |Q , X ] = 0.

3. E[u 2
i
|Q , X ]≥C > 0 andE[ǫ2

i
|Q , X ]≥C > 0 for some positive constant C , and |corr[ui ,ǫi |Q , X ]| ≤

C < 1.

4. E[u 8
i
|Q , X ]≤C <∞ and E[ǫ8

i
|Q , X ]≤ C <∞.

Assumption 3 part 1 ensures that the treatment effect is bounded for all individuals. Part 2 is a stan-

dard assumption on the residuals in the reduced form model. Part 3 ensures that the distribution

of the test statistic is non-degenerate. Part 4 is used to control the behavior of the estimators for the

conditional variances of ui and ǫi .

Assumptions 1 to 3 allow for the inference on the weighted average of LATEs in (1) in a wide range

of empirically relevant settings. First, the treatment effects Yi (1)− Yi (0) are allowed to be heteroge-

neous across all i . It follows that treatment effects may vary across the covariate groups defined

by the elements of X, and hence SIVE identifies a weighted average of potentially heterogeneous

conditional treatment effects. This is in line with the LATE identification literature. Note that the

literature on inference in IV models often assumes that the data satisfies a model along the lines of

Ti =π
′Zi +δ

′
1
Wi + ǫi , Yi = Tiβ +δ

′
2
Wi + ui , (23)

in which the treatment effect of Ti on Yi is modelled with β which is specified to be homogeneous.

Since we conduct inference with saturated instruments and covariates, no parametric assumptions

or a model specification is required.

Second, the first stage and reduced form errors ui = Ti −E[Ti |Qi , X i ] and ǫi = Yi −E[Yi |Qi , X i ] are

allowed to be heteroskedastic. That is, E[u 2
i
|Q , X ],E[ǫ2

i
|Q , X ], and corr[ui ,ǫi |Q , X ]may differ across

i . Although heteroskedasticity has been accounted for in existing methods with many instruments

(e.g. Hausman et al. (2012), Mikusheva and Sun (2022), Crudu et al. (2021)), this is usually within IV

models similar to (23) that restrict treatment effect heterogeneity.

Third, inference based on our test statistic in (18) is robust to weak identification under a min-

imal assumption on the identification strenght. That is, the test works with sets of instrument in-

teractions that have a strong or a weak signal. The instrument interactions are referred to as strong

when the concentration parameter

µn =
n

G
FS→∞ with FS=

∑

g

P̃[X i = xg ]π(xg )
2Ṽ[Qi |X i = xg ]. (24)

Since |π(xg )| ≤ 1 and Var[Qi |X i = xg ] ≤ 1
4 , in the scenario with the strongest identification possible

within each covariate group, we require n
4 ≫G for the instrument interaction set to be considered

11



as strong. In this case, we show that the SIVE estimator is consistent, its variance estimator is con-

sistent, and the asymptotic confidence intervals constructed from the test statistic attain nominal

coverage. Under weak identification, that is if as G →∞,

p

Gµn →∞, (25)

the SIVE estimator remains consistent. Mikusheva and Sun (2022) show that this is the weakest

identification strenght under which a consistent estimator exists. In this case, the fact that we take

into account treatment effect heterogeneity leads to a positive asymptotic bias in the variance esti-

mator. This is common also in the case when the number of instruments is small (Kleibergen and

Zhan, 2021). The positive bias means that the asymptotic confidence intervals may be conservative.

In the case that one is worried that the identification is even weaker so that
p

Gµn → C <∞ and

G →∞, the results we provide allow for the construction of fully identification robust confidence

intervals by inverting a score statistic as in Kleibergen (2005).

3.4 Large sample theory

We first provide a consistency result for β̂ SIVE.

Lemma 6 (Consistency SIVE) Under Assumption 2 and 3 with np
G

FS→p ∞, it holds that β̂ SIVE→p

β SIVE.

The proof is deferred to Appendix D.2. The most stringent condition on the identification strength

occurs when G ∝ n , in which case we require that
p

nFS→p∞. Note that this allows the first stage

FS to decrease to zero asymptotically, but it limits the rate at which it can decrease to zero.

The following result shows the asymptotic validity of a standard t -test that uses the variance

estimator from (20). What is particularly important to note is that the theorem does not limit the

rate at which G can grow with n . In particular, we allow G /n → α ∈ (0, 1) which are the many-

instrument sequences by Bekker (1994). In our setting G can never exceed n because G is governed

by the number of unique observations on the vector of controls.

Theorem 2 Let Assumption 2 and 3 hold. If n
G FS→a .s .∞, or np

G
FS→a .s .∞ and G →∞, then,

lim
n→∞
P

�

β̂ SIVE−β SIVE

Æ

V̂[β̂ SIVE|Q , X ]
≤ Φ−1(1−α)

�

≥ 1−α, (26)

with V̂[β̂ SIVE] defined in (20).

The proof is deferred to Appendix D.3. Part of the result follows from a central limit theorem for

quadratic forms first derived by Chao et al. (2012). We use a version by Evdokimov and Kolesár

(2018) that allows us to efficiently verify the necessary conditions for the central limit theorem to

apply. The most challenging result to establish is that the variance estimator converges to a quantity

at least as large as the population variance, conditional on the covariates X and instrument Q . The

requirement that np
G

FS→a .s .∞ ensures that we can apply Lemma 6 when analyzing the variance

estimator in (20).

Theorem 2 shows that tests and confidence intervals based on the proposed procedure will be

conservative. This property is due to the fact that the variance estimator allows for treatment effect

heterogeneity, and has also been found in the setting with a fixed number of instruments (Kleibergen
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and Zhan, 2021). A natural question is then how conservative tests and confidence intervals based

on the SIVE estimator actually are. To quantify this, we have the following result.

Corollary 1 Strengthen Assumption 2 to mg ≥ 3 and ng −mg ≥ 3 and let Assumption 3 hold. Then, If
n
G FS→a .s .∞, or np

G
FS→a .s .∞ and G →∞,

β̂ SIVE−β SIVE

Æ

V̂[β̂ SIVE|Q , X ]
→d N (0,λ), (27)

with V̂[β̂ SIVE|Q , X ] as in (20) and where λ = 1 when n
G FS →a .s . ∞ (strong identification) and λ ∈

[1/4, 1] when n
G FS→a .s µ ∈ [0,∞) (weak identification) and λ is increasing in µ.

Corollary 1 follows from the proof of Theorem 2. The strengthening of Assumption 2 shuts down one

source of positive bias in the variance estimator (20) that is due to the existence of covariate groups

with only two individuals with a particular instrument status for which we use (22) to estimate the

error variances. When excluding those groups, we see that as the identification strength increases

the rejection rates and coverage probabilities of the t -test attain the nominal values. In terms of the

confidence intervals, in a very weakly identified model, the confidence intervals are twice as wide

as needed to achieve the nominal size.

A second question regarding Theorem 2 concerns settings in which the identification may be

even weaker than that required by the theorem. These concerns can be mitigated by constructing

an identification-robust procedure. If we replace in (20) the estimator β̂ SIVE by β0, then Theorem 2

holds under H0 : β SIVE = β0 without the requirement that np
G

FS→a .s .∞ and only requires G →∞.

The following results formalizes that our testing procedure is fully identification-robust with the

asymptotic rejection rate not exceeding the nominal rate.

Corollary 2 Let Assumption 2 and 3 hold. When G →∞,

lim
n→∞
P

�

β̂ SIVE−β SIVE

Æ

V̂[β SIVE|Q , X ]
≤ Φ−1(1−α)

�

≥ 1−α, (28)

with V̂[β SIVE|Q , X ] as in (20) with β̂ SIVE replaced by β SIVE.

Corollary 1 follows from the proof of Theorem 2. As usual, confidence intervals can now be con-

structed using test inversion. Finally, the analogous result to Corollary 1 can be established.

4 Monte Carlo Study

We build on the Monte Carlo set-up considered in Blandhol et al. (2022) that is designed to match

some key features of the data used by Card (1995). Consider a sample with n = 3, 000 observations.

We have a single control variable X i that can take on L = {1, 2, 25, 50, 100, 200, 300} values taken from

a one-dimensional Halton sequence. The binary instrument satisfies

E[Qi |X i ] = 0.119+ 1.785X i − 1.534X 2
i
+ 0.597X 3

i
. (29)

We generate (ui ,ǫi )
′ ∼N (0,Σ) where [Σ]11 = [Σ]22 = 1 and [Σ]12 = 0.527. The endogenous treatment

and the outcome variable are generated as,

Ti = Φ(ui )≤ p01[Zi = 0] +p11[Zi = 1],

Yi = log(129.7+ 1247.7X i − 2149.0X 2
i
+ 1515.7X 3

i
) +β (γi Ti ) + ǫi .

(30)
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Figure 1: Average absolute bias in the estimand
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Note: the figure shows the absolute median difference with the causal estimand in a setting without treatment

heterogeneity. The size of the circles indicates the number of covariate groups with the small circle correspond-

ing to L = 1, the medium circle corresponding to L = 25 and the large circle corresponding to L = 300. The x -axis

is the instrument strength p (1)−p (0), with p (0) = 0.22 and p (1) = {0.39, 0.49, 0.59, 0.69}. Because non-saturated

TSLS shows large biases for L = 25 and L = 300, the y -axis is broken between 0.9 and 3 and limited to [0, 4].

where γi = 1 in the homogeneous treatment effect design and β = 0.2. We set p0 = 0.22 and vary

the identification strength through p1 ∈ {0.29, 0, 39, . . . , 0.69}. To simulate heterogeneous treatment

effects, we set γi = 1+h with h ∈ {2, 4, . . . , 10} for the 900 observations with the smallest value of X i

and γi = 1 for the remaining. Throughout, we only use covariate groups that satisfy Assumption 2.

Bias We first study the bias of the following estimators: SIVE, nonsaturated TSLS and saturated

TSLS. Results for the saturated JIVE estimators considered in Section 2.4 are reported in the ap-

pendix. Figure 1 shows the absolute median bias of the various estimators as a function of the in-

strument strength in the absence of treatment heterogeneity. The small circles correspond to L = 1

covariate groups, the medium circles to L = 25 groups and the large circles to L = 300 groups. We

analyze the effects of varying the instrument strength by setting p (2) = {0.39, 0.49, 0.59, 0.69}.
We see that SIVE is median unbiased regardless of the number of covariate groups and the values

of p (2) under consideration. For TSLS, we see that it is median unbiased for L = 1 covariate group.

However, as the number of covariate groups increases, non-saturated TSLS incurs a bias because

estimand is non-causal. For saturated TSLS the (many instrument) bias enters. As is well known,

this bias is more pronounced is settings where the instruments are weak. In the appendix we find

that for JIVE1 removing the diagonal of the projection matrix leads to a large (omitted variable) bias

as the controls are no longer correctly projected out. As we have shown in Section 2.4 this effect is

mitigated by moving to the JIVE2 estimator. However, this estimator also shows an increasing bias

with increasing number of covariate groups and an decreasing instrument strength.

Size In Figure 2 we show that the size of a test of H0 : β0 = β with β = 0.2 in a setting without

treatment heterogeneity (left panel) and with treatment heterogeneity (right panel). In the latter

case, in (30) we set γi = 11 for the 900 observations with the lowest values of X i and γi = 1 for the
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Figure 2: Size versus instrument strength for an increasing number of instruments
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Note: the figure shows the size of testing H0 : β = 0.2 at a nominal level of 5%. The x -axis is the instrument strength,

with p (0) = 0.22 and p (1) = {0.39, 0.49, 0.59, 0.69}. The circles of increasing size correspond to L = {1, 25, 100, 300}. TSLS

is fully saturated and we use heteroskedasticity-robust (HC0) standard errors to construct the t -statistic. SIVE uses

standard errors based on (20). The observed size for TSLS when L = {100, 300} is above 0.2.

remaining. The size of the circles indicates the number of covariate groups, which we choose as

L = {1, 25, 100, 300}. Given the large bias in non-saturated TSLS observed in Figure 1, we now only

consider saturated TSLS. As expected TSLS yields accurate size control when L = 1. For L = 25,

we have seen a substantial bias in Figure 1 and consequently we observe a size distortion that is

increasing with decreasing instrument strength. For SIVE, we obtain close to nominal size control

for L = 1 for all values of the instrument strength. As expected based on the theory we see that for

a larger number of covariate groups, the test becomes progressively more conservative. Increasing

the instrument strength makes the test less conservative, as formalized in Corollary 1. The results

with and without treatment heterogeneity do not show any qualitative differences.

