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1 Introduction

There is a growing interest in understanding how forecasters form expectations and
make forecasts on macroeconomic variables. The literature on expectation formation
primarily focuses on how forecasters make predictions for macroeconomic variables
following a stationary process, with fewer studies investigating how they deal with
trends and cycles in their expectation formation process. In this paper, we introduce
a simple framework to characterize how forecasters update their beliefs, form expec-
tations and make forecasts when macroeconomic variables consist of trends and fore-
casters cannot perfectly distinguish between trends and cycles.

This paper makes three key contributions. First, we develop a theoretical frame-
work demonstrating that when trends and cycles are not perfectly distinguishable,
forecasting behaviors can deviate qualitatively from the predictions of standard mod-
els with stable or stochastic but observable trends. In some cases, our model predicts
forecasting patterns opposite to those of standard models. Second, we present em-
pirical evidence on how forecasting behaviors vary across different forecast horizons,
shedding light on the process of expectation formation. Our findings are inconsistent
with the assumption of stable or observable trends, instead supporting our framework
with additional friction in distinguishing trends and cycles. Third, we demonstrate
the policy relevance of this novel information friction in a policy game where poli-
cymakers have a superior ability to distinguish between trends and cycles compared
to private sector agents. We show that if policymakers overlook this discrepancy in
information friction when designing optimal policies, the resulting policies may be
sub-optimal.

We begin with our empirical explorations. In this study, we use data from the
Survey of Professional Forecasters (SPF). First, we examine the covariance between
changes in long-run forecasts and changes in short-run cyclical forecasts at the fore-
caster level. Specifically, we consider three-year-ahead forecasts for macroeconomic
variables, such as the real GDP growth rate and the unemployment rate, as long-run
forecasts. The difference between the h quarters ahead forecast of a relevant macroe-
conomic variable and its three-year-ahead forecast is defined as the cyclical forecast,
capturing short-run deviations from the long-run forecast.

We then construct ’across-period changes’ in both long-run and cyclical forecasts
for each forecaster. Changes in long-run forecasts are calculated as the difference be-
tween their three-year-ahead forecasts in quarters t and t − 1. Similarly, we calculate
changes in cyclical forecasts. By construction, changes in long-run forecasts reflect
belief changes in both the trend and cyclical components, while changes in cyclical
forecasts are proportional to belief changes in the cyclical component.

The observable-trend model predicts a positive covariance between changes in
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long-run forecasts and cyclical forecasts, as the same cyclical component drives both.
This covariance should decrease as h increases, converging to zero when h approaches
three years, since the cyclical component plays a lesser role over longer horizons.
However, our empirical findings contrast this theoretical prediction. For both real
GDP growth and the unemployment rate, the covariance of interest is negative and
increases as h increases in the SPF data. In other words, not only is the sign of the
covariance opposite to what is predicted, but its pattern over the horizon h is also
reversed.

Second, we examine how the cross-sectional dispersion of forecasts varies over the
forecast horizon. The observable-trend model predicts that forecast dispersion across
forecasters should monotonically decrease as the forecast horizon increases, whether
the horizon is short-run or long-run. This is because disagreement among forecasters,
caused by heterogeneous information about cyclical components, would diminish as
the forecast horizon extends.1

Using the SPF data, we observe that for most macroeconomic variables (after be-
ing transformed into growth rates), except for inflation, forecast dispersion increases
as the forecast horizon extends from zero to four quarters ahead. This contradicts the
observable-trend model, which predicts that dispersion should decrease over the hori-
zon, even within a year. Additionally, we examine year-level forecast dispersion for
real GDP growth and the unemployment rate over a longer forecast horizon and show
that it increases as the horizon expands from one to three years. This evidence also
contradicts the predictions of the observable-trend model.

Motivated by those findings, we propose an otherwise standard forecasting model
that explicitly incorporates a non-stationary, unobservable trend component in the
data generation process. Specifically, in this model, the state variable consists of a
non-stationary random walk trend component and a cyclical component that follows
the standard AR(1) process. The goal of forecasters is to minimize the squared error
of their forecasts. The actual value of the state, which is the sum of these two compo-
nents, is publicly announced and observed by forecasters at the end of each period.

The key assumption is that forecasters cannot directly observe the actual realiza-
tions of the trend and cyclical components. Instead, in each period, they receive two
private noisy signals on the trend and cyclical components, respectively. This means
that they are unable to differentiate the two components perfectly and have to make
inferences about them.

In such a setting, forecasters will need to update their beliefs about the trend and
cyclical components twice in each period. At the beginning of each period, forecasters

1For example, if the forecasted variable is assumed to follow a stationary data generation process
(e.g., an AR(1) process with a constant long-run mean), when the forecast horizon is long enough, all
the forecasts should converge to that long-run mean, and the forecast dispersion would go to zero.
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receive private signals regarding the trend and cyclical components and then revise
their beliefs on each component. Forecasters use this set of posterior beliefs to make
forecasts that minimize the expected forecasting errors. At the end of each period, the
actual state value is disclosed, which is informative about the trend and cyclical com-
ponents as well. Therefore, forecasters will have to update their beliefs again, making
revisions to their beliefs about the two components. That is the key difference from the
situation where forecasters could differentiate trends and cycles perfectly. In that case,
upon observing the actual state value, forecasters know the state perfectly, rendering
their beliefs about the two components when they make forecasts redundant.

In this model, forecasters do not update their beliefs about the trend and cycli-
cal components independently. In other words, they are rationally confused about
distinguishing between the trend and cyclical components. For instance, when they
perceive the trend component to be stronger than it actually is, they simultaneously
perceive the cyclical component to be weaker than it actually is. In the following, we
show that the confusion regarding the trend and cyclical components helps account
for the documented empirical patterns.

Specifically, in the presence of this confusion mechanism, a positive trend signal
plays a dual role. First, it provides information about the trend, indicating a strong
trend component in the current period. Consequently, forecasters revise their poste-
rior beliefs regarding the trend component upwards, from the prior beliefs inherited
from the previous period. Second, the positive trend signal is useful for updating
beliefs on the cyclical component. Forecasters rationally interpret the positive trend
signal as indicating three possibilities: a positive state innovation in the trend, a pos-
itive noise in the signal, as well as an underestimation of the trend component in the
previous period. Recognizing the likelihood of having underestimated the trend com-
ponent previously, forecasters would conclude that they had likely overestimated the
cyclical component previously. Consequently, they would revise their current beliefs
regarding the cyclical component downward.2

In summary, the confusion between trend and cyclical components leads forecast-
ers to rationally update their beliefs about these components in opposite directions.
This mechanism gives rise to a negative covariance between the two beliefs. In the
data, the constructed covariance between changes in long-term forecasts and changes
in cyclical forecasts is proportional to the sum of the negative covariance of beliefs
and the dispersion of beliefs about the cyclical component. When the confusion mech-
anism dominates, the covariance between changes in long-term and cyclical forecasts
could be negative. Furthermore, as the forecast horizon h, which is used to construct

2Likewise, upon receiving a positive signal about the cyclical component, forecasters would revise
their posterior beliefs about the cyclical component upwards from the prior beliefs inherited from the
previous period. Additionally, they would revise their belief about the trend component downwards.
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the cyclical forecasts, increases, the constructed change in cyclical forecasts reflects a
smaller proportion of the changes in cyclical components. Therefore, the covariance
of changes in forecasts should also diminish in magnitude as h increases.

This mechanism can also account for the observed increase in forecast dispersion
over horizons. In this model, for any forecast horizon, the dispersion of forecasts can
be broken down into three parts: the dispersion caused by heterogeneous beliefs about
the cyclical and trend components, as well as their covariance. Similar to the pre-
dictions of the observable-trend model, the dispersion caused by heterogeneous be-
liefs about the cyclical component decreases over the forecast horizon, as the cyclical
component becomes less influential for longer-term forecasts. Further, the dispersion
caused by heterogeneous beliefs about the trend component is constant over the fore-
cast horizon, as the trend component is equally important for all horizons.

The third part, characterized by the negative covariance of cross-forecaster mean be-
liefs regarding the two components, is a novel aspect of the model. It stems from
forecasters’ inability to perfectly distinguish between trends and cycles, and its impor-
tance diminishes over the forecast horizon as the cyclical component itself becomes
less influential in forecasting. Therefore, the overall dispersion could either increase
or decrease over horizon. We show that forecast dispersion would increases, under
the condition that the trend is neither too volatile nor stable.

Application I: Explicit Inflation Targeting. Our framework not only helps organize
the documented empirical findings but also offers insights into various policy-relevant
issues related to expectation formation. To illustrate this, we examine the impact of
implementing inflation targeting policy on forecasting behaviors. In 2012, the United
States introduced an explicit inflation target of 2 percent for the first time (Shapiro and
Wilson 2019). Through the lens of our framework, this policy can be interpreted as a
shift in the data-generating process for inflation.

To uncover the corresponding change, we conduct structural estimation using the
simulated method of moments (SMM) for both pre-2012 and post-2012 periods. We
find that in the post-2012 period, the variance of the trend innovation becomes smaller,
and the persistence of the cyclical component is also lower. These observed changes
are intuitive, suggesting that after the policy shift, the central bank has a specific long-
run target and would respond more to short-term deviations from the long-term tar-
get. As a result, forecasters would perceive that the trend component becomes more
stable, and the cyclical fluctuation becomes less persistent.

What would be the consequences of this policy shift for forecasting behaviors? We
have documented a set of changes in the pattern of inflation expectations across the
two periods. First, using the inflation expectation data from the pre-2012 subsample,
we find a statistically significant negative covariance between changes in forecasters’
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long-run forecasts and those of the cyclical forecasts. However, after 2012, this co-
variance becomes positive and statistically insignificant. Second, we observe a steeper
decline in forecast dispersion over the horizon in the post-2012 subsample compared
to the preceding period.

We further demonstrate that the observed changes in forecasting behaviors follow-
ing the policy shift are consistent with the predictions of our model, provided there is
a decrease in the variance of trend innovations and a reduction in the persistence of
cyclical components.

Application II: Optimal Policy. To illustrate that the new information friction we
document and characterize is policy relevant, we consider the role of confusion in a
monetary policy game, following Barro and Gordon (1983) and Huo et al. (2024). Cen-
tral banks often possess superior ability to separate trend and cyclical components of
desired inflation compared to the public. However, when designing monetary policy,
central banks may overlook or misjudge this asymmetrical degree of confusion.

Our analysis demonstrates that such misperception leads to sub-optimal policies
and additional welfare losses. These losses occur because the central bank’s policy,
based on an inaccurate assessment of the public’s information set, creates a discrep-
ancy between intended and actual economic outcomes. Specifically, when the central
bank overestimates the public’s ability to distinguish between inflation components,
it fails to account for the full extent of uncertainty in private sector expectations. This
misjudgment becomes more consequential as greater weight is assigned to unemploy-
ment relative to inflation targeting.

Discussion. We extend the model to allow forecasters access to a full range of multi-
horizon forecasts from other forecasters at each period’s end. These forecasts pro-
vide information about aggregate beliefs on trend and cyclical components, enriching
the forecasters’ information set. Despite this additional information, we show that
forecasters still cannot perfectly differentiate between trend and cyclical components.
While they can derive consensus forecasts for both components, these consensus fore-
casts retain time-varying errors. Importantly, our key qualitative results remain robust
in this extended scenario.

We also examine an alternative scenario where confusion arises from forecasters
misinterpreting signals. In such a model, forecasters observe trend and cyclical com-
ponents at period-end but infer these components for the next period based on signals.
Some forecasters may mistake trend signals for cyclical ones, and vice versa. This
model can predict increasing forecast dispersion over horizons when the fraction of
misinterpreting forecasters is moderate. However, it always predicts a non-negative
covariance between changes in trend and cyclical forecasts, contradicting our findings.

5



Furthermore, we revisit the seminal work by Coibion and Gorodnichenko (2015)
within our framework. They proposed using the coefficient from regressing forecast
errors on forecast revisions at the consensus level to quantify information frictions. We
demonstrate that in our model, this coefficient also captures the confusion between
trends and cycles, providing a lower bound on the extent of information frictions in
the data.

Literature Review. This paper complements recent studies that use survey data to in-
vestigate expectation formation. Studies within the noisy information paradigm have
found that forecasters tend to under-react to new information at the aggregate level
(Coibion and Gorodnichenko 2015), but exhibit overreactions at the individual level
(Bordalo et al. 2020; Broer and Kohlhas 2022). New contributions to this literature
further expand its scope. For instance, Kohlhas and Walther (2021) explore why indi-
vidual forecast errors are negatively correlated with current realizations, while Rozsy-
pal and Schlafmann (2023) examine how forecaster characteristics influence individual
forecasts errors.

A common feature of these studies is that they assume the data-generating pro-
cess for the state is stationary, often an AR(1) process. Our work examines a sce-
nario in which the data generation process of the forecasted state incorporates a non-
stationary trend component. This exploration is not only realistic but also empirically
relevant, as prior research has established the presence of non-stationary trends in var-
ious macroeconomic variables, such as GDP growth rate (Stock and Watson 1998) and
the unemployment rate (Blanchard and Summers 1986).3 Our work emphasizes that
the unobservability of trends to forecasters is crucial for understanding the patterns of
forecasting behaviors. This framework, even in its simplest form, yields several pre-
dictions that align with a set of empirical facts concerning how forecast behaviors vary
over the forecast horizon.

Farmer et al. (2024) presents a Bayesian learning model within a trend-cycle frame-
work, focusing on model uncertainty about the data generation process as a key fric-
tion rather than noisy information. Their model addresses several anomalies in con-
sensus forecasts. In contrast, our work, grounded in the paradigm of noisy informa-
tion, examines heterogeneity in individual forecasting behaviors and uses variations
in forecasting patterns across different forecast horizons to inform the process of ex-
pectation formation.

Fisher et al. (2024) present a behavioral model within a trend-cycle framework to
address two important anomalies in long run inflation expectation data: the persistent

3Early studies such as Nelson and Plosser (1982) and Harvey (1985) have demonstrated the presence
of a non-stationary trend component in GDP growth. Similar findings have also been observed in
studies analyzing inflation data, such as Cogley and Sargent (2005) and Cogley and Sbordone (2008).
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deviations of average expectations from actual trend inflation, and large and persistent
disagreement regarding long-run inflation. They show that these misspecifications
can be corrected by assuming forecasters misperceive the persistence and precision of
their own private information. Our work, however, has a different focus: the pattern
of covariance between changes in long-term forecasts and cyclical forecasts over the
forecast horizon for macroeconomic variables in general. Moreover, our key confusion
mechanism is fully rational.4

Our work contributes to a line of research examining forecasting behaviors across
different forecast horizons. Afrouzi et al. (2023) who show that forecasting behaviors
could vary over the forecast horizon within a lab setting. We document how forecast-
ing behaviors vary over the forecast horizon in the survey data and find that they can
be informative about how forecasters update beliefs and form expectations.

Furthermore, a number of studies have documented that forecast dispersion tend
to be larger in the long run. Lahiri and Sheng (2008) and Patton and Timmermann
(2010) assume that forecasters possess a diverse set of prior beliefs. As the forecast
horizon extends, forecasters assign less weight to new information and instead rely
more on their prior beliefs. Our model differs in that the confusion mechanism is ra-
tional rather than behavioral. Andrade et al. (2016) consider a case where forecasters
can only occasionally observe the state value (i.e., the sticky information assumption)
and the current trend shock has a more pronounced effect on the future state com-
pared to its impact on the current state. Our model features noisy information and the
trend component holds equal importance across all horizons. In addition, our model
predicts that the changes in trend forecasts and changes in cyclical forecasts can be
negatively correlated.

2 Evidence

This section presents two key empirical findings from the U.S. Survey of Professional
Forecasters (SPF). First, we document a negative covariance between changes in fore-
casters’ long-term and cyclical forecasts. Second, we show that forecast dispersion
among forecasters tends to increase with the forecast horizon for most macroeconomic
variables.

4Our model is fully rational and therefore differs from theoretical explorations that incorporate be-
haviorial biases, such as diagnostic expectations (Bordalo et al. 2018, Bianchi et al. 2021), overconfidence
(Broer and Kohlhas 2022), ambiguity aversion (Chen et al. 2024, Huo et al. 2024), cognitive discounting
(Gabaix 2020), level-K thinking (García-Schmidt and Woodford 2019, Farhi and Werning 2019), nar-
row thinking (Lian 2021), adaptive learning (Adam et al. 2012, Kuang and Mitra 2016), autocorrelation
averaging (Wang 2021) and loss aversion (Elliott and Timmermann 2008, Capistrán and Timmermann
2009).
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2.1 Survey of Professional Forecasters Data

The Survey of Professional Forecasters (SPF) of the U.S. is a source of predictions made
by professional forecasters regarding a broad range of macroeconomic variables. The
data is collected quarterly and goes back to 1968Q4. The Fed of Philadelphia surveys
approximately 35 professional forecasters each quarter, assigning a unique ID number
to each forecaster to track their forecast history.

For each variable, a forecaster provides six predictions, including one back-cast
toward the previous period, a now-cast (forecast for the current quarter), and forecasts
for the subsequent four quarters. In addition, they are asked to provide The annual
projection of this variable for the current year, and the next year. Since 1991Q4, the
survey has included an extra question regarding the Consumer Price Index (CPI) for
a ten-year forecast. Since 1992Q1, the first quarter survey has included an additional
question about the GDP for a ten-year forecast, while since 1996Q3, the third quarter
survey has incorporated an additional question regarding the natural unemployment
rate. Starting from 2009, SPF has expanded to encompass year-level forecasts of the
unemployment rate and real GDP for two- and three-year periods. Table A1 provides
a summary of the starting dates and frequency for each data series.

The survey is conducted before the end of each quarter, following the Bureau of
Economic Analysis’ (BEA) advance report of the national income and product ac-
counts (NIPA) release. The BEA reports macroeconomic variables (e.g., GDP esti-
mates) for the preceding quarter. At the beginning of the questionnaire, forecasters
will be provided with the BEA reported value of the macro variable for the previous
quarter. Therefore, when giving their predictions for current and future quarters, fore-
casters have access to information about the values of forecasted variables up to the
last quarter.

2.2 Covariance: Changes in Long Term Forecasts and Cyclical Forecasts

Building on this dataset, the following section presents a novel empirical test that ex-
amines the covariance between changes in forecasters’ long-term and cyclical forecasts
across time. We will show that the covariance of these changes is informative about
the process of expectation formation.

We start our investigation by constructing forecasters’ long-run forecasts and cycli-
cal forecasts. As discussed earlier, since 2009, the Survey of Professional Forecasters
(SPF) has asked forecasters each quarter to report their long term forecasts for the un-
employment rate and real GDP, precisely three years ahead. We employ forecaster
i’s three-year ahead forecast at quarter t, denoted as Fi,tyt+3Y, to represent her long-
run forecasts.5 Furthermore, we utilize the deviation of forecaster i’s forecast h period

5A possible concern is that three-year-ahead forecasts may not adequately represent long-run fore-
casts. To address this, we utilize two forecast series with longer horizons: ten-year forecasts for real

8



ahead at quarter t, denoted as Fi,tyt+h, from the three-year ahead forecast as her cycli-
cal forecasts. Specifically, forecaster i’s cyclical forecasts is constructed as follows:

Cych
i,t = Fi,tyt+h − Fi,tyt+3Y.

