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Abstract

We study tail risk in the cross-section of asset prices at high frequencies. The

tail behavior of the cross-section depends on whether a systematic jump event

occurred. If so, the cross-sectional return tail is governed by assets’ exposures to

the systematic event while, otherwise, it is determined by idiosyncratic jumps.

An estimator for the tail shape of the cross-sectional distribution displays dis-

tinct properties with and without systematic jumps. We show empirically that

shocks to the cross-sectional tail shape are a source of priced risk: fat idiosyn-

cratic tails are favored by investors, while fat-tailed exposures to systematic

jumps are disliked.
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1 Introduction

Tail risk in asset returns plays an important role in financial economics. In particular,
there is extensive evidence showing that investors demand compensation for bearing
tail risk. While most of the focus in the existing asset pricing literature has been
on tail risk in the time series, our objective in this study is cross-sectional tail risk
in stock returns at high frequencies. This effort aims to exploit the rich information
contained in the cross-section of equity returns for asset pricing models.1

The focus on high-frequency returns allows us to establish, in a model-free non-
parametric manner, a connection between the cross-sectional tail risk and the un-
derlying features of the assets’ return dynamics. Specifically, we show that the tail
behavior of the cross-sectional return distribution differs depending on whether the
time interval contains a systematic jump event or not. The latter is defined as a jump
with a pervasive effect on the cross-section of asset prices, i.e., it affects a nontrivial
fraction of the stocks. Examples of systematic jumps are times when the market
portfolio jumps or, more generally, when systematic return factors exhibit a jump.2

When a systematic jump is present within a short time interval, the tails of the
cross-sectional return distribution are governed by the assets’ exposure to that jump
risk. When this is not the case, the tails of the cross-sectional return distribution
are determined by the tail properties of the idiosyncratic jump risk in asset prices.
On the contrary, if we consider returns over coarser time intervals, the cross-sectional
tail behavior will be governed by a mixture of these two sources of tail risk as well
as the properties of the time-varying asset volatility. The use of high-frequency data,
therefore, is critical in disentangling the different sources of tail risk in asset prices.

We develop inference tools for assessing the cross-sectional tail risk in asset prices
at high frequencies. Specifically, assuming the cross-sectional return tails obey an
approximate power law, we characterize the tail behavior via two parameters only
– the tail scale and tail shape. We propose non-parametric estimators of the tail

1Investors pay close attention to the cross-sectional return distribution, as noted, e.g., in the
Financial Times article “Narrow markets should humble macro forecasters” from August 7, 2023,
on how the recent equity market gains were distributed across the cross-section of stocks.

2While many systematic jumps can be linked to observable factors, Jacod et al. (2024) show that
the cross-section of asset returns often is exposed to systematic events not readily associated with
jumps in observable factors.
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shape parameters using a large cross-section of returns. The estimators have different
asymptotic behavior depending on whether the time interval contains a systematic
jump or not due to the very different manifestation of idiosyncratic and systematic
jumps in high-frequency data. On the one hand, estimating the tail behavior from
exposure to systematic jumps is infeasible unless they materialize within our high-
frequency intervals. On the other hand, whenever such a jump occurs, a nontrivial
fraction of the assets jump and can be used for tail estimation. In contrast, the like-
lihood of an idiosyncratic jump is proportional to the interval length, which shrinks
asymptotically in our setting. Nonetheless, in this scenario, we can exploit a set of
consecutive time intervals for estimation. This is not feasible for systematic jumps
because they, by definition, are rare events that we must pool over longer time periods
to enable formal analysis. We establish the asymptotic properties of our tail estima-
tors under the condition that both the number of stocks and the sampling frequency
diverge. We also propose a goodness-of-fit test for the power law in the tails based
on a Kolmogorov-Smirnov (KS) statistic.

Implementing our inference procedures, the goodness-of-fit test suggests that the
power law provides a good approximation to the tail features of the cross-sectional
return distributions for the S&P 500 index constituents at the 10-minute frequency
between 2003 and 2022. We document nontrivial variation in the time series of the
tail shape indices over the sample period. In addition, the time-series variation in
the cross-sectional tail shape indices with and without systematic events differ, and
their dynamics are distinct from that of the market volatility as well as the common
idiosyncratic volatility, i.e., the cross-sectional average of idiosyncratic volatility.

These differences in time-series behavior imply that shocks to the tail shape pa-
rameter of the cross-sectional high-frequency return distribution may constitute a
distinct source of systematic risk that is of concern to investors. We investigate this
hypothesis through formal asset pricing tests. For this analysis, we use daily returns
for the universe of all traded stocks between 2004 and 2022, except for the exclusion
of micro-cap and penny stocks, following common practice in the literature. Hence,
we enlarge the cross-section in the asset pricing test significantly relative to the one
used for constructing the tail shape indices, with the latter requiring returns that
are robust to market microstructure frictions. Our interest is whether innovations
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(shocks) to the cross-sectional tail shape indices are priced sources of risk. Towards
this end, we estimate the assets’ exposure towards these shocks using daily returns
and our daily time series of tail shape indices. We then implement a classic sorting ex-
ercise on the tail shape betas and check if the generated spread of the high-minus-low
portfolios can be rationalized with exposures to existing systematic factors.

We find that stocks with high exposure to positive shocks to the systematic jump
tail shape, i.e., stocks that perform relatively well when the tails fatten, have low
future returns. The return spread between the Low and High quintile portfolios is
economically large and remains statistically significant after controlling for a number
of systematic risk factors including the Market, Fama-French three/five/six factors
(FF3/FF5/FF6, Fama and French (1993, 2015, 2018)), the tail risk factor by Kelly
and Jiang (2014), the idiosyncratic risk factor of Ang et al. (2006)), and the common
idiosyncratic volatility factor of Herskovic et al. (2016). The portfolio performance
is robust to different weighting schemes (equal/value weight) and portfolio holding
windows (one/three months). The results suggest that investors dislike fat tails in
the distribution of assets’ exposure to systematic jumps and, vice versa, favor thin
tails. Economically, it implies that periods of elevated cross-sectional dispersion at
systematic jump events are viewed as bad scenarios and hedging them requires a risk
premium in equilibrium. Of course, this is also consistent with the standard view
that investors are averse to increased return dispersion induced by systematic risk.

In contrast, our analysis reveals a striking and significant reversal in the sign of
the risk premium when we consider shocks to the tail shape index of the idiosyncratic
jumps. These tail shocks are also priced, but the price of risk is now negative. That
is, investors react favorably to a fattening of the idiosyncratic jump tails in asset
returns. The return spread between the High and Low quintile portfolios sorted on the
idiosyncratic tail shape betas is positive and statistically significant after controlling
for our set of common risk factors. These portfolio sorting results are robust to both
the equal/value weighting schemes and portfolio holding window (one/three months).
This finding is harder to rationalize within standard economic models in which higher
volatility and/or jump risk typically is disliked by investors. However, this type of
result has been obtained in a number of prior studies, with both behavioral and
rational explanations having been put forth. The behavioral perspective notes that

4



many investors have an element of lottery-like preferences, as documented in equity
and option market settings by, e.g., Boyer and Vorkink (2014); Blau et al. (2016)
and Filippou et al. (2018). Prior theoretical research has also explored the modeling
of lottery-like preferences and their pricing implications; for example, the optimal
belief model by Brunnermeier et al. (2007) and the cumulative prospect theory by
Barberis and Huang (2008). Given heterogeneity for the preference for skewness, this
readily leads to equilibrium cross-sectional asset pricing effects, where some agents
sacrifice a degree of mean-variance optimality in exchange for exposure to positive
skewness, including idiosyncratic skewness, see, for example, Mitton and Vorkink
(2007). A supplementary perspective, rooted in heterogeneous firm characteristics,
emphasizes the real growth options and operational flexibility of firms as a feature
leading to positive idiosyncratic skewness. Such firms have longer-term convex payoffs
and generate asymmetric, lottery-like upside potential for investors, as documented
by, e.g., Cao et al. (2008), Del Viva et al. (2017), and Ho et al. (2023).

