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Abstract

This paper develops a general causal inference method for treatment effects models

with noisily measured confounders. The key feature is that a large set of noisy mea-

surements are linked with the underlying latent confounders through an unknown, pos-

sibly nonlinear factor structure. The main building block is a local principal subspace

approximation procedure that combines K-nearest neighbors matching and principal

component analysis. Estimators of many causal parameters, including average treat-

ment effects and counterfactual distributions, are constructed based on doubly-robust

score functions. Large-sample properties of these estimators are established, which

only require relatively mild conditions on informativeness of noisy measurements and

local principal subspace approximation. The results are illustrated with an empirical

application studying the effect of political connections on stock returns of financial

firms, and a Monte Carlo experiment.
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1 Introduction

Understanding effects of policy interventions is central in many disciplines. When obser-

vational data are used, researchers usually confront the challenge that the treatment is

nonrandomly assigned based on some characteristics that are not directly observed. The

confounding effects of these variables (confounders) make it difficult to uncover the true

causal relation between the outcome and the treatment. Commonly used econometric meth-

ods that assume selection on observables are inappropriate in this situation. This paper

considers a treatment effects model in which a large set of observed covariates, as the noisy

measurements of the underlying confounders, are available. The key assumption is that the

observed measurements and unobserved confounders are linked via an unknown, possibly

nonlinear factor model. The former, though not affecting the potential outcome and the

treatment assignment directly, provide information on the latter, thus making it possible to

resolve the confounding issue.

As an example, consider the effect of a scholarship on academic performance of newly

admitted college students. One may be concerned about the confounding effect of the latent

precollege ability, since it may correlate with both a student’s likelihood of getting a schol-

arship and her future academic performance. If the researcher observes the same student

taking multiple tests in different subjects or time periods at the precollege stage, these past

test scores may play the role of the noisy measurements of the unobserved ability. The

nonlinear factor structure allows for a flexible latent relationship between ability and test

outcomes, which may vary across subjects or time in a complex way. The idea of using noisy

proxies to measure ability or skills is the key to many econometric analyses. It forms the

foundation of estimating skill production function, evaluating early childhood investment

policies and identifying causal effects of education on earnings, health or other outcomes

(see, e.g., Cunha et al., 2010; Heckman et al., 2018).

In this paper we develop a novel inference procedure for counterfactual analysis, which

builds on a local principal component analysis (PCA) method developed in Feng (2023) to
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“extract” information on latent confounders from the noisy measurements. We first find

the K-nearest neighbors (K-NN) for each unit based on the observed measurements, with

K diverging as the sample size grows. If different values of latent confounders can induce

non-negligible differences in many observed measurements, then the K nearest neighbors,

appropriately measured by the noisy measurements, should also be close in terms of the latent

confounders. Next, within each local neighborhood formed by the K matches, under mild

regularity conditions, the underlying possibly nonlinear factor structure is approximated by

a linear factor structure, which can be estimated by principal component analysis.

As in linear factor models (Bai, 2003), the values of the latent confounders cannot be

exactly recovered without additional normalizations. Nevertheless, employing the results in

Feng (2023), we can show that the nearest neighbors and estimated local factor loadings

from local PCA characterize the latent confounders and suffice to restore unconfoundedness

in our treatment effects analysis. Specifically, we propose a local quasi-maximum likeli-

hood method to estimate the conditional means of potential outcomes and the conditional

treatment probabilities (generalized propensity scores), which form the basis of regression

imputation and propensity score weighting estimators of treatment effects. The local region

used in such estimation is defined by nearest neighbors, and the extracted local factor load-

ings play the role of generated regressors that provide further approximation to unknown

conditional expectation functions of interest. The number of nearest neighbors, the main

tuning parameter of our procedure, implicitly governs the “bandwidth” of the estimation and

determines the consistency of final estimators, whereas the number of local factor loadings

extracted is analogous to the degree of the basis in local polynomial regression and can be

taken as fixed in practice.

In contrast with standard nonparametric regression analysis, the conditioning variables in

this scenario are indirectly obtained from the observed measurements, and the noise in their

factor structure restricts one’s ability to select a bandwidth. Using a small number of nearest

neighbors does not necessarily lead to a small bandwidth and thus is not helpful for further
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bias reduction, which differs from other matching techniques based on a fixed number of

matches (e.g., Abadie and Imbens, 2006). Consequently, the possibly large smoothing bias

of the nonparametric ingredients may render the final inference on causal parameters invalid.

To deal with this issue, we follow the Neyman-orthogonalization strategy that has been

extensively applied in the recent double/debiased machine learning literature (Belloni et al.,

2014; Farrell, 2015; Chernozhukov et al., 2018, 2022). In treatment effects models, the widely

used doubly-robust scores (Robins and Rotnitzky, 1995; Cattaneo, 2010) are estimating

equations constructed based on the efficient influence function and are automatically Neyman

orthogonal. Taking advantage of this property, we can conduct valid inference under mild

restrictions on the number of nearest neighbors.

Leveraging these ideas, we develop a novel estimation and inference procedure for a large

class of estimands, including counterfactual distributions and functionals thereof, and provide

the basis for analyzing many causal quantities of interest such as average, quantile, and

distributional treatment effects. It has several appealing features in theory and practice.

First, as a dimension reduction technique, the proposed method allows users to obtain low-

dimensional information on latent confounders from large-dimensional noisy measurements.

It only requires some but not all measurements to be informative about latent confounders,

and it is unnecessary to know their identities a priori (see Remark 4.1 below). Second,

the proposed method does not impose a functional form assumption on the relationship

between latent confounders and noisy measurements, thus making the final inference more

robust. In particular, the nonlinearity of this relationship is allowed but not assumed, and

the classical linear factor model can be covered as a special case. Third, our theory builds on

a generic choice of the “distance” to define nearest neighbors, accommodating and extending

previous matching strategies suggested in the panel and network data literature (e.g. Zhang

et al., 2017; Bonhomme et al., 2022). Our theoretical and numerical results also show

that the proposed method based on local PCA provides more flexible approximation to the

nonlinear factor structure and delivers more robust inference results, compared with local
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constant smoothing based solely on matching techniques. Finally, the output of local PCA

can be readily taken as input to many classical econometric estimation procedures such as

local polynomial kernel regression (Fan and Gijbels, 1996), which may be useful in other

contexts such as diffusion index forecasts (Stock and Watson, 2002; Bai and Ng, 2006),

where prediction based on noisily measured variables is of interest.

The paper is organized as follows. The rest of this section discusses the related liter-

ature. In Section 2, we set up a multi-valued treatment effects model and describe the

nonlinear factor structure of the large-dimensional measurements of latent confounders.

Section 3 gives a detailed description of the entire estimation procedure, accompanied by

a step-by-step empirical illustration using the data of Acemoglu et al. (2016). Section

4 presents the main theoretical results and some Monte Carlo evidence. Section 5 ex-

tends our theory to uniform inference on counterfactual distributions. Section 6 concludes.

The Supplemental Appendix contains all theoretical proofs and additional technical re-

sults. Replications of the simulation study and empirical illustration are available at https:

//github.com/yingjieum/replication-Feng_2024.

1.1 Related Literature

This paper contributes to several strands of literature. First, the observed covariates may

be viewed as an array of noisy measurements of the latent confounders, and thus the the-

oretical framework in this paper is closely related to nonlinear models with measurement

errors. Much effort has been devoted to the identification of such models (see Schennach,

2016 for a review). For example, factor models can be utilized to construct repeated mea-

surements of unobserved variables, which allows for the identification of their distribution

under suitable normalizations. A general treatment following this strategy is available in

Cunha et al. (2010), using and extending results in Hu and Schennach (2008). This paper

takes a different route. A large-dimensional nonlinear factor model is exploited to directly

extract the geometric relation among different units in terms of the latent variables, which
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is then used to control for their confounding effects in the treatment effects analysis. Some

measurements are allowed to be uninformative about the latent confouders, and to identify

the causal effect of interest, it is unnecessary to recover the exact values (or distributions)

of latent confounders. Conceptually, the extracted information from the observables plays

a similar role as a control function, conditional on which the treatment assignment is no

longer confounded. See, e.g., Altonji and Mansfield (2018), Miao et al. (2018), and Naga-

sawa (2022) for causal effects identification that apply the idea of using noisy proxies to

control for unobservables.

Second, this study contributes to the existing literature on causal inference and program

evaluation (see Abadie and Cattaneo, 2018 for a review). In particular, it is connected with

the fast-growing literature on synthetic control (see Abadie, 2021 and references therein)

and staggered adoption designs (Athey and Imbens, 2022). The classical synthetic control

method and many variants thereof are often motivated by assuming a linear factor structure

for the pre-treatment data. By contrast, this paper allows for a possibly nonlinear factor

structure and does not rely on the strong assumption of linear factor models. Using the

extracted information on latent confounders, we derive formal large-sample properties of the

proposed estimators under mild side conditions, which can be applied to (but is not restricted

to) synthetic control problems with disaggregated data.

Third, the local PCA method, the technical building block of this paper, is developed in

Feng (2023), which builds on and extends results on large-dimensional factor analysis and

panel data models with fixed effects (Bai, 2009; Bai and Wang, 2016; Wang and Fan, 2017).

