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Abstract

We develop a model for point processes on the real line, where the intensity can be locally

unbounded without inducing an explosion. In contrast to an orderly point process, for which

the probability of observing more than one event over a short time interval is negligible, the

bursting intensity causes an extreme clustering of events around the singularity. We propose

a nonparametric approach to detect such bursts in the intensity. It relies on a heavy traffic

condition, which admits inference for point processes over a finite time interval. With Monte

Carlo evidence, we show that our testing procedure exhibits size control under the null, whereas

it has high rejection rates under the alternative. We implement our approach on high-frequency

data for the EUR/USD spot exchange rate, where the test statistic captures abnormal surges

in trading activity. We detect a nontrivial amount of intensity bursts in these data and

describe their basic properties. Trading activity during an intensity burst is positively related

to volatility, illiquidity, and the probability of observing a drift burst. The latter effect is

reinforced if the order flow is imbalanced or the price elasticity of the limit order book is large.
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1 Introduction

Trading activity is an important variable in financial economics.1 In the mixture of distribution

hypothesis (e.g. Clark, 1973; Epps and Epps, 1976; Tauchen and Pitts, 1983), trades are driven by a

latent stochastic process, interpreted as the flow of news. If the unobservable arrival of news is ran-

dom and persistent, then so is the observable trading activity. In market microstructure, a number

of theories suggest that optimal execution strategies induce time-varying trading activity (e.g. Kyle,

1985; Admati and Pfleiderer, 1988; Almgren and Chriss, 2001). Moreover, the increased volatility

typically observed during distressed market conditions often coincide with abnormal increases in

trading activity.

The literature has therefore devoted a lot of attention to build models of trading activity (e.g.

Engle and Russell, 1998, and references therein and thereto). In practice, the sequence of trades

constitute a time series of irregularly spaced high-frequency data, so point processes are a natural

starting point. Trading activity can be described by a point process with random—and possibly

persistent—intensity, such as an inhomogeneous Poisson process (e.g. Cox, 1955). The rate of trade

arrivals can also depend on other observable characteristics, even the history of the process itself as

in Hawkes (1971). In the latter class of self-exciting processes, each event increases the likelihood

of a new event for a short while. However, the assumption in all this literature is that the intensity

process remains locally bounded.

In this paper, we study a point process, where the intensity is, potentially, unbounded over

short time intervals. We coin this an intensity burst. We adopt a theoretical foundation, where the

random intensity is decomposed into a base intensity, describing “normal” trading activity, and an

exploding intensity, describing “abnormal” trading activity. In the normal state, the intensity is

locally bounded and follows a doubly stochastic Poisson process. This implies that the probability

of observing more than one trade in a short time interval is negligible, so none of the point clusters

observed in a fixed window (interpreted as, e.g., a trading day) are substantially larger than the

others. In the abnormal state, the intensity is unbounded in the vicinity of a stopping time, which

permits the model to produce an extreme concentration of trades in a neighbourhood of that instant.

However, the integrated intensity (i.e. the compensator) remains bounded, which ensures that the

point process is non-explosive and well-defined.

We propose a framework for intensity burst detection by studying a pointwise test statistic,

that is testing for an intensity burst near a single candidate time. We further refine this technique

such that a burst in intensity can be separated from a jump in intensity. In contrast to standard

inference for point processes, which normally proceeds in a “long-span” setting with time going to

infinity, we attempt to detect abnormal surges in trading activity over short time intervals. Hence,

we study the “infill” limit, where the time interval is fixed. To permit inference under the null

1Trading activity is a measure of how much a given financial asset has traded over a period of time. It can

be taken as the either the number of transactions, the number of shares traded, or the dollar volume (price times

quantity). In this paper, we mainly employ the transaction count.
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hypothesis of no intensity burst, we appeal to a novel heavy traffic condition, where independent

copies of the point process are stacked to generate an increasing numbers of events over a fixed time

interval (e.g. Kingman, 1961). Clinet and Potiron (2018) propose a related inference for the doubly

stochastic self-exciting point process (see also Potiron and Mykland, 2020), but they do not exploit

it for intensity burst detection.

The heavy traffic assumption is a logical precursor for infill asymptotic theory widely em-

ployed in financial econometrics, such as nonparametric estimation of the volatility of arbitrage-free

price processes (see, e.g., Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002;

Jacod and Protter, 2012). In that setting, the number of observations over a fixed (or shrink-

ing) time interval increases to infinity with the mesh going to zero. This fits directly into our

framework. Indeed, a realization of our point process belongs to the class of stochastic sampling

times analyzed in Hayashi, Jacod, and Yoshida (2011). We contribute to this field by adapting the

observed asymptotic variance of Mykland and Zhang (2017) to local estimation.

Christensen, Oomen, and Renò (2022) suggest that the drift of an asset price (an Itô semi-

martingale driven by a Brownian motion) can diverge without inducing a divergence in the price.

We extend their concept of a burst to the intensity, which is a natural measure of drift for point

processes. However, the construction of our test is much different due to some theoretical sub-

tleties. Moreover, while drift burst detection relies on ultra high-frequency data of the price, our

test statistic is based solely on the arrival times. It does not require a further mark in the form of a

transaction price or midquote. This has the distinct advantage that our test statistic is unaffected

by microstructure noise, which tends to impede high-frequency estimation of the drift and volatility

(e.g. Hansen and Lunde, 2006).2

Our framework allows to independently screen financial high-frequency data in real-time for

abnormal increases in trading activity that may—or may not—be associated with a drift burst or

pockets of extreme return persistence, see Andersen, Li, Todorov, and Zhou (2023). To illustrate,

in Panel A of Figure 1 we plot the spot EUR/USD exchange rate on May 14, 2019 from 1:00pm

to 1:30pm Central European time (CET). The exchange rate drops sharply around 1:15pm. This

is detected as a significant event by the drift burst test statistic. In Panel B of Figure 1, we report

a nonparametric estimator of the time-varying trade intensity. It too accelerates, before reverting

back toward a normal level. Interestingly, there are several short-lived spikes in sell-side activity

around the time the exchange rate starts to depreciate, which is indicated by the order imbalance

(buyer- minus seller-initiated trades). The figure also plots the intensity burst test statistic. As

evident, our approach also identifies this as a significant event. In the empirical application, we

shed further light on the dependence between drift and intensity, and we also show how the demand

for and supply of liquidity affect this relationship.

2In fact, a branch of the high-frequency volatility estimation literature has advocated duration-based measures

extracted from the point process generating the noisy transaction or quotation data to circumvent this problem (e.g.,

Andersen, Dobrev, and Schaumburg, 2008; Hong, Nolte, Taylor, and Zhao, 2021).
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Figure 1: Intensity burst in the EUR/USD with a drift burst.

Panel A: Exchange rate. Panel B: Transaction count.
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Note. This figure shows the EUR/USD spot exchange rate on May 14, 2019, where we detect an intensity burst and a drift burst.

In the left panel, we plot the exchange rate from 1:00am to 1:30am CET along with the drift burst test statistic proposed in

Christensen, Oomen, and Renò (2022). In the right panel, we plot a nonparametric estimator of the time-varying trading intensity

(as proxied by the number of transactions in a 15-second window) along with the intensity burst test statistic and a measure of order

imbalance.

Rambaldi, Pennesi, and Lillo (2015) and Rambaldi, Filimonov, and Lillo (2018) study a para-

metric self-exciting point process in order to explain clusters of events driven by an acceleration in

trading activity. In their model, an “intensity burst” is an exogenous (potentially random) num-

ber of points added to the counting process at a single (potentially random) time. However, the

intensity remains locally bounded, so none of the clusters can describe the enormous concentration

of points observed during an intensity burst. Moreover, our approach is nonparametric and the

number of burst points can be endogenous.

Bollerslev, Li, and Xue (2018) also study spot trading intensity using high-frequency data based

on the nonparametric state-space model of Li and Xiu (2016). They conduct an event study to

examine the relationship between jumps in trading volume and return volatility around the re-

lease of macroeconomic information, as motivated by the differences of opinion literature (e.g.,

Kandel and Pearson, 1995). As in our paper, a main ingredient for the analysis is the change in

a local intensity estimator at different time points (in their case an ex-ante and ex-post measure

before and after the announcement). In contrast to Bollerslev, Li, and Xue (2018), we propose a

test statistic for detecting a burst in the intensity process, as formalized in Assumption 1. We show

that our test statistic is robust to Lévy-style jump processes and roughness in the intensity. Fur-

thermore, we develop a separate test procedure that builds on the “change-of-frequency” approach

often employed in the volatility literature (e.g., Äıt-Sahalia and Jacod, 2009; Todorov and Tauchen,

2010). The latter can be applied to separate a jump in intensity from a burst in intensity. In this
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framework, the detection of either an intensity burst or an intensity jump is essentially a two-

sample mean problem. This is tightly related to the sharp regression discontinuity design (RDD)

of Thistlethwaite and Campbell (1960), which has a prominent history in econometric analysis. In

our empirical application, there is overwhelming evidence toward our intensity burst test statistic

not being driven by a jump component.

The roadmap of the paper is as follows. Section 2 introduces the theoretical foundation of point

processes and describes the intensity burst model. Section 3 develops an inference strategy for the

proposed test statistic. We also propose an estimator of the asymptotic variance of our test statistic.

Section 4 includes an extensive simulation study to demonstrate the finite sample properties of our

procedure. An empirical application is conducted in Section 5, while we conclude in Section 6. The

proofs are deferred to the Appendix.

2 Intensity burst of a point process

We suppose a filtered probability space (Ω,F , (Ft)t≥0,P) describes a random configuration of or-

dered points observed on the interval [0, T ], i.e. 0 < t1 < · · · < tm < T . The sequence of random

variables (ti)
m
i=1 is assumed to be a realization of a simple point process with associated counting

process N = (Nt)t≥0, which is defined as Nt =
∑

i≤t 1(ti ≤ t), where 1(·) is the indicator function.

In this paper, we assume N to be a doubly stochastic Poisson—or Cox (1955)—process with asso-

ciated random intensity—or rate—process λ = (λt)t≥0, where λ is an adapted and strictly positive

real-valued stochastic process. That is, conditionally on λ, N is an inhomogeneous Poisson process

with rate λ, i.e. the conditional characteristic function of the increment Nt+∆ −Nt is given by

ϕNt+∆−Nt(u) = E

(
eiu(Nt+∆−Nt) | Fλ

t

)
= exp

(
(eiu − 1)

∫ t+∆

t

λsds

)
, (2.1)

where Fλ
t = σ({λs; s ≤ t}).

λt can be thought of as the expected number of points arriving over the next short time interval

[t, t+∆], based on available information about the rate process at time t, since

λt = lim
∆→0

E
[
Nt+∆ −Nt | Fλ

t

]

∆
. (2.2)

Hence, when λt is locally bounded, the instantaneous expectation of the number of points is finite.

In order to define intensity bursts, we therefore suppose that λt is locally unbounded in the vicinity

of a particular time instant, such that the expectation of the number of points in the vicinity of

that time point is locally infinite.

Assumption 1. λt can be decomposed as follows:

λt = µt + βt, (2.3)
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where µ = (µt)t≥0 is a locally bounded and strictly positive real-valued stochastic process, and

βt =
σt

|τib − t|α , (2.4)

for a stopping time τib, where σ = (σt)t≥0 is a non-negative locally bounded and stochastically

continuous random process and 0 < α < 1 is a constant.

In the context of an financial market, N may describe the number of order submissions or trade

executions in a security over the course of a trading session. With this interpretation, Assumption 1

therefore extends the notion of a drift burst in the asset log-price from Christensen, Oomen, and Renò

(2022) to the intensity process generating the discretely observed log-price record. µ is then the

arrival rate of trades during “normal” market conditions, whereas β represents the arrival rate of

trades during “distressed” market conditions. The stopping time τib is called the intensity burst

time.

If σt = 0 almost surely for all t, the explosive term βt is absent and Nt evolves as a simple Cox

process. In particular, N is orderly. That is, for any time t it verifies the condition

lim
∆→0

P (Nt+∆ −Nt > 1)

∆
= 0, (2.5)

which implies that the probability of observing more than one event over a short time interval is

negligible.

If σt > 0 almost surely, in a neighbourhood of τib,
∫ τib+∆

τib−∆

µsds = Op(∆) and

∫ τib+∆

τib−∆

βsds = Op

(
∆1−α), (2.6)

as ∆ → 0. The last condition implies that the left-hand side of equation (2.5) diverges. Hence,

Nt is not orderly. This implies that N can generate a large cluster of points near each other in a

small neighbourhood of τib. This property, which is crucial for generating extreme point clusters

under the heavy traffic condition, cannot be reproduced by classical point processes (for example,

a stationary Hawkes process), because any simple and stationary point process is orderly (see, e.g.,

Section 3.3.V–IV in Daley and Vere-Jones, 2003). However, due to the integrability condition on

βt in Assumption 1, the compensator ΛT =
∫ T
0
λsds < ∞ and P (Nt+∆ −Nt > 1) = o(∆1−α) as

∆ → 0, so N itself is non-explosive and well-defined.

It is well-known that one cannot consistently estimate the intensity of a point process over a

finite time interval, not even in the homogenous case. Hence, inference of point processes usually

proceeds under long-span asymptotics (T → ∞). However, as we are interested in identifying

intensity bursts over small time intervals, we follow the convention in the high-frequency literature

and assume T is fixed. Instead, to do inference we impose an alternative “heavy traffic” assumption

(e.g., Kingman, 1961), in which the intensity of the underlying point process diverges under the

null. To formalize this idea, we introduce an auxiliary parameter n and consider a sequence of Cox

processes Nn = (Nn
t )t≥0, for n = 1, 2, . . . . For a fixed n, the rate function of Nn

t is equal to nλt, and
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the observed configuration of points is a realization of Nn. The asymptotic theory is then developed

by supposing that n→ ∞.

To guarantee the existence of the required sequence of Cox processes, Nn
t can conveniently be

constructed as follows:

Nn
t =

n∑

i=1

Nt,i, (2.7)

where (Nt,i)
n
i=1 are independent copies of Nt.

The heavy traffic condition is intimately connected with the literature on high-frequency esti-

mation of volatility. Inference on realized variance typically proceeds under infill asymptotics (e.g.

Andersen and Bollerslev, 1998; Barndorff-Nielsen and Shephard, 2002). In that setting, we sup-

pose a log-price process is observed at m = m(n) discrete time points t0, t1, . . . , tm that partition

the time interval [0, T ], where m
p−→ ∞ such that supi |ti − ti−1| p−→ 0 as n → ∞. Thus, the

point process Nn together with the heavy traffic assumption is a standard model for generating

stochastic sampling times satisfying the usual conditions alluded to in high-frequency economet-

rics. In fact, a realization of Nn falls within the class of stochastic sampling schemes studied by

Hayashi, Jacod, and Yoshida (2011). Hence, heavy traffic is a natural precursor for econometric

analysis of financial high-frequency data.

Note that our theoretical exposition does not include self-exiting Hawkes (1971)-type processes,

where the stochastic intensity process depends on the realization of N . In contrast to a Cox process,

stacking independent self-exiting processes to generate an increasing number of events over a fixed

time interval result in an poor model, because the correlation between increments of Nn remain

independent of n, which prevents inference of the local intensity. However, self-excitation can

be embedded into our heavy traffic framework in several ways. Clinet and Potiron (2018) study

an exponential doubly-stochastic Hawkes process, where the base intensity and excitation function

depend on n, so the correlation between increments of Nn declines as n increases. Alternatively, one

may follow the stacking construction in (2.7) without the independence assumption. We postpone

a theoretical treatment of this problem for future research. On a practical side, we explore the

Hawkes processes as a model for the “normal” time event flow in the Monte Carlo section.

3 Identification

The detection of intensity bursts amounts to the following hypothesis:

H0 : ω ∈ Ω0 and H1 : ω ∈ Ω1, (3.1)

where Ω0 and Ω1 are complementary subsets of Ω:

Ω0 =

{
ω ∈ Ω :

∫ T

0

β2
t dt = 0

}
and Ω1 =

{
ω ∈ Ω :

∫ T

0

β2
t dt > 0

}
. (3.2)
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In this section, we propose a formal testing procedure to figure out which subset the realization of

Nn belongs to. In particular, we propose a test that conducts a statistical inference for the presence

of an intensity burst near a single candidate time instance.

3.1 Test statistic

The identification of intensity bursts is based on a nonparametric, and backward-looking to allow

for online detection, estimator of the local intensity, which is defined as:

λ̂t =
Nn(t− δn, t)

nδn
, (3.3)

where Nn(a, b) = Nn
b − Nn

a is the number of points of the counting process on (a, b], and δn is a

bandwidth parameter.3

λ̂t is nothing more than the realized intensity, i.e. the number of counts per time unit over an

interval of length δn, averaged across Cox processes. In a setup with light traffic (i.e. n fixed), it

follows that λ̂t
p−→ 0. However, heavy traffic (i.e. n→ ∞) changes the stochastic properties of λ̂t.

Lemma 1. Suppose that Assumption 1 holds. Then, under H0, as n → ∞ and δn → 0 such that

nδn → ∞, it holds for all fixed t ∈ [0, T ] that

λ̂t
p−→ µt−. (3.4)

Moreover, under H1,

λ̂τib = Op

(
δ−αn
)
. (3.5)

The lemma shows that, under general assumptions about the intensity process, the intensity

estimator converges to the left-limit of the local intensity at time t under the null hypothesis.