The finding of a significant premium for tail shape risk that changes sign - de-
pending on whether the cross-sectional return dispersion stems from systematic or
idiosyncratic jumps - demonstrates the necessity of treating price increments with
and without systematic jumps differently. A natural question is whether these tail
shape risks are related? We find that the correlation between the tail shape shocks
and the high-versus-low portfolios sorted on the different tail-shape betas is very
weak. Consequently, the economic mechanisms explaining these pricing effects differ,
as alluded to above. From a practical point of view, it implies that one can obtain
even stronger performance by exploiting these pricing effects jointly. Towards this
end, we construct a simple equally-weighted portfolio with the two sorted portfolios,
namely, the HmL portfolio sorted on idiosyncratic jump tail shape shock betas and
the LmH portfolio sorted on systematic jump tail shape shock betas. The combined
portfolio has zero-net cost and achieves additional diversification through the weight-
ing scheme. We confirm that this portfolio, as hypothesized, delivers a higher Sharpe
ratio than the two individual tail-risk sorted portfolios.
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Related Literature

Our study is situated within a broader literature that explores the power-law tail be-
havior of various economic and financial variables. Power-law tail patterns have been
observed in domains ranging from city sizes (Kingsley Zipf (1932); Gabaix (1999);
Eeckhout (2004)), income distributions of companies (Okuyama et al. (1999)), firm
sizes (Axtell (2001)), macroeconomic disasters (Barro and Jin (2011)), and stock
trading volume (Gopikrishnan et al. (2000)). These studies find that power-law tail
behavior is crucial for comprehending key mechanisms in economics and finance like
the source of aggregate economic fluctuations. For example, Gabaix et al. (2003,
2006) argue that heavy-tailed financial returns and the stock market crashes can be
explained by concentrated trades by large market participants. The heavy-tailedness
in firm sizes is used to explain the aggregate economic movements in the US market
(Gabaix (2011)) and the international market (Di Giovanni and Levchenko (2012)).
Acemoglu et al. (2012, 2017) show that when there exist fat-tailed inter-sectoral input-
output linkages, micro-economic idiosyncratic shocks may lead to sizable aggregate
fluctuation and systematic macroeconomic tail risks.

Our paper is closely related to studies exploring the power-law behavior of stock
returns. Financial returns are known to conform to a heavy-tailed distribution that
can be accommodated by a Pareto distribution; see, e.g., Mandelbrot (1963); Fama
(1965); Gopikrishnan et al. (1999); Gabaix (2012). Bollerslev and Todorov (2011)
propose a non-parametric estimator of tail-shape risk, which is the tail-shape param-
eter of the power law based on high-frequency data of univariate processes. Notably,
substantial time-variation and serial dependence is found in the market tail-risk index
by Bollerslev and Todorov (2011) and Bollerslev et al. (2015), with the latter using
option data for estimation. Unlike these studies, our focus is on the cross-sectional
tail behavior in a large number of assets and its implications for asset prices.

Our focus on the tails of the cross-sectional asset return distribution is reminiscent
of and inspired by the approach in Kelly and Jiang (2014), who study the time-varying
cross-sectional tail risk estimated from daily data. They find empirically that the daily
tail shape index can be used in stock return prediction. Different from Kelly and Jiang
(2014), we investigate the cross-sectional tail behavior of returns at high frequencies.
We find that this behavior differs both from a statistical and economic point of view
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depending on whether the time interval contains a systematic jump event or not. In
that sense, we explore the granular origin of cross-sectional tail risk in asset prices.3

Finally, our work is closely connected to the general literature on tail risk and time-
varying volatility risk, as well as their effect on the cross-section of asset prices. The
literature on tail risk and asset pricing is extensive. Jump tail risk, and in particular
the left jump tail, is shown to be helpful in predicting future returns in the U.S. market
(Bollerslev et al. (2015); Andersen et al. (2015)) and internationally (Andersen et al.
(2020, 2021). Lin and Todorov (2019) find that aggregate idiosyncratic asymmetric
jump variations predict future equity returns. Several studies show that tail risks help
explain the cross-section of asset returns. Cremers et al. (2015) find that stocks with
high exposure to aggregate jump risk have contemporaneous high expected returns
in the cross-section. Bollerslev et al. (2016) show that jump betas entail significant
risk premiums. Bollerslev et al. (2020) find stocks with high positive-minus-negative
jump volatilities have high returns. Ang et al. (2006) find that stocks with low
(idiosyncratic) volatilities have high positive returns. Bali et al. (2011) explain the
puzzling effect of idiosyncratic risk using lottery-like preferences and find that stocks
with historically high maximum returns are overpriced and have low future returns
in the cross-section. Herskovic et al. (2016) evaluate the aggregated idiosyncratic
risk and find that shocks to the common idiosyncratic volatility (CiV) are negatively
priced. We contribute to this strand of the literature by examining the distinct pricing
implications of shocks to the tail shape of the cross-sectional asset return distribution
stemming from systematic versus idiosyncratic high-frequency jumps.

Outline

The remainder of the paper is organized as follows. Section 2 introduces our model
setup. In Section 3, we compare the cross-sectional and time-series asset return tail
behavior. Section 4 presents our theoretical inference results. We assess the cross-
sectional asset return tail dispersion risk empirically in Section 5. The asset pricing

3In recent work, Almeida et al. (2023) also explore the cross-sectional high-frequency return tails.
They focus exclusively on large downside moves and do not distinguish between systematic and id-
iosyncratic jumps. They find that stocks’ exposure to the physical left tail has little predictive power
for cross-sectional returns, while the corresponding risk-neutralized tail returns do have significant
explanatory power along this dimension.
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implications of the cross-sectional asset tail risk variation are explored in Section 6.
Section 7 gives the concluding remarks. Appendix A outlines the proofs of the main
theoretical results. All additional mathematical details and proofs, a Monte Carlo
study as well as additional empirical results are collected in Appendices B–F of the
supplementary materials.