See more references and related discussions therein. However, unlike this paper, Feng (2023)

focuses on the optimal matrix estimation problem in the nonlinear factor setting. A recent

study by Bonhomme et al. (2022) develops two-step grouped fixed-effects estimators that

discretize latent heterogeneity by K-means clustering, which relies on a specific injective

moment condition to ensure the informativeness of the measurements. By contrast, this

paper relies on a more general informativeness requirement (see Assumption 3 and Remark
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4.1 for details) and can achieve more flexible approximation of smooth functions of latent

features via the local principal subspace approximation strategy. The intermediate result

(Theorem 4.1) also characterizes the uniform convergence of nonparametric estimators of

individual-specific features and may be of independent interest.

Finally, we also note that the idea of locally approximating a latent nonlinear “surface”

embedded in a high-dimensional space has been widely used in the modern machine learning

literature (e.g., Zhang and Zha, 2004; Arias-Castro et al., 2017). These methods are used to

construct a global nonlinear structure that preserve the local geometry of the data for the

purpose of classification, clustering or data visualization. Unlike these studies, this paper

focuses on estimation and inference of causal parameters in the treatment effects model

rather than recovering the latent surface.

2 Treatment Effects Model with Latent Variables

Suppose that a random sample {(yi, ti,xi, zi)}ni=1 is available, where yi ∈ R is the outcome

of interest, ti ∈ J = {0, · · · , J} denotes the multi-valued treatment status, and xi ∈ Rp

and zi ∈ Rdz are vectors of covariates. xi and zi play different roles in later analysis: xi

is a vector of noisy measurements of some unobserved confounders αi ∈ Rdα , whereas zi

itself is a vector of observed confounders that can be controlled for directly. Some covariates

may be used for both purposes simultaneously, making zi and xi share some variables in

common. The asymptotic theory in this paper is developed assuming the sample size n and

the number of noisy measurements p simultaneously increase to infinity whereas the number

of confounders dα + dz are fixed.

We follow the standard potential outcomes framework. Let yi(t) denote the potential

outcome of unit i at treatment level t ∈ J . The observed outcome can be written as

yi =
∑J

t=0 di(t)yi(t) where di(t) = 1(ti = t) is an indicator for each treatment level t ∈ J .

The key challenge for causal analysis is the missing data issue. For example, when ti is binary
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(ti ∈ {0, 1}), the average treatment effects on the treated (ATT) relies on E[yi(0)|ti = 1],

but yi(0) is unobserved for the treated group. This hurdle is often overcome by imposing

an unconfoundedness condition so that the treatment assignment becomes independent of

potential outcomes after conditioning on a set of observed covariates. By contrast, this paper

assumes that

yi(t) ⊥⊥ di(t
′) |αi, zi ∀t, t′ ∈ J . (2.1)

While zi is observed, αi is unobserved and thus cannot be directly controlled for in causal

inference. However, as described later in Section 2.1, the unconfoundedness can be restored

when we have a vector of noisy measurements xi of αi.

For each treatment level t ∈ J , the outcome of interest is characterized by a possibly

nonlinear, reduced-form model:

yi(t) = ζi,t + ϵi,t, ζi,t = ψy(µt(αi) + z
′
iβt), E[ϵi,t|zi,αi] = 0, (2.2)

where ζi,t is the conditional expectation of the potential outcome at treatment level t given

the observed zi and unobserved αi, and ψ
−1
y (·) : R 7→ R is a (known) link function associated

with the outcome equation. Let ϵi = (ϵi,0, · · · , ϵi,J).

On the other hand, given a (known) link function ψ−1
p (·) : (0, 1)J+1 7→ RJ associated

with the treatment equation, setting t = 0 as the base level, the assignment mechanism is

described by

di = ϱi + vi, ϱi = ψp(e(αi) + Γzi), E[vi|zi,αi] = 0, (2.3)

where di = (di(0), · · · , di(J))′, ϱi = (ϱi,0, · · · , ϱi,J)′, vi = (vi,0, · · · , vi,J)′, e(·) = (e1(·), · · · , eJ(·))′,

and Γ = (γ1, · · · ,γJ)′ with γt ∈ Rdz for each t = 1, · · · , J . Thus, each ϱi,t is the condi-

tional probability of treatment level t, which would be the usual propensity score if αi were

observed.
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Note that zi and αi are assumed to enter the two equations simultaneously and thus play

the role of confounders, which is consistent with the conditional independence assumption

(2.1). For simplicity, ζi,t and ϱi,t are assumed to take generalized partially linear forms: αi

enters the model nonparametrically through the unknown functions µt(·) and et(·), whereas

zi enters the model in an additive-separable way. This specification allows us to flexibly

control for the unobserved confounders, which is the focus of this paper, but still maintain

practical tractability, compared to fully nonparametric models.

2.1 Structure of Large-Dimensional Measurements

The observed covariates xi = (xi1, · · · , xip)′ play the role of noisy measurements of latent

confounders αi. In general, we can consider a covariates-adjusted nonlinear factor model for

xi:

xi =Wiϑ+ η(αi) + ui, E[ui|F , {Wi}ni=1] = 0, 1 ≤ i ≤ n, (2.4)

where Wi = (wi,1, · · · ,wi,dw) ∈ Rp×dw is a matrix of covariates with the slope parameter

ϑ ∈ Rdw , η(·) = (η1(·), · · · , ηp(·))′ : Rdα 7→ Rp is a vector of latent functions, and ui =

(ui1, · · · , uip)′ is a vector of idiosyncratic errors. We let F be the σ-field generated by

unobserved random elements {αi}ni=1 and η(·). The regressors included in Wi need to be

sufficiently high-rank (enough variation across both dimensions) for identification of ϑ.

Since incorporating Wi is notationally cumbersome and less relevant to the core idea of

this paper, we consider a simplified model with ϑ = 0 hereafter:

xi = η(αi) + ui, E[ui|F ] = 0. (2.5)

Define p × n matrices X = (x1, · · · ,xn), H = (η(α1), · · · ,η(αn)) and U = (u1, · · · ,un).

Then, (2.5) can be written in matrix form: X = H + U . The Supplemental Appendix

describes how the estimation procedure in Section 3 below can be adjusted when additional

covariates Wi are included, and formal large-sample theory for this general case is available
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in Feng (2023).

Throughout the paper, the latent variables {αi}ni=1 and the latent functions η(·) are

understood as random elements, but our analysis is conducted conditional on them. In this

sense, they are analogous to fixed effects in the panel data literature. This setup indeed

encompasses many panel data models as special cases. For instance, if we assume ηl(αi) =

ϖ′
lαi for some ϖl ∈ Rdα , Equation (2.5) reduces to the classical linear factor model (Bai,

2003). Instead of restricting the latent mean structure H to be exactly low-rank, (2.5)

allows H to be full rank due to the potential nonlinearity of the latent functions η(·), while

the variation of the large-dimensional X may still be explained by a few low-dimensional

components in a possibly nonlinear way.

2.2 Notation

Matrices. For a vector v ∈ Rd, ∥v∥ =
√
v′v is the Euclidean norm of v, and for an m× n

matrix A, ∥A∥max = max1≤i≤m,1≤j≤n |aij| is the entrywise sup-norm of A. smax(A) and

smin(A) denote the largest and smallest singular values of A respectively. Moreover, Ai· and

A·j denote the ith row and the jth column of A respectively, and 1d denotes a d-vector of

ones.

Asymptotics. For sequences of numbers or random variables, an ≲ bn denotes lim supn |an/bn|

is finite, and an ≲P bn denotes lim supε→∞ lim supn P[|an/bn| ≥ ε] = 0. an = o(bn) implies

an/bn → 0, and an = oP(bn) implies that an/bn →P 0, where →P denotes convergence in

probability. an ≍ bn implies that an ≲ bn and bn ≲ an. ⇝ denotes convergence in distribu-

tion. Moreover, for possibly random sequence {ai,n}i∈[n] and a non-random strictly positive

sequence {ri,n}i∈[n], we write ai,n = ŌP(ri,n) if maxi∈[n] |ai,n/ri,n| ≲P 1, and ai,n = ōP(ri,n) if

maxi∈[n] |ai,n/ri,n| →P 0.

Others. For two numbers a and b, a ∨ b = max{a, b} and a ∧ b = min{a, b}. For a finite

set S, |S| denotes its cardinality. For an integer m > 0, [m] = {1, 2, · · · ,m}. For a sequence

{ai,n : i ∈ [n]}, En[ai,n] = 1
n

∑n
i=1 ai,n.
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3 Outline of Estimation Procedure

This section describes the main procedure for treatment effects analysis, which consists of

three steps. First, given the structure (2.5), relevant information on αi is extracted from

xi. Second, the conditional means {ζi,t}ni=1 of potential outcomes and conditional treatment

probabilities {ϱi,t}ni=1 are estimated by a local quasi-maximum likelihood method where

the extracted information from the first step plays the role of kernel functions and generated

regressors. Third, estimators of causal estimands of interest are constructed based on doubly-

robust score functions. See Algorithm 1 for a short summary. The main tuning parameter

in this procedure is the number of nearest neighbors K, which governs the “bandwidth”

of the nonparametric estimation in the second step, while the number of (local) principal

components to be extracted can be taken as fixed.

In addition to methodological discussions, each step below will be accompanied by an

empirical illustration using the data of Acemoglu et al. (2016), which analyzes the effect of

the announcement of the appointment of Tim Geithner as Treasury Secretary on November

21, 2008 on stock returns of financial firms that were connected to him. This study can be

viewed as an example of the synthetic control design in the program evaluation literature

(see Abadie, 2021 for a review). Specifically, the treatment of interest is the appointment

of Geithner, which starts at a particular date (referred to as “event day 0” hereafter). All

firms remain untreated prior to the appointment. Starting at event day 0, a subgroup of

firms that are connected to Geithner are treated (ti = 1), while the other group remains

untreated (ti = 0). Variables used in this analysis and the parameter of interest are listed in

the following.