Then, we examine the covariance between the changes in the long-run forecasts
and the cyclical forecasts:

COVh
F = cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cych

i,t − Cych
i,t−1). (1)

The first term on the right-hand side of Equation (1) represents the difference between
three-year ahead forecasts for periods t and t − 1. The second term corresponds to the
change in cyclical forecasts between these two periods. The horizon h = 0, 1, 2, 3, 4 rep-
resents the forecast horizon for the short-term forecast, which is utilized to construct
the forecasts on cyclical components.

The observable-trend model predicts that this covariance will be positive. This is
because changes in cyclical forecasts reflect changes in the cyclical components from
quarter t to quarter t − 1. Similarly, changes in long-term forecasts represent shifts in
both the trend and cyclical components between these quarters. The covariance must
be positive, provided that the innovations in trend and cyclical components are uncor-
related. Furthermore, the covariance should decrease as h (i.e., the forecast horizon for
the short-term forecast used to construct cyclical forecast) increases, since the changes
in cyclical forecasts would be less proportional to changes in cyclical innovations when
h is longer. This set of predictions is characterized in section 4.1.

Figure 1 illustrates the covariance between changes in long-run forecasts and cycli-
cal forecasts for both the unemployment rate and real GDP growth. The x-axis rep-
resents the forecast horizons set at h = 0, 1, 2, 3, 4. Figure 1(a) shows the COVh

F for
the unemployment rate, while Figure 1(b) depicts the COVh

F for real GDP growth. We
observe a negative and significant COVh

F for both variables, with the covariance in-
creasing as the horizon h expands. Details of this estimation are shown in Table A2.

These findings suggest that when a forecaster updates her long-run forecast up-
ward, she tends to simultaneously revise her cyclical forecast downward. The empir-
ical results reveal a pattern contrary to the predictions of the observable-trend model:
not only is the covariance negative instead of positive, but it also increases over the

GDP (available every first quarter since 1992Q1) and forecasts of the natural unemployment rate (avail-
able every third quarter since 1996Q3). In Appendix A.2, we demonstrate that three-year-ahead fore-
casts are highly correlated with those for longer horizons, making them reasonable representations of
long-run forecasts. We do not use the ten-year forecasts for GDP and the natural unemployment rate
in our analysis due to the coarse frequency of observations at the yearly level. Instead, we focus on
three-year-ahead forecasts, which are available at the quarterly level.
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Figure 1. Covariance between the changes in long-run forecasts and cyclical forecasts across forecast
horizon h. Note: This figure illustrates the covariance COVh

F for the unemployment rate and real GDP
growth across various forecast horizons h. The left panel shows the COVh

F for the unemployment rate,
while the right panel depicts the COVh

F for real GDP growth. In both cases, the covariance is negative
and statistically significant, increasing as the forecast horizon extends. The black dots represent the
estimates, and the gray solid lines denote the 95% confidence intervals.

horizon h rather than decreases.

2.3 Forecast Dispersion over Forecast Horizon

In this section, we explore whether the dispersion in forecasts among forecasters varies
as the forecast horizon extends. This analysis is informative for understanding the
role of beliefs concerning trends and cycles. The observable-trend model predicts that
forecast dispersion should decrease monotonically as the forecast horizon increases,
whether for short-term forecasts (forecasts within a year) or longer-term forecasts. This
set of predictions will be characterized in section 4.1.

First, we investigate the short-term forecasts, for which we have forecast data for
most macroeconomic variables. Using SPF data, we estimate the following equation:

Forecast dispersionth = α + β1h + ϵth, (2)

where Forecast dispersionth represents the cross-forecaster dispersion in forecasts Fi,tyt+h

provided by forecaster i at period t for h quarters ahead and the forecast horizon is de-
fined as h = 0, 1, 2, 3, 4. The standard error is clustered at the year-quarter level.

We consider two measures of forecast dispersion: the variance of forecasts across
forecasters and the difference between the 75th percentile and the 25th percentile. We
estimate Equation (2) using all available macroeconomic variables. The estimated co-
efficient β2 is of particular interest and is presented in Table 1.

Column (1) of Table 1 presents the results using forecast variance as the measure of
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Table 1. Forecast dispersion over forecast horizon

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

Obsβ1 SE β1 SE

Forecast Variable (1) (2) (3) (4)

Nominal GDP 0.337*** 0.026 0.204*** 0.008 1,025
Real GDP 0.242*** 0.022 0.162*** 0.007 1,025
GDP price index inflation 0.118*** 0.008 0.119*** 0.004 1,025
Real consumption 0.125*** 0.013 0.127*** 0.006 770
Industrial production 0.860*** 0.062 0.320*** 0.014 1,025
Real nonresidential investment 1.647*** 0.127 0.497*** 0.018 770
Real residential investment 6.021*** 0.547 0.932*** 0.039 770
Real federal government consumption 1.284*** 0.102 0.393*** 0.019 770
Real state and local government consumption 0.317*** 0.028 0.210*** 0.009 770
Housing start 0.004*** 0.000 0.020*** 0.001 1,024
Unemployment 0.034*** 0.002 0.081*** 0.003 1,014
Inflation (CPI) -0.066*** 0.021 -0.073*** 0.012 770
Three-month Treasury rate 0.091*** 0.010 0.132*** 0.007 770
Ten-year Treasury rate 0.045*** 0.001 0.094*** 0.003 560
Note: This table shows results from estimating Equation (2). The sample period is from 1968Q4 to 2019Q4. In column
(1), the dependent variable is the variance of forecasts across forecasters. In column (3), we use the difference between
the 25% percentile and 50% percentile. Standard errors are clustered at the year-quarter level.

forecast dispersion. The coefficient for the forecast horizon h is positive (β2 > 0) and
statistically significant for most variables, indicating that forecasts among forecasters
become more dispersed as the forecast horizon increases. The only exception is infla-
tion. We will revisit the analysis of inflation expectations in section 5.1. In column (3),
we repeat our estimations using the difference between the 75th and 25th percentiles
as the measure of forecast dispersion. The results are rather similar. To confirm that
the pattern is robust to the inclusion of time fixed effect, we report the estimation re-
sults with year-quarter fixed effect in Table A3. In addition, using the coefficient of
variation as the measure of forecast dispersion, the results would be very similar.

Second, we investigate the longer-term forecasts, for which we have forecast data
for fewer variables. Specifically, we focus on a subset of variables with annual forecast
data that spans an extended horizon. Starting from 2009Q1, the U.S. Survey of Profes-
sional Forecasters (SPF) includes forecasts for real GDP and the unemployment rate
one year, two years, and three years into the future. We utilize this dataset to estimate
the following specification:

Forecast dispersiontH = α2 +
3

∑
H=1

βH horizonH + ϵt, (3)

where Forecast dispersiontH is the dispersion of forecasts of horizon H across all fore-
casters and horizonH is a dummy variable for horizon H, taking the value 1 if the
forecast horizon is H = 1 year, 2 years, or 3 years ahead; and 0 otherwise. The co-
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(a) Unemployment rate (b) Real GDP growth

Figure 2. Dispersion of the year-level forecasts. Note: The figure presents the estimation results from
Equation (3). The panel on the left displays the estimated coefficients for the unemployment rate, while
the panel on the right shows those for real GDP growth. The sample period spans from 2009Q1 to
2019Q4. In both cases, βH is greater than zero and increases as H increases, indicating larger dispersion
as the forecast horizon expands.

efficient βH captures the difference in forecast dispersion between forecasts H years
ahead and current year predictions (H = 0).

Figure 2 presents the estimation results. Figure 2(b) shows results for real GDP,
while Figure 2(a) displays results for the unemployment rate. In both cases, the co-
efficients βH are positive and increase with the forecast horizon. These findings also
contradict the predictions of the observable-trend model, which states that dispersion
should decrease monotonically.

In the literature, several studies have investigated this particular pattern, which
offer similar findings that are inconsistent with the observable-trend model. Lahiri
and Sheng (2008) use the Consensus Forecasts data and show that the forecast disper-
sion of real GDP growth is larger in a longer forecast horizon for all the G7 countries.
Patton and Timmermann (2010) utilize the same data and find that both the forecast
dispersion regarding the U.S. GDP growth and inflation is higher at longer horizons.
Andrade et al. (2016) study the data from Blue Chip Survey and find a steady increase
in the dispersion of Federal Fund rate forecasts as the forecast horizon extends.

3 Forecasting Model with Trend-cycle Confusion

3.1 Setup

Utility function. In this model, there exists a continuum of forecasters, indexed by
i ∈ [0, 1], who make forecasts about a stochastic state variable yt. The objective of the
forecasters is to minimize forecasting errors. We consider a standard quadratic utility
function, which is given by:

U(Fi,tyt+h) = −(Fi,tyt+h − yt+h)
2, (4)
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where yt+h is the actual value of the state in period t + h and Fi,tyt+h denotes the
forecast made by forecaster i at period t for the state h periods in the future.
Data generation process. We assume that the state variable yt is composed of two com-
ponents: a trend component, µt, representing long-term trend, and a cyclical compo-
nent, xt, capturing short-term fluctuations. In particular, the trend follows a random
walk process, while the cycle is modeled as an AR(1) process. Specifically, the data
generation process for the state can be described as follows:

yt = µt + xt, (5)

µt = µt−1 + γ
µ
t ,

xt = ρxt−1 + γx
t ,

where ρ is the persistence for the AR(1) process and γ
µ
t and γx

t are the innovations of
the trend and cyclical components, both of which are normally distributed with zero
mean and variances of σ2

µ and σ2
x , respectively, i.e.,γµ

t ∼ N(0, σ2
µ) and γx

t ∼ N(0, σ2
x).

We use θt = (µt, xt)′ to denote the state components in period t. Consistent with
the previous literature, we assume that the data generating process (DGP) is common
knowledge for all forecasters.6

In each period, forecasters receive private noisy signals for each component, that
is, si,t = (sµ

i,t, sx
i,t)

′, where

sµ
i,t = µt + ϵi,t; and sx

i,t = xt + ei,t. (6)

We assume that the error terms of the signals are independent and normally dis-
tributed. The variance-covariance matrix of i’s private signals is given by:

Σs =

(
σ2

ϵ 0
0 σ2

e

)
.

At the end of each period t, we allow forecasters to observe the actual state variable
yt but not the trend and cyclical components. Therefore, upon the announcement of
the actual state value, forecasters revise their beliefs regarding the trend and cyclical
components. The updated beliefs about the two components become the prior beliefs
for the next period.

Throughout the paper, we use θi
1,t to represent forecaster i’s posterior belief after

forecaster i receive signals about the trend and cyclical components in period t (i.e., the
first update). We use θi

2,t to represent forecaster i’s posterior belief after they observe

6In Appendix C.1, we discuss the scenario in which a common shock affects both the trend and
cyclical components. This specification resembles that in Delle Monache et al. (2024). We demonstrate
that this setting cannot produce the observed empirical patterns if the trend component is observable.
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Forecasts Fi,t−1yt−1+h θi2,t−1 θi1,t Forecasts Fi,tyt+h θi2,t

yt−1 si,t yt

Figure 3. Timeline. In each period t, forecaster i will update her beliefs twice. First, based on the
observed private signals, forecaster i adjusts her beliefs and provides forecasts for the current and future
periods, i.e., Fi,tyt+h. Second, forecaster i revises her beliefs regarding the trend and cycle upon observing
the actual realization of the state variable. The diamond boxes represent exogenous information flow.
The squared boxes stands for the forecaster i’s beliefs.

the actual realization of the state in period t (i.e., the second update). The subscript 1
and 2 stand for the first and second updating in period t, respectively. We summarize
the timeline of our setting in Figure 3:

• At the beginning of period t, forecaster i is endowed with the prior belief θi
2,t−1,

which is the posterior of the second updating from the period t − 1.

• Forecaster i observes the private signal si,t and then update her belief accord-
ingly (the first updating).

• Given the updated beliefs θi
1,t, forecasters choose their optimal forecasts of the

current and future period Fi,tyt+h.

• At the end of period t, yt is revealed.

• Forecasters revise their beliefs again, forming beliefs θi
2,t (the second updating).

3.2 Equilibrium Characterization

In this section, we turn to the characterization of forecasters’ optimal forecasts. We
start our analysis by considering the posterior belief obtained from the second update
in period t − 1, which is the prior belief of forecaster i at the beginning of period t:

θi2,t−1 = (µi
2,t−1, ρxi

2,t−1)
′,

where µi
2,t−1 and xi

2,t−1 are forecaster i’s beliefs about trend and cyclical components
at the end of period t − 1, respectively. Let zi,t−1 be forecaster i’s error in her belief
regarding the trend in period t − 1.

Lemma 1. Suppose the error term zi,t−1 in period t − 1 is normally distributed, then
zi,t must also be normally distributed. The set of beliefs µi

2,t−1 and xi
2,t−1 can always
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be written in the form:

µi
2,t−1 ≡ µt−1 + zi,t−1 and xi

2,t−1 ≡ xt−1 − zi,t−1, (7)

which implies:
µi

2,t−1 + xi
2,t−1 = yt−1.

The proof and subsequent proofs are collected in Appendix B. In the following,
we call zi,t−1 the separation error. First, if the separation error follows a normal dis-
tribution in one particular period, it will continue to be normally distributed indefi-
nitely, given that both the state innovations and signals are also normally distributed.
Second, given the actual yt−1 is observed at the end of t − 1, the normality assump-
tion and the Bayes’ rule requires that beliefs regarding the two components µi

2,t−1 and
xi

2,t−1 must sum up to yt−1. That is, the error terms in the two beliefs are of the same
magnitude but opposite in sign.

Denote the variance of zi,t−1 as σ2
z,t−1, then the variance-covariance matrix of θi2,t−1

follows:

Σθi
2,t−1

=

(
σ2

z,t−1 + σ2
µ −ρσ2

z,t−1

−ρσ2
z,t−1 ρ2σ2

z,t−1 + σ2
x

)
.

The sub-diagonal term −ρσ2
z,t−1 in the covariance matrix is negative. Intuitively, if a

forecaster believes that the trend is stronger than it actually is (i.e., forecasting error on
the trend component is positive), she will tend to believe that the cyclical component is
weaker than it actually is, and vice versa. Note that when forecasters can perfectly dis-
tinguish between the trend and cyclical components, the corresponding sub-diagonal
term will be zero. We will refer to σ2

z,t as the extent of confusion in distinguishing
between the trend and cyclical components.

Lemma 2. There exists a unique steady state σ2
z for the variance σ2

z,t.

The variance σ2
z,t always converges to a steady-state value, σ2

z . To understand why
the variance of the error term, or the extent of confusion, converges, we observe two
opposing forces resulting from the observation of actual data yt. On the one hand, the
change in state provides information about the cyclical component in the last period,
given by yt − yt−1 = −(1 − ρ)xt−1 + γx

t + γ
µ
t . This assists forecasters in separating

the cyclical component from the trend, reducing their confusion. On the other hand,
because yt comprises both components, forecasters use the observation of the state
and their beliefs about trends (i.e., yt − µi

1,t) to revise their beliefs regarding the cyclical
component xt, thereby increasing their confusion.

When σ2
z,t−1 is large, it implies lower-quality prior beliefs and therefore a lower

quality of µi
1,t. Consequently, the second force becomes less important, and the first
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force dominates, leading to a smaller σ2
z,t. Conversely, when σ2

z,t−1 is small, the second
force dominates, resulting in an increase in the extent of confusion. Therefore, the
steady-state value of σ2

z always exists. Throughout the paper, we assume that the
separation error zi has converged to the steady state, given the results are qualitatively
similar when the error term has not converged.

In the following, we present how forecasters update their beliefs and make fore-
casts by following the timeline of events. The first step involves characterizing the pro-
cess of belief updating after forecasters receive their private signals regarding trends
and cycles. In period t, after acquiring the private signals si,t, forecaster i updates
her beliefs on the trend and cyclical components and form her beliefs θi

1,t, which is
joint-normally distributed. The expectations of these beliefs are given by:

θi
1,t = θi

2,t−1 + κ× (si,t − θi
2,t−1), (8)

where κ is the Kalman gain and (si,t − θi
2,t−1) is the surprise from signals:

κ =




V+σ2
e (σ

2
z +σ2

µ)

Ω − ρσ2
ϵ σ2

z
Ω

− ρσ2
e σ2

z
Ω

V+σ2
ϵ (σ

2
x+ρ2σ2

z )
Ω


 and si,t − θi

2,t−1 =

(
sµ

i,t − µi
2,t−1

sx
i,t − ρxi

2,t−1

)
.

The variance-covariance matrix of θi
1,t is given by:

(Σ−1
s + Σ−1

θi
2,t−1

)−1 =

(
VarT C̃OV
C̃OV VarC

)
=




σ2
ϵ [Ω−σ2

ϵ (σ
2
x+σ2

e +ρ2σ2
z )]

Ω − ρσ2
e σ2

ϵ σ2
z

Ω

− ρσ2
e σ2

ϵ σ2
z

Ω
σ2

e [Ω−σ2
e (σ

2
ϵ+σ2

µ+σ2
z )]

Ω


 ,

(9)

where Ω and V are positive constants:

Ω = (σ2
z + σ2

µ + σ2
ϵ )(σ

2
x + σ2

e + ρ2σ2
z )− ρ2σ4

z and V = (σ2
z + σ2

µ)(σ
2
x + ρ2σ2

z )− ρ2σ4
z .

The Kalman gain matrix κ has two parts. The elements on the main diagonal resemble
those in the standard belief updating. That is, forecasters use signals about the trend
(cycle) to update their beliefs on the trend (cycle).

When there is no confusion (i.e., σ2
z goes to zero), the model reduces to the standard

Bayesian case. In this scenario, the Kalman gain for the trend component reduces
to σ2

µ/(σ2
µ + σ2

ϵ ), and for the cyclical component, it reduces to σ2
x /(σ2

x + σ2
e ). When

there is confusion (i.e., σ2
z > 0), the Kalman gain becomes larger than the Bayesian

case without confusion. In other words, the confusion mechanism leads to less precise
prior beliefs, and forecasters rely more on the signals, which provide new information.
A similar argument holds true for the Kalman gain for the cyclical component.
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Crucially, the non-zero elements on the sub-diagonal of the Kalman gain matrix,
distinguish our model from the observable-trends model, where the counterpart terms
are zero. This indicates that in our framework, forecasters incorporate information
about the trend (cycle) component when updating their beliefs about the cyclical (trend)
component. Consider a scenario where the private signal indicates that the cyclical
component is stronger than the forecaster’s prior belief. This situation could arise
from three possibilities: Firstly, it might reflect a substantial positive innovation in the
cyclical component itself. Secondly, it could be due to positive noise in the signal.
Thirdly, it might suggest that the actual value of the cyclical component in the previ-
ous period was larger than what the forecaster believed. As forecasters cannot know
the true value of each component with certainty, they will adjust their prior beliefs
by increasing their estimate of the cyclical component from the last period and cor-
respondingly decreasing their estimates of the trend component for both the last and
current periods.