2 Setup

We denote the price of an asset i at time t by Pit for i = 1, ..., N . The log-price
pit = log(Pit) has the following general dynamics,

pit = pi0 +

∫ t

0

αisds+

∫ t

0

β>i,sdWs +

∫ t

0

σ̃isdW̃is + Jit + J̃it, (2.1)

where Wt = (W 1
t , ...,W

k
t )>, for some positive integer k and W 1

t , ...,W
k
t , W̃1t,..., W̃Nt

are independent standard Brownian motions, Jit and J̃it are the systematic and id-
iosyncratic jump components of the asset prices, respectively. The formal definition of
these processes is given in Appendix C. On an intuitive level, however, the difference
between systematic and idiosyncratic jumps is clear: the former are pervasive in the
sense that they arrive together and impact a nontrivial fraction of the cross-section
of asset prices, while the latter arrive independently. Our setup is very general and
does not involve any assumption regarding the source of risk driving the systematic
jumps, i.e., we do not link the systematic jumps to jumps of observable systematic
risk factors. Similarly, we do not make an assumption about the source of systematic
diffusive risk. This is an important generality of our setup given the large number of
alternative systematic factors put forth in the asset pricing literature.

As we will see later, the cross-sectional tail behavior of asset prices at high fre-
quencies depends critically on whether the given interval contains a systematic jump
or not. The timing of systematic jumps can be consistently estimated using the
method of Jacod et al. (2024). We assume that this identification of systematic jump
locations has been performed.

Towards this end, suppose we sample the asset prices over the fixed interval [0, 1]

at equidistant times 0, 1/n, 2/n, ..., 1 and denote the length of the sampling interval
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by ∆n = 1/n and the log-price increment by ∆n
j pi = pi,j∆n−pi,(j−1)∆n , for j = 1, ..., n.

Let us denote with Tn the set of indices of the high-frequency increments containing
the systematic jumps, with T̂n denoting a consistent estimator of this set. Formal
definitions of Tn and T̂n are given in Appendix C. Our tail inference will be performed
separately on T̂n and its compliment set T̂ cn, i.e., on the set of increments with and
without detected systematic jumps.

We focus on the cross-sectional tail behavior of high-frequency returns which, in
turn, is linked to the tail behavior of systematic and idiosyncratic jumps in asset
prices. This tail risk can vary over time in a stochastic way and we will assume
that this variation is adapted to the σ-algebra C of “common shocks”, which contains
various aggregate level shocks. Intuitively, C captures everything that is related to
systematic risk in the economy.

We will assume that the tails of the large jumps have regular variation. Similar
to Bollerslev and Todorov (2011), this assumption is formulated in terms of jumps
in the asset price level (recall that pit denotes the log-price). More specifically, for
a generic function g : R → R, we denote g±(x) = g(± log(1+x))

1+x
, and the tail of the

measure g±(x), henceforth indicated by the corresponding capital letter, is then,

G±(x) :=

∫ ∞
x

g±(u)du, for some x > 0.

If g is a probability density of a random variable X, then G±(x) are the positive and
negative tail probabilities of eX − 1 (for X > 0) and of e−X − 1 (for X < 0).

Conditional on C, the systematic jumps in the asset prices are assumed to be
identically and independently distributed in the cross-section at each jump time p,
with conditional jump distribution given by fp(x). We assume regular variation for
fp(x). That is,

F±p (x+ u)

F±p (x)
≈ (1 + u/x)−1/ξ±S , as x, u→ +∞, (2.2)

for some tail shape parameters ξ±S , which are C-adapted random variables. We make
this approximation formal in Appendix C. Our assumption of an i.i.d. jump size dis-
tributions in the cross-section, conditional on C, is natural if we think of the available
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stocks as being drawn randomly from a population with an infinite set of assets, see,
e.g., Gagliardini et al. (2016) for a detailed discussion of this perspective.

We make a similar regular variation assumption for the idiosyncratic jumps.
Specifically, letting νt,i(x) denote the time-varying jump intensity of J̃it, we assume,

E(V±t,i(x+ u)|C)
E(V±t,i(x)|C)

≈ (1 + u/x)−1/ξ±I , as x, u→ +∞, (2.3)

for some tail shape parameters ξ±I , which are C-adapted random variables. Note that
in the case of idiosyncratic jumps, our assumption is for the C-conditional expected
jump intensity. In this manner, we can accommodate settings in which the tail
properties of individual stocks differ in the cross-section.

3 Time-Series versus Cross-Sectional Tails

It is useful to contrast the tails in the time-series and cross-section of asset prices.
We start with the systematic jumps. It is common in many asset pricing models to
assume that systematic jumps obey a linear factor structure. For example, if,

∆Jip = γi × fp,

for γi being factor loadings and fp the value of a factor at jump time p, then fp is
adapted to the common shock σ-algebra C, and we have only a single realization of it
at time p. Hence, for this jump factor model, the cross-sectional tail behavior of asset
returns at time p is governed by the tail behavior of the jump factor loadings, γi, and
not by the factor tails. On the other hand, for systematic jumps, the time-series tail
behavior of a specific stock is determined by the tail behavior of the factor ft and not
the factor loading, assuming, of course, that the latter does not vary over time.

Moving next to the case of idiosyncratic jumps, suppose that these jumps follow
time-changed compound Poisson distributions with jump size governed by a double-
exponential distribution. Specifically, assume,

νt,i = φt,i (e
−λ−i |x|1{x<0} + e−λ

+
i |x|1{x>0}),
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for some constants λ±i > 0 and a stochastic process φt,i , which controls the time-
varying probability of jump arrivals. Then the time-series tail behavior of the id-
iosyncratic jumps for stock i are determined by the two parameters λ±i . Now, if these
parameters are drawn from a uniform distribution on [λ±l , λ

±
h ], the cross-sectional tail

behavior of the idiosyncratic jumps will be governed by λ±l – the tail parameters
representing the fattest tails in the universe of stocks.

4 Inference for Return Tails at High Frequency

This section develops inference tools for exploring the tails of cross-sectional return
distributions at high frequency. Section 4.1 deals with the case in which the interval
contains a systematic jump event, while Section 4.2 handles the case without system-
atic jumps in the interval. Finally, Section 4.3 introduces a goodness-of-fit test for
the power law of the cross-sectional return distribution tails. Without loss of gener-
ality, our exposition focuses on the positive systematic jump tails. For this reason,
we remove the superscript “+” in the notation in this section.

4.1 Systematic Jump Tail Decay Index Estimation

We first consider the case where the high-frequency intervals involved in the estima-
tion contain systematic jumps. For such increments, the leading tail component of
the asset returns are the systematic jumps. Idiosyncratic jumps may also be present,
but they are (asymptotically) rare, as the probability of an idiosyncratic jump in a
given stock is approximately proportional to the length of the interval and, hence,
they do not distort the inference. As a result, we may develop our inference tools
by focusing strictly on the systematic jump and ignoring the presence of other asset
price components. Given the simple returns,

Rij =
Pij∆n − Pi(j−1)∆n

Pi(j−1)∆n

, (4.1)
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we propose the following estimator of ξ+
S ,

ξ̂S =
1

M̂S
N

N∑
i=1

∑
j∈T̂n

log(Rij/ρ
S
N)1{Rij>ρSN}, (4.2)

where

M̂S
N =

N∑
i=1

∑
j∈T̂n

1{Rij>ρSN}, (4.3)

and for some sequence ρSN →∞. This is simply the Peak-Over-Threshold (POT) es-
timator. Theorem 1 provides the central limit theorem (CLT) for ξ̂S. In its statement
and henceforth, we denote C-conditional convergence in law with

L|C→. The latter is
the usual convergence in law, but applied to conditional distributions.