As n → ∞, the summation of independent copies of the Cox process in the heavy traffic limit

ensures that, on average, the accumulation of points close to t correspond approximately to the

instantaneous arrival rate. To generate a sufficient number of points inside the estimation window

[t − δn, t], we need δnn → ∞. A law of large numbers then shows that λ̂t converges in probability

and, as δn → 0, the limit is µt−.

On the other hand, under the alternative, the arrival rate of the bursting process causes the

estimator to explode around τib.

Lemma 1 highlights an important difference between the estimation of the local intensity of point

processes and the estimation of the local drift of Brownian semimartingales. In the latter, the drift

estimator is asymptotically unbiased but inconsistent (Kristensen, 2010), because the increments of

the Brownian motion, although mean zero, exhibit so much variation over short time intervals that

any information about the drift is lost. This is exploited by Christensen, Oomen, and Renò (2022)

3The presence of n in (3.3) is inconvenient, since the parameter is not observed. However, it is only needed to

show convergence of λ̂t. As we show below, n drops out for the construction of the intensity burst test statistic.
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to construct a drift burst test statistic, which relies on the different rates of divergence of the drift

estimator under the null and alternative. Their test statistic has the convenient side effect that it

knocks out the true drift coefficient asymptotically. By contrast, under the null hypothesis λ̂t is con-

sistent for the local intensity of the point process in the heavy traffic limit. Hence, for intensity burst

detection we propose a slightly different test statistic compared to Christensen, Oomen, and Renò

(2022). In particular, to center the statistic we compare two local intensity estimators calculated

from the nearest lagged block of observations:

∇λ̂t = λ̂t − λ̂t−δn . (3.6)

As we prove below, ∇λ̂t converges in probability to zero under H0, but it is unbounded in probability

under H1. Hence, one can derive an asymptotic confidence interval for ∇λ̂t and reject H0 if ∇λ̂t is
outside of it. This suggests a standard test statistic of the form:

φib
t =

∇λ̂t
ŝtd(∇λ̂t)

, (3.7)

where ŝtd(∇λ̂t) is an estimator of std(∇λ̂t) under H0.

It turns out, however, that the asymptotic variance of λ̂t depends crucially on the interplay

between δn and n, which follows from a central limit theorem (CLT) under H0. To derive this CLT,

we require a bit of structure on the baseline intensity of N .

Assumption 2. µ is an Itô semimartingale of the form:

µt = µ0+

∫ t

0

asds+

∫ t

0

νsdWs+

∫ t

0

∫

|δs(x)|≤1

δs(x) (p(ds, dx)− q(ds, dx))+

∫ t

0

∫

|δs(x)|>1

δs(x)p(ds, dx),

(3.8)

where µ0 is F0-measurable, a = (at)t≥0 and ν = (νt)t≥0 are adapted, càdlàg stochastic processes,

W is a standard Brownian motion, p is a Poisson random measure on R+ × R with compensator

q(ds, dx) = dsF (dx), where F is a σ-finite measure on R, and δs(x) is a predictable function such

that there exists a sequence of Ft-stopping times (τn)
∞
n=1 with τn → ∞ and, for each n, a determin-

istic and non-negative function Γn with min (|δt(x)|, 1) ≤ Γn(x) for t ≤ τn,
∫
R
Γn(x)

2F (dx) < ∞,

and
∫
{x:Γn(x)≤κ} Γn(x)F (dx) <∞, for all (t, x) and κ ∈ (0, 1).

Assumption 2 is common in high-frequency analysis (e.g. Jacod and Protter, 2012), since it

allows to apply estimates for semimartingales to control the discretization error. It is a stan-

dard tool often used to describe arbitrage-free price processes, since these must be semimartingale

(Delbaen and Schachermayer, 1994). In that context, the assumption is—apart from the integra-

bility condition on the driving processes—nonparametric, as it does not restrict the dynamic of the

price and allows it to exhibit time-varying drift, stochastic volatility, and a more or less unrestricted

jump component, which can be both infinitely active and of infinite variation. Moreover, the various

terms can be arbitrarily dependent.

However, since we are looking at an intensity process and not the price of a tradable asset, we
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are not bound by the no free lunch principle. We therefore also inspect an alternative framework

below, which replaces the above structural assumption by a general smoothness condition.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞ and δn → 0

such that nδn → ∞, it holds for all fixed t ∈ [0, T ] that

(i) if δn
√
n→ 0,

√
nδn

(
λ̂t − µt−

)
Ds−→ √

µt−Z, (3.9)

and
√
nδn∇λ̂t Ds−→

√
2µt−Z, (3.10)

(ii) if δn
√
n→ θ > 0,

1√
δn

(
λ̂t − µt−

)
Ds−→
√

1

θ2
µt− +

1

3
ν2tZ, (3.11)

and

1√
δn

∇λ̂t Ds−→
√

2

θ2
µt− +

8

3
ν2tZ, (3.12)

(iii) if δn
√
n→ ∞,

1√
δn

(
λ̂t − µt−

)
Ds−→
√

1

3
ν2tZ, (3.13)

and

1√
δn

∇λ̂t Ds−→
√

8

3
ν2tZ, (3.14)

where Z is a standard normal random variable, which is defined on an extension of (Ω,F , (Ft)t≥0,P)

and independent of F , and
Ds−→ is stable convergence in law (see, e.g., Jacod and Protter, 2012).

Theorem 1 shows that the asymptotic distribution of our estimator is mixed normal, but the

convergence rate and limiting variance depends on the order of δn. On the one hand, if δn
√
n→ 0,

the localization dominates and the variation of the intensity parameter along its sample path is

immaterial. Hence, by the Poisson distribution, the variance is equal to the mean. On the other

hand, if δn
√
n → ∞, the roles are reversed, and the variation of the intensity parameter controls

the asymptotic variance. In both cases, the rate of convergence can be rather slow. The optimal

convergence rate, n−1/4, is achieved with δn ≍ n−1/2, where the opposing forces are balanced and

both affect the limiting distribution.

The standard errors of ∇λ̂t appearing in the second part of (ii) and (iii) are larger than one

would expect when comparing to (i). The explanation is that n diverges so fast compared to the

shrinking of δn that the lagged estimator λ̂t−δn is much more imprecise compared to λ̂t. This effect

is not present in part (i) of the theorem.
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Assumption 2 prevents the baseline intensity to be described by a non-semimartingale, such as

a fractional Brownian motion. The latter is a popular model in the realm of asset return variation,

since it can generate roughness and long memory (e.g. Comte and Renault, 1998; Gatheral, Jaisson, and Rosenbaum

2018). To the extent that trading activity and return volatility are connected, which holds empir-

ically and is also a standard implication of the information flow interpretation of the mixture of

distribution hypothesis (e.g., Andersen, 1996; Clark, 1973; Tauchen and Pitts, 1983), we should feel

uncomfortable with that restriction. It can, however, be replaced by an appropriate smoothness

condition, such as assuming the sample paths of µ are Hölder continuous.

Assumption 3. There exists Hµ > 0, such that

E

[
sup

s≤t≤s+∆
|µs − µt|

]
≤ C∆Hµ

, (3.15)

for some constant C > 0 and all 0 ≤ s ≤ t ≤ T .

Theorem 2. Suppose that Assumptions 1 and 3 hold. Then, under H0, as n → ∞ and δn → 0

such that nδn → ∞ and δnn
1− 2Hµ

3 → 0, it holds for all fixed t ∈ [0, T ] that
√
nδn

(
λ̂t − µt−

)
Ds−→ √

µt−Z, (3.16)

Theorem 2 shows our spot intensity estimator is consistent and asymptotically normal under

Assumption 3 with an unaltered convergence rate. However, it only covers the short bandwidth

setting in part (i) of Theorem 1, where the local variation of the intensity process does not affect

the asymptotic conditional variance of the estimator. This is not true for part (ii) and (iii), and

that is where the structure of Assumption 2 is helpful. Without such knowledge, it is difficult to

extend Theorem 2 in that direction.

The split points in Theorem 1 are dictated by the behavior of δn
√
n, since for Brownian motion

(the leading term is Assumption 2), the probabilistic order of its increment is Op(
√
δn). This

condition is replaced in Theorem 2 by δnn
1− 2Hµ

3 . Thus, if δnn
1− 2Hµ

3 → 0, we are again in the short

bandwidth setting vis-à-vis the Hölder regularity of the process. However, even for Hµ = 1/2 (the

index of Brownian motion), the rate condition reduces to δnn
2/3 → 0 and is more restrictive than

before. This is because in the proof of Theorem 1, we also exploit that Brownian motion is a

martingale.

At last, we should stress that the dual rate conditions enforced by Theorem 2 are in a direct

conflict of interest. On the one hand, it should hold that nδn → ∞, so that there are a sufficient

number of observations inside the estimation window. One the other hand, for Hµ very small we

more or less also need nδn → 0. This is because the smoothness condition imposed in kernel-based

nonparametric analysis requires a shorter bandwidth for rough processes.4

4If the localization window is minuscule, there may be too few observations inside it to get the mechanics of the

central limit theorem working, risking that the asymptotic theory is a poor approximation to the finite sampling

distribution of the estimator. Bugni, Li, and Li (2023) also study non-price high-frequency data employing the
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3.2 Observed asymptotic local variance

In practice, picking the correct estimator of the asymptotic variance is difficult, because n is not

observed. To construct a feasible test statistic, we follow Mykland and Zhang (2017) by alluding

to the notion of the observed asymptotic variance.5 We set δn = ℓn∆n, where ℓn is a deterministic

sequence of natural numbers and ∆n > 0 represents a small time interval. We further impose that

∆n = n−1, but this is merely done for notational convenience. Nothing changes if ∆n = O(n−1),

except we introduce an additional tuning parameter.

λ̂t can then be rewritten:

λ̂t =
1

ℓn

∑

i∈Dnt−

∆iN
n, (3.17)

where ∆iN
n = Nn(i∆n, (i − 1)∆n) is the increment of Nn

t over a short time interval and Dn
t− =

{tn− ℓn + 1, tn− ℓn + 2, . . . , tn}.
The formulation in (3.17) follows the traditional high-frequency approach. It shows that the

intensity estimator can be expressed as a local average of increments to the discretized point process

Nn
t , which is a more convenient formulation for developing our asymptotic variance estimator.6 With

this convention, Theorem 1 can be stated as follows.

Corollary 1. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞ and ℓn → ∞
such that ℓn∆n → 0, it holds for all fixed t ∈ [0, T ] that

√
ρn∇λ̂t Ds−→

√
avar(∇λ̂t)Z, (3.18)

where

(
ρn, avar

(
∇λ̂t

))
=





(ℓn, 2µt−), if ℓn
√
∆n → 0,

(
(ℓn∆n)

−1, 2
θ2
µt− + 8

3
ν2t
)
, if ℓn

√
∆n → θ > 0,

(
(ℓn∆n)

−1, 8
3
ν2t
)
, if ℓn

√
∆n → ∞.

(3.19)

Then, we propose to set

ãvar

(
∇λ̂t

)
=

ρn
Kn

Kn−1∑

j=0

(
λ̂t−2jℓn∆n − λ̂t−(ℓn+2jℓn)∆n

)2
, (3.20)

nonparametric state-space model of Li and Xiu (2016). They propose a permutation-based test to detect general

distributional discontinuities, which includes the local two-sample mean problem. The advantage of their framework

is its finite sample validity, which addresses potential concerns caused by roughness. However, developing such a

permutation-based test is beyond the scope of the paper.
5An alternative inference procedure is subsampling (e.g. Politis, Romano, and Wolf, 1999), which was adapted

to high-frequency data in Kalnina (2011) and Christensen, Podolskij, Thamrongrat, and Veliyev (2017).
6In our framework, Nn is observed in continuous-time. However, many existing datasets do not reveal the exact

location of all events from a point process, but only report discrete observations. For example, the number of trades

in every 1-second slot may be available. In such cases, the data is structured in the form of a discretized version of

Nn used in equation (3.17). Thus, Corollary 1 and subsequent theorems remains applicable to such data.
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where Kn is another sequence of natural numbers.

The observed asymptotic local variance, ãvar

(
∇λ̂t

)
, is the sample variance of Kn estimates

computed over non-overlapping blocks consisting of 2ℓn observations. When Kn is sufficiently large

and the observation blocks are near t, ãvar
(
∇λ̂t

)
is consistent for avar

(
∇λ̂t

)
.

Theorem 3. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞, ℓn → ∞,

Kn → ∞ such that ℓn∆n → 0 and ℓnKn∆n → 0, it holds for all fixed t ∈ [0, T ] that

ãvar

(
∇λ̂t

) p−→ avar

(
∇λ̂t

)
. (3.21)

That is, ãvar
(
∇λ̂t

)
converges in probability to avar

(
∇λ̂t

)
for any limiting behaviour of ρn allowed

in Corollary 1.

The condition Knℓn∆n → 0 in Theorem 3 is somewhat restrictive. However, it can be loosened

with overlapping blocks in the definition of the observed asymptotic local variance. Hence, an

alternative version of the estimator is the following:

âvar

(
∇λ̂t

)
=

ρn
Kn

Kn−1∑

j=0

(
λ̂t−j∆n − λ̂t−(ℓn+j)∆n

)2
. (3.22)

Theorem 4. Suppose that Assumptions 1 and 2 hold. Then, under H0, as n → ∞, ℓn → ∞,

Kn → ∞ such that ℓn∆n → 0, Kn∆n → 0 and ℓn/Kn → 0, it holds for all fixed t ∈ [0, T ] that

âvar

(
∇λ̂t

) p−→ avar

(
∇λ̂t

)
. (3.23)

The condition ℓn/Kn → 0 in Theorem 4 indicates that the number of differences used to estimate

the local asymptotic variance of ∇λ̂t should increase faster than the number of observations used

to compute the local intensity estimate. The conditions Kn∆n → 0 and ℓn∆n → 0 ensure that all

observations remain close to t.

Thus, the test statistic in (3.7) becomes:

φib
t =

√
ρn∇λ̂t√

âvar

(
∇λ̂t

) . (3.24)

Theorem 5. Suppose that the conditions of Theorems 1 and 4 hold. Then,



φib
t

D−→ N(0, 1), conditional on H0,

φib
τib

p−→ ∞, conditional on H1.
(3.25)

Hence, we reject H0 if φib
t exceeds a quantile in the right-hand tail of the standard normal

distribution corresponding to a given significance level ς. This ensures the test has size control

under H0. On the other hand, under H1, φ
ib
t is unbounded in probability as t → τib, so the test is

also consistent.7

7Theorem 5 continues to hold if âvar

(
∇λ̂t

)
is replaced with ãvar

(
∇λ̂t

)
in the definition of φib

t , provided the

conditions of Theorem 3 hold.
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It is important to emphasize that we do not need to choose ρn to compute φib
t . This follows by

direct insertion, showing the test statistic can be expressed as:

φib
t =

Nn(t− δn, t)−Nn(t− 2δn, t− δn)√√√√ 1

Kn

Kn−1∑

j=0

(
Nn(t− j∆n − δn, t− j∆n)−Nn(t− j∆n − 2δn, t− j∆n − δn)

)2
. (3.26)

In practice, we take ∆n to be one second, although this is merely a convenient choice. The selection

of ℓn and Kn are studied in the Monte Carlo analysis presented in Section 4.

Remark 1. The local intensity estimator defined in (3.17) can be rewritten as a standard kernel-

based estimator of the form

λ̂t =
1

ℓn

⌊T∆n⌋∑

i=1

K
(
i∆n − t

ℓn

)
∆iN

n, (3.27)

where ℓn is the bandwidth and K is the indicator kernel K(x) = 1[−1,0](x). It is of course possible

to select a different kernel. While the full development of a corresponding theory is outside of the

scope of our paper, we conjecture that Theorem 5 remains valid under suitable regularity conditions

for the kernel and bandwidth (e.g. Kristensen, 2010; Christensen, Oomen, and Renò, 2022). We

investigate the exponential kernel in the simulation analysis and empirical application.

3.3 How to separate a burst from a jump?

Theorem 1 and Theorem 5 show that—in the limit—our test statistic is robust to jumps in the

intensity process at the test time t. The intuition is that the main term in the numerator is

λ̂t − λ̂t−δn . With a fixed t and a sufficiently small δn, both [t− δn, t] and [t− 2δn, t− δn] are close

to t, so any jumps (of vanishing size as δn → 0) from a left neighbourhood of t fall outside the

estimation windows, so λ̂t and λ̂t−δn converge to the left-limit µt−, and the latter is not affected by

the behaviour of the intensity process at time t.

In finite samples, δn is fixed. In that case, λ̂t−λ̂t−δn may numerically coincide with the difference

between a forward- and backward-looking intensity estimator:

λ̂
(−)
t =

1

ℓn

∑

i∈Dnt−

∆iN
n, and λ̂

(+)
t =

1

ℓn

∑

i∈Dnt+

∆iN
n, (3.28)

where Dn
t− = {tn−ℓn+1, tn−ℓn+2, . . . , tn} and Dn

t+ = {tn+1, tn+2, . . . , tn+ℓn}. λ̂(−)
t is equivalent

to λ̂t and thus has probability limit µt−, whereas λ̂
(+)
t converges to the right-limit µt+ = µt. As

such, one may suspect that the real cause of the rejection was in fact due to a jump in the intensity

process, i.e. µt 6= µt−.

