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Abstract

This paper studies optimal monetary policy in a multi-sector economy with input-
output linkages and distortions. Our model incorporates both supply-side and demand-
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effect, which comprises two reallocation channels resulting from substitution in production
and from substitution in consumption. The optimal monetary policy induces an inflation
bias stemming from both an aggregate wedge and the supply-side effect, and stabilizes an
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1 Introduction

The disruptions in supply chains during the COVID-19 pandemic have highlighted the
importance of understanding how shocks propagate through production networks and im-
pact the overall economy. It is crucial to recognize that shocks in different industries can
have varying effects on aggregate output and inflation. In response to these challenges, mon-
etary authorities in both advanced and emerging economies have implemented aggressive
measures to combat inflation. The canonical New Keynesian frameworks primarily focus
on the demand-side effects of monetary policy. By tightening monetary policy, aggregate
nominal demand is reduced, which leads to stabilization of inflation. However, empirical
studies have shown that monetary policy can also influence resource allocation and account
for a significant portion of aggregate productivity movements (see for instance, Evans, 1992,
Barth and Ramey, 2002, Ravenna and Walsh, 2006, Meier and Reinelt, 2022).

How do demand-side shocks, such as monetary policy shocks, affect an economy’s output
and productivity in a distorted economy with input-output linkages? What is the optimal
conduct of monetary policy under such circumstances? Based on frameworks of Long and
Plosser (1983) and Baqaee and Farhi (2020), this paper investigates both the supply-side
and demand-side effects of monetary policy in a multi-sector model with nominal rigidities,
initial markups, and input-output linkages. We find that the supply-side effect of monetary
policy arises from resource reallocation across sectors, and is characterized by a tractable
sufficient statistic, which can be further broken down into two reallocation channels: one
channel due to substitution in production and the other channel due to substitution in
consumption.

The reallocation channel resulting from substitution in production depends on several
factors, including the average markup, the covariance between wage pass-throughs to sec-
toral prices and sectors’ upstream markups, elasticities of substitution among inputs, and
sectoral Domar weights. As noted in Baqaee et al. (2024), an initial misallocation of re-
sources is a necessary condition for the supply-side effect of monetary policy. When the
average markup in an economy is higher, there is a greater potential for policy interven-
tions to improve resource allocation. Wage pass-throughs and upstream markups reflect
the compound impact of frictions throughout the production chain on sectoral prices and
markups, respectively. When sectors with high upstream markups tend to exhibit low wage
pass-throughs to prices, and vice versa, sectors with high upstream markups will raise their
prices to a less extent than sectors with low upstream markups in response to expansionary
monetary policy. Consequently, a reduction in relative prices leads to increased demand
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and output in sectors with high upstream markups. As a result, both labor and intermediate
inputs will be reallocated from sectors with low upstream markups to sectors with high
upstream markups. In a distorted economy, marginal product of input in sectors with high
upstream markups is greater than that in sectors with low upstream markups. This reallo-
cation of resources across sectors ultimately contributes to an improvement in total factor
productivity.

The elasticity of substitution among inputs also plays a crucial role in the supply-side
effects. A higher elasticity of substitution among inputs leads to a more significant real-
location channel. This is because downstream sectors’ demand responds more strongly to
changes in relative sectoral prices when the elasticity of substitution is greater. As a result,
monetary policy exerts a stronger influence on resource reallocation. Additionally, sector
size also affects the reallocation channel, and a change in resource allocation in larger sectors
contributes more to the whole economy.

The reallocation channel resulting from substitution in consumption operates similarly to
that in production, but with a significant distinction due to the role of labor. In consumption,
substitution is limited to different sectoral products, whereas in production, labor is a crucial
input, and substitution occurs among intermediate inputs and between intermediate inputs
and labor. In response to expansionary monetary policy, firms tend to substitute labor
for intermediate inputs, as sticky sectoral prices increase less than flexible nominal wages
due to incomplete pass-throughs. This reallocation towards intermediate inputs enhances
economy-wide allocative efficiency, as these inputs are initially underutilized due to double
marginalization. These two reallocation channels contribute to the supply-side effects of
monetary policy in specific environments, critically depending on the production networks
within an economy. For instance, in a horizontal economy where multiple sectors rely solely
on labor as a productive input, the only prevailing channel is reallocation due to consumption
substitution. Conversely, in a one-sector roundabout economy, reallocation resulting from
substitution in production becomes the sole channel.

In our model economy, labor supply adjusts endogenously to shocks. Consequently,
there is a traditional New Keynesian demand-side effect of monetary policy, in addition to
the supply-side effect. We provide tractable expressions for both the supply and demand-
side effects of monetary policy. The manner in which wages and labor respond to shocks
determines these two effects. We demonstrate that the supply-side effect increases with the
inverse Frisch elasticity of labor supply, while the demand-side effect decreases with this
elasticity. When labor supply is less elastic, a change in nominal wages due to shocks becomes
more pronounced, whereas the labor supply itself is less responsive to these shocks. In a
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model with price rigidities and initial markups, a larger response in nominal wages results
in a greater change in ex-post markups, leading to a more significant supply-side effect.

The following section constructs sectoral Phillips curves. The slopes of these curves are
determined by input-output linkages, sectoral price rigidities, initial markups, and cross-
sector elasticities. Our findings indicate that a positive supply-side effect of monetary policy
flattens the slopes of all sectoral Phillips curves. The rationale behind this is that, in response
to an increase in the output gap, wages must rise to attract additional labor necessary to
support a higher level of production. However, the positive supply-side effects of monetary
policy reduce firms’ demand for labor, thereby diminishing the required wage increases.
This, in turn, lowers input costs and sectoral inflation.

Should the central bank optimally induce an inflation bias to enhance allocative efficiency
and increase final output? We further examine the optimal monetary policy in response to
sectoral productivity shocks. Up to a second-order approximation of the social welfare
function around a flexible-price but distorted steady state, the approximated welfare gains
comprise several additive components: a first-order bias resulting from an aggregate wedge
and allocative efficiency, and second-order welfare losses stemming from output gap volatil-
ity, within-sector and cross-sector price distortions, and variations in allocative efficiency.

In a model economy with multiple sectors and distortionary markups, the central bank’s
ability to influence the economy is limited by its dependence on a single policy instrument.
This instrument must strike a balance between first-order biases and second-order welfare
losses. Under optimal monetary policy, the central bank may introduce an inflation bias,
which arises from both the supply-side effects of monetary policy and an aggregate wedge,
both of which are affected by initial markups.1 We find that, all else being equal, the optimal
monetary policy stabilizes an inflation index by assigning greater weights to larger, stickier,
and less distorted sectors. When the supply-side effect is positive, the central bank has an
incentive to enhance allocative efficiency by increasing sectoral inflation. Additionally, due
to the presence of an aggregate wedge, the central bank may also raise inflation to bring
output closer to its efficient level.

We then apply our theoretical framework to data, and quantitatively explore the optimal
monetary policy. To achieve this, we utilize the input-output tables provided by the Bureau
of Economic Analysis in the USA and map them into our model to obtain a cost-based input-

1The initial state of the economy is inefficient due to lacking of enough tax instruments that can fix sectoral
monopolistic markups (see for instance, Adão et al. (2003)). The monetary authority faces a trade-off between
stabilizing inflation (second-order welfare losses) and substituting for these missing tax instruments (first-order
biases). Note also that initial markups are necessary to generate both the supply-side effect and the aggregate
wedge in our model economy.
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output matrix, labor input shares, and consumption shares from 1997 to 2015. The initial
markups at the industry level are taken from Baqaee and Farhi (2020), while the sectoral price
rigidities are derived from Pasten et al. (2020). Additionally, industry-level productivities
are obtained from the Integrated Industry-Level Production Account of the U.S. Bureau of
Economic Analysis and Bureau of Labor Statistics.

Our quantitative analysis demonstrates that monetary policy and production networks
play crucial roles in shaping the supply side of the economy. A one-percentage-point
increase in nominal wages resulting from expansionary monetary policy leads to an average
rise of 0.018% in total productivity. The inflation bias stemming from the supply-side
effect moves closely with that arising from the aggregate wedge, varying over time from
0.08% during years of economic downturns to 0.54% during years of economic booms, with
an average inflation bias of 0.30%. The welfare analysis illustrates that the supply-side
effect generates a similar welfare gain as that induced by the aggregate wedge. When
we completely eliminate input-output linkages, the supply-side effect is solely determined
by the reallocation resulting from substitution in consumption. The quantitative results
show that the supply-side effect and inflation bias associated with the supply-side effect
decline substantially in an economy without input-output linkages. Inflation bias due to
the aggregate wedge decreases, but it significantly dominates the inflation induced by the
supply-side effect.

Can the optimal monetary policy be implemented by a simple monetary policy rule? We
examine two alternative simple rules: an output gap targeting rule, as in La’O and Tahbaz-
Salehi (2022) and Rubbo (2023), and a CPI inflation targeting rule. Our quantitative analysis
reveals that while both output gap stabilization and CPI inflation targeting policies incur
less second-order welfare losses, they still underperform compared to optimal monetary
policy due to their inability to fully leverage reductions in the aggregate wedge and the
benefits of allocative efficiency. Furthermore, the output gap stabilization rule yields higher
welfare than the CPI inflation targeting rule. This is because the output gap targeting rule
partially accounts for changes in output resulting from allocative efficiency, and stabilizing
this output gap leads to lower welfare losses compared to the CPI inflation targeting rule.

Related Literature. Our paper is part of the growing literature that investigates pro-
duction networks in macroeconomics (Long and Plosser, 1983; Basu, 1995; Acemoglu et al.,
2012).2 The framework of this paper builds on Baqaee and Farhi (2020), who studied the

2The pioneering work includes Jones (2011), Gabaix (2011) and Acemoglu et al. (2015). More recent studies
include Acemoglu et al. (2017), Atalay (2017), Baqaee (2018), Bouakez et al. (2018), Baqaee and Farhi (2019, 2022,
2024), Levchenko et al. (2019), Liu (2019), Acemoglu and Azar (2020), Acemoglu and Tahbaz-Salehi (2020, 2024),
Bigio and La’O (2020), Flynn et al. (2020), Luo (2020), Carvalho et al. (2021), Miranda-Pinto and Young (2022),
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implications of exogenous markups in economies with input-output linkages. Compared
with Baqaee and Farhi (2020), this paper examines both the supply-side and demand-side ef-
fects of monetary policy and characterizes optimal monetary policy in a multi-sector general
equilibrium economy with nominal rigidities and distortionary markups.

In previous work on monetary policy and production networks, researchers have focused
on the demand side of monetary policy in multi-sector New Keynesian economies (see, for
instance, Galı́, 2015; Nakamura and Steinsson, 2010; Carvalho and Nechio, 2011; Pasten et
al., 2017, 2020; Ghassibe, 2021a).3 Several recent papers have explored optimal monetary
policy in economies with production networks. La’O and Tahbaz-Salehi (2022) character-
ized the optimal policy in terms of an economy’s production network and the extent and
nature of nominal rigidities. In a parallel study, Rubbo (2023) emphasized that introduc-
ing intermediate inputs reduces the slope of all sectoral and aggregate Phillips curves in a
dynamic multi-sector model and derived a novel divine coincidence index that the central
bank should target.4 Along this line of research, Afrouzi and Bhattarai (2023) explored how
production linkages amplify the persistence of inflation and GDP responses in multi-sector
dynamic models. Our model builds on similar multi-sector New Keynesian economies,
but takes into account of sectoral initial markups. These initial markups and production
networks help generate the supply-side effect of monetary policy.

This paper also contributes to the literature on the supply-side effect of monetary policy.
The literature has documented evidence of monetary policy on the supply-side of economies.
Evans (1992) found that monetary and fiscal policies Granger-cause measured Solow resid-
uals, and aggregate demand contributes between one quarter and one half to the variance
of these residuals. Barth and Ramey (2002) presented evidence that monetary policy affects
the cost of production and consequently aggregate productivity. Meier and Reinelt (2022)
documented that monetary policy shocks increase markup dispersion across firms and firms
with stickier prices have higher markups. On the theoretical side, Ravenna and Walsh (2006)
presented a model with a cost channel for monetary policy. David and Zeke (2021) studied
business cycle dynamics in a heterogeneous firm economy, and found that resource allo-
cation can strengthen counter-cyclical monetary policy. Meier and Reinelt (2022) showed

Devereux et al. (2023), Osotimehin and Popov (2023), and Pellet and Tahbaz-Salehi (2023). Also see the recent
surveys by Carvalho and Tahbaz-Salehi (2019) and Baqaee and Rubbo (2023).

3See more recent studies by Altinoglu (2021), Ghassibe (2021b), Giovanni and Hale (2022), and Luo and
Villar (2023).

4These studies found that optimal monetary policy isn’t able to implement the efficient flexible price alloca-
tion even if sector specific tax instruments are used to eliminate distortionary markups at the flexible price/wage
equilibrium, which starkly contrasts with the canonical one-sector New Keynesian model (see for instance,
Correia et al. (2008), Angeletos and La’O (2020)).
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that monetary policy shocks can generate substantial fluctuations in aggregate productivity.
Our study complements the existing literature by providing a theoretical exploration of the
supply-side effect in a multi-sector New Keynesian economy. A recent related paper to our
study is Baqaee, Farhi and Sangani (2024), who studied an economy with heterogeneous
firms and endogenous markups and found that monetary policy has a first-order effect on
aggregate productivity by using Kimball (1995) preference. Our work differs from theirs in
two main aspects. First, this paper focuses on the role of production networks in generating
the supply-side effect of monetary policy. Even if all firms have identical initial markups,
there may still be heterogeneity in upstream distortions due to double marginalization along
the supply chain. Second, our paper explores the optimal monetary policy in an economy
with production networks.

Structure of the paper. Section 2 introduces a baseline multi-sector model with input-
output linkages, and explores cost pass-throughs through production networks. Section 3
provides a tractable sufficient statistic to capture the supply-side effect of monetary policy.
Section 4 shows that the supply-side effect of monetary policy flattens the slope of sectoral
Phillips curves. Section 5 derives the optimal conduct of monetary policy. Quantitative
results are reported in section 6. Section 7 concludes. All proofs are delegated to the Online
Appendix.