Theorem 1 For the process {pit}i≥1 defined in (2.1), assume Assumptions 1–3, 5
and Condition SJ hold. Then√

M̂S
N (ξ̂S − ξS)

L|C→ N
(
0, ξ2

S

)
, (4.4)

where N(0, σ2) denotes normal distribution with zero mean and variance σ2.

A feasible CLT follows readily by replacing ξ+
S in the variance term by ξ̂+

S . We note
that the number of large systematic jumps over a given interval is fixed but since sys-
tematic jumps are pervasive in the cross-section, we can use most of the asset returns
for inference at jump events. The convergence rate is determined by the number of
returns exploited in the estimation. This, in turn, depends on how accurately the
power law describes the jump tail distribution and the sampling frequency, as this
determines the size of the “residual” components of the asset prices. The restriction
on the number of observations used in estimation is provided in Condition SJ.

4.2 Idiosyncratic Jump Tail Decay Index Estimation

We now turn to the case where the high-frequency increments used in estimation
do not contain systematic jumps. In this scenario, the tail behavior of the cross-
sectional return distribution is governed by the idiosyncratic jumps. From (2.3),
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the idiosyncratic jump tails can be approximated by the power law with tail decay
parameter ξI . Therefore, we propose the following estimator of ξI ,

ξ̂I =
1

M̂ I
N

N∑
i=1

∑
j∈T̂ cn

log(Rij/ρ
I
N)1{Rij>ρIN}, (4.5)

where

M̂ I
N =

N∑
i=1

∑
j∈T̂ cn

1{Rij>ρIN}, (4.6)

and for some sequence ρIN →∞. The CLT for ξ̂I is given in the next theorem.

Theorem 2 For the process {pit}i≥1 defined in equation (2.1), invoke Assumptions
1, 2, 4, 5 and suppose Condition IJ holds. Then√

M̂ I
N (ξ̂I − ξI)

L|C→ N
(
0, 2 ξ2

I

)
. (4.7)

A feasible CLT follows by replacing ξI in the variance term by ξ̂I . While this result
appears similar to that for ξ̂S, there are critical differences. The number of stocks
exhibiting idiosyncratic jumps over a single time interval is asymptotically small, as
the sampling interval shrinks towards zero, because the jump probability is approxi-
mately proportional to the length of the short interval. This is unlike the systematic
jump scenario, since the latter materialize for a nontrivial number of assets simul-
taneously. Furthermore, the set of high-frequency increments without a systematic
jump grows asymptotically, because the number of systematic jumps is fixed. Thus,
we can pool many more increments for estimation of the idiosyncratic tail distribution
than for the systematic jump tails. Finally, note that the variance term in the CLT
also differs from that of ξ̂S by a factor of 2. This is because the idiosyncratic jumps
arrive randomly in the cross-section of stocks. By contrast, when we condition on a
systematic jump, there is no randomness in the inference due to the jump arrival.

As for ξ̂S, the rate of convergence of ξ̂I is governed by the number of increments
employed for inference. This, in turn, hinges on the approximation error by the power
law in the tails and the size of the discretization error, with the latter depending on
the sampling frequency. This feature is captured by Condition IJ.
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4.3 Goodness-of-Fit Test for Cross-Sectional Return Tails

This section develops a goodness-of-fit test for the tail power law based on a version
of the Kolmogorov-Smirnov (KS) test statistic (see, e.g., Clauset et al. (2009)).

For the systematic jumps, our KS statistic is given by,

DS
N = sup

x
|F S
N,t(x)− P S

N,t(x)| , (4.8)

where F S
N(x) is the empirical tail distribution of the systematic jumps,

F S
N(x) =

1

M̂S
N

N∑
i=1

∑
j∈T̂n

1{Rij>x}, for x ≥ ρSN , (4.9)

and P S
N(x) is the tail probability implied by the estimated Pareto distribution,

P S
N(x) = (x/ρSN)−1/ξ̂S , for x ≥ ρSN , (4.10)

with ξ̂S defined in equation (4.2).

The next theorem characterizes the key property of our proposed KS statistic.

Theorem 3 Suppose the assumptions of Theorem 1 apply with τS(x) ≡ 0, for all
x ≥ ρSN . Then, √

M̂S
N D

S
N,t

L|C→ KS,

where KS is defined in Appendix D.

The limit distribution KS is that of a KS statistic based on a sample of the same size
as that used for our estimator based on the exact power-law tail distribution. We can
estimate the quantiles of this distribution via simulation.

By replacing the subindex S with I and the set Tn with T cn, we obtain corre-
sponding results for the goodness-of-fit test for the power law characterization of the
idiosyncratic jump tails. The theoretical results are provided in Appendix E.
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5 Empirical Evidence for Cross-Sectional Tails

5.1 Data and Systematic Jump Detection

For tail estimation, we use the S&P 500 Index constituent stocks over 2003–2022. The
high-frequency price data are obtained from the TAQ database. We sample prices
each 10 minutes from 09:35 EST to 15:55 EST using the previous-tick approach and
obtain 38 intraday 10-minute log returns. Following common data cleaning proce-
dures, “bounce backs” are removed. Finally, we use the SPY ETF for the S&P 500
Index as our market proxy. Holidays and half-trading days are excluded. In total, we
have about 450 stocks per day and there are 4,993 full trading days in our sample.

We conduct our analysis on market-neutral asset returns, i.e., the returns of from
being long an individual stock and short the market index. It is readily seen that,
subject to mild local boundedness conditions on the market index, the theoretical
results in Section 4 continue to apply when the estimator is based on market-neutral
rather than raw returns. We adopt this approach because it facilitates identification
of the non-market systematic jump risk, see Jacod et al. (2024).

We start with detection of the systematic jump times, i.e., determining the set T̂n.
The systematic jumps can be split into those that trigger jumps in the market index
and those that do not. For the former, we use the high-frequency observations on
the SPY index and a standard truncation procedure. For the non-market systematic
jumps, we use the method proposed by Jacod et al. (2024), see equations (15)–(17)
in that paper. Further details on the systematic jump detection are provided in
Appendix B. Upon applying these jump detection procedures, we find that 7% of
the days in our sample contain market jumps and 9% involve non-market systematic
jumps. In total, the daily systematic jump rate (market and non-market) is 12%.
That is, there is one systematic jump about every 8 trading days.
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5.2 The Tails of the Cross-Sectional Return Distributions

5.2.1 In the Presence of Systematic Jumps

We first focus on the high-frequency intervals containing systematic jumps. In order
to obtain a reasonable large sample size, we aggregate the systematic jumps for a year.
For illustration, we pick two years, 2008 and 2016, representing one case with a high
and one with a moderate level of volatility. We display the distribution of the 10-
minute S&P 500 stock market-neutral returns, when systematic jumps are present
during each of these two years in Figure 1. For ease of comparison, we standardize
the returns to have a unit standard deviation within each cross-section. The plot
reveals that the cross-sectional distributions of the systematic jumps in both years
are heavy-tailed. We also note that the year 2016 features a somewhat higher number
of detected systematic jumps than 2008.