Alternative variance estimators. For SIVE, we use the variance estimator given in (20), which is

robust to treatment effect heterogeneity. We first compare this with using the variance estimator

proposed by Chao et al. (2023) that is given by

Vc = (T
′AD1AT + (ǫ̂⊙ û)′ J (A⊙A) J (ǫ̂⊙ û ))/(T ′AT )2, (31)

where J = (MW ⊙MW )
−1, [D1]i = [J (ǫ̂ ⊙ ǫ̂)]i , ǫ̂ = MW ,Z (y − T β̂ SIVE) = MW ,Z (ǫ − u β̂ SIVE) and û =

MW ,Z T =MW ,Z u . The variance estimator (31) is proposed in the context of a linear panel data model

with homogeneous slope coefficient. We now assess the effect of treatment effect heterogeneity on

tests that rely on (31).

In Figure 3 we show the size of the test of H0 : β0 = β with β = 0.2 in a setting with weak instru-

ments (p (2) = 0.39, left panel) and with strong instruments (p (2) = 0.69, right panel). On the x -axis

we vary the treatment effect heterogeneity through the parameter γi = 1+h with h ∈ {2, 4, . . . , 10} for

the 900 observations with the smallest value of X i and γi = 1 for the remaining. In the left panel, we

again observe that SIVE offers a conservative test under weak instruments. As expected based on the

theory, the level of heterogeneity has no effect on size of the test. For the alternative variance esti-

mator, we see that increasing the level of treatment effect heterogeneity leads to a slightly oversized
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Figure 3: Size versus treatment effect heterogeneity: compared to Chao et al. (2023).

(a) Weak identification

0 2 4 6 8 10

Heterogeneity level

0

0.05

0.1

0.15

(b) Strong identification

0 2 4 6 8 10

Heterogeneity level

0

0.05

0.1

0.15

Note: the figure shows the size of testing H0 : β = βSIVE at a nominal level of 5%. The left panel is for weak instruments,

p (2)−p (1) = 0.17, the right panel for strong instruments p (2)−p (1) = 0.47. The x -axis is the heterogeneity level h . In

(30), we set γi = 1+ h with h ∈ {0, 2, . . . , 10} for the 900 observations with the smallest value of X i and γi = 1 for the

remaining. SIVC uses the SIVE estimator, but the variance estimator (31) proposed by Chao et al. (2023). We consider

L = {25, 100, 300} for the number of covariate groups, which correspond to the solid, dashed and dotted lines respec-

tively.

test, but no ordering in terms of the number of covariate groups is observed. The fact that treat-

ment effect heterogeneity has only a mild effect in this case is due to the fact that the heterogene-

ity is flooded by the additional uncertainty introduced by the presence of many weak instruments.

When the instruments are strong, as in the right panel of Figure 3, accounting for treatment effect

heterogeneity becomes more important. Again, SIVE shows no dependence on the level of treat-

ment effect heterogeneity. The alternative variance estimator now become progressively oversized

as the level of heterogeneity increases for all values of the number of covariate groups.

Lee (2018) proposes a variance estimator for TSLS that is valid in overidentified systems where

each instrument identifies a different LATE. It therefore allows for treatment effect heterogeneity.

However, the analysis in Lee (2018) proceeds under the assumption that the number of instruments

is fixed relative to the sample size. We therefore study its performance in a setting where the num-

bere of covariate groups L increases.

In Figure 4, the left panel shows a setting with weak instruments p (2)−p (1) = 0.17, the right panl

a setting with strong instruments p (2)− p (1). The variance estimator in Lee (2018) is designed for

the right panel with a number of covariate groups that is small relative to the sample size. Indeed,

for L = {2, 25} the variance estimator (dashed line, triangle markers) shows excellent size control

and a substantial improvement over the standard Eicker-Huber-White variance estimator (solid line,

circle markers). However, when the number of covariate groups increases, the many instrument

bias manifests itself and the size increases above its nominal value. This effect is even stronger in

the weakly identified setting in the left panel.

5 Application: Card (1995)

As an illustration of the proposed estimator and inference procedures we revisit the study by Card

(1995) that uses the distance to the nearest college to instrument educational attainment. The data
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Figure 4: Size versus covariate groups: compared to Lee (2018).

(a) Weak identification

0 20 40 60 80 100

Number of covariate groups (L)

0

0.1

0.2

0.3

0.4

0.5

(b) Strong identification

0 20 40 60 80 100

Number of covariate groups (L)

0

0.1

0.2

0.3

0.4

0.5

Note: the figure shows the size of testing H0 : β = βSIVE at a nominal level of 5%. The x -axis is the number of covariate

groups L . The left panel is for weak instruments, p (2)−p (1) = 0.17, the right panel for strong instruments p (2)−p (1) =

0.47. In (30), we set γi = 11 for the 900 observations with the smallest value of X i and γi = 1 for the remaining. The red

solid line with circle marker is for TSLS, the red dashed line with triangle marker uses the variance estimator from Lee

(2018), the blue solid line with square marker is for SIVE.

considers men aged 14-24 sampled in 1966 from the National Longitudinal Survey of Young Men

(NLSYM). These men were followed until 1981. Following Card (1995), we consider individuals that

provided education and wage information when they were interviewed in 1976.

The instrument used by Card (1995) is the distance to the nearest four-year college. We consider

some adjustments to the original model as proposed by Kitagawa (2015) and Słoczyński (2020). In

particular, the specification includes five binary controls (Black, living in a metropolitan area (SMSA)

in 1966, living in a metropolitan area (SMSA) in 1976, living in the South in 1966, living in the South in

1976). With these five binary controls, we potentially have 32 covariate groups after saturation. The

original sample size is 3,010. We restrict the sample by requiring at least five observations in each

covariate group, which brings the sample size to 2,988. In each of the covariate group we have at

least two treated individuals and two non-treated individuals. Finally, we follow Kitagawa (2015) and

Słoczyński (2020) and redefine the instrument to equal 1 if individuals have some college attendance

(defined as having strictly more than 12 years of education) and 0 otherwise.

We consider the TSLS and SIVE estimators under different specifications for the controls and

the instruments. First, the standard TSLS estimator that uses the binary instrument and linearly

includes the controls. This estimator is inconsistent if the assumption of a linear relation with the

controls is violated. Moreover, it supposes strong monotonicity in the instrument. We then sat-

urate the model in the controls. To allow for weak monotonicity interact these controls with the

instruments. This estimator is inconsistent due to the many instrument bias. We consider then two

restricted versions of the fully saturated TSLS estimator. First, we only saturate in the controls, as-

suming strong monotonicity such that saturation in the instrument is not necessary. Second, we

only saturate in the instrument, assuming a linear relation with the controls so that we do not need

to saturate the controls. We follow the same specifications for SIVE with the exception of the model

without any saturation.

Table 2 shows the point estimates, standard errors and 95% confidence intervals. For TSLS these
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Table 2: Empirical application: estimates, standard errors and confidence intervals

(mg , ng −mg ) Estimator Specification Estimate Standard error 95% CI

≥ 2 2SLS not saturated 0.524 0.296 [ -0.056, 1.104 ]

fully saturated 0.156 0.138 [ -0.116, 0.427 ]

saturated instruments 0.209 0.102 [ 0.009, 0.408 ]

saturated controls 0.570 0.298 [ -0.014, 1.154 ]

SIVE fully saturated 0.125 0.342 [ -0.546, 0.795 ]

saturated instruments 0.217 0.171 [ -0.119 , 0.553 ]

saturated controls 0.644 0.440 [ -0.218 , 1.506 ]

≥ 3 2SLS not saturated 0.499 0.278 [ 0.041, 0.957 ]

fully saturated 0.190 0.139 [ -0.038, 0.417 ]

saturated instruments 0.218 0.106 [ 0.044, 0.392 ]

saturated controls 0.538 0.282 [ 0.074, 1.001 ]

SIVE fully saturated 0.215 0.273 [ -0.234, 0.664 ]

saturated instruments 0.233 0.159 [ -0.079 , 0.545 ]

saturated controls 0.599 0.388 [ -0.040 , 1.237 ]

are based on the HC0 based estimator for the variance covariance matrix. We reproduce the key

findings by Słoczyński (2020). In particular, not interacting the instruments leads to unreasonably

large estimates for the effect of schooling both when using TSLS and SIVE. When we saturate the

instrument, the point estimates drop from around 0.5 to 0.2, which is much more in line with the

recent literature on wage gains resulting from education. In terms of statistical efficiency, we see that

the standard errors from SIVE are generally higher. This is to be expected as it takes into account

the many instrument effect, as well as treatment effect heterogeneity.

If we have individuals that share the treatment status with only one other individual in the co-

variate group, we use the estimators from (22) that leads to an upward bias in the variance estimator

(20). To analyze whether these individuals drive the results, we remove those individuals from the

data. This reduces the sample size to 2,957 individuals. the bottom panel of Table 2 shows the point

estimates, standard errors and confidence intervals of the methods. The main finding of interest is

that the point estimate from the fully saturated SIVE slightly increases and is almost equal to that of

the SIVE estimator that only saturates the instrument. Despite the smaller sample size, the standard

errors are also somewhat lower.

6 Conclusion

We show how to conduct inference in a saturated IV model where the number of covariate values is

of the same order as the sample size. The estimator is consistent under a minimal assumption on

the identification strength. Crucially, and unlike existing procedures we allow arbitrary treatment

effect heterogeneity. Our findings are confirmed through numerical experiments that rely on data

with similar characteristics to the data analyzed by Card (1995). Applying the proposed estimator to

that data yields realistic point estimates.
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Appendix to “Inference on LATEs with covariates"

A Conventions and notation

Without loss of generality, we assume that the observations are ordered according to the columns of

the matrix W that contains the dummies indicating the values of the control variate(s) in the sense

that

W =









ιn1
0n1

. . . 0n1

0n2
ιn2

. . . 0n2

...
...

.. .
...

0nG
0nG

. . . ιnG









. (32)

As a subsequent ordering, we assume again without loss of generation that the matrix with instru-

ment interactions has the following structure

Z =
















ιm1
0m1

. . . 0m1

0n1−m1
0n1−m1

. . . 0n1−m1

0m2
ιm2

. . . 0m2

0n2−m2
0n2−m2

. . . 0n2−m2

...
...

. . .
...

0mG
0mG

. . . ιmG

0nG−mG
0nG−mG

. . . 0nG−mG
















. (33)

Throughout we denote by rn =Gµn under strong identification and rn =G under weak identifica-

tion as defined in the main paper.

For any vector v , v(g ) is the vector of observations from v that have Wi g = 1. Additionally, v(g ,1) is

the vector of observations that have Zi g = 1 and v(g ,2) is the vector of observations that have Wi g = 1

and Zi g = 0.

B Generalizations

This section extends the binary treatment and binary instrument setting to a multivalued treatment

and instrument using respectively Theorem 1 and Theorem 2 in (Angrist and Imbens, 1995).

B.1 Multivalued treatment

Suppose the multivalued treatment Ti takes values in the set {0, 1, 2, . . ., J }, where Ti = 0 corresponds

to no treatment, and Ti = 1, . . . , J correspond to different treatment levels. Define Di j = 1[Ti ≥ j ]with

Di j = (1−Qi )Di j (0) +Qi Di j (1). Under Assumption 1.2, we have

Yi =

J∑

j=0

(Di , j −Di , j+1)Yi ( j )

= (1−Qi )

J∑

j=0

(Di , j (0)−Di , j+1(0))Yi ( j ) +Qi

J∑

j=0

(Di , j (1)−Di , j+1(1))Yi ( j ),

(34)
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where we use that Di 0 = 1 and Di ,J+1 = 0. It follows from Assumption 1.1 that

θ (xg ) =E[Yi |Qi = 1, X i = xg ]−E[Yi |Qi = 0, X i = xg ]

=

J∑

j=0

E[(Di , j (1)−Di , j+1(1)−Di , j (0) +Di , j+1(0))Yi ( j )|X i = xg ]

=

J∑

j=1

E[(Di , j (1)−Di , j (0))(Yi ( j )− Yi ( j − 1))|X i = xg ].

(35)

From Assumption 1.4 follows that either Ti (1)≥ Ti (0) or Ti (1)≤ Ti (0) for all i with X i = xg . Hence, we

either have Di , j (1) = Di , j (0), Di , j (1) > Di , j (0), or Di , j (1) < Di , j (0), where the latter two cases occur if

max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0)). It follows that

θ (xg ) =

J∑

j=1

E[Yi ( j )− Yi ( j − 1)|Di , j (1)−Di , j (0) 6= 0, X i = xg ]P[Di , j (1)−Di , j (0) 6= 0|X i = xg ] (36)

=

J∑

j=1

E[Yi ( j )− Yi ( j − 1)|max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0)), X i = xg ] (37)

×P[max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0))|X i = xg ]. (38)

Similarly, we have

π(xg ) =E[Ti |Qi = 1, X i = xg ]−E[Ti |Qi = 0, X i = xg ]

=

J∑

j=1

E[Di , j (1)−Di , j (0)|X i = xg ]

=

J∑

j=1

P[Di , j (1)−Di , j (0) 6= 0|X i = xg ]

=

J∑

j=1

P[max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0))|X i = xg ].