The variance-covariance matrix in Equation (9) warrants further discussion. Firstly,
the elements on the main diagonal correspond to the perceived variance of the trend
and cyclical components, which are influenced by the confusion mechanism. These
variances are larger compared to the case where there is no confusion (i.e., the compo-
nents can be perfectly observed). We denote them as VarT and VarC, respectively.

Secondly, the elements on the sub-diagonal components are non-zero and negative.
That is, forecasters cannot perfectly distinguish between the trend and cycle, which
gives rise to a negative covariance between the beliefs of these two components. Intu-
itively, when there are strong positive signals about the cyclical component, forecasters
will simultaneously revise the cyclical component upward and the trend component
downward. We denote this covariance of beliefs as C̃OV.

The second step is the stage of making forecasts. Forecaster i makes a series of
forecasts about the state in h periods ahead. Under a quadratic utility function, her
optimal prediction is the expected value of the state variable.

Lemma 3. The optimal forecast of forecaster i over horizon h is determined by their
beliefs of trend and cyclical components, i.e.,

Fi,tyt+h = Ei,t[µt + ρhxt] = µi
1,t + ρhxi

1,t.

This lemma says that the trend and cyclical beliefs play different roles over forecast

horizons: the trend belief consistently influences predictions across all horizons, while
the influence of the cyclical belief diminishes as the forecast horizon extends.

The final step involves forecasters revising their beliefs again upon observing the
actual value of the current state (yt). This set of posterior beliefs becomes the prior
beliefs for the next period. The forecasting error present in this set of posterior beliefs
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is the separation error (zi,t). Lemma 4 characterizes its construction.

Lemma 4. Upon observing the actual state value yt, the separation error zi,t present
in the posterior beliefs is given by:

zi,t =
(VarT + C̃OV)(xt − xi

1,t)− (VarC + C̃OV)(µt − µi
1,t)

(VarT + C̃OV) + (VarC + C̃OV)
. (10)

The extent of confusion σ2
z increases as σ2

µ, σ2
x , σ2

e , and σ2
ϵ increase, converges to zero if

any of these parameters goes to zero and is also bounded:

0 ≤ σ2
z ≤ min{VarC, VarT}. (11)

Recall that VarT and VarC represent the variances of forecasters’ posterior beliefs re-

garding the trend and cyclical components, respectively, while C̃OV denotes the cor-
responding covariance between the two components, as shown in Equation (9).

Lemma 4 states that the separation error after forecasters observe the actual state,
is a weighted combination of the error terms in forecasters’ beliefs regarding the trend
and cyclical components before they observe the actual state. If they over-predict the
trend component (i.e., µt − µi

1,t < 0), then zi,t tends to be positive. Conversely, if they
over-predict the cyclical component (i.e., xt − xi

1,t < 0), then zi,t tends to be negative.7

Note that after observing the actual state value, the covariance between beliefs
regarding the trend and cyclical components is represented as −σ2

z . The extent of con-
fusion, denoted by σ2

z , is influenced by two primary factors: the quality of signals (i.e.,
σ2

e and σ2
ϵ ) and the volatility of the state variables (i.e., σ2

µ and σ2
x). First, forecasters

receive private signals about each component in every period, which help them dif-
ferentiate between the two. Consequently, more accurate signals decrease the level
of confusion. Second, when the state innovations in the trend or cyclical component
are more volatile, it becomes more difficult to identify each component, resulting in a
higher level of confusion. Intuitively, the confusion is upper bounded by the uncer-
tainty in either the trend or cyclical beliefs.

4 Forecasts over Horizon: Main Results

4.1 Special Case: Observable Trends

Before presenting our model predictions regarding forecasting behaviors over the fore-
cast horizon, we examine a special case where trends are stochastic, but forecasters can

7Consider a special case nested in Equation (10). When the trend is stable (i.e., σ2
µ = 0), forecasters

can predict the trend component perfectly. Therefore, the error term in their beliefs regarding the trend
component is zero. In this scenario, both the variance of the belief regarding the trend component (VarT)
and the covariance (C̃OV) would also be zero. As a result, the separation error in this case would be
zero.
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observe the actual trend component at the end of each period. This allows forecasters
to perfectly distinguish between the trend and cyclical components. In this scenario,
the key information friction in our model is absent, while all other assumptions remain
unchanged. Contrasting this special case and our benchmark model helps illustrate
the importance of the information friction arising from trends and cycles not being
separable.

In this case, forecasters can perfectly separate the two components, which implies
that the separation error becomes zero (i.e., zi,t = 0) and the variance of the separation
error also reduces to zero (i.e., σ2

z = 0). Consequently, both the Kalman gain matrix in
Equation (8) and the variance-covariance matrix in Equation (9) become standard:

κ =




σ2
µ

σ2
µ+σ2

ϵ
0

0 σ2
x

σ2
x+σ2

e


 and

(
VarT

s C̃OVs

C̃OVs VarC
s

)
=




σ2
ϵ σ2

µ

σ2
ϵ+σ2

µ
0

0 σ2
e σ2

x
σ2

x+σ2
e


 .

In this scenario, the sub-diagonal elements of the Kalman gain matrix are zero, indi-
cating that forecasters do not use information from the trend or cyclical component to
update their beliefs about the other. That is, they treat these components as indepen-
dent, resulting in zero covariance (i.e., C̃OVs = 0).

In the following, we investigate whether this model could help address the two
empirical patterns documented in section 2. We first examine the covariance between
changes in long-run forecasts and cyclical forecasts. Keep in mind that in the empiri-
cal analysis, we take three-year-ahead forecasts (i.e., h = 3Y) as forecasters’ long-run
forecasts. We calculate the difference between h-quarter-ahead forecasts and three-
year-ahead forecasts to obtain the cyclical forecasts. We construct the exact model
counterparts as follows:

Fi,tyt+3Y − Fi,t−1yt−1+3Y = (Ei,t[µt]− Ei,t−1[µt−1]) + ρ3Y(Ei,t[xt]− Ei,t−1[xt−1]),

and
Cych

i,t − Cych
i,t−1 = (ρh − ρ3Y)(Ei,t[xt]− Ei,t−1[xt−1]).

Therefore, the model predicts a positive covariance between changes in the long-run
forecasts and cyclical forecasts:

COVh
F = ρ3Y(ρh − ρ3Y)Var(Ei,t[xt]− Ei,t−1[xt−1]) > 0.

It holds because the belief updating of trend and cyclical components is independent
(i.e., C̃OVs = 0) and the covariance between the changes in trend beliefs and cyclical
beliefs is zero, i.e., cov(Ei,t[µt]− Ei,t−1[µt−1], Ei,t[xt]− Ei,t−1[xt−1]) = 0. In addition, as
the forecast horizon h increases, the model predicts that COVh

F decreases with h, since
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ρ is less than one.
Furthermore, in this special case, the forecast variance across forecasters can be

decomposed into two components:

Forecast dispersionth = E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hϕC

s VarC
s + ϕT

s VarT
s , (12)

where ϕC
s = σ2

x /(σ2
x + σ2

e ) < 1, ϕT
s = σ2

µ/(σ2
µ + σ2

ϵ ) < 1 and E[·] is the mean forecast
across all forecasters. Note the dispersion of forecasts across forecasters is smaller
than the variance of individual forecasters’ beliefs because their information sets are
correlated. This explains why both ϕC

s and ϕT
s are less than one.

When the forecast horizon h increases, the dispersion across forecasters caused by
their noisy information on the cyclical component becomes less significant, i.e., ρ2h

decreases in h. However, the dispersion caused by their noisy information on the
trend component remains stable over the horizon. As a result, the total dispersion
decreases monotonically over the forecast horizon.

In summary, when trends and cycles are separable, the model fails to generate
either of the two empirical patterns documented. In fact, its predictions are exactly
opposite to the observed patterns in the data. We further extend this special case by
allowing the data generation process to be a general ARMA model instead of an AR(1).
However, this does not alter the model predictions. Further discussion of this result
is provided in Appendix B. Moving forward, we will elaborate on the scenario where
the two components are not perfectly separable. We will then explore the conditions
under which the model predictions can be reversed.

4.2 Covariance of Beliefs

The key difference between our benchmark model and the special case is that fore-
casters cannot perfectly observe trends and cycles. As a result, their beliefs about
these two components are correlated, even when they are, in fact, independent. In this
section, we analyze the covariance between forecasters’ beliefs regarding trends and
cycles after they have observed their private signals.

The covariance between forecasters’ beliefs about the trend and cyclical compo-
nents, captured by C̃OV in Equation (9), is a crucial element of our model. This co-
variance depends on the volatility of the two components as well as the persistence
of the cyclical component. Proposition 1 provides a detailed characterization of how
these factors determine the sign and magnitude of the covariance of beliefs.

Proposition 1. (i) The magnitude of the covariance between the trend and cyclical beliefs
|C̃OV| first increases and then decreases in the variance of trend innovations σ2

µ; and it is zero
when σ2

µ = 0 and converges to zero when σ2
µ goes to ∞. (ii) The magnitude of the covariance

increases with the persistence of the cyclical component (ρ).
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To understand part (i), recall the covariance is characterized by C̃OV = −ρσ2
ϵ σ2

e σ2
z /Ω.

As the variance of trend innovations (σ2
µ) increases, two effects emerge. Firstly, Lemma

4 has shown that forecaster i’s confusion, represented by σ2
z , increases. Secondly, fore-

caster i’s uncertainty about the state, represented by Ω, also increases. When the vari-
ance of trend innovations remains relatively small, the increase in confusion (σ2

z ) dom-
inates. Conversely, when it is relatively large, the increase in overall variance (Ω)
dominates.

Consider the following polar cases. When the trend is stable (i.e., σ2
µ = 0), there is

no confusion (i.e., σ2
z = 0). Therefore, the covariance is zero. When the trend innova-

tion is very large (i.e., σ2
µ → ∞), forecaster i’s uncertainty about the state is also very

large (i.e., Ω → ∞), the confusion mechanism becomes irrelevant, and the covariance
converges to zero too.

To understand part (ii), we first examine an extreme case where the persistence of
the cyclical component is zero (i.e., ρ = 0). That is, the cyclical component becomes
independent over time. Consequently, signals regarding the cyclical components offer
information solely about the cyclical components, which are uninformative for the
trend components. Therefore, the covariance of beliefs regarding the two components
is rendered to be zero. As the persistence of the cyclical component increases, signals
regarding the cyclical components become more valuable for revising trend beliefs,
giving rise to a larger covariance in magnitude.

4.3 Covariance between changes of long-run forecasts and cyclical forecasts

In this section, we examine the model’s prediction for the covariance between changes
in long-run and cyclical forecasts, which can be constructed from the data. Interest-
ingly, we can relate the observable covariance in the data to the unobservable covari-
ance between trend and cyclical beliefs in the model. We show the necessary and
sufficient conditions under which our model can produce either a positive or negative
covariance between changes in long-run and cyclical forecasts, and that the magnitude
of the covariance decreases as the horizon h increases.

We begin our analysis by decomposing both the changes in the long-run forecasts
and the cyclical forecasts. The changes in long-run forecasts is captured by changes in
the forecasts for h = 3Y periods ahead, which can be rewritten by:

Fi,tyt+3Y − Fi,t−1yt−1+3Y = (µi
1,t − µi

1,t−1) + ρ3Y(xi
1,t − xi

1,t−1).

The changes in the long-run forecasts therefore reflect one’s belief updates both in
trend component (i.e., µi

1,t − µi
1,t−1) and cyclical component (i.e., xi

1,t − xi
1,t−1). On

the other hand, the changes in the cyclical forecasts consist only the belief changes
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regarding the cyclical component:

Cych
i,t − Cych

i,t−1 = (ρh − ρ3Y)(xi
1,t − xi

1,t−1). (13)

The covariance between the changes in the long-run forecasts and cyclical forecasts
can be written as follows:

cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cych
i,t − Cych

i,t−1) (14)

= (ρh − ρ3Y)︸ ︷︷ ︸
(+)

{
C̃OV + ρ3YVarC

}

︸ ︷︷ ︸
(+) or (−)

.

The covariance COVh
F can be positive or negative. For example, when a forecaster re-

ceives a signal indicating a stronger-than-expected cyclical component in the current
period, she tends to revise the cyclical forecasts upwards. That is, Cych

i,t −Cych
i,t−1 > 0.

However, she can revise the long-term forecast either upwards (Fi,tyt+3Y − Fi,t−1yt−1+3Y >

0) or downwards (Fi,tyt+3Y − Fi,t−1yt−1+3Y < 0).
On the one hand, since the long-term forecast is partially driven by cyclical compo-

nents, she may revise it upwards too. On the other hand, because the cyclical compo-
nent is persistent, she revises her belief about the previous period’s cyclical component
upwards. This revision leads her to adjust her belief about the previous period’s trend
component downwards. This mechanism is shown in Section 3.2 (see Equation 9).
It would suppress the estimate of trend component of the current period, causing a
downward adjustment of the long-term forecasts.

The covariance term can be further decomposed into two parts, as shown in the
second line of Equation (14). The first term, (ρh − ρ3Y), is always positive and its
magnitude depends on the forecast horizon h used to construct the cyclical forecasts.
It decreases as the horizon h increases. When the cyclical forecast is constructed using
the nowcast (i.e., h = 0), the first term reaches its largest value. As h approaches three
years (i.e., h = 3Y), the first term goes to zero.

The second term can be either positive or negative. It consists of the covariance be-
tween trend and cyclical beliefs (i.e., C̃OV), and the variance of the cyclical belief (i.e.,
VarC), each corresponding to one of the two mechanisms discussed earlier. Proposi-
tion 2 presents the necessary and sufficient conditions for the sum of the two terms to
be negative.

Proposition 2. There exists a threshold σ2
µ for the variance of the trend component innovation,

such that:
(i) for any σ2

µ ∈ [σ2
µ,+∞), COVh

F is positive;
(ii) for any σ2

µ ∈ (0, σ2
µ), there exists a threshold σ2

x such that COVh
F is negative if and only if
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Figure 4. The sign and the magnitude of the covariance between changes in the long-run forecasts and
cyclical forecasts. Figure 4(a) demonstrates the sign of the COVh

F . For a pair of state innovation (σ2
µ, σ2

x ),
the model predicts a negative covariance, if it lies inside Region I and a positive covariance if it lies in
Region I I. Figure 4(b) plots the COVh

F at horizon h = 0, 1, 2, 3, 4. The figure shows that the magnitude
of COVh

F is always decreasing in h.

σ2
x < σ2

x; and it is positive, otherwise;
(iii) and the magnitude of COVh

F is decreasing as the horizon h increases.

Figure 4 illustrates how the sign and the magnitude of COVh
F change, which is

characterized by Proposition 2. Figure 4(a) demonstrates the sign of COVh
F as the vari-

ance of the trend and cyclical innovation varies. For a pair of signal quality (captured
by σ2

ϵ and σ2
e ), the model predicts a negative covariance when the trend component is

moderately volatile, and the cyclical component is not excessively volatile.
As shown in Equation (14), the changes in long-run forecasts and cyclical forecasts

exhibit a negative covariance when C̃OV dominates. As shown in Proposition 1, this
scenario occurs when the trend component is neither too stable nor too volatile. That
explains item (i) in this proposition.

In addition, as the variance of the cyclical innovation (i.e., σ2
x) increases, the vari-

ance of belief changes concerning the cyclical component (represented by the second
term on the right-hand side of Equation (14)) also increases. If the cyclical component
is too volatile, the confusion mechanism becomes less relevant. We show the existence
of a threshold, σ2

x, for the volatility of cyclical components, such that changes in trend
forecasts and cyclical forecasts exhibit a negative covariance when σ2

x is lower than
this threshold. This explains item (ii) in this proposition.

Figure 4(b) shows that the magnitude of COVh
F decreases as the forecast horizon

increases. As Equation (13) shows, as h increases, changes in cyclical forecasts cor-
respond to a smaller proportion of cyclical updates. That is, (ρh − ρ3Y) decreases in
h. Therefore, the magnitude of the covariance decreases and converges to zero as the
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Figure 5. Dispersion decomposition as the horizon extends. Note: This figure shows how each part of
the dispersion changes as the forecast horizon extends.

forecast horizon h increases. That explains item (iii) in this proposition.

4.4 Forecast dispersion

We proceed to examine the prediction of our model regarding the relationship between
the forecast dispersion and the forecast horizon. In our model, the forecast dispersion
can either increase or decrease as the forecast horizon becomes longer. Proposition
3 characterizes the necessary and sufficient conditions for the forecast dispersion to
increase or decrease over the forecast horizon.

To expound the mechanism, we decompose the dispersion of forecasts across fore-
casters for any horizon into three components: the variance arising from heteroge-
neous beliefs about the trend component, the cyclical component, and their covari-
ance. To be specific, the forecast dispersion is given by:

E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hVarCϕC + VarTϕT + 2ρhC̃OVϕCOV , (15)

where 0 < ϕC < 1, 0 < ϕT < 1 and 0 < ϕCOV < 1 are positive scalars, whose
expressions are collected in the proof of Proposition 3. Note that E[·] is the mean
forecast across all forecasters.

Figure 5 illustrates how each part changes as the forecast horizon extends. Fig-
ure 5(a) shows that the variance from heterogeneous beliefs about the cyclical com-
ponent decreases when the forecast horizon extends. This reduction occurs because
the cyclical component’s influence diminishes in longer-term forecasts. Figure 5(b)
demonstrates that the variance due to heterogeneous beliefs about the trend compo-
nent remains constant across all horizons. This is expected, as the trend component’s
influence is consistent regardless of the forecast horizon. The behavior of these two
components over different horizons aligns with what is observed in the special case
(see section 4.1).

Figure 5(c) depicts the covariance term. Its magnitude decreases as the forecast
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horizon extends, due to the diminished importance of the cyclical component over
longer horizons. This feature, though intuitive, is crucial for understanding our model’s
predictions. On the one hand, the covariance term is negative, reducing overall fore-
cast dispersion across forecasters for any horizon. On the other hand, as the forecast
horizon extends, the impact of the covariance term diminishes, leading to a force that
drives up the forecast dispersion.

The change in forecast dispersion over a longer horizon is determined by the rel-
ative strength of two forces: the diminishing force from dispersion due to heteroge-
neous beliefs about the cyclical component, and the increasing force from the covari-
ance term. Interestingly, in this model, forecast dispersion must increase with the fore-
cast horizon when h is large enough. The dispersion of cyclical beliefs converges to
zero more rapidly as the forecast horizon extends than the covariance between trend
and cyclical beliefs. This is evident from Equation (15): ρ2h converges to zero more
quickly than ρh. Therefore, when the forecast horizon is sufficiently long, the increas-
ing force of the covariance becomes dominant, leading to greater dispersion. Proposi-
tion 3 fully characterizes this property.