We next fit a power law to the right and left return tails using the procedures from
Section 4. The returns used for estimation are those above the 95-th cross-sectional
quantile. In Figure 1, we also plot the logarithm of the empirical tail probabilities
along with the fitted values implied by the estimated Pareto distributions. We observe
that the cross-sectional return tails appear well approximated by power laws. Our
estimates for ξt in 2016 are 0.43 for the left and 0.48 for the right tail. Those for 2008
are 0.65 for the left and 0.64 for the right tail. These estimates imply near symmetric
tails in both years, while the tails in 2008 are somewhat fatter than in 2016.

5.2.2 Absent Systematic Jumps

We now turn to returns that do not contain systematic jumps. Since they consti-
tute the vast majority of our observations, we can perform this analysis at the daily
level. For illustration, we pick two representative days, 2008-10-10 and 2016-03-04,
stemming from the years we used above for analysis of the systematic jump tails.
On October 10, 2008, market volatility is elevated, while on March 4, 2016, it is
about average. We plot the distribution of the 10-minute market-neutral returns on
these days in Figure 2. There are no detected systematic jumps on either of the two
days. Once more, we standardize the returns to have a cross-sectional unit standard
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Figure 1: Left: Distribution of S&P 500 Index stocks’ 10-minute market-neutral
returns when there are systematic jumps for the year 2008 and year 2016. The returns
are normalized to have a standard deviation of one. Middle and right: Empirical tail
distribution and the fitted Pareto tail of S&P 500 Index stocks’ 10-minute returns
when there are systematic jumps during the year 2008 and the year 2016.

deviation. The plot corroborates the hypothesis of fat-tailed cross-sectional return
distributions. Although the levels of volatility on the two days are very different, the
heavy-tailedness of the two cross-sectional return distributions appear similar.

Next, we go on to fit power laws to the tails of the cross-sectional return distri-
butions using the approach developed in Section 4.2. In Figure 2, we also plot the
logarithm of the empirical tail probabilities, together with the fitted values by the
estimated Pareto distributions. Similar to the case of systematic jumps, we see that
the power law provides a good fit for the tails of the cross-sectional return distribu-
tions in the absence of systematic jumps. The slope of the Pareto tail is given by
−αt = −1/ξt. A flatter fitted tail probability line thus indicates a fatter tail dis-
tribution. Our estimates of the tail shape index, ξt, on March-4-2016 are 0.524 for
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Figure 2: Left: Distribution of S&P 500 stock 10-minute market-neutral returns on
2008-10-10 and 2016-03-04. Systematic jumps are not detected on either of the two
days. The returns are standardized to have a standard deviation of one. Middle and
right: Empirical tail distribution and the fitted Pareto tail of S&P 500 Index stocks’
10-minute returns of the dates 2008-10-10 and the date 2016-03-04.

left tail and 0.495 for right tail. Those for October-10-2008 are 0.415 and 0.440 for
the left and right tails, respectively. This implies that the tails of the cross-sectional
return distribution on March-4-2016 are slightly fatter than those on October-10-2008
despite volatility being much higher on October-10-2008.

5.3 Goodness-of-Fit Test for Tails

We now test formally whether the tails of the cross-sectional return distributions are
approximated well by the Pareto distribution, performing the test separately for the
tails of returns with and without systematic jumps. We use three different cutoffs for
the tails corresponding to 7%, 5%, and 3% return quantiles. The test for the system-
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Table 1: Goodness-of-fit test results for the power law of the jump tails. We report
the proportions of rejections between 2003 and 2022. We test the power-law for the
systematic jump tails using data in a moving one-year window and the idiosyncratic
jump tail based on daily samples. The significant level is set to 5% and 1%.

Significant level Power Law Tail Rejection Rate
Systematic jump Idiosyncratic jump

Goodness-of-Fit Test Rejection Rate
left tail right tail left tail right tail

significance level= 5%
ν̄φ(ρN) = 0.07 0.039 0.123 0.171 0.164
ν̄φ(ρN) = 0.05 0.039 0.075 0.114 0.099
ν̄φ(ρN) = 0.03 0.013 0.052 0.073 0.064

significance level= 1%
ν̄φ(ρN) = 0.07 0.013 0.044 0.056 0.053
ν̄φ(ρN) = 0.05 0.004 0.018 0.027 0.027
ν̄φ(ρN) = 0.03 0.000 0.000 0.016 0.014

atic jumps is based on a 252-day moving window, while the test for the idiosyncratic
jumps is performed on a daily basis. Table 1 summarizes the percentage of days when
the power law distribution is rejected over our sample. Overall, the results show that
the tails of the cross-sectional return distribution are well approximated by a power
law when one looks deep in the tails, including the 5% level used for our empirical
work below. Indeed, the rejection rates of the test are low and roughly match the
nominal significance levels of the test for the highest levels of truncation.

5.4 Time Series of the Cross-Sectional Tail Shape Indices

This section explores time-series variation in the cross-sectional tail shape. The sys-
tematic tail shape index is estimated over the past year from 10-minute returns con-
taining systematic jumps.4 The idiosyncratic tail shape index is estimated daily.

4We have also checked the index estimated using moving window of 22 days. The results are
noisier and, thus, less informative due to the limited sample size.
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Figure 3: Top: Time series of estimated systematic jump tail shape indices over the
past 252 days. Middle: Daily idiosyncratic jump tail shape indices. Bottom: Daily
market volatilities and common idiosyncratic volatilities. The left column corresponds
to the raw time series and the right to their 132-day moving averages.
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Figure 3 (left panel) depicts the time series of the cross-sectional tail shape indices.
For reference, we plot the daily market and common idiosyncratic volatilities in the
bottom panel. The former estimate is the square-root of the daily realized variance
of the SPY index. The common idiosyncratic volatility estimate is the square-root
of the cross-sectional average of daily idiosyncratic realized variances, defined as the
realized asset return variances minus their market beta estimates times the market
return. To better assess the low-frequency pattern in the series, the left panel of
Figure 3 provides 6-month (132-day) moving averages of the respective time series.

The figures warrant several comments. First, there is considerable variation in
the tail shape of the cross-sectional return distributions over time. The range of the
shape indices is between 0.3 and 0.6 for systematic jumps and between 0.35 and 0.5 for
idiosyncratic jumps. The associated shape parameter α = 1/ξ is in the range 2–3.5,
which is comparable to the shape parameter estimates in typical financial time series
such as the ones displayed in Figure 4 below.5 Second, the left and right tail shapes
appear similar. This is easier to see for the returns that do not contain systematic
jumps. The discrepancies between the left and right tail estimates are more sizable
or returns including systematic jumps, but this is to be expected given the noise
stemming from the smaller sample size.6 Third, there is little correlation between
the variation of the tail shapes for returns with and without systematic jumps. For
example, the cross-sectional return distribution is fat-tailed during the crisis of 2008,
regardless of whether the returns included systematic jumps or not, while the opposite
conclusion applies after the onset of the pandemic-related turbulence in 2020. Finally,
the dynamics of the tail shapes of the cross-sectional return distribution seems distinct
from that of market and common idiosyncratic volatility.

We now compare the time-series variation in the tail shape of the cross-sectional
return distribution at times of systematic jumps with the time-series tail shape index
estimate of the market factor (proxied by the SPY ETF). The latter time series
is depicted in Figure 4. The time-series tail index of SPY is obtained from 10-

5Comparing our results with the tail index estimates obtained from the ordinary least squares
method in Gabaix et al. (2006), we find the range of the shape parameters to be similar.