(39)

Hence, with a multivalued treatment we obtain a covariate-specific weighted average of LATEs,

known as an average causal response:

τ(xg ) =
θ (xg )

π(xg )
=

J∑

j=1

E

�

Yi ( j )− Yi ( j − 1)|max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0)), X i = xg

�

(40)

×
P[max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0))|X i = xg ]

∑J

j=1
P[max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0))|X i = xg ]

(41)

=

J∑

j=1

η jE
�

Yi ( j )− Yi ( j − 1)|max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0)), X i = xg

�

, (42)

where

η j =
P[max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0))|X i = xg ]

∑J

j=1
P[max(Ti (1), Ti (0))≥ j >min(Ti (1), Ti (0))|X i = xg ]

, (43)

with
∑

j η j = 1. From Assumption 1.3 follows that P[max(Ti (1), Ti (0)) ≥ j > min(Ti (1), Ti (0))|X i =

xg ]> 0 for at least one treatment level j , and therefore η j ≥ 0 for all j . It follows that τ(xg ) identifies

an retains its causal interpretation with a multivalued treatment T . Note that with J = 1 the result

boils down to the covariate-specific LATE with a binary treatment.

Since all results in this paper are written in terms of τ(xg ) using the reduced form and first stage

(in which T is written in terms of Z and W ), they directly apply to the multivalued treatment setting.
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B.2 Multivalued instrument

Suppose we have L mutually exclusive binary instruments Qi l with l = 1, . . . , L . This set of instru-

ments may be interpreted as L different instruments, which includes a full set of interactions across

an original set of instruments in case they are not mutually exclusive, or the L levels in a single in-

strument. The instruments in the set are ordered such that l < k implies thatE[Ti |Qi l = 1, X i = xg ]<

E[Ti |Qi k = 1, X i = xg ]. Define Qi ,0 = 1 −
∑L

l=1
Qi l . The LG × 1 vector Zi contains the instrument

interactions Zi g l =Qi l Wi g , and Z is defined as an n × LG matrix with Zi as rows.

Define

τl ,l−1(xg ) =
E [Yi |Qi l = 1, X i = xg ]− E [Yi |Qi ,l−1 = 1, X i = xg ]

E [Ti |Qi l = 1, X i = xg ]− E [Ti |Qi ,l−1 = 1, X i = xg ]
. (44)

It follows from Lemma 1 that τl ,l−1(xg ) =E[Yi (1)− Yi (0)|Ti (l ) 6= Ti (l − 1), X i = xg ] identifies a LATE.

We can write

E [Yi |Qi l = 1, X i = xg ]

= τl ,l−1(xg )
�

E [Ti |Qi l = 1, X i = xg ]− E [Ti |Qi ,l−1 = 1, X i = xg ]
�

+ E [Yi |Qi ,l−1 = 1, X i = xg ]

=

l∑

k=1

τk ,k−1(xg )
�

E [Ti |Qi k = 1, X i = xg ]− E [Ti |Qi ,k−1 = 1, X i = xg ]
�

+ E [Yi |Qi ,0 = 1, X i = xg ],

(45)

and therefore

θl (xg ) =E [Yi |Qi l = 1, X i = xg ]− E [Yi |Qi ,0 = 1, X i = xg ] (46)

=

l∑

k=1

τk ,k−1(xg )
�

E [Ti |Qi k = 1, X i = xg ]− E [Ti |Qi ,k−1 = 1, X i = xg ]
�

. (47)

Similarly, we have

πl (xg ) =E [Ti |Qi l = 1, X i = xg ]− E [Ti |Qi ,0 = 1, X i = xg ] (48)

=

l∑

k=1

�

E [Ti |Qi k = 1, X i = xg ]− E [Ti |Qi ,k−1 = 1, X i = xg ]
�

. (49)

Hence,

τl (xg ) =
θl (xg )

πl (xg )
=

l∑

k=1

τk ,k−1(xg )

�

E [Ti |Qi k = 1, X i = xg ]− E [Ti |Qi ,k−1 = 1, X i = xg ]
�

∑l

k=1

�

E [Ti |Qi k = 1, X i = xg ]− E [Ti |Qi ,k−1 = 1, X i = xg ]
� , (50)

which is a weighted average of LATEs with weights that sum up to one and are nonnegative due to

the ordering of the instruments. Note that with l = 1 the result boils down to the covariate-specific

LATE with one instrument.

Instead of averaging over G covariate-specific LATEs τ(xg ), τ will be a weighted average of LG

covariate-specific weighted average of LATEs τl (xg ) with multiple instruments. By substituting the

following two expressions in the theoretical derivations in the paper, it follows that the weights are

nonnegative and sum to one:

π′Z ′MW Z θ =
∑

g

∑

l

mg l (1−
mg l

ng

)πg l (xg )θl (xg ), (51)

π′Z ′MW Zπ=
∑

g

∑

l

mg l (1−
mg l

ng

)πl (xg )
2, (52)

where π and θ are LG × 1 vectors containing respectively πg l (xg ) and θl (xg ), and mg l =
∑

i Zi g l .
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C Proofs - Estimands

C.1 Proof Lemma 1

Using the exclusion restriction in Assumption 1.2, the observed outcomes are linked to the potential

outcomes as Yi = (1−Ti )Yi (0)+Ti Yi (1) = Yi (0)+Ti∆i with∆i = Yi (1)−Yi (0). The observed treatment

is linked to the potential treatment statuses as Ti = (1−Qi )Ti (0) +Qi Ti (1) = Ti (0) + (Ti (1)− Ti (0))Q .

Hence, Yi = Yi (0) +Ti (0)∆i + (Ti (1)−Ti (0))∆iQi . We can now write

E [Yi |Qi = 1, X i = xg ]− E [Yi |Qi = 0, X i = xg ]

E [Ti |Qi = 1, X i = xg ]− E [Ti |Qi = 0, X i = xg ]

=
E [Yi (0) +Ti (0)∆i + (Ti (1)−Ti (0))∆i |Qi = 1, X i = xg ]− E [Yi (0) +Ti (0)∆i |Qi = 0, X i = xg ]

E [Ti (1)|Qi = 1, X i = xg ]− E [Ti (0)|Qi = 0, X i = xg ]

=
E [(Ti (1)−Ti (0))∆i |X i = xg ]

E [Ti (1)−Ti (0)|X i = xg ]
=

E [∆i |Ti (1) 6= Ti (0), X i = xg ]P [Ti (1) 6= Ti (0) = 1|X i = xg ]

P [Ti (1) 6= Ti (0) = 1|X i = xg ]

= E [∆i |Ti (1) 6= Ti (0), X i = xg ],

(53)

using subsequently Assumption 1.1 independence and 1.4 monotonicity in the third line, and 1.3

relevance in the fourth line.

C.2 Proof Lemma 2

In a saturated specification, we can write

Ti =
∑

g

(E[Ti |Zi g = 1, Wi g = 1]−E[Ti |Zi g = 0, Wi g = 1])Zi g +E[Ti |Zi g = 0, Wi g = 1]Wi g + ui ,

Yi =
∑

g

(E[Yi |Zi g = 1, Wi g = 1]−E[Yi |Zi g = 0, Wi g = 1])Zi g +E[Yi |Zi g = 0, Wi g = 1]Wi g + ǫi ,
(54)

where ui = Ti −E[Ti |Qi , X i ] and ǫi = Yi −E[Yi |Qi , X i ]. It follows from the derivations in Appendix C.1

that this can be written as

Ti =π
′Zi +ψ

′Wi + ui , (55)

Yi = θ
′Zi +φ

′Wi + ǫi , (56)

whereπ= (π(x1), . . . ,π(xg ))
′withπ(xg ) = P[Ti (1) 6= Ti (0)|X i = xg ],ψ= (ψ1, . . . ,ψg )

′withψg =E[Ti |Zi g =

0, Wi g = 1], θ = (θ (x1), . . . ,θ (xg ))
′ with θ (xg ) = τ(xg )P[Ti (1) 6= Ti (0)|X i = xg ], andφ = (φ1, . . . ,φg )

′ with

φg =E[Yi |Zi g = 0, Wi g = 1].

For the TSLS estimand, we now obtain the following.

βTSLS =
E[T ′P Y |Q , X ]

E[T ′P T |Q , X ]
=
E[(Zπ+ u )′P (Z θ + ǫ)|Q , X ]

E[(Zπ+ u )′P (Zπ+ u )|Q , X ]

=
π′Z ′P Z θ +π′Z ′PE[ǫ|Q , X ] +E[u |Q , X ]′P Z θ +E[u ′P ǫ|Q , X ]

π′Z ′P Zπ+ 2π′Z ′PE[u |Q , X ] +E[u |Q , X ]′P Z θ +E[u ′P u |Q , X ]

=
π′Z ′MW Z θ +E[u ′P ǫ|Q , X ]

π′Z ′MW Zπ+E[u ′P u |Q , X ]

=

∑

g

θ (xg )

π(xg )
π(xg )

2ng
mg

ng
(1− mg

ng
) +

∑

i E[ui ǫi |Qi , X i ]Pi i

∑

g π(xg )2ng
mg

ng
(1− mg

ng
) +

∑

i E[u
2
i |Qi , X i ]Pi i

=

∑

g

ng

n π(xg )
2 mg

ng
(1− mg

ng
)τ(xg ) +

1
n

∑

i E[ui ǫi |Qi , X i ]Pi i

∑

g

ng

n π(xg )2
mg

ng
(1− mg

ng
) + 1

n

∑

i E[u
2
i |Qi , X i ]Pi i

,

(57)
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where we use that Z ′MW Z is a G ×G diagonal matrix with elements ng
mg

ng
(1− mg

ng
).

Note that e ′
i
MW Z is a 1×G vector with as elements the residual of observation i in the regression

of Zi g on Wi g , so [e ′
i
MW Z ]g = Zi g −Wi g P̃[Zi = 1|X i = xg ], where P̃[Zi = 1|X i = xg ] =

mg

ng
. Hence,

Pi i = e ′
i
MW Z (Z ′MW Z )−1Z ′MW ei =

∑

g
1

ng
Wi g

(Zi g−P̃[Qi=1|X i=xg ])
2

Var[Qi |X i=xg ]
.

C.3 Proof Lemma 3

For the JIVE1 estimator we have

β JIVE1 =
E[T ′(P −DP )Y |Q , X ]

E[T ′(P −DP )T |Q , X ]
=
E[T ′P Y |Q , X ]−E[T ′DP Y |Q , X ]

E[T ′P T |Q , X ]−E[T ′DP T |Q , X ]
, (58)

with

E[T ′DP Y |Q , X ] =E[(Zπ+Wψ+ u )′DP (Z θ +Wφ+ ǫ)|Q , X ]

=π′Z ′DP Z θ +π′Z ′DP W φ+π′Z ′DPE[ǫ|Q , X ]

+ψ′W ′DP Z θ +ψ′W ′DP W φ+ψ′W ′DPE[ǫ|Q , X ]

+E[u |Q , X ]′DP W φ+E[u |Q , X ]′DP Z θ +E[u ′DP ǫ|Q , X ]

=π′Z ′DP Z θ +π′Z ′DP W φ+ψ′W ′DP Z θ +ψ′W ′DP W φ+E[u ′DP ǫ|Q , X ]

=
∑

g

(
θ (xg )

π(xg )
π(xg )

2+π(xg )φg +θ (xg )ψg )(1−
mg

ng

) +ψgφg +
∑

i

E[ui ǫi |Qi , X i ]Pi i ,

(59)

where W ′DP W = IG as
∑

i W 2
i g

Pi i = 1, and Z ′DP Z =W ′DP Z is a G×G diagonal matrix with elements
∑

i Z 2
i g

Pi i = (1−
mg

ng
). Similarly, we get

E[T ′DP T |Q , X ] =
∑

g

(π(xg )
2+ 2π(xg )ψg )(1−

mg

ng

) +ψ2
g
+
∑

i

E[ui ǫi |Qi , X i ]Pi i . (60)

Hence, using the results in Appendix C.2, we have

β JIVE1 =

∑

g

ng

n π(xg )
2 mg

ng
(1− mg

ng
)τ(xg )(1− 1

mg
)−

∑

g

ng

n (π(xg )φg +θ (xg )ψg )
mg

ng
(1− mg

ng
) 1

mg
− 1

nψgφg

∑

g

ng

n π(xg )2
mg

ng
(1− mg

ng
)(1− 1

mg
)− 2

∑

g

ng

n π(xg )ψg
mg

ng
(1− mg

ng
) 1

mg
− 1

nψ
2
g

=

∑

g P[X i = xg ]π(xg )
2Var[Qi |X i = xg ](1−P[Qi = 1, X i = xg ])τ(xg )−BY

∑

g P[X i = xg ]π(xg )2Var[Qi |X i = xg ](1−P[Qi = 1, X i = xg ])−BT

(61)

where

BY =
∑

g

P[X i = xg ](π(xg )φg +θ (xg )ψg )Var[Qi |X i = xg ]P[Qi = 1, X i = xg ]−
1

n
ψgφg ,

BT =2
∑

g

P[X i = xg ]π(xg )ψg Var[Qi |X i = xg ]P[Qi = 1, X i = xg ]−
1

n
ψ2

g
,

(62)

with P̃[Qi = 1, X i = xg ] =
1

mg
,ψg =E[Ti |Zi g = 0, Wi g = 1], andφg =E[Yi |Zi g = 0, Wi g = 1].
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C.4 Proof Lemma 5

First we show that Pi i = [MW ,Z D MW ,Z ]i i if the elements of the diagonal matrix D are set equal to

Di i =
∑n

k=1
[(MW ,Z ⊙MW ,Z )

−1]i k Pk k . Using that D is diagonal and MW ,Z symmetric, we have

[MW ,Z D MW ,Z ]i i =
∑

j

[MW ,Z ⊙MW ,Z ]i j D j j

=
∑

j

[MW ,Z ⊙MW ,Z ]i j

n∑

k=1

Pk k [(MW ,Z ⊙MW ,Z )
−1]k j

=

n∑

k=1

Pk k

∑

j

[MW ,Z ⊙MW ,Z ]i j [(MW ,Z ⊙MW ,Z )
−1]k j

= Pi i .