In this section, we dive into this issue and propose a framework that can separate a burst from

a jump. We assume to know the existence of a time instant θ, where there is a change-point in the

intensity process–either a burst or a jump. θ can be a stopping time, a known point of pre-scheduled
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news announcements, or perhaps the center of an intensity burst that has already been detected

with our testing procedure.

The crest of our approach is to study the limiting behaviour of a variant of our intensity estimator

around the change point. We build on the “change-of-frequency” approach often employed in the

volatility literature (e.g., Äıt-Sahalia and Jacod, 2009; Todorov and Tauchen, 2010) and propose a

two-sided local intensity estimator:

λ̃t(δn) =
1

2ℓn

tn+ℓn∑

i=tn−ℓn+1

∆iN =
N(t− δn, t+ δn)

2nδn
. (3.29)

We highlight the dependence of λ̃t on the bandwidth, because discrimination between a burst and

a jump relies on sampling the estimator with different δn.

To state a more concrete result, we let ΩH0 ⊆ Ω0 be the subset of the sample space, where the

intensity process fulfills Assumption 3:

ΩH0 =

{
ω ∈ Ω0 : sup

s≤t≤s+∆
|µs − µt| < Lµ∆Hµ

}
, (3.30)

where Lµ is an almost surely finite positive random variable. Note that there is no intensity burst

on ΩH0 . Next, define ΩJ1 ⊆ Ω such that:

ΩJ1 =
{
ω ∈ Ω : ∃θ ∈ (0, T ) ∃C > 0 : |∆µθ| > C and ∃ǫ > 0 : (µt)t∈[θ−ǫ,θ+ǫ]\{θ} ∈ ΩH0

}
, (3.31)

where ∆µt = µt−µt−. The interpretation is that on ΩJ1 , there is a jump in µ of size ∆µθ at time θ,

but otherwise the intensity process is smooth (and, in particular, there is no intensity burst) in a

closed ball around this point. At last, we consider the set ΩB1 ⊆ Ω1 such that there is an intensity

burst with center at τib = θ.

As we show below, it turns out that the pathwise properties of λ̃t(δn) are different on ΩJ1 and

ΩB1 . This can be exploited to discriminate an intensity burst from an intensity jump. However, to

develop an asymptotic theory for λ̃t(δn) in the presence of an intensity burst, we need a smoothness

condition on σ (the volatility of the burst process) vis-á-vis the above.

Assumption 4. There exists Hσ > α/2, such that

sup
s≤t≤s+∆

|σs − σt| < Lσ∆Hσ

, (3.32)

where Lσ is an almost surely finite positive random variable, and α is the explosion rate of the

intensity burst from Assumption 1.

Now, we are able to establish the following lemma.

Lemma 2. Suppose that Assumptions 1 and 4 hold and let k > 0 be a positive number. As n→ ∞
and δn → 0 such that nδn → ∞ and δnn

1− 2Hµ

3 → 0, it holds that
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(i) Conditional on ΩB1 ,

δα/2n

(
λ̃θ(kδn)− σθ (2kδn)

−α
)

p−→ 0 and
λ̃θ(kδn)

λ̃θ(δn)

p−→ k−α. (3.33)

(ii) Conditional on ΩJ1 ,

λ̃θ(kδn)
p−→ µθ− +

∆µθ
2

and
λ̃θ(kδn)

λ̃θ(δn)

p−→ 1. (3.34)

The first part of Lemma 2 suggests that on ΩB1 we can construct a direct estimator of the

explosion rate of an intensity burst, α, via a logarithmic transformation:

α̂ = −
log
(
λ̃θ(kδn)

)
− log

(
λ̃θ(δn)

)

log k

p−→ α. (3.35)

On ΩJ1 , this estimator converges to zero in probability as it should be in the absence of an intensity

burst, i.e. α̂
p−→ 0.

A more efficient estimator of α can be retrieved by calculating log
(
λ̃θ(kδn)

)
for a range of k

and regressing these against log(k). The negative of the slope estimate is then α̂. We explore this

possibility in the empirical application.

The testing procedure to separate the competing hypothesis of a jump or a burst in the intensity

process can now be conducted with either ΩB1 or ΩJ1 as the null, but it requires a formal derivation

of the asymptotic distribution of the ratio statistic in that state. If the prior is that intensity has

jumped, then a statistical test to reject this conviction can be deduced from the following result.

Theorem 6. Suppose that Assumption 1 holds. Conditional on ΩJ1 , as n → ∞ and δn → 0 such

that nδn → ∞ and δnn
1− 2Hµ

3 → 0, it follows that

√
nδn

(
λ̃θ(kδn)

λ̃θ(δn)
− 1

)
Ds−→ √

avarkZ, (3.36)

where Z is as in Theorem 1, and

avark =

(
µθ− +

∆µθ
2

)−1
(
1

2
+

1

2k
−
[
k

(
µθ− +

∆µθ
2

)]−1
)
. (3.37)

Conversely, λ̃θ(kδn)

λ̃θ(δn)

p−→ k−α conditional on ΩB1 such that
√
nδn

(
λ̃θ(kδn)

λ̃θ(δn)
− 1
)
→ −∞.

4 Simulation study

We investigate the small sample properties of our intensity burst test statistic by a Monte Carlo

approach. We set T = 1 and interpret [0,1] as a standard 6.5 hour trading day on a U.S. stock

exchange, which we partition with a discretization step of dt = 1/(23,400× 100), corresponding to

one-hundredth of a second.
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We simulate the aggregate intensity as a multiplicative process of the form µt = µs,tµd,t, where

the first term is a stationary process and the second term is a recurrent diurnal component. We

assume the stationary part is a continuous-time realization of independent point processes repre-

senting the “normal” and “burst” intensity, Ns,t = Nnormal
s,t +Nburst

s,t , where the latter is only active

under the alternative.

To gauge the robustness of our approach, we inspect several choices of Nnormal
s,t . We start with a

standard homogenous Poisson process that has constant intensity µs,t = 1 (measured on a second-

by-second basis).

The second extends the above to an inhomogenous Poisson process with stochastic intensity of

the Cox, Ingersoll, and Ross (1985) form:

µs,t = λ(1− e−κt) + µs,0e
−κt + γ

∫ t

0

e−κ(u−s)
√
µs,udWu. (4.1)

Here, the intensity is time-varying and mean-reverting. If the current value of the process, µs,t, is

above its steady state level, λ, the intensity has a tendency to go down, and vice versa. κ controls

the speed of mean reversion. γ is the volatility. The scaling with
√
µs,t inside the stochastic integral

prevents the process from being negative. This model has been applied to describe the default

intensity in a credit risk framework by Duffie (2005) and time-varying volatility in Heston (1993).

We select the parameter vector as (λ, κ, γ) = (1.00, 0.03, 0.20) following Li, Todorov, and Tauchen

(2013). To ensure the process is stationary with E(µs,t) = 1, we draw µs,0 at random from

Gamma(2λκγ−2, 2κγ−2).

To generate a more challenging data-generating process under the null, as our last choice we

assume the intensity of Nnormal
s,t is an exponential Hawkes process:8

µs,t = λ0 +

∫ t

0

θe−κ(u−s)dNnormal
s,u , (4.2)

where λ0, θ and κ are parameters. λ0 is called the background intensity, which is a lower bound on

µs,t, while f(τ) = θe−κτ is the excitation function. Our choice of kernel follows the original article

by Hawkes (1971).

A Hawkes process is self-exciting. That is, after the arrival of an event the intensity of Nnormal
s,t

inclines by θ. Hence, the probability of an increment in the next time interval t + dt increases.

Tempering by the excitation function pulls the intensity back toward its baseline level λ0 until

further events occur. κ controls the rate of decay. If θ/κ < 1 the self-excitation is held in check by

the mean reversion, and the Hawkes process is non-explosive and stationary with

E(µt) =
λ0

1− θ/κ
. (4.3)

The Hawkes process is also capable of generating event clusters. However, none of them are as large

8Although the intensity of the Hawkes process fulfills Assumption 2, it falls outside of the Cox framework in

(2.1). This part of the simulations is therefore also meant to illustrate the robustness of our testing procedure.
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as one expects during an intensity burst. In the former, the intensity remains bounded, almost

surely, whereas it diverges in the latter. Nevertheless, this may be confused by our test statistic as

an intensity burst. The purpose is to see if this distorts our test statistic. As in the diffusion model,

the mean reversion is κ = 0.030. We further select λ0 = 0.500 and θ = (1 − λ0)κ = 0.015, which

again ensures that E(µs,t) = 1.

In practice, trading intensity (and return volatility) follows a deterministic U- or inverted J-

shape at the intraday horizon. There is heightened activity in financial markets near the open-

ing and closing of trading.9 At a theoretical level, this can be explained in models such as

Hong and Wang (2000). To capture this effect, we borrow from the volatility literature (e.g.,

Andersen, Dobrev, and Schaumburg, 2012; Hasbrouck, 1999) and assume that

µd,t = C + Ae−a1t +Be−a2(1−t), (4.4)

where A = 0.75, B = 0.25, C = 0.89998744 and a1 = a2 = 10. The choice of C ensures that∫ 1

0
µd,udu = 1.

Prior to the calculation of the test statistic, we deflate the increment of the counting process using

a nonparametric estimator of the intraday intensity curve with a direct adaption of Taylor and Xu

(1997) from the volatility setting. We base the latter on 518 randomly selected Monte Carlo replica

out of the 1,000 in total. This corresponds to the sample size in our empirical part and is therefore

intended to ensure that the size of the measurement error corresponds to what we face in the

application.

The above configurations imply that there is on average one event per second in the normal

state, which is slightly higher compared to the daily transaction count observed in our empirical

high-frequency data.

The intensity of Nburst
s,t is defined as:

βt =
σ

|τib − t|α , for t ∈ [τib − 0.05, τib + 0.05], (4.5)

and βt = 0 otherwise. σ and α are constant. We position τib at random in the interval [0.05, 0.95]

and make the duration of the intensity burst cover a 10-minute window. To get events of varying

magnitude, we take α ∈ {0.25, 0.50, 0.75} and calibrate σ such that Nburst
s,t generates on average a

fraction c of the points produced by Nnormal
s,t , where c ∈ {0.000, 0.025, 0.050, 0.100}.10 This is called

no, small, medium, or large intensity burst.

We compute φib
t at t = τib, which is also the intensity burst time under the alternative. The

bandwidth is ℓn ∈ {60, 300, 600} seconds for the calculation of λ̂t (corresponding to a 1, 5, and

10-minute block) and Kn = 10ℓn (corresponding to a 5, 25, and 50-minute block) for âvar

(
∇λ̂t

)
.

9In global markets, where trading is spread out across the world (such as foreign exchange rates), there can be

multiple intraday curves aligned with the start and end of trading in the various geographical regions (such as Asia,

Europe, and the US).
10Solving for σ in c

∫ 1

0 µtdt =
∫ τib+∆

τib−∆ βtdt, where ∆ is the duration of the intensity burst and βt =
σ

|τib−t|α , we

get σ = c 1−α
2∆1−α

∫ 1

0
µtdt, such that c = 0 corresponds to no intensity burst.
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Figure 2: Example of a simulated intensity burst.

Panel A: Intensity process. Panel B: Intensity estimate

0.475
ib

0.525

Time

0

5

10

15

In
te

n
s
it
y
 p

ro
c
e

s
s

No burst

c = 0.025

c = 0.050

c = 0.100

0.30
ib

0.70

Time

0

1

2

3

4

5

6

7

In
te

n
s
it
y
 e

s
ti
m

a
te

No burst

c = 0.025

c = 0.050

c = 0.100

Note. This figure shows the true (in Panel A) and estimated (in Panel B) intensity of the simulated Hawkes process with no burst, and

a small, medium and large intensity burst.

We experiment both with the indicator kernel K(x) = 1[−1,0](x), as implicit in (3.17), and the

exponential kernel K(x) = exp(x), for x ≤ 0.

In Panel A of Figure 2, we illustrate the simulated intensity of the Hawkes process for Nnormal
s,t

(no burst, or c = 0.000) together with a small (c = 0.025), medium (c = 0.050) and large (c = 0.100)

intensity burst of Nburst
s,t with α = 0.50. In Panel B, we show the associated intensity estimate for

ℓn = 300. Across burst regimes, the maximal local intensity estimate is roughly 3, 4, and 7 times

larger than the average rate of the Hawkes process. In comparison, the intensity burst displayed in

Figure 1 is much larger. Hence, our simulated intensity bursts are conservative relative to many of

those observed in empirical data.

Tables 1 – 3 collects the results of the Monte Carlo analysis by reporting rejection rates for

the test statistic across 1,000 independent trials. The left-hand side is for the indicator kernel,

while the right-hand side is for the exponential kernel. Throughout, the test statistic is evaluated

against critical values from the standard normal distribution, i.e. the pth percentile zp = Φ−1(p)

for p ∈ {0.950, 0.975, 0.990}.
Looking at Panel A in Tables 1 – 3, we observe that in the absence of an intensity burst the

rejection rates are close to the nominal level across bandwidth choices. Stochastic intensity creates a

minuscule size distortion, in particular for the shortest bandwidth and exponential kernel. However,

the effect vanishes once we calculate the intensity estimator over a slightly longer window. What is

also interesting to note is that the self-excitation of the Hawkes intensity is not a separate source

of additional size distortion.

Turning to the alternative in Panels B – D, the rejection rates of the test are nearly perfect
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for a large intensity burst, irrespective of the dynamic of Nnormal
t . This is as expected, since the

test statistic is calculated at the center of the burst process. In contrast, detection of small bursts

remains challenging if they account for an insignificant fraction of the total transaction count—as

measured by a smaller value of c—or are slow to materialize—as measured by a smaller value of α.

Moreover, there is an intuitive trade-off embedded in the selection of the bandwidth parameter. We

observe that a longer bandwidth is preferable if the explosion rate of the intensity burst is small,

and vice versa.

Overall, the test statistic catches the vast majority of medium and large intensity bursts, whereas

smaller ones with slow rates of divergence may go unnoticed. This is not a cause of too much concern,

since we are primarily interested in the behavior of large and rapid surges in trading activity.
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Table 1: Rejection rate for the Poisson process.

Indicator kernel Exponential kernel

ℓn = 60 ℓn = 300 ℓn = 600 ℓn = 60 ℓn = 300 ℓn = 600

z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995

Panel A: size (c = 0.000, no burst)

6.0 1.2 0.6 4.8 1.1 0.7 5.1 0.9 0.4 5.5 1.5 0.9 5.1 0.8 0.8 5.8 1.1 0.4

Panel B: power (c = 0.025, small burst)

α = 0.25 59.2 32.0 24.3 100.0 100.0 100.0 100.0 100.0 100.0 83.2 58.6 48.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.50 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Panel C: power (c = 0.050, medium burst)

α = 0.25 83.1 54.9 41.9 100.0 100.0 100.0 100.0 100.0 100.0 97.9 83.9 75.3 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Panel D: power (c = 0.100, large burst)

α = 0.25 96.1 72.6 57.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.1 91.7 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note. We simulate a point process as the sum of a Poisson process (“normal”) and an intensity burst (“burst”), Nt = Nnormal
t +Nburst

t . α measures the explosion rate of the latter. We

test the hypothesis of no intensity burst. c is the proportion of the total transaction count induced by burst process, so c = 0.000 corresponds to H0. The test is calculated at t = τib,

which is the intensity burst time under Ha. ℓn is the bandwidth (in seconds) for the intensity estimator. The bandwidth for the observed local asymptotic variance is Kn = 10ℓn. The

table reports rejection rates of the intensity burst test statistic evaluated against the (1− ς)th percentile of the standard normal distribution, z(1−ς), for ς = (0.050, 0.010, 0.005).
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Table 2: Rejection rate for the Heston process.

Indicator kernel Exponential kernel

ℓn = 60 ℓn = 300 ℓn = 600 ℓn = 60 ℓn = 300 ℓn = 600

z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995

Panel A: size (c = 0.000, no burst)

7.2 3.4 2.4 5.7 2.6 1.1 4.9 1.5 1.0 8.2 3.8 3.0 7.1 2.5 1.7 6.0 1.9 1.2

Panel B: power (c = 0.025, small burst)

α = 0.25 18.1 8.5 6.4 61.7 39.0 30.2 37.9 15.0 11.1 25.4 13.6 10.6 73.3 47.5 40.3 60.6 34.1 27.2

α = 0.50 69.0 43.9 36.7 66.4 43.8 34.9 40.2 17.8 12.2 89.1 75.3 68.6 86.0 62.9 55.0 67.9 42.3 33.8

α = 0.75 99.3 98.1 97.0 78.7 55.7 48.4 51.0 26.3 18.9 100.0 100.0 100.0 97.4 86.9 83.7 83.3 64.2 55.3

Panel C: power (c = 0.050, medium burst)

α = 0.25 36.4 16.5 11.5 97.2 88.7 83.5 84.0 62.5 52.3 55.2 30.0 23.5 99.6 96.8 93.0 97.5 90.7 84.8

α = 0.50 97.5 90.8 87.2 98.3 92.7 88.2 85.8 67.2 58.7 99.8 99.4 99.1 99.9 99.6 98.5 98.9 94.9 92.1

α = 0.75 100.0 100.0 100.0 99.3 98.0 96.0 93.6 81.3 75.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.6 99.2

Panel D: power (c = 0.100, large burst)

α = 0.25 69.0 35.1 25.8 100.0 100.0 100.0 99.7 99.0 98.1 89.0 65.3 53.2 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.50 100.0 99.9 99.8 100.0 100.0 100.0 99.7 99.3 98.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 99.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note. We simulate a point process as the sum of a Heston process (“normal”) and an intensity burst (“burst”), Nt = Nnormal
t +Nburst

t . α measures the explosion rate of the latter. We

test the hypothesis of no intensity burst. c is the proportion of the total transaction count induced by burst process, so c = 0.000 corresponds to H0. The test is calculated at t = τib,

which is the intensity burst time under Ha. ℓn is the bandwidth (in seconds) for the intensity estimator. The bandwidth for the observed local asymptotic variance is Kn = 10ℓn. The

table reports rejection rates of the intensity burst test statistic evaluated against the (1− ς)th percentile of the standard normal distribution, z(1−ς), for ς = (0.050, 0.010, 0.005).
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Table 3: Rejection rate for the Hawkes process.