6We also check the systematic jumps separately based on SPY jumps, and latent systematic
jumps. For both types of systematic jumps, the right and left tails appear similar. There is slightly
larger variation in SPY jumps, but again the estimates are likely quite noisy.
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minute returns with a rolling window of one year, re-estimated monthly. We draw
6-month (132-day) moving averages of the series to assess the low-frequency pattern
and compare it with the cross-sectional tail shape indices in the top panel of Figure 3
above. Recall our discussion in Section 3 about the difference in time-series and
cross-sectional tail risk associated with systematic jumps drawn from a linear factor
model. The current illustration highlights the manifestation of these discrepancies in
applied work. Indeed, the dynamics of the time series and cross-sectional tail shapes
of systematic jumps do appear to be very different.

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

Tail Shape Index for SPY

xi

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

left tail
right tail

Figure 4: Time series of 132-day moving averages of the tail shape index of the SPY
ETF (above).

6 Asset Pricing Implications

Given the significant and distinct time-series variation in the tail shape of the cross-
sectional return distribution, we now ask whether it is a source of priced risk. We
address this issue using the entire pool of stocks traded on NYSE/AMEX/NASDAQ
between 2003 and 2022. The daily stock return data is obtained from CRSP, excluding
only micro-cap stocks with size below the 20% quantile of the NYSE breakpoints and
stocks with a share price under $5, as is standard in the literature.
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6.1 Pricing of Shocks to the Systematic Jump Tails

We start by assessing whether shocks to ξS are priced. Because the empirical evidence
in the previous section revealed no substantive differences between the left and right
tails, we combine the two estimates to improve the efficiency of the inference. That
is, we use ξ̄S;t = 2/(αLS;t + αRS;t), where αLS;t = 1/ξ−S;t, and αRS;t = 1/ξ+

S;t. We then
compute the change between adjacent non-overlapping periods of h days,

∆ξS;t,h =
1

h

t∑
j=t−h+1

ξ̄S;j −
1

h

t−h∑
j=t−2h+1

ξ̄S;j. (6.1)

We focus on monthly tail dispersion risk innovations and correspondingly set h = 22

(with the unit of time now being one trading day) in the analysis henceforth. Given
our definitions, a positive (negative) tail shape shock represents an increase (decrease)
in the fat-tailedness of the cross-sectional return distribution during times of system-
atic jumps. We estimate the exposure of the returns to such systematic jump tail
shocks using the following standard time-series regression with h = 22,

Ri,t,h = ai + bi ∆ξS;t,h + εi,t , (6.2)

where Ri,t,h is the h-day cumulative returns from day t− h+ 1 to t.

For each day t, we run the regression in equation (6.2) using the data from the
past 1260 days and get the estimated loadings (b̂i)i≥1. We then sort the stocks into 5
groups based on (b̂i)i≥1. We form equal- and value-weighted portfolios for each quintile
group and track the out-of-sample portfolio returns. Beyond an out-of-sample holding
window of one month (H = 22), we also explored H = 66. We summarize the
portfolio performance in Table 2 for the one-month holding window. Results for the
three-month holding window are qualitatively similar and deferred to Appendix H.

Panel A of Table 2 reports the out-of-sample annualized average returns for the 5
quintile portfolios and the low-minus-high portfolio (LmHSysJ) that goes long/short
the quintile portfolio with the lowest/highest exposure to systematic jump tail disper-
sion risk shocks. We also report the t-statistics of the returns based on Newey-West
standard errors using 22 lags. We observe a monotonic increase in the average returns
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Table 2: Returns of systematic jump tail shock beta-sorted portfolios. The table
reports out-of-sample annualized average returns (in percentage) and t-statistics for
portfolios sorted on the cross-sectional jump tail beta. We sort stocks daily into quin-
tile portfolios using jump tail betas that are estimated using daily returns over the past
five years. The holding window of the portfolio is one month. We use all stocks traded
on NYSE/AMEX/NASDAQ exchange with price above $5 and stock capitalization
beyond the 20% NYSE size breakpoint. We consider both equal- and value-weighted
portfolios. The out-of-sample period is between the years 2004 and 2022. Panel A
reports the portfolios’ average betas to the jump tail shocks and annualized returns,
all in percentage, and Panel B reports the alphas under CAPM, FF3/FF5/FF6 mod-
els, while controlling for the tail-risk factor (Kelly and Jiang (2014)), the CiV factor
(Herskovic et al. (2016)), the idiosyncratic risk factor (Ang et al. (2006)), and the
HmLIdioJ portfolio sorted using idiosyncratic jump shock exposures. The t-statistics
are computed based on Newey-West (Newey and West (1987)) standard errors with
lag length equal to the holding window.

Equal-weight Value-weight

Panel A: Mean Portfolio Returns

Portfolio Beta Ret t-stat Ret t-stat

H 1.77 10.74 2.59 10.91 3.02
Q4 -0.05 13.00 3.47 10.23 3.34
Q3 -0.93 13.66 3.59 13.50 4.58
Q2 -1.83 14.44 3.71 15.82 5.10
L -3.81 15.87 3.53 16.14 4.24

LmHSysJ 5.13 2.67 5.23 2.11

Panel B: Abnormal Return of LmHSysJ Portfolio

Measure Ret t-stat Ret t-stat

CAPM alpha 3.66 1.92 3.91 1.55
FF3 alpha 3.90 2.08 4.35 1.74
FF5 alpha 4.46 2.31 5.13 2.00
FF6 alpha 5.11 2.66 5.82 2.29
CAPM+tailrisk alpha 4.07 2.02 4.82 1.86
FF6+tailrisk alpha 5.02 2.54 5.92 2.28
CAPM+CiV alpha 4.32 1.83 5.90 1.79
FF6+CiV alpha 5.25 2.19 6.59 1.98
CAPM+idiorisk alpha 4.84 2.19 5.57 2.02
FF6+idiorisk alpha 5.02 2.54 6.23 2.42
CAPM+HmLIdioJ alpha 4.02 2.13 4.98 1.93
FF6+HmLIdioJ alpha 5.43 2.89 6.94 2.64
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from the high beta portfolio to the low beta portfolio, based on both equal- and value-
weighting schemes. The equal-weighted LmHSysJ portfolio has an annualized return
of 5.13% with a t-statistic of 2.67, that is, equivalent to an annualized Sharpe ratio
(SR) of 0.62, while the value-weighted LmHSysJ portfolio has an annualized return of
5.23% with a t-statistic of 2.11, or a SR of 0.49.