2 Model

We start with a static model with N industries, and a primary factor, labor. In each
industry i ∈ N ≡ {1, 2, ...,N}, there is a unit mass of monopolistically competitive firms. These
firms hire labor and use N intermediate inputs to produce goods, which can either be used as
intermediate inputs or consumed by households. A representative household supplies labor
to firms and consumes a basket of sectoral goods produced by different industries. Nominal
price rigidity restricts firms’ ability to fully adjust their prices in response to shocks. The
monetary authority controls the supply of money. This model allows us to analyze both the
supply-side effect and the traditional demand-side of monetary policy in a New Keynesian
economy. Armed with this model, we further explore how production networks facilitate
the transmission of monetary policy and shape the optimal conduct of monetary policy.
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2.1 Households

The utility function that a representative household maximizes is as follows,

U(Y,L) =
Y1−γ

1 − γ
−

L1+φ

1 + φ
,

where γ and φ denote the relative risk aversion and the inverse Frisch elasticity of labor
supply, respectively. L is the labor supply and Y is the aggregate final output, which is de-
termined by a constant-returns-to-scale aggregator of final goods produced by N industries,

Y = C(c1, ..., cN) (1)

where ci represents the quantity of sectoral product i consumed by households, andCdenotes
a consumption aggregator with a constant elasticity of substitution σC.

The representative household’s budget constraint is given by

N∑
i=1

pici ≤ wL +
N∑

i=1

Πi − T,

where pi and ci are price and quantity of good i, w denotes nominal wages, Πi is the profit
form sector i, and T is a lump-sum tax collected by the government. The left-hand side of the
inequality above is equal to the household’s nominal expenditure, and the right-hand side
shows various sources of the household’s nominal income, including labor income, profits
from owning firms, and a lump-sum transfer.

2.2 Firms

There exist a unit mass of firms indexed by ν ∈ [0, 1] in each sector. A competitive sectoral
bundler aggregates varieties produced by all the firms within sector i into a sectoral output
using a constant elasticity of substitution (CES) aggregator,

yi =

(∫ 1

0
y
εi−1
εi

i,ν dν
) εi
εi−1

,
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where the within-sector elasticity of substitution is εi > 1. The optimal demand for each
variety is yi,ν =

(
pi,ν/pi

)−εi yi, and sectoral price reads,

pi =

(∫ 1

0
p1−εi

i,ν dν
) 1

1−εi

. (2)

For simplicity, we assume that all firms within each sector have the same constant returns
to scale (CRS) production technology, which uses labor Li,ν and intermediate inputs {xi j,ν}

N
j=1

to produce output yi,ν,
yi,ν = AiFi(Li,ν, {xi j,ν}

N
j=1),

where Ai is industry-specific productivity. Since all firms within an industry use the same
CRS production technology, the cost-minimization problems faced by these firms are iden-
tical and therefore the marginal cost can be written as,

mci ≡ min
{xi j}

N
j=1, Li

wLi +

N∑
j=1

p jxi j,

subjective to a unit production constraint AiFi(Li, {xi j}
N
j=1) = 1. When a firm has a chance to

reset its price, the optimal price and corresponding effective markup are given by, 5

pi = µ̄imci and µ̄i = (1 − τi)
εi

εi − 1
,

where τi is a rate of proportional input subsidies (taxes) that the government pays to firms
in industry i. Markup distortions may exist if policymakers lack a complete set of industry-
specific tax instruments to fully offset monopolistic markups.

2.3 Nominal Rigidities

The literature, for instance, Bils and Klenow (2004), Nakamura and Steinsson (2008, 2010)
and Pasten et al. (2020), shows that there exists notable variation in price change frequencies
across different industries or goods. To capture industry-specific heterogeneity in nominal
price resetting, we allow for firms in different sectors to adjust their prices with different
frequencies. For simplicity but without loss of generality, we assume that firms in sector i are
randomly and mutually independently drawn with probability θi ∈ [0, 1] to freely reset their

5The optimal price is given by: p∗i = argmaxpi,ν

[
(pi,ν − (1 − τi)mci)yi

( pi,ν
pi

)−ϵi
]
.
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product prices, while the remaining 1−θi fraction of firms will keep their prices unchanged.
Firms who can adjust their nominal prices will optimally set markup µ̄i over marginal cost.
Within each sector, the sectoral nominal price is an aggregate of the reset and unchanged
prices, which only partially responds to a change in sectoral marginal cost up to a first order
log-linearization,

d log pi =

∫
d log pi,νdν = θid log mci.

In sectors with high price rigidity (low θi), sectoral prices are less responsive to changes
in their marginal cost.6 The realized markup in sector i then becomes,

d logµi ≡ d log(pi/mci) = −(1/θi − 1)d log pi = −(1 − θi)d log mci. (3)

Due to nominal rigidities (θi ≤ 1), an increase in marginal cost leads to a decrease in
realized markup.

2.4 Policy Instruments

The policy maker may have access to a set of fiscal policy instruments, for instance,
industry-specific subsidies (or taxes), to offset monopolistic markups. We assume that the
government funds its subsidies to production by levying a lump-sum tax T on households,
maintaining a balanced budget,

T =
N∑

i=1

τi

1 − τi
piyi.

Nevertheless, when there are not enough policy instruments to fully offset monopolistic
markups, the allocation in the economy is inefficient even in the absence of nominal price
rigidities. In the following analysis, we take a more practical view and focus on the scenario
in which policy maker isn’t able to fully offset sectoral monopolistic markups. Therefore,
the initial allocation of the economy is distorted.

The monetary authority chooses money supply M, which in turn affects nominal prices
and wages via a cash-in-advance constraint as in Pasten et al. (2020), La’O and Tahbaz-Salehi
(2022) and Devereux et al. (2023):

N∑
i=1

pici = PYY =M,

6Our price resetting mechanism mirrors the sticky price model as outlined in Rubbo (2023) for static scenarios,
and aligns with the sticky information approach described in La’O and Tahbaz-Salehi (2022).
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where PY is the consumer price index defined as min
{ci}

N
i=1
{
∑N

i=1 pici : Y = 1}. Note that PYY
represents the total consumption expenditure and also nominal final output (GDP).

2.5 Equilibrium

In our baseline model, labor is able to move across sectors without any restrictions.
Therefore, the market clearing condition for labor is given by

L =
N∑

i=1

Li =

N∑
i=1

∫ 1

0
Li,νdν.

The output in sector i is either used by firms as inputs for production or consumed by
households,

yi = ci +

N∑
j=1

x ji = ci +

N∑
j=1

∫ 1

0
x ji,νdν,

for all i ∈ N .
The equilibrium is defined as a set of variables, including total output (Y), labor supply

(L), sectoral outputs ({yi}
N
i=1), intermediate inputs ({xi j}

N
i, j=1), labor demands ({Li}

N
i=1), final con-

sumption ({ci}
N
i=1), consumer price (PY), sectoral prices ({pi}

N
i=1) and nominal wages (w), given

exogenous price adjustment probabilities ({θi}
N
i=1), initial markups ({µ̄i}

N
i=1) determined by

industry-specific taxes/subsidies ({τi}
N
i=1) and within-sector substitution elasticities ({ϵi}

N
i=1),

and productivities ({Ai}
N
i=1), such that: (i) in each sector, firms optimally choose intermediate

inputs and labor demand to minimize their costs, and optimally reset their prices when they
have a chance to adjust; (ii) consumers optimally choose consumption and supply labor
given sectoral prices and wages; (iii) the government chooses fiscal instruments {τi}

N
i=1, and

the monetary authority sets monetary supply M; (iv) all markets clear.
An increase in monetary supply M drives up nominal wages and consequently increases

nominal marginal cost of all firms. From the perspective of firms, their marginal cost critically
depends on labor cost since labor is the only primary input in the model economy. Following
Baqaee et al. (2024), we treat nominal wages w as the monetary policy instrument instead
to simplify expressions.7 An increase in nominal wages corresponds to an expansionary
monetary policy and vice versa.

7The monetary authority can equivalently choose either nominal wages or money supply as its instrument.
Lemma 6 in the Appendix, shows that there is an isomorphism between setting nominal wages and money
supply.
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2.6 Production Network and Cost Pass-through

In this section, we examine how production networks and nominal price rigidities alter
the transmission of labor and intermediate input costs. We approximate the model around a
steady state with initial markups {µ̄i}

N
i=1, and obtain a set of log-linearized equations. We then

define three types of input-output matrices that will be used throughout our analysis. The
first two types are cost-based and revenue-based input-output matrices, which are the same
as those in Baqaee and Farhi (2020). The third type, called rigidity-adjusted input-output
matrix, closely follows La’O and Tahbaz-Salehi (2022) and Rubbo (2023). Table 1 presents
these input-output matrices, their associated Leontief inverse matrices, and Domar weights.

Table 1: Input-Output Matrices

Cost-based Revenue-based Rigidity-adjusted

Consumption share bi =
pici∑
j p jc j

- -

Input-output matrix Ω̃i j =
p jxi j

mci yi
Ωi j = µ̄−1

i Ω̃i j Ω̂i j = θiΩ̃i j

Leontief inverse Ψ̃ = (I − Ω̃)−1 Ψ = (I −Ω)−1 Ψ̂ = (I − Ω̂)−1

Domar weight λ̃′ = b′Ψ̃ λ′ = b′Ψ λ̂′ = b′Ψ̂

Notes: Definitions of various input-output matrices and their associated Leontief inverse matrices. To make the
notation compact, we treat labor as an additional producer, who sells aggregate labor to producers of products.
The associated parameters for the labor sector are bL = 0 and µ̄L = θL = 1. We then construct (N + 1) × (N + 1)
input-output matrices where the first N rows and columns correspond to goods, while the last row and column
correspond to labor. Accordingly, pN+1 and w are used interchangeably to denote wages, and xi(N+1) or Li to
represent labor used by sector i. In addition, Λ̃L,ΛL, and Λ̂L stand for the Domar weight of labor associated with
three input-output matrices respectively.

Cost-based input-output matrix. The entry in the cost-based input-output matrix Ω̃i j,
encodes the cost share of input produced by sector j (or labor input when j = N + 1) in
total cost of sector i. This share also measures the elasticity of marginal cost of producers
in sector i with respect to output price of sector j by the Shephard’s lemma. Its associated
Leontief inverse Ψ̃ = (I − Ω̃)−1 = I + Ω̃ + Ω̃2 + Ω̃3 + · · · captures the aggregate elasticity of
marginal cost in sector i with respect to output price in sector j through direct and indirect
use of intermediate inputs in the production network. The last column of Ω̃, denoted by
Ω̃(L), measures the elasticity of sector i’s marginal cost with respect to wages. Similarly the
aggregate elasticity of marginal cost in sector i with respect to wages is captured by the i-th
row of last column of the Ψ̃, denoted as Ψ̃iL.

The elasticity of consumer price PY with respect to output price in sector i is captured
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by consumption share bi. Then the cost-based Domar weight λ̃i can be interpreted as a
consumption-share weighted aggregate elasticity of marginal cost with respect to sectoral
price pi (or wages w when i = N+1). When the resource allocation in the economy is efficient
(without markups and nominal rigidities) and there exists only one primary input, labor, the
value added in each sector then is solely contributed by labor income, and the elasticity of
consumer price PY with respect to wages then can be written as d log PY/d log w = b

′

Ψ̃(L) ≡

Λ̃L = 1 since Ψ̃iL = 1 for all sectors.
Revenue-based input-output matrix. The element of revenue-based input-output ma-

trix Ωi j, represents the share of sector i’s expenditure on input produced by sector j to
sector i’s total revenue. Let µ̄−1 be a diagonal matrix whose ii-th diagonal element is
1/µ̄i. Similar to the cost-based Leontief matrix, the revenue-based Leontief matrix Ψ =
I + µ̄−1Ω̃ + (µ̄−1Ω̃)2 + (µ̄−1Ω̃)3 + · · · captures both direct and indirect use of intermediate in-
puts through the production network. In particular, the last column of the Leontief inverse,
denoted by Ψ(L), records the total payments to labor as a share of sales in each sector by
taking into account the fact that intermediate inputs are produced by labor as well. Similarly,
the revenue-based Domar weight λ j reflects the total exposure of households to sector j by
taking into account of consumption expenditure shares and input-output linkages. This
Domar weight also coincides with the sales share for each sector. The revenue-based Domar
weight of labor ΛL, precisely gives the labor income share in nominal output, ΛL =

wL∑
i pici

.
When evaluated at an inefficient equilibrium (i.e., µ̄ ≥ 1), both ΨiL and ΛL are bounded

between 0 and 1. Moreover, they weakly decrease in sectoral initial markups {µ̄i}
N
i=1: a

higher degree of distortion in the supply chain of sector i leads to a lower value of ΨiL and
ΛL. Specifically,ΨiL captures the faction of accumulated direct and indirect labor cost along
the production chain in sectoral sales, and therefore,ΨiL can serve as a measure of upstream
markup faced by sector i (lowerΨiL implies a higher upstream markup). Note also that for
each sector, the upstream markupΨiL is no larger than its counterpart in an economy without
input-output linkages, µ̄−1

i , implying that production networks amplify upstream markups
through double marginalization.8 Labor income share ΛL reflects an average distortion
in the economy since labor is the only primary input. The higher distortion an economy
experiences, the lower labor income share.

Rigidity-adjusted input-output matrix. Nominal price rigidities limit nominal price
responses to cost changes. To better understand how input costs are transmitted through a
production chain in a network economy with these rigidities, we adopt the methodologies
proposed by La’O and Tahbaz-Salehi (2022) and Rubbo (2023) by introducing a new input-

8See Lemma 5 in Online Appendix.

12



output matrix, the ‘rigidity-adjusted input-output matrix’ Ω̂. Each element Ω̂i j of this matrix
quantifies the direct pass-through of sector j’s price change to sector i’s price change,

Ω̂i j ≡
∂ log pi

∂ log p j
=

∂ log pi

∂ log mci

∂ log mci

∂ log p j
= θiΩ̃i j.