(63)

Next, we derive an expression for Di i . Note that MW ,Z is a block diagonal matrix with the g th

block an ng ×ng matrix

MW ,Z ,(g ) = Ing
−PW ,Z ,(g ) = Ing

−
 

m−1
g
ιmg
ι′

mg
Omg ,ng −mg

Ong−mg ,mg
(ng −mg )

−1ιng −mg
ι′

ng −mg

!

, (64)

where the observations are ordered according to covariate group and within covariate group on ac-

tive instrument, without loss of generality. It now follows that

[MW ,Z ⊙MW ,Z ](g ) =

 �

1− 2
mg

�

Img
+ 1

m2
g
ιmg
ι′

mg
Omg ,ng −mg

Ong−mg ,mg

�

1− 2
ng−mg

�

Ing−mg
+ 1
(ng−mg ))2

ιng −mg
ι′

ng −mg

!

, (65)

and hence

[(MW ,Z ⊙MW ,Z )
−1](g ) =

 
mg

mg −2

�

Img
− 1

mg (mg−1) ιmg
ι′

mg

�

Omg ,ng −mg

Ong−mg ,mg

ng−mg

ng −mg−2

�

Ing −mg
− 1
(ng−mg )(ng−mg −1) ιng −mg

ι′
ng −mg

�

!

.

(66)

Note that Pi i =
∑

g
1

ng
Wi g

(Zi g −
mg
ng
)2

mg
ng
(1−mg

ng
)
, as derived in Appendix C.2, and hence Pi i =

1
mg
− 1

ng
if Wi g =

Zi g = 1 and Pi i =
mg /ng

ng−mg
if Wi g = 1 and Zi g = 0. Define [DP ](g ) as the elements in the diagonal of P

corresponding to the observations in [MW ,Z ⊙MW ,Z )
−1](g ):

Di i =
∑

g

Wi g e ′
i
[(MW ,Z ⊙MW ,Z )

−1](g )[DP ](g )

=
∑

g

Wi g

�
mg

mg − 2

�

1−
mg

mg (mg − 1)

��
1

mg

− 1

ng

�

Zi g

+
ng −mg

ng −mg − 2
(1−

ng −mg

(ng −mg )(ng −mg − 1)
)

mg

ng (ng −mg )
(1−Zi g )

�

=
∑

g

1

ng

Wi g

�
ng −mg

mg − 1
Zi g +

mg

ng −mg − 1
(1−Zi g )

�

.

(67)

The derivation above implicitly assumes that mg ≥ 3 and ng −mg ≥ 3 for all expressions to be well-

defined. However, the end result only requires mg ≥ 2 and ng −mg ≥ 2. We can briefly verify whether

Di i as given on the final line of (67) indeed yields a zero diagonal for P −MW ,Z D MW ,Z .
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Consider observation i for which Zi g = 1. Then,

Pi i =
1

ng

ng −mg

mg

, Di i =
1

ng

ng −mg

mg − 1
, PW ,Z ,i i =

1

mg

. (68)

Since Di i is the same for all observations that have Zi g = 1, we have

[MW ,Z D MW ,Z ]i i =Di i (1− 2PW ,Z ,i i ) +mg

1

m 2
g

Di i =Di i (1−PW ,Z ,i i ) =Di i

mg − 1

mg

= Pi i . (69)

The case where Zi g = 0 follows analogously.

C.5 Proof Theorem 1

β SIVE =
E[T ′(P −MW ,Z D MW ,Z )Y |Q , X ]

E[T ′(P −MW ,Z D MW ,Z )T |Q , X ]
=
E[T ′P Y |Q , X ]−E[T ′MW ,Z D MW ,Z Y |Q , X ]

E[T ′P T |Q , X ]−E[T ′MW ,Z D MW ,Z T |Q , X ]
, (70)

with

E[T ′MW ,Z D MW ,Z Y |Q , X ] =E[u ′MW ,Z D MW ,Z ǫ|Q , X ] =
∑

i

E[ui ǫi |Qi , X i ]Pi i , (71)

and similarly we have E[T ′MW ,Z D MW ,Z Y |Q , X ] =
∑

i E[u
2
i
|Qi , X i ]Pi i . Combining this result with

the result in Appendix C.2, we have

β SIVE =

∑

g

ng

n π(xg )
2 mg

ng
(1− mg

ng
)τ(xg )

∑

g

ng

n π(xg )2
mg

ng
(1− mg

ng
)

. (72)

D Proofs - Inference

D.1 Preliminary results

D.1.1 The elements of the projection matrix P

Since the columns in W are orthogonal, PW =W (W ′W )−1W is a block diagonal matrix consisting

of G blocks of dimension ng ×ng . The g th block is given by P(g ) =
1

ng
ιng
ι′

ng
. We then have that

MW Z =







Mιn1
z(1) 0n1

. . .

0n2
Mιn2

z(2) . . .

...
...

. ..







. (73)

The matrix P is again block diagonal, with

P =







(z ′
(1)

Mιn1
z(1))
−1Mιn1

z(1)z
′
(1)

Mιn1
On1,n2

. . .

On2,n1
(z ′
(2)

Mιn2
z(2))
−1Mιn2

z(2)z
′
(2)

Mιn2
. . .

...
...

. ..







. (74)

The elements of P are given by

[P ]i j =



















1
ng

1−mg /ng

mg /ng
Wi g =Wj g = 1, Zi g = 1, Z j g = 1,

−1/ng Wi g =Wj g = 1, Zi g = 1, Z j g = 0,

−1/ng Wi g =Wj g = 1, Zi g = 0, Z j g = 1,
1

ng

mg /ng

1−mg /ng
Wi g =Wj g = 1, Zi g = 0, Z j g = 0,

0 otherwise.

(75)
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D.1.2 Results on the matrix A used for asymptotic normality

Recall that A = P −MW ,Z D MW ,Z . This matrix is block diagonal with blocks

A(g ) =

 
ng−mg

ng (mg−1) (ιmg
ι′

mg
− Img

) − 1
ng
ιmg
ι′

ng −mg

− 1
ng
ιng −mg

ι′
mg

mg

ng (ng−mg −1) (ιng −mg
ι′

ng −mg
− Ing−mg

)

!

. (76)

The following result is used in the proof of the central limit theorem for the SIVE estimator,

tr(A2) =G + tr(MW ,Z D MW ,Z D )

=G +

n∑

i=1

D 2
i i
− 2

n∑

i=1

D 2
i i
[PW ,Z ]i i + tr(PW ,Z D PW ,Z D )

=G +

G∑

g=1

mg

1

n 2
g

(ng −mg )
2

(mg − 1)2
+ (ng −mg )

1

n 2
g

m 2
g

(ng −mg − 1)2

−
G∑

g=1

1

n 2
g

(ng −mg )
2

(mg − 1)2
+

1

n 2
g

m 2
g

(ng −mg − 1)2

=G +

G∑

g=1

1

n 2
g

�

(ng −mg )
2

mg − 1
+

m 2
g

ng −mg − 1

�

≤G +

G∑

g=1

�

1

mg − 1
+

1

ng −mg − 1

�

≤ 3G ,

(77)

where the last line uses that mg ≥ 2 and ng −mg ≥ 2. From the first line we also immediately have

that

tr(A2)≥G . (78)

The eigenvalues of A are 0 with multiplicity 1, 1 with multiplicity 1, −(ng −mg )/(ng (mg − 1)) with

multiplicity mg − 1 and −mg /(ng (ng −mg − 1)) with multiplicity ng −mg − 1. Since mg ≥ 2 and

ng −mg ≥ 2, we conclude that the eigenvalues are on the [-1,1] interval.

In the SIVE estimator, we encounter the product AZπ and AZ ζ. We require an elementwise

bound on these products, which can be established as follows.

|[AZπ]i |= |[MW Zπ]i |

=π(xg )









ng−mg

ng
if Zi g = 1, Wi g = 1,

mg

ng
if Zi g = 0, Wi g = 1,

0 otherwise.

≤C <∞, a .s .

(79)

The same result follows for AZ ζ= AZ (θ −β SIVEπ) by noting that θ (xg )/π(xg ) = τ(xg ) ≤ C <∞ a .s .

by Assumption 3.1.

D.1.3 Results on the matrix A used for consistency of the variance estimator

To show consistency of the variance estimator, we need to upper bound terms that are of the form

S (A, P̄ ) =
∑

i1,...,i16

|Ai1i2
||Ai3i4
||Ai5i6
||Ai7i8
|P̄i9i10

P̄i11i12
P̄i13i14

P̄i15i16
, (80)
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with some restrictions on the indices over which we sum. We will first find a matrix Ã such that

S (A, P̄ )≤ S (Ã, P̄ ). To save on notation, define

Hg =

�

ιmg
0mg

0ng −mg
ιng −mg

�

, Eg =

�

m−1
g

0

0 (ng −mg )
−1

�

(81)

We then have

A(g ) =

 
ng−mg

ng (mg−1) (ιmg
ι′

mg
− Img

) − 1
ng
ιmg
ι′

ng −mg

− 1
ng
ιng −mg

ι′
mg

mg

ng (ng−mg −1) (ιng−mg
ι′

ng−mg
− Ing−mg

)

!

=
mg (ng −mg )

ng

 
1

mg (mg−1) (ιmg
ι′

mg
− Img

) − 1
mg (ng−mg )

ιmg
ι′

ng −mg

− 1
mg (ng−mg )

ιng −mg
ι′

mg

1
(ng−mg )(ng−mg −1) (ιng −mg

ι′
ng −mg

− Ing−mg
)

!

≤ 2
mg (ng −mg )

ng

Hg Eg ι2ι
′
2

Eg H ′
g
≡ Ã(g ),

(82)

where ≤ indicates an elementwise inequality.

We can now establish the following results

(R 1) tr(Ã(g )) ≤ C ,

(R 2) λmax(Ã(g )) ≤ C ,

(R 3) Ã2
(g )

= 2Ã(g ),

(R 4) Ã(g )PW ,Z ,(g ) = Ã(g ),

(R 5) ι′
ng
(Ã(g )⊙PW ,Z ,(g ))ιng

≤ C ,

(R 6) ι′
ng
(Ã(g )⊙PW ,Z ,(g ))

2ιng
≤ C ,

(R 7) ι′
ng
(Ã(g )⊙PW ,Z ,(g ))Ã(g )ιng

≤ C ,

(R 8) ι′
ng

Ã(g )(PW ,Z ,(g ) ⊙PW ,Z ,(g ))Ã(g )ιng
≤ C .

(83)

Proof: (R1) follows from the fact that H ′
g

Hg = E −1
g

, ι′
ng

Hg = ι
′
2
E −1

g
and ι′

2
Eg ι2 =

ng

mg (ng−mg )
. Since

rank(Ã(g )) = 1, (R2) follows from (R1). (R3) follows from the fact that H ′
g

Hg = E −1
g

. For (R 4)−−(R 8),

we first note that the g th diagonal block of the projection matrix PW ,Z satisfies PW ,Z ,(g ) = Hg Eg H ′
g

.