Proposition 3. The dispersion of forecasts across forecasters is strictly increasing in the fore-
cast horizon h, if and only if:

h > h =
1

ln ρ︸︷︷︸
−

ln
−C̃OV
VarC

ϕCOV

ϕC W
︸ ︷︷ ︸

− or +

; (16)

where W < 1 is a positive scalar given by E[(zi,t − E[zi,t])
2]/σ2

z and ln ρ < 0.

When the threshold is negative (h ≤ 0), forecast dispersion always increases over
the forecast horizon. This scenario occurs when the variance of the trend innovation
is moderate. As shown in Proposition 1, in such cases, the impact of the covariance
between trend and cyclical beliefs (i.e., C̃OV) is greatest.

Conversely, when the threshold value on the right-hand side of Equation (16) ap-
proaches infinity (h → ∞), forecast dispersion always decreases over the forecast hori-
zon. This scenario occurs in the special case described in section 4.1, where forecasters
can perfectly differentiate between trend and cyclical components, resulting in a co-
variance term of zero.

5 Applications

In the preceding sections, we presented a model of expectation formation where fore-
casters cannot perfectly separate cyclical and trend components. This model accounts
for empirical regularities observed in SPF data. We now provide two applications of
this framework. First, in Section 5.1, we explore its use in analyzing policy-relevant
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issues. Second, in Section 5.2, we study the role of this friction in a policy game, high-
lighting its relevance in policy design.

5.1 Application: Explicit Inflation Targeting and Forecasting Behaviors

In this section, we examine the effects of a significant policy change in the United States
in 2012 - the introduction of explicit inflation targeting. This new approach to mon-
etary policy implementation began with an announcement on January 25th by Ben
Bernanke, the Chairman of the U.S. Federal Reserve, who set a specific inflation target
of 2%. Prior to this policy change, the United States did not have an explicit inflation
target, relying instead on regularly announced desired target ranges for inflation.8

Through the lens of our model, the implication of this policy for forecasters is that
the underlying data generation process for inflation could undergo changes which
would necessitate changes in forecasting behaviors. To quantify the underlying changes
caused by the policy implementation, we begin by dividing the sample into two sub-
samples: the period before 2012 and the period after. We then structurally estimate the
model using moments obtained from both the pre- and post-2012 sub-samples. We
then assess the estimated changes in the data generation process and examine how
they impact the empirical patterns of forecasts quantitatively. While all the details of
the estimation are provided in Appendix A.5, we summarize the estimation proce-
dures below. Note that we use the ten-year-ahead forecasts of the inflation rate in the
SPF as the long-term forecasts because the SPF does not provide three-year-ahead fore-
casts for inflation. The ten-year-ahead forecast data have been available since 1991Q4.

Our model can be fully specified by five parameters: {ρ, σ2
µ, σ2

x , σ2
ϵ , σ2

e }. The first
three parameters are related to the data generating process, while the last two capture
the precision of the signals. To structurally estimate the values of these parameters,
we follow the approach of Chernozhukov and Hong (2003) and compute Laplace-type
estimators (LTE) using a Markov Chain Monte Carlo method. To identify changes in
the underlying parameters, we estimate them for each subsample period.

We estimated the model parameters by targeting the forecast variance across differ-
ent horizons in each subsample period. We then used the estimated model to simulate
data and examine the covariance patterns, which were not targeted in the estimation.
This approach allowed us to assess the model’s quantitative predictions about the ef-
fects of the policy shift in 2012.

To be concrete, we compute the across quarters average variances of forecasts for

8Before the era of the Greenspan Fed, the Federal Reserve operated under a stop-and-go policy
without a specific inflation target. Starting in 1992, the Greenspan Fed aimed to maintain low long-
term inflation rates (see Goodfriend 2004 for a comprehensive review). From the 1990s until the Great
Recession, there was a consensus among market participants and FOMC members that the optimal
inflation target would fall between 1% and 2%. However, there was no explicit inflation target (Shapiro
and Wilson 2019). In January 2012, the FOMC announced a target of 2% for the inflation rate, marking
the first time in its history that it adopted an explicit inflation-targeting approach.
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Table 2. Estimated Model Parameters

Parameter Estimation

Pre-2012 Post-2012

Mean 90 HPDI 95 HPDI Mean 90 HPDI 95 HPDI

σ2
µ 1.14 (0.96,1.38) (0.91,1.38) 0.84 (0.66,1.08) (0.61,1.08)

σ2
x 2.57 (2.41,2.67) (2.43,2.75) 2.60 (2.37,2.76) (2.40,2.88)

σ2
ϵ 0.78 (0.62,0.89) (0.61,0.95) 0.72 (0.48,0.89) (0.47,0.97)

σ2
e 1.62 (1.47,1.76) (1.47,1.77) 1.54 (1.31,1.74) (1.30,1.76)

ρ 0.84 (0.73,0.94) (0.74,0.97) 0.64 (0.53,0.76) (0.53,0.79)
Note: This table presents the estimated parameter values for the pre-2012 and post-2012
periods. We provide the mean values, as well as the 90% and 95% Highest Posterior
Density Intervals (HPDI).

different horizons, specifically for h = 0, 1, 2, 3, 4, using the subsamples before and
after 2012. These variances will be treated as the target moments in our estimation
and denoted as m̂. Furthermore, we construct the model counterpart of m̂ and define
the distance between the two as follows:

Λ(Θ) = [m(Θ)− m̂]′Ŵ[m(Θ)− m̂], (17)

where Ŵ is the weighting matrix, where the diagonal elements represent the precision
of the moments m̂. We solve for the parameter values (Θ) to minimize the constructed
distance, that is, finding the set of parameter values that best matches the forecast
variance at each forecast horizon.

The estimated parameters for each subsample are reported in Table 2 together with
the 90% and 95% high posterior density interval (HPDI). A comparison of the two
sets of estimated parameters reveals that there are minimal changes in the innovations
in cycles variance (i.e., σ2

x) and the precision of signals on trends and cycles (i.e., σ2
ϵ

and σ2
e ) following the policy change in 2012. This indicates that this set of parameters

remain relatively stable before and after the policy change.
There are two noteworthy changes. First, there is a sizable decrease in the vari-

ance of trend innovation (i.e., σ2
µ). Before the policy change, the estimated variance

was 1.14. After the policy change, it dropped to 0.84. This suggests that the trend is
more stable after the policy implementation, consistent with the policy goal of pro-
viding a specific long-run target. Second, the persistence of the cyclical component
(i.e., ρ) decreases. Before the policy change, the estimated persistence of the cyclical
component was 0.84, aligning with previous literature. For instance, Carvalho et al.
(2023) estimated a value of ρ = 0.87. After the policy change, the estimated persistence
dropped to 0.64, indicating that short-term fluctuations have become less persistent.

27



0 1 2 3 4
0.1

1.2

h

E
[(
F

i
,t
y
t
+

h
−

E
[F

i
,t
y
t
+

h
])

2
]

Pre-2012 (Data)

Pre-2012 (Model)

(a) Forecast variance before 2012

0 1 2 3 4
0.1

1.2

h

E
[(
F

i
,t
y
t
+

h
−

E
[F

i
,t
y
t
+

h
])

2
]

Post-2012 (Data)

Post-2012 (Model)

(b) Forecast variance after 2012

Figure 6. Forecast variance over horizon for the subsamples before and after 2012. Black dots represent
results from SPF data, while white dots depict simulated data. Figure 6(a) shows forecast variance before
2012, and Figure 6(b) illustrates it after 2012. The gray solid line marks the 95% confidence interval
using the bootstrap method. Our model fits the data closely in both sub-samples. The pre-2012 period
spans from 1990Q1 to 2011Q4, and the post-2012 period from 2012Q1 to 2019Q4.

The observed change in the estimated persistence of the cyclical component is intu-
itive. Following the policy change, the central bank would respond more aggressively
to short-term deviations from the long-term target. Consequently, the persistence of
the cyclical component would decrease.

Next, we investigate whether the estimated model can reproduce the set of findings
documented in Section 2 concerning inflation forecasts before and after 2012. First, we
examine the forecast variance across various forecast horizons, which were targeted
moments in the estimation. Figure 6 displays the forecast variance of the SPF data and
the simulated data before and after 2012. The black dots represent results obtained
using the SPF data, while the white dots represent the simulated data. The gray solid
line corresponds to the 95% confidence interval using the bootstrap method. In both
sub-samples, the simulated models closely fit the empirical data.

In the SPF data, a notable difference between the two sample periods is observed:
the forecast variance declines more rapidly as the forecast horizon extends in the post-
2012 sub-sample compared to the pre-2012 period. Specifically, in the pre-2012 sub-
sample, the forecast variance decreases by 32.5%, from 0.833 at the now-cast (h = 0) to
0.562 for forecasts one quarter ahead. In contrast, the post-2012 subsample exhibits a
much sharper decline of 52.5%, with the variance dropping from 0.737 at the now-cast
to 0.350 for one-quarter-ahead forecasts.

The change in empirical patterns across the two periods aligns qualitatively with
our model’s predictions. According to Proposition 1, when the trend component be-
comes more stable (i.e., σ2

µ decreases) and the cyclical component becomes less persis-
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Figure 7. The estimated COVh
F for the subsamples before and after 2012. Black dots represent the results

obtained using SPF data, while white dots represent the simulated data. In Figures 7(a) and 7(b), we
observe that the covariance is negative before 2012 and positive or close to zero after 2012. The sample
period for the pre-2012 sub-sample ranges from 1990Q1 to 2011Q4, while the post-2012 sub-sample
spans from 2012Q1 to 2019Q4.

tent (i.e., ρ decreases), the magnitude of the negative covariance between trend and
cyclical beliefs decreases. This is because, as the trend component becomes more sta-
ble, forecasters can better separate the trend from the cycle; and as the persistence of
the cyclical component decreases, new information about the cyclical component be-
comes less relevant for updating the trend component. As a result, the force from the
confusion mechanism plays a less important role, and the overall forecast dispersion
decreases at a faster rate.

Second, we examine the covariance between changes in the long-run forecasts and
cyclical forecasts in both sub-samples. It is important to stress that this covariance was
not a targeted moment in the estimation.

The empirical results from the SPF data reveal an intriguing shift in forecasting
behavior. Figure 7(a) shows a significant negative covariance between changes in long-
run forecasts and cyclical forecasts in the pre-2012 sub-sample. In constrast, Figure
7(b) illustrates that this covariance becomes positive and insignificant in the post-2012
sub-sample.

This reversal in sign following the implementation of inflation targeting aligns with
our model’s prediction. As previously discussed, when the trend component becomes
more stable and the cyclical component less persistent, the confusion mechanism’s ef-
fect weakens. Consequently, the empirical covariance patterns should more closely
match those predicted by the observable-trend model in section 4.1, where the con-
fusion mechanism is absent. Our model predicts that after the policy change, the co-
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variance between changes in trend forecasts and changes in cyclical forecasts is more
likely to be non-negative.

Qualitatively, the estimated results from the simulated data closely align with the
empirical results using the SPF data in both subsamples. Figure 7 contrasts the results
in the SPF data with those from the simulation data. Despite its simplicity and limited
number of parameters, our model effectively captures the shift in forecasting patterns
following the policy change and quantitatively reproduces the changes observed in
the actual data.

5.2 Application: Optimal Monetary Policy and Information Friction

In this section, we investigate the policy implications of the new information friction
we introduced. Policy makers may possess a superior ability to distinguish between
trends and cycles compared to private sector agents, owing to their access to more
information sources and better research capabilities. There may exist a disparity in
the degree of confusion between policy makers and the public. Crucially, if policy
makers overlook this discrepancy in information friction when designing policies, the
resulting policies may be sub-optimal, potentially leading to social welfare losses. To
illustrate, we introduce this friction into a simple policy game following Barro and
Gordon (1983) and build upon Huo et al. (2024), a new contribution in expectation
formation.

Central Bank’s Objective In this model, there is a central bank that designs monetary
policy and agents in the private sector. The central bank selects the inflation rate πt to
minimize the total social loss given by:

L = E[U2
t + ω(πt − π∗

t )
2],

where Ut represents the unemployment rate and ω captures the central bank’s prefer-
ence for targeting the optimal inflation rate over reducing the unemployment rate. πt

denotes the inflation rate in period t, determined by the central bank. π∗
t is the optimal

inflation rate in period t, following a stochastic process.
The unemployment rate Ut is determined by the average inflation surprise accord-

ing to:
Ut = UN − β(πt − E[πt]),

where UN represents the natural unemployment rate, β is the slope of the Phillips
curve, and E[πt] denotes the average forecast of the inflation rate for the current pe-
riod. To simplify notation, we assume that UN is zero.

Trend, Cycle and Information Structure We assume that π∗
t comprises a trend com-
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ponent and a cyclical component:

π∗
t = µπ

t + xπ
t ,

µπ
t = µπ

t−1 + γ
µ
t and xπ

t = ρxπ
t−1 + γx

t ,

where γ
µ
t and γx

t represent the state innovations of the trend and cyclical components.
We assume that γ

µ
t and γx

t follow normal distributions with zero mean and variances
σ2

µ and σ2
x , respectively. That is, we assume the state variable π∗

t follows the same
data-generating process that we discussed in the benchmark model (section 3.1).

To model the information advantage of the central bank, we assume that the central
bank can observe the trend and cyclical components of optimal inflation at the end of
each period, but agents cannot. That is, the central bank could observe both µπ

t−1 and
xπ

t−1 while agents can only observe π∗
t−1. This represents a situation where the central

bank can perfectly separate trend and cycle, but agents cannot.
Upon deciding on the inflation rate for the current period, the central bank cannot

observe the actual value of each component. Instead, the central bank observes signals
regarding the trend and cyclical components:

sµ
c,t = µπ

t + ϵc,t and sx
c,t = xπ

t + ec,t,

where ϵc,t and ec,t are the noise in the signal. The noise terms are assumed to be nor-
mally distributed with zero mean and variance σ2

ϵ,c and σ2
e,c respectively.

Three comments about this model are noteworthy. First, we assume that the cen-
tral bank lacks perfect information about trends and cycles when designing policy at
the beginning of each period, only obtaining this knowledge at the period’s end. Con-
sequently, the central bank’s belief updating process regarding these two components
is independent, while the agents’ process is not. Second, our assumption about the
difference in information friction is stark and made to simplify our analysis, as the key
focus of our model is to examine how differences in the degree of separability could
affect optimal policy design. We could extend this model to allow imperfect obser-
vation of trends and cycles by the central bank. The insights would still hold as long
as the central bank is better at separating trend and cycle than the agents. Third, our
results do not rely on the fact that π∗

t−1 is revealed to agents. The same qualitative
pattern could emerge if agents can only observe πt−1.

Setting Inflation Following Barro and Gordon (1983), we consider a scenario in which
the central bank employs a time-consistent policy:

πt = (1 − α)ECB[π
∗
t ] + αECB[E[πt]], α =

β2

β2 + ω
,
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where ECB[·] represents the belief of the central bank.
In essence, the central bank needs to decide between targeting the optimal inflation

rate or targeting the average forecasts. The parameter α captures the central bank’s in-
tention to reduce the unemployment rate compared to targeting the optimal inflation
rate. When α is zero, the central bank only targets the optimal inflation rate, resulting
in πt = ECB[π

∗
t ]. Conversely, when α = 1, the central bank only cares about the un-

employment rate, leading to πt = ECB[E[πt]].

Agents The agent i’s utility is determined by the difference between their prediction
and the actual inflation rate:

U(Fi,tπt, πt) = −(Fi,tπt − πt)
2.

Agents cannot directly observe the optimal inflation target π∗
t ; instead, they observe

private signals regarding the trend and cyclical components:

sµ
i,t = µπ

t + ϵi,t and sx
i,t = xπ

t + ei,t,

where ϵi,t and ei,t represent the noise present in the private signals. These noise terms
are assumed to follow a normal distribution with zero mean and variances σ2

ϵ and σ2
e

respectively.
In equilibrium, the optimal policy is contingent on the optimal inflation target (π∗

t )
and the central bank’s perception of the average expectation (ECB[E[πt]]). We explore
two scenarios: in the first case, the central bank knows that agents in the private sector
cannot observe the actual values of the trend and cyclical components when setting
inflation. In the second case, the central bank mistakenly believes the public knows
the actual values of the trend and cyclical components as the central bank itself does.
Lemma 5 characterizes the average forecast when the public can or cannot observe the
value of the two components.

Lemma 5. (i) If the public can observe the actual values of the trend and cyclical
components at the end of each period, the average forecast of the current inflation is:

Eob[πt] = I [(I − κob)θt−1 + κobθt], (18)

where κob is the Kalman gain matrix:

κob =




σ2
µ

σ2
µ+(1−α)−1σ2

ϵ
0

0 σ2
x

σ2
x+(1−α)−1σ2

e


 .

(ii) If the public cannot observe the actual values of the trend and cyclical components,
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the average forecast of the current inflation is:

Eun[πt] = I [(I − κun)θt−1 + κunθt], (19)

where θt−1 is the average belief of the trend and cyclical component at the end of
period t − 1, and κun is the Kalman gain matrix:

κun = κ

(
Cµ 0
0 Cx

)
=




V+σ2
e (σ

2
z +σ2

µ)

Ω − ρσ2
ϵ σ2

z
Ω

− ρσ2
e σ2

z
Ω

V+σ2
ϵ (σ

2
x+ρ2σ2

z )
Ω



(

Cµ 0
0 Cx

)
.

Note that κ is specified in Equation (8). The constants 0 ≤ Cµ ≤ 1 and 0 ≤ Cx ≤ 1
depend on α; when α = 0, Cµ = Cx = 1, and when α = 1, Cµ = Cx = 0.

Since the actual inflation depends on the average forecast, there is an additional
coordination motive for the public compared to the benchmark model. This coordina-
tion motive leads individuals to place less weight on private signals, which is captured
by (1 − α)−1 in the first case and Cµ and Cx in the second case, shown by the theorem
provided by Huo and Pedroni (2020).

Building on this set of characterization, we investigate the optimal policy and the
corresponding social welfare loss in two scenarios.

Proposition 4. Suppose agents cannot observe the actual values of the trend and cyclical
components. (i) If the central bank knows that the public does not know the value of each
component, the total social welfare loss is given by:

L1 = [β2(1− α)]E
[
(Eun[πt]− π∗

t )
2
]
+E

[
[(1 − α)(ECB[π

∗
t ]− π∗

t ) + α(Eun
CB[πt]− Eun[πt])]

2
]

.
(20)

(ii) If the central bank mistakenly perceives that the public knows the value of each compo-
nent, the total social welfare loss is given by:

L2 = [β2(1 − α)]E
[
(Eun[πt]− π∗

t )
2
]
+ E

[
[(1 − α)(ECB[π

∗
t ]− π∗

t ) + α(Eun
CB[πt]− Eun[πt])]

2
]

+ αβ2E
[
(Eob

CB[πt]− Eun
CB[πt])

2
]

, (21)

where Eob
CB[πt] = ECB[Eob[πt]], Eun

CB[πt] = ECB[Eun[πt]] are the central bank’s perceptions
regarding the average belief.

(iii) The total social welfare loss is always larger when the central bank believes that the
public could separate the trend and cyclical components perfectly, i.e., L1 < L2.