The associated Leontief inverse matrix Ψ̂ = I + ΘΩ̃ + (ΘΩ̃)2 + (ΘΩ̃)3 + · · ·measures the
overall pass-through of one sector’s price to another sector’s price, directly and indirectly,
through the production network. Analogously, the direct pass-throughs of nominal wages
to prices are captured by the last column of rigidity-adjusted input-output matrix, denoted
by Ω̂(L), and the overall wage pass-throughs are given by the corresponding Leontief inverse
Ψ̂(L), which accounts for the total exposure of sectors to labor cost. Finally, by using consump-
tion shares as weights, rigidity-adjusted Domar weight of labor Λ̂L aggregates the overall
wage pass-through Ψ̂(L) across sectors, and also reflects the overall wage pass-through into
consumer price since d log PY/d log w = Λ̂L.

Similar to the revenue-based input-output matrix, sectoral wage pass-through Ψ̂iL is no
larger than its own probability of price adjustment θi, for all i. The use of intermediate
inputs from sticky upstream sectors results in more sluggish nominal price adjustments
(Basu, 1995). The pass-through of nominal wages into sectoral price Ψ̂iL and consumer price
Λ̂L weakly increases in price adjustment probability {θi}

N
i=1, with both measures bounded

between 0 and 1.
Additional notations. We introduce additional notations to simplify our analysis. The

superscript n denotes a specific segment within a matrix or a vector. For instance,Ψn denotes
an N ×N sub-matrix consisting of the first N rows and columns of matrixΨ. Similarly,Ψn

(L)
refers to an N × 1 vector containing the first N elements of Ψ(L). d log p is an (N + 1) × 1
vector, with last component d log pN+1 = d log w. π denotes sectoral price inflation (the first
N components of vector d log p). We introduce the following weighted covariance operator
similarly to Baqaee and Farhi (2020),

CovΩ̃( j,:)

(
Ψ̂iL,ΨiL

)
=

∑
i

Ω̃ jiΨ̂iLΨiL −

∑
i

Ω̃ jiΨ̂iL


∑

i

Ω̃ jiΨiL

 ,
where Ω̃( j, :) represents the j-th row of matrix Ω̃, and note that

∑
i Ω̃ ji = 1. The covariance

will be zero when sectoral exposure to labor, measured either by upstream markup (ΨiL)
or wage pass-through (Ψ̂iL), is uniform across sectors. For instance, when firms freely reset
their prices, wage pass-through is complete, Ψ̂iL = 1 for all i; alternatively, in absence of
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initial markups, the upstream markup is ΨiL = 1 for all i. Note also that when sector j
corresponds to labor sector, Ω̃Li = 0 for all i by construction. The structure of production
network also determines this covariance. For instance, in a vertical economy where sector j
exclusively relies on a single input from sector i, this leads to Ω̃ ji = 1 for sector i and Ω̃ jk = 0
for all other sectors k , i, thereby resulting in a zero covariance. In general, the covariance
CovΩ̃( j,:)

(
Ψ̂iL,ΨiL

)
could be positive or negative, depending on initial markups, nominal

rigidities and production networks.

3 Supply-Side Effect of Monetary Policy

Monetary policy changes the unit of account in the model economy and hence affects
nominal wages and sectoral prices. When prices are fully flexible, monetary policy cannot
affect resource reallocation and is thus neutral. However, when sectoral prices are sticky,
wage pass-through to sectoral prices can vary across sectors in response to monetary policy
shocks, leading to changes in relative sectoral prices. In an economy with initial distortions,
relative price changes shift households’ and downstream sectors’ demand for goods pro-
duced by upstream sectors, and result in reallocation of labor and intermediate inputs across
sectors, which in turn may lead to improvement in resource allocation. This section will
investigate the conditions under which monetary policy improves total factor productivity
(TFP) and the supply-side effect of monetary policy.

3.1 Total Factor Productivity

Our baseline model is a nested CES economy, as explored by Baqaee and Farhi (2020).
The elasticity of substitution in production in sector i, Fi(Li,ν, {xi j,ν}

N
j=1), is σi. Since labor is

the only primary input in our model, TFP is equivalent to labor productivity, d log TFP =
d log Y − d log L.

Theorem 1 provides a decomposition for TFP changes in response to changes in sectoral
productivity d log A j and monetary policy. The expression (4) shows that a change in TFP
can be broken down into two components: a direct technology channel and a misallocation
channel. The direct technology channel is governed by the sum of distortion-adjusted (

Ψ jL

ΛL
)

Domar-weighted (λi) sectoral productivity changes (d log A j). The misallocation channel
captures the impact of allocative efficiency through reallocation of resources across sectors
in response to exogenous shocks, which critically depends on the aggregate wedge (captured
by the average markup 1/ΛL), elasticity of substitution among inputs in both consumption
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and production (σ j), the ratio of sectoral cost to GDP (λ j/µ̄ j), and the covariance between
sectoral price change (d log pi) and upstream markup (ΨiL).

Theorem 1. In response to sectoral productivity and monetary policy shocks, the change in TFP is
governed by

d log TFP =
N∑

j=1

λ j
Ψ jL

ΛL
d log A j︸                 ︷︷                 ︸

Direct technology channel

+
1
ΛL

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j,:)

(
d log pi,ΨiL

)
︸                                       ︷︷                                       ︸

Misallocation channel

(4)

with σ0 = σC, λ0 = 1, µ̄0 = 1 and Ω̃(0, :) = b′.

Theorem 1 demonstrates that sectoral productivity shocks influence TFP not only through
the direct technology channel but also via the misallocation channel, as these shocks impact
sectoral prices as well. In contrast, monetary policy affects TFP exclusively through the
misallocation channel. Note that this misallocation channel is absent when all cross-sector
elasticities of substitution are zero. The reason is that reallocation of labor and intermediate
inputs across sectors is induced by relative changes in sectoral demands, which are caused
by relative price changes in response to monetary policy shocks. If elasticities of substitution
among sectoral products in consumption and production are zero (σ j = 0,∀ j), relative price
movements cannot change households and firms relative demand, and therefore, there is no
reallocation of resources and consequently no change in TFP in response to monetary policy
shocks.

If the government can completely offset all of monopolistic markups by using a set
of industry-specific taxes/subsidies {τi}

N
i=1, such that there are no markups in the initial

equilibrium (µ̄ = 1), then our model is degenerated to the frameworks of La’O and Tahbaz-
Salehi (2022) and Rubbo (2023). In such a scenario, where the initial equilibrium is efficient
(ΨiL = ΛL = 1,∀i), the misallocation channel disappears, and Theorem 1 reverts to Hulten’s
Theorem (Hulten, 1978). The reason is that although relative price changes in response to
shocks alternate relative demand for goods produced by different sectors, marginal product
of inputs in sectors facing higher demand is the same as that in sectors experiencing lower
demand in equilibrium, and therefore these marginal products of inputs induced by the
opposite shift of demand exactly cancel each other out based on the Envelop theorem.
Consequently there is no additional gain from resource reallocation, even with nominal
rigidities in place.

Nevertheless, when the initial allocation of resources is inefficient due to monopolistic
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markups, products from sectors with initial markups are under-supply compared to the
socially optimal supply of goods. In an economy with production networks, this under-
supply is further amplified via double marginalization through production chains. In the
following analysis, we focus on how monetary policy affects resource allocation across
sectors, and highlight under what conditions, monetary policy is able to improve total factor
productivity.

3.2 Supply-Side Effect

As stated in section 2.4, the fact that the monetary authority controls the money supply
is equivalent to its direct influence on nominal wages. So in this section, we consider only a
change in monetary policy and treat a change in nominal wages d log w as a monetary policy
instrument instead, while assuming sectoral productivities unchanged. The supply-side
effect of monetary policy is defined as the response of TFP to a change in monetary policy
(see Definition 1).

Definition 1. The supply-side effect of monetary policy is defined as the response of Total Factor
Productivity to a change in monetary policy, given primary inputs and other exogenous shocks
constant.

Combining expressions for changes in TFP, labor income share, and wage pass-through
to consumer price, the supply-side effect of monetary policy can be written as,

d log TFP
d log w

= 1 −
d log PY

d log w︸    ︷︷    ︸
Λ̂L

−
d logΛL

d log w︸    ︷︷    ︸
�ξ

= 1 − Λ̂L − ξ,

where Λ̂L stands for wage pass-through to consumer price, and ξ denotes elasticity of labor
income share to nominal wages. Substituting wage path-through to sectoral price d log pi

d log w =

Ψ̂iL into equation (4) in Theorem 1, we obtain one of key results in this study in Proposition
1. This proposition shows that the supply-side effect of monetary policy is driven by the
misallocation channel, which can be further characterized by model primitives in terms
of production networks, nominal rigidities, initial markups, and cross-sector elasticities of
substitution.
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Proposition 1. The supply-side effect of monetary policy is given by the following sufficient statistic,

1 − Λ̂L − ξ =
1
ΛL
σCCovb

(
Ψ̂iL,ΨiL

)
︸                     ︷︷                     ︸

Reallocation due to
substitution in consumption

+
1
ΛL

N∑
j=1

σ jλ j

µ̄ j
CovΩ̃( j,:)

(
Ψ̂iL,ΨiL

)
︸                                  ︷︷                                  ︸

Reallocation due to
substitution in production

. (5)

The supply-side effect in equation (5) depends on the average distortion, elasticities
of substitution and the weighted covariance between wage pass-throughs (Ψ̂iL) and up-
stream markups (ΨiL) for consumer and each producer. When sectors with higher upstream
markups tend to exhibit lower wage pass-throughs and hence stickier prices, and vice versa,
sectors with higher upstream markups will raise their prices to a less extent than sectors
with lower upstream markups in response to an expansionary monetary policy shock, im-
plying that prices of higher upstream markup sectors become relatively cheaper than those
of lower upstream markup sectors. A lower relative sectoral price leads to a higher demand
and output. As a result, both labor and intermediate inputs will be re-allocated from sec-
tors with lower upstream markups to sectors with higher upstream markups. Note that
marginal product of input in sectors with higher upstream markups is greater than that in
sectors with lower upstream markups. Consequently, this reallocation of resources leads to
an improvement in TFP. Given positive elasticities of substitution and covariances, a more
distorted economy (with a lowerΛL) leads to a higher supply-side effect of monetary policy.

The use of sectoral output can be divided into two groups, consumption and downstream
production. We label the supply-side effect from the former as the channel of reallocation
due to substitution in consumption, while the latter as the channel of reallocation due to
substitution in production. The reallocation channel from downstream production depends
positively on elasticity of substitution, the ratio of sectoral cost to GDP, and a covariance term.
Note that reallocation due to substitution in production only occurs in network economies. In
an economy without input-output linkages, such reallocation mechanism is absent, and the
supply-side effect of monetary policy is entirely attributed to substitution in consumption.
In contrast to Baqaee et al. (2024), where a uniform initial markup across all firms nullifies the
supply-side effect, our analysis reveals that the presence of input-output linkages introduces
an additional layer of heterogeneity in the distribution of upstream distortions (ΨiL). Due
to double marginalization along a supply chain and the fact that production processes are
generally not symmetric across sectors, even when all firms in our economy have identical
initial markups (µ̄i = µ̄∗,∀i ∈ N), there still exists heterogeneity in upstream distortions,
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leading to an inefficient allocation of resources across sectors.
Another point worth of emphasizing is that the mechanisms of substitution in consump-

tion and production operate quite differently due to different roles of labor in consumption
and production. In consumption, the substitution is restricted among different sectoral prod-
ucts (bL = 0), while in production, labor is a critical input (Ω̃iL > 0,∀i ∈ N), and the substitu-
tion occurs among intermediate inputs and between intermediate inputs and labor. To see
this point clearly, we consider a scenario where sectoral prices are fully rigid (see Corollary 1).
In such a scenario, there are no relative price changes among sectoral products, and accord-
ingly, there is no reallocation due to substitution in consumption. Nevertheless, there is still
a relative price change between intermediate inputs and labor (Ψ̂iL = 0 < Ψ̂LL = 1,∀i ∈ N),
which allows for reallocation in production to generate a supply-side effect. Specifically, in
response to an expansionary monetary shock, firms substitute labor for intermediate inputs
since nominal wages rise while nominal sectoral prices remain unchanged. This reallocation
towards intermediate goods enhances economy-wide allocative efficiency. This is because
sectoral outputs are under-supply due to double marginalization (ΨiL ≤ ΨLL = 1,∀i ∈ N),
and taking use of more intermediate inputs leads to higher value added in the whole econ-
omy.

Corollary 1. If sectoral prices are fully-rigid and initial markups are non-negative in all industries
(θ j = 0 and µ̄ j ≥ 1, ∀ j ∈ N), it follows that

1 − Λ̂L − ξ = 0

︸︷︷︸
Reallocation due to

substitution in consumption

+
1
ΛL

N∑
j=1

σ jλ jΩ̃ jL(µ̄−1
j −Ψ jL)

︸                            ︷︷                            ︸
Reallocation due to

substitution in production

≥ 0.

Equation (5) also shows that elasticity of substitution plays an essential role in deter-
mining the supply-side effect. Given the covariance terms unchanged, the more elastic of
substitution among sectoral goods in consumption and/or among sectoral inputs in pro-
duction, the larger the supply-side effect. The reason is that the demand from households
and firms responds more strongly to relative sectoral price changes when the elasticity of
substitution is higher. This implies that monetary policy has a greater impact on resource
reallocation.
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3.3 Illustrative Examples

To better understand how our model works, we explore three simple network economies
to illustrate the decomposition in Proposition 1.

Example 1. A Vertical Economy

Consider first a vertical supply chain where the most upstream sector N produces good
N using labor, while each of other sectors i , N uses output produced by its immediate
upstream sector i + 1 as an intermediate input, with households consuming only output
produced by sector 1. In this economy, there is only one feasible allocation of resources for
a given level of labor supply, implying that the misallocation channel through monetary
policy is absent.

One can verify that the sufficient statistic 1− Λ̂L − ξ becomes zero since there is only one
final good and one input involved in both consumption and sectoral production. Therefore
the support of Ω̃( j, :) and b degenerates to a single point, which yields,

Covb

(
Ψ̂iL,ΨiL

)
= 0 and CovΩ̃( j,:)

(
Ψ̂iL,ΨiL

)
= 0,∀ j ∈ N .