� Potential outcomes yi(1) and yi(0): the cumulative stock returns of firm i from date 0

to date 1 that would be observed with and without Geithner connections;

� Noisy measurements xi: the daily stock returns of firm i prior to the Geithner an-

nouncement;
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� Additional controls zi: the size (log of total assets), profitability (return on equity),

and leverage (total debt to total capital) of firm i as of 2008;

� Parameter of interest E[yi(1)− yi(0)|ti = 1]: the average cumulative abnormal returns

of firms connected to Geithner from date 0 to date 1.

The sample consists of 583 firms in total (n = 583) and 22 of them are treated (“connected

to Geithner”). To be comparable with the results in Acemoglu et al. (2016), the observed

measurements xi only include the daily stock returns for 250 days that ends 30 days prior

to the Geithner announcement (p = 250). In this application, the “pre-treatment” returns

can be viewed as noisy measurements of some unobserved firm characteristics αi, such as

risk preference or management level.

3.1 Step 1: Latent Variables Extraction

The goal is to extract information on latent confounders αi by employing the structure (2.5).

The main ideas are sketched below.

Row-wise Splitting. To guarantee desired theoretical properties of local PCA, Feng

(2023) recommends users separate the K-NN matching and principal component analysis.

Specifically, split the row index set R = [p] of X into two non-overlapping subsets: R =

R† ∪ R‡ with p† = |R†|, p‡ = |R‡| and p† ≍ p‡ ≍ p. Accordingly, the data matrix X is

divided into two submatrices X† and X‡ with row indices in R† and R‡ respectively. U †

and U ‡ are defined similarly. In principle, the splitting is only used to make the two portions

of data X† and X‡ approximately independent (conditionally on the latent variables and

latent functions). Under Assumption 2(e) imposed below, this goal can be easily achieved

by, for example, randomly splitting the row index set. When measurements are collected

over a time series dimension, one may, for example, take the first half of time periods for

K-NN and the second half for PCA.

K-Nearest Neighbors Matching. This step makes use of the subsample labeled by †,
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Algorithm 1 (Causal inference with latent confounders)

Step 1: Latent Variables Extraction

Input: covariate matrix X ∈ Rp×n, tuning parameters K, di

Output: {Ni}ni=1, {Λ̂⟨i⟩}ni=1

Row-wise split X into two submatrices X† ∈ RT †×n and X‡ ∈ RT ‡×n

For i ∈ [n],

(1) use X† to obtain the set Ni of the K nearest neighbors of unit i based on distance ρ(·, ·):

Ni =
{
jk(i) :

n∑
ℓ=1

1
(
ρ(X†

·i,X
†
·ℓ) ≤ ρ(X†

·i,X
†
·jk(i)

)
)
≤ K, 1 ≤ k ≤ K

}
(2) use X⟨i⟩ = (X‡

·j1(i), · · · ,X
‡
·jK(i)) to obtain the local factor loading Λ̂⟨i⟩ by local PCA:

(F̂⟨i⟩, Λ̂⟨i⟩) = argmin
F̃⟨i⟩ ∈ RT‡×di , Λ̃⟨i⟩ ∈ RK×di

Tr
[(

X⟨i⟩ − F̃⟨i⟩Λ̃
′
⟨i⟩

)(
X⟨i⟩ − F̃⟨i⟩Λ̃

′
⟨i⟩)

′
]

Step 2: Local Quasi-Maximum Likelihood Estimation (QMLE)

Input: dependent variables: {yi}ni=1, {di(t)}ni=1; independent variables: {zi}ni=1, {Λ̂⟨i⟩}ni=1;

neighborhoods: {Ni}ni=1

Output: fitted values {ζ̂i,t}ni=1 and {ϱ̂i}ni=1

(1) For each i ∈ [n] and t ∈ J , estimate ζi,t by local QMLE, as described in (3.4), using data for units in
Ni with treatment status equal to t

(2) Similarly, for each i ∈ [n], estimate ϱi by local QMLE using data for units in Ni

Step 3: Counterfactual Analysis

Input: {yi}ni=1, {di(t)}ni=1, {ζ̂i,t}ni=1, {ϱ̂i}ni=1

Output: {θ̂t,t′}t,t′∈J and related quantities

(1) Obtain the estimator θ̂t,t′ of θt,t′ = E[yi(t)|si = t′] and its standard error σ̂2
t,t′ :

θ̂t,t′ =
1

n

n∑
i=1

[
di(t

′)ζ̂i,t

ϱ̂t′
+
ϱ̂i,t′

ϱ̂t′

di(t)(yi − ζ̂i,t)

ϱ̂i,t

]
, σ̂2

t,t′ =
1

n

n∑
i=1

[
di(t

′)(ζ̂i,t − θ̂t,t′ )
2

ϱ̂2
t′

+
ϱ̂2
i,t′di(t)(yi − ζ̂i,t)

2

ϱ̂2
t′ ϱ̂

2
i,t

]

(2) Construct estimators of other quantities based on {θ̂t,t′}

i.e., the submatrix ofX with row indices in R†. Given a “distance” function ρ : Rp† ×Rp† 7→

R, search for a set of indices Ni for the K nearest neighbors of unit i (including i itself):

Ni =
{
jk(i) :

n∑
ℓ=1

1
(
ρ(X†

·i,X
†
·ℓ) ≤ ρ(X†

·i,X
†
·jk(i))

)
≤ K, 1 ≤ k ≤ K

}
. (3.1)
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We use the term “distance” in a loose sense so that ρ does not have to satisfy all the axioms

for a distance function in math. Some usual choices include (i) the squared Euclidean distance

ρ(X†
·i,X

†
·j) = ∥X†

·i −X
†
·j∥2/p†, (ii) the pseudo-max distance ρ(X†

·i,X
†
·j) = maxl ̸=i,j |(X†

·i −

X†
·j)

′X†
·l|/p†, and (iii) the distance of averages ρ(X†

·i,X
†
·j) = |1′

p†(X
†
·i −X

†
·j)|/p†. Moreover,

when the noisy measurements differ in scale or importance for revealing information on

the latent variables, one can rescale or reweight different measurements when searching for

nearest neighbors. Such transformations can be viewed as particular choices of the distance.

The number of nearest neighbors K is the key tuning parameter of the entire estimation

procedure. A formal method for selecting K is beyond the scope of this paper, but we

emphasize that taking advantage of doubly-robust score functions, our main inference results

rely on mild restrictions on K, which reduces to n/K2 = o(1) (up to log n terms) in a

practically relevant case. See more discussion in Remark 4.3.

Using the data of Acemoglu et al. (2016), we implement K-NN matching for each unit

based on the pseudo-max distance of daily stock returns in the first 125 days. We make use

of a data-dependent benchmark choice of K = 99, which is obtained based on leave-one-out

cross validation (CV) for local constant nearest neighbors regression of the cumulative stock

returns from date 0 to 1 on the pre-treatment return at date t = −30. This regression is

not what we need for the causal analysis, but in principle, it gives a CV choice of K of an

order O(n4/5), satisfying the requirement for our inference theory (see Theorem 4.2). Note

that due to the noise in the measurements, choosing a small K may not help reduce the

resultant matching discrepancy (see discussions below Lemma 4.1). To have a sense of the

performance ofK-NN matching, we calculate for each unit the maximum distance of matched

pairs divided by the standard deviation of the distance across all pairs, which can be viewed

as a normalized matching discrepancy in terms of the observed returns. Table 1 reports some

summary statistics for treated and control groups respectively. Matching performs relatively

well for treated units, whereas some control units are matched with someone relatively far

away. In later analysis, we will check the robustness of the results by varying the number of
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nearest neighbors or dropping control units with large discrepancy.

Table 1: K-NN Matching: Maximum Distance of Matched Pairs

Min. 1st Qu. Median Mean 3rd Qu. Max.

Treated 0.671 1.043 1.166 1.199 1.313 1.840

Control 0.602 0.881 1.064 1.228 1.345 6.638

Notes: For each unit, the maximum distance of matched pairs are normalized by dividing
it by the standard deviation of the distance across all pairs.

Local Principal Component Analysis. This step makes use of the subsample labeled

by ‡, i.e., the submatrix of X with row indices in R‡. Given a set of nearest neighbors Ni

from the previous step, define a p‡ ×K matrix X⟨i⟩ = (X‡
·j1(i), · · · ,X

‡
·jK(i)). The subscript

⟨i⟩ indicates that the data matrix is defined locally for unit i. For these nearest neighbors,

the unknown function η can be locally approximated by a linear combination of some basis

functions of latent variables. Then,X⟨i⟩ admits a linear factor structure up to approximation

errors:

X⟨i⟩ = F⟨i⟩Λ
′
⟨i⟩ +Ξ⟨i⟩ +U⟨i⟩, (3.2)

where U⟨i⟩ = (U ‡
·j1(i), · · · ,U

‡
·jK(i)), F⟨i⟩ ∈ Rp‡×di is the local factor matrix, Λ⟨i⟩ ∈ RK×di is

the local factor loading matrix, and Ξ⟨i⟩ ∈ Rp‡×K is the corresponding approximation error.