Indicator kernel Exponential kernel

ℓn = 60 ℓn = 300 ℓn = 600 ℓn = 60 ℓn = 300 ℓn = 600

z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995 z0.950 z0.990 z0.995

Panel A: size (c = 0.000, no burst)

4.6 1.2 1.0 5.2 1.6 1.0 5.6 1.1 0.8 5.0 1.5 0.9 5.5 1.6 0.7 5.5 1.2 0.8

Panel B: power (c = 0.025, small burst)

α = 0.25 49.1 25.2 18.2 100.0 100.0 99.7 99.3 94.5 93.2 74.5 47.7 38.0 100.0 100.0 100.0 100.0 99.7 99.6

α = 0.50 99.8 99.4 98.3 100.0 100.0 100.0 99.5 96.9 94.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9 99.7

α = 0.75 100.0 100.0 100.0 100.0 100.0 100.0 99.7 99.2 98.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Panel C: power (c = 0.050, medium burst)

α = 0.25 77.1 47.7 36.8 100.0 100.0 100.0 100.0 100.0 100.0 95.5 78.1 65.3 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Panel D: power (c = 0.100, large burst)

α = 0.25 94.7 67.3 54.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 95.9 89.5 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.50 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

α = 0.75 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note. We simulate a point process as the sum of a Hawkes process (“normal”) and an intensity burst (“burst”), Nt = Nnormal
t +Nburst

t . α measures the explosion rate of the latter. We

test the hypothesis of no intensity burst. c is the proportion of the total transaction count induced by burst process, so c = 0.000 corresponds to H0. The test is calculated at t = τib,

which is the intensity burst time under Ha. ℓn is the bandwidth (in seconds) for the intensity estimator. The bandwidth for the observed local asymptotic variance is Kn = 10ℓn. The

table reports rejection rates of the intensity burst test statistic evaluated against the (1− ς)th percentile of the standard normal distribution, z(1−ς), for ς = (0.050, 0.010, 0.005).
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Figure 3: Daily price and log-return in EUR/USD.

Panel A: Exchange rate. Panel B: Daily log-return.
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Note. In Panel A, we plot the EUR/USD spot exchange rate at noon CET for the sample period January 1, 2019 to December 31, 2020.

In Panel B, we show the associated daily log-return in percent.

5 Empirical application

We examine high-frequency data obtained via Electronic Broking Services (EBS) on the Chicago

Mercantile Exchange (CME). EBS is an electronic platform operating at the wholesale level and

is the main interdealer venue in the foreign exchange market. Our dataset consists of all spot

transactions and every tick-by-tick update to the first ten levels in the limit order book of the

EUR/USD. The sample period January 1, 2019 to December 31, 2020. We exclude days with

limited trading (e.g. weekends and public holidays) and retain T = 518 days. We also restrict

attention to the most active trading hours from 8:00am to 4:00pm Central European Time (CET),

covering the European and American session. In Panel A of Figure 3, we plot the daily midquote

of the spot exchange rate at noon, while Panel B shows the associated log-return.

In Panel A of Figure 4, we show the total number of transactions per day in the retained sample.

There are typically thousands of trades. To account for the expected increases in trading activity

that are associated with the normal periodicity of this market or regular releases of pre-scheduled

news announcements, we start by extracting a nonparametric estimate of the time-of-the-day mean

transaction count. We calculate the latter as the average number of transactions in each one-second

bucket, where the average is taken across days in the sample. The sequence of these estimates is

then normalized to sum to one. The seasonality in the intraday transaction count is reported in

Panel B of Figure 4.

We compute the spot intensity estimator in (3.3) each second from 8:00am to 4:00pm CET with a

bandwidth of ℓn = 300 and the exponential kernel. Each estimate is then divided by the appropriate
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Figure 4: Trading activity in EUR/USD.

Panel A: Interday. Panel B: Intraday.
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Note. In Panel A, we report the daily number of transactions (in 1,000s) on the EBS platform in the EUR/USD spot exchange rate. In

Panel B, we show a nonparametric estimate of the time-of-the-day mean transaction intensity between 8:00am and 4:00pm CET, which

is normalized to sum to one. λ0 is an estimate of the unconditional arrival rate over the whole sample.

seasonality factor to remove the inherent diurnal variation. Next, to avoid the computational load

of running the test statistic at such a refined grid, every day we select the 20 largest local maxima

of the diurnal-corrected spot intensity estimator, allowing for at most one maximum in a 5-minute

neighbourhood—equal to the bandwidth of the intensity estimator—to avoid double-counting. In

Panel A of Figure 5, we show how this rule operates on July 2, 2019. The spot intensity is shown

from 8:00am to 4:00pm. It is scaled by the average intensity on that day and log-transformed, as

further motivated below.

In the subsequent analysis, we limit our attention to the points indicated with a square, which

are the most probable intensity burst times.11 We implement the test here with Kn = 10ℓn for

the observed asymptotic local variance estimator, as in the simulation section. In doing so, only

the crossed square is identified as an intensity burst. Overall, we monitor a total of 10,360 test

statistics across the 518 days. The median value of the sequence is 1.24, which is more than a

standard deviation away from the unconditional mean of zero of the asymptotic standard normal

distribution. There are 913, 331, 119, and 36 observations with a value higher than 4, 5, 6, and

7, amounting to 8.81%, 3.20%, 1.15%, and 0.35%. Hence, intensity bursts—even more extreme

ones—happen on a frequent basis.

In the remainder of the empirical investigation, we confine the analysis to a subsample of intensity

bursts, where the test statistic is greater than 5. This value is large enough to be highly significant

11By Lemma 1, the unobserved intensity diverges at an intensity burst time. Thus, if an intensity burst occurs

near a given point, the local intensity estimator should be at its highest here.
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Figure 5: Candidate times for an intensity burst.

Panel A: July 2, 2019. Panel B: Whole sample.
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Note. In Panel A of this figure, we show the candidate times for an intensity burst on July 2, 2019 highlighted with a square. These

are defined as the 20 largest local maxima of the estimated spot intensity within a 5-minute window (identical to the bandwidth of the

estimator). The crossed square is identified as an intensity burst. In Panel B, we show how the intensity burst test statistics with a value

greater than 5 are scattered at the intraday level over the whole sample.

and small enough to retain a sufficient number of observations.12 The reduced sample of 331 events

are highlighted in Panel B of Figure 5. There is no systematic placement in the points, which are

more or less uniformly distributed at the intraday level.13

5.1 A burst or jump?

We first explore whether the above events correspond to genuine intensity bursts or are, in fact,

more likely to be associated with false alarms caused by discrete changes in the intensity process,

12We face a theoretical concern in looking at the test statistic at many local maxima of the intensity estimator, since

this can cause over-rejection under the null hypothesis of no intensity burst. We therefore do not evaluate it against

a customary quantile from the standard normal distribution, but we select a much higher value following the multiple

comparison literature to control the family-wise error rate at the ς = 0.01 level of significance. On the one hand, we

conduct 10,380 tests in total, so a Bonferroni correction recommends a critical value of Φ−1(1−0.01/10,380) = 4.7610.

On the other hand, according to extreme value theory, the normalized maximum test statistic converges in law to

a Gumbel distribution, i.e.
max1≤i≤m φib

ti
−am

bm

D−→ ξ as m → ∞, where Fξ(x) = P(ξ ≤ x) = exp(− exp(−x)),

am =
√
2 log(m) − log(π)+log(log(m))

2
√

2 log(m)
, and bm = (2 log(m))−1/2. Hence, if φib

ti is computed at a one-second grid,

as consistent with our implementation, and the daily maximum test statistic is extracted from this sequence, the

critical value for the nonnormalized maximum test statistic is 5.1846. We base our inference on the average of these

approaches by adopting a critical value of 5.
13We calculated the fraction of the total daily transaction count that occurs over a 10-minute interval around each

such event. The sample average is 3.60% (median of 2.91%) with a 1st and 3rd quartile of 1.93% and 8.95%. This

crudely aligns with the our choices of c made in the simulation section.
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Figure 6: Histogram of ratio statistic and explosion rate.

Panel A: Ratio statistic. Panel B: Explosion rate.
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Note. In Panel A, we plot a histogram of the ratio statistic from Lemma 2, λ̃θ(kδn)/λ̃θ(δn), with k = 2. It is centered around one in

the absence of a burst, and strictly smaller than one otherwise. In Panel B, we report the distribution of the estimated explosion rate,

α̂, based on the negative slope coefficient of an OLS regression through the origin of log
(
λ̃θ(kδn)

)
on log(k) for k = 1, 2, 3, 5, and 10.

as discussed in Section 3.3.

We calculate the two-sided intensity estimator from (3.29) with k = 2 and construct the ratio

statistic from Lemma 2, where the baseline in the denominator corresponds to an implicit k = 1.

It should be centered around one if the event coincided with a jump in intensity, whereas it should

be strictly smaller than one—or k−α—for an intensity burst. In Panel A of Figure 6, we plot a

histogram of the quotient. As evident, the empirical density function is concentrated around 0.75

with little probability mass near one. In total, only three of the ratio statistics are greater than or

equal to one, where it is 1.05 on average. This strongly indicates that our test statistic is not driven

by a jump component.

Conditional on an intensity burst, we can convert the ratio statistic to an estimate of the

explosion rate, α, as described in (3.35) and the subsequent comment. We regress log
(
λ̃θ(kδn)

)

through the origin against log(k) for k = 1, 2, 3, 5, and 10. The distribution of the negative slope

estimates are reported in Panel B of Figure 6. As consistent with the previous analysis, they are

strictly above the no burst lower bound of zero. The overall impression is that an intensity burst is

often modest with an explosion rate in the middle of the permissible range.

5.2 State of the market near an intensity burst

We next take a closer look at how various state variables evolve in the vicinity of an intensity burst.

In Panel A of Figure 7, we show the evolution of trading activity. We compute a proxy for the burst
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Figure 7: Trading activity and return volatility near intensity burst.

Panel A: Dynamic of spot intensity. Panel B: Association with spot volatility.
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Note. In Panel A, we plot the evolution of the relative intensity estimator each second in a 5-minute window prior an intensity burst

time. The sample has been split in four based on the magnitude of this measure and we then report the median intensity in the first

(small), second–third (medium), and fourth (large) quartile. In Panel B, we plot the change in log-spot intensity against the change in

log-spot volatility of the EUR/USD exchange rate process before and after the burst.

size as the relative change in the intensity estimator at each second in a 5-minute interval prior to

the intensity burst time. We split the sample in four based on the magnitude of this measure and

report the median intensity in the first (small), second–third (medium), and fourth (large) quartile.

As expected, there is a steady rise in trading activity prior to a detected event. The curvature

indicates a good fit with an intensity burst of the form (2.4), while the level is consistent with the

simulation of this model illuminated in Figure 2.

In Panel B of the figure, we plot the change in log-spot intensity against the change in log-spot

volatility of the EUR/USD exchange rate process. The latter is calculated with the price jump- and

microstructure noise-robust estimator from Christensen, Oomen, and Renò (2022). To construct

the increment, we measure the spot processes at the 5-minute mark before and after the intensity

burst time, together with an estimate at the peak. As readily seen, there is a strong positive

association between the change in intensity and change in volatility. This is consistent with the

mixture of distribution hypothesis. The correlation is stronger before an intensity burst, around

0.55, which is on par with Stoltenberg, Mykland, and Zhang (2022). However, there is a significant

drop in the level of the correlation, around 0.20, in the aftermath of an intensity burst.

How does liquidity change around an intensity burst? To understand this, we construct the

realized illiquidity of Lacave, Ranaldo, and de Magistris (2023), which is a high-frequency version

of the Amihud (2002) measure. In Panel A of Figure 8, we chart of the average evolution of this

measure on a second-by-second basis. At each time point, we extract one-minute log-returns over

the preceding 5-minute interval and calculate the statistic as the realized power variation (i.e. the
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Figure 8: Realized illiquidity and transaction volume near intensity burst.

Panel A: Realized illiquidity. Panel B: Transaction volume.
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Note. In Panel A, we show the average realized illiquidity of Lacave, Ranaldo, and de Magistris (2023) over a 10-minute interval centered

at the candidate times associated with the local maximum intensity estimates from Panel A in Figure 5. The sample has been divided

based on whether the intensity burst statistic at these points is greater than 5 [burst] or not [no burst]. In Panel B, the average transaction

volume (in million e) is reported. The latter is proportional to the denominator of the realized illiquidity measure.

sum of absolute log-returns) divided by the transaction volume over that window. We normalize

it to one on average for ease of interpretation. We restrict attention to the candidate times from

Panel A of Figure 5 and split the sample dependent on whether the intensity burst statistic is

greater than 5 (burst) or not (no burst). While there is no material change in liquidity for an

insignificant peak in the intensity estimator, during an intensity burst we observe a substantial rise

in the illiquidity index both before and after the intensity burst time. In Panel B of the figure, we

plot the cumulative transaction volume in million e (i.e. the denominator of realized illiquidity).

There is no discernible shift in transaction volume, which hovers about in a very narrow interval

confined to a few percent around its average level. This suggests that the upsurge in the realized

illiquidity is mainly induced by the increase in volatility (i.e. the numerator of the statistic).

5.3 What is the relationship with a drift burst?

In Figure 9, we follow the recipe of May 14, 2019 displayed in Figure 1 and report the price and

transaction data in the EUR/USD from 10:00am to 10:30am on July 10, 2019. As in the previous

example, this day contains an intensity burst, which is started by sell-side activity around 10:15am.

However, there is only a minuscule downtick in the exchange rate, which does not get caught as a

drift burst. So here, the intensity burst is an isolated event.

Why is the market sometimes able to withstand the abnormal trading activity observed during

an intensity burst with no discernible movement in the price, while at other times it goes through
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Figure 9: Intensity burst in the EUR/USD without a drift burst.

Panel A: Exchange rate. Panel B: Transaction count.

10:00 10:05 10:10 10:15 10:20 10:25 10:30

Time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

D
ri
ft

 b
u

rs
t 

te
s
t 

s
ta

ti
s
ti
c

1.1219

1.122

1.1221

1.1222

1.1223

1.1224

1.1225

1.1226

1.1227

1.1228

E
x
c
h

a
n

g
e

 r
a

te

Test statistic

EUR/USD

10:00 10:05 10:10 10:15 10:20 10:25 10:30

Time

-2

-1

0

1

2

3

4

5

6

7

In
te

n
s
it
y
 b

u
rs

t 
te

s
t 

s
ta

ti
s
ti
c

-3

-2

-1

0

1

2

3

4

1
5

-s
e

c
o

n
d

 t
ra

n
s
a

c
ti
o

n
 c

o
u

n
t

Test statistic

Transaction count

Order imbalance

Note. This figure shows the EUR/USD spot exchange rate on July 10, 2019, where we detect an intensity burst but no a drift

burst. In the left panel, we plot the exchange rate from 10:00am to 10:30am CET along with the drift burst test statistic proposed

in Christensen, Oomen, and Renò (2022). In the right panel, we plot a nonparametric estimator of the time-varying trading intensity

(as proxied by the number of transactions in a 15-second window) along with the intensity burst test statistic and a measure of order

imbalance.

a severe correction? It is possible that a piece of news (or public signal) does not alter the av-

erage opinion of investors, even if their interpretation of the information differ. This is related to

the differences-of-opinion literature (e.g., Bollerslev, Li, and Xue, 2018; Kandel and Pearson, 1995).

Roughly speaking, in these models price change is related to the average opinion (or 1st moment),

while trading volume is related to the dispersion of opinion (or 2nd moment). So there can be

a lot of trading without a big impact on price, because mostly disagreeing investors trade with

each other. However, absolute price change and trading volume should still be positively correlated

(Harris and Raviv, 1993).14

To explore this question in more detail, we extract the drift burst test statistic at a one-second

frequency in a 10-minute window centered at the intensity burst time.15 The attractiveness of the

drift burst test statistic is that it is detects abnormal price changes on a volatility-adjusted basis,

since the test statistic is calculated as the average log-price increment divided by spot volatility

over an interval.

We employ a separate linear regression with the minimum (most negative) and maximum (most

positive) value of the drift burst test statistic as dependent variable. As covariates, we include the

14A small trade can cause a relatively big change in price if the market impact is large, such as in the presence of

asymmetric information (e.g. Glosten and Milgrom, 1985; Kyle, 1985).
15We do not pretend that there is a cause and effect from an intensity burst to a drift burst. In practice, these

events are the result of a highly complicated and interrelated process. The aim here is merely to determine correlation

with suspected drivers of the drift burst test statistic during an intensity burst.
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Figure 10: Properties of relative trading intensity.