Example 2. A Horizontal Economy

In a horizontal economy, each sector i ∈ N only uses labor to produce goods, which
are sold directly to households. Given the absence of input-output linkages, the horizontal
economy can be regarded as an economy with heterogeneous firms. When there is hetero-
geneity in markups, the cross-sector resource allocation is inefficient, providing an avenue
for monetary policy to affect TFP. From Proposition 1, the sufficient statistic of supply-side
effect of monetary policy can be simplified as,

1 − Λ̂L − ξ = σC
Covb(θ, µ̄−1)
Eb(µ̄−1)︸             ︷︷             ︸

Reallocation due to
substitution in consumption

+ 0︸︷︷︸
Reallocation due to

substitution in production

.

Note that there is no substitution in production since labor is the only input in each sector
in this horizontal economy. The misallocation channel is driven entirely by substitution
in consumption, characterized by the covariance between price rigidities (θ) and inverse
of markups (µ̄−1), using expenditure shares as weights. This result echoes the insight
of Baqaee et al. (2024), which emphasizes that the response of TFP to monetary policy
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critically depends on the correlation between firms’ markups and price rigidities in an
economy with heterogeneous firms. In response to an expansionary monetary shock in
our model, sectors with rigid prices (lower θi) increase their prices to a less extent than
those with more flexible prices, leading to a reallocation of resources towards sectors with
high price rigidities. If sectors with less flexible prices tend to have high initial markups,
Covb(θ, µ̄−1) > 0, monetary easing shifts resources from sectors with low markups to sectors
with high markups, resulting in an improvement in allocative efficiency and therefore an
increase in TFP. In addition, a higher average distortion (larger 1/Eb(µ̄−1)), given Covb(θ, µ̄−1)
remains unchanged, further amplifies the supply-side effect.

Example 3. A Roundabout Economy

Now, consider a one-sector roundabout economy in which a representative firm combines
labor and its own goods by using a CES production function with elasticity of substitution
σ1,

y1

ȳ1
= A1

(1 − α)
(x11

x̄11

) σ1−1
σ1
+ α

(
L1

L̄1

) σ1−1
σ1


σ1
σ1−1

,

where α ∈ (0, 1) represents the labor share in production. According to Proposition 1, it
follows that:

1 − Λ̂L − ξ = 0︸︷︷︸
Reallocation due to

substitution in consumption

+ (1 − α)σ1
1 − θ1

1 − (1 − α)θ1

1 − µ̄−1
1

1 − (1 − α)µ̄−1
1︸                                           ︷︷                                           ︸

Reallocation due to
substitution in production

.

In contrast to the horizontal economy in Example 2, this roundabout economy has a single
final good in the consumption basket, and therefore no reallocation occurs due to substitution
in consumption. Nevertheless, a positive supply-side effect still arises from substitution in
production when sectoral price is rigid (θ1 < 1), elasticity of substitution is positive (σ1 > 0)
and there exists an initial distortion (µ̄1 > 1). In response to an expansionary monetary
shock, firms substitute labor with intermediate inputs in production. This substitution
occurs because wage pass-through is incomplete due to nominal rigidity (d log p1 < d log w,
or Ψ̂1L =

αθ1
1−(1−α)θ1

< 1). This reallocation of resources towards intermediate goods enhances
allocative efficiency, since intermediate input is under deployed relative to the socially

optimal level (Ψ1L =
αµ̄−1

1
1−(1−α)µ̄−1

1
< 1).

Note also that the supply-side effect decreases in α. This is because wage pass-through
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becomes weaker (smaller Ψ̂1L) and upstream markup is larger (smaller Ψ1L) when there
exists more ”roundaboutness” in production (lower α), resulting in a larger reallocation
in production. Another point worth of emphasizing is that the supply-side effect is more
pronounced when firms suffer more initial distortions (higher µ̄1) or price rigidity (lower θ1).
The reason is that a stickier price is associated with a larger increase in real wages in response
to an expansionary monetary policy, which in turn pushes firms more intensively taking use
of intermediate inputs, and therefore, labor productivity rises. Following a similar logic, by
using more intermediate inputs, an economy with a higher initial markup generates a higher
gain from harvesting larger marginal product of input, and accordingly the supply-side effect
becomes stronger.

4 Output Response and Phillips Curve

Monetary policy not only affects households’ labor supply through the intratemporal
decision between consumption and leisure, but may also change the allocation of labor and
intermediate inputs across sectors. In this section, we will explore how monetary policy
changes real output through its traditional New Keynesian demand-side effect and also the
supply-side effect explored in the previous section. In addition, we will show that a positive
supply-side effect can flatten the slopes of all sectoral Phillips curves.

4.1 Output Response

Given the specification of households’ preference, the elasticity of real final output with
respect to money supply is given by Proposition 2. It shows that the response of real output
to a change in money supply can be decomposed into two components up to a first-order
approximation: a supply-side effect that arises from a change in allocative efficiency, and
a demand-side effect due to nominal price rigidities that has been studied in the New
Keynesian models with production networks such as Pasten et al. (2020), La’O and Tahbaz-
Salehi (2022), Afrouzi and Bhattarai (2023), Rubbo (2023) and Baqaee et al. (2024).

The demand-side effect arises from the endogenous response of labor supply to a change
in money supply. When the monetary authority expands the money supply, nominal wages
increase, but sectoral prices, along with consumer prices, might not respond to the same
extent due to price rigidities. This incomplete wage pass-through to consumer price (Λ̂L < 1)
results in a rise in real wages, which in turn leads households to supply more labor to firms,
particularly when the wealth effect on labor supply is relatively weak (small γ). For the

21



supply-side effect, Proposition 2 explicitly shows how TFP responds to monetary policy.
When 1 − Λ̂L − ξ > 0, an expansionary monetary policy increases total factor productivity,
and vice versa.

Another point worth of emphasizing is that the Frisch elasticity of labor supply 1/φ
also determines the magnitude of supply-side effect of monetary policy. We find that a
less elastic labor supply (higher φ) enhances the supply-side effect. This is because with
a less elastic labor supply, changes in nominal wages due to shocks are more pronounced,
while the labor supply itself remains relatively unresponsive to these changes. In a model
featuring price rigidities and initial markups, this larger response in nominal wages leads
to more significant changes in ex-post markups, thus amplifying the supply-side effect. In
an extreme case where labor supply becomes completely inelastic, as φ → ∞, monetary
policy has no impact on labor supply. In such a scenario, the supply-side effect is given by
d log TFP/d log M = (1 − Λ̂L − ξ)/(1 − ξ), which is independent of households’ preferences.

Proposition 2. Following a monetary shock, the output response can be broken down into supply-
and demand-side effects

d log Y
d log M

=
d log TFP
d log M︸      ︷︷      ︸

Supply-side effect

+
d log L
d log M︸   ︷︷   ︸

Demand-side effect

=
1 − Λ̂L + φ(1 − Λ̂L − ξ)

1 + (γ − 1)Λ̂L + φ(1 − ξ)
, (6)

specifically,

d log TFP
d log M

=
(γ + φ)(1 − Λ̂L − ξ)

1 + (γ − 1)Λ̂L + φ(1 − ξ)
and

d log L
d log M

=
1 − Λ̂L − γ(1 − Λ̂L − ξ)

1 + (γ − 1)Λ̂L + φ(1 − ξ)
.

Our findings here are closely related to recent studies on production networks, but differ
from the literature in several aspects. Specifically, compared to La’O and Tahbaz-Salehi
(2022) which examines monetary non-neutrality in an efficient economy with input-output
linkages, our demand-side effect replicates their Proposition 5 when we eliminate initial
wedges. However, their model does not account for any supply-side effect, while our paper
investigates both the supply-side and demand-side effects of monetary policy. Additionally,
our work relates to Baqaee et al. (2024), which also decomposes the output response into
supply- and demand-side effects. However, our approach differs from theirs in two aspects.
First, the demand-side effect in our model is defined as the response of labor, which includes
an adjustment resulting from the misallocation channel,−γ(1−Λ̂L−ξ), whereas they attribute
this component of labor response to the supply-side. Second, we examine the supply-side
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and demand-side effects of monetary policy in an economy with production networks,
without relying on any real rigidities to generate significant supply-side effects.

4.2 The Divine Coincidence Condition

In an economy with initial distortions, the misallocation channel may have a first-order
impact on TFP. Up to a first order approximation, the misallocation channel in equation (4)
can be written as the difference between an output gap ỹ (the logarithmic difference between
sticky-price and flexible-price equilibria) and an employment gap l̃, which can be further
expressed as a weighted sum of sectoral price inflation πk,

ỹ − l̃ =
N∑

k=1

 1
ΛL

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j)

(
Ψ̃ik,ΨiL

) (1 − θ−1
k )

︸                                                ︷︷                                                ︸
� Jk

πk � J
′π,

where J is an N × 1 vector with the k-th component Jk measuring the impact of sector k’s
inflation on allocative efficiency. A largerJk implies that a given level of sectoral inflation πk

could generate a greater improvement in allocative efficiency. Jk increases when substitution
of inputs in production and substitution of varieties in consumption become more elastic,
and the covariances between desired pass-throughs of sectoral inflation πk to downstream
sectors and upstream markups are greater in magnitude, in addition to stickier price and
larger size in sector k.9 Note also that when the initial allocation is efficient, the misallocation
channel is absent (J = 0).

From households labor supply and firms optimal conditions, output gap ỹ and sectoral
price inflation rates π can be linked via a divine coincidence condition in Lemma 1, which
reflects a trade-off between output gap and sectoral inflation without a cost-push term. The
divine coincidence condition shows that when aggregate output exceeds that in the flexible
price equilibrium, price inflation on average has to rise to make firms produce more output.
Nevertheless, in a multi-sector economy, closing output gap ỹ = 0 does not necessarily
simultaneously stabilize price inflation in all sectors.

Lemma 1. Assume no sector has fully rigid prices (θi , 0,∀i). The divine coincidence condition in

9In a Cobb-Douglass economy, the big bracket in Jk can be simplified by using Lemma 8 in the Appendix

as, 1
ΛL

∑N
j=0

λ j
µ̄ j

CovΩ̃( j,:)

(
Ψ̃ik,ΨiL

)
= λk

ΨkL
ΛL
− λ̃k. Then, Jk = (λk

ΨkL
ΛL
− λ̃k)(1 − θ−1

k ) = λ̃k(1 − λk
λ̃k

ΨkL
ΛL

)(θ−1
k − 1).
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a distorted economy is given by:

(γ + φ)ỹ = [λ̃′(Θ−1
− I) + φJ ′]π. (7)

There are two components in the coefficients of sectoral price inflation on the right hand
side of equation (7). The first component λ̃′(Θ−1

− I) captures cost-based Domar-weighted
sectoral price rigidities, as emphasized by Rubbo (2023), implying that for a given level of
sectoral inflation, sectors with stickier prices and larger sizes have a greater impact on real
output. The second component demonstrates a scenario where if sectoral price movements
enhance allocative efficiency (i.e.,J ′π > 0), sectoral inflation would further increase output.
This effect is amplified by the inverse of Frisch elasticity, as the misallocation channel has
more pronounced effects on output with a less elastic labor supply (see Proposition 2). In
an extreme case where labor supply is fully elastic (as φ approaches zero), the misallocation
channel becomes irrelevant to the divine coincidence condition and output response is
independent of resource reallocation since any improvement in TFP due to reallocation is
precisely offset by its adverse impact on labor supply.

4.3 Phillips Curves

Combining the divine coincidence condition with sectoral inflation π = Ψ̂n
(L)d log w −

Ψ̂nΘd log A, we obtain a wage Phillips curve,

[1 − Λ̂L + φ(1 − Λ̂L − ξ)]d log w = (γ + φ)ỹ + (λ̃′ − λ̂′Θ + φJ ′Ψ̂nΘ)d log A.

The coefficient of the change in nominal wages comprises two components: one reflects
an increase in real wages (1 − Λ̂L) due to nominal rigidities, and the other is driven by the
misallocation channel. Rearranging the coefficient of wage inflation to the right-hand side
of the equation above, we obtain the wage Phillips curve, which is flatter relative to the
benchmark model without initial markups when resource allocation becomes more efficient
following shocks and labor supply is not fully elastic. The reason is that in response to a
positive output gap ỹ, wages must rise to attract more labor to support additional output.
However, enhanced allocative efficiency decreases firms’ labor demand, thereby moderating
the required increase in wages.

Note that sectoral value added is generated by labor through both direct labor input and
indirect labor input from its upstream sectors. Therefore, a dampened wage inflation in
response to output gap implies that firms adjust their product prices to a less extent when
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there exists a positive supply-side effect. Combining the wage Phillips curve with explicit
expressions for sectoral inflation rates, Proposition 3 presents sectoral Phillips curves in the
economy with initial distortions. It states that all sectoral price inflation Phillips curves
become flattened when expansionary monetary policy improves allocative efficiency.

Proposition 3. Sectoral Phillips curves in a distorted economy are given by

π︸︷︷︸
N×1

= K︸︷︷︸
N×1

ỹ + V︸︷︷︸
N×N

d log A︸  ︷︷  ︸
N×1

(8)

where K and V denote the slope and residual coefficient matrix of the Phillips curves, respectively.
Specifically,K is an N × 1 vector given by

K =
γ + φ

1 − Λ̂L + φ(1 − Λ̂L − ξ)
Ψ̂n

(L),

andV is an N ×N matrix defined as

V =
1

1 − Λ̂L + φ(1 − Λ̂L − ξ)
Ψ̂n

(L)(λ̃
′
− λ̂′Θ + φJ ′Ψ̂nΘ) − Ψ̂nΘ.

When the initial equilibrium is efficient, sectoral Phillips curves are then in line with
Proposition 2 in Rubbo (2023). Input-output linkages make sectoral Phillips curves flatter
through compounded price rigidities. In our model economy with initial distortions, sectoral
Phillips curves are further flattened due to improvement in allocative efficiency. The reason
is that when monetary expansion improves allocative efficiency, the supply-side effect brings
up higher output but without much increase in inflation. Following a similar logic, other
aggregate Phillips curves, including consumer price Phillips curve, which uses expenditure
shares as weights, also flatten due to the supply-side effect of monetary policy. We summarize
these results in Corollary 2.

Corollary 2. In a distorted economy, wage, sectoral, and aggregate Phillips curves become flatter if
an expansionary monetary policy improves allocative efficiency.