The user-specified parameter di governs the number of approximation terms. F⟨i⟩ and Λ⟨i⟩

can be identified up to a rotation and estimated by PCA (Bishop, 2006):

(F̂⟨i⟩, Λ̂⟨i⟩) = argmin
F̃⟨i⟩ ∈ Rp‡×di , Λ̃⟨i⟩ ∈ RK×di

Tr
[(
X⟨i⟩ − F̃⟨i⟩Λ̃

′
⟨i⟩

)(
X⟨i⟩ − F̃⟨i⟩Λ̃

′
⟨i⟩)

′
]

(3.3)

such that 1
p‡
F̃ ′

⟨i⟩F̃⟨i⟩ = Idi and
1
K
Λ̃′

⟨i⟩Λ̃⟨i⟩ is diagonal. Let λ̂ℓ,⟨i⟩ be the column in Λ̂⟨i⟩ that

corresponds to a generic unit ℓ.

The number of local principal components di plays a role similar to the degree of the basis

in local polynomial regression and can be set as a fixed number (independent of n and p),

as long as the extracted local factors has stronger signal strength relative to the noise U⟨i⟩.

14



See more discussion below Assumption 4.

Remark 3.1 (Number of Latent Confounders r). As will be shown later in Section 4, given

the tuning parameters K and di, the number of latent confounders r implicitly affects the

approximation quality of our proposed method. From the practical perspective, however, it is

unnecessary to determine r in the above local PCA procedure. Assuming the latent functions

ηl’s are sufficiently smooth, one could, for example, extract all local factors associated with

large eigenvalues (compared to the noise matrix), thus maximizing the approximation power

of Λ̂⟨i⟩ in the next step. Nevertheless, determining the number of latent confounders may be

of independent interest. See Remark 4.4 of Feng (2023) for some discussion on how r can be

determined via this local PCA procedure. ⌟

Figure 1: Local Eigenvalues for One Neighborhood
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As an illustration, we implement local PCA for each unit using the data of Acemoglu et al.

(2016). Recall that for each firm a set of nearest neighbors has been obtained using the daily

stock returns in the first 125 days. PCA can be conducted for this subgroup of firms using

their daily stock returns in the next 125 days. Figure 1 shows several leading eigenvalues

corresponding to the neighborhood for a particular unit (“AMERICAN EXPRESS CO.”),

suggesting that extracting one or two local principal components is a reasonable choice. In

the subsequent analysis, we employ a simple data-dependent rule to determine di and avoid
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extracting “too weak” factors: di = 2 if υ2,⟨i⟩/υ3,⟨i⟩ ≥ log logK and di = 1 otherwise, for

each i ∈ [n].

3.2 Step 2: Local Quasi-Maximum Likelihood Estimation

For the outcome equation (2.2), consider a quasi-log-likelihood function Ly(ζ, y) such that

∂
∂ζ
Ly(ζ, y) =

y−ζ
Vy(ζ)

. Then, a local quasi-maximum likelihood estimator of ζi,t is given by

ζ̂i,t = ψy

(
µ̂t(αi) + z

′
iβ̂t,⟨i⟩

)
, µ̂t(αi) = λ̂

′
i,⟨i⟩b̂t,⟨i⟩, where

(
b̂′t,⟨i⟩, β̂

′
t,⟨i⟩

)′
= argmax

(b′, β′)′∈Rdi+dz

∑
j∈Ni

dj(t)Ly

(
ψy(λ̂

′
j,⟨i⟩b+ z

′
jβ), yj

)
.

(3.4)

For each unit i, the fitting is restricted to its local neighborhood Ni, and λ̂j,⟨i⟩ plays the role

of generated regressors used to control for the latent confounders αj in this context. For

continuous outcomes, it is common practice to implement local least squares regression.

Similarly, for the treatment equation (2.3), given a quasi-likelihood Lp(·, ·) associated with

some functions {Vp,t(·)}t∈[J ] such that ∂
∂κt

Lp(ψp(κ),d) = d(t)−ψp,t(κ)

Vp,t(κ)
for κ = (κ1, · · · , κJ)′,

implement a local quasi-maximum likelihood estimation, which gives the predicted condi-

tional treatment probability

ϱ̂i = ψp(ê(αi) + Γ̂zi).

For discrete treatments, it is common practice to implement local least squares regression or

local multinomial logit estimation.

One could also exploit other standard methods in the semiparametrics literature, e.g.,

profiled quasi-maximum likelihood, to estimate the parametric components βt and Γ, though

it is computationally more burdensome. See Härdle et al. (2004) for implementation details.

For the purpose of illustration, we implement a local least squares regression of stock

returns at date t on the local factor loadings extracted in the previous step, for each t =

−20, · · · , 0, 1, where t = 0 denotes the day when the treatment starts. Figure 2a shows the
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fitted values in black and the observed daily returns in grey for the 22 treated firms, and the

result for American Express Co. is displayed in Figure 2b. Recall that the fitted values are

the estimates of the conditional means of stock returns without treatment given the latent

variables. Clearly, after day 0, many sequences of stock returns increase sharply compared

to the corresponding fitted values.

Figure 2: Local Least Squares: Stock Returns
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(a) All Treated Firms

−0.2

0.0

0.2

0.4

−20 −15 −10 −5 0
date

re
tu

rn

Fit

Y

(b) American Express Co.

3.3 Step 3: Counterfactual Analysis

The final step is to estimate the counterfactual means of potential outcomes, which forms the

basis of estimators for other causal parameters. Specifically, consider θt,t′ := E[yi(t)|ti = t′].

Let ϱt = P(ti = t) for any t ∈ J . Under our unconfoundedness assumption (2.1),

θt,t′ = E
[
di(t

′)ζi,t
ϱt′

+
ϱi,t′

ϱt′

di(t)(yi − ζi,t)

ϱi,t

]
.

An estimator of θt,t′ is given by

θ̂t,t′ :=
1

n

n∑
i=1

[
di(t

′)ζ̂i,t
ϱ̂t′

+
ϱ̂i,t′

ϱ̂t′

di(t)(yi − ζ̂i,t)

ϱ̂i,t

]
, (3.5)
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where ζ̂i,t, ϱ̂i,t and ϱ̂i,t′ are obtained in the second step, and ϱ̂ℓ =
1
n

∑n
i=1 di(ℓ) for ℓ ∈ J . For

the purpose of inference, a simple plug-in variance estimator for θ̂t,t′ is

σ̂2
t,t′ :=

1

n

n∑
i=1

[
di(t

′)(ζ̂i,t − θ̂t,t′)
2

ϱ̂2t′

]
+

1

n

n∑
i=1

[
ϱ̂2i,t′di(t)(yi − ζ̂i,t)

2

ϱ̂2t′ ϱ̂
2
i,t

]
(3.6)

Under some regularity conditions, we show in Theorem 4.2 below that
√
nσ̂−1

t,t′(θ̂t,t′ − θt,t′)⇝

N(0, 1). Confidence intervals and hypothesis testing procedures can be constructed accord-

ingly.

Estimators of other parameters may be constructed in a similar way or based on {θ̂t,t′}t,t′∈J .

For example, the average treatment effect on the treatment group t′ = ℓ compared to the

baseline treatment status t = 0 can be estimated by θ̂ℓ,ℓ−θ̂0,ℓ where θ̂ℓ,ℓ =
∑n

i=1 di(ℓ)yi/
∑n

i=1 di(ℓ).

As an illustration, we estimate the average treatment effect of Geithner connections on

cumulative returns from day 0 to day 1 (CAR[0,1]) for firms with connections. Since the

number of treated units is relatively small, the propensity score is estimated by taking a

simple local average of treatment indicators within each local neighborhood. For the outcome

equation, we implement a local least squares regression of cumulative stock returns of firms

with no connections on the local factor loadings extracted previously. Different choices of

K are considered, which correspond to K = CK0 where C = 0.5, 1, 2 and K0 = 99 is the

previously described benchmark choice. The above procedure is applied to the full sample

and a base sample. The latter, as defined in Acemoglu et al. (2016), excludes firms whose

returns are highly correlated with Citigroup.

Results are reported in the first two columns of Table 2. We also include two results based

on synthetic matching from Acemoglu et al. (2016) and one result based on a penalized

synthetic control method from Abadie and L’Hour (2021). To make these results comparable,

we follow these two papers and report the 95% acceptance regions for hypothesis testing of

the average treatment effect (on the treated) being equal to zero (numbers in brackets in

Table 2), but note that the underlying assumptions and inference methodology of the other
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two papers are different from ours. The estimated average cumulative abnormal return for

the connected firms using the proposed method ranges from 0.053 to 0.105 and significantly

differs from zero at the 0.05 level. Compared with the other two papers, the magnitude of

the estimated effect is greater, and it is significant even when a full sample is utilized. We

also check the robustness of the results by excluding firms in the control group with large

normalized matching discrepancy (top 10% in Table 1). Results are similar and omitted to

conserve space.

Table 2: Average Treatment Effect of Connections on the Treated

No Covariates Add Covariates

Full Sample Base Sample Full Sample Base Sample

Local PCA, K =

50 0.095 0.083 0.075 0.053

[-0.054, 0.054] [-0.049, 0.049] [-0.054, 0.054] [-0.052, 0.052]

99 0.103 0.094 0.089 0.073

[-0.054, 0.054] [-0.051, 0.051] [-0.052, 0.052] [-0.049, 0.049]

198 0.105 0.098 0.092 0.085

[-0.055, 0.055] [-0.053, 0.053] [-0.055, 0.055] [-0.052, 0.052]

Acemoglu et al. (2016)

Estimate 0.005 0.060 - -

AR for TE=0 [-0.029, 0.014] [-0.068, 0.036] - -

Abadie and L’Hour (2021)

Estimate - 0.061 - -

AR for TE=0 - [-0.050, 0.061] - -

Notes: CAR[0,1] is the cumulative abnormal return from day 0 to day 1. The base sample excludes
firms highly correlated with Citigroup. The numbers in brackets are the 95% acceptance regions for
hypothesis testing of the effect of connections being equal to zero.