Panel A: Histogram. Panel B: Scatter with drift burst statistic.
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Note. In Panel A, we plot a histogram of the logarithm of relative trading intensity at the peak of an intensity burst. In Panel B, we

show how the log-relative intensity is related to the maximum absolute value of the drift burst statistic in a 10-minute interval around

the intensity burst time. A least squares fit is superimposed as a reference. The slope coefficient is significant with a P -value less than a

percent. The sample is conditional on an intensity burst statistic being greater than 5. It contains a total of 331 events.

level of trading activity that should, everything else equal, inflate the magnitude of the drift burst

test statistic. The rationale is, as stated above, that it requires trades (or quote updates) to move

the price. We therefore add the intensity estimated at the peak of the intensity burst as the first

predictor. However, because there is a great variety in the absolute level of trading over time, we

scale the diurnal-corrected spot estimator by the average level of intensity for the entire day to

construct a relative trading activity, which is more homogenous across events. As shown in Panel

A of Figure 10, a log-transformation renders this variable close to normally distributed, apart from

a slightly elevated right-tail. In Panel B of the figure, we plot the logarithmic measure against

the maximum absolute value of the drift burst statistic over the calculation window, which indeed

shows a positive relationship.

Our transaction data also contains an indicator variable of whether a deal was buyer- or seller-

initiated. One-sided order flow is a good proxy for price pressure—that can be caused by either

a change in the average opinion of investors or asymmetric information—so we include the order

imbalance in the 5-minute interval before the intensity burst time as our second predictor. We

calculate this as the number of buyer trades minus the number of seller trades. A positive value is

therefore indicative of buy-side activity, and vice versa. We scale the difference by the spot intensity

to again get a relative measure.

As our third predictor, we construct an intuitive concept of market depth derived from the

information in the limit order book. We compute the elasticity of the price with respect to quantity

following the procedure described in Næs and Skjeltorp (2006). This is referred to as the slope of
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the order book.16 It accounts for the resilience of the market by indicating whether it can absorb

relatively large amounts of trading volume with minimal price impact. In particular, a high price

elasticity suggests that the market is in a very fragile state, such that a sudden burst in trading

activity can induce pronounced price volatility. The calculation is as follows:

Sob =
1

L

(
|P1/M − 1|

v1
+

L∑

l=1

|Pl+1/Pl − 1|
vl+1/vl − 1

)
, (5.1)

where L is the number of levels in the limit order book (10 here), M is the midquote of the best bid

and offer, Pl and vl are the price and natural logarithm of accumulated volume at tick level l, for

l = 1, . . . , L. We calculate the slope separatively for the bid and ask side at a one-second frequency

and include the moving average of the sequence over the 5-minute interval preceding the intensity

burst in the regression.17

We estimate the model:

Z∓
db = a+ b1 log(λ

r) + b2O + b3S∓
ob + b4

√
RV + b5P0 + ǫ, (5.2)

where Z−
db (Z+

db) is the minimum (maximum) drift burst test statistic, λr is the relative intensity

estimate, O is the relative order imbalance, and S−
ob (S+

ob) is the slope of the order book on the bid

(ask) side.

There are a few controls in (5.2).
√
RV is the square-root of 5-minute realized variance computed

between three- to one-hour before the intensity burst, while P0 is the percent of daily 5-minute log-

returns that are zero. The latter is a proxy of staleness in the aggregate trading environment, see

Bandi, Kolokolov, Pirino, and Renò (2020). We first run the regression without these two additional

variables and then add them as a robustness check.18

Table 4 presents the outcome of the regression estimated for the minimum (maximum) drift

burst statistic in the left-hand (right-hand) side using the bid (ask) slope as price elasticity. We

only comment on the results for the minimum drift burst test statistic, while summarizing the main

differences to the other regression below.

The results are compelling. In particular, the sign of the slope coefficient estimates are in line

with our economic intuition. The logarithm of relative intensity makes the minimum drift burst test

statistic more negative, and the effect is significant. This is perhaps a bit surprising, since we are

conditioning on an intensity burst. What also ought to matter is the ability of the market to handle

the surge in trading activity, as proxied by order imbalance and price elasticity. The coefficient on

order flow is positive and highly significant. This implies that sell-side activity (a negative value of

16Næs and Skjeltorp (2006) look at the elasticity of quantity with respect to price. We employ the reciprocal of

their formula for the slope of the order book by reversing the role of price and volume.
17The one-sided slope calculation is a bit sensitive to the flip-flopping of large orders up and down in tick level,

when the market bounces around at the inside spread. The slight averaging alleviates this problem.
18We also estimated a regression, where the realized illiquidity was included as a covariate. However, it was highly

insignificant, so we removed it again. This is rather intuitive, since the measure was found to be driven mostly by

volatility and the drift burst test statistic controls for this effect.
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Table 4: Regression with drift burst test statistic.

Constant −1.145
(−4.591)

−1.318
(−3.936)

0.525
(1.618)

0.722
(1.885)

log(λr) −0.430
(−2.512)

−0.456
(−2.657)

0.318
(1.942)

0.330
(2.013)

O 0.594
(3.121)

0.610
(3.217)

0.476
(2.587)

0.423
(2.289)

Sob −0.713
(−2.495)

−1.062
(−3.273)

2.281
(4.036)

2.601
(4.459)√

RV 0.689
(0.431)

−1.069
(−0.701)

P0 6.467
(2.214)

−5.260
(−2.086)

R2 0.082 0.098 0.109 0.123

Note. We estimate the linear regression: Z∓

db = a + b1 log(λr) + b2O + b3S∓

ob + b4
√
RV + b5P0 + ε, where Z−

db (Z+
db) is the minimum

(maximum) drift burst test statistic in a 10-minute window centered at the intensity burst time, λr is the relative intensity, O is the

relative order imbalance, S−

ob (S+
ob) is the bid slope (ask slope) of the order book,

√
RV is the 5-minute realized variance between three-

to one-hour before the intensity burst, while P0 is the percent of daily 5-minute log-returns that are zero. The table reports parameter

estimates with the t-statistic shown in parenthesis underneath. The sample size is 331. R2 is the coefficient of determination.

this variable) moves the minimum drift burst statistic farther away from zero. In addition, a large

price elasticity, as measured by the bid slope of the order book, reinforces this effect and pushes

the drift burst statistic even further into negative territory.19

The maximum regression shows identical results, apart from a few expected sign changes in

appropriate places, i.e. the intercept, and the coefficient in front of log-relative intensity, the order

book slope, square-root realized variance, and the fraction of zeros in the log-return series. The

main highlight is that the t-statistic on the log-relative intensity and order imbalance are a bit

more compressed, although both are still at the margin of being significant. This can possibly

be reconciled by a costly market presence, as developed in Huang and Wang (2009). In their

framework, if market participation has a cost, the need of financial intermediaries to rebalance their

equilibrium portfolios in response to news creates an endogenous order imbalance, which always

leads to excessive selling. This effect exacerbates the demand for cash during a sell-off, while rallies

remove a smaller portion of volume resting on the ask side. Hence, trading activity and order

imbalances put less strain on the system during an upsurge. On the other hand, since EUR/USD

is an exchange rate, it is not evident how to define a sell-off.

The additional controls do not alter the coefficients estimates of the above predictors much.

The realized volatility reduces the magnitude of the drift burst test statistic, even if the effect is

insignificant. Moreover, zero returns further attenuates it. The explanation is probably that in a

slow market with limited trading, a large burst in relative trading activity may still be economically

19We also incorporated an interaction effect between order imbalance and price elasticity. However, it was in-

significant both in the restricted and full version of the model. We therefore omitted it again.
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small and incapable of shifting the price much.

In summary, our analysis shows it is asymmetric trading combined with a vulnerable order book

that causes the absolute drift burst test statistic to inflate during an intensity burst, thus increasing

the likelihood of observing a drift burst.

6 Conclusion

In this paper, we propose a model with a locally unbounded intensity for point processes. We allow

the spot intensity to explode such that the integrated intensity is finite, ensuring the point process

is non-explosive. This is the definition of an intensity burst. We show the model is capable of

generating rather extreme clusters of observations over small time intervals that are far more con-

centrated compared to what a standard doubly stochastic Poisson or self-exciting Hawkes processes

with locally bounded intensity can produce.

We develop an inference strategy for detecting an intensity burst. The theory relies on a heavy

traffic assumption, which permits to consistently estimate and draw inference about the properties of

a point process over a finite time interval. It resembles the standard in-fill condition for asymptotic

theory of realized variance. In absence of an intensity burst (null hypothesis), the asymptotic

distribution of our test statistic is standard normal, but the rate of convergence depends on a

nuisance parameter, the speed with which the process accumulates points under the heavy traffic

condition. Hence, the feasible implementation of our test statistic is based on an automatic inference

procedure, where we adapt the observed asymptotic variance of Mykland and Zhang (2017) to spot

estimation. Conditional on an intensity burst (alternative hypothesis) our test statistic diverges, so

the power of the testing procedure converges to one.

A simulation study demonstrates that the test statistic has good finite sample properties for

a variety of point processes. It controls size and has high power under the alternative. With our

numerical experiments, we also show that with self-exciting exponential Hawkes (1971) process, a

more general model than the theoretical framework allows, the test statistic does not produce false

positives. Furthermore, we demonstrate robustness to diurnal variation in the intensity process

based on a deflated intensity estimator.

At last, we implement the test statistic on an extensive set of EUR/USD foreign exchange

rate high-frequency data extracted from the electronic broking services (EBS) platform, where it

captures abnormal surges in trading activity. We detect a nontrivial amount of intensity bursts

in these data and describe their basic properties. We examine how intensity is related to other

fundamental indicators, such as volatility and liquidity. We also show that the more excessive the

trading activity observed during an intensity burst is, the higher is the chance to observe a drift

burst. This effect is stronger with an unbalanced order flow and when the price elasticity of the

limit order book is high. We leave a further investigation of these findings to future research.
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A Proofs

We here derive the theoretical results listed in the main text. We note that under Assumption 1 – 2,

we can appeal to the localization procedure described in Jacod and Protter (2012, Section 4.4.1) to

bound the processes at, νt, and δt(x) as (t, x) vary within [0, T ]×R. Moreover, we can assume that

|δt(x)| ≤ Γ̄(x), where Γ̄ is a bounding function such that
∫
R
Γ̄(x)2F (dx) <∞ and, for all κ ∈ (0, 1),∫

{x:Γ̄(x)≤κ} Γ̄(x)F (dx) <∞.

We make extensive use of a universal positive constant, C, whose value changes from equation-

to-equation and line-to-line without notification. As a shorthand notation, we write the intensity

burst time as τib ≡ τ .

To establish stable convergence of the local intensity estimator in (3.3), we need an auxiliary

result, which is a reproduction of Alvarez, Panloup, Pontier, and Savy (2012, Lemma 8).

Lemma 3. Let (Ω,F ,P) denote a probability space. For each n ≥ 1, suppose ζn2 , ζ
n
3 , . . . , ζ

n
kn

are

martingale increments with respect to the sub-σ-fields of F : Fn,1 ⊆ Fn,2 ⊆ · · · ⊆ Fn,kn. Set

Sn =
∑kn

i=2 ζ
n
i and G = ∩n≥1Fn,1. Assume that n 7→ Fn,kn is a non-increasing sequence of σ-fields

such that ∩n≥1Fn,kn = G. Then, if the following conditions hold:

(i) There exists a G-measurable random variable η such that, as n→ ∞,

kn∑

i=2

E

[
(ζni )

2 | Fn,i−1

]
p−→ η,

(ii) For every ǫ > 0,
kn∑

i=2

E

[
(ζni )

21{(ζni )2≥ǫ} | Fn,i−1

]
p−→ 0,

then Sn
Ds−→ S, defined on an extension of (Ω,F ,P), such that conditionally on F , the distri-

bution of S is a centered Gaussian with variance η.

A.1 Proof of Lemma 1

Theorem 1 implies that, under H0,

λ̂t − λt− = op(1), (A.1)

which shows the first statement.

Next, under H1, we notice that the observed process can be decomposed as

Nn
t = Nn,µ

t +Nn,β
t ,

where Nn,µ
t and Nn,β

t are inhomogeneous Poisson processes with rates nµt and nβt.

Therefore, at time τ ,

λ̂τ =
Nn,µ(τ − δn, τ)

nδn
+
Nn,β(τ − δn, τ)

nδn
= µ̂τ + β̂τ .
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It follows from (A.1) that

µ̂τ = µτ− + op(1),

so it is enough to look at β̂τ . To prove that β̂τ = Op(δ
−α
n ), by the definition of stochastic orders in

probability, it suffices to show that for every ǫ > 0 there exists a 0 < ∆ǫ < ∞ and Nǫ ∈ N such

that for all n ≥ Nǫ : P
(
δαn β̂τ > ∆ǫ

)
< ǫ.

By Markov’s inequality:

P

(
δαn β̂τ > ∆ǫ

)
≤ δαnE(β̂τ )

∆ǫ
.

Next, conditioning on σ and employing the law of iterated expectations:

E
(
β̂τ
)
= E

[
Nn,β(τ − δn, τ)

nδn

]
= E

[
E

(
Nn,β(τ − δn, τ)

nδn
| Fσ

)]
= E

[
1

δn

∫ τ

τ−δn
σu|τ − u|−αdu

]

≤ C

δn

∫ τ

τ−δn
|τ − u|−αdu =

C

1− α
δ−αn ,

where Fσ is the σ-algebra generated by σ and C > 0 is a constant that bounds the process from

above in light of the localization procedure. Thus,

P

(
δαn β̂τ > ∆ǫ

)
≤ C

∆ǫ(1− α)
.

Thus, for every ǫ > 0, we can choose ∆ε >
C

ǫ(1− α)
to make P

(
δαn β̂τ > ∆ǫ

)
< ǫ. �

A.2 Proof of Theorem 1

We show the univariate statement in (i), (ii), and (iii). The second half follows from the calculations

in the proof of Theorem 3.

To this end, we define the sequence ρn as follows:

ρn =




δnn, if δn

√
n→ 0,

δ−1
n , if δn

√
n→ θ or δn

√
n→ ∞,

and study the difference
√
ρn(λ̂t − λt−).

We assume δn can be expressed as δn = ℓn∆n, where ∆n = n−1 and ℓn is a deterministic sequence

of positive integers. Then, λ̂t can be expressed as

λ̂t =
1

ℓn

∑

i∈Dnt−

∆iN
n,

where ∆iN
n = Nn(0, i∆n)−Nn(0, (i− 1)∆n) are the increments of the process Nn over the short

time intervals of length ∆n, and

Dn
t− = {tn− ℓn + 1, tn− ℓn + 2, . . . , tn}.

We approximate ∆iN
n by the increments of an inhomogeneous Poisson process Ñn with piecewise
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constant intensity, ∆iÑ
n. This is done as follows. By the random time-change theorem for point

processes (see, e.g., Daley and Vere-Jones, 2003, Theorem 7.4.I), there exists a homogeneous unit

intensity Poisson process N (⋆),(i), such that

∆iN
n = N (⋆),(i)

(
n

∫ i∆n

(i−1)∆n

µsds

)
.

We set ∆iÑ
n = N (⋆),(i)

(
n
∫ i∆n
(i−1)∆n

µ(i−1)∆nds
)
. Hence, Ñn(k∆n) =

∑
i≤k∆iÑ

n is an inhomogeneous

Poisson process with piecewise constant intensity, such that

E

[
∆iÑ

n | F(i−1)∆n

]
= n

∫ i∆n

(i−1)∆n

µ(i−1)∆nds = µ(i−1)∆n .

Moreover, the absolute value of the approximation error |∆iN
n − ∆iÑ

n| can be expressed as an

increment of the process N (⋆),(i):

|∆iN
n −∆iÑ

n| = N (⋆),(i)(t, t),

where

t = n

(∫ i∆n

(i−1)∆n

µsds ∧
∫ i∆n

(i−1)∆n

µ(i−1)∆nds

)
and t = n

(∫ i∆n

(i−1)∆n

µsds ∨
∫ i∆n

(i−1)∆n

µ(i−1)∆nds

)
.

Then, we can write

λ̂t − µt− =
1

ℓn

∑

i∈Dnt−

(
∆iN

n −∆iÑ
n
)

︸ ︷︷ ︸
(I)

+
1

ℓn

∑

i∈Dnt−

(
∆iÑ

n − µ(i−1)∆n

)

︸ ︷︷ ︸
(II)

+
1

ℓn

∑

i∈Dnt−

(
µ(i−1)∆n − µt−

)

︸ ︷︷ ︸
(III)

.

(I) arises by approximating the observed process with a point process that has a locally constant

intensity, (II) is the deviation of the approximating process from its conditional expectation, and

(III) denotes the error due to the variation in the rate process.

(I) can be further decomposed as follows:

(I) =
1

ℓn

∑

i∈Dnt−

(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])

+
1

ℓn

∑

i∈Dnt−

E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
.