5 Optimal Monetary Policy

The divine coincidence condition in Lemma 1 reveals that sectoral price inflation and
output gap may not be stabilized simultaneously. Additionally, the presence of a supply-
side effect of monetary policy allows the monetary authority to stimulate the economy to
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improve allocative efficiency, which in turn results in an inflation bias. This section will
explore the optimal monetary policy.

5.1 Welfare Function

Our model economy features two frictions: nominal rigidities and initial markups. On
the one hand, higher price dispersions both within and across sectors due to nominal rigidi-
ties reduce welfare (see, for instance, La’O and Tahbaz-Salehi, 2022; Rubbo, 2023). On the
other hand, an economy with initial markups produces lower output than that without
markups, and therefore, the monetary authority may use its policy instruments to boost up
output as in Galı́ (2015). Proposition 4 below provides a second-order approximation of
households welfare around a distorted flexible price equilibrium. The welfare function in
equation (9) comprises five terms: a first-order bias, output gap volatility, within-sector and
cross-sector price dispersions, and variations in allocative efficiency.

Proposition 4. Under the assumption of small distortions, up to second-order approximation, the
welfare function is given by

W = (1 −ΛL)ỹ + ΛLJ
′π︸                  ︷︷                  ︸

First-order bias

−
γ + φ

2
(ỹ −

1 + φ
γ + φ

J
′π)2︸                         ︷︷                         ︸

Volatility of output gap

−
1
2
π′H1π︸      ︷︷      ︸

Within-sector price dispersion

−
1
2
π′H2π︸      ︷︷      ︸

Cross-sector price dispersion

−
γ − 1

2
1 + φ
γ + φ

π′JJ ′π︸                      ︷︷                      ︸
Variation in allocative efficiency

(9)

whereH1 = diag(ϵ)diag
(
(θ−1

− 1) ◦ λ ◦
Ψ(L)
ΛL
−J

)
andH2 = (I−Θ−1)B(I−Θ−1) are N×N matri-

ces, with B defined as an N ×N matrix where each element B(k, l) equals
∑

j σ jλ jCovΩ( j,:)(Ψik,Ψil).

The first term in equation (9) represents a first-order bias, characterized by the aggregate
wedge weighted sum of output gap ỹ and allocative efficiency J ′π. The weight on output
gap, 1 − ΛL, measures the aggregate wedge between natural and efficient levels of output.
When some sectors exhibit positive markups (µ̄ j > 1 for some j, and µ̄i ≥ 1 for others), these
markups propagate through production networks and lead to a positive aggregate wedge.
Monetary policy could obtain first-order welfare gains by driving the economy up towards
its efficient production frontier.

The second term illustrates a welfare loss due to output volatility, captured by an effective
output gap, ỹ − 1+φ

γ+φJ
′π. This effective output gap is a weighted average of output and
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employment gaps, reflecting a trade-off between closing these two gaps when they diverge.
When an expansionary monetary policy is able to improve allocative efficiency, J ′π > 0,
output in the economy will increase but without much welfare loss caused by inflation.
Therefore, output should be stabilized around an efficiency-adjusted target.

The third and fourth terms in the welfare function characterize welfare losses due to
within-sector and cross-sector price dispersions, respectively. Within each sector, firms with
and without the opportunity to adjust prices in response to shocks may experience different
prices. This price dispersion leads to within-sector distortions since resources are inefficiently
allocated to firms with lower prices. Similarly, sectoral prices may not adjust uniformly to
changes in input costs due to nominal rigidities and input-output linkages, resulting in
lower welfare. This cross-sector price dispersion contributes to a second-order misallocation
effect (La’O and Tahbaz-Salehi, 2022 and Rubbo, 2023). Specifically, in a distorted horizontal
economy, the cross-sector price dispersion can be written as,

1
2
π′H2π =

1
2
σCVarβ(d logµi),

whereβdenotes a vector of weights in the variance operator, with elementβk = bkµ̄
−1
k /Eb(µ̄−1

k ).
The right hand side of the expression above is a measure of second-order misallocation effect
as in Hsieh and Klenow (2009).10 Higher price dispersion across sectors results in lower TFP
and welfare.

The last term in equation (9) shows welfare cost due to variations in allocative efficiency.
A key parameter that determines the sign of this term is γ, which captures the wealth effect
on labor supply. When resource allocation improves in response to shocks, J ′π > 0, TFP
increases accordingly, resulting a higher level of output and households income, given other
conditions unchanged. If the wealth effect on labor is strong, γ > 1, higher income from a
better resource allocation dampens the response of labor supply, resulting in lower welfare,
and vice versa. The knife-edge case is whenγ = 1, where this variation in allocative efficiency
does not generate any welfare loss.

5.2 Optimal Policy

Optimal monetary policy maximizes the welfare functionW in Proposition 4 by choosing
output gap and sectoral inflation rates, subject to sectoral Phillips curves in Proposition 3.

10In Hsieh and Klenow (2009), the negative effect of distortions on TFP is summarized by the variance of log
TFPR: 1

2σCVar(d log TFPRi). Under constant returns to scale, changes in TFPR coincide with changes in markups:
d log TFPRi = d logµi.
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In a multi-sector model with input-output linkages and various frictions, a central bank
equipped with a single policy instrument generally isn’t able to close all of gaps shown
in the welfare function. On one hand, the central bank must balance the output gap,
sectoral inflation rates, and allocative efficiency, all of which contribute to second-order
welfare losses. On the other hand, in an economy with initial distortions, the central bank
encounters an additional trade-off: balancing second-order welfare losses against first-order
welfare gains. This additional trade-off results in an inflation bias. Proposition 5 presents
the condition for sectoral inflation rates under the optimal monetary policy.

Proposition 5. The optimal monetary policy is an inflation stabilization policy with a bias, which is
determined by the following condition,λ̃

′(Θ−1
− I) −J ′︸               ︷︷               ︸

Output gap

+
γ + φ

ξ
(Ψ̂n

(L))
′
H︸            ︷︷            ︸

Price dispersion

+
(1 + φ)(γ − 1)(1 − Λ̂L − ξ)

ξ
J
′︸                                ︷︷                                ︸

Variation in allocative efficiency

π
= 1 −ΛL︸ ︷︷ ︸

Inflation bias due to aggregate wedge

+
[
1 + φ + (γ − 1)ΛL

]
(1 − Λ̂L − ξ)/ξ︸                                      ︷︷                                      ︸

Inflation bias due to supply-side effect

(10)

whereH = H1 +H2.

The right-hand side of equation (10) highlights the source of the inflation bias, which
arises from an aggregate wedge 1−ΛL and the supply-side effect of monetary policy 1−Λ̂L−ξ.
In a distorted economy, the natural level of output is lower than its efficient level (1−ΛL > 0),
as in standard New Keynesian models. This discrepancy due to the aggregate wedge
provides room for the monetary authority to boost up output toward its efficient level via
higher inflation. The other source of inflation bias comes from the supply-side effect, which
is novel in our model. When monetary policy is able to generate a positive supply-side effect
(1 − Λ̂L − ξ > 0), the monetary authority utilizes this effect to enhance allocative efficiency
and welfare.

In contrast, the left-hand side of equation (10) illustrates how optimal policy balances
various sources of second-order welfare losses and stabilizes an index of sectoral inflation
rates. The weight on sectoral inflation in the index consists of three components, which
minimize output gap, price dispersions within and across sectors, and variations in alloca-
tive efficiency, respectively. These weights are shaped by production networks, nominal
rigidities, initial markups, elasticities of substitution, and preference parameters. A higher
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weight implies a lower desired inflation under the optimal policy.
As emphasized by La’O and Tahbaz-Salehi (2022) and Rubbo (2023), the weights of

stabilizing output gap generally carry similar sectoral weights in the inflation index under the
optimal monetary policy. These weights in equation (10) show that the monetary authority
should assign higher weights to the following sectors in the inflation index: (i) sectors with
stickier prices (lower θi) due to their higher price distortions; (ii) larger sectors, as indicated
by higher cost-based Domar weights (λ̃i), which have a greater impact on the economy
for a given price dispersion; and (iii) sectors with less distortions (lower Jk), whose price
fluctuations in response to shocks have a limited impact on resource allocation.11 Comparing
with La’O and Tahbaz-Salehi (2022) and Rubbo (2023), point (iii) is novel in our study and it
shows that the monetary authority assigns a lower weight to sectoral inflation that generates
higher allocative efficiency to the whole economy (e.g. higher Jk).

5.3 Alternative Stabilization Policies

In practice, the monetary authority may follow alternative stabilization policies to im-
plement its monetary policy. In line with the literature, we consider two simple alternative
rules: a consumer price inflation targeting rule,

∑N
i=1 biπi = 0 and an output gap targeting

rule, ỹ − 1+φ
γ+φJ

′π = 0, which is taken from the welfare function (9). Combining with the
divine coincidence condition (7), this output-gap stabilization policy can be rewritten as an
inflation-stabilization policy,

∑
i ϕ

o.g.
i πi = 0, with ϕo.g.

i = (1/θi − 1)λ̃i −Ji. Note that bi , ϕ
o.g.
i

generally, as the output-gap stabilization policy partly takes into account input-output link-
ages and adjustments in nominal rigidities and allocative efficiency. There are two main
differences between the optimal monetary policy and these two simple rules. On one hand,
optimal monetary policy creates an inflation bias due to the aggregate wedge and supply-
side effects, which these simple rules do not address. On the other hand, these rules fail to
consider price dispersion both within and across sectors, as well as variations in allocative
efficiency.

6 Quantitative Analysis

In the previous sections, we show that monetary policy can influence realized sectoral
markups in general, leading to resource reallocation across sectors and improvements in
social welfare. Policymakers could take advantage of this supply-side effect to boost up TFP

11Appendix F presents an explicit expression for each component in a Cobb-Douglass economy.
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by improving allocative efficiency of the economy, beyond merely stabilizing output and
inflation as in standard New Keynesian models. A critical question is how important the
supply-side effect will be when we take our model to data. In this section, we calibrate our
model using data from the United States, quantitatively showing that both the supply-side
and demand-side effects of monetary policy are essential in the transmission of monetary
policy. Moreover, we find that these effects decline substantially in an economy without
input-output linkages.

6.1 Calibration

Our model period is one quarter and includes two sets of parameters. The first set
includes preference and production parameters, which are set to be standard values in
the literature. Specifically, the relative risk aversion coefficient is γ = 1, and the inverse
Frisch elasticity is φ = 2. In our baseline calibration, we set all within-sector elasticities
of substitution at 6 (i.e., εi = 6,∀i ∈ N).12 We also specify the elasticity of substitution
in consumption to be one (σC = 1) and cross-sector elasticities of substitution in firms’
production to be 0.5 (i.e., σi = 0.5,∀i ∈ N) following the literature Atalay (2017), Levchenko
et al. (2019) and Devereux et al. (2023).

The second set of parameters includes input-output linkages, nominal rigidities, initial
markups, final consumption shares, and productivity shocks. To estimate these parameters,
we utilize four different but consistent datasets. First, we calibrate the cost-based input-
output matrix Ω̃ and consumption shares b using annual input-output data from the Bureau
of Economic Analysis (BEA) in the United States. Following standard practice in the literature
(see Baqaee and Farhi (2020) and La’O and Tahbaz-Salehi (2022)), we exclude sectors related
to federal, state, and local government because our model does not consider the role of
government. The dataset encompasses 66 industries. Since sectoral production technology
hardly changes within a year, we assume that the quarterly cost-based input-output matrix Ω̃
and consumption shares b keep constant throughout the year, matching their annual values.

We incorporate annual sectoral markups estimated by Baqaee and Farhi (2020) as one
of the key parameters in our model. The data on markups, spanning from 1997 to 2015,
include information on 66 industries in our input-output dataset. We use the user-cost (UC)
markup series as our benchmark calibration for initial markups. For simplicity, we assume

12We do not directly calibrate within-sector elasticities to match initial markups in each sector and each period.
Instead, we align the values of within-sector elasticities with benchmarks in the New Keynesian literature (e.g.,
McKay et al., 2016), and vary sectoral tax (subsidy) rates to match the gap between markups in the data and
monopolistic markups in the model.
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that quarterly markups remain constant within a year. By combining the estimated markups
with the cost-based input-output matrices from the BEA, we construct the revenue-based
input-output matrix Ω in our model.

Sectoral price rigidities are calibrated using data from Pasten et al. (2020) who utilize
confidential micro-data from the Bureau of Labor Statistics (BLS) Producer Price Index (PPI)
to analyze the frequency of price adjustments across different industries. The data covers the
period from 2005 to 2011. This measure calculates the ratio of the number of price changes
to the number of months in the sample. By merging the BEA input-output data with price
adjustment data, classified according to the 3-digit codes of the North American Industry
Classification System (NAICS), we calibrate price rigidity for each industry. Combining
constant sectoral price rigidities with a time-varying cost-based input-output matrix allows
us to derive a time-varying rigidity-adjusted input-output matrix Ω̂.

Finally, we measure productivity shocks by the sector-level growth rate of the Multifactor
Productivity (MFP) index. The data for this analysis, covering the period from 1987 to 2019,
is taken from the BEA/BLS Integrated Industry-Level Production Account (ILPA). The BEA
input-output data are more disaggregated compared to the ILPA data. For each of the 66
industries, we calculate productivity shocks by disaggregating larger industries into smaller
sub-industries. Annual productivities are linearly interpolated to generate quarterly values
for each industry, which are then detrended to construct the covariance matrix of detrended
productivity shocks.

6.2 Supply-Side Effect and Inflation Bias

Figure 1 provides a breakdown of the supply-side effect of monetary policy on TFP, the
sufficient statistic d log TFP/d log w in equation (5). The solid blue line represents the supply-
side effect due to substitution in consumption, the dashed purple line denotes the supply-side
effect resulting from substitution in production, and the dotted red line with circle markers
shows the sum of both blue and purple lines. Panel (a) reports numerical results based
on our benchmark calibration. The supply-side effect (dotted red line) fluctuates between
0.005% and 0.031%, with an average of 0.018%, implying that a 1% increase in nominal wages
stemming from expansionary monetary policy boosts up TFP by about 0.018%. The Panel
shows that the reallocation from substitution in production co-moves quite closely with the
total supply-side effect, accounting for 79% to 95% of the total effect in the data sample,
while the reallocation due to substitution in consumption is quite small and remains stable
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over time.13

To better see how each sector contributes to the supply-side effect, Figure A.1 in the
Appendix presents the contributions from households and 66 different sectors in 2006. The
supply-side effect due to reallocation from consumption (households) accounts for 5.7%
of the total effect, while some key sectors including construction, wholesale trade, and
professional, scientific, and technical services contribute to about one-fifth of the total supply-
side effect due to reallocation in production.