The analysis so far has controlled for latent variables only. Three additional covariates are

available in the dataset of Acemoglu et al. (2016): firm size (log of total assets), profitability

(return on equity), and leverage (total debt to total capital) as of 2008. They can be

incorporated into the local least squares regression in Step 2 as additional regressors zi.

Results are reported in the third and fourth columns of Table 2. The estimated effect is

slightly smaller than that without additional covariates, but still significant at the 0.05 level.
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4 Main Results

4.1 Assumptions

We begin with the unconfoundedness and overlap conditions commonly used in the causal

inference literature. Note that the conditioning variables αi in this scenario are not directly

observed.

Assumption 1 (Unconfoundedness and Overlap). (yi, ti, zi,αi) is i.i.d. over i ∈ [n] and

satisfies that (a) yi(t) ⊥⊥ di(t
′) |αi, zi, ∀t, t′ ∈ J ; and (b) for all t ∈ J , P(ti = t|αi, zi) ≥

cmin > 0 for some constant cmin almost surely.

The next assumption imposes mild regularity conditions on the treatment effects model

and the latent structure of xi.

Assumption 2 (Regularities). Let m̄ ≥ 2 and ν > 0 be some constants. Equations (2.2),

(2.3) and (2.5) hold with the following conditions satisfied:

(a) For all t ∈ J , µt(·) and et(·) are m̄-times continuously differentiable.

(b) zi has a compact support and E[z̃iz̃′i|αi] > 0 a.s. for z̃i = zi − E[zi|αi]. Conditional

on F , {(ϵi,vi) : i ∈ [n]} are independent across i with zero means and are independent

of {xi : i ∈ [n]}. Also, maxi∈[n] E[∥ϵi∥2+ν |F ] <∞ and maxi∈[n] E[∥vi∥2+ν |F ] <∞ a.s.

on F .

(c) {αi : i ∈ [n]} has a compact convex support A with a density bounded and bounded

away from zero.

(d) For all l ∈ [p], ηl(·) is m̄-times continuously differentiable with all partial derivatives

of order no greater than m̄ bounded by a universal constant.

(e) Conditional on F , {uil : i ∈ [n], l ∈ [p]} are independent across i and over l, and

maxi∈[n],l∈[p] E[|uil|2+ν |F ] <∞ a.s. on F .
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Parts (a), (b), and (c) concern the regularities of the treatment effects model characterized

by Equations (2.2) and (2.3). The conditional means of potential outcomes and propensity

scores are sufficiently smooth functions, and other standard conditions are imposed on the

conditioning variables and errors. Regarding the latent structure of xi described in Equation

(2.5), part (d) ensures that all latent functions belong to a Hölder class of order m̄, and

part (e) are standard conditions on errors commonly used in factor analysis and graphon

estimation. The constant m̄ governs the smoothness of unknown functions, and ν controls

the tails of error terms. They are assumed to be the same across Equations (2.2)–(2.5) to

ease the presentation. Also, the independence of uil across i and l is assumed for simplicity

only and can be relaxed to accommodate weak dependence in one or two dimensions, albeit

with more technical complexity.

The main task of the first step is to learn αi from xi. It is unnecessary to identify αi in

an exact sense since only predictions based on αi matter for the causal analysis. Intuitively,

the nearest neighbors and local factor loadings described in Section 3 suffice to restore

unconfoundedness if they can reflect the local geometric relations among latent confounders

αi’s. The key conditions required are formalized in the next two assumptions. The first one,

allowing for generic distance choices, ensures that the indirectly obtained nearest neighbors

are truly close in terms of the unobserved confounders, with the corresponding matching

discrepancy precisely quantified.

Assumption 3 (Indirect Matching). For some fixed positive constants ρ0, ς, ς̄ and some

positive sequence an = o(1), the following conditions hold:

(a) max
1≤i,j≤n

|ρ(X†
·i,X

†
·j)− ρ(H†

·i,H
†
·j)− ρ0| ≲P an;

(b) max
1≤i,j≤n
αi ̸=αj

ρ(H†
·i,H

†
·j)

∥αi−αj∥ς̄ ≲P 1 and min
1≤i,j≤n
αi ̸=αj

ρ(H†
·i,H

†
·j)

∥αi−αj∥ς ≳P 1.

Assumption 3 is a high-level condition, accommodating a generic choice of the distance

ρ. Part (a) implies that the distance of the noisy measurements can be translated into

that of the noise-free mean structure, which is usually a mild requirement if the distance
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“averages” many independent (or weakly dependent) measurements. On the other hand,

part (b) precisely links the distance of the noise-free mean vectors with that of the latent

confounders. In general, the upper bound requirement is mild given the smoothness of latent

functions, while the plausibility of the lower bound, the key requirement for informativeness

of measurements, needs to be understood in context. (See Remark 4.1 below.) Feng (2023)

provides further discussion of Assumption 3 and details the parameters ς, ς̄, ρ0 and an for

several specific distance choices. In particular, under different sufficient conditions in each

case, we can show that (i) if ρ is the (squared) Euclidean distance, ρ0 = 2σ2, an = ( logn
p

)1/4,

and ς̄ = ς = 2, where E[u2il|F ] is assumed to be a constant σ2; (ii) if ρ is the pseudo-max

distance, ρ0 = 0, an = ( logn
p

)1/2, and ς̄ = ς = 1; and (iii) if ρ is the distance of averages,

ρ0 = 0, an = ( logn
p

)1/2, and ς = ς̄ = 1.

Remark 4.1 (Informativeness Requirement). The lower bound condition in Assumption

3(b) is a fundamental requirement for informativeness of measurements. To get a sense of

its plausibility, consider a linear factor model: ηl(αi) = ϖlαi for ϖl ∈ R. When the distance

of averages is used, we typically need the probability limit of 1
p†

∑
l∈R† ηl(·) to be strictly

monotonic. This may be violated, for example, when 1
p†

∑
l∈R† ϖl →P 0. In other words, the

averaged measurements could be completely uninformative about the latent confounders.

However, as long as a non-negligible subset of measurements have nonzero ϖl’s and thus are

(individually) informative, the Euclidean distance or pseudo-max distance may still be able

to differentiate two units with different values of latent confounders. It is unnecessary to

know the identities of informative measurements a priori, but if users do have some prior

knowledge, a corresponding weighting scheme can be incorporated into the definition of the

distance, which is completely accommodated in our framework. It should be emphasized that

full verification of Assumption 3 also relies on other sufficient conditions for each distance

function (see Appendix A of Feng, 2023 for more technical details), so the comparison here

does not suggest a theoretically superior choice. Users should select an appropriate distance

in context. ⌟
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Next, we impose some regularity conditions on the local principal subspace approximation

of the noise-free mean structure so that the information extracted through local PCA of

the measurements matrix X⟨i⟩ can aid the approximation of the nonparametric components

µt(·) and et(·) in the conditional means of potential outcomes ζi,t’s and the propensity score

ϱi’s, the key building blocks for the final causal parameter identification. Let E‡ denote the

expectation operator conditional on X†, and introduce a diagonal (scaling) matrix Υ⟨i⟩ =

diag{υ1,⟨i⟩, · · · , υdi,⟨i⟩}. Without loss of generality, assume υ1,⟨i⟩ ≥ υ2,⟨i⟩ ≥ · · · ≥ υdi,⟨i⟩. Also,

write hn = (K/n)ς̄/(ςdα), which denotes the (direct) matching discrepancy (see Lemma 4.1

below) and plays a role similar to “bandwidth” in kernel-based nonparametric estimation.

Assumption 4 (Local Approximation). For each i ∈ [n], there exists some Λ⟨i⟩ ∈ RK×di

such that the following conditions hold:

(a) There exists some diagonal matrix Υ⟨i⟩ such that max
i∈[n]

∥Λ⟨i⟩Υ
−1
⟨i⟩ ∥max ≲P 1 and

1 ≲P min
1≤i≤n

smin

( 1

K
Υ−1

⟨i⟩Λ
′
⟨i⟩Λ⟨i⟩Υ

−1
⟨i⟩

)
≤ max

1≤i≤n
smax

( 1

K
Υ−1

⟨i⟩Λ
′
⟨i⟩Λ⟨i⟩Υ

−1
⟨i⟩

)
≲P 1.

Either υj,⟨i⟩/υj+1,⟨i⟩ ≲ 1 or υj,⟨i⟩/υj+1,⟨i⟩ → ∞ holds for j ∈ [di − 1];

(b) H⟨i⟩ = F⟨i⟩Λ
′
⟨i⟩ + Ξ⟨i⟩ where F⟨i⟩ = E‡[H⟨i⟩Λ⟨i⟩]E‡[Λ′

⟨i⟩Λ⟨i⟩]
−1, max

i∈[n]
∥Ξ⟨i⟩∥max ≲P h

m
n =

ō(υdi,⟨i⟩) for some m ≤ m̄, δ−1
n /υdi,⟨i⟩ = ō(1), and 1 ≲P min

i∈[n]
smin

(
1
p‡
F ′

⟨i⟩F⟨i⟩

)
≤

max
i∈[n]

smax

(
1
p‡
F ′

⟨i⟩F⟨i⟩

)
≲P 1.