We further evaluate the significance of the LmHSysJ portfolio’s returns after con-
trolling for a variety of systematic risk factors used in previous research. We consider
the following factors: the Market, Fama-French three/five/six factors (FF3/FF5/FF6,
Fama and French (1993, 2015, 2018)). In addition, we include the tail risk factor by
Kelly and Jiang (2014), the idiosyncratic risk factor (idiorisk) of Ang et al. (2006))7,
and the CiV factor of Herskovic et al. (2016).8 Furthermore, we include the HmL
portfolio sorted using idiosyncratic jump tail shape shock betas, introduced in Sec-
tion 6.2 below, as a control factor. The results are summarized in Panel B of Table 2.
We see that the LmHSysJ portfolio has a significant alpha controlling for most of the
factors. For example, under FF6, the alpha of the equal-weighted LmHSysJ portfo-
lio is 5.11% (t = 2.66), the alpha of the value-weighted LmHSysJ portfolio is 5.82%
(t = 2.29). After controlling for the tail-risk factor of Kelly and Jiang (2014), the
CiV factor of Herskovic et al. (2016), the idiosyncratic risk factor of Ang et al. (2006),
and the effect of idiosyncratic jump tail risks (HmLIdioJ), to be introduced below, the
alphas of our LmHSysJ portfolio remain significant.

We next compute the pairwise correlation between the tail dispersion risk inno-
vations used for our portfolio sorting and the control factors explored in Panel B of
Table 2. We summarize the results in Table 3. It shows that the systematic jump
tail-shape shocks have little correlation with the common systematic risk factors, cor-
roborating the hypothesis that systematic jump tail shape shocks represent risks not
captured by prior advocated asset pricing factors.

Finally, as a robustness check, in Appendix I, we report portfolio sorting results
using different truncation levels in the systematic jump detection procedure. The
findings are qualitatively similar to those reported here.

7Replicated tail-risk beta LS sorted portfolio of Kelly and Jiang (2014) and the idiosyncratic risk
factor portfolio are obtained from Chen and Zimmermann (2021).

8The CiV-beta LS portfolio monthly returns are obtained from https://bernardherskovic.
com/data/
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Table 3: Correlations between the innovation in jump tail dispersion risks and the
return factors. Reported values are pairwise correlation between the innovations
of systematic jump risks, InnoξS, idiosyncratic jump risks InnoξS, obtained from
equation (6.1), and return factors that include the Market (Mkt), FF factors (SMB,
HML, RMW, CMA, MOM), the tail-risk factor (Kelly and Jiang (2014)) denoted
by tailrisk, the CiV factor (Herskovic et al. (2016)) denoted by CIV.LS, and the
idiosyncratic risk factor (Ang et al. (2006)) denoted by idiorisk. In addition, we
include the signals used to construct the CiV factor, that is the common idiosyncratic
shocks (CiV.shock). The evaluation period is between 2004 and 2022.

InnoξI Mkt SMB HML RMW CMA MOM tailrisk CIV.LS CIV.shock idiorisk
InnoξS 0.008 0.003 -0.003 0.007 -0.005 0.03 0.004 -0.03 0.086 0.042 0.007
InnoξI – -0.084 -0.006 0.011 -0.011 -0.009 -0.026 0.007 -0.022 0.134 -0.011

Overall, our finding of a negative price response to positive ξS shocks implies that
investors view periods, in which systematic jumps generate more extreme returns in
the cross-section, as unfavorable states of the world. Stocks that do well during such
times serve as hedges and require a lower risk premium. This is intuitive from a
standard portfolio perspective, as systematic jumps constitute a major source of risk
for strategies exposed to systematic risk factors. Enhanced and time-varying return
dispersion induced by systematic jumps exacerbates the possibility of poor portfolio
performance and renders efficient diversification more difficult. Increasing dispersion
risk during times of large systematic return jump events is therefore disliked by in-
vestors. We further note that this phenomenon is akin to the beta risk documented
in Boloorforoosh et al. (2020) who find that low market-betas tend to increase along
with market risk and hence require an additional risk premium. The finding about the
relation between beta dynamics and volatility is broadly consistent with the well doc-
umented observations that the returns will become more synchronized during volatile
period (Solnik et al. (1996); Andersen et al. (2001)).

6.2 Pricing of Shocks to the Idiosyncratic Jump Tails

We next study whether shocks to the tail shape parameter of idiosyncratic jump
risk requires compensation. Note that, just like the strength of average idiosyncratic
volatility, shocks to the tail shape parameter of the idiosyncratic jump risk is a form
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of aggregate risk. As for the systematic jump tails, we measure the idiosyncratic
jump tail shape shocks using the innovations in the jump tail index ξI;t. Specifically,
we use ξ̄I;t = 2/(αLI;t + αRI;t), where αLI;t = 1/ξ−I;t, and αRI;t = 1/ξ+

I;t represent the
parameters estimated from the left and right idiosyncratic jump tails, respectively.
We have performed the same analysis using separate left and right tail shape indices,
generating similar results to those based on the average of the two reported here.

Following the portfolio formation approach of Section 6.1, we sort stocks on the
basis of their exposures to ξ̄I;t. We summarize the results in Table 4. The out-
of-sample evaluation period is between 2004 and 2022, and the holding-window for
the portfolio is one month. Table 4 reveals that, unlike the portfolios sorted on
exposure to systematic jump tail shape risk, there is a decreasing pattern in the
average returns from the high to the low beta portfolio, both for equal-weighting
and value-weighting schemes. The high (low) beta portfolio has positive (negative)
exposures to the idiosyncratic jump shocks. The equal-weighted HmLIdioJ portfolio,
that is, the portfolio that goes long/short the quintile portfolio with the highest/lowest
exposure to idiosyncratic tail shape shocks, has annualized returns of 3.19% with a t-
statistic of 1.98 (annualized SR of 0.46). The returns for the value-weighted portfolio
is 3.98% with a t-statistic of 1.92 (annualized SR of 0.45). Furthermore, the HmLIdioJ
portfolio’s alphas are significant after controlling for a variety of common systematic
risk factors. Sorting results for a three-month holding period are similar to those for
one month and are provided in the Appendix H.

Consistent with the significance of the alphas of the HmLIdioJ portfolios, the
shocks to the idiosyncratic jump tail shape index appear weakly and insignificantly
correlated with the common systematic risk factors, as seen from Table 3.

We check the robustness of the portfolio sorting results for systematic jump de-
tection for alternative thresholds in Appendix I. We find the results for idiosyncratic
jump sorted portfolios consistent across the different tuning parameter settings.

Overall, our results suggest that positive shocks to ξI (a fattening of the idiosyn-
cratic jump tail) are viewed favorably by investors, i.e., times featuring thicker id-
iosyncratic jump tails are good states of the world. Therefore, stocks that do well
when ξI is high trade at a premium and should earn low expected future returns. How
do we rationalize this pricing result which is the exact opposite to our finding from
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Table 4: Returns of idiosyncratic jump tail shock beta-sorted portfolios. The table
reports out-of-sample annualized average returns (in percentage) and t-statistics for
portfolios sorted based on cross-sectional jump tail beta. We sort stocks each day into
quintile portfolios using jump tail betas. The jump tail betas are estimated using daily
returns of the past five years. The holding window of the portfolio is one month. We
use all stocks traded on NYSE/AMEX/NASDAQ exchange with price above $5 and
stock capitalization beyond the 20% NYSE size breakpoint. Stocks are formed into
equal- and value-weighted portfolios. The out-of-sample period is between 2004 and
2022. Panel A reports the portfolios’ average betas to the idiosyncratic jump tail
shocks and annualized returns, all in percentages, and Panel B reports the alphas
under CAPM, FF3/FF5/FF6 models, controlling for the tail-risk factor (Kelly and
Jiang (2014)), the CiV factor (Herskovic et al. (2016)), the idiosyncratic risk factor
(Ang et al. (2006)), and the low-minus-high portfolio sorted using systematic jump
tail exposures (LmHSysJ). The t-statistics are based on Newey-West (Newey and
West (1987)) standard errors using a lag length equals to the holding window.