Figure 1: The Decomposition of Supply-Side Effect with UC Markups. Notes: This figure
reports numerical values for two components in the supply-side effect of monetary policy. The solid
blue line corresponds to the consumption-related reallocation channel, the dashed purple line shows
the production-related reallocation channel, and the dotted red line with circle markers indicates the
total effect.

Note that sectoral markups in the data substantially vary with business cycles. Firms
typically experience lower markups during recessions and higher markups in economic
booms. Panel (a) shows that the channel of reallocation from substitution in production
varies significantly over time, with several troughs occurring in 2001, 2009, and 2015. Dur-
ing these years, some industries experienced severe markdowns, which were attributed to
dramatic contraction in aggregate demand in 2001 and 2009, and substantial declines in
energy commodity prices in 2015. This reduction in markups leads to a decrease in the total
supply-side effect during economic downturns.

The analysis above shows that the supply-side effect of monetary policy is quantitatively
important when we take our model to data. A next question is whether the monetary
authority has an incentive to create inflation to harvest this supply-side effect and moreover
whether the inflation bias induced by the supply-side effect is quantitatively important.

13Figure A.2 in the appendix shows that the correlation between wage pass-throughs to prices and upstream
markups are usually positive in the data.
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Figure 2 shows the inflation bias under the optimal monetary policy in equation (10). The
dashed red line represents the inflation bias caused by the aggregate wedge, while the solid
blue line shows the inflation bias arising from the supply-side effect. Panel (a) is for the
baseline model. It shows that the inflation bias attributed to the supply-side effect moves
quite along with that due to the aggregate wedge, fluctuating from 0.08% during economic
downturns to 0.54% in booms, with an average around 0.30%.

Figure 2: The Decomposition of Inflation Bias with UC Markups. Notes: This figure reports
numerical values for two components on the right-hand side of equation (10) when the sum of
industry weights on the left-hand side are normalized to 1. The blue line stands for the supply-side
effect and the dashed red line with circle markers represents for the aggregate wedge.

What are the welfare implications under the optimal policy? Table 2 presents the overall
welfare gains and its decomposition in equation (9). In our model, monetary policy affects
output in two distinct ways. On one hand, expansionary monetary policy could push
up output closer to its efficient level via creating higher inflation when there exists an
aggregate wedge in the economy. On the other hand, it may also improve allocative efficiency
and expand final output through the reallocation of labor and intermediate inputs when
there exists a supply-side effect of monetary policy. However, it’s important to note that
expansionary monetary policy can also lead to higher inflation, potentially increasing price
dispersion within and across sectors, and thus resulting in larger welfare losses.

Column (1) in Table 2 reports welfare losses (indicated by negative numbers) under
the optimal monetary policy. The overall welfare loss is equivalent to 0.562% reduction
in consumption relative to that under the flexible price equilibrium. However, both first-
order welfare gains due to the aggregate wedge and the supply-side effect are positive and
have similar magnitudes. The middle panel of Table 2 displays second-order welfare losses
resulting from output gap volatility, as well as price dispersions within and across sectors.
The within-sector price dispersion generates a welfare loss of 0.567% of consumption and
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the cross-sector price dispersion also give rise to a 0.094% reduction in consumption. In our
baseline specification, we set γ = 1 and therefore the welfare cost associated with variation
in allocative efficiency becomes zero.14

Table 2: Welfare Gains under Various Policies with UC Markups
(1) (2) (3)

Optimal Policy Output-Gap Targeting CPI Targeting

Welfare Gain (% of Real GDP) -0.562 -0.617 -0.622
First order welfare gain

Aggregate wedge 0.059 10−7 0.001
Supply-side effect 0.048 10−6 10−5

Second order welfare gain
Output gap volatility -0.007 0 -0.002
Within-sector price dispersion -0.567 -0.529 -0.529
Cross-sector price dispersion -0.094 -0.088 -0.092
Variation in allocative efficiency 0 0 0

Cosine similarity to optimal policy 1 0.987 0.663

6.3 Production Networks and Supply-Side Effect

Our theory suggests that the share of intermediate inputs in production plays a critical
role in determining the supply-side effect of monetary policy. How do changes in input-
output linkages quantitatively affect the two reallocation channels of the supply-side effect,
as well as the demand-side effect of monetary policy? Panel (b) of Figure 1 presents the same
decomposition as in Panel (a) but firms do not employ any intermediate input in production.
The model economy now is essentially degenerated to a horizontal economy. As shown in
Section 3.3, the supply-side effect is completely driven by the reallocation from substitution
in consumption as in Baqaee et al. (2024). The figure shows that the supply-side effect is
positive, but it becomes much smaller than that in Panel (a). This comparison indicates
that an economy with production networks as in the data is able to generate a sizable
supply-side effect of monetary policy even without resorting to real rigidities as in Baqaee
et al. (2024). Panel (b) in Figure 2 displays the inflation bias due to the aggregate wedge
and the supply-side effect of monetary policy without input-output linkages in production.
Both the aggregate wedge and the supply-side effect lead to a smaller inflation bias in
the horizontal economy than the baseline model. More importantly, the inflation bias due
to aggregate wedge significantly dominates that brought by the supply-side effect under

14Even when γ significantly deviates from 1, for example γ = 2, the welfare loss from variations in allocative
efficiency remains negligible (smaller than 10−4).
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the optimal monetary policy, accounting for 57% to 95% of the total inflation bias in the
data sample. Furthermore, Figure A.3 in the appendix demonstrates that the demand-side
effect of monetary policy also significantly declines in the absence of input-output linkages,
aligning with findings by Nakamura and Steinsson (2010) and Pasten et al. (2020).

6.4 Simple Rules of Monetary Policy

Can the monetary authority take use of alternative simple rules to approximate the opti-
mal monetary policy? In this section, we examine two alternative simple rules of monetary
policy. One is an output gap stabilization rule

∑
i ϕ

o.g.
i πi = 0 similar to Rubbo (2023), and

the other is a CPI inflation targeting rule
∑N

i=1 biπi = 0. Note that these two simple rules
do not have the first-order inflation bias as the optimal monetary policy (equation (10)).
Consequently, unlike the optimal monetary policy which trades off first-order welfare gains
against second-order welfare losses, these two simple rules mainly balance second-order
welfare losses induced by output gap, within and cross-sector price distortions, and varia-
tions in allocative efficiency.

Column (2) in Table 2 presents welfare gains and their decomposition under the output
gap stabilization rule. Results show that the first order welfare gains are essentially zero, but
welfare losses from within-sector and cross-sector price dispersions are smaller than those
under the optimal monetary policy, although the cosine similarity (see La’O and Tahbaz-
Salehi (2022)) of weights on sectoral inflation rates between optimal monetary policy and
output stabilization is quite large, 0.987, implying that the distribution of weights on sectoral
inflation is quite similar under these two monetary policies.

Column (3) in Table 2 presents welfare gains and their decomposition under the CPI
inflation targeting rule. Welfare gains from first-order aggregate wedge and the supply-side
effect are quite small, while welfare losses due to price dispersion across sectors are larger
than those under output stabilization, and output gap variation also brings welfare losses.
Comparing with output stabilization, CPI inflation targeting results in an even larger welfare
loss. The reason is that output stabilization already partially accounts for output change due
to allocative efficiency, and stabilizing such an output gap reduces welfare losses. The bottom
line in Table 2 shows that sectoral weights under CPI inflation targeting are less aligned with
those under the optimal policy compared to those under output gap stabilization.
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6.5 Robustness Analysis

Figure 3 illustrates the inflation bias arising from the aggregate wedge and the supply-
side effect of monetary policy under different preference parameterization. Panel (a) shows
that an increase in wealth effect (γ = 2) amplifies the supply-side effect, leading to a higher
inflation bias compared to the aggregate wedge, while a decrease in wealth effect (γ = 0.5)
leads to a lower inflation bias induced by the supply-side effect. In addition, Proposition
5 suggests that the inflation bias due to the supply-side effect is also amplified with lower
labor supply elasticity. Panels (c) and (d) confirm this point: a more elastic labor supply
(φ = 0.5) leads to a lower inflation bias generated by the supply-side effect, while a less
elastic supply (φ = 5) enhances the impact of supply-side effect on inflation bias.

Figure 3: Decomposition of Inflation Bias with UC Markups, Different Preference Parameters

Heterogeneity in sectoral markups and input-output linkages might affect the supply-
side effect as well. We then conduct two counterfactual experiments. First, we eliminate
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heterogeneity in sectoral markups by setting all sectors to have the same average markup
within a year, while still allowing these markups to vary over time. The results in panel (a) of
Figure A.4 are similar to the baseline calibration. In the second experiment, the input-output
linkages for all years are adjusted to align with those from the first year of the data sample,
while sectoral markups remain consistent with the data. Note that input-output linkages
largely depend on the technology of production, which evolves slowly over time in the data.
Results in panel (b) of Figure A.4 indicate that the supply-side effect is very similar to the
baseline model.

7 Conclusion

This paper studies the supply-side and demand-side effects of monetary policy in a
multi-sector economy with input-output linkages. We show that the supply-side effect of
monetary policy is driven by two reallocation channels, reallocation due to substitution
in consumption and reallocation due to substitution in production. These two channels
become more pronounced when the elasticities of substitution are higher, sectors with larger
upstream markups tend to exhibit lower wage pass-throughs, and aggregate wedge is larger.

The wage, sectoral, and aggregate Phillips curves become flatter when expansionary
monetary policy improves allocative efficiency. Under the optimal monetary policy, the
monetary authority has an incentive to inflate the economy due to both an aggregate wedge
and the supply-side effect, and it assigns greater weights of inflation to larger, stickier and
less distorted sectors.

When calibrating our model to data from the United States, we find that the supply-
side effect of monetary policy is quantitatively important, and production networks play
a crucial role in determining this effect. Under optimal monetary policy, the welfare gains
from supply-side effects are comparable to those resulting from the aggregate wedge. Our
sensitivity analysis indicates that our findings remain robust to variation in model param-
eterization. When we eliminate production networks, the supply-side and demand-side
effects of monetary policy decline substantially.
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Not-For-Publication Technical Appendix

A Additional Figures and Tables

Figure A.1: Industry Contribution to Supply-Side Effect in 2006. Notes: The horizontal axis
represents the magnitude of the supply-side effect. The percentages on each bar indicate the relative
contribution of each sector to the total supply-side effect.
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Figure A.2: Scatter Plot of Wage Pass-throughs and Upstream Markups in 2006. Notes: The
sector corresponding to labor is not included in the figure. The wage pass-through and upstream
markup corresponding to the labor sector are Ψ̂LL = 1 andΨLL = 1, respectively.

Figure A.3: The Supply-Side and Demand-Side Effects of Monetary Policy under UC
Markups. Notes: This figure reports numerical values for the supply-side and demand-side ef-
fects of monetary policy. The solid blue line corresponds to the supply-side effect, the dashed purple
line signifies the demand-side effect, and the dotted red line with circle markers indicates the total
effect.
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Figure A.4: Decomposition of Supply-Side Effect with UC Markups: Homogeneous Markups
(Panel a) and Constant Input Output (IO) Table (Panel b).

Optimal Output-Gap CPI DC
Policy Targeting Targeting Targeting

Welfare Gain (Quad. Approx., % of GDP) -0.565 -0.663 -0.671 -0.664
First order welfare gain

Aggregate wedge 0.079 10−5 0.001 0
Supply-side effect 0.119 10−4 0.001 10−4

Second order welfare gain
Output gap volatility -0.011 0 -0.002 −10−5

Within-sector price dispersion -0.609 -0.542 -0.542 -0.543
Cross-sector price dispersion -0.146 -0.126 -0.134 -0.126
Variation in allocative efficiency 0 0 0 0

(1 −ΛL)× second-order terms 0.004 0.004 0.005 0.004
Welfare Gain (Exact Model, % of GDP) -0.517 -0.568 -0.582 -0.569
Cosine similarity to optimal policy 1 0.989 0.617 0.987

Table A.1: Welfare Gains under Various Monetary Policies in a Cobb-Douglas Economy with
UC Markups. Notes: This table reports welfare gains under various monetary policies as
a percentage of steady-state consumption, based on 10,000 draws. The row labeled ‘Exact
Model’ calculates welfare gain based on the exact social welfare function. The remaining
rows show welfare gains and their decomposition, derived from a second-order quadratic
approximation of the welfare function. The last column reports the welfare gain under the
divine coincidence (DC) targeting policy which closes the actual output gap using the divine
coincidence index as inflation index.
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Figure A.5: Industry Weights of Inflation Index under Various Policies. Notes: The 66
sectors are aggregated into 20 broader categories. Compared to the 20 broad sectors in
NAICS, our classification splits Manufacturing into Durable and Nondurable Goods and
excludes Public Administration. The optimal policy’s inflation index follows equation (10).
The industry weight for output-gap targeting is (1/θi − 1)λ̃i −Ji. For the divine coincidence
(DC) index, the weight in an efficient economy is (1/θi − 1)λ̃i, while in a distorted economy,
it is (1/θi − 1)λ̃i + φJi. 4



B Related Proofs

Throughout the appendix, we interchangeably use Ω f and Ωn
(L) to represent the N × 1

vector of labor income share, while the Ψ f and Ψn
(L) are used interchangeably to represent

the N × 1 vector of Leontief inverse of labor.

Lemma 2 (Property of the Leontief Inverse Matrix). In general, for any input-output matrix Ω
satisfying

∑N+1
j=1 Ωi j ≤ 1 for all i, and its corresponding Leontief inverse matrixΨ which is defined as

Ψ = (I −Ω)−1, we have (i)Ψn = (I −Ωn)−1, (ii)ΨnΩ f = Ψ f .

Proof of Lemma 2. By definition of the Leontief inverse matrix, ΨΩ = Ψ − I. This can be
rewritten in a block matrix form as

ΨΩ =

Ψn Ψ f

0 I

 Ωn Ω f

0 0

 = ΨnΩn ΨnΩ f

0 0

 = Ψn
− I Ψ f

0 0

 = Ψ − I.