(c) There exists bt,⟨i⟩ and ct,⟨i⟩ such that maxj∈Ni
|µt(αj) − b′

t,⟨i⟩λj,⟨i⟩| = Ō(ry,⟨i⟩) and

maxj∈Ni
|et(αj) − c′t,⟨i⟩λj,⟨i⟩| = Ō(rp,⟨i⟩) for all t ∈ J and some ry,⟨i⟩ = ō(1) and

rp,⟨i⟩ = ō(1).

Assumption 4 is a high-level condition, delineating the key requirements for informative-

ness of local factor loadings. We make several remarks on each part.

First, the matrix Λ⟨i⟩, termed local factor loadings, can be viewed as an approximation ba-

sis that characterizes the relation of different units in terms of the latent confounders. Thus,
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Assumption 4(a) is a mild condition that specifies the possibly heterogeneous magnitude of

different components of the basis and requires the basis matrix be non-degenerate. In local

PCA of the measurements matrix X⟨i⟩, this condition implies that the strength of factors

for each local neighborhood may be heterogeneous, which differs from the usual linear factor

analysis assuming strong factors.

Second, Assumption 4(b) quantifies the precision of the L2-type approximation for the

noise-free measurement matrixH⟨i⟩ that can be achieved by the basis Λ⟨i⟩. The matrix F⟨i⟩,

termed local factors, plays the role of the coefficients on the basis in this approximation,

and Ξ⟨i⟩ is the corresponding L2-approximation error. As in usual factor analysis, F⟨i⟩ is

assumed to be non-degenerate. We allow di to differ across local neighborhoods, making this

non-degeneracy condition accommodate the cases where the nonlinear surface generated by

η(·) have heterogeneous degrees or patterns of nonlinearity in different regions. The rate

restriction δ−1
n = ō(υdi,⟨i⟩) ensures that even the “weakest” factors one desire to extract has

stronger signal strength than the noise and thus are consistently estimable. See Feng (2023)

for examples and detailed discussions about these requirements.

Finally, Assumption 4(c) requires the same basis Λ⟨i⟩ also has ability to approximate the

unknown functions µt(·) and et(·), which are necessary for recovering the conditional means

of potential outcomes and propensity scores in the final causal analysis. Importantly, as

discussed before, the latent surface generated by the latent function η(·) may have different

degrees of local nonlinearity, making the ability of the local basis Λ⟨i⟩ to approximate µt(αi)

and et(αi) heterogeneous across different units. This possibility is characterized by the

dependence of the error bounds ry,⟨i⟩ and rp,⟨i⟩ on the neighborhood index ⟨i⟩. Our main

results only need the approximation errors to be sufficiently small in an average sense rather

than uniformly over all units. Thus, weak approximation power of Λ⟨i⟩ is permitted in some

(but not too many) neighborhoods.

Remark 4.2 (Verification of Assumption 4). From a practical perspective, users do not need

specify the basis Λ⟨i⟩ explicitly, and the PCA procedure, as shown later, consistently esti-
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mate a rotated version of Λ⟨i⟩ under the imposed conditions. From a theoretical perspective,

however, it is convenient to verify Assumption 4 if Λ⟨i⟩ can be explicitly specified. An im-

portant special case, though probably restrictive in some scenarios, is that the derivatives of

latent functions ηl’s up to a certain order are not too collinear so that Λ⟨i⟩ can be understood

as the usual monomial basis. Specifically, assume that for some c > 0 and 2 ≤ m ≤ m̄,

lim
n,p‡→∞

P
{
min
i∈[n]

smin

(
1

p‡

∑
l∈R‡

(D [m−1]ηl(αi))(D
[m−1]ηl(αi))

′
)
≥ c

}
= 1, (4.1)

where D [m−1]ηl(·) is a column vector that stores all partial derivatives of ηl(·) up to or-

der m − 1. In this case Feng (2023) shows that Assumptions 4(a) and 4(b) hold for

Λ⟨i⟩ = (λ(αj1(i)), · · · ,λ(αjK(i)))
′ with α ∈ A 7→ λ(α) := (λ1(α), · · · , λdi(α))′ a dα-variate

monomial basis of degree no greater than m − 1 centered at αi (including the constant).

Accordingly, Assumption 4(c) is immediate given the approximation power of the (local)

monomial basis.

Note that in (4.1) the degree of nonlinearity is assumed for simplicity to be the same across

different units (the “uniformity” over i in this condition), and consequently, we can set a

universal di =
(
m−1+dα

dα

)
, the number of the dα-variate monomial basis functions. In general,

this condition can be relaxed. As discussed above, we can let the number of local factors

extracted be different across local neighborhoods so that the non-degeneracy condition of

local factors is satisfied, while this may affect the ability of the basis to locally approximate

µt and et in later analysis. ⌟

Finally, we impose a set of regularity conditions on the loss and link functions used by the

local quasi-maximum likelihood estimation. Note that they are unnecessary in the special

case of local least squares. Let F̄ = F ∪ {zi}ni=1, and ψ
(1)
y (·) and ψ

(1)
p,t denote their first

derivatives. Define Lℓ,y(κ, y) = ∂ℓ

∂κℓ
Ly(ψy(κ), y) for ℓ = 1, 2, L1,p(κ,d) = ∂

∂κ
Lp(ψp(κ),d),

and L2,p(κ,d) =
∂2

∂κ∂κ′Lp(ψp(κ),d).
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Assumption 5 (Local QMLE).

(a) For some fixed constant ∆ > 0,

E
[
max
1≤i≤n

1

K

∑
j∈Ni

sup
|κ̃−κ|≤∆

|L2,y(κ̃, yj)− L2,y(κ, yj)|
|κ̃− κ|

∣∣∣F̄ , {xi}ni=1

]
≲P 1,

and the same condition also holds for every element of L2,p(κ,d);

(b) L2,y(κ, y) < 0 for κ ∈ R and y ∈ Y, and L2,p(κ,d) is negative definite for κ ∈ RJ and

d ∈ {0, 1}J+1;

(c) For all t ∈ J , ψy(·), ψp,t(·), Vy(·) and Vp,t(·) are twice continuously differentiable,

ψ
(1)
y (µt(α) + z

′βt) and ψ
(1)
p,t (e(α) + Γz) are nonzero, Vy(ψy(µt(α) + z

′βt)) > 0, and

Vp,t(e(α) + Γz) > 0 over the support of α and z.

4.2 Theoretical Results

Throughout the analysis below, we write δn = (K1/2 ∧ p1/2)/
√

log(n ∨ p). Recall that K is

the number of nearest neighbors, p is the dimension of xi, and di is the number of leading

local principal components extracted in the neighborhood of unit i. The asymptotic analysis

is conducted assuming both K and p diverge as n→ ∞.

The following lemma shows that the nearest neighbors and extracted local factor loadings

are informative about the unobserved confounders. The proof is available in Feng (2023).

Lemma 4.1. Suppose that Assumptions 2(c), 2(d), 2(e) and 3 hold. If log(n/K)
K

= o(1) and

K logn
n

= o(1), then,

max
i∈[n]

max
k∈[K]

∥αi −αjk(i)∥ ≲P (K/n)ς̄/(ςdα) + a
1/ς
n .

If, in addition, Assumptions 4(a) and 4(b) hold and (np)
2
ν δ−2
n ≲ 1, then for ℓ ∈ [di], there
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exists R⟨i⟩ such that

max
i∈[n]

∥Λ̂·ℓ,⟨i⟩ −Λ⟨i⟩R·ℓ,⟨i⟩∥max ≲P δ
−1
n + hmn ,

where 1 ≲P smin(R⟨i⟩) ≤ smax(R⟨i⟩) ≲P 1.

The first result in this lemma precisely quantifies the matching discrepancy of nearest

neighbors in terms of the unobserved confounders. The first term, (K/n)ς̄/(ςdα), is the usual

discrepancy that would have existed even if the matching could be done directly on αi. By

contrast, the second term a
1/ς
n arises from the fact that the matching can only be conducted

in terms of the noisy measurements xi rather than αi. Typically, an → 0 when many mea-

surements are available (p→ ∞), and since we assume K/n→ 0, the (maximum) matching

discrepancy diminishes to 0 in large samples. In other words, the indirectly obtained nearest

neighbors are close to the target unit i in terms of the unobservables.

The second result of Lemma 4.1 shows that the extracted factor loading Λ̂⟨i⟩ is consistent

for the underlying loading matrix Λ⟨i⟩, up to a rotation matrix R⟨i⟩, and the estimation error

shrinks when both K and p grow large and K/n gets small. The loading Λ⟨i⟩ characterizes

the local relations of nearest neighbors in terms of the latent confounders and thus can be

used to restore unconfoundedness in causal inference.

The following is our first main result, which shows that the conditional means of potential

outcomes and the propensity scores can be consistently estimated by the proposed local

quasi-maximum likelihood method.

Theorem 4.1 (Local QMLE). Suppose that Assumptions 2–5 hold. If (np)
2
ν δ−2
n ≲ 1, then

for each t ∈ J ,

|ζ̂i,t − ζi,t| = ŌP(δ
−1
n + hmn + ry,⟨i⟩) and |ϱ̂i,t − ϱi,t| = ŌP(δ

−1
n + hmn + rp,⟨i⟩).

Detailed asymptotic expansions are given by Equation (SA-2.1) in the SA.