Equal-weight Value-weight

Panel A: Average Portfolio Returns

Portfolio Beta Ret t-stat Ret t-stat

H 6.19 15.31 3.73 15.43 4.61
Q4 2.73 13.98 3.70 13.30 4.57
Q3 0.76 13.47 3.55 10.69 3.72
Q2 -1.19 13.19 3.41 11.11 3.66
L -5.26 12.12 2.73 11.46 3.14

HmLIdioJ 3.19 1.98 3.98 1.92

Panel B: Abnormal Return of HmLIdioJ Portfolio

Measure Ret t-stat Ret t-stat

CAPM alpha 4.17 2.26 4.90 1.98
FF3 alpha 4.06 2.17 4.37 1.72
FF5 alpha 4.10 2.20 4.86 1.87
FF6 alpha 5.11 2.66 4.72 1.82
CAPM+tailrisk alpha 4.45 2.37 5.91 2.31
FF6+tailrisk alpha 4.44 2.37 5.92 2.28
CAPM+CiV alpha 3.82 1.86 5.52 2.33
FF6+CiV alpha 4.11 2.02 5.76 2.35
CAPM+idiorisk alpha 3.94 2.20 5.09 2.01
FF6+idiorisk alpha 4.22 2.32 5.65 2.16
CAPM+LmHSysJ alpha 4.46 2.58 5.25 2.23
FF6+LmHSysJ alpha 4.42 2.63 4.99 2.07
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portfolio sorts based on ξS? We first reiterate that, although ξI is linked to idiosyn-
cratic jumps, shocks to ξI still represent aggregate risk, as they impact the extent to
which the cross-section experiences more or less extreme idiosyncratic jumps. Appar-
ently, many investors prefer exposure to this type of common risk, which is consistent
with lottery-type preferences, implying that there is an attraction to stocks that can
generate huge positive returns (winning the lottery). For such investors, episodes in
which idiosyncratic jump tails grow fatter provide better upside potential and hence
are preferred by them. Lottery-like preferences has been evidenced in both equity
and option market contexts, as documented in studies such as Boyer and Vorkink
(2014); Blau et al. (2016) and Filippou et al. (2018). Moreover, Ho et al. (2023)
and the references therein find that firms with a high degree of growth options and
operational flexibility generate longer-term convex payoffs with lottery-style features.

6.3 Portfolio Combination

The results in Sections 6.1 and 6.2 demonstrate that the LmHSysJ and HmLIdioJ port-
folios sorted based on the exposure to systematic and idiosyncratic jump tail shape
shocks earn positive expected returns in the future. In addition, Table 3 shows that
shocks to ξS and ξI appear nearly uncorrelated. Hence, not surprisingly, the HmLIdioJ
and LmHSysJ portfolio returns are weakly related, with sample correlation coefficients
equalling -0.11 and -0.07 for the equal- and value-weighted portfolios. Consequently,
combining them should improve performance, as it does for Asness et al. (2013), who
document substantial gains, in terms of Sharpe ratios, from combining value and
momentum portfolios. Towards this end, we evaluate a simple equal-weighted combi-
nation of the HmLIdioJ and LmHSysJ portfolios. Denoting the return of the HmLIdioJ
(LmHSysJ) portfolio of idiosyncratic (systematic) jump tail exposure by rIdioJt (rSysJt ),
the return of the combined portfolio (Comb) is given by,

rCombt = 0.5 rIdioJt + 0.5 rSysJt .

We report the performance of this combined portfolio in Table 5.

Table 5 confirms that the performance of the combined portfolio improves relative
to the individual portfolios in terms of generating higher return significance and,
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Table 5: Return performance of the combined portfolio. The table reports average
returns and abnormal returns under alternative linear factor models over our 2004-
2022 sample. The portfolio holding period is one month. We also report t-statistics
based on Newey-West (Newey and West (1987)) standard errors using a lag length
equals to the holding period.

Equal-weight Value-weight

Measure Ret t-stat Ret t-stat

MEAN 3.57 3.58 3.91 2.97
CAPM alpha 3.04 2.88 3.47 2.43
FF3 alpha 3.16 3.05 3.67 2.56
FF5 alpha 3.37 3.12 4.15 2.81
FF6 alpha 3.67 3.43 4.50 3.09
CAPM+tailrisk alpha 3.22 2.93 4.15 2.80
FF6+tailrisk alpha 3.64 3.30 4.72 3.12
CAPM+CiV alpha 3.82 1.86 5.52 2.33
FF6+CiV alpha 4.12 2.02 5.76 2.35
CAPM+idiorisk alpha 3.63 3.11 4.50 2.96
FF6+idiorisk alpha 3.51 1.80 4.85 3.24

hence, a higher Sharpe ratio. For example, the t-statistic of the mean return is 3.58
(annualized SR is 0.83) for the combined one-month holding-period portfolio under the
equal-weighted scheme and 2.97 (annualized SR is 0.70) for value-weighted scheme.
These numbers substantially exceed the counterparts for the individual HmLIdioJ and
LmHSysJ portfolios.

7 Conclusion

We develop a framework for estimation of cross-sectional tail risks, which are captured
by the power-law shape index for the jump tails. The estimators are constructed
using high-frequency data from a large cross-section of assets. We prove asymptotic
normality for the tail-shape index estimators and propose a goodness-of-fit test for
the adequacy of the power law for capturing the systematic and idiosyncratic jump
tails, respectively. Empirically, we find that both of these tail dispersion risk factors
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evolve differently from the concurrent return volatilities. Furthermore, the systematic
and idiosyncratic jump tails exhibit distinct time-series dynamics and both carry
significant risk premiums, but with opposite signs. The pricing effect of these jump
tail dispersion risks cannot be rationalized through their interaction and they remain
significant when we control for a number of popular cross-sectional factor pricing
models.

Appendix A Outline of Strategy Behind the Proofs

In this section, we outline the proofs for the main theoretical results. The details
behind the proofs of the theorems and Lemmas are provided in Appendix F of the
supplementary material.

The proof of Theorem 1 is divided into two steps. In the first step, we verify
the CLT for the POT estimator of the tail index based on the infeasible systematic
jumps (Lemma 2). In the second step, we show that replacing the infeasible systematic
jumps with the estimated ones from high-frequency returns will not affect the CLT
(Lemma 3). The proof of Theorem 2 proceeds similarly. That is, we first verify the
CLT for the estimator based on the infeasible idiosyncratic jumps (Lemma 4), and
then we use Lemma 3 to show that the result still holds after replacing the infeasible
idiosyncratic jumps with the ones estimated from the high-frequency returns.

The proof of Theorem 3 (and similarly Theorem 4 for idiosyncratic jump tails’
goodness-of-fit test given in Appendix E) is obtained by first establishing the asymp-
totic distribution of the infeasible KS statistics based on the infeasible jump obser-
vations, and then applying Lemma 5, which shows that the difference in the KS
statistics based on the estimated and true jumps is asymptotically negligible.
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