Thus,ΨnΩn = Ψn
− I andΨnΩ f = Ψ f .

□

Lemma 3. Given price adjustment probability θi ∈ [0, 1] for all i, we observe that: (i) the rigidity-
adjusted Domar weight λ̂k is less than corresponding cost-based Domar weight λ̃k; and (ii) the wage
pass-through Ψ̂iL is less than its corresponding price adjustment probability θi.

Proof of Lemma 3. By definition of Leontief inverse, we have

Ψ̂n = (I −ΘΩ̃n)−1 = I + ΘΩ̃n + (ΘΩ̃n)2 + ... ≤ I + Ω̃n + (Ω̃n)2 + ... = (I − Ω̃n)−1 = Ψ̃n. (B-1)

Hence,
λ̂′ = b′Ψ̂n

≤ b′Ψ̃n = λ̃′. (B-2)

Analogously, we find that (I − Ω̃nΘ)−1
≤ (I − Ω̃n)−1, which implies that

Ψ̂ f
− θ = Ψ̂ f

−ΘΨ̃ f (B-3)

= (I −ΘΩ̃n)−1ΘΩ̃ f
−Θ(I − Ω̃n)−1Ω̃ f (B-4)

= Θ[(I − Ω̃nΘ)−1
− (I − Ω̃n)−1]Ω̃ f

≤ 0 (B-5)

where the first equality uses the fact that Ψ̃ f = 1.
□

5



Lemma 4. The pass-through of nominal wages into sector prices Ψ̂(L) is weakly increasing in price
adjustment probability {θi}

N
i=1. Moreover, the pass-through of nominal wages into consumer price Λ̂L

is weakly increasing in price adjustment probability {θi}
N
i=1 and it is bounded between 0 and Eb(θ).

Proof of Lemma 4. Since Ψ̂ f = [I −ΘΩ̃n]−1ΘΩ̃ f = [Θ−1
− Ω̃n]−1Ω̃ f , we have

dΨ̂ f = d[Θ−1
− Ω̃n]−1Ω̃ f (B-6)

= [Θ−1
− Ω̃n]−1Θ−1(dΘ)Θ−1[Θ−1

− Ω̃n]−1Ω̃ f (B-7)

= [I −ΘΩ̃n]−1︸        ︷︷        ︸
Ψ̂n

(dΘ)Θ−1 [I −ΘΩ̃n]−1ΘΩ̃ f︸               ︷︷               ︸
Ψ̂ f

(B-8)

= Ψ̂n(dΘ)Θ−1Ψ̂ f (B-9)

and
dΛ̂L = b′dΨ̂ f = b′Ψ̂n(dΘ)Θ−1Ψ̂ f = λ̂′(dΘ)Θ−1Ψ̂ f . (B-10)

Or equivalently,

dΨ̂iL =
∑

k

Ψ̂ikΨ̂kLd logθk and dΛ̂L =
∑

k

λ̂kΨ̂kLd logθk. (B-11)

Thus, Ψ̂iL and Λ̂L are weakly increasing in {θi}
N
i=1.

We then show that Λ̂L is bounded above by Eb(θ). Since Ψ̂iL ≤ θi (Lemma 3), we have

Λ̂L = b′Ψ̂ f
≤ b′θ = Eb(θ) ≤ 1. (B-12)

This result states that as long as a sector takes use of an intermediate input produced by
a sector (either its own sector or another sector) with sticky price, the wage pass-through
into consumer price is incomplete.

□

Lemma 5. When evaluated at an inefficient initial equilibrium where all initial markups are positive
(µ̄ ≥ 1), both ΨiL and ΛL are bounded between 0 and 1. They weakly decrease with sectoral initial
markups {µ̄i}

N
i=1, indicating that a lower ΨiL corresponds to a higher degree of markup in the supply

chain of sector i. Additionally, for each sector, the upstream markup ΨiL is less than or equal to its
counterpart in an economy without input-output linkages, µ̄−1

i .

Proof of Lemma 5. Analogy to Lemma 3 and Lemma 4 by replacing θi with µ̄−1
i . □
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C Nested CES Economies

C.1 Standard-Form for Nested CES Economies

In this section, we expand our input-output notation to incorporate producer 0 (house-
holds). We begin by adjusting the cost-based input-output matrix, setting indices of Ω̃ to
start at 0. Specifically, Ω̃i0 = 0 for all 0 ≤ i ≤ N + 1 and Ω̃0 j = b j for all 1 ≤ j ≤ N + 1.
Correspondingly, xi0 = 0 for all 0 ≤ i ≤ N + 1 and x0i = ci for all 1 ≤ j ≤ N + 1. We then set
the household-related parameters: µ̄C = θC = 1 and expand all Leontief inverse matrices to
dimensions of (1+N + 1)× (1+N + 1). Finally, we extend the (N + 1)× 1 vector d log p to an
(1 +N + 1) × 1 vector by defining p0 = PY.

The production function of goods in sector k is given by

yk

ȳk
= Āk

∑
l

ω
1
σk
kl

(
xkl

x̄kl

) σk−1
σk


σk
σk−1

where Āk = qkAk, with sectoral productivity loss qk defined by equation (E-29). Note that
d log Āi = d log Ai since d log qi = 0.1 Additionally, each sector is associated with a unique
elasticity of substitution σk.

The optimal condition yields

d log xki − d log xkj = −σk(d log pi − d log p j) ∀i, j, (C-1)

which indicates how resources are reallocated due to relative price changes.
In addition, the production function of producer 0 (households) is given by a final-

demand aggregator

Y
Ȳ
=

∑
l

ω
1
σC
0l

(
cl

c̄l

) σC−1
σC


σC
σC−1

,

where the elasticity of substitution is σC.

C.2 Related Proofs in An Arbitrary CES Economy

In this section, we apply the methodology of Baqaee and Farhi (2020) to derive the
expression for labor income share. This expression comprises two components: first, the

1See more discussions in Appendix E.3.
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direct effect of changes in ex-post markups, holding constant distribution of resources (input
shares); and second, the equilibrium changes in the distribution of resources. Accordingly,
our equations from (C-2) to (C-18) adapt their findings to the context of a single factor case.

Proof of Theorem 1. Since Ω ji =
pix ji

µ j
∑

l plx jl
for all 0 ≤ i, j ≤ N + 1, we have

d logΩ ji = −d logµ j + d log pi + d log x ji −
∑

l

Ω̃ jld log(plx jl) (C-2)

= −d logµ j +
∑

l

Ω̃ jl
(
d log pi − d log pl

)
−

∑
l

Ω̃ jl

(
d log x ji − d log x jl

)
(C-3)

= −d logµ j + (1 − σ j)
∑

l

Ω̃ jl
(
d log pi − d log pl

)
(C-4)

= −d logµ j + (1 − σ j)(d log pi −
∑

l

Ω̃ jld log pl). (C-5)

Considering the covariance with Ω̃( j, :) as weights, we have

CovΩ̃( j,:)(d log p, I(i)) = Ω̃ jid log pi −
∑

l

Ω̃ jld log pl · Ω̃ ji (C-6)

= Ω̃ ji(d log pi −
∑

l

Ω̃ jld log pl), (C-7)

where Ω̃( j, :) is the j-th row of Ω̃ and I(i) is the i-th column of the identity matrix I.
Thus, the total differential of Ω ji is given by

dΩ ji = Ω ji

−d logµ j + (1 − σ j)(d log pi −
∑

l

Ω̃ jld log pl)

 (C-8)

= −Ω jid logµ j +
Ω ji

Ω̃ ji
(1 − σ j)CovΩ̃( j,:)(d log p, I(i)) (C-9)

= −Ω jid logµ j +
1
µ̄ j

(1 − σ j)CovΩ̃( j,:)(d log p, I(i)). (C-10)

UsingΨ = (I −Ω)−1, we obtain

dΨ = ΨdΩΨ. (C-11)
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Or equivalently,

dΨmn =
∑

j

∑
i

ΨmjdΩ jiΨin (C-12)

= −
∑

j

∑
i

ΨmjΨinΩ jid logµ j +
∑

j

∑
i

ΨmjΨinµ̄
−1
j (1 − σ j)CovΩ̃( j,:)(d log p, I(i)) (C-13)

= −
∑

j

Ψmjd logµ j

∑
i

Ω jiΨin +
∑

j

Ψmjµ̄
−1
j (1 − σ j)CovΩ̃( j,:)(d log p,Ψ(n)). (C-14)

Using ΩΨ = Ψ − I, we can rewrite the expression above as

dΨmn = −
∑

j

Ψmj(Ψ jn − δ jn)d logµ j +
∑

j

Ψmjµ̄
−1
j (1 − σ j)CovΩ̃( j,:)(d log p,Ψ(n)), (C-15)

where δ jn is the jn-th element of the identity matrix.
Given b′Ψ = λ, we get

dλn =
∑

k

bkdΨkn = −
∑

j

λ j(Ψ jn − δ jn)d logµ j +
∑

j

λ jµ̄
−1
j (1 − σ j)CovΩ̃( j,:)(d log p,Ψ(n)).

(C-16)

Dividing both sides by λn, we have

d logλn = −
∑

j

λ j

λn
(Ψ jn − δ jn)d logµ j +

∑
j

λ j

λn
µ̄−1

j (1 − σ j)CovΩ̃( j,:)(d log p,Ψ(n)). (C-17)

Accordingly,

d logΛL = −
∑

j

λ j
Ψ jL

ΛL
d logµ j +

1
ΛL

∑
j

λ j

µ̄ j
(1 − σ j)CovΩ̃( j,:)(d log p,Ψ(L)). (C-18)
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To further simplify the expression above, note that

1
ΛL

N∑
j=1

λ j

µ̄ j
CovΩ̃( j,:)

(
d log p,Ψ(L)

)
=

1
ΛL

N∑
j=1

λ j

µ̄ j

[
EΩ̃( j,:)(ΨiLd log pi) − EΩ̃( j,:)(ΨiL)EΩ̃( j,:)(d log pi)

]
(C-19)

=
1
ΛL

N∑
j=1

λ j

µ̄ j


N+1∑
k=1

Ω̃ jkΨkLd log pk −

N+1∑
k=1

Ω̃ jkΨkL

︸          ︷︷          ︸
µ̄ jΨ jL

N+1∑
k=1

Ω̃ jkd log pk

︸               ︷︷               ︸
d log p j+d log A j−d logµ j


(C-20)

=
1
ΛL

N∑
j=1

λ j

µ̄ j

N+1∑
k=1

Ω̃ jkΨkLd log pk − µ̄ jΨ jL(d log p j + d log A j − d logµ j)

 (C-21)

=

N+1∑
k=1

ΨkL

ΛL

N∑
j=1

λ j
Ω̃ jk

µ̄ j︸     ︷︷     ︸
λk−bk

d log pk −

N∑
j=1

λ j
Ψ jL

ΛL
(d log p j + d log A j − d logµ j) (C-22)

=d log w +
N∑

j=1

(λ j − b j)
Ψ jL

ΛL
d log p j −

N∑
j=1

λ j
Ψ jL

ΛL
(d log p j + d log A j − d logµ j) (C-23)

=d log w −
N∑

j=1

b j
Ψ jL

ΛL
d log p j +

N∑
j=1

λ j
Ψ jL

ΛL
(d logµ j − d log A j). (C-24)

where the third equality is derived by using Sheppard’s Lemma, where d log p j = −d log A j+

d logµ j+
∑N+1

k=1 Ω̃ jkd log pk, and the fifth equality uses the facts that
∑N

j=1 λ j
Ω̃ jk

µ̄ j
=

∑N
j=1 λ jΩ jk =

λk − bk and ΨLL
ΛL

(ΛL − bL)d log pN+1 = d log w.
In addition,

1
ΛL

λ0

µ̄0
CovΩ̃(0,:)

(
d log p,Ψ(L)

)
=

1
ΛL

Eb(ΨiLd log pi) − Eb(ΨiL)︸  ︷︷  ︸
ΛL

Eb(d log pi)︸       ︷︷       ︸
d log PY

 (C-25)

=

N∑
j=1

b j
Ψ jL

ΛL
d log p j − d log PY. (C-26)
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Combining the expressions above, we get:

N∑
j=0

λ j

ΛL

1
µ̄ j

CovΩ̃( j,:)

(
d log p,Ψ(L)

)
=d log w − d log PY +

N∑
j=1

λ j
Ψ jL

ΛL
(d logµ j − d log A j). (C-27)

Thus, we can express d logΛL as:

d logΛL = d log w − d log PY
−

N∑
j=1

λ j
Ψ jL

ΛL
d log A j −

∑
j

σ jλ j

µ̄ j
CovΩ̃( j,:)(d log pi,

ΨiL

ΛL
) (C-28)

By the definition of the labor income share, we have:

d logΛL = d log w + d log L − (d log PY + d log Y). (C-29)

Combining equations (C-28) and (C-29) yields:

d log TFP = d log Y − d log L (C-30)

= d log w − d log PY
− d logΛL (C-31)

=

N∑
j=1

λ j
Ψ jL

ΛL
d log A j︸                 ︷︷                 ︸

Direct technology channel

+
∑

j

σ jλ j

µ̄ j
CovΩ̃( j,:)(d log pi,

ΨiL

ΛL
)

︸                                  ︷︷                                  ︸
Misallocation channel

(C-32)

□

Proof of Proposition 1. By applying the Sheppard’s lemma, we obtain the following relation-
ship:

d log mc = −d log A + Ω̃nπ + Ω̃ f d log w. (C-33)

Combining this with the equation π = Θd log mc, we derive:

π = −(I −ΘΩ̃n)−1Θ(d log A − Ω̃ f d log w) (C-34)

= −Ψ̂nΘd log A + Ψ̂ f d log w. (C-35)
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As for the consumer price, it evolves as follows:

d log PY = b′π (C-36)

= − b′Ψ̂n︸︷︷︸
λ̂′

Θd log A + b′Ψ̂ f︸︷︷︸
Λ̂L

d log w (C-37)

= −λ̂′Θd log A + Λ̂Ld log w. (C-38)

By Theorem 1, we have

d log TFP
d log w

=
∑

j

σ jλ j

µ̄ j
CovΩ̃( j,:)


d log pi

d log w︸  ︷︷  ︸
Ψ̂iL

,
ΨiL

ΛL


=

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j,:)

(
Ψ̂iL,

ΨiL

ΛL

)
(C-39)

□

Analogously, the response of TFP to a productivity shock is

d log TFP
d log Ak

= λk
ΨkL

ΛL
+

∑
j

σ jλ j

µ̄ j
CovΩ̃( j,:)


d log pi

d log Ak︸    ︷︷    ︸
−θkΨ̂ik

,
ΨiL

ΛL


(C-40)

= λk
ΨkL

ΛL︸ ︷︷ ︸
Direct technology channel

− θk

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j,:)

(
Ψ̂ik,
ΨiL

ΛL

)
︸                                 ︷︷                                 ︸

Misallocation channel

� ϖk. (C-41)

Note that Ω̃i0 = 0 for all i. The formulas in this section remain valid when all input-output
matrices and Leontief inverse matrices are replaced with (N+1)× (N+1) matrices, as defined
in the main text.