Proposition 4 characterizes the total social welfare loss in both cases and shows
that the welfare loss is always larger when the central bank mistakenly perceives the
public’s ability to separate the two components. Equation (20) demonstrates that when
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Figure 8. The figure plots the total social welfare loss for the two cases over different α and σ2
µ. The

solid line shows the total loss when the public cannot observe the actual values of the trend and cyclical
components, and the central bank acknowledges this. The dashed line shows the total social welfare loss
when the public cannot observe the actual values of the trend and cyclical components, but the central
bank mistakenly believes the public can observe these values. The total loss of the latter is always higher
than that in the first case.

the central bank accurately assesses the public’s ability to separate components, the
welfare loss arises from two sources: (1) the deviation of the average forecast from
the optimal inflation rate, and (2) a weighted average of two forecasting errors - the
central bank’s error in predicting the optimal inflation rate and its error in estimating
the public’s average forecast.

Contrasting with Equation (20), we observe from Equation (21) that when the cen-
tral bank mistakenly believes the public knows the actual values of the trend and cycli-
cal components, it results in an additional welfare loss, captured by the third term in
Equation (21). This additional loss term depends on the disparity between the central
bank’s perceived average beliefs under two scenarios: when the public can perfectly
separate the two components and when they cannot (i.e., Eob

CB[πt]− Eun
CB[πt]).

Figure 8(a) illustrates how social welfare loss (L1 and L2) varies with α for the two
cases. When α is small, social welfare primarily depends on the deviation from the
optimal inflation rate. This results in similar welfare losses for both cases, as α2β2 is
also small. As α increases, the welfare loss becomes more sensitive to the unemploy-
ment rate and average forecast. Thus, when the central bank misperceives the public’s
ability, it leads to a larger additional loss for higher values of α.

Figure 8(b) shows how social welfare loss varies with σ2
µ. When σ2

µ = 0, the public
perfectly separates trend and cyclical components, resulting in identical losses for both
cases. For σ2

µ > 0, misperceiving public ability always induces additional welfare loss
due to forecast discrepancies between the central bank’s perception and reality.
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6 Extensions and Discussions

6.1 Forecasts of Other Forecasters

In this section, we explore a scenario where forecasters have access to a richer set of
information. Specifically, we examine the case where forecasters not only observe the
actual state value but also the forecasts made by their peers across various horizons.
That is, we assume that at the end of period t, forecaster i observes both the current
period’s actual state value and the distribution of Fi,tyt+h across all forecasters. We
will show that this additional information enhances the forecasters’ estimates regard-
ing both trend and cyclical components. However, despite this expanded information
set, forecasters still cannot perfectly distinguish between the trend and cyclical com-
ponents.

While Appendix C.2 provides a complete characterization, we discuss the key in-
tuitions in the following. In our model, the individual forecast error comprises both
the individual-specific forecast error and the common forecast error. The individual-
specific forecast error arises from the noise term in the private signals (i.e., ϵi,t and
ei,t), while the common forecast error arises from the state innovations (i.e., γ

µ
t and

γx
t ). The observation of forecasts from others helps to eliminate the individual-specific

error and reduce the separation error. Consequently, forecaster i would anchor to the
consensus beliefs after observing the entire distribution, as it includes only the com-
mon forecast error.

After observing the forecasts of others, the separation error, zi,t, becomes common
across all forecasters (i.e., zi,t = zj,t for any i, j). We denote this common separation
error as zt. Importantly, we show that zt remains non-zero, even when forecasters
can observe all the forecasts from others. This implies that they still cannot perfectly
separate the trend and cyclical components, and the key results from our benchmark
model continue to hold.

To understand why the common forecast error is non-zero in the steady state, in
Appendix C.2, we show that the common separation error zt is a weighted average
of the consensus forecast errors regarding the two components and only includes the
state innovations. The common separation error is still non-zero given that the con-
sensus forecast error is non-zero.

In summary, these findings demonstrate that our benchmark model’s key results
remain robust even when forecasters have access to richer information sets, as the key
friction of separating trend and cyclical components persists.

6.2 Misinterpretation of Signals

The previous sections characterized our benchmark model and examined its applica-
tion in analyzing various issues related to patterns of expectation formation. In this
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section, we will explore an alternative approach to modeling trend-cycle confusion
and compare its implications with those of our model.

Specifically, we consider the source of confusion arises from misinterpreting sig-
nals. In this model, forecasters can observe both components at the end of each pe-
riod. However, they may misinterpret the signals before making forecasts, mistaking
a trend signal for a cyclical one or vice versa. Appendix C.3 provides all the details of
the model, including assumptions, characterizations, and results. We summarize the
findings and intuitions below.

In this model, forecasters can perfectly separate the two components at the end of
each period (i.e., σ2

z = 0). Therefore, forecasters would update their beliefs regarding
the trend and cyclical components independently, a key difference from our model. As
a result, in this alternative model, the covariance between an individual’s trend beliefs
and cyclical beliefs is zero (C̃OV = 0); therefore, the covariance between changes in
long-term and cyclical forecasts is always positive (COVh

F ≥ 0), which contradicts our
empirical findings.

However, in this model, forecast dispersion may increase as the forecast horizon ex-
tends under certain conditions. The confusion between trends and cycles arises from
only a fraction of forecasters misinterpreting the signals, which leads to a negative
covariance between the cross-forecaster mean trend and cyclical beliefs at the aggre-
gate level. For instance, when a positive trend signal is given, a group of forecasters
misinterprets it as a cyclical signal. This misinterpretation results in lower mean trend
beliefs across all forecasters than would be the case without misinterpretation, and
higher mean cyclical beliefs across all forecasters. This mechanism weakens over the
forecast horizon, constituting a force that drives up forecast dispersion.

6.3 Revisiting CG Regression

In this section, we revisit the seminal work by Coibion and Gorodnichenko (2015) and
examine the empirical approach they propose within our framework. In that study,
they propose a new specification to quantify the degree of information rigidity or the
extent of information frictions using forecast data. They consider the following con-
sensus level regression:

yt − Ftyt︸ ︷︷ ︸
Forecast Error

= c + βCG(Ftyt − Ft−1yt︸ ︷︷ ︸
Forecast Revision

) + vt, (22)

where Ftyt is the consensus or mean forecast of yt across forecasters, i.e., Ftyt ≡ E[Fi,tyt].
The main finding of Coibion and Gorodnichenko (2015) is that the coefficient βCG is
positive for many macroeconomic variables. This indicates a positive correlation be-
tween the consensus forecast error (FE) and the consensus forecast revision (FR). That
is, the ex post mean forecast error across forecasters is systematically predictable using
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ex ante mean forecast revisions. The documented predictability can be interpreted as
the gradual adjustment of beliefs by all forecasters to noisy information.

In a setting where the macroeconomic variable follows an AR(1) process (or an
even more general stationary process), Coibion and Gorodnichenko (2015) show that
the estimated “CG coefficient”(i.e., βCG in specification (22)) corresponds to the extent
of information friction within the framework of noisy information.

In our framework, the data generation process includes non-stationary trend com-
ponents, which forecasters cannot perfectly distinguish from cyclical components. Propo-
sition 5 re-examines this approach and investigates how the CG coefficient relates to
the extent of underlying information frictions in this environment.

Proposition 5. When yt consists of both trend and cyclical components described by Equation
(5), the CG coefficient βTrend

CG , estimated using Equation (22), can be decomposed by:

βTrend
CG =

1 − κ11

κ11
+

1 − κ22

κ22︸ ︷︷ ︸
(+) E f f ect o f noisy in f ormation

+
κ11κ12(κ21 − κ22) + κ22κ21(κ12 − κ11)

κ11κ22(κ11κ22 − κ12κ21)︸ ︷︷ ︸
(+) E f f ect o f con f using trends and cycles

(23)

− Iκ−1(I − κ)I ′
cov(Ftyt − Ft−1yt, F2,t−1yt − Ft−1yt)

var(Ftyt − Ft−1yt)︸ ︷︷ ︸
(+) E f f ect o f the second updating

> 0,

where I is the identity matrix, κ is the Kalman gain matrix specified in Equation (8), and κij

represents the element at row i and column j of the Kalman gain matrix.

Proposition (5) implies that the estimated βTrend
CG in this environment provides a

lower bound for the extent of information friction. To understand, we start by charac-
terizing the consensus forecast error as follows:

yt − Ftyt︸ ︷︷ ︸
Forecast Error

= Iκ−1(I − κ)I ′ (Ftyt − Ft−1yt)︸ ︷︷ ︸
Forecast Revision

−Iκ−1(I − κ)I ′ (F2,t−1yt − Ft−1yt)︸ ︷︷ ︸
E f f ect o f the second updating

,

(24)

where F2,t−1yt is the mean forecast across forecasters after observing the actual state
value yt−1, i.e., F2,t−1yt ≡ E[µi

2,t−1 + ρxi
2,t−1]. Note that in our model, forecasters up-

date their beliefs twice each period. As a result, the prior belief of period t is F2,t−1yt,
which is the posterior belief after observing yt−1 at the end of period t − 1.

The information friction in this model comes from two sources: noisy information
and confusion, which are embedded in the term Iκ−1(I − κ)I ′ of Equation (24). The
first term on the right-hand side of Equation (23) captures the former, representing a
weighted average of the extent of information friction in the two components. Note
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that when the trends are stable (i.e., κ11 = 1), this term reduces to (1−κ22)/κ22, which
is the CG coefficient βCG characterized in Coibion and Gorodnichenko (2015).

The second term on the right-hand side of Equation (23) captures the impact of
confusion. In our model, forecasters utilize the trend (cyclical) signal to update their
beliefs about the cyclical (trend) component. For example, when forecasters observe
a positive surprise from the trend signal (i.e., sµ

i,t − µi
2,t−1 > 0), they may interpret it

partly as an indication of a strong trend innovation and partly as a lower trend compo-
nent in the previous period. This leads to a situation that is observationally equivalent
to forecasters having noisier signals. This mechanism drives up the correlation be-
tween forecast revisions and forecast errors, explaining why the second term on the
right-hand side of Equation (23) is positive. Note that if trends and cycles are perfectly
observable (i.e., κ12 = κ21 = 0), this term reduces to zero.

The third term on the right-hand side of Equation (23) characterizes the effect of
the second belief updating at the of period t − 1 after forecasters observe the statistics
yt−1, which is embedded in the term (F2,t−1yt − Ft−1yt) in Equation (24). When yt−1

is observable, it is used to update the belief about yt, and the posterior belief becomes
F2,t−1yt. The observation of yt−1 affects both forecast revisions and forecast errors. For
example, when yt−1 is larger, the updated forecast for yt next period (Ftyt) tends to
be larger, resulting in a larger forecast revision (Ftyt − Ft−1yt) and a smaller forecast
error (yt − Ftyt). This mechanism biases the coefficient downwards, explaining why
the third term is negative.

Interestingly, when yt−1 is not observable, the posterior belief about yt in period
t − 1 would be Ft−1yt. There would be no second updating and the term (F2,t−1yt −
Ft−1yt) in Equation (24) would be zero. In this case, forecasters would update their
beliefs about trend and cyclical components independently, leading to no confusion
between the two. That is, κ12 = κ21 = 0. Therefore, the second term on the right-hand
side of Equation (23) reduces to zero too. Consequently, the CG coefficient would
correspond exactly to the extent of noisy information.

Because the third term on the right-hand side of Equation (23) is negative, the ac-
tual extent of information friction can be even larger than the coefficient βTrend

CG sug-
gests. In other words, the CG coefficient provides a lower bound on the level of in-
formation friction. This finding suggests that the CG specification remains a robust
measure for uncovering information friction stemming from noisy information, even
within our framework.

6.4 Effects of the Pandemic

Our main results, presented in Section 2, focus on the pre-COVID period. However,
examining forecaster behavior during the distinct circumstances of the pandemic can
be both important and intriguing. This section presents empirical findings from the
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pandemic period, comparing them to those of the pre-COVID period. We then discuss
potential explanations for the observed shifts in forecaster behavior.

To begin with, we analyze how the empirical patterns of forecast variance and co-
variance between changes in long-term and cyclical forecasts, using the data from the
COVID-19 period. Appendix A.6 plots the forecast variance and COVh

F over forecast
horizon for both unemployment rate and real GDP growth using data from the pan-
demic period.

The empirical patterns observed during the COVID-19 pandemic period differ
from the pre-COVID findings in two key ways. First, the covariance between changes
in long-run and cyclical unemployment rate forecasts becomes positive, while remain-
ing negative for real GDP growth. Second, the forecast variance exhibits a substantial
increase, rising from 0.019 to 0.737 for unemployment and from 0.152 to 0.900 for real
GDP growth.

The positive COVh
F observed for the unemployment rate during the COVID-19

pandemic could be caused by the fact that forecasters perceived greater variance in
state innovations. Consequently, this heightened uncertainty dominated the negative
covariance (i.e., C̃OV) between trend and cyclical beliefs. As Proposition 1 shows, the
magnitude of C̃OV diminishes when forecasters perceive significant variance in state
innovations.

Furthermore, the substantial increase in forecast variance observed during the pan-
demic implies greater disagreement among forecasters. This heightened disagreement
could stem from two potential sources. First, forecasters may have perceived an in-
crease in the variance of state innovations, leading them to place greater weight on
their own private signals. Second, the rise in forecast dispersion could indicate that the
private signals themselves became noisier during this period, resulting in increased
disagreement.

In our benchmark model, we assume forecasters possess perfect knowledge of the
data generation process, which does not evolve over time. However, the pandemic
associated with COVID-19 is “once in a lifetime” shock to the macroeconomy. To ac-
count for changes during the pandemic period using our model, it would be realistic
to incorporate dynamics that allows for learning about changes in the state generating
process. This would also allow for a more nuanced understanding of the observed
shifts in forecasting behavior during the pandemic period. We leave this extension for
future research.

7 Conclusion

This paper presents a framework where forecasters cannot perfectly distinguish be-
tween trend and cyclical components of the state variable. We demonstrate that this
key feature qualitatively accounts for a set of observed empirical patterns at both in-
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dividual and aggregate levels. Quantitatively, we apply this framework to examine
the impact of the 2012 explicit inflation targeting policy on forecasting behaviors. The
policy relevance of this friction is illustrated through a simple policy game.

This work suggests two promising avenues for future research. First, our model
can incorporate various behavioral biases explored in the literature. Investigating their
interaction with the confusion mechanism will offer valuable insights into the process
of expectation formation. Second, this framework has applications beyond forecasting
models. For example, it could be applied to understand investors who cannot separate
sectoral and firm-specific components of firms’ earnings, or voters who grapple with
disentangling candidates’ quality from luck. We defer the exploration of these research
questions to future developments of this framework.
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Appendix

A Data and Robustness Tests

A.1 Sample periods and variable definition

The data used in this paper are from the Survey of Professional Forecasters (SPF). Table
A1 provides a list of the periods for which each forecast variable is available.

Table A1. Summary of sample periods

Summary of sample periods

Forecast Variable Sample periods

Panel A. Short-term Forecasts.
Nominal GDP 1968Q4 - 2019Q4
Real GDP 1968Q4 - 2019Q4
GDP price index inflation 1968Q4 - 2019Q4
Real consumption 1981Q3 - 2019Q4
Industrial production 1968Q4 - 2019Q4
Real nonresidential investment 1981Q3 - 2019Q4
Real residential investment 1981Q3 - 2019Q4
Real federal government consumption 1981Q3 - 2019Q4
Real state and local government consumption 1981Q3 - 2019Q4
Housing start 1968Q4 - 2019Q4
Unemployment 1968Q4 - 2019Q4
Inflation (CPI) 1981Q3 - 2019Q4
Three-month Treasury rate 1981Q3 - 2019Q4
Ten-year Treasury rate 1992Q1 - 2019Q4

Panel B. Long-term Forecasts.
Three-year ahead Real GDP 2009Q2-2019Q4
Three-year ahead unemployment 2009Q2-2019Q4
Ten-year ahead inflation (CPI) 1991Q3-2019Q4
Ten-year ahead Real GDP 1992Q1-2019Q1; first quarter only
Natural rate of unemployment 1996Q3-2019Q3; third quarter only

Following Bordalo et al. (2020), we convert macroeconomic variables to annual
growth rates. For variables that are already presented as rates, we use the original
data directly.

Variables changed to the annual growth rate include nominal GDP (NGDP), real
GDP (RGDP), GDP price index inflation (PGDP), real consumption (RCONSUM), In-
dustrial production (INDPROD), real nonresidential investment (RNRESIN), real resi-
dential investment (RRESINV), real federal government consumption (RGF), real state
and local government consumption (RGSL). Forecast of h period ahead: Fi,tyt+h =

(
Fi,t ỹt+h
ỹt+h−4

− 1) × 100, where Fi,tỹt+h is the original survey forecast from the forecaster i
provided in period t regarding the state variable ỹ in h period ahead. ỹt+h−4 is the ac-
tual state value of period t + h − 4 already released. The procedures are a replication
of Bordalo et al. (2020).

Variables that are taken directly from the survey data include unemployment rate
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(UNEMP), housing start (HOUSING), CPI, Three-month Treasury rate (Tbills), Ten-
year Treasury rate (Tbonds).

A.2 Three years ahead forecast and forecasts of longer horizon

(a) Real GDP (b) Unemployment

Figure A1. Three-year-ahead forecasts and forecasts for longer horizons. Note: The sample period is
from 2009 to 2019, based on data availability. Forecasts of the natural unemployment rate are only
available in the third quarter survey, while forecasts of ten-year-ahead real GDP are only available in
the first quarter survey. Figure 1(a) illustrates the real GDP forecasts for three years ahead and ten
years ahead. Figure 1(b) shows unemployment forecasts for three years ahead and the natural rate of
unemployment. The correlation between the three-year horizon forecasts and longer-horizon forecasts,
as depicted in the upper two figures, is 0.903 for real GDP growth and 0.886 for unemployment.

A.3 Eestimation Results: Covaraince between changes in long-term forecasts and
cyclical forecasts

Table A2. Covariance between changes in long term forecasts and cyclical forecasts

Covariance between changes in long term forecasts and cyclical forecasts

COVh
F 95% bootstrap CI Obs

Panel A. Unemployment rate
h = 0 -0.203 (-0.244, -0.161) 794
h = 1 -0.192 (-0.232, -0.152) 815
h = 2 -0.177 (-0.214, -0.139) 819
h = 3 -0.164 (-0.199, -0.129) 817
h = 4 -0.151 (-0.183, -0.118) 818

Panel B. Real GDP growth
h = 0 -0.219 (-0.273, -0.164) 783
h = 1 -0.214 (-0.271, -0.156) 781
h = 2 -0.204 (-0.260, -0.147) 785
h = 3 -0.204 (-0.258, -0.149) 785
h = 4 -0.202 (-0.256, -0.148) 785
Note: This table shows the covariance between the changes in long-term
forecasts and cyclical forecasts. The sample period is from 2009Q2 to
2019Q4. Panel A shows the results of the unemployment rate, while Panel
B shows the results of the Real GDP growth.