Moreover, due to Assumption 2, (III) can be split into a drift and volatility part:

(III) =
1

ℓn

∑

i∈Dnt−

(tn− ℓn − i)(Ai∆n − A(i−1)∆n) +
1

ℓn

∑

i∈Dnt−

(tn− ℓn − i)(Mi∆n −M(i−1)∆n),

where At =
∫ t
0
a∗sds +

∫ t
0

∫
R
δs(x) (p(ds, dx)− q(ds, dx)), where ass = as +

∫
|δs(x)|>1

δs(x)F (dx), and

Mt =
∫ t
0
νsdWs.
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Consequently,

√
ρn(λ̂t − µt−) = Λn1 (t) + Λn2 (t) + Λn3 (t) + Λn4 (t) + Λn5 (t),

where

Λn1 (t) =

√
ρn

ℓn

∑

i∈Dnt−

(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])
,

Λn2 (t) =

√
ρn

ℓn

∑

i∈Dnt−

E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
,

Λn3 (t) =

√
ρn

ℓn

∑

i∈Dnt−

(
∆iÑ

n − µ(i−1)∆n

)
,

Λn4 (t) =

√
ρn

ℓn

∑

i∈Dnt−

(tn− ℓn − i)(Ai∆n − A(i−1)∆n).

Λn5 (t) =

√
ρn

ℓn

∑

i∈Dnt−

(tn− ℓn − i)(Mi∆n −M(i−1)∆n),

Now, we show that the sum Λn3 (t) + Λn5(t) converges stably in law, while the other terms (Λn1 (t),

Λn2 (t), and Λn4 (t)) are asymptotically negligible.

Set

Λn3 (t) + Λn5 (t) =
∑

i∈Dnt−

ζni (3) + ζni (5),

where

ζni (3) =

√
ρn

ℓn

(
∆iÑ

n − µ(i−1)∆n

)
and ζni (5) =

√
ρn

ℓn
(tn− ℓn − i)(Mi∆n −M(i−1)∆n).

By construction, ζni (3) and ζ
n
i (5) are uncorrelated F(i−1)∆n-martingale differences:

E
[
ζni (3) | F(i−1)∆n

]
= E

[
ζni (5) | F(i−1)∆n

]
= E

[
ζni (3)ζ

n
i (5) | F(i−1)∆n

]
= 0.

As a result,
∑

i∈Dnt−

E

[(
ζni (3) + ζni (5)

)2 | F(i−1)∆n

]
=
∑

i∈Dnt−

E

[(
ζni (3)

)2 | F(i−1)∆n

]
+
∑

i∈Dnt−

E

[(
ζni (5)

)2 | F(i−1)∆n

]
.

Since ∆iÑ
n is Poisson distributed, we deduce that:

E

[(
ζni (3)

)2 | F(i−1)∆n

]
=
ρn
ℓ2n
µ(i−1)∆n ,

and, as δn → 0,

1

ℓn

∑

i∈Dnt−

µ(i−1)∆n
a.s−→ µt−.

37



From the definition of ρn:

ρn
ℓn

→





1, if δn
√
n→ 0,

1

θ2
, if δn

√
n→ θ,

0, if δn
√
n→ ∞.

Therefore,

∑

i∈Dnt−

E

[(
ζni (3)

)2 | F(i−1)∆n

]
p−→





µt−, if δn
√
n→ 0,

1

θ2
µt−, if δn

√
n→ θ,

0, if δn
√
n→ ∞.

Next,

E

[(
ζni (5)

)2 | F(i−1)∆n

]
=
ρn
ℓ2n

(tn− ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2s | F(i−1)∆n

]
ds.

Assumption 2 implies that, as n→ ∞,

E

[
sup

s∈[t−δn,t]
|ν2s − ν2t |

]
→ 0,

which further means that
∑

i∈Dnt−

(
E

[(
ζni (5)

)2 | F(i−1)∆n

]
− ρn
ℓ2n

(tn− ℓn − i)2∆nν
2
t

)
p−→ 0.

On the other hand, multiplying and dividing by δn,

∑

i∈Dnt−

ρn
ℓ2n

(tn− ℓn − i)2∆nν
2
t = ρnδnν

2
t

1

ℓ3n

∑

i∈Dnt−

(tn− ℓn − i)2.

The last part is convergent with limit

1

ℓ3n

∑

i∈Dnt−

(tn− ℓn − i)2 =
1

ℓ3n

ℓn∑

j=1

j2 =
1

ℓ3n

[
ℓn(ℓn + 1)(2ℓn + 1)

6

]
→ 1

3
.

Moreover,

ρnδn =




δ2nn→ 0, if δn

√
n→ 0,

1, if δn
√
n→ θ or δn

√
n→ ∞.

Putting it together,

∑

i∈Dnt−

E

[(
ζni (5)

)2 | F(i−1)∆n

]
p−→




0, if δn

√
n→ 0,

1

3
ν2t if δn

√
n→ θ or δn

√
n→ ∞,
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which implies that

∑

i∈Dnt−

E

[(
ζni (3)

)2
+
(
ζni (5)

)2 | F(i−1)∆n

]
p−→





µt−, if δn
√
n→ 0,

1

θ2
µt− +

1

3
ν2t if δn

√
n→ θ,

1

3
ν2t if δn

√
n→ ∞.

To establish the asymptotic distribution, we prove a Lindeberg condition of the form:
∑

i∈Dnt−

E

[(
ζni (3) + ζni (5)

)2
1{

(ζin(3)+ζni (5))
2≥ǫ
} | F(i−1)∆n

]
a.s.−→ 0, ∀ǫ > 0.

By the Cauchy-Schwarz and Chebyshev’s inequalities,

E

[(
ζni (3) + ζni (5)

)2
1{

(ζni (3)+ζ
n
i (5))

2≥ǫ
} | F(i−1)∆n

]

≤
√

E

[(
ζni (3) + ζni (5)

)4 | F(i−1)∆n

]
E

[
1{

(ζni (3)+ζ
n
i (5))

2≥ǫ
} | F(i−1)∆n

]

=

√
E

[(
ζni (3) + ζni (5)

)4 | F(i−1)∆n

]
P

((
ζni (3) + ζni (5)

)2 ≥ ǫ | F(i−1)∆n

)

≤ 1

ǫ
E

[(
ζni (3) + ζni (5)

)4 | F(i−1)∆n

]

≤ 8

ǫ

(
E

[(
ζni (3)

)4 | F(i−1)∆n

]
+ E

[(
ζni (5)

)4 | F(i−1)∆n

])
,

where the last line follows from the inequality |x+ y|p ≤ 2p−1(|x|p + |y|p), for all real x and y and

any p ≥ 1.

Since ∆iÑ
n follows a Poisson distribution with bounded intensity:

∑

i∈Dnt−

E

[(
ζni (3)

)4 | F(i−1)∆n

]
=
∑

i∈Dnt−

ρ2n
ℓ4n

E

[
∆iÑ

n − µ4
(i−1)∆n | F(i−1)∆n

]

=
∑

i∈Dnt−

ρ2n
ℓ4n
µ(i−1)∆n(1 + 3µ(i−1)∆n)

≤ C
ρ2n
ℓ3n

→ 0,

for both choices of ρn.

On the other hand, using the boundedness of ν,

∑

i∈Dnt−

E

[(
ζni (4)

)4 | F(i−1)∆n

]
=
∑

i∈Dnt−

ρ2n
ℓ4n

(tn− ℓn − i)4 E

[(
Mi∆n −M(i−1)∆n

)4 | F(i−1)∆n

]

= 3
ρ2n
ℓ4n

∑

i∈Dnt−

(tn− ℓn − i)4 E

[(∫ i∆n

(i−1)∆n

ν2sds

)2

| F(i−1)∆n

]
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≤ C
ρ2n∆

2
n

ℓ4n

∑

i∈Dnt−

(tn− ℓn − i)4 = C
ρ2n∆

2
n

ℓ4n

6ℓ5n + 15ℓ4n + 10ℓ3n − ℓn
30

→ 0,

again for both choices of ρn. Hence, Lindeberg’s condition holds.

By Lemma 3, we therefore conclude that

Λn3(t) + Λn5(t)
Ds−→





√
µt−Z, if δn

√
n→ 0,

√
1

θ2
µt− +

1

3
ν2tZ, if δn

√
n→ θ,

√
1

3
ν2tZ, if δn

√
n→ ∞,

where Z ∼ N(0, 1) independent of F .

To end the proof, we next demonstrate asymptotic negligibility of the remaining terms. We

start with Λn1(t), which we express as follows:

Λn1 (t) =
∑

i∈Dnt−

ζni (1),

where

ζni (1) =

√
ρn

ℓn

(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])

is an F(i−1)∆n-martingale difference sequence by design. Hence,

E
[
|Λn1 (t)|2

]
=
ρn
ℓ2n

∑

i∈Dnt−

E

[(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])2]

=
ρn
ℓ2n

∑

i∈Dnt−

E

[
n

∫ i∆n

(i−1)∆n

µs − µ(i−1)∆nds

]

≤ ρnn

ℓ2n

∑

i∈Dnt−

∫ i∆n

(i−1)∆n

E
[
|µs − µ(i−1)∆n |

]
ds,

where the tower property of conditional expectation was used. Now, Assumption 2 and standard

estimates for semimartingales imply the existence of a constant C > 0, such that

E
[
|µs − µ(i−1)∆n |

]
≤ C

√
∆n. (A.2)

Thus, for any definition of ρn,

E
[
|Λn1 (t)|2

]
≤ ρnC

√
∆n

ℓn
→ 0,

which implies the asymptotic negligibility of Λn1 (t).

Next,

Λn2 (t) =
∑

i∈Dnt−

ζni (2),
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where

ζni (2) =

√
ρn

ℓn
E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
.

Employing the estimate in (A.2),

E
[
|Λn2(t)|

]
≤

√
ρn

ℓn

∑

i∈Dnt−

E

[
|n
∫ i∆n

(i−1)∆n

µs − µ(i−1)∆nds| | F(i−1)∆n

]
≤ C

√
ρn∆n → 0,

so Λn2(t) also vanishes.

Now, Λn4(t) can be expressed as follows:

Λn4 (t) =
∑

i∈Dnt−

(tn− ℓn − i)
(
ζni (4, 1) + ζni (4, 2)

)
,

where

ζni (4, 1) =

√
ρn

ℓn

∫ i∆n

(i−1)∆n

a∗sds,

and

ζni (4, 2) =

√
ρn

ℓn

∫ i∆n

(i−1)∆n

∫

R

δs(x) (p(ds, dx)− q(ds, dx)) .

Yet again, employing standard estimates for semimartingales from Jacod and Protter (2012) means

that there exists a constant C > 0 such that

E

[∣∣∣
∫ i∆n

(i−1)∆n

a∗sds
∣∣∣
]
≤ C∆n,

so that

E



∣∣∣∣
∑

i∈Dnt−

(tn− ℓn − i)ζni (4, 1)

∣∣∣∣


 ≤ C

√
ρn

ℓn

∑

i∈Dnt−

(tn− ℓn − i)∆n

= C
∆n

√
ρn

ℓn

ℓn∑

j=1

j

= C∆n
√
ρn(ℓn + 1)

∼ C




δ
3/2
n

√
n if δn

√
n→ 0,

δ
1/2
n if δn

√
n→ θ or δn

√
n→ ∞.

Thus,

E



∣∣∣∣
∑

i∈Dnt−

(tn− ℓn − i)ζni (4, 1)

∣∣∣∣


→ 0.

This implies that the first sum in Λn4(t) is asymptotically negligible.

The second sum in Λn4 (t) is denoted by Rn(t) =
∑

i∈Dnt−
(tn − ℓn − i)ζni (4, 2) and observe that

ζni (4, 2) is a pure-jump martingale with E [ζni (4, 2)] = 0. We take a κ ∈ (0, 1) and decompose
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ζni (4, 2) into a “small jump” and “big jump” component defined through the bounding function Γ̄,

ζni (4, 2) = χn,′i (κ) + χn,′′i (κ), where

χn,′i (κ) =

√
ρn

ℓn

∫ i∆n

(i−1)∆n

∫

{x:Γ̄(x)≤κ}
δs(x)

(
p(ds, dx)− q(ds, dx)

)
,

and

χn,′′i (κ) =

√
ρn

ℓn

∫ i∆n

(i−1)∆n

∫

{x:Γ̄(x)>κ}
δs(x)

(
p(ds, dx)− q(ds, dx)

)
.

Next, define the subset Ωn(ψ, κ) ⊆ Ω such that the Poisson process p
(
[0, t] × {x : Γ(x) > κ}

)
has

no jumps in the interval [t − ℓψn∆n, t] for all 0 < ψ < 1 and 0 < κ < 1. As n → ∞, we note that

Ωn(ψ, κ) → Ω, because ℓψn∆n → 0.

Now, for all c > 0, the law of total probability and Markov’s inequality imply that

P
(
|Rn(t)| > c

)
= P

(
|Rn(t)| > c | Ω∁

n(ψ, κ)
)
+ P

(
|Rn(t)| > c | Ωn(ψ, κ)

)

≤ P

(
|Rn(t)| > c | Ω∁

n(ψ, κ)
)
+

E

[(
Rn(t)

)2 | Ωn(ψ, κ)
]

c2
,

where Ω∁
n(ψ, κ) is the complement of Ωn(ψ, κ).

As there are no common jumps in χn,′i (κ) and χn,′′i (κ):

E

[(
Rn(t)

)2 | Ωn(ψ, κ)
]
=
∑

i∈Dnt−

(tn−ℓn−i)2
(
E

[(
χn,′i (κ)

)2 | Ωn(ψ, κ)
]
+ E

[(
χn,′′i (κ)

)2 | Ωn(ψ, κ)
])
.

The small jump term can be controlled as

E

[(
χn,′i (κ)

)2] ≤ C
ρn
ℓ2n

∆n

∫

{x:Γ̄(x)≤κ}
Γ̄(x)2F (dx).

Thus,

∑

i∈Dnt−

(tn− ℓn − i)2E
[(
χn,′i (κ)

)2] ≤ C
ρn
ℓ2n

∆n

∫

{x:Γ̄(x)≤κ}
Γ̄(x)2F (dx)

∑

i∈Dnt−

(tn− ℓn − i)2

= C

[
ρn∆nℓn(ℓn + 1)(2ℓn + 1)

6ℓ2n

] ∫

{x:Γ̄(x)≤κ}
Γ̄(x)2F (dx),

where
[
ρn∆nℓn(ℓn + 1)(2ℓn + 1)

6ℓ2n

]
∼ ρnδn =




δ2nn, if δn

√
n→ 0,

1, if δn
√
n→ θ or δn

√
n→ ∞.

Furthermore, because there are no big jumps (larger than κ) in the interval [t − ℓψn∆n, t] on the

event Ωn(ψ, κ), we can also conclude that:
∑

i∈Dnt−

(tn− ℓn − i)2E
[(
χn,′′i (κ)

)2 | Ωn(ψ, κ)
]
=

∑

i∈Dnt−,i∆n≤t−ℓ
ψ
n∆n

(tn− ℓn − i)2E
[(
χn,′′i (κ)

)2]
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≤ C
ρn
ℓ2n

∆n

∑

i∈Dnt−,i∆n≤t−ℓ
ψ
n∆n

(tn− ℓn − i)2,

where the sum on the right-hand side has the following form:

∑

i∈Dnt−,i∆n≤t−ℓ
ψ
n∆n

(tn− ℓn − i)2 =

ℓψn∑

j=1

j2 =
ℓψn(ℓ

ψ
n + 1)(2ℓψn + 1)

6
∼ ℓ3ψn . (A.3)

This produces
∑

i∈Dnt−

(tn− ℓn − i)2E
[(
χn,′′i (κ)

)2 | Ωn(ψ, κ)
]
∼ ρn∆nℓ

3ψ−2
n → 0, (A.4)

and it thus follows that

lim sup
n→∞

P
(
|Rn(t)| > c

)
≤ lim sup

n→∞
P
(
|Rn(t) > c | Ω̄n(ψ, κ)

)
+ lim sup

n→∞
An, (A.5)

where

An ∼ ρnδn

∫

{x:Γ̄(x)≤κ}
Γ̄(x)2F (dx) + ρn∆nℓ

3ψ−2
n . (A.6)

As κ→ 0,
∫
{x:Γ̄(x)≤κ} Γ̄(x)

2F (dx) → 0, so that as κ→ 0 and n→ ∞, An → 0. Moreover, as n→ ∞,

Ω∁
n(ψ, κ) → ∅, so lim supn→∞ P

(
|Rn(t)| > c | Ω∁

n(ψ, κ)
)
= 0. To conclude, lim supn→∞ P

(
|Rn(t)| >

c
)
= 0 and, hence, limn→∞ P

(
|Rn(t)| > c

)
= 0, as was to be demonstrated. �

A.3 Proof of Theorem 2

As in proof of Theorem 1, we start with a decomposition of λ̂t − µt−:
√
ℓn(λ̂t − µt−) = Λn1 (t) + Λn2 (t) + Λn3 (t) + (III),

where Λn1(t) – Λn3 (t) are defined as above, and

(III) =
1√
ℓn

∑

i∈Dnt−

(tn− ℓn − i)(µi∆n − µ(i−1)∆n).

The treatment of the first triplet does not change from before, so it follows that Λn1 (t) and Λn2 (t)

are asymptotically negligible, whereas Λn3(t) converges stably in law:

Λn3 (t)
Ds−→ √

µt−Z. (A.7)

The difference is that we do not split (III) into a drift and martingale part, Λn4(t) and Λn5(t), as

there is no such structural assumption to work with now. So, our sole task is to prove (III) is

asymptotically negligible under Assumption 3.