Using this result and again the fact that H ′
g

Hg = E −1
g

yields (R4). For (R5), we note that ι′
ng
(Ã(g ) ⊙

PW ,Z ,(g ))ιng
= tr(Ã(g )PW ,Z ,(g )) = tr(Ã(g ))with the last equality by (R4). For (R6) and (R7) we first calculate

the elementwise product,

Ã(g )⊙PW ,Z ,(g ) = 2
mg (ng −mg )

ng

Hg E 3
g H ′g . (84)

We can now explicitly calculate bounds for (R6) and (R7),

ι′
ng
(Ã(g )⊙PW ,Z ,(g ))

2ιng
= 4

m 2
g
(ng −mg )

2

n 2
g

(m−3
g
+ (ng −mg )

−3)

= 4
n 3

g
− 3ng m 2

g
− 3n 2

g
mg

n 3
g
(ng −mg )

≤ 4
1

ng

≤ 2,

ι′
ng
(Ã(g )⊙PW ,Z ,(g ))Ã(g )ιng

= 4
m 2

g
(ng −mg )

2

n 2
g

(m−2
g
+ (ng −mg )

−2)≤ 8,

(85)

For (R8), we have a similar result as,

ι′
ng

Ã(g )(PW ,Z ,(g ) ⊙PW ,Z ,(g ))Ã(g )ιng
= 4

m 2
g
(ng −mg )

2

n 2
g

(m−2
g
+ (ng −mg )

−2)≤ 8. (86)
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Finally, we establish the following results.

(R 9) ι′
ng
(Ã(g )⊙ Ã(g ))

2ιng
= 16

m2
g (ng−mg )

2

n2
g

ι′
2

E 3
g
ι2 ≤ 16,

(R 10) ι′
ng

Ã(g )(Ãg ⊙ Ã(g ))Ã(g )ιng
≤ 256,

(R 11) (ι′
ng
(Ã(g )⊙ Ã(g ))((Ã(g )ιng

)⊙ (Ã(g )ιng
)) ≤ 128.

(87)

From the definition of Ã(g ), we have

Ã(g )⊙ Ã(g ) = 4
m 2

g
(ng −mg )

2

n 2
g

Hg E 2
g
ι2ι
′
2
E 2

g
H ′

g
, (88)

Ã(g )ιng
= 4

mg (ng −mg )

ng

Hg Eg ι2, (89)

(Ã(g )ιng
)⊙ (Ã(g )ιng

) = 16
m 2

g
(ng −mg )

2

n 2
g

Hg E 2
g
ι2, (90)

(Ã(g )⊙ Ã(g ))ιng
= 4

mg (ng −mg )

ng

Hg E 2
g
ι2. (91)

The first equality in (R 9) then follows from (91) and using that H ′
g

Hg = E −1
g

. Then (R 9) follows from

the following.

m 2
g
(ng −mg )

2

n 2
g

ι′
2
E 3

g
ι2 =

m 2
g
(ng −mg )

2

n 2
g

m 3
g
+ (ng −mg )

3

m 3
g
(ng −mg )3

=
n 3

g
− 3n 2

g
mg − 3ng m 2

g

n 2
g

mg (ng −mg )

≤
n 3

g
− 3n 2

g
mg − 3ng m 2

g

n 3
g

≤ 1,

(92)

where the first inequality uses that mg (ng −mg ) ≥ 2(ng − 2) ≥ 2(ng − ng /2) = ng since ng ≥ 4 by

Assumption 2.

For (R 10), using first (88) and then (89),

ι′
ng

Ã(g )(Ã(g )⊙ Ã(g ))Ã(g )ιng
= 64

m 4
g
(ng −mg )

4

n 4
g

(ι′
2
E 2

g
ι2)

2 = 64
(m 2

g
+ (ng −mg )

2)2

n 4
g

≤ 256. (93)

Finally, for (R 11) using (90) and (91), we have

(ι′
ng
(Ã(g )⊙ Ã(g ))((Ã(g )ιng

)⊙ (Ã(g )ιng
)) = 64

m 3
g
(ng −mg )

3

n 3
g

ι′
2

E 3
g
ι2 = 64

m 3
g
+ (ng −mg )

3

n 3
g

≤ 128. (94)
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D.1.4 First stage and reduced form error (co)variance estimators

From the reduced form equation (56) and first stage (55), we see that MW ,Z T =MW ,Z u and MW ,Z (Y −
T β SIVE) =MW ,Z v . We now have the following estimators,

σ̂2
u ,i
= e ′

i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z T ⊙MW ,Z T )

= e ′
i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z u ⊙MW ,Z u )

σ̂u v,i = e ′
i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z (Y −T β̂ SIVE)⊙MW,Z T )

= e ′
i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z (Y −Tβ SIVE)⊙MW,Z T )− (β̂ SIVE−β SIVE)σ̂2
u ,i

= e ′
i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z v ⊙MW ,Z u )− (β̂ SIVE−β SIVE)σ̂2
u ,i

= σ̂u v,i (β
SIVE)− (β̂ SIVE−β SIVE)σ̂2

u ,i
,

σ̂2
v,i
= e ′

i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z (Y −T β̂ SIVE)⊙MW,Z (Y −T β̂ SIVE))

= e ′
i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z (Y −Tβ SIVE)⊙MW,Z (Y −T β SIVE))

− 2(β̂ SIVE−β SIVE)σ̂u v,i (β
SIVE) + (β̂ SIVE−β SIVE)2σ̂2

u ,i

= e ′
i
(MW ,Z ⊙MW ,Z )

−1(MW ,Z v ⊙MW ,Z v )

− 2(β̂ SIVE−β SIVE)σ̂u v,i (β
SIVE) + (β̂ SIVE−β SIVE)2σ̂2

u ,i

= σ̂2
v,i
(β SIVE)− 2(β̂ SIVE−β SIVE)σ̂u v,i (β

SIVE) + (β̂ SIVE−β SIVE)2σ̂2
u ,i

,

(95)

where we write σ̂2
v,i
(β SIVE) and σ̂u v,i (β̂

SIVE as the infeasible analogues of σ̂u v,i and σ̂2
v,i

with β̂ SIVE

replaced by β SIVE. Since β̂ SIVE−β SIVE = op (1), we will see that the contribution of the corresponding

terms in σ̂u v,i and σ̂2
v,i

to the variance estimator for the score is op (1) as well.

We first show that σ̂2
u ,i

, σ̂u v,i (β
SIVE) and σ̂2

v,i
(β SIVE) are unbiased forσ2

u ,i
,σu v,i and σ2

v,i
, respec-

tively. To save on space, we denote the elements of PW ,Z as P̄i j . From the properties of MW ,Z and

using that P̄i j =m−1
g

if Zi g =Z j g = 1, P̄i j = (ng −mg )
−1 if Zi g = Z j g = 0, and Wi g =Wj g = 1 and Pi j = 0

elsewhere, we can write

σ̂2
u ,i
= u 2

i
− ui

2

1− 2P̄i i

∑

j 6=i

P̄i j u j +
1

(1− P̄i i )(1− 2P̄i i )

n∑

j=1

∑

k 6= j

P̄i j P̄i k u j uk ,

σ̂2
v,i
(β SIVE) = v 2

i
− vi

2

1− 2P̄i i

∑

j 6=i

P̄i j v j +
1

(1− P̄i i )(1− 2P̄i i )

n∑

j=1

∑

k 6= j

P̄i j P̄i k v j vk ,

σ̂u v,i (β
SIVE) = ui vi − vi

1

1− 2P̄i i

∑

j 6=i

P̄i j u j − ui

1

1− 2P̄i i

∑

j 6=i

P̄i j v j +
1

(1− P̄i i )(1− 2P̄i i )

n∑

j=1

∑

k 6= j

P̄i j P̄i k u j vk .

(96)

Taking the conditional expectation and using independence across i , we see that σ̂2
u ,i

, σ̂u v,i (β
SIVE)

and σ̂2
v,i
(β SIVE) are (conditionally) unbiased forσ2

u ,i
,σu v,i andσ2

v,i
, respectively. What is important

to note is that the estimators only exist if mg > 2 and ng −mg > 2 for all g = 1, . . . ,G . We discuss how

we handle groups with mg = 2 or ng −mg = 2 in Appendix D.3.3.

D.2 Proof Lemma 6

Let β̂ SIVE−β SIVE = Sn/Dn with

Sn = r −1/2
n

T ′A(Y −Tβ SIVE),

Dn = r −1/2
n

T ′AT .
(97)
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We refer to Sn as the score vector. Let ζ = θ −β SIVEπ and vi = ǫi − uiβ
SIVE with ǫi and ui defined in

the reduced form equations (55) and (56). Denoteσ2
u ,i
= E[u 2

i
|Q , X ], σ2

v,i
= E[v 2

i
|Q , X ], and σu v,i =

E[ui vi |Q , X ].

We have E[Sn |Q , X ] = 0 and

V(Sn |Q , X ) = r −1
n

n∑

i=1

σ2
u ,i
[MW Z ζ]2

i
+σ2

v,i
[MW Zπ]2

i
+ 2σu v,i [MW Zπ]i [MW Z ζ]i

+ r −1
n

n∑

i=1

∑

j 6=i

A2
i j
(σu v,iσu v, j +σ

2
v,i
σ2

u ,i
)

≤ C [r −1
n
ζ′Z ′MW Z ζ+ r −1

n
π′Z ′MW Zπ) + r −1

n
tr(A2)]≤C , a .s .,

(98)

where the first inequality follows from Assumption 3.3 and the second inequality from Assump-

tion 3.1, the definition of rn and (77). For Dn , we have E[Dn |Q , X ] = r −1/2
n

π′Z ′MW Zπ≡ r 1/2
n

Hn and

V(Dn |Q , X )≤ 4r −1
n
E[(u ′MW Zπ)2|Q , X ] + r −1

n
E[(u ′Au )2|Q , X ]

≤ 4max
i
σ2

u ,i
r −1

n
π′Z ′MW Zπ+ 2r −1

n
max

i
σ4

u ,i
tr(A2)≤C , a .s .

(99)

We can now write

β̂ SIVE−β SIVE =
r −1/2

n
T ′A(Y −Tβ SIVE)/(r 1/2

n
Hn )

1+ r
1/2

n (r −1
n

T ′AT −Hn )/(r
1/2

n Hn )
=

An

Bn

. (100)

Assume that r −1/2
n

H −1
n
→p 0. From (98) it follows that An→p 0. From (99) we have that r 1/2

n
(r −1

n
T ′AT−

Hn )/(r
1/2

n
Hn )→p 0, and hence Bn →p 1. We conclude that when (r 1/2

n
Hn )
−1 =

�

r −1/2
n

π′Z ′MW Zπ
�−1→p

0, the SIVE estimator is consistent: β̂ SIVE −β SIVE→p 0. Finally, we have under weak identification,

r 1/2
n

Hn =
p

G
π′Z ′MW Zπ

G =
p

G nFS
G =
p

Gµn so that requiring that r −1/2
n

H −1
n
→p 0 is the same as the

requirement in Lemma 6 that
p

Gµn →p∞. This completes the proof.

D.3 Proof Theorem 2

The proof of Theorem 2 is long, so we start with a brief overview of the steps. First, we establish

asymptotic normality of the score vector Sn defined in (97) after normalizing it with the square root

of its conditional variance. This step relies on a central limit theorem for quadratic forms of growing

rank. We then show that the difference between the estimator for the conditional variance given

in (20) and the population conditional variance converges in probability to a quantity larger than

zero (under weak identification) or equal to zero (under strong identification). This step uses the

properties of the regression error variance estimators (21). The derivation is somewhat tedious as it

requires to keep track of higher-order interactions of the first stage and reduced form regression er-

rors. Finally, we analyze the use of the variance estimator (22) when we encounter covariate groups

with mg = 2 or ng −mg = 2.

D.3.1 Asymptotic normality of the self-normalized score

As in the previous subsection, we rewrite

r 1/2
n
(β̂ SIVE−β SIVE) =

r −1/2
n

T ′A(Y −T β SIVE)

r −1
n

T ′AT
=

Sn

r
−1/2

n Dn

. (101)
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The variance of Sn is given in the first line of (98). We now study the self-normalized version of Sn

given by

S ∗
n
=

r −1/2
n

T ′A(Y −T β )

V(Sn |Q , X )1/2
. (102)

To show that S ∗
n
→d N (0, 1), we use Lemma D.2 in Evdokimov and Kolesár (2018), which in turn is

based on Lemma A.2 in Chao et al. (2012).

Lemma 7 [Evdokimov and Kolesár (2018), Lemma D.2]Define R = t ′u + s ′v +u ′Āv , where [Ā]i i = 0.

Suppose that the following holds almost surely.

1. E[ui |Q , X ] =E[vi |Q , X ] = 0 and E[u 4
i
|Q , X ]≤ C <∞ and E[v 4

i
|Q , X ]≤C <∞,

2. V(R |Q , X )−1≤ C <∞,

3.
∑n

i=1
(t 4

i
+ s 4

i
)→ 0,

4. tr(Ā4)→ 0.