A.4 Robustness: Forecast dispersion over forecast horizon with time fixed effect
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Table A3. Forecast dispersion over forecast horizon with time FE

Dependent Variable: Forecast Dispersion

Variance of forecasts 50 percentile difference

Time FE Obsβ1 SE β1 SE

Forecast Variable (1) (2) (3) (4)

Nominal GDP 0.337*** 0.014 0.204*** 0.005 Yes 1,025
Real GDP 0.242*** 0.013 0.162*** 0.004 Yes 1,025
GDP price index inflation 0.118*** 0.005 0.119*** 0.003 Yes 1,025
Real consumption 0.125*** 0.008 0.127*** 0.004 Yes 770
Industrial production 0.860*** 0.034 0.320*** 0.009 Yes 1,025
Real nonresidential investment 1.647*** 0.068 0.497*** 0.012 Yes 770
Real residential investment 6.021*** 0.299 0.932*** 0.026 Yes 770
Real federal government consumption 1.284*** 0.065 0.393*** 0.013 Yes 770
Real state and local government consumption 0.317*** 0.016 0.210*** 0.006 Yes 770
Housing start 0.004*** 0.000 0.020*** 0.001 Yes 1,024
Unemployment 0.034*** 0.001 0.082*** 0.002 Yes 1,014
Inflation rate (CPI) -0.066*** 0.013 -0.073*** 0.008 Yes 770
Three-month Treasury rate 0.053*** 0.002 0.106*** (0.003 Yes 770
Ten-year Treasury rate 0.045*** 0.001 0.094*** 0.002 Yes 560
Note: This table shows the coefficients from estimating Equation (2) with year-quarter fixed effect. The sample period is from
1968Q4 to 2019Q4. In column (1), the dependent variable is the variance of forecasts. In column (3), the dependent variable
is the difference between the 25% percentile and 50% percentile. Standard errors are clustered at the year-quarter level.

A.5 Estimation procedures: Inflation

To estimate the set of parameters Θ = {ρ, σ2
µ, σ2

x , σ2
e , σ2

ϵ} before and after 2012, we begin
by dividing the entire dataset into two subsets: one before 2012 and one after 2012. For
each subset, we compute the average forecast variance for different forecast horizons
(h = 0, 1, 2, 3, 4). These sets of forecast variances serve as the targets for estimation
denoted as m̂.

Since we want to capture the forecast variance across all the horizons, we give
equal weights to all the targeted moments. Table A4 provides the summary statistic of
the estimation moments.

Table A4. Estimation Moments

Estimation Moments

Pre-2012 Post-2012

Target SE Target SE

h=0 0.833 1.276 0.737 0.693
h=1 0.562 0.568 0.350 0.182
h=2 0.464 0.370 0.303 0.123
h=3 0.429 0.324 0.284 0.103
h=4 0.430 0.282 0.301 0.071

The distance is defined in Equation (17) as the weighted squared difference be-
tween the target moments m̂ and the model prediction m(Θ), which represents the
moments implied by the model for the given parameter set (Θ). Using MCMC with
the Metropolis-Hastings algorithm, we choose the set of model parameters that min-
imize the distance Λ(Θ). The estimation of the parameter set before and after 2012
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follows the exact same procedures, with different estimation targets derived from the
respective subsets of the data.

A.6 The empirical patterns for the COVID period
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Figure A2. Forecast patterns during the COVID-19 pandemic crisis. Note: This figure displays the
COVh

F and forecast variance of the unemployment rate and real GDP growth for different subsamples.
The pre-2020 sample covers the period from 1968Q4 to 2019Q4, while the post-2020 sample covers the
period from 2020Q1 to 2022Q4. The results for the pre-2020 period are plotted as square dots, while the
post-2020 results are plotted as circle dots.
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B Proofs

Characterization of special case when the trend is observable in section 4.1.
Consider a special case where both the state and trend components are observable

at the end of each period. Without loss of generality, we assume the cyclical compo-
nent follows an AR(N) process:

xt =
N

∑
h=0

ρhLhxt + γx
t ,

where L is the lag operator.
The private signal of forecaster i is given by:

sµ
i,t = µt + ϵi,t and sx

i,t = xt + ei,t.

Given the trend component is observable at the end of each period, one’s prior
belief before observing the signals is:

θi
2,t−1 =

(
µt−1

∑N
h=0 ρhLhxt

)
.

The posterior beliefs regarding the two components upon observing the signals is
given by:

θi
1,t = θi

2,t−1 + κ× (si,t − θi
2,t−1),

where the Kalman gain matrix and the variance-covariance matrix is same as the ones
in the main text:

κ =




σ2
µ

σ2
µ+σ2

ϵ
0

0 σ2
x

σ2
x+σ2

e


 , and

(
VarT

s C̃OVs

C̃OVs VarC
s

)
=




σ2
ϵ σ2

µ

σ2
ϵ+σ2

µ
0

0 σ2
e σ2

x
σ2

x+σ2
e


 .

The forecast variance across forecasters is given by:

E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2h σ2

x
σ2

x + σ2
e︸ ︷︷ ︸

ϕC
s

VarC
s +

σ2
µ

σ2
µ + σ2

ϵ︸ ︷︷ ︸
ϕT

s

VarT
s

= ρ2h(
σ2

x
σ2

x + σ2
e
)2σ2

e + (
σ2

µ

σ2
µ + σ2

ϵ
)2σ2

ϵ .

It is evidence that the forecast variance across forecasters is decreasing, as the forecast
horizon extends.
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In addition, changes in trend forecasts and changes cyclical forecasts can be written
as follows:

Fi,tyt+3Y − Fi,t−1yt−1+3Y = (µi
1,t −Ei,t−1[µt−1])+ ρ3Y(Ei,t[

N

∑
h=0

ρhLhxt+3Y]−Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]),

and

Cyci,t − Cyci,t−1 = (1 − ρ3Y)(Ei,t[
N

∑
h=0

ρhLhxt+3Y]− Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]).

Following the same logic as the main text, the covariance between changes in the be-
liefs about the trend component and changes in beliefs about the cyclical component
at any horizon should be non-negative. That is,

COVh
F (Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cyci,t − Cyci,t−1)

= ρ3Y(1 − ρ3Y)Var(Ei,t[
N

∑
h=0

ρhLhxt+3Y]− Ei,t−1[
N

∑
h=0

ρhLhxt+3Y−1]) ≥ 0.

In this special case, where trends and cycles are observable at the end of each period,
the model fails to replicate either of the two empirical patterns documented, even
when we allow the data generation process for the cyclical component to follow an
AR(N) process.

Proof of Lemma 1. To begin, we assume that the error term in the last period (zi,t−1)
is normally distributed with the variance σ2

z,t−1. With the prior belief and the signal
structures given by Equation (6) and (7), the posterior belief of forecaster i after receiv-
ing signals is given by:

p(θ|si,t) ∝ p(θi
2,t−1)p(si,t|θi

2,t−1)

∝ exp
{
−1

2
[θT(Σ−1

s + Σ−1
θi

2,t−1
)θ− 2(Σ−1

s + Σ−1
θi

2,t−1
)−1(Σ−1

s + Σ−1
θi

2,t−1
)(sT

i,tΣ
−1
s + θi,T

2,t−1Σ−1
θi

2,t−1
)θ]

}

∝ exp[−1
2
(θ− θi

1,t)
T(Σ−1

s + Σ−1
θi

2,t−1
)(θ− θi

1,t)],

where
θi

1,t = (Σ−1
s + Σ−1

θi
2,t−1

)−1(sT
i,tΣ

−1
s + θi,T

2,t−1Σ−1
θi

2,t−1
)T.

Therefore, µi
1,t and xi

1,t are joint normally distributed. To be specific, θi
1,t = (µi

1,t, xi
1,t)

′

6



is given by:

µi
1,t =

σ2
ϵ (ρ

2σ2
z,t−1 + σ2

x + σ2
e )

Ωt︸ ︷︷ ︸
prior weight

µi
2,t−1 +

Vt + σ2
e (σ

2
z,t−1 + σ2

µ)

Ωt︸ ︷︷ ︸
signal weight

sµ
i,t −

ρσ2
ϵ σ2

z,t−1

Ωt
(sx

i,t − ρxi
2,t−1)︸ ︷︷ ︸

surprise f rom cycle

,

(A1)

xi
1,t =

σ2
e (σ

2
z,t−1 + σ2

µ + σ2
ϵ )

Ωt︸ ︷︷ ︸
prior weight

ρxi
2,t−1 +

Vt + σ2
ϵ (σ

2
x + ρ2σ2

z,t−1)

Ωt︸ ︷︷ ︸
signal weight

sx
i,t −

ρσ2
e σ2

z,t−1

Ωt
(sµ

i,t − µi
2,t−1)︸ ︷︷ ︸

surprise f rom trend

.

(A2)
where Ωt and Vt are constants:

Ωt = (σ2
z,t−1 +σ2

µ +σ2
ϵ )(σ

2
x +σ2

e + ρ2σ2
z,t−1)− ρ2σ4

z,t−1, Vt = (σ2
z,t−1 +σ2

µ)(σ
2
x + ρ2σ2

z,t−1)− ρ2σ4
z,t−1.

And the variance-covariance matrix of µi
1,t and xi

1,t is:

(Σ−1
s + Σ−1

θi
2,t−1

)−1 =

(
VarT

t C̃OVt

C̃OVt VarC
t

)
=




σ2
ϵ [Ωt−σ2

ϵ (σ
2
x+σ2

e +ρ2σ2
z,t−1)]

Ωt
− ρσ2

e σ2
ϵ σ2

z,t−1
Ωt

− ρσ2
e σ2

ϵ σ2
z,t−1

Ωt

σ2
e [Ωt−σ2

e (σ
2
ϵ+σ2

µ+σ2
z,t−1)]

Ωt


 ,

(A3)

The observation of yt provides new information and forecasters would update their
beliefs accordingly:

f i(µt|yt) ∝ exp



− 1

2(1 − r2
t )
[
(µt − µi

1,t)
2

VarT
t

−
2rt(µt − µi

1,t)(yt − µt − xi
1,t)√

VarT
t VarC

t

+
(yt − µt − xi

1,t)
2

VarC
t

]





∝ exp{− 1
2(1 − r2

t )
[
(VarT

t + 2rt

√
VarT

t VarC
t + VarC

t )µ
2
t

VarT
t VarC

t

− 2µt
VarC

t µi
1,t + rt

√
VarT

t VarC
t (µ

i
1,t + yt − xi

1,t) + VarT
t (yt − xi

1,t)

VarT
t VarC

t
]}, (A4)
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and

f i(xt|yt) ∝ exp



− 1

2(1 − r2
t )
[
(yt − xt − µi

1,t)
2

VarT
t

−
2rt(yt − xt − µi

1,t)(xt − xi
1,t)√

VarT
t VarC

t

+
(xt − xi

1,t)
2

VarC
t

]





∝ exp{− 1
2(1 − r2

t )
(

VarT
t + 2rt

√
VarT

t VarC
t + VarT

t )x2
t

VarT
t VarC

t
)

− 2xt
VarC

t (yt − µi
1,t) + rt

√
VarT

t VarC
t (yt − µi

1,t + xi
1,t) + VarT

t xi
1,t

VarT
t VarC

t
}, (A5)

where rt is given by:

rt =
C̃OVt√

VarT
t VarC

t

. (A6)

According to Equations (A4) and (A5), the posterior beliefs f i(µt|yt) and f i(xt|yt)

are normal distributions. Therefore, µi
2,t and xi

2,t are normally distributed. As a result,
zi,t will also be normally distributed. That shows first part of the lemma.

Furthermore, the means of the posterior beliefs are given by:

µi
2,t =

VarC
t µi

1,t + VarT
t (yt − xi

1,t) + rt

√
VarT

t VarC
t (µ

i
1,t + yt − xi

1,t)

VarT
t + 2rt

√
VarT

t VarC
t + VarC

t

=
(VarC

t + C̃OVt)µi
1,t + (VarT

t + C̃OVt)(yt − xi
1,t)

VarT
t + VarC

t + 2C̃OVt
. (A7)

and

xi
2,t =

VarC
t (yt − µi

1,t) + rt

√
VarT

t VarC
t (yt − µi

1,t + xi
1,t) + VarT

t xi
1,t

VarT
t + 2rt

√
VarT

t VarC
t + VarC

t

=
(VarC

t + C̃OVt)(yt − µi
1,t) + (VarT

t + C̃OVt)xi
1,t

VarT
t + VarC

t + 2C̃OVt
.

We show that

µi
2,t + xi

2,t =
(VarC

t + C̃OVt)µi
1,t + (VarT

t + C̃OVt)(yt − xi
1,t)

VarT
t + VarC

t + 2C̃OVt

+
(VarC

t + C̃OVt)(yt − µi
1,t) + (VarT

t + C̃OVt)xi
1,t

VarT
t + VarC

t + 2C̃OVt

= yt.

The second part of the lemma is shown.
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Proof of Lemma 2. We first establish the existence of the steady state and then show
that the steady state is unique. According to Equations (A4) and (A5), after observing
yt, the variance of the separation error is given by:

σ2
zt
=

(1 − r2
t )VarT

t VarC
t

VarT
t + 2rt

√
VarT

t VarC
t + VarC

t

. (A8)

Recall the definitions of VarT
t , VarC

t and rt in Equations (A3) and (A6), we notice that
the right-hand-side of Equation (A8) is a function of σ2

z,t−1. Therefore, the steady state
value σ2

z is a fixed point of the condition characterized by Equation (A8). Solving for
the fixed point of Equation (A8) gives:

σ2
z =

−σ2
µ[Λ + 2ρ(1 − ρ)σ2

e σ2
ϵ ] +

√
σ2

µΛ[σ2
µ(Λ + 4ρσ2

e σ2
ϵ ) + 4σ2

e σ2
ϵ σ2

x ]

2[Λ + ρ2σ2
µ(σ

2
e + σ2

ϵ )]
, (A9)

where Λ = (1 − ρ)2σ2
e σ2

ϵ + σ2
x(σ

2
e + σ2

ϵ ).
In the next step, we demonstrate that regardless of the initial variance of the sepa-

ration error, denoted as σ2
z0

, it always converges to a unique steady state value σ2
z . We

first simplify Equation (A8) to:

σ2
z,t =

g1(σ
2
z,t−1)

g2(σ2
z,t−1)

, (A10)

where
g1(σ

2
z,t−1) = w1σ2

z,t−1 + η1 and g2(σ
2
z,t−1) = w2σ2

z,t−1 + η2,

w1 = σ2
e σ2

ϵ (ρ
2σ2

µ + σ2
x); η1 = σ2

e σ2
ϵ σ2

µσ2
x ;

w2 = ρ2(σ2
e σ2

ϵ +σ2
e σ2

µ +σ2
µσ2

ϵ )+σ2
e σ2

ϵ +σ2
e σ2

x +σ2
ϵ σ2

x − 2ρσ2
e σ2

ϵ ; η2 = σ2
e σ2

ϵ (σ
2
µ +σ2

x)+σ2
µσ2

x(σ
2
e +σ2

ϵ ).

Define the difference between σ2
z,t and σ2

z,t−1 as:

D(σ2
z,t−1) = σ2

z,t − σ2
z,t−1 =

g1(σ
2
z,t−1)

g2(σ2
z,t−1)

− σ2
z,t−1.

To show the steady state is unique, it is sufficient to show that D(σ2
z,t−1) is monotoni-

cally decreasing. We first show that evaluated at σ2
z,t−1 = 0, the derivative is negative.

∂D(σ2
z,t−1)

∂σ2
z,t−1

|σ2
z,t−1=0 =

[
σ2

e σ2
ϵ (ρσ2

µ + σ2
x)

σ2
e σ2

ϵ (ρσ2
µ + σ2

x) + σ2
µσ2

x(σ
2
e + σ2

ϵ )

]2

− 1 < 0.
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0

45◦)

steady state σ2
z

σ2
z,t−1

σ
2 z
,t

(a) σ2
z,t−1 and σ2

z,t

0

0

σ2
z,t−1

D
(σ

2 z
,t
−
1
)

(b) D(σ2
z,t−1) and σ2

z,t−1

Figure A3. The relationship between σ2
z,t−1 and σ2

z,t.

Then we show that the first-order derivative of D(σ2
z,t−1) is negative. The derivative is

given by:

∂D(σ2
z,t−1)

∂σ2
z,t−1

=
w1η2 − w2η1

(w2σ2
z,t + η2)2

− 1 =

[
σ2

e σ2
ϵ (ρσ2

µ + σ2
x)

(w2σ2
z,t + η2)

]2

− 1. (A11)

It is always decreasing, because we show that the second-order derivative is negative:

∂2D(σ2
z,t−1)

∂(σ2
z,t−1)

2
= −2w2

[σ2
e σ2

ϵ (ρσ2
µ + σ2

x)]
2

(w2σ2
z,t + η2)3

< 0.

Since D(σ2
z,t) is monotonously decreasing and concave and the steady state exists, it

is unique. Figure 3(a) illustrates the relationship between σ2
z,t−1 and σ2

z,t, while Figure
3(b) further illustrates how the difference between the two variances (i.e., σ2

z,t − σ2
z,t−1)

responds to σ2
z,t−1, highlighting the convergence property.

Proof of Lemma 3. Given the quadratic utility function, the forecaster’s optimal fore-
casts are given by the following:

Fi,tyt+h = Ei,t[yt+h]

= Ei,t[µt + ρhxt]

= µi
1,t + ρhxi

1,t.

10



The first equality is derived from the first order condition of the standard quadratic
utility function. With a quadratic utility function, forecasters would minimize the
expected squared error, and the first-order condition is given by:

Ei,t[Fi,tyt+h − yt+h] = 0.

The second equality follows given the data generation process is known to forecasters.
The third equality states that the expected value of the sum of µt and ρhxt is the sum
of the expected values of the two components, a well known property using Fourier
transform (Folland 2009).
Proof of Lemma 4. From Equation (A7) in the proof of Lemma 2, we obtain:

zi,t−1 = µi
2,t−1 − µt−1

=
(VarT + C̃OV)(xt−1 − xi

1,t−1)− (VarC + C̃OV)(µt−1 − µi
1,t−1)

VarT + C̃OV + VarC + C̃OV
,

which is the first part of Lemma 4.
For the second part of Lemma 4, we show the steady state value of σ2

z increases in
σ2

µ. Our idea is to show that the solid line in Figure 3(a) shifts upwards when σ2
µ is

larger. Towards this end, we prove the following claim.

Claim 1. For any given σ2
z,t−1, the induced σ2

z,t is increasing in σ2
µ.

Using Equation (A10), we obtain the derivative:

∂σ2
z,t

∂σ2
µ

=
∂[g1(σ

2
z,t−1)/g2(σ

2
z,t−1)]

∂σ2
µ

=
σ4

e σ4
ϵ [σ

2
x − ρ(1 − ρ)σ2

z,t−1]
2

g2(σ2
z,t−1)

2
> 0. (A12)

The claim is shown. Consequently, given the properties of D(σ2
z,t−1) shown earlier, a

larger steady state value for σ2
z is implied. The comparative statics with respect to σ2

x ,
σ2

ϵ , and σ2
e are analogous.