We set ζni = 1√
ℓn
(tn− ℓn − i)(µi∆n − µ(i−1)∆n), such that (III) =

∑
i∈Dnt−

ζni . It is then straight-
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forward to show that:
∑

i∈Dnt−

E
[
|ζni |
]
≤ C∆Hµ

n

1√
ℓn

∑

i∈Dnt−

(tn− ℓn − i)

= C∆Hµ

n

1√
ℓn

ℓn∑

j=1

j

= C∆Hµ

n

√
ℓn(ℓn + 1)

∼ ℓ3/2n ∆Hµ

n ,

which converges to zero so long as we select ℓn = O
(
n

2Hµ

3
−ǫ), for some 0 < ǫ < 2Hµ

3
. This implies

that (III) is asymptotically negligible. The upper bound on ǫ ensures that ℓn → ∞. �

A.4 Proof of Theorem 3

The observed asymptotic local variance can be expressed as

ãvar(∇λ̂t) =
ρn
Kn

Kn−1∑

j=0

(
λ̂tj − λ̂tj−ℓn∆n

)2
.

where tj = t− 2jℓn∆n.

We denote by Dn
tj

the union of Dn
tj− and Dn

(tj−ℓn∆n)−. Then, for every tj , as in the proof of

Theorem 1 the local intensity estimator can be decomposed as:

√
ρn
(
λ̂tj − λ̂tj−ℓn∆n

)
= Λn1(tj) + Λn2 (tj) + Λn3 (tj) + Λn4 (tj) + Λn5 (tj),

where

Λn1(tj) =

√
ρn

ℓn

∑

i∈Dntj

(−1)
1{i<tj−ℓn∆n}(∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])
,

Λn2(tj) =

√
ρn

ℓn

∑

i∈Dntj

(−1)
1{i<tj−ℓn∆n}

E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
,

Λn3(tj) =

√
ρn

ℓn

∑

i∈Dntj

(−1)
1{i<tj−ℓn∆n}(∆iÑ

n − µ(i−1)∆n

)
,

Λn4(tj) =

√
ρn

ℓn

∑

i∈Dntj

(−1)
1{i<tj−ℓn∆n}(tjn− 2ℓn − i)(Ai∆n − A(i−1)∆n).

Λn5(tj) =

√
ρn

ℓn

∑

i∈Dntj

(−1)
1{i<tj−ℓn∆n}(tjn− 2ℓn − i)(Mi∆n −M(i−1)∆n),

with Nt, Mt, and At defined as in Theorem 1.

Then,

ãvar(∇λ̂t) = En1 (t) + En2 (t) +Rn(t),
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where

En1 (t) =
1

Kn

Kn−1∑

j=0

(
Λn3 (tj)

)2
,

En2 (t) =
1

Kn

Kn−1∑

j=0

(
Λn5 (tj)

)2
,

Rn(t) = ãvar(∇λ̂t)− En1 (t)− En2 (t).

What is left amounts to showing that En1 (t) and En2 (t) converge to the first and the second term in

the true asymptotic variance, whereas Rn(t)
p−→ 0.

For the first term, we observe that

(
Λn3 (tj)

)2
=
∑

i∈Dntj

(
ζni (3)

)2
+ 2

∑

s,i∈Dntj :s>i
ζni (3)ζ

n
s (3)(−1)

1{i<tj−ℓn∆n}+1{s<tj−ℓn∆n} ,

where ζni (3) =

√
ρn

ℓn

(
∆iÑ

n − µ(i−1)∆n

)
as above. Since ζni (3) is a Fi∆n-martingale and

E

[(
ζni (3)

)2 | F(i−1)∆n

]
=
ρn
ℓ2n
µ(i−1)∆n ,

it follows that

E

[(
Λn3 (tj)

)2 − ρn
ℓ2n

∑

i∈Dntj

µ(i−1)∆n

]
= 0.

Then, we decompose En1 (t) into
En1 (t) = E ′n

1 (t) + E ′′n
1 (t),

where

E ′n
1 (t) =

1

Kn

Kn−1∑

j=0

((
Λn3 (tj)

)2 − ρn
ℓ2n

∑

i∈Dntj

µ(i−1)∆n

)
,

E ′′n
1 (t) =

1

Kn

ρn
ℓ2n

Kn−1∑

j=0

∑

i∈Dntj

µ(i−1)∆n .

So E
[
E ′n
1 (t)

]
= 0, and because the Λn3(tj)’s are based on non-overlapping blocks of observations, the

variance of E ′n
1 (t) has the following form:

E

[(
E ′n
1 (t)

)2]
=

1

K2
n

Kn−1∑

j=0

E

[((
Λn3(tj)

)2 − ρn
ℓ2n

∑

i∈Dntj

µ(i−1)∆n

)2]
≤ C

K2
n

Kn−1∑

j=0

E

[(
Λn3 (tj)

)4]
.

Next,

E

[(
Λn3 (tj)

)4]
=
∑

i∈Dntj

E

[(
ζni (3)

)4]
+ 4

∑

s,i∈Dntj :s>i
E

[(
ζni (3)ζ

n
s (3)

)2]
.
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Alluding to the boundedness of µ, we get the estimates:

E

[(
ζni (3)

)2] ≤ C
ρn
ℓ2n

and E

[(
ζni (3)

)4] ≤ C
ρ2n
ℓ4n
.

Based on this, we deduce that:

E

[(
Λn3 (tj)

)4] ≤ ρ2n
ℓ4n

( 2ℓn∑

i=1

C + 4

2ℓn−1∑

i=1

2ℓn∑

s=i+1

C

)
= C

ρ2n(2ℓn + 4ℓn(2ℓn − 1))

ℓ4n
. (A.8)

Ergo,

E

[(
E ′n
1 (t)

)2] ≤ C

K2
n

Kn−1∑

j=0

ρ2n(2ℓn + 4ℓn(2ℓn − 1))

ℓ4n
= O

(
K−1
n ℓ−2

n ρ2n

)
,

so that E ′n
1 (t)

p−→ 0.

The second term, E ′′n
1 (t), can be represented as:

E ′′n
1 (t) =

ρn
ℓ2nKn

2Knℓn∑

s=1

µt−s∆n = 2
ρn
ℓn

1

2Knℓn

2Knℓn∑

s=1

µt−s∆n.

Since Knℓn∆n → 0, following the train of thought in the proof of Theorem 1 implies that

En1 (t)
p−→





2µt−, if ℓn
√
∆n → 0,

2

θ2
µt−, if ℓn

√
∆n → θ,

0, if ℓn
√
∆n → ∞.

Now, moving on to En2 (t), we again observe that

(
Λn5 (tj)

)2
=
∑

i∈Dntj

(
ζni (5)

)2
+ 2

∑

s,i∈Dntj :s>i
ζni (5)ζ

n
s (5)(−1)

1{i<tj−ℓn∆n}+1{s<tj−ℓn∆n} ,

where ζni (5) =

√
ρn

ℓn
(tjn− 2ℓn − i)(Mi∆n −M(i−1)∆n). Since ζ

n
i (5) is Fi∆n-martingale and

E

[(
ζni (5)

)2 | F(i−1)∆n

]
=
ρn
ℓ2n

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2s | F(i−1)∆n

]
ds,

we have:

E

[(
Λn5(tj)

)2 −
∑

i∈Dntj

ρn
ℓ2n

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2s | F(i−1)∆n

]
ds

]
= 0.

Then, we decompose En2 (t) as the sum of four terms:

En2 (t) = E ′n
2 (t) + E ′′n

2 (t) + E ′′′n
2 (t) + E ′′′′n

2 (t),

where

E ′n
2 (t) =

1

Kn

Kn−1∑

j=0

((
Λn5(tj)

)2 − ρn
ℓ2n

∑

i∈Dntj

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2s | F(i−1)∆n

]
ds

)
,
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E ′′n
2 (t) =

ρn
ℓ2nKn

Kn−1∑

j=0

∑

i∈Dntj

(tjn− 2ℓn − i)2
∫ i∆n

(i−1)∆n

E
[
ν2s − ν2(i−1)∆n | F(i−1)∆n

]
ds,

E ′′′n
2 (t) =

ρn
ℓ2nKn

Kn−1∑

j=0

∑

i∈Dntj

(tjn− 2ℓn − i)2
(
ν2(i−1)∆n − ν2t

)
∆n,

E ′′′′n
2 (t) =

ρn
ℓ2nKn

Kn−1∑

j=0

∑

i∈Dntj

(tjn− 2ℓn − i)2ν2t∆n.

By construction, E[E ′n
2 (t)] = 0 and, as in the proof for E ′n

1 (t),

E

[(
E ′n
2 (t)

)2] ≤ C

Kn

Kn−1∑

j=0

E

[(
Λn5 (tj)

)4]
,

where, since ζni (5) in the definition of Λn5(tj) is an Fi∆n-martingale,

E

[(
Λn5 (tj)

)4]
=
∑

i∈Dntj

E

[(
ζni (5)

)4]
+ 4

∑

s,i∈Dntj :s>i
E

[(
ζni (5)ζ

n
s (5)

)2]
.

From the proof of Theorem 1:

E

[(
ζni (5)

)4] ≤ Cρ2n∆
2
n

ℓ4n

∑

i∈Dntj

(tjn− 2ℓn − i)4 and E

[(
ζni (5)

)2] ≤ Cρn∆n

ℓ2n

∑

i∈Dntj

(tjn− 2ℓn − i)2.

Standard formulas for calculating the sum of powers of integers yield

∑

i∈Dntj

(tjn− 2ℓn − i)4 =
96ℓ5n + 120ℓ4n + 40ℓ3n − ℓn

15
,

and
∑

i∈Dntj

(tjn− 2ℓn − i)2 =
8ℓ3n + 6ℓ2n + ℓn

3
. (A.9)

Hence,

E

[(
ζni (5)

)4]
= O(ρ2n∆

2
nℓn),

and it follows that E ′n
2 (t) = op(1).

For the second term,

E
[
|E ′′n

2 (t)|
]
≤M

ρn∆n

ℓ2nKn

Kn−1∑

j=0

∑

i∈Dntj

(tjn− 2ℓn − i)2,

where M = E

[
sups∈[t−Knℓn∆n,t] |ν2s −ν2t |

]
. Since ν is càdlàg and Knℓn∆n → 0, M = op(1). The sum

was computed in (A.9), so combining the terms shows that

ρn∆n

ℓ2nKn

Kn−1∑

j=0

∑

i∈Dntj

(tjn− 2ℓn − i)2 =
8

3
ρnℓn∆n + o(1),
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where

8

3
ρnℓn∆n →




0, if ℓn

√
∆n → 0,

8

3
, if ℓn

√
∆n → θ > 0 or ℓn

√
∆n → ∞.

As such, E ′′n
2 (t) = op(1).

Following the above steps, we also deduce that

E ′′′n
2 (t)

p−→ 0.

The last term can be written as

E ′′′′n
2 (t) = ν2t

(
ρn∆n

ℓ2nKn

Kn−1∑

j=0

∑

i∈Dntj

(tjn− 2ℓn − i)2

)
,

where the sum on the right-hand side is given by (A.9). As a consequence,

E ′′′′n
2 (t)

p−→




0, if ℓn

√
∆n → 0,

8

3
ν2t , if ℓn

√
∆n → θ > 0 or ℓn

√
∆n → ∞,

which handles the analysis of En2 (t).
To finalize the proof up, we notice that Rn(t) is an average of terms that all converge in

probability to zero, and therefore it also converges in probability to zero. �

A.5 Proof of Theorem 4

We largely copy from the proof of Theorem 3. Therefore, many repeated details are omitted and

we concentrate on explaining the main differences.

The observed asymptotic local variance can again be expressed as follows:

âvar(∇λ̂t) =
ρn
Kn

Kn−1∑

j=0

(
λ̂tj − λ̂tj−ℓn∆n

)2
,

where tj = t− j∆n.

This can further be split into

âvar(∇λ̂t) = En1 (t) + En2 (t) +Rn(t),

where

En1 (t) =
1

Kn

Kn−1∑

j=0

(
Λn3 (tj)

)2
,

En2 (t) =
1

Kn

Kn−1∑

j=0

(
Λn5 (tj)

)2
,

Rn(t) = âvar(∇λ̂t)− En1 (t)− En2 (t).
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The only difference here compared to the proof of Theorem 3 is the definition of tj . It therefore

follows that Rn(t) = op(1). So, to complete the proof it suffices to establish the convergence of

En1 (t) and En2 (t).
As above, we add and substract µ(i−1)∆n terms to write

En1 (t) = E ′n
1 (t) + E ′′n

1 (t),

with

E ′n
1 (t) =

1

Kn

Kn−1∑

j=0

((
Λn3 (tj)

)2 − ρn
ℓ2n

∑

i∈Dntj

µ(i−1)∆n

)
≡ 1

Kn

Kn−1∑

j=0

ǫ(tj),

E ′′n
1 (t) =

1

Kn

ρn
ℓ2n

Kn−1∑

j=0

∑

i∈Dntj

µ(i−1)∆n = 2
ρn
ℓn

1

2Knℓn

Kn−1∑

j=0

2ℓn∑

i=1

µt−(i+j)∆n.

where ǫ(tj) =
((

Λn3(tj)
)2 − ρn

ℓ2n

∑
i∈Dntj

µ(i−1)∆n

)
. As before, E

[
E ′n
1 (t)

]
= 0, but now the variance of

E ′n
1 (t) has a more complicated structure due to the overlapping sampling:

E

[(
E ′n
1 (t)

)2]
=

1

K2
n

Kn−1∑

j=0

E

[(
ǫ(tj)

)2]
+

2

K2
n

Kn−2∑

j=0

Kn−1∑

s=j+1

E
[
ǫ(tj)ǫ(ts)

]
.

To show E

[(
E ′n
1 (t)

)2]
converges to zero, we look at each part in the above equation separately.

First, by Theorem 3—employing the estimate in (A.8)—we deduce that:

1

K2
n

Kn−1∑

j=0

E

[(
ǫ(tj)

)2] ≤ C
ℓn
K2
n

Kn−1∑

j=0

E

[(
Λn3 (tj)

)4]
= O

(
K−1
n ℓ−2

n ρ2n

)
.

Next, to deal with the cross-product term we express ǫ(tj) as

ǫ(tj) =
∑

i∈Dntj

χi +Rtj (t),

where χi =
((
ζi(3)

)2 − ρn
ℓn
µ(i−1)∆n

)
is an Fi∆n-martingale difference sequence and Rtj (t) is a re-

minder term of the form:

Rtj (t) = 2
∑

s,i∈Dntj :s>i
ζni (3)ζ

n
s (3)(−1)

1{i<tj−ℓn∆n}+1{s<tj−ℓn∆n} .

We note that for s > 2ℓnj, Dn
tj
∩ Dn

ts = ∅, which implies that E
[
ǫ(tj)ǫ(ts)

]
= 0. In contrast for

s ≤ 2ℓnj, Dn
tj
∩ Dn

ts 6= ∅, but nevertheless

E
[
Rtj (t)Rts(t)

]
= E

[
ǫ(tj)Rts(t)

]
= E

[
ǫ(ts)Rtj (t)

]
= 0,

since ζi(3) is also a Fi∆n-martingale difference.
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Thus,

2

K2
n

Kn−2∑

j=0

Kn−1∑

s=j+1

E
[
ǫ(tj)ǫ(ts)

]
=

2

K2
n

Kn−2∑

j=0

j+2ℓn∑

s=j+1

E

[ ∑

i∈Dntj

χi
∑

i∈Dnts

χi

]
.

For each summand on the right-hand side of the above equation,

E

[ ∑

i∈Dntj

χi
∑

i∈Dnts

χi

]
=

∑

i∈Dntj∩D
n
ts

E
[
χ2
i

]
.

By the boundedness of µ, E

[(
ζni (3)

)4] ≤ C ρ2n
ℓ4n

and this bound also applies to E
[
χ2
i

]
. As the

intersection Dn
tj
∩ Dn

ts contains at most 2ℓn terms, it therefore shows that:
∑

i∈Dntj∩D
n
ts

E
[
χ2
i

]
≤ Cℓ−3

n ρ2n.

Consequently,

2

K2
n

Kn−2∑

j=0

j+2ℓn∑

s=j+1

E

[ ∑

i∈Dntj

χi
∑

i∈Dnts

χi

]
≤ CK−1

n ℓ−2
n ρ2n.

Combining the orders of the terms that make up E

[(
E ′n
1 (t)

)2]
, we deduce that

E

[(
E ′n
1 (t)

)2]
= O(K−1

n ℓ−1
n ρ2n).

Now, by the assumptions made in the theorem, it follows that E

[(
E ′n
1 (t)

)2]
= o(1). Hence, the

above inequality implies E ′n
1 (t)

p−→ 0.

In the E ′′n
1 (t) term, since by assumption ℓn/Kn → 0 and Kn∆n → 0, (Kn + 2ℓn)∆n → 0. This

shows that t− (i+ j)∆n → t for every i and j in the sum. Since µ is càdlàg, as ∆n → 0,

E ′′n
1 (t)

p−→





2µt−, if ρn/ℓn → 1,

2

θ2
µt−, if ρn/ℓn → 1

θ2
,

0, if ρn/ℓn → 0.

Thus, alluding to the definition of ρn, we see that

En1 (t)
p−→





2µt−, if ℓn
√
∆n → 0,

2

θ2
µt−, if ℓn

√
∆n → θ,

0, if ℓn
√
∆n → ∞.

�
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A.6 Proof of Theorem 5

The statement of the theorem under H0 follows immediately by combining Theorem 1 and Theorem

4 with Slutsky’s theorem.