Then, V(R |Q , X )−1/2R →d N (0, 1).

Let R = Sn , so that t = r −1/2
n

MW Z ζ and s = r −1/2
n

MW Zπ and Ā = r −1/2
n

A. Moreover, ui is as defined

in (55) and vi = ǫi − uiβ
SIVE with ǫi as in (56).

Verifying Conditions 1–4. Condition 1: holds by Assumption 3. Condition 3: From (79) we see

that |e ′
i
MW Zπ| ≤C <∞ a .s . uniformly over i . Similarly, |e ′

i
MW Z ζ| ≤ C <∞ a .s . uniformly over i .

We then obtain

n∑

i=1

(t 4
i
+ s 4

i
)≤C r −2

n

n∑

i=1

(t 2
i
+ s 2

i
) =C r −1

n
(π′Z ′MW Zπ/rn +ζ

′Z ′MW Z ζ/rn ). (103)

The term in brackets is almost surely bounded as shown in Appendix D.2. Since r −1
n
→a .s . 0, Condi-

tion (3) of Lemma 7 holds. To verify Condition 2 and Condition 4 we separately consider strong and

weak/vanishing identification.

Strong identification We start by showing that in Lemma 7 we have u ′Āv = op (1) so that we only

have to verify Condition 2. We first note that

V(G −1/2u ′Av |Q , X ) =G −1
∑

j 6=i

∑

k 6=m

Ai j AmkE[ui uk v j vm |Q , X ]

=G −1
∑

j 6=i

A2
i j
(E[ui vi u j v j |Q , X ] +E[u 2

i
v 2

j
|Q , X ])

≤C G −1tr(A2)≤C a .s .,

(104)

using that ui and vi have bounded fourth conditional moment by Assumption 3 and the bound

established in (77). Then, by the definition of rn in the case of strong identification,

V(u ′Av |Q , X )/rn ≤ C G /rn →a .s . 0. (105)

We can then conclude that r −1/2
n

u ′Av = op (1). Therefore, it suffices to consider R̃ = t ′u+ s ′v and we

only need to verify Condition 2. As in (98),

V(R̃ |Q , X ) = r −1
n

n∑

i=1

σ2
u ,i
[MW Z ζ]2

i
+σ2

v,i
[MW Zπ]2

i
+ 2σu v,i [MW Zπ]i [MW Z ζ]i . (106)
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Denote g (i ) a function such that g (i ) = g if wi g = 1. By Assumption 3, using (79),

V(R̃ |Q , X ) = r −1
n

n∑

i=1

c 2
i

�

ζ(xg (i ))
2σ2

u ,i
+π(xg (i ))

2σ2
v,i
+ 2π(xg (i ))ζ(xg (i ))σu v,i

�

= r −1
n

n∑

i=1

c 2
i
[ζ(xg (i )),π(xg (i ))]

�

1 0

−β 1

�

Σi

�

1 −β
0 1

�

[ζ(xg (i )),π(xg (i ))]
′

≥C r −1
n

n∑

i=1

c 2
i

�

ζ(xg (i ))
2+π(xg (i ))

2
�

,

(107)

where Σi =

�

σ2
u ,i

σuǫ,i

σuǫ,i σ2
ǫi

�

and ci =
∑

g Zi g
ng−mg

ng
− (Wi g −Zi g )

mg

ng
. We have

r −1
n

n∑

i=1

c 2
i
π(xg (i ))

2 = r −1
n

G∑

g=1

π(xg )
2

�

mg

�
ng −mg

ng

�2

+ (ng −mg )

�
mg

ng

�2
�

= r −1
n

G∑

g=1

π(xg )
2ng

mg (ng −mg )

n 2
g

= 1,

(108)

where the last line uses the definition of rn . We conclude thatV(R̃ |Q , X )≥C > 0 a .s . and Condition

2 of Lemma 7 holds.

Weak identification We start with verifying Condition 2 in Lemma 7. By Assumption 3, mini=1,...,n σ
2
v,i
≥

C > 0 and mini=1,...,n σ
2
u ,i
≥ C > 0. Then, using (78)

V(Sn |Q , X )≥G −1tr(Dσ2
v
ADσ2

u
A)

≥C G −1tr(A2)

≥C > 0 a .s .

(109)

For Condition 4, we have that G −1tr(A2)≤ 3 a .s . by (77) and λmax(A
2) = 1 since λmax(A) = 1. Then,

tr(Ā4
n ) = r −2

n tr(A4)≤ G 2

r 2
n

tr(A2)

G

λmax(A
2)

G
→a .s . 0. (110)

We note that these results are shown without any assumptions on the identification strength, so that

we can base identification-robust inference on the asymptotic normality of the score vector.

We have now established asymptotic normality of the renormalized score vector under both

weak and strong identification. To prove Theorem 2 the next step is to show that the numerator

of the variance estimator in (20) converges toV(Sn |Q , X ).

D.3.2 Consistency of the estimator for the variance of the score

We momentarily assume that mg ≥ 3 and ng −mg ≥ 3 so that we can use (21) for the regression error

variances and covariances. We relax this assumption in Appendix D.3.3.

We can rewrite the variance given in (98) as

V(Sn |Q , X ) = r −1
n

�

ζ′Z ′MW Dσ2
u

MW Z ζ+π′Z ′MW Dσ2
v
MW Zπ+ 2ζ′Z ′MW Dσu v

MW Zπ

+ ι′Dσu v
(A⊙A)Dσu v

ι+ ι′Dσ2
v
(A⊙A)Dσ2

u
ι

︸ ︷︷ ︸

(B .0)

�

.
(111)
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In (20) we use the following estimator for V(Sn |Q , X ).

V̂(S |Q , X ) = r −1
n

�

(Y −T β̂ SIVE)′ADσ̂2
u

A(Y −T β̂ SIVE) +T ′ADσ̂2
v
AT + 2(Y −T β̂ SIVE)′ADσ̂u v

AT
�

. (112)

Let Du 2 be a diagonal matrix with [Du 2 ]i i = u 2
i

and likewise for Dv 2 and Du v . Consider the infeasible

variance estimator

Vinf(Sn |Q , X ) = r −1
n

�

ζ′Z ′MW Du 2 MW Z ζ+π′Z ′MW Dv 2 MW Zπ+ 2ζ′Z ′MW Du v MW Zπ

+ ι′Du v (A⊙A)Du v ι+ ι
′Dv 2 (A⊙A)Du 2ι

�

.

(113)

We decompose (112) as

V̂(S |Q , X ) = r −1
n

�

(Z ζ+ v −T (β̂ SIVE−β SIVE))′ADσ̂2
u

A(Z ζ+ v −T (β̂ SIVE−β SIVE))

+(Zπ+ u )′ADσ̂2
v
A(Zπ+ u ) + 2(Z ζ+ v −T (β̂ SIVE−β SIVE))ADσ̂u v

A(Zπ+ u )
�

= r −1
n

�

(Z ζ+ v )′ADσ̂2
u

A(Z ζ+ v ) + (Zπ+ u )′ADσ̂2
v (β

SIVE)A(Zπ+ u )

+2(Z ζ+ v )′ADσ̂u v (βSIVE)A(Zπ+ u )
�

+R1

=V(Sn |Q , X ) +Vinf(Sn |Q , X )−V(Sn |Q , X )

+ r −1
n
ι′D 2

v
(A⊙A)D 2

u
ι+ r −1

n
ι′Du v (A⊙A)Du v ι

︸ ︷︷ ︸

(B .1)

+ r −1
n

v ′ADσ̂2
u

Av − ι′D 2
v
(A⊙A)D 2

u
ι

︸ ︷︷ ︸

(B .2)

+ r −1
n

u ′ADσ̂2
v (β

SIVE)Au − ι′D 2
u
(A⊙A)D 2

v
ι+ 2(v ′ADσ̂u v (βSIVE)Au − ι′Du v (A⊙A)Du v ι)

︸ ︷︷ ︸

(B .3)

+ r −1
n
ζ′Z ′MW (Dσ̂2

u
−Du 2)MW Z ζ

︸ ︷︷ ︸

(Z .1)

+2 r −1
n

v ′ADσ̂2
u

MW Z ζ
︸ ︷︷ ︸

(Z .2)

+ r −1
n
π′Z ′MW (Dσ̂2

v (β
SIVE) −Dv 2 )MW Zπ+ 2r −1

n
ζ′Z ′MW (Dσ̂u v (βSIVE)−Du v )MW Zπ

+ 2r −1
n

u ′ADσ̂2
v (β

SIVE)MW Zπ+ 2r −1
n
ζ′Z ′MW Dσ̂u v (βSIVE)Au + 2r −1

n
π′Z ′MW Dσ̂u v (βSIVE)Av

+R1,

(114)

where we use (95) and we define the remainder term

R1 = 4r −1
n

�

(β̂ SIVE−β SIVE)2(Zπ+ u )′ADσ̂2
u

A(Zπ+ u )− (β̂ SIVE−β SIVE)(Zπ+ u )′ADσ̂u v (βSIVE)A(Zπ+ u )

−(β̂ SIVE−β SIVE)(Zπ+ u )′ADσ̂2
u

A(Z ζ+ v )
�

.

(115)

When we do identification-robust inference, under the null we replace β̂ SIVE = β SIVE so that R1 = 0.

Therefore, the proof of Corollary 1 follows from the proof presented here for Theorem 2.

We now will prove the following. First, Vinf(Sn |Q , X )−V(Sn |Q , X )→p 0. Second, we show that

under weak identification (B .1), (B .2) and (B .3) from (114) together converge to a three times the

value of (B .0) defined in (111). Finally, we show that (Z .1) and (Z .2) converge to zero in probability.

The remaining terms converge to zero by the same arguments.

Part 1: Vinf(S |Q , X )−V(S |Q , X )→p 0. It is sufficient to show that

r −1
n
ζ′Z ′MW (D

2
u
−Dσ2

u
)MW Z ζ→p 0, (116)

r −1
n
(ι′D 2

v
(A⊙A)D 2

u
ι− ι′D 2

σv
(A⊙A)D 2

σu
ι)→p 0, (117)
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The other terms follow by the same arguments.

For (116), E[r −1
n
ζ′Z ′M (D 2

u
−Dσ2

u
)M Z ζ] = 0, and the variance can be upper bounded as

V(r −1
n
ζ′Z ′MW (D

2
u
−Dσ2

u
)MW Z ζ|Q , X ) = r −2

n

n∑

i=1

E[(u 2
i
−σ2

u ,i
)2|Q , X ][M Z ζ]4

i

≤ C r −2
n

n∑

i=1

[M Z ζ]2
i
→p 0.

(118)

For (117), E[r −1
n
(ι′D 2

v
(A⊙A)D 2

u
ι− ι′D 2

σv
(A⊙A)D 2

σu
ι)|Q , X ] = 0. The variance can be bounded as

V(r −1
n
(ι′D 2

v
(A⊙A)D 2

u
ι− ι′D 2

σv
(A⊙A)D 2

σu
ι)|Q , X )

= r −2
n

n∑

i=1

∑

j 6=i

n∑

k=1

∑

l 6=k

E[(v 2
i

u 2
j
−σ2

v,i
σ2

u ,i
)(v 2

k
u 2

l
−σ2

v,k
σ2

u ,l
)|Q , X ]A2

i j
A2

k l

= r −2
n

n∑

i=1

∑

j 6=i

(E[(v 2
i

u 2
j
−σ2

v,i
σ2

u ,i
)2|Q , X ] +E[(v 2

i
u 2

j
−σ2

v,i
σ2

u ,i
)(v 2

j
u 2

i
−σ2

v, j
σ2

u ,i
)|Q , X ])A4

i j

≤C r −2
n

n∑

i=1

∑

j 6=i

A4
i j
≤C r −2

n
tr(A2)→p 0,

(119)

where we use Assumption 3.4 and (77).