It is worth noting that zi,t is obtained via Bayesian updating, using the prior belief
µi

1,t and yt − xi
1,t shown in Equation (A9). As the variance of the posterior belief is

always smaller than the variance of both prior beliefs, we can obtain:

0 ≤ σ2
z ≤ min{VarC, VarT}.

In a special case when the variance of private signals go to infinity (i.e., σ2
e → +∞,

σ2
ϵ → +∞), the steady state σ2

z is:

σ2
z =

−(1 − ρ2)σ2
µ +

√
σ2

µ(1 − ρ)2[(1 + ρ)2σ2
µ + 4σ2

x ]

2(1 − ρ)2

11



Similarly, considering the case that when the persistence of the cyclical component
ρ changes:

∂σ2
z,t

∂ρ
=

σ2
z,t−1

g2(σ2
z,t−1)

2

{
2σ4

e σ4
ϵ [ρσ2

µ + σ2
x ][σ

2
µ + (1 − ρ)σ2

z,t−1]
}
> 0.

Therefore, the steady state value of σ2
z is increasing in ρ. The logic underlying this

statement is analogous.

Proof of Proposition 1. To show the first item, we note the following. When σ2
µ = 0,

according to Lemma 4, σ2
z goes to zero, and therefore C̃OV becomes zero. When

σ2
µ → +∞, Lemma 4 states that σ2

z → min{VarC, VarT}, but Ω → +∞ in this case.

Therefore, C̃OV goes to zero.
To show the second term, we first show that the second order derivative of σ2

z

with respect to σ2
µ is negative. In Equation (A12), g2(σ

2
z,t−1)

2 increases in σ2
µ. Then the

derivative ∂σ2
z /∂σ2

µ decreases when σ2
µ is larger. As σ2

µ approaches infinity, ∂σ2
z /∂σ2

µ

approaches zero. That is,

Z′
µ ≡ ∂σ2

z
∂σ2

µ
> 0 and Z′′

µ ≡ ∂2σ2
z

(∂σ2
µ)

2 < 0.

We then derive the derivative with respect to σ2
µ:

∂|C̃OV|
∂σ2

µ
∝ Z′

µ(σ
2
e + σ2

x)(σ
2
ϵ + σ2

µ)− σ2
z (ρ

2σ2
z + σ2

e + σ2
x).

We show that evaluated at σ2
µ = 0,

∂|C̃OV|
∂σ2

µ
|σ2

µ=0 ∝ Z′
µ(σ

2
e + σ2

x)σ
2
ϵ > 0.

That is because σ2
z = 0 when σ2

µ = 0. The second-order derivative is given by:

∂2|C̃OV|
(∂σ2

µ)
2 ∝ Z′′

µ(σ
2
µ + σ2

ϵ )(σ
2
e + σ2

x)− 2ρ2σ2
z Z′

µ < 0.

To see the inequality we note that Z′
µ > 0, and Z′′

µ < 0. Therefore, there exists a

unique σ̃2
µ > 0, such that ∂|C̃OV|/∂σ2

µ = 0. For any σ2
µ < σ̃2

µ, |C̃OV| is increasing in

σ2
µ; and for any σ2

µ > σ̃2
µ, |C̃OV| is decreasing in σ2

µ. The property that |C̃OV| increases
and then decrease is implied.

It is straightforward to show the second item that |C̃OV| is always increasing in ρ,
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because

∂|C̃OV|
∂ρ

=
σ2

e σ2
ϵ

Ω2

{
(σ2

x + σ2
e )[σ

4
z + ρZ′

ρ(σ
2
µ + σ2

ϵ )] + σ2
z (σ

2
µ + σ2

ϵ )[σ
2
x + σ2

e − ρ2σ2
z ]
}
> 0,

where Z′
ρ ≡ ∂σ2

z /∂ρ > 0.

Proof of Proposition 2. The covariance between the changes in the long term fore-
casts and the cyclical forecasts is given by:

COVh
F = cov(Fi,tyt+3Y − Fi,t−1yt−1+3Y, Cych

i,t − Cych
i,t−1) (A13)

= (ρh − ρ3Y)
[
cov(µi

1,t − µi
1,t−1, xi

1,t − xi
1,t−1) + ρ3Yvar(xi

1,t − xi
1,t−1)

]

= (ρh − ρ3Y)(C̃OV + ρ3YVarC)

=
(ρh − ρ3Y)σ2

e
Ω

{
ρ3Y[Ω − σ2

e (σ
2
ϵ + σ2

µ + σ2
z )]− ρσ2

ϵ σ2
z

}

∝ ρ3Y[Ω − σ2
e (σ

2
ϵ + σ2

µ + σ2
z )]− ρσ2

ϵ σ2
z .

Define K ≡ ρ3Y[Ω − σ2
e (σ

2
ϵ + σ2

µ + σ2
z )] − ρσ2

ϵ σ2
z . Then the sign of the covariance be-

tween changes in trend forecasts and changes in cyclical forecasts depends on the sign
of K.

To prove the properties in the proposition, we first show that for any given σ2
µ, there

is a threshold σ2
x such that if and only if σ2

x < σ2
x, then K < 0; and otherwise, K ≥ 0. To

see this, we derive the first-order derivative of K with respect to σ2
x :

∂K
∂σ2

x
= ρ3Y[σ2

z + σ2
µ + σ2

ϵ + σ2
x Z′

x + ρ2Z′
x(σ

2
µ + σ2

ϵ )]− ρσ2
ϵ Z′

x (A14)

= Z′
x

[
ρ3Y(

σ2
z + σ2

µ + σ2
ϵ

Z′
x

+ σ2
x + ρ2σ2

µ + ρ2σ2
ϵ )− ρσ2

ϵ

]
.

According to Lemma 4, Z′
x > 0 and Z′′

x < 0. Therefore, the sum of first two terms in
Equation (A14), (σ2

z + σ2
µ + σ2

ϵ )/Z′
x + σ2

x , increases in σ2
x .

If ∂K/∂σ2
x ≥ 0 when evaluated at σ2

x = 0, then it always holds ∂K/∂σ2
x ≥ 0. If

∂K/∂σ2
x < 0 when evaluated at σ2

x = 0, ∂K/∂σ2
x crosses zero only once from below.

Note that ∂K/∂σ2
x must be positive when σ2

x is sufficiently large.
Furthermore, we characterize how K changes in σ2

x . When σ2
x = 0, K = 0. That

is because σ2
z = 0. When σ2

x > 0, K is either always positive, or K initially decreases
and then crosses zero from below. This property implies that for any given value of
σ2

µ, there exists a threshold σ2
x ≥ 0, such that K|σ2

x=σ2
x
= 0, and for any σ2

x < σ2
x, K < 0.

Given this property, we start proving the first item in this proposition. Towards
this end, we show the following claim.
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Claim: When σ2
x = 0, there exists a threshold σ2

µ for σ2
µ, such that when σ2

µ ≥ σ2
µ, σ2

x = 0;
when 0 < σ2

µ < σ2
µ, σ2

x > 0; and when σ2
µ = 0, σ2

x = 0.
To prove this claim, we first evaluate ∂K/∂σ2

x at σ2
x = 0:

∂K
∂σ2

x
|σ2

x=0 = Z′
x=0

[
ρ3Y(

σ2
µ + σ2

ϵ

Z′
x=0

+ ρ2σ2
µ + ρ2σ2

ϵ )− ρσ2
ϵ

]
,

where Z′
x=0 is derivative of σ2

z evaluated at σ2
x = 0. It is given by:

Z′
x=0 ≡ ∂σ2

z
∂σ2

x
|σ2

x=0 =





2ρ(σ2
e +σ2

ϵ )
(1−ρ)(1+ρ)

σ2
µ +

2σ2
e σ2

ϵ
1+ρ , if σ2

µ > 0.

0, if σ2
µ = 0.

(A15)

There are only two cases. (i) When ∂K/∂σ2
x |σ2

x=0 ≥ 0, then K is always positive
when σ2

x > 0 and σ2
x = 0; and (ii) when ∂K/∂σ2

x |σ2
x=0 < 0, K is negative and then

crosses zero from below at σ2
x = σ2

x > 0. Therefore, the necessary and sufficient condi-
tion for σ2

x > 0 is given by ∂K/∂σ2
x |σ2

x=0 < 0, which is equivalent to

ρ3Y(
σ2

µ + σ2
ϵ

Z′
x=0

+ ρ2σ2
µ + ρ2σ2

ϵ )− ρσ2
ϵ < 0

or using the expression of Z′
x=0 in Equation (A15),

2ρ4(σ2
e + σ2

ϵ )

1 − ρ2 (σ2
µ)

2 +

[
1 +

2ρ2σ2
e σ2

ϵ

1 + ρ
(1 + ρ2 − ρ1−3Y)

]
σ2

µ −
[

ρ(ρ−h − 1)
2σ2

e σ2
ϵ

1 + ρ
+ ρ1−3Y

]
σ2

ϵ < 0.

(A16)

The left-hand-side of Equation (A16) is quadratic in σ2
µ, therefore there are two roots.

Note that The left-hand-side of Equation (A16) is decreasing and then increasing in
σ2

µ and it is negative when σ2
µ = 0. Therefore, there must exist a unique positive root

σ2
µ > 0.

Therefore, when σ2
µ ≥ σ2

µ, σ2
x = 0, which implies K > 0 on condition that σ2

x > 0.
The first item in this proposition is shown. When 0 < σ2

µ < σ2
µ, σ2

x > 0, which implies
K > 0 on condition that σ2

x > σ2
x. The second item is shown.

In addition, from the third equivalent of Equation (A13), as the forecast horizon h
used to construct the cyclical forecast increases, the magnitude of COVh

F is decreasing.
The third item is shown.

Proof of Proposition 3. Given the optimal forecasts characterized by Lemma 3, the
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forecast variance across all forecasters is given by:

Var(Fi,tyt+h) = E[(µi
1,t − E[µt])

2] + ρ2hE[(xi
1,t − E[xt])

2] + 2ρhE[(µi
1,t − E[µt])]E[(xi

1,t − E[xt])].

E[·] stands for the mean forecast across all forecasters. To be specific:

E[(µi
1,t − E[µt])

2] = VarT − σ4
ϵ (ρ

2σ2
z + σ2

x + σ2
e )

2

Ω2 − ρ2σ4
ϵ σ4

z
Ω2 − σ4

ϵ (σ
2
e + σ2

x)
2

Ω2 = VarTϕT,

where ϕT is given by:

ϕT = 1 − σ4
ϵ

VarT ×
σ2

µ(ρ
2σ2

z + σ2
x + σ2

e )
2 + ρ2σ2

x σ4
z + (σ2

e + σ2
x)

2Wσ2
z

Ω2

=
[V + σ2

e (σ
2
µ + σ2

z )]
2 + ρ2σ2

e σ2
ϵ σ4

z + σ2
ϵ (σ

2
e + σ2

x)
2Wσ2

z

Ω[Ω − σ2
ϵ (σ

2
x + σ2

e + ρ2σ2
z )]

< 1.

Note that W = E[(zi,t−1 − E[zi,t−1])
2]/σ2

z is a positive scalar in steady state and invari-
ant in t. To obtain the numerator term E[(zi,t − E[zi,t])

2], we rewrite Equation (10) and
express zi,t as the follows:

zi,t =
σ2

e σ2
ϵ

Ω(VarT + 2C̃OV + VarC)
{−[σ2

x + ρ(ρ − 1)σ2
z ]γ

µ
t + [σ2

µ + (1 − ρ)σ2
z ]γ

x
t (A17)

+ σ2
e Vϵi,t − σ2

ϵ Vei,t + (ρσ2
µ + σ2

x)zi,t−1}.

This allows us to obtain:

zi,t −E[zi,t] =
σ2

e σ2
ϵ

Ω(VarT + 2C̃OV + VarC)

[
σ2

e Vϵi,t − σ2
ϵ Vei,t + (ρσ2

µ + σ2
x)(zi,t−1 − E[zi,t−1])

]
.

and

E[(zi,t − E[zi,t])
2] =

(σ2
e + σ2

ϵ )σ
2
z V2

(σ2
e + σ2

ϵ )V2 + σ2
e σ2

ϵ{σ2
µ[σ

2
x + ρσ2

z (ρ − 1)]2 + σ2
x [σ

2
µ + (1 − ρ)σ2

z ]
2} .

Therefore, W is given by:

W =
(σ2

e + σ2
ϵ )V2

(σ2
e + σ2

ϵ )V2 + σ2
e σ2

ϵ{σ2
µ[σ

2
x + ρσ2

z (ρ − 1)]2 + σ2
x [σ

2
µ + (1 − ρ)σ2

z ]
2} < 1.

Similarly, E[(xi
1,t − E[xt])2] and E[(µi

1,t − E[µt])]E[(xi
1,t − E[xt])] can be written as:

E[(xi
1,t − E[xt])

2] =
[V + σ2

ϵ (σ
2
x + ρ2σ2

z )]
2 + ρ2σ2

e σ2
ϵ σ4

z + ρ2σ2
e (σ

2
ϵ + σ2

µ)
2Wσ2

z

Ω[Ω − σ2
e (σ

2
ϵ + σ2

µ + σ2
z )]

VarC = ϕCVarC,
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and

E[(µi
1,t − E[µt])]E[(xi

1,t − E[xt])]

=
σ2

ϵ [V + σ2
ϵ (σ

2
x + ρ2σ2

z )] + σ2
e [V + σ2

e (σ
2
z + σ2

µ)] + σ2
e σ2

ϵ (σ
2
x + σ2

e )(σ
2
ϵ + σ2

µ)Wσ2
z

Ωσ2
e σ2

ϵ
C̃OV

= ϕCOVC̃OV.

Therefore, the forecast variance of Fi,tyt+h across all forecasters can be written as:

Var(Fi,tyt+h) = E[(Fi,tyt+h − E[Fi,tyt+h])
2] = ρ2hVarCϕC + VarTϕT + 2ρhC̃OVϕCOV ,

Take the derivative with respect to the forecast horizon h:

∂Var(Fi,tyt+h)

∂h
= 2ρh ln ρ(ρhVarCϕC + C̃OVϕCOV).

The forecast variance is increasing in h if and only if ∂Var(Fi,tyt+h)/∂h > 0. That is,

h > h =
1

ln ρ
ln

−C̃OVϕCOV

VarCϕC
.

Proof of Lemma 5.
When the public can observe the actual values of the trend and cyclical compo-

nents, the agents would update their beliefs regarding the two components indepen-
dently. Then the problem is exactly the same as the one in Morris and Shin (2002). The
individual’s prediction of the current inflation is given by:

Fi,tπt = Ei,t[(1 − α)π∗
t + αE[πt]]

=
σ2

µ

σ2
µ + (1 − α)−1σ2

ϵ

sµ
i,t +

(1 − α)−1σ2
ϵ

σ2
µ + (1 − α)−1σ2

ϵ

µt−1

+
σ2

x
σ2

x + (1 − α)−1σ2
e

sx
i,t +

(1 − α)−1σ2
e

σ2
x + (1 − α)−1σ2

e
ρxt−1

And the average prediction of the current inflation is:

Eob[πt] =
σ2

µ

σ2
µ + (1 − α)−1σ2

ϵ

µt +
(1 − α)−1σ2

ϵ

σ2
µ + (1 − α)−1σ2

ϵ

µt−1

+
σ2

x
σ2

x + (1 − α)−1σ2
e

xt +
(1 − α)−1σ2

e
σ2

x + (1 − α)−1σ2
e

ρxt−1
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Rearrange the term, we can get the first item.
When the public cannot observe the actual values of the trend and cyclical compo-

nents, as shown in the benchmark model, the updating of the two components is not
independent. Using the α − modi f ied theorem provided by Huo and Pedroni (2020),
that with the coordination motive, agents would place a lower weight on private in-
formation. We first guess that with the coordination motive, the forecast of agent i is
given by:

Fi,tπt = I [(I − κun)θi2,t−1 + κunsi,t], (A18)

where κun is given by:

κun = κ

(
Cµ 0
0 Cx

)
=




V+σ2
e (σ

2
z +σ2

µ)

Ω − ρσ2
ϵ σ2

z
Ω

− ρσ2
e σ2

z
Ω

V+σ2
ϵ (σ

2
x+ρ2σ2

z )
Ω



(

Cµ 0
0 Cx

)
.

Then the average forecast is:

Eun[πt] = I [(I − κun)θt−1 + κunθt].

With the average forecast, individual forecast can be written as:

Fi,tπt = Ei,t[(1 − α)π∗
t + αE[πt]]

= (1 − α)Iθi1,t + αEi,t
[
E[πt]

]

= (1 − α)Iθi1,t + α
[
I(I − κun)θi2,t−1 + κunθi1,t

]
, (A19)

where θi
1,t and κ are specified in Equation (8).

Match the coefficients in Equations (A18) and (A19), we can solve for Cµ and Cx:

Cµ =
(1 − α)Ω[(1 − r)V + σ2

e (σ
2
µ + σ2

z − ρσ2
z )]

[V + σ2
e (σ

2
µ + σ2

z − ρσ2
z )][(1 − α)(Ω − V) + ασ2

e σ2
ϵ ]

;

Cx =
(1 − α)Ω[(1 − r)V + σ2

ϵ (σ
2
x + ρ2σ2

z − ρσ2
z )]

[V + σ2
ϵ (σ

2
x + ρ2σ2

z − ρσ2
z )][(1 − α)(Ω − V) + ασ2

e σ2
ϵ ]

;

It can be shown that when α = 1, Cµ = Cx = 0. In this case, the agents only care
the average forecast, therefore would not use the private signals at all.

When α = 0, Cµ = Cx = 1. In this case, there’s no coordination motive, the belief
updating would be the same as our benchmark model. This shows the second item.

Proof of Proposition 4. Given the information structure, the central bank’s beliefs
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regarding the trend and cyclical components are given by:

Fµ
CB,t =

σ2
µ

σ2
µ + σ2

ϵ,c
sµ

c,t +
σ2

ϵ,c

σ2
µ + σ2

ϵ,c
µt−1 and Fx

CB,t =
σ2

x
σ2

x + σ2
e,c

sx
c,t +

σ2
e,c

σ2
x + σ2

e,c
ρxt−1.

Case 1: The public cannot observe the actual value of each components, and the
central bank assume they cannot as well. The total social welfare loss in this case is:

L1 = E
[

β2(πt − E[πt])
2 + ω(πt − π∗

t )
2
]

= E
[

β2[(1 − α)ECB[π
∗
t ] + αEun

CB[πt]− Eun[πt]]
2 + ω[(1 − α)ECB[π

∗
t ] + αEun

CB[πt]− π∗
t ]

2
]

= [β2(1 − α)]E
[
(Eun[πt]− π∗

t )
2
]
+ E

[
[(1 − α)(ECB[π

∗
t ]− π∗

t ) + α(Eun
CB[πt]− Eun[πt])]

2
]

.