We next look at H1. We use the version of the test statistic based on the non-overlapping

observed asymptotic local variance in (3.20), ãvar
(
∇λ̂t

)
. In that instance,

φib
τ =

D̃τ,0√√√√ 1

Kn

Kn−1∑

j=0

D̃2
τ,j

,

where

D̃τ,j =
Nn(τ − (1 + 2j)δn, τ − 2jδn)−Nn(τ − (2 + 2j)δn, τ − (1 + 2j)δn)

nδn
,

for j = 0, 1, . . . , Kn − 1.

We next derive a lower (upper) bound on the stochastic order of the numerator (denominator).

We show that the numerator diverges at least as fast as the numerator. Note that it again suffices

to explore the diverging part:

Dτ,j =
Nn,β(τ − (1 + 2j)δn, τ − 2jδn)−Nn,β(τ − (2 + 2j)δn, τ − (1 + 2j)δn)

nδn
,

for which

E
[
|Dτ,j|

]
≤ E

[
Nn,β(τ − (1 + 2j)δn, τ − 2jδn) +Nn,β(τ − (2 + 2j)δn, τ − (1 + 2j)δn)

nδn

]

= E

[
Nn,β(τ − (2 + 2j)δn, τ − 2jδn)

nδn

]

= E

[
1

δn

∫ τ−2jδn

τ−(2+2j)δn

σu|τ − u|−αdu
]

≤ Cδ−αn
(
(j + 1)1−α − j1−α

)
,

(A.10)

by the proof of Lemma 1.

By the mean-value theorem there exists a j∗ ∈ (j, j + 1), such that

(j + 1)1−α − j1−α = (j∗)−α ≤ j−α.

Therefore,

E
[
|Dτ,j|

]
≤ Cδ−αn j−α.

Thus, for j fixed:

Dτ,j = Op(δ
−α
n ).

as δn → 0.
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Regarding the denominator,

E

[
1

Kn

Kn−1∑

j=0

D2
τ,j

]
=

1

Kn

Kn−1∑

j=0

E
[
D2
τ,j

]
,

where

E
[
D2
τ,j

]
= E

[(
Nn,β(τ − (1 + 2j)δn, τ − 2jδn)−Nn,β(τ − (2 + 2j)δn, τ − (1 + 2j)δn)

nδn

)2
]

≤ 1

n2δ2n
E
[
Nn,β(τ − (2 + 2j)δn, τ − 2jδn)

2
]

=
1

n2δ2n

(
E
[
Nn,β(τ − (2 + 2j)δn, τ − 2jδn)

]
+ E

[
Nn,β(τ − (2 + 2j)δn, τ − 2jδn)

]2)
,

due to the properties of the Poisson distribution.

It follows from (A.10) that

E
[
Nn,β(τ − (2 + 2j)δn, τ − 2jδn)

]
≤ Cnδ1−αn j−α,

Hence, by the rate conditions imposed in Theorem 5, nδn → ∞ and δ−α → ∞, so the above

expectation diverges. This implies that the square of the expectation is the leading term, so it

suffices to look at the second summand in the above decomposition:

1

Kn

Kn−1∑

j=0

1

n2δ2n
E
[
Nn,β(τ − (2 + 2j)δn, τ − 2jδn)

]2 ≤ Cδ−2α
n

1

Kn

Kn−1∑

j=0

j−α = O
([
δnKn

]−2α
)

since
∑Kn−1

j=0 j−2α = O(K1−2α
n ). Thus, the denominator is at most Op

([
δnKn

]−α)
.

Now, we look at the numerator:

Dτ,0 =
Nn,β(τ − δn, τ)−Nn,β(τ − 2δn, τ − δn)

nδn
.

Let

Bn
1,τ =

Nn,β(τ − δn, τ)

nδn
− 1

δn

∫ τ

τ−δn

σs
|τ − s|αds.

As in the proof of Lemma 1, we can condition on Fσ, the σ-algebra generated by σ, and then

employ the law of iterated expectations to obtain:

E
[
Bn

1,τ

]
= E

[
E
[
Bn

1,τ | Fσ
]]

= 0,

and, by the law of total variance,

var
(
Bn

1,τ

)
= E

[
var
(
Bn

1,τ | Fσ
)]

+ var
(
E
[
Bn

1,τ | Fσ
])

︸ ︷︷ ︸
=0

,

where

var
(
Bn

1,τ | Fσ
)
=

1

n2δ2n
n

∫ τ

τ−δn

σs
|τ − s|αds

52



≤ C

nδ2n

∫ τ

τ−δn

1

|τ − s|αds =
C

nδ2n
δ1−αn = C

1

nδ
(1+α)
n

= O
(
n−1δ−(1+α)

n

)
.

Thus,

var
(
δα/2n Bn

1,τ

)
≤ C

nδn
→ 0,

which has the implication that

δα/2n

(
Nn,β(τ − δn, τ)

nδn
− 1

δn

∫ τ

τ−δn

σs
|τ − s|αds

)
p−→ 0.

Analogously,

δα/2n

(
Nn,β(τ − 2δn, τ − δn)

nδn
− 1

δn

∫ τ−δn

τ−2δn

σs
|τ − s|αds

)
p−→ 0,

such that

δα/2n

(
Dτ,0 −

[
1

δn

∫ τ

τ−δn

σs
|τ − s|αds−

1

δn

∫ τ−δn

τ−2δn

σs
|τ − s|αds

])
p−→ 0.

Next, we define σ = infs∈[τ−2δn] σs and σ = sups∈[τ−2δn] σs. Then, by construction

1

δn

∫ τ

τ−δn

σs
|τ − s|αds−

1

δn

∫ τ−δn

τ−2δn

σs
|τ − s|αds ≥

1

δn

(∫ τ

τ−δn

σ

|τ − s|αds−
∫ τ−δn

τ−2δn

σ

|τ − s|αds
)

=
1

δn

(
σ

1− α
δ1−αn − σ

1− α
(21−α − 1)δ1−αn

)

=
σ − σ(21−α − 1)

1− α
δ−αn .

Since σ − σ ≥ |στ − στ−2δn |, it follows that for every ǫ > 0 : {ω ∈ Ω : σ − σ > ǫ} ⊆ {ω ∈ Ω :

|στ − στ−2δn | > ǫ}, and so

P (|σ − σ| > ǫ) ≤ P (|στ − στ−δn | > ε) −→ 0,

as δn → 0, where the right-hand side follows by stochastic continuity of σ. In other words, for a

large enough n, σ is arbitrarily close to σ in probability. Consequently,

P

(
σ − σ(21−α − 1)

1− α
> 0

)
−→ 1,

as δn → 0. Hence,

1

δn

∫ τ

τ−δn

σs
|τ − s|αds−

1

δn

∫ τ−δn

τ−2δn

σs
|τ − s|αds

p−→ ∞. (A.11)

so the explosion rate of the numerator is at least δ−α. This is faster than the explosion rate of the

denominator (at most (δnKn)
−α), so the test statistic diverges under the alternative. �

A.7 Proof of Lemma 2

Part (i) — Conditional on ω ∈ ΩB1 :

53



The observed process can be broken into the parts

Nn
t = Nn,µ

t +Nn,β
t ,

where Nn,µ
t and Nn,β

t are inhomogeneous Poisson processes with rates nµt and nβt. This yields the

following decomposition for λ̃θ(kδn):

λ̃θ(kδn) = µ̃θ(kδn) + β̃θ(kδn),

where µ̃θ(kδn)
p−→ µθ− and

β̃θ(kδn) =
Nn,β
θ+kδn

−Nn,β
θ−kδn

2nkδn
.

Since δn → 0 and α > 0, the convergence µ̃θ(kδn)
p−→ µθ− further implies that δ

α/2
n µ̃θ(kδn)

p−→ 0.

It immediately follows that

δα/2n

(
λ̃θ(kδn)− σθ−(2kδn)

−α
)
− δα/2n

(
β̃θ(kδn)− σθ−(2kδn)

−α
)

p−→ 0.

Note that σθ(2kδn)
−α =

1

2kδn

∫ θ+kδn
θ−kδn

σθ
|θ − s|αds. This implies that

δα/2n

(
β̃θ(kδn)− σθ(2kδn)

−α
)
= δα/2n

(
Bn

1,θ +Bn
2,θ

)
, (A.12)

where

Bn
1,θ = β̃θ(kδn)−

1

2kδn

∫ θ+kδn

θ−kδn

σs
|θ − s|αds,

Bn
2,θ =

1

2kδn

∫ θ+kδn

θ−kδn

σs
|θ − s|αds−

1

2kδn

∫ θ+kδn

θ−kδn

σθ
|θ − s|αds.

Following the footsteps in the proof of Theorem 5 by conditioning on Fσ and employing the laws

of iterated expectation and total variance, we find that

E
[
Bn

1,θ

]
= 0 and var

(
Bn

1,θ

)
= E

[
var
(
Bn

1,θ | Fσ
)]
,

where var
(
Bn

1,θ | Fσ
)
= Op

(
n−1δ

−(1+α)
n

)
, so that δ

α/2
n Bn

1,θ

p−→ 0.

Bn
2,θ can be bounded by

|Bn
2,θ| =

∣∣∣∣
1

2kδn

∫ θ+kδn

θ−kδn

σs − σθ
|θ − s|αds

∣∣∣∣

≤ 1

2kδn

∫ θ+kδn

θ−kδn

|σs − σθ|
|θ − s|α ds

≤ (2kδn)
Hσ

2kδn

∫ θ+kδn

θ−kδn

L

|θ − s|αds = (2kδn)
Hσ−αL.

Hence,

δα/2n |Bn
2,θ| ≤ CδH

σ−α/2
n L

p−→ 0,
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because L is a bounded random variable and Hσ−α/2 > 0. Thus, δ
α/2
n |Bn

1,θ| and δ
α/2
n |Bn

2,θ| converge
to zero in probability.

Combining this fact with (A.12),

δα/2n

(
λ̃θ(kδn)− σθ(2kδn)

−α
)

p−→ 0.

for any k ≥ 1. This means that:

λ̃θ(kδn)

λ̃θ(δn)
=
δ
α/2
n

(
λ̃θ(kδn)− σθ(2kδn)

−α
)
+ δ

α/2
n (σθ(2kδn)

−α)

δ
α/2
n

(
λ̃θ(kδn)− σθ(2kδn)−α

)
+ δ

α/2
n (σθ(2δn)−α)

p−→ δ
α/2
n (σθ(2kδn)

−α)

δ
α/2
n (σθ(2δn)−α)

= k−α,

which completes the proof of part (i).

Part (ii) — Conditional on ω ∈ ΩJ1 :

We start by observing that λ̃θ(kδn) can be represented as the average of a forward- and backward-

looking intensity estimator:

λ̃θ(kδn) =
1

2

(
λ̂
(−)
θ (kδn) + λ̂

(+)
θ (kδn)

)
.

The proof of Theorem 2 implies that λ̂
(−)
θ (kδn)

p−→ µθ−. As the forward-looking estimator λ̂
(+)
θ (kδn)

is the mirror image of λ̂
(−)
θ (kδn), we also deduce that λ̂

(+)
θ (kδn)

p−→ µθ+, where µθ+ = µθ− + ∆µθ.

In summary, by the continuous mapping theorem

λ̃θ(kδn)
p−→ 1

2
(µθ− + µθ− +∆µθ) = µθ− +

∆µθ
2
.

As this convergence holds for every k ≥ 1,

λ̃θ(kδn)

λ̃θ(δn)

p−→ 1.

�

A.8 Proof of Theorem 6

The proof of the theorem consists of deriving the bivariate asymptotic distribution of the change-

of-frequency intensity estimator computed with different k:

√
nδn



λ̃θ(kδn)− µθ− − ∆µθ

2

λ̃θ(δn)− µθ− − ∆µθ
2


 Ds−→ Σ1/2Z2, (A.13)

where Z2 ∼ N(0, I2) and Σ is the asymptotic covariance matrix. The statement of the theorem

then follows by application of the delta method.

To derive (A.13), by the Cramér-Wold device it suffices to show that every fixed linear combi-
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nation

Ln = c1
√
nδn

(
λ̃θ(kδn)− µθ− − ∆µθ

2

)
+ c2

√
nδn

(
λ̃θ(δn)− µθ− − ∆µθ

2

)
,

converges stably in law, i.e.

Ln
Ds−→
√
c21Σ1,1 + c22Σ2,2 + 2c1c2Σ1,2Z,

where (c1, c2) ∈ R
2 and Z ∼ N(0, 1). To prove this, we split λ̃θ(kδn) into the average of the forward-

and backward-looking intensity estimator:

√
nδn

(
λ̃θ(kδn)− µθ− +

∆µθ
2

)
=

1

2

[√
nδn

(
λ̃
(−)
θ (kδn)− µθ−

)
+
√
nδn

(
λ̃
(+)
θ (kδn)− µθ+

)]
.

Next, both λ̃
(−)
θ (kδn) and λ̃

(+)
θ (kδn) are decomposed as in Theorem 2. For example,

√
nδn

(
λ̃
(−)
θ (kδn)− µθ−

)
=

4∑

j=1

Λ
n,(−)
j (θ; k),

where

Λ
n,(−)
1 (θ; k) =

1

k
√
ℓn

nθ∑

i=nθ−kℓn+1

(
∆iN

n −∆iÑ
n − E

[
∆iN

n −∆iÑ
n | F(i−1)∆n

])
,

Λ
n,(−)
2 (θ; k) =

1

k
√
ℓn

nθ∑

i=nθ−kℓn+1

E
[
∆iN

n −∆iÑ
n | F(i−1)∆n

]
,

Λ
n,(−)
3 (θ; k) =

1

k
√
ℓn

nθ∑

i=nθ−kℓn+1

(
∆iÑ

n − µ(i−1)∆n

)
,

Λ
n,(−)
4 (θ; k) =

1

k
√
ℓn

nθ∑

i=nθ−kℓn+1

(nθ − ℓn − i)(µi∆n − µ(i−1)∆n).

Proceeding as above,

Ln = L(−)
n + L(+)

n +Rn,

where

L(−)
n =

1

2

(
c1Λ

n,(−)
3 (θ; k) + c2Λ

n,(−)
3 (θ; 1)

)
, L(+)

n =
1

2

(
c1Λ

n,(+)
3 (θ; k) + c2Λ

n,(+)
3 (θ; 1)

)
,

are the leading terms and the remainder is

Rn =

4∑

j=1,j 6=3

(
c1Λ

n,(+)
1 (θ; k) + c2Λ

n,(+)
1 (θ; 1)

)
+

4∑

j=1,j 6=3

(
c1Λ

n,(−)
1 (θ; k) + c2Λ

n,(−)
1 (θ; 1)

)
.

Notice that since Rn is a sum of a finite number of asymptotically negligible terms, it is itself

asymptotically negligible. Thus, it remains to inspect the behavior of L
(−)
n and L

(+)
n . We do this in
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detail for the former only by writing

L(−)
n =

nθ∑

i=nθ−kℓn+1

ξni ,

where

ξni =
c1

2k
√
ℓn

(
∆iÑ

n − µ(i−1)∆n

)
+

c2

2
√
ℓn

(
∆iÑ

n − µ(i−1)∆n

)
1{i≥nθ−ℓn+1}.

It holds that E
[
ξni | F(i−1)∆n

]
= 0, and

E

[(
ξ2i
)2 | F(i−1)∆n

]
=
µ(i−1)∆n

4ℓn

[
c21
k2

+

(
c22 +

2c1c2
k

)
1{i≥nθ−ℓn+1}

]
.

Therefore,

nθ∑

i=nθ−kℓn+1

E

[(
ξ2i
)2 | F(i−1)∆n

]
= c21

1

4k

nθ∑

i=nθ−kℓn+1

µ(i−1)∆n

kℓn
+

(
c22 +

2c1c2
k

)
1

4

nθ∑

i=nθ−ℓn+1

µ(i−1)∆n

ℓn

p−→ c21
1

4k
µθ− + c22

1

4
µθ− + 2c1c2

1

4k
µθ−.

Furthermore,

nθ∑

i=nθ−kℓn+1

E
[
(ξni )

4 |F(i−1)∆n

]
≤ C

nθ∑

i=nθ−kℓn+1

1

ℓ2n
E

[(
∆iÑ

n − µ(i−1)∆n

)4
| F(i−1)∆n

]
p−→ 0,

where the convergence was already established in the proof of Theorem 1 (for the analogous term,

which was denoted by ζni (3) back then). Thus, by Lemma 3

L(−)
n

Ds−→
√
c21

1

4k
µθ− + c22

1

4
µθ− + 2c1c2

1

4k
µθ−Z(−),

where Z(−) ∼ N(0, 1).

Analogously,

L(+)
n

Ds−→
√
c21

1

4k
µθ+ + c22

1

4
µθ+ + 2c1c2

1

4k
µθ+Z(+),

where Z(+) ∼ N(0, 1) independently from Z(−). Since µθ+ = µθ− +∆µθ:

Ln
Ds−→
√
c21

1

2k

(
µθ− +

∆µθ
2

)
+ c22

1

2

(
µθ− +

∆µθ
2

)
+ 2c1c2

1

2k

(
µθ− +

∆µθ
2

)
Z.

So the convergence in (A.13) holds with

Σ =

[
1
2k

(
µθ− + ∆µθ

2

)
1
2k

(
µθ− + ∆µθ

2

)
1
2k

(
µθ− + ∆µθ

2

)
1
2

(
µθ− + ∆µθ

2

)
.

]

�
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