ζ̂i,t and ϱ̂i,t are nonparametric estimators of conditional mean functions in the sense that

we do not specify the functional forms of µt and et, the components related to the unobserved
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confounders. Consequently, we obtain in Theorem 4.1 a nonparametric convergence rates:

δ−1
n is the variance term, and ry,⟨i⟩ and rp,⟨i⟩ reflect the smoothing bias. The major difference

compared to usual nonparametric results is that the convergence rate above also depends

on the number of measurements p and the approximation error hmn from the first step,

which determine the quality of the information about αi used in the estimation. Also, the

convergence result above is uniform over all the data points indexed by i, which respects the

fact that αi is not directly observed and we obtain information on it for the n units in the

dataset. In this sense, it slightly differs from the classical nonparametric or semiparametric

estimation where uniformity over the whole support of conditioning variables is derived (or

assumed directly).

We also emphasize that the proposed local QMLE is a general strategy that can be used to

nonparametrically estimate quantities other than the two specific conditional mean functions

in the potential outcomes framework. As mentioned before, the previous local PCA step

provides all necessary ingredients for a (kernel-based) nonparametric analysis: the nearest

neighbors allow us to define a local region for each unit, as a compactly supported kernel

function does, and the estimated factor loadings, similar to a polynomial basis, play the role

of the (local) approximation basis. Therefore, the two outputs, Ni and Λ̂⟨i⟩, are readily used

as inputs in other semiparametric or nonparametric estimation methods.

Now, we are ready to apply previous results to inference on the counterfactual means of po-

tential outcomes. The following theorem, our second main result, establishes the asymptotic

normality of the proposed estimator.

Theorem 4.2 (Causal Inference). Suppose that Assumptions 1–5 hold. If (np)
2
ν δ−2
n ≲ 1 and

√
n(δ−2

n + h2mn + En[r2y,⟨i⟩] log n+ En[r2p,⟨i⟩]) = o(1), then

(a)
√
n(θ̂t,t′ − θt,t′) =

1√
n

∑n
i=1 φi,t,t′ + oP(1) where φi,t,t′ =

di(t
′)(ζi,t−θt,t′ )
ϱt′

+
ϱi,t′

ϱt′

di(t)(yi−ζi,t)
ϱi,t

;

(b)
√
n(θ̂t,t′ − θt,t′)/σ̂t,t′ ⇝ N(0, 1).

Theorem 4.2 takes advantage of the doubly-robust score function to relax the conditions

28



on the convergence rates of ζ̂i,t and ϱ̂i,t. Specifically, the second rate restriction essentially

requires the squares of the two estimation errors (and thus their product as well) be of an

order smaller than n−1/2, which is consistent with the results in the double/debiased machine

learning literature. Importantly, the smoothing bias in estimating conditional mean functions

of potential outcomes and propensity scores, characterized by ry,⟨i⟩ and rp,⟨i⟩ respectively, need

not be small uniformly over all units. Instead, we only require the average squared bias be

small, thus accommodating scenarios where the nearest neighbors and local factor loadings

from the first step are not highly informative about the latent confounders and offer poor

approximation power for some units.

As described before, K is the main tuning parameter to be selected in the whole estimation

procedure. To get a sense of the rate restrictions imposed, consider a simple but practically

relevant case where K ≲ p, ν is sufficiently large, and all local factors “stronger” than the

noise have been extracted (so that hmn ≲ δ−1
n ). Then, we roughly need n/K2 = o(1), up

to log n terms, in addition to the previously discussed condition on the average squared

smoothing bias. Note that if (4.1) also holds, the discussion in Remark 4.2 implies that ry,⟨i⟩

and rp,⟨i⟩ are O(h
m
n ) uniformly over ⟨i⟩, in which case all restrictions imposed in Theorem

4.2 reduces to n/K2 = o(1), up to log n terms.

Remark 4.3 (K Selection). A formal procedure for selecting K is beyond the scope of this

paper and left for future research, but the previous discussion implies that many feasible

choices of K satisfy the above mild restrictions. For instance, one can consider the nearest-

neighbors-based local (m−1)th-order polynomial regression of yi on any r out of the p noisy

measurements. Under standard regularity conditions, the optimal K in the MSE sense for

this regression is O(n
2m

2m+r ) if m is even, and is O(n
2m+2

2m+2+r ) if m is odd, which grows faster

than n1/2 if m > r/2 or m > r/2− 1. Then, usual plug-in or cross-validation methods in the

nonparametric regression literature can be employed to select K, though such choices may

not be optimal for the final inference purpose. ⌟

Note that this paper focuses on large-K asymptotics, which is analogous to a large band-
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width in kernel estimation or a small number of approximation terms in series estimation. If

K is small relative to the sample size, a non-negligible undersmoothing bias may arise in the

distributional approximation, and bias-robust inference may be needed. See Cattaneo and

Jansson (2018); Cattaneo, Jansson and Ma (2019); Matsushita and Otsu (2021) for more

discussions of undersmoothing bias and possible solutions.

4.3 Numerical Results

We conducted a Monte Carlo investigation of the finite sample performance of the proposed

method. We consider a binary treatment design J = {0, 1}. The potential outcomes are

yi(0) = α + α2 + ϵi,0 and yi(1) = 2α + α2 + 1 + ϵi,1. The treatment is si = 1(vi ≤ ϱi) where

ϱi = exp((α−0.5)+(α−0.5)2)/(1+exp((α−0.5)+(α−0.5)2)). The observed covariates are

generated based on xil = ηl(αi) + uil. To check the performance of our local approximation

strategy in different scenarios, we consider the following three specifications of ηl:

� Model 1: ηl(αi) = (αi −ϖl)
2

� Model 2: ηl(αi) =
1

0.1
√
2π

exp(−100(αi −ϖl)
2)

� Model 3: ηl(αi) = exp(−10|αi −ϖl|)

Model 1 is highly smooth and has relatively low degree of nonlinearity, while the other

two are more nonlinear, making the smoothing bias more pronounced (given the number of

nearest neighbors K and the number of the extracted local factors di). Moreover, we let

ϵi,0, ϵi,1 ∼ N(0, 1), αi, ϖl, vi ∼ U(0, 1), uil ∼ N(0, .52) and is i.i.d over i and l. The sequences

{ϵi,0}, {ϵi,1}, {αi}, {ϖl}, {vi} and {uil} are independent.

We consider 2 000 simulated datasets with n = p = 1000 each. For each simulated dataset,

a point estimate of the counterfactual mean θ0,1 = E[yi(0)|si = 1] is obtained. We report

bias (BIAS), standard deviation (SD), root mean squared error (RMSE), coverage rate (CR)

of the nominal 95% confidence interval and its average length (AL) in Table 3.
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The results in the first four columns are obtained based on our proposed method, using the

same strategy as described in our empirical illustration. Specifically, we take the first half

(p† = 500) of measurements for nearest neighbors matching and the second half (p‡ = 500)

for extracting the local factor loadings. The number of nearest neighbors is taken to be

K = Cn4/5 for C = 0.5, 1, 1.5 respectively. This rate is the MSE-optimal for the (infeasible)

cross-sectional local constant/linear nearest neighbors regression of yi on αi and satisfies the

restriction for our inference theory. We also consider a data-dependent choice K̂CV, which

is obtained by 20-fold cross validation for the local nearest neighbors regression of yi on

one noisy measurement xip. Analogously to usual nonparametric regression analysis, we

take K as the main tuning parameter and prefer to take a relatively small number of local

factors. Thus, a simple rule is employed to determine di: for each unit i ∈ [n], set di = 2 if

υ2,⟨i⟩/υ3,⟨i⟩ ≥ log logK and di = 1 otherwise.

For comparison, we also consider another approximation strategy: the conditional means

of potential outcomes and propensity scores are estimated by taking the local averages of

nearest neighbors, which is analogous to local constant smoothing in nonparametric regres-

sion analysis. Such ideas have been proposed in the panel and network data literature for

different purposes (e.g. Zhang et al., 2017; Bonhomme et al., 2022). Results are reported in

Columns 5–8 (“local average”).

The proposed method performs relatively well throughout the three specifications. In

Model 1 the coverage rate is close to the nominal level and is robust to different choices of K.

In the other two models with high degrees of nonlinearity, our method still has satisfactory

performance, but as expected, using a large K may lower the coverage rate, showcasing

the importance of “localization” by K-NN matching in the first step. By contrast, the local

average method suffers from more severe undercoverage. Even in Model 1 where nonlinearity

is mild, the nominal level is not achieved. Also, the performance of local average varies

considerably across different choices of K.

31



Table 3: Simulation Results, n = p = 1000, 2 000 replications

Local PCA, K = Local average, K =

125 251 376 K̂CV 125 251 376 K̂CV

Model 1

BIAS −0.007 −0.006 −0.005 −0.006 −0.014 −0.021 −0.035 −0.025

SD 0.057 0.056 0.055 0.056 0.054 0.053 0.052 0.053

RMSE 0.057 0.056 0.056 0.056 0.056 0.057 0.062 0.059

CR 0.953 0.959 0.956 0.957 0.931 0.916 0.873 0.899

AL 0.228 0.226 0.226 0.226 0.205 0.199 0.194 0.198

Model 2

BIAS −0.002 −0.014 −0.027 −0.009 −0.001 −0.015 −0.040 −0.010

SD 0.054 0.054 0.055 0.055 0.054 0.054 0.053 0.055

RMSE 0.054 0.056 0.061 0.055 0.054 0.056 0.067 0.056

CR 0.953 0.950 0.908 0.947 0.948 0.925 0.864 0.933

AL 0.220 0.220 0.213 0.219 0.213 0.206 0.201 0.209

Model 3

BIAS −0.021 −0.028 −0.037 −0.030 −0.014 −0.029 −0.050 −0.035

SD 0.055 0.054 0.054 0.055 0.054 0.053 0.052 0.054

RMSE 0.059 0.061 0.066 0.063 0.056 0.060 0.072 0.064

CR 0.934 0.918 0.883 0.905 0.933 0.897 0.818 0.869

AL 0.217 0.213 0.210 0.212 0.207 0.201 0.197 0.200

Notes: SD = standard deviation of point estimator, RMSE = root MSE of point estimator, CR =
coverage rate of 95% nominal confidence intervals, AL = average interval length of 95% nominal confidence
intervals. K̂CV= cross-validation choice of K.