Part 2. It follows from the results in Part 1 that (B .1)− (B .0)→p 0. For (B .2), we decompose it

further as

(B .2) = r −1
n
(v ′ADσ̂2

u
Av − v ′ADu 2 Av )

︸ ︷︷ ︸

(B .2a )

+ r −1
n
(v ′ADu 2 Av − ιD 2

v
(A⊙A)D 2

u
ι)

︸ ︷︷ ︸

(B .2b )

. (120)

For (B .2b ),

E[r −1
n

v ′AD 2
u

Av − ι′D 2
v
(A⊙A)D 2

u
ι|Q , X ] = r −1

n

n∑

i=1

∑

k 6=i

∑

j 6={i ,k}
E[vi vi u 2

j
|Q , X ]Ai j Ak j = 0. (121)

The variance can be upper bounded as

V(r −1
n
(v ′AD 2

u
Av − ι′D 2

v
(A⊙A)D 2

u
ι|Z , W )

= r −2
n
E





 
n∑

i=1

∑

k 6=i

∑

j 6={i ,k}
vi vk u 2

j
Ai j Ak j

!2
�
�
�
�
�
�

Q , X





= r −2
n

∑

i1,i2

∑

i3 6=i1

∑

i4 6=i2

∑

i5 6={i3i1}

∑

i6 6={i2,i4}
E[vi1

vi2
vi3

vi4
(u 2

i5
−σ2

u ,i5
)(u 2

i6
−σ2

u ,i6
)|Q , X ]Ai1i3

Ai1i5
Ai2i4

Ai2i6

+ r −2
n

∑

i1,i2

∑

i3 6=i1

∑

i4 6=i2

∑

i5 6={i3i1}

∑

i6 6={i2,i4}
E[vi1

vi2
vi3

vi4
|Q , X ]σ2

u ,i5
σ2

u ,i6
Ai1i3

Ai1i5
Ai2i4

Ai2i6

≤ C r −2
n





∑

i1..i3

(Ã2
i1i2

Ã2
i1i3
+ Ã2

i1i2
Ãi1i3

Ãi2i3
) +

∑

i1..i4

(Ã2
i1i2

Ãi1i3
Ãi1i4

+ Ã2
i1i2

Ãi1i3
Ãi2i4
)





= C r −2
n



ι′(Ã⊙ Ã)2ι+ tr(Ã(Ã⊙ Ã)Ã) +
∑

i1

ι′(Ã⊙ Ã)ei1
(ei1

Ãι)2+ ι′Ã(Ã⊙ Ã)Ãι





≤ C r −2
n

G →p 0,

(122)

where the last inequality follows from (R 9)− (R 11) in (87).
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We now turn to (B .2a ). Using the expression for σ̂2
u

from Appendix D.1.4,

(B .2a ) =− r −1
n

n∑

i=1

∑

j 6=i

2

1− 2P̄i i

(e ′
i
Av )2ui P̄i j u j

︸ ︷︷ ︸

(B .2a .1)

+ r −1
n

n∑

i=1

n∑

j=1

∑

k 6= j

1

(1− P̄i i )(1− 2P̄i i )
(e ′

i
Av )2P̄i j P̄i k u j uk

︸ ︷︷ ︸

(B .2a .2)

.

(123)

Since [A]i i = 0, we have that E[(B .2a .1)|Q , X ] = 0. For (B .2a .2), we have

E[(B .2a .2)|Q , X ] = r −1
n

n∑

i=1

1

(1− P̄i i )(1− 2P̄i i )

n∑

j=1

∑

k 6= j

P̄i j P̄i k Ai j Ai kσu v, jσu v,k . (124)

Define B = (A ⊙ P ) J (A ⊙P ), where J is diagonal with [J ]i i = (1− P̄i i )
−1(1− 2P̄i i )

−1. Also define C =

B −DB , so the matrix B with diagonal elements set to zero. Then, C is a block diagonal matrix with

blocks

C(g ) =





(ng−mg )
2

n2
g (mg−1)2(mg−2)

�

ιmg
ι′

mg
− Img

�

O

O
m2

g

n2
g (ng −mg−1)2(ng−mg −2)

�

ιng −mg
ι′

ng −mg
− Ing−mg

�



 . (125)

We will use below that Ci j ≤ A2
i j

. For the bias arising from (B .2a .2), we have

E[(B .2a .2)|Q , X ] = r −1
n
σ′

u v
Cσu v . (126)

Similarly, (B .3)will yield a bias totaling up to

r −1
n
E[(B .2) + (B .3)|Q , X ] = 2r −1

n
σ′

u v
Cσu v + 2r −1

n
σ2

u
Cσ2

v
.

= 2r −1
n

n∑

i=1

∑

j 6=i

Ci j (σu v,iσu v, j +σ
2
u ,i
σ2

v, j
)

= 2r −1
n

n∑

i=1

∑

j>i

Ci j (2σu v,iσu v, j +σ
2
u ,i
σ2

v, j
+σ2

v,i
σ2

u , j
)

= 2r −1
n

n∑

i=1

∑

j>i

Ci jE[(ui v j + u j vi )
2|Q , X ]≥ 0,

(127)

where the conclusion holds since Ci j ≥ 0 for i 6= j . The bias is bounded, as

r −1
n

n∑

i=1

∑

j>i

Ci jE[(ui v j + u j vi )
2|Q , X ]≤C r −1

n

n∑

i=1

∑

j>i

Ci j ≤C r −1
n

n∑

i=1

∑

j>i

A2
i j
≤ C r −1

n
G ≤ C . (128)

We conclude that

E[(B .0) + (B .1) + (B .2) + (B .3)|Q , X ]= 2ι′Dσu v
[(A⊙A) +C ]Dσu v

ι+ 2ι′Dσ2
v
[(A⊙A) +C ]Dσ2

u
ι

≤ 4(ι′Dσu v
(A⊙A)Dσu v

ι+ ι′Dσ2
v
(A⊙A)Dσ2

u
ι),

(129)

where the inequality uses that Ci j ≤ A2
i j

. We conclude that under weak identification, we may over-

estimate the variance term (B .0) by a factor 4 if all other variance terms are negligible and to a lesser

degree when the remaining variance terms are not negligible.
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It remains to be shown that the terms (B .2) and (B .3) converge to their expectation. We show this

for (B .2). The result for (B .3) follows analogously. We first note that the result for (B .2b ) is already

established in (122). For the variance of (B .2a .1) and (B .2a .2), we have

V(B .2a .1|Q , X ) = 4r −2
n

n∑

i1=1

n∑

i3=1

∑

i2 6=i1

∑

i4 6=i3

1

(1− 2P̄i1i1
)(1− 2P̄i3i3

)
E[(e ′

i1
Av )2(ei3

Av )2P̄i1i2
P̄i3i4

ui1
ui2

ui3
ui4
|Q , X ]

≤ C r −2
n

n∑

i1=1

n∑

i3=1

∑

i2 6=i1

∑

i4 6=i3

∑

i5 6=i1

∑

i6 6=i1

∑

i7 6=i3

∑

i8 6=i3

|Ai1i5
||Ai1i6
||Ai3i7
||Ai3i8
|P̄i1i2

P̄i3i4

× |E[ui1
ui2

ui3
ui4

vi5
vi6

vi7
vi8
|Q , X ]|,

V(B .2a .2|Q , X ) = r −2
n

n∑

i1=1

n∑

i2=1

n∑

i6=1

n∑

i7=1

∑

i3 6=i2

∑

i4 6=i1

∑

i5 6=i1

∑

i8 6=i7

∑

i9 6=i6

∑

i10 6=i6

ci1
ci6

Ai1i4
Ai6i9

Ai1i5
Ai6i10

P̄i1i2
P̄i1i3

P̄i6i7
P̄i6i8

×E[ui2
ui3

vi4
vi5

ui7
ui8

vi9
vi10
|Q , X ]

− 4r −2
n

n∑

i1=1

∑

i2 6=i1

∑

i3 6={i2,i1}

n∑

i4=1

∑

i5 6=i4

∑

i6 6={i5,i4}
ci1

ci4
Ai1i2

Ai4i5
Ai1i3

Ai4i6
P̄i1i2

P̄i4i5
P̄i1i3

P̄i4i6

×E[vi2
vi3

ui2
ui3

vi5
vi6

ui5
ui6
|Q , X ],

(130)

where ci = (1− P̄i i )
−1(1− 2P̄i i )

−1. To bound these expressions, we use independence of ui and vi

across i and take into account the restrictions on the indices as indicated under the summations

signs. The conditional expectations of products of ui and vi in these terms are all almost surely

bounded by Assumption 3, so we can take these out of the summations. Finding the nonzero terms

in (130) is now a combinatorial exercise that can be executed using symbolic programming. The

nonzero terms are listed and bounded in Appendix D.3.4. The results show that both variances in

(130) converge to zero in probability.

Part 3. Starting with (Z .1), and using the expressions in (96) we have

(Z .1) = r −1
n
ζ′Z ′MW (Dσ̂2

u
−Du 2 )MW Z ζ

=−r −1
n

n∑

i=1

∑

j 6=i

2

1− P̄i i

[MW Z ζ]2
i
ui P̄i j u j

︸ ︷︷ ︸

(Z .1a )

+ r −1
n

n∑

i=1

n∑

j=1

∑

k 6= j

1

(1− P̄i i )(1− 2P̄i i )
[MW Z ζ]2

i
P̄i j P̄i k u j uk

︸ ︷︷ ︸

(Z .1b )

.

(131)

Using independence across i , we find that (Z .1a ) has expectation zero, conditional on Q and X . For

the variance of the individual components, we have,

V(Z .1a |Q , X ) = r −2
n

n∑

i=1

n∑

k=1

8

(1− 2P̄i i )(1− 2P̄k k )
σ2

u ,i
σ2

u ,k
P̄ 2

i k
[MW Z ζ]2

i
[MW Z ζ]2

k

≤C max
k
[MW Z ζ]2

k
r −2

n

n∑

i=1

[MW Z ζ]2
i
→p 0,

(132)
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where we use that [MW Z ζ]2
i
≤C <∞ a .s . and

∑n

k=1
P̄ 2

i k = P̄i i < 1/2.

V(Z .1b |Q , X ) = r −2
n

n∑

i=1

n∑

l=1

2

(1− P̄i i )(1− 2P̄i i )(1− P̄l l )(1− 2P̄l l )

×
n∑

j=1

∑

k 6= j

P̄i j P̄i k P̄l j P̄l kσ
2
u , j
σ2

u ,k
[MW Z ζ]2

i
[MW Z ζ]2

l

≤C r −2
n

n∑

i=1

n∑

l=1

[MW Z ζ]2
i
[MW Z ζ]2

l

n∑

j=1

∑

k 6= j

P̄i j P̄i k P̄l j P̄l k

≤C max
l
[MW Z ζ]2

l
r −2

n

n∑

i=1

[MW Z ζ]2
i
→p 0,

(133)

using that
∑n

l=1

∑n

j=1

∑

k 6= j P̄i j P̄i k P̄l j P̄l k =
∑n

j=1

∑

k 6= j P̄i j P̄i k P̄j k =
∑n

j=1
P̄ 2

i j
−
∑n

j=1
P̄ 2

i j
P̄j j ≤ P̄i i < 1/2.

From (132) and (133) we conclude that

r −1
n
ζ′Z ′MW (Dσ̂2

u
−Du 2 )MW Z ζ→p 0. (134)

By the same arguments,

r −1
n
π′Z ′MW (Dσ̂2

v
−Dv 2 )MW Zπ→p 0, r −1

n
ζ′Z ′MW (Dσ̂u v

−Du v )MW Zπ→p 0. (135)

We now turn to the final variance term (Z .2).

(Z .2) = 2 r −1
n

n∑

k=1

∑

i 6=k

vk Ai k [MW Z ζ]i ui

2

1− 2P̄i i

∑

j 6=i

P̄i j u j

︸ ︷︷ ︸

(Z .2a )

+ 2 r −1
n

n∑

k=1

∑

i 6=k

vk Ai k [MW Z ζ]i
1

(1− P̄i i )(1− 2P̄i i )

n∑

j=1

∑

s 6= j

P̄i j P̄i s u j us

︸ ︷︷ ︸

(Z .2b )

.

(136)

We have E[(Z .2)|Q , X ] = 0. For the variance,

V(Z .2a |Q , X ) = r −2
n

n∑

k=1

n∑

l=1

∑

i 6=k

∑

m 6=l

Ai k Aml [MW Z ζ]i [MW Z ζ]m

× 2

1− 2P̄i i

2

1− 2P̄mm

∑

j 6=i

P̄i j

∑

s 6=m

P̄m sE[vk vl ui um u j us |Q , X ]

≤C r −2
n

∑

i , j ,k

�

Ã2
i j

P̄i j P̄j k + Ãi j Ãi k P̄i k P̄j k +A2
i j

P̄ 2
j k
+ Ãi j Ãi k P̄ 2

j k
+ Ãi j Ã j k P̄i k P̄j k + Ãi k Ã j k P̄i k P̄j k

�

.

(137)
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We can bound each on the terms on the final line as follows.
∑

i , j ,k

Ã2
i j

P̄i j P̄j k ≤
∑

i , j

Ã2
i j
= tr(Ã2)≤C G ,

∑

i , j ,k

Ãi j Ãi k P̄i k P̄j k ≤C
∑

i , j ,k

Ãi j P̄i k P̄j k = C
∑

i , j

Ãi j P̄i j = C ι′(Ã⊙ P̄ )ι ≤C G ,

∑

i , j ,k

A2
i j

P̄ 2
j k
≤
∑

i , j

A2
i j
= tr(Ã2)≤ C G ,

∑

i , j ,k

Ãi j Ãi k P̄ 2
j k
≤ tr(ÃP̄ Ã)≤ tr(Ã2)≤ C G ,

∑

i , j ,k

Ãi j Ã j k P̄i k P̄j k ≤C
∑

i , j ,k

Ãi j P̄i k P̄j k = C ι′(Ã⊙ P̄ )ι ≤ C G ,

∑

i , j ,k

Ãi k Ã j k P̄i k P̄j k = ι
′(Ã⊙ P̄ )2ι ≤C G .