Case 2: The public cannot observe the actual value of each components, but the
central bank mistakenly assume they can. The total social welfare loss in this case is:

L2 = E
[
β2(πt − E[πt])

2 + ω(πt − π∗
t )

2]

= E
[

β2[(1 − α)ECB[π
∗
t ] + αEob

CB[πt]− Eun[πt]]
2 + ω[(1 − α)ECB[π

∗
t ] + αEob

CB[πt]− π∗
t ]

2
]

= β2E
[
[(1 − α)(ECB[π

∗
t − π∗

t ] + (1 − α)(π∗
t − Eun[πt]) + α(Eun

CB[πt]− Eun
[πt]) + α(Eob

CB[πt]− Eun
CB[πt])]

2
]

+ ωE
[
[(1 − α)(ECB[π

∗
t ]− π∗

t ) + α(Eun[πt]− π∗
t ) + α(Eun

CB[πt]− Eun[πt]) + α(Eob
CB[πt]− Eun

CB[πt])]
2
]

= [β2(1 − α)]E
[
(Eun[πt]− π∗

t )
2]+ E

[
[(1 − α)(ECB[π

∗
t ]− π∗

t ) + α(Eun
CB[πt]− Eun[πt])]

2]

+ αβ2E
[
[Eob

CB[πt]− Eun
CB[πt])]

2
]
+ 2αωE

[
cov(Eob

CB[πt]− Eun
CB[πt], ECB[π

∗
t ]− π∗

t )
]

+ 2αβ2E
[
cov(Eob

CB[πt]− Eun
CB[πt], Eun

CB[πt]− Eun[πt])
]

.

Given the central bank’s belief regarding the trend and cyclical components, it can be
shown that:

ECB[π
∗
t ]− π∗

t = (Fµ
CB,t − µt) + (Fx

CB,t − xt).

Eob
CB[πt]− Eun[πt] = (κun

1,1 + κun
2,1)(Fµ

CB,t − µt) + (κun
1,2 + κun

2,2)(Fx
CB,t − xt).

Eob
CB[πt]− Eun

CB[πt] = (
σ2

µ

σ2
µ + (1 − α)−1σ2

ϵ

− κun
1,1 − κun

2,1)(Fc,tµt − µt−1)

+ (
σ2

x
σ2

x + (1 − α)−1σ2
e
− κun

1,2 − κun
2,2)(Fc,txt − ρxt−1)

− (1 − κun
1,1 − κun

2,1 − ρ + ρκun
2,2 + ρκun

1,2)zt−1.

Note that cov(Fµ
CB,t − µt, Fµ

CB,t − µt−1) = 0, cov(Fx
CB,t − xt, Fx

CB,t − xt−1) = 0 and
cov(zt−1, Fµ

CB,t − µt) = cov(zt−1, Fx
CB,t − xt) = 0. Therefore, the total welfare loss in this
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case is :

L2 = [β2(1 − α)]E
[
(Eun[πt]− π∗

t )
2
]
+ E

[
[(1 − α)(ECB[π

∗
t ]− π∗

t ) + α(Eun
CB[πt]− Eun[πt])]

2
]

+ αβ2E
[
[Eob

CB[πt]− Eun
CB[πt])]

2
]

.

The difference of the social welfare loss in the two cases is:

L2 −L1 = αβ2E
[
[Eob

CB[πt]− Eun
CB[πt]]

2
]
≥ 0.

Proof of Proposition 5. Using Equation (8), the individual level beliefs can be rewrit-
ten as:

θi
1,t = (I − κ)θi

2,t−1 + κsi,t,

and therefore, the consensus level belief is:

θ1,t = (I − κ)θ2,t−1 + κθt.

Therefore, the error term θ− θ1,t is:

θ− θ1,t = (I − κ)(θ− θ2,t−1)

= (I − κ)(θ− θ1,t) + (I − κ)(θ1,t − θ2,t−1)

= (I − κ)(θ− θ1,t) + (I − κ)(θ1,t − θt
1,t−1) + (I − κ)(θt

1,t−1 − θ2,t−1),

where θt
1,t−1 = [F1,t−1µt−1 ρF1,t−1xt−1]

′.
At the consensus level, the forecast error and the consensus forecast revision are

given by:

yt − Ftyt = I(θ− θ1,t) and Ftyt − Ft−1yt = I(θ1,t − θt
1,t−1).

Rearrange the terms, we can get:

yt − Ftyt = Iκ−1(I − κ)I ′(Ftyt − Ft−1yt)− Iκ−1(I − κ)I ′(F2,t−1yt − Ft−1yt),

which is Equation (24) in the main text.
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The estimated coefficient βTrend
CG therefore is given by:

βTrend
CG =

cov(Ftyt − Ft−1yt, yt − Ftyt)

var(Ftyt − Ft−1yt)

=
cov(Ftyt − Ft−1yt, Iκ−1(I − κ)I ′(Ftyt − Ft−1yt))

var(Ftyt − Ft−1yt)

− cov(Ftyt − Ft−1yt, Iκ−1(I − κ)I ′(F2,t−1yt − Ft−1yt))

var(Ftyt − Ft−1yt)

= Iκ−1(I − κ)I ′ − Iκ−1(I − κ)I ′
cov(Ftyt − Ft−1yt, F2,t−1yt − Ft−1yt)

var(Ftyt − Ft−1yt)

=
1 − κ11

κ11
+

1 − κ22

κ22
+

κ11κ12(κ21 − κ22) + κ22κ21(κ12 − κ11)

κ11κ22(κ11κ22 − κ12κ21)

− Iκ−1(I − κ)I ′
cov(Ftyt − Ft−1yt, F2,t−1yt − Ft−1yt)

var(Ftyt − Ft−1yt)
,

which is Equation (23) in the main text.
From the third equality, we observe that to show βTrend

CG > 0, it is sufficient and
necessary to show:

cov(Ftyt − Ft−1yt, F2,t−1yt − Ft−1yt)

var(Ftyt − Ft−1yt)
< 1.

The condition can then be rewritten as:

var(Ftyt − Ft−1yt)− cov(Ftyt − Ft−1yt, F2,t−1yt − Ft−1yt)

= cov(Ftyt − Ft−1yt, Ftyt − F2,t−1yt)

=
1

Ω2{[V + σ2
e σ2

µ + (1 − ρ)σ2
e σ2

z ]
2σ2

µ + [V + σ2
ϵ σ2

x + ρ(ρ − 1)σ2
ϵ σ2

z ]
2σ2

x

+ [σ2
ϵ (σ

2
x + σ2

e )− ρσ2
e (σ

2
µ + σ2

ϵ )]
2σ2

z}
> 0,

where σ2
z = E[(E[zi,t])

2] is the variance of separation error at the consensus level.
The intuition follows from the first equality. Note that the term Ftyt − Ft−1yt rep-

resents the revision in forecast between the current period and the previous period
after observing the private signal. The term Ftyt − F2,t−1yt represents the revision in
forecast between the current period and the forecast at the end of the previous period
after observing the actual state yt−1. Therefore, their covariance shall be positive.

Proof of Proposition 6. For those who correctly use the signals, their expectations
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regarding the two components are:

Ec
i,t[µt] =

σ2
µsµ

i,t + σ2
ϵ µt−1

σ2
µ + σ2

ϵ
and Ec

i,t[xt] =
σ2

x sx
i,t + σ2

e ρxt−1

σ2
x + σ2

e
.

The cross-forecaster mean beliefs regarding the two components of the group who
correctly interpret the signals are:

EC[µt] = µt −
σ2

ϵ

σ2
µ + σ2

ϵ
γ

µ
t , and EC[xt] = xt −

σ2
e

σ2
x + σ2

e
γx

t .

For those who wrongly interpret the signals, their expectations regarding the two com-
ponents are:

EW
i,t [µt] =

σ2
µsx

i,t + σ2
ϵ µt−1

σ2
µ + σ2

ϵ
and EW

i,t [xt] =
σ2

x sµ
i,t + σ2

e ρxt−1

σ2
x + σ2

e
.

The cross-forecaster mean beliefs regarding the two components of the group who
wrongly interpret the signals are:

EW [µt] =
σ2

µxt + σ2
ϵ µt−1

σ2
µ + σ2

ϵ
, and EW [xt] =

σ2
x µt + σ2

e ρxt−1

σ2
x + σ2

e
.

The forecast variance across all forecasters then is given by:

Var(Fi,tyt+h) = Var(µi
1,t) + ρ2hVar(xi

1,t) + ρhE[(µi
1,t − E[µt])(xi

1,t − E[xt])]

= ρ2h[τϕC
wVarC

w + (1 − τ)ϕC
c VarC

c ] + [τϕT
wVarT

w + (1 − τ)ϕT
c VarT

c ]

+ ρh(1 − τ)τC̃OVm,

where ϕC
w, ϕC

c , ϕT
w, and ϕT

c are positive scalars between 0 and 1:

ϕC
w =

σ2
x σ2

ϵ

σ4
e + σ2

x σ2
ϵ

; ϕC
c =

σ2
x

σ2
e + σ2

x
;

ϕT
w =

σ2
µσ2

e

σ4
ϵ + σ2

µσ2
e

; ϕT
c =

σ2
µ

σ2
µ + σ2

ϵ
.

The first-order derivative of the Var(Fi,tyt+h) regarding the forecast horizon h is:

∂Var(Fi,tyt+h)

∂h
= 2ρ2h ln ρ

[
τϕC

wVarC
w + (1 − τ)ϕC

c VarC
c

]
+ (1 − τ)τρh ln ρC̃OVm.
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The forecast variance is increasing in h, if and only if:

h > hm =
1

ln ρ
ln (−τ(1 − τ))

C̃OVm

2[τϕC
wVarC

w + (1 − τ)ϕC
c VarC

c ]
.

C Supplemental materials

C.1 Common Shock

In this section, we analyze the case of correlated trend and cyclical components driven
by a common shock, by following Delle Monache et al. (2024). They show the presence
of a common shock influencing both the trend and cyclical components of GDP growth
in the same direction.

This common shock assumption is widely used in the literature. It captures sit-
uations where economic shocks have both transitory and permanent effects. Many
studies show that recessions impact the economy in both temporary and lasting ways.
For example, Furlanetto et al. (2021) and Antolin-Diaz et al. (2017) show that sup-
ply shocks can negatively affect both the cyclical and permanent components of GDP.
Similarly, Almeida et al. (2004) finds that an increase in firms’ profitability can perma-
nently elevate their cash flows while also boosting short-term cash flows by reducing
potential losses.

In this section, we consider the following state generation process:

yt = µt + xt,

µt = µt−1 + γ
µ
t + δt and xt = ρxt−1 + γx

t + bδt,

where δt is a common shock affecting both the trend and cyclical components. This
shock is normally distributed with zero mean and variance σ2

δ , and is independent
across periods (i.e., δt ∼ N(0, σ2

δ )). The scalar b measures the relative importance of
the shock to each of these components. Notably, following Delle Monache et al. (2024),
we assume that b is positive, thereby capturing the common shock assumption.

To contrast with our benchmark model, we assume in this case that the trend com-
ponent becomes observable at the end of each period. With the information structure,
the belief updating process is given by:

θi
1,t = θi

2,t−1 + κcor(si,t − θi
2,t−1), (C20)

where θi
2,t−1 = (µt−1, ρxt−1)

′. Since forecasters are able to observe the actual trend and
cyclical components at the end of each period, κcor is the corresponding Kalman gain
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matrix given by:

κcor =




τ
µ
2

τ
µ
1 +τ

µ
2 +τ

µ
3

τ
µ
3

b(τµ
1 +τ

µ
2 +τ

µ
3 )

bτx
3

τx
1 +τx

2 +τx
3

τx
2

τx
1 +τx

2 +τx
3


 , (C21)

where τ
µ
1 , τ

µ
2 , τ

µ
3 , τx

1 , τx
2 , τx

3 are the precisions of information:

τ
µ
1 =

1
σ2

µ + σ2
δ

; τ
µ
2 =

1
σ2

ϵ
; τ

µ
3 =

b2

b2σ2
µ + σ2

x + σ2
e

;

τx
1 =

1
σ2

x + b2σ2
δ

; τx
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As shown in Equation (C21), the elements on the sub-diagonal is non-zero if b ̸= 0.
Given b > 0, the sub-diagonal elements are positive. This is because the surprise from
the trend signal (i.e., sµ

i,t − µt−1) contains information about the common shock, which
also affects the cyclical components. Therefore, forecasters would use the trend signal
to update their belief about the cyclical belief, and vice versa.

We show that in this case, the covariance between forecasters’ trend beliefs and
cyclical beliefs (i.e., C̃OVcor) is always positive:

C̃OVcor ∝ b(σ2
δ +σ2

µ)[b
2(σ2

ϵ +σ2
µ)+σ2

e +σ2
x ][σ

2
δ (b
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2
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µ)+σ2
ϵ σ2

x ].
(C22)

With a positive covariance, predictions of this particular case would be similar to
the special case discussed in Section 4.1, and therefore inconsistent with the observed
empirical pattern.

C.2 Forecast of other forecasters

This section characterizes the case where forecasters not only observe the actual state
value but also observe the forecasts from other forecasters. In our model, the individ-
ual forecast error comprises both the individual-specific forecast error and the com-
mon forecast error, while the consensus forecast includes only the common forecast
error. Therefore, forecaster i would anchor to the consensus forecasts after observing
the entire distribution.

That is, at the end of the period t− 1, the individual separation error zi,t−1 would be
the same across different forecasters (i.e., zt−1 = zi,t−1 = zj,t−1 for any i, j). Specifically,
at the end of period t, forecasters observe the actual state value of the current period,
yt−1, and the forecasts, Fi,t−1yt−1+h, from other forecasters. The separation error, zt−1,
is given by:

zt−1 =
(VarT

+ COV)(xt−1 − x1,t−1)− (VarC
+ COV)(µt−1 − µ1,t−1)

(VarT
+ COV) + (VarC

+ COV)
̸= 0,
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where µt−1 − µ1,t−1 and xt−1 − x1,t−1 are the consensus forecast errors regarding the
trend component and cyclical component:
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At the beginning of the current period t, after observing their private signals, indi-
vidual forecasters’ beliefs regarding the trend and cyclical components are still hetero-
geneous. Their beliefs are given by:

µi
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where σ̄2
z is the variance of the common separation error. Note that µ2,t−1 = µt−1 +

zt−1 and ρx2,t−1 = ρxt−1 − ρzt−1 are the common prior beliefs. Furthermore, Ω̄ and V̄
are constants:
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In summary, if forecasters can observe all the forecasts provided by other forecast-
ers, the separation error across all forecasters would be common, which would be a
weighted average of all historical state innovations. However, it is still non-zero, indi-
cating that forecasters still cannot perfectly separate the two components. Therefore,
our results obtained under the benchmark model still hold.

C.3 Misinterpretation of Signals

This subsection consider an alternative model that differs from our benchmark model
in two ways. First, we assume that forecasters can observe not only the state value
(i.e., yt−1) at the end of each period but also the trend and cyclical components per-
fectly (i.e., µt−1 and xt−1). Consequently, there is no confusion about these components
at the end of each period. Second, we introduce the possibility of forecasters misinter-
preting the signals before they make forecasts. Specifically, there is a probability τ that
a forecaster may interpret the trend signal as a cyclical one and, at the same time, treat
the cyclical signal as a trend signal.

In this model, each forecaster updates their beliefs and forms expectations using
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the Bayesian rule, even though there is a possibility of misinterpreting signals. That is,

θi
1,t = θ2,t−1 + κ× (si,t − θ2,t−1), (C23)

where θ2,t−1 is (µt−1, xt−1)
′ for all forecasters, as the actual value of the components

from the previous period is perfectly observed and the Kalman gain matrix κ is stan-
dard:

κ =




σ2
µ

σ2
ϵ+σ2

µ
0

0 σ2
x

σ2
e +σ2
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 .

For those who correctly interpret the signals, si,t is represented as (sµ
i,t, sx

i,t)
′. And the

variance-covariance matrix of their beliefs is given by:
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For those who wrongly interpret the signals, si,t is represented as (sx
i,t, sµ

i,t)
′, the corre-

sponding variance-covariance matrix of their beliefs is:

(
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 .

We first examine the model’s prediction about the covariance between the changes
in the long term forecasts and cyclical forecasts. It is important to note that the Kalman
gain matrix in Equation (C23) indicates that individuals’ belief updating for the trend
and cyclical components is independent. As a result, one’s subjective beliefs regarding
these components are also independent. Thus, we have C̃OV = 0. Therefore, the
covariance of the changes in long term forecasts and cyclical forecasts becomes:

COVh
F = (ρh − ρ3Y)ρ3Yvar(E[xi,t]− E[xi,t−1]) ≥ 0.

In other word, the misinterpretation model always predicts a non-negative covariance
between the changes in long term forecasts and cyclical forecasts, which is inconsistent
with the fact documented in section 2.

Next, we examine the model’s prediction of the forecast dispersion across forecast
horizons. Proposition 6 summarizes our the result regarding the dispersion of fore-
casts over horizon.

Proposition 6. If the individual forecaster may misinterpret the signals with a probability τ,
the dispersion of forecasts across forecasters is increasing in the forecast horizon h, if and only
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if:

h > hm =
1

ln ρ
ln [τ(1 − τ)]

−C̃OVm

2[τϕC
wVarC
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, (C24)

where 0 < ϕC
w < 1 , 0 < ϕC

c < 1, C̃OVm = − (σ2
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e +σ2

x )
and ln ρ < 0.

Proposition 6 states that, similar to the benchmark model, the forecast variance
increases as the forecast horizon extends when h is larger than a threshold hm. Inter-
estingly, when everyone correctly interprets the signals (i.e., τ = 0), or everyone mis-
interprets the signals (i.e., τ = 1), the threshold hm approaches infinity. This implies
that the forecast variance decreases monotonically over the horizon. Furthermore, the
threshold hm could be negative if the value of τ falls within the intermediate range.
This implies that the forecast variance increases monotonically over the horizon.

To understand this result, we examine the forecast variance, which can be decom-
posed as the dispersion of the cyclical beliefs across forecasters, the dispersion of the
trend beliefs across forecasters, and their covariance:

Var(Fi,tyt+h) = ρ2h[τϕC
wVarC

w + (1 − τ)ϕC
c VarC

c ] + [τϕT
wVarT

w + (1 − τ)ϕT
c VarT

c ]

+ ρh(1 − τ)τC̃OVm. (C25)

The covariance across forecasters (i.e., the third term) arises because forecasters
can be divided into two groups in this model: those who misinterpret the signals and
those who correctly use them. To illustrate, consider there is a positive strong trend
signal. This signal would increase the trend forecasts of those who correctly interpret
it and the cyclical beliefs of those who misinterpret it as a cyclical signal. As a result,
due to the presence of individuals who misinterpret the signal, the trend forecast of
the entire population, on average, is lower than it should be, while the cyclical belief is
higher than it should be. This creates a negative covariance between mean forecaster
beliefs about the trend and cyclical components, even though the beliefs of individuals
regarding these components are independent.

As the forecast horizon extends, similar to the benchmark model, the dispersion
of the cyclical beliefs decreases, and the covariance term increases. If the increase in
the covariance term is more pronounced, the forecast variance would increase as the
forecast horizon extends.
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