5 Extension: Uniform Inference

In many applications, the outcome of interest is a certain transformation of the original

potential outcome via a function g(·) ∈ G, and uniform inference over the function class G

is desired. In general, the goal can be achieved in two steps: (i) strengthen the asymptotic

expansion in Theorem 4.2(a) to be uniform, that is, the remainder needs to be negligible

uniformly over g ∈ G; and (ii) show that the influence function as a process indexed by G

weakly converges to a limiting process. The general treatment of such issues can be found

in, e.g., Barrett and Donald (2003); Chernozhukov et al. (2013); Donald and Hsu (2014).

We will focus on counterfactual distributions, the analysis of which relies on a particular

function class G = {y 7→ 1(y ≤ τ) : τ ∈ Y}. Each g(·) ∈ G corresponds to a particular

value τ ∈ Y . Therefore, we write yi,τ (t) = 1(yi(t) ≤ τ) and yi,τ = 1(yi ≤ τ). Accordingly,
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Equation (2.2) becomes

yi,τ (t) = ζi,t,τ + ϵi,t,τ , ζi,t,τ = µt,τ (αi) + z
′
iβt,τ ,

where ζi,t,τ = P(yi(t) ≤ τ |zi,αi). For each τ , the second step of the estimation procedure

in Section 3 is implemented to obtain an estimator ζ̂i,t,τ of ζi,t,τ . The parameter of interest

is θt,t′(τ) = E[1(yi(t) ≤ τ)|ti = t′], the counterfactual distribution function of the potential

outcome yi(t) for the group with a treatment status t′. From the perspective of uniform

inference, θt,t′(·) is a parameter in ℓ∞(Y), a function space of bounded functions on Y

equipped with sup-norm. To establish the limiting distribution of the proposed estimator,

we slightly strengthen Assumptions 2(a) and 5(a) by imposing Assumption 6 below.

Assumption 6 (Local QMLE, Uniform Inference).

(a) For some fixed constant ∆ > 0,

E
[
sup
τ∈Y

max
1≤i≤n

1

K

n∑
j=1

sup
|κ̃−κ|≤∆

|(L2,y(κ̃, yj,τ )− L2,y(κ, yj,τ ))|1(j ∈ Ni)

|κ̃− κ|

∣∣∣∣F̄]
≲P 1;

(b) For all τ ∈ Y, µt,τ (·) is m̄-times continuously differentiable with all partial derivatives

of order no greater than m̄ bounded by a universal constant, and µt,τ (·) is Lipschitz

with respect to τ uniformly over A.

The following theorem shows that the (scaled) counterfactual distribution process weakly

converges to a limiting Gaussian process indexed by τ ∈ Y , which forms the basis of uniform

inference. See Van Der Vaart and Wellner (1996) for underlying technical details.

Theorem 5.1 (Uniform Inference). Under Assumptions 1–6, if (np)
2
ν δ−2
n ≲ 1 and

√
n(δ−2

n +

h2mn + En[r2y,⟨i⟩] log n+ En[r2p,⟨i⟩]) = o(1), then

√
n
(
θt,t′(·)− θt,t′(·)

)
=

1√
n

n∑
i=1

φi,t,t′(·) + oP(1)⇝ Zt,t′(·) in ℓ∞(Y),
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where φi,t,t′(·) =
di(t

′)(ζi,t,·−θt,t′ (·))
ϱt′

+
ϱi,t′

ϱt′

di(t)(yi,·−ζi,t,·)
ϱi,t

and Zt,t′(·) is a zero-mean Gaussian process

with covariance kernel E[φi,t,t′(τ1)φi,t,t′(τ2)] for τ1, τ2 ∈ Y.

Under proper regularity conditions, the weak convergence above can be applied to con-

struct inference procedures for other quantities such as quantile treatment effects by the

functional delta method, as shown in the following corollary.

Corollary 5.1.1 (Functional Delta Method). Let the conditions in Theorem 5.1 hold. Con-

sider the parameter θ as an element of a parameter space Dθ ⊆ ℓ∞(Y), a function space

of bounded functions on Y, with Dθ containing the true value θt,t′. Let a functional Ψ(θ)

mapping Dθ to ℓ∞(Q) be Hadamard differentiable in θ at θt,t′ with derivative Ψ′
θ. Then,

|
√
n(Ψ(θ̂t,t′)(·)−Ψ(θt,t)(·))−n−1/2

∑n
i=1Ψ

′
θ(φi,t,t′)(·)| = oP(1) and

√
n(Ψ(θ̂t,t′)(·)−Ψ(θt,t′)(·))⇝

Ψ′
θ(Zt,t′)(·) that is a Gaussian process in ℓ∞(Q) with mean zero and covariance kernel defined

by the limit of the second moment of Ψ′
θ(φi,t,t′).

The limiting Gaussian process can be approximated based on a practically feasible multi-

plier bootstrap procedure widely used in the literature. To be specific, take an i.i.d. sequence

of random variables {ωi}i∈[n] independent of the data with mean zero and variance one. De-

fine a uniformly consistent estimator of φi,t,t′(·):

φ̂i,t,t′(·) =
di(t

′)(ζ̂i,t,· − θ̂t,t′(·))
ϱ̂t′

+
ϱ̂i,t′

ϱ̂t′

di(t)(yi,· − ζ̂i,t,·)

ϱ̂i,t
.

The following corollary shows that conditional on the data, 1√
n

∑n
i=1 ωiφ̂i,t,t′(·) weakly con-

verges to the same limiting process Zt,t′(·) as in Theorem 5.1. In practice, one only needs to

simulate this feasible approximation process by taking random draws of {ωi}i∈[n].

Corollary 5.1.2 (Multiplier Bootstrap). Let the conditions of Theorem 5.1 hold. Then,

conditional on the data, n−1/2
∑n

i=1 ωiφ̂i,t,t′(·)⇝ Zt,t′(·) that is the Gaussian process defined

in Theorem 5.1 with probability approaching one.

To showcase the uniform inference procedure, we use the data of Acemoglu et al. (2016)

to check the (first-order) stochastic dominance (SD) of θ1,1(·) over θ0,1(·), where θ1,1(·) and
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θ0,1(·) respectively denote the cumulative distribution functions (CDFs) of potential stock

returns of firms connected to Geithner if they were connected and not connected with him.

The main ideas are outlined here. By definition of SD, the null hypothesis is θ1,1(τ) ≤ θ0,1(τ)

for all τ ∈ Y . An intuitive test statistic is
√
n supτ∈Y(θ1,1(τ)− θ0,1(τ)). The null hypothesis

is rejected if the test statistic is greater than a certain critical value. Given the asymptotic

expansions of θ̂1,1(·) and θ̂0,1(·), the critical value can be obtained by simulating the supremum

of the approximation process, i.e., supτ∈Y(
1√
n

∑n
i=1(φ̂i,1,1(τ) − φ̂i,0,1(τ))). In practice, the

supremum over the whole support is simply replaced by maximum over a set of user-specified

evaluation points.

For each τ ∈ Y , implement the estimation procedure as described in Section 3. Varying

the values of τ , we obtain two estimated distribution functions for firms with connections, as

shown in Figure 3. The treated outcome Y (1) is the potential cumulative return with con-

nections to Geithner and the untreated outcome Y (0) refers to that without connections. To

better understand the estimation uncertainty, 95% confidence bands for the two estimated

CDFs are plotted, which are based on simulating the maximum absolute value of the corre-

sponding (studentized) approximation processes. In each case, the value of τ is restricted to

range from 0.1-quantile to 0.9-quantile of the estimated distribution.

It turns out that the estimated CDF for the treated outcome is well below that for the

untreated outcome. Formally, we take all observed values of the cumulative returns as the

evaluation points, and then simulate the maximum of the approximation process by taking

500 draws of random weights {ωi}ni=1. In this simple example, the test statistic equals 0,

which is well below the critical value 7.23 for a confidence level of 0.95 obtained through

simulation. Thus, SD of θ1,1(·) over θ0,1(·) cannot be rejected. It implies that the positive

effects of political connections in this example are felt over the entire distribution of the

stock returns of financial firms connected with Geithner, which is a stronger conclusion than

that based simply on the mean in Section 3.
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Figure 3: Estimated CDFs of Potential Outcomes for the Treated
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6 Conclusion

This paper has developed a causal inference method for treatment effects models with some

confounders not directly observed. Relevant information on these latent confounders is

extracted from a large set of noisy measurements that admits an unknown, possibly nonlinear

factor structure. Such information is then used to match comparable units in the subsequent

counterfactual analysis. Large-sample properties of the proposed estimators are established.

The results cover a large class of causal parameters, including average treatment effects

and counterfactual distributions. The method is illustrated with an empirical application

studying the effect of political connections on stock returns of financial firms.
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