(138)

On the first line, we use that
∑

k P̄j k = 1.

For the variance of (Z .2b ), we have

V(Z .2b |Q , X )≤ C r −2
n

n∑

k=1

n∑

l=1

∑

i 6=k

∑

m 6=l

n∑

j=1

∑

s 6= j

n∑

r=1

∑

t 6=r

|Ai k ||Aml |P̄i j P̄i s P̄m r P̄m sE[vk vl u j us ur ut |Q , X ]

≤ C r −2
n

∑

i1,...,i4

Ãi1i3
Ãi2i4

P̄i1i3
P̄i1i4

P̄i2i3
P̄i2i4
+C r −2

n

∑

i1,...,i5

�

Ãi1i4
Ãi1i5

P̄i2i4
P̄i2i5

P̄i3i4
P̄i3i5

+Ãi1i4
Ãi2i5

P̄i1i4
P̄i2i5

P̄i3i4
P̄i3i5
+ Ãi1i4

Ãi2i5
P̄i1i5

P̄i2i4
P̄i3i4

P̄i3i5

�

.

(139)

We bound each term on the final line as follows.
∑

i1,...,i5

Ãi1i4
Ãi1i5

P̄i2i4
P̄i2i5

P̄i3i4
P̄i3i5

=
∑

i1,i4,i5

Ãi1i4
Ãi1i5

P̄ 2
i4i5
≤ tr(ÃP̄ Ã)≤C tr(A2)≤C G ,

∑

i1,...,i4

Ãi1i3
Ãi2i4

P̄i1i3
P̄i1i4

P̄i2i3
P̄i2i4

= tr((Ã⊙ P̄ )P̄ (Ã⊙ P̄ )P̄ )≤ ι′(Ã⊙ P̄ )2ι ≤C G ,

∑

i1,...,i5

Ãi1i4
Ãi2i5

P̄i1i4
P̄i2i5

P̄i3i4
P̄i3i5
≤

∑

i1,i2,i4,i5

Ãi1i4
Ãi2i5

P̄i1i4
P̄i2i5

P̄i4i5
= ι′(Ã⊙ P̄ )P̄ (Ã⊙ P̄ )ι ≤ ι′(Ã⊙ P̄ )2ι ≤C G ,

∑

i1,...,i5

Ãi1i4
Ãi2i5

P̄i1i5
P̄i2i4

P̄i3i4
P̄i3i5
≤

∑

i1,i2,i4,i5

Ãi1i4
Ãi2i5

P̄i1i5
P̄i2i4

= tr(ÃP̄ ÃP̄ )≤ tr(Ã2)≤ C G .

(140)

We conclude that Theorem 2 holds when Assumption 2 would be strengthened to mg ≥ 3 and ng −
mg ≥ 3. We now discuss how to weaken the result to Assumption 2.

D.3.3 Small groups

Consider a group with mg = 2 or ng −mg = 2. To avoid the singularity in the variance estimators of

Appendix D.1.4, We can use the following rescaled version of the conventional variance estimator

for the observations that only share their instrument status with one other observation in the group,

σ̃2
u ,i
= 4e ′

i
(MW ,Z u ⊙MW ,Z u )

= u 2
i
− 4ui

∑

j 6=i

P̄i j u j + 4
∑

j 6=i

P̄ 2
i j

u 2
j
.

(141)

41



Similarly, we find

σ̃2
v,i
(β SIVE) = 4e ′

i
(MW ,Z v ⊙MW ,Z v ) = u 2

i
− 4vi

∑

j 6=i

P̄i j v j + 4
∑

j 6=i

P̄ 2
i j

v 2
j

,

σ̃u v,i (β
SIVE) = 4e ′

i
(MW ,Z u ⊙MW ,Z v ) = ui vi − 2ui

∑

j 6=i

P̄i j v j − 2vi

∑

j 6=i

P̄i j u j + 4
∑

j 6=i

P̄ 2
i j

v j u j .
(142)

We notice that the first term in the expressions coincides with the first terms in (96). the same holds

up to a scaling constant for the second term. Those terms are therefore covered by the proof in the

previous section. The only new terms are last terms of the respective expressions that yield a positive

bias in the variance estimator. The bias contribution to the variance by observation i , if observation

j (i ) is the only observation in the same covariate group with the same instrument status, is

[e ′
i
A(Y −T β SIVE)]2u 2

j (i )
︸ ︷︷ ︸

ti

+[e ′
i
AT ]2v 2

j (i )
+ 2[e ′

i
A(Y −Tβ SIVE)e ′

i
AT ]u j (i )v j (i )+R (|β̂ SIVE−β SIVE|).

(143)

We consider the first term and sum over all observations that only have one member of the same

covariate group with the same instrument status. Call this set S and note that |S | = {2, 4, . . . , n/2}.
We have

∑

i∈S
ti =

∑

i∈S



σ2
u , j (i )
[MW Z ζ)]2

i
+ 2[MW Z ζ]i Ai j (i )E[u

2
j (i )

v j (i )|Q , X ] +
∑

k 6=i

E[u 2
j (i )

v 2
k
|Q , X ]A2

i k

+ (u 2
j (i )
−σ2

u , j (i )
)[MW Z ζ)]2

i
+ 2[MW Z ζ]i Ai j (i )(u

2
j (i )

v j (i )−E[u 2
j (i )

v j (i )|Q , X ])

+2[MW Z ζ]i u 2
j (i )

∑

k 6=i , j (i )

Ai k vk +
∑

k 6=i

(u 2
j (i )

v 2
k
−E[u 2

j (i )
v 2

k
|Q , X ])A2

i k
+ u 2

j (i )

∑

k 6=i

∑

l 6=i ,k

Ai k Ai l vk vl



 .

(144)

It is straightforward to show that E[r −1
n

∑

i∈S ti |Q , X ]≤ C <∞ a .s . andV(r −1
n

∑

i∈S ti |Q , X )→a .s . 0.

D.3.4 Variance bounds

For notational convenience, in this section we replace Ã by A and P̄ by P . For V(B .2a .1|Q , X ) in

(130), we need to bound terms of type

r −2
n

∑

i1,...,i12

|Ai1i2
||Ai3i4
||Ai5i6
||Ai7i8
|P̄i9i10

P̄i11i12
. (145)

For V(B .2a .2|Q , X ) in (130), we need to bound terms of type

r −2
n

∑

i1,...,i16

|Ai1i2
||Ai3i4
||Ai5i6
||Ai7i8
|P̄i9i10

P̄i11i12
P̄i13i14

P̄i15i16
. (146)

We now list the nonzero terms and bounds them by C r −2
n

G for some constant C > 0.
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Term Expression Bound

1
∑

i1..,i3
A3

i1i2
Ai1i3

Pi1i2
Pi1i3

≤C
∑

i1..i3
Ai1i2

Ai1i3
Pi1i2

Pi1i3
≤C ι′(A⊙P )2ι,

2
∑

i1..i3
A2

i1i2
A2

i1i3
Pi1i2

Pi1i3
≤
∑

i1..i3
Ai1i2

Ai1i3
Pi1i2

Pi1i3
≤C ι′(A⊙P )2ι,

3
∑

i1..i3
Ai1i2

A3
i1i3

P 2
i1i2

≤C
∑

i1..i3
A2

i1i3
P 2

i1i2
≤C tr(A2),

4
∑

i1..i4
Ai1i2

Ai1i3
A2

i1i4
Pi1i2

Pi1i3
≤C

∑

i1..i3
Ai1i2

Ai1i3
e ′

i1
A2ei1

Pi1i2
Pi1i3

≤C ι′(A⊙P )2ι,

5
∑

i1..i4
A2

i1i3
A2

i1i4
P 2

i1i2
≤C

∑

i1,i3,i4
A2

i1i3
A2

i1i4
≤C ι′(A⊙A)2ι,

6
∑

i1..i3
A3

i1i2
Ai1i3

Pi1i2
Pi2i3

≤C
∑

i1..i3
Ai1i3

Pi1i2
Pi2i3

≤C ι′(A⊙P )ι,

7
∑

i1..i3
A2

i1i2
A2

i1i3
Pi1i2

Pi2i3
≤
∑

i1..i3
Ai1i3

Pi1i2
Pi2i3

≤C ι′(A⊙P )ι,

8
∑

i1..i3
Ai1i2

A3
i1i3

Pi1i2
Pi2i3

≤C
∑

i1..i3
Ai1i3

Pi1i2
Pi2i3

≤C ι′(A⊙P )ι,

9
∑

i1..i3
A4

i1i3
Pi1i2

Pi2i3
≤
∑

i1..i3
Ai1i3

Pi1i2
Pi2i3

≤C ι′(A⊙P )ι,

10
∑

i1..i3
A2

i1i2
Ai1i3

Ai2i3
P 2

i1i2
≤
∑

i1..i3
Ai1i3

Ai2i3
Pi1i2

≤C ι′(A2⊙P )ι.

11
∑

i1..i3
Ai1i2

A2
i1i3

Ai2i3
P 2

i1i2
≤
∑

i1..i3
Ai1i3

Ai2i3
Pi1i2

≤C ι′(A2⊙P )ι,

12
∑

i1..i3
Ai1i2

A2
i1i3

Ai2i3
Pi1i2

Pi1i3
≤
∑

i1..i3
Ai1i3

Ai2i3
Pi1i2

≤C ι′(A2⊙P )ι,

13
∑

i1..i3
A3

i1i3
Ai2i3

Pi1i2
Pi1i3

≤
∑

i1..i3
Ai1i3

Ai2i3
Pi1i2

≤C ι′(A2⊙P )ι,

14
∑

i1..i3
A2

i1i2
Ai1i3

Ai2i3
Pi1i2

Pi2i3
≤
∑

i1..i3
Ai1i2

Ai2i3
Pi1i2

Pi2i3
≤C ι′(A⊙P )2ι,

15
∑

i1..i4
Ai1i2

Ai1i3
Ai1i4

Ai2i4
Pi1i2

Pi2i3
=
∑

i1..i3
Ai1i2

Ai1i3
e ′

i1
(A2⊙P )ei2

Pi2i3
≤C ι′(A2⊙P )ι.

16
∑

i1..i4
Ai1i2

A2
i1i4

Ai2i3
Pi1i2

Pi2i3
≤
∑

i1..i3
Ai1i2

e ′
i1

A2ei1
Ai2i3

Pi1i2
Pi2i3

≤C ι′(A⊙P )2ι

17
∑

i1..i3
A3

i1i3
Ai2i3

Pi1i2
Pi2i3

≤
∑

i1..i3
Ai1i3

Ai2i3
Pi1i2

≤C ι′(A2⊙P )ι.

18
∑

i1..i4
A2

i1i3
Ai1i4

Ai2i3
Pi1i2

Pi3i4
≤
∑

i1..i3
Ai1i3

Ai2i3
Pi1i2
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Figure 5: Average absolute bias in the estimand
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Note: the figure shows the absolute median difference with the causal estimand in a setting without treatment

heterogeneity. The size of the circles indicates the number of covariate groups with the small circle correspond-

ing to L = 1, the medium circle corresponding to L = 25 and the large circle corresponding to L = 300. The

x -axis is the instrument strength p (1)− p (0), with p (0) = 0.22 and p (1) = {0.39, 0.49, 0.59, 0.69}. Because JIVE1

shows large biases for L = 25 and L = 300, the y -axis is limited to [0, 0.9].

46


	Introduction
	LATEs with covariates
	Saturating the covariates
	Estimation challenges
	Two-stage least squares
	Jackknife instrumental variables estimation

	Saturated instrumental variable estimation
	A causal estimand
	Inference on the estimand
	Assumptions
	Large sample theory

	Monte Carlo Study
	Application: Card (1995)
	Conclusion
	Conventions and notation
	Generalizations
	Multivalued treatment
	Multivalued instrument

	Proofs - Estimands
	Proof Lemma 1
	Proof Lemma 2
	Proof Lemma 3
	Proof Lemma 5
	Proof Lemma 1

	Proofs - Inference
	Preliminary results
	The elements of the projection matrix
	Results on the matrix A used for asymptotic normality
	Results on the matrix A used for consistency of the variance estimator
	First stage and reduced form error (co)variance estimators

	Proof Lemma 6
	Proof Lemma 2
	Asymptotic normality of the self-normalized score
	Consistency of the estimator for the variance of the score
	Small groups
	Variance bounds