D Money Supply and Nominal Wages

In this section, we demonstrate that the monetary authority can equivalently select either
nominal wages or money supply as its policy instrument. We then leverage this one-to-one
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mapping between money supply and nominal wages to analyze the decomposition of the
output response.

D.1 Isomorphic Relationship

Lemma 6. Suppose the elasticity of labor income share to nominal wage is less than one, there
exists a one-to-one mapping between money supply M and nominal wages w for all realizations of
productivity shocks A.

Proof of Lemma 6. The consumption-leisure trade-off is expressed as:

d log w − d log PY = γd log Y + φd log L (D-1)

= (γ + φ)d log Y − φd log TFP. (D-2)

When integrated with the cash-in-advance constraint, this results in:

(γ + φ)d log M = d log w + (γ + φ − 1)d log PY + φd log TFP. (D-3)

Referencing the previous section:

d log TFP = ϖ′d log A + (1 − Λ̂L − ξ)d log w. (D-4)

Combining the above with equation (C-38) yields:

[1 − Λ̂L + (γ + φ)Λ̂L + φ(1 − Λ̂L − ξ)]d log w = (γ + φ)d log M

− [φϖ′ − (γ + φ − 1)λ̂′Θ]d log A. (D-5)

This derivation suggests that nominal wage decreases relative to money supply only
when the supply-side effect is substantially negative. Given the the elasticity of labor income
share to nominal wage is less than one, we derive the following inequality:

1 − Λ̂L + (γ + φ)Λ̂L + φ(1 − Λ̂L − ξ) ≥ 1 − Λ̂L + γΛ̂L > 1 − Λ̂L ≥ 0 (D-6)

Consequently, with 1 + (γ − 1)Λ̂L + φ(1 − ξ) > 0, equation (D-5) confirms a one-to-one
mapping between money supply M and nominal wages w for all realizations of productivity
shocks A. □
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D.2 Decomposition of Output Response

We then investigate how labor supply responds to monetary shocks. In response to a
change in nominal wage, the consumption-leisure tradeoff implies

d log L =
1 − Λ̂L

φ
d log w︸           ︷︷           ︸

Substitution effect

−
γ

φ
d log Y︸          ︷︷          ︸

Wealth effect

(D-7)

This equation decomposes the labor response into two components as in the literature.
The first term represents the substitution effect, which arises when nominal wages increase
(d log w > 0) and consumer prices do not completely offset this increase due to nominal
rigidities (i.e. Λ̂L < 1), resulting in an increase in real wages that boosts up labor supply. The
factor 1− Λ̂L measures the increase in real wages that affects the household’s choice between
consumption and leisure. If Λ̂L is close to 1, the effect of wage changes on leisure is small,
as most wage increases translate directly into price increases, reducing the real wage effect.
The second term, the wealth effect, suggests that an increase in output would typically lead
to an increase in leisure, reducing labor supply.

Proof of Proposition 2. By combining the previous equation with d log Y − d log L = (1 − Λ̂L −

ξ)d log w from equation (5), we find that, following a change in nominal wage, the response
of output is

d log Y
d log w

=
d log TFP

d log w
+

d log L
d log w

=
1 − Λ̂L + φ(1 − Λ̂L − ξ)

γ + φ
, (D-8)

Specifically,

d log TFP
d log w

= 1 − Λ̂L − ξ and
d log L
d log w

=
1 − Λ̂L − γ(1 − Λ̂L − ξ)

γ + φ
.

This analysis, in conjunction with equation (D-5), establishes Proposition 2. □

Equation (D-8) breaks down the output response into supply-side and demand-side
effects. The supply-side effect is due to changes in TFP, arising through the misallocation
channel. The demand-side effect characterizes the endogenous response of labor supply,
which consists of two distinct channels: nominal rigidity and misallocation. Firstly, the
substitution effect, highlighted in equation (D-7), illustrates the nominal rigidity channel,
showing that an expansionary monetary shock enhances real wages and stimulates labor
supply. Second, the wealth effect, also from equation (D-7), reveals that any factor that
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changes output, such as supply-side effects, also affects labor. Therefore, the demand-side
effect in our model accounts for labor adjustments induced by the misallocation channel,
quantified as − γ

γ+φ (1− Λ̂L − ξ). Consequently, supply-side effects complement demand-side
effects, leading to an increase in monetary non-neutrality.

E Optimal Monetary Policy

E.1 Discrepancy between Output and Employment Gaps

In this section, we aim to express aggregate macroeconomic variables in terms of changes
in productivities and ex-post markups, and define output and employment gaps.

From the supply-side, we have

π = −d log A + d logµ + Ω̃nπ + Ω̃ f d log w (E-1)

= −Ψ̃nd log A + Ψ̃nd logµ + Ψ̃ f d log w (E-2)

= −Ψ̃nd log A + Ψ̃nd logµ + d log w (E-3)

Furthermore, the change in consumer price is

d log PY = b′π = −λ̃′d log A + λ̃′d logµ + d log w (E-4)

Combining with equation (C-29), this implies the change in TFP is determined by

d log Y − d log L = λ̃′d log A − λ̃′d logµ − d logΛL. (E-5)

This result aligns with proposition 2 of Baqaee and Farhi (2020).
On the other hand, from Theorem 1, the change in TFP relates with changes in produc-

tivities and changes in ex-post markups via
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d log Y − d log L =
N∑

j=1

λ j
Ψ jL

ΛL
d log A j +

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j,:)

(
d log pi,

ΨiL

ΛL

)
(E-6)

=

N∑
j=1

λ j
Ψ jL

ΛL
d log A j +

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j,:)

 N∑
k=1

Ψ̃ik(d logµk − d log Ak) + d log w,
ΨiL

ΛL


(E-7)

=

N∑
j=1

λ j
Ψ jL

ΛL
d log A j +

N∑
k=1

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j,:)

(
Ψ̃ik,
ΨiL

ΛL

)
(d logµk − d log Ak)

(E-8)

=

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]
d log A +M′d logµ (E-9)

whereM is an N × 1 vector, whose kth element is given by

Mk �
d log TFP
d logµk

=

N∑
j=0

σ jλ j

µ̄ j
CovΩ̃( j,:)

(
Ψ̃ik,
ΨiL

ΛL

)
(E-10)

By combining equations (E-5) and (E-9), we obtain

d logΛL =

[
λ̃′ − (λ ◦

Ψ(L)

ΛL
)′ +M′

]
d log A −

[
λ̃′ +M′

]
d logµ (E-11)

Combining the definition of labor income share (equation (C-29)) with the consumption-
leisure trade-off (equation (D-1)), yields:

d log L =
1 − γ
1 + φ

d log Y +
1

1 + φ
d logΛL (E-12)

Combined with equations (E-5) and (E-11), we get:

d log Y =
1 + φ
γ + φ

λ̃′(d log A − d logµ) −
φ

γ + φ
d logΛL (E-13)

=

{
1

γ + φ
λ̃′ +

φ

γ + φ

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]}
d log A −

[
1

γ + φ
λ̃′ −

φ

γ + φ
M
′

]
d logµ

(E-14)
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and

d log L =
1 − γ
γ + φ

λ̃′(d log A − d logµ) +
γ

γ + φ
d logΛL (E-15)

=

{
1

γ + φ
λ̃′ −

γ

γ + φ

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]}
d log A −

[
1

γ + φ
λ̃′ +

γ

γ + φ
M
′

]
d logµ.

(E-16)

In the flexible price equilibrium, changes in output and employment are given by

yn
≡ d log Yn =

{
1

γ + φ
λ̃′ +

φ

γ + φ

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]}
d log A (E-17)

and

ln ≡ d log Ln =

{
1

γ + φ
λ̃′ −

γ

γ + φ

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]}
d log A. (E-18)

The output and employment gaps, which quantify the deviations between the sticky
price and flexible price equilibria, can be expressed as:

ỹ ≡ d log Y − d log Yn =

[
−

1
γ + φ

λ̃′ +
φ

γ + φ
M
′

]
d logµ (E-19)

and

l̃ ≡ d log L − d log Ln =

[
−

1
γ + φ

λ̃′ −
γ

γ + φ
M
′

]
d logµ (E-20)

When the initial equilibrium is inefficient, the discrepancy between output and employ-
ment gaps reflects an allocative efficiency:

e ≡ ỹ − l̃ =M′d logµ (E-21)

Accounting for endogenous realized markups, the allocative efficiency e is related to
sectoral inflation rates through the equation:

e =M′(I −Θ−1)︸         ︷︷         ︸
J ′

π (E-22)

Specifically, in response to a change in nominal wages,

e = (1 − Λ̂L − ξ)d log w = J ′Ψ̂ f d log w. (E-23)
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E.2 Flatter Phillips Curves

Proof of Lemma 1. By combining equations (3) and (E-19), we derive the divine coincidence
condition:

(γ + φ)ỹ =

λ̃′(Θ−1
− I)−φM′(Θ−1

− I)︸             ︷︷             ︸
φJ ′

π (E-24)

=
[
λ′(Θ−1

− I) + φJ ′
]
π (E-25)

□

Combining with the sectoral inflation from equation (C-35), leads to a wage Phillips
curve:

[1 − Λ̂L + φ(1 − Λ̂L − ξ)]d log w = (γ + φ)ỹ + (λ̃′ − λ̂′Θ + φJ ′Ψ̂nΘ)d log A. (E-26)

The derivation of this equation is based on three equations: (i) J ′Ψ̂n
(L) = 1 − Λ̂L − ξ, (ii)

λ̃(Θ − I)Ψ̂n
(L) = 1 − Λ̂L, and (iii) λ̃(Θ − I)Ψ̂nΘ = λ̃′ − λ̂′Θ.

The wage Phillips curve also suggests that if the output response to a change in nominal
wages is non-zero, 1 − Λ̂L + φ(1 − Λ̂L − ξ) , 0, then a one-to-one mapping exists between
nominal wage w and output gap ỹ for all realization of productivity shocks A. Consequently,
combined with Lemma 6, this allows the monetary authority to target any desired output
level by adjusting the money supply.

Proof of Proposition 3. Substituting the wage Phillips curve into sectoral inflation (equation
(C-35)), yields sectoral Phillips curves,

π = − Ψ̂nΘd log A + Ψ̂ f d log w (E-27)

=
γ + φ

1 − Λ̂L + φ(1 − Λ̂L − ξ)
Ψ̂ f

︸                            ︷︷                            ︸
K

ỹ

+

[
1

1 − Λ̂L + φ(1 − Λ̂L − ξ)
Ψ̂ f (λ̃′ − λ̂′Θ + φJ ′Ψ̂nΘ) − Ψ̂nΘ

]
︸                                                                        ︷︷                                                                        ︸

V

d log A (E-28)
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Note that
[
λ̃′(Θ−1

− I) + φJ ′
]
V = 0 andVΩ̃n

(L) = 0. Given that λ̃i(θ−1
i − 1)+φJi ≥ 0 and

Ω̃iL > 0 for all i ∈ N , these conditions guarantee thatV is a non-zero matrix. 2 □

E.3 Optimal Monetary Policy in Distorted Economies

We now move to a second-order approximation around the flexible-price equilibrium
with distortions. 3

First, note that price dispersion within each sector is distortionary. Let q denote an
N × 1 vector representing the productivity loss due to within-sector price distortions, with
component:

qi �
yi

AiFi({xi j}
N+1
j=1 )

< 1 (E-29)

where xi j =
∫ 1

0 xi j,νdν,∀i, j.
We then show that

qi =
p−εi

i∫
p−εi

i,ν dν
. (E-30)

Cost minimization by the firm in sector i results in the following demand for input j:

xi j,ν = Aσi−1
i ωi jyi,ν

(
p j/mci

)−σi
, ∀i, j (E-31)

Hence, the aggregate demand for input j by firms in industry i is

xi j =

∫ 1

0
xi j,νdν (E-32)

= Aσi−1
i ωi j

∫ 1

0
yi,νdν

(
p j/mci

)−σi
(E-33)

= Aσi−1
i ωi jyi

(
p j/mci

)−σi
pεi

i

∫ 1

0
p−εi

i,ν dν (E-34)

where the last equality uses the fact that yi,ν = yi(pi,ν/pi)−εi .

2Within the divine coincidence inflation index, in general the term λ̃i(θ−1
i − 1) is dominant and positive.

3A second-order approximation of a variable Z around its deterministic steady state Z∗ is written as,

Z − Z∗

Z∗
≈ ẑ +

1
2

ẑ2

where ẑ = ∆ log z = log z − log Z∗.
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Then, we have

qi =
yi

Ai

(∑
jω

1
σi
i j x

σi−1
σi

i j

) σi
σi−1

=
mc−σi

i[
1
Ai

(∑
jωi jp

1−σi
j

) 1
1−σi

]−σi

︸                        ︷︷                        ︸
=1

p−εi
i∫

p−εi
i,ν dν

(E-35)

In line with the traditional NK model (Galı́, 2015), we observe d log qi = 0 and:

−d2 log qi = εiVari(pi,ν) (E-36)

= εi

∫ (log pi,ν − log pi)2dν −
(∫

(log pi,ν − log pi)dν
)2 (E-37)

= εi

( 1
θi
− 1

)
(d log pi)2. (E-38)

Lemma 7. Up to a second-order approximation, the logarithmic change in output per labor in the
sticky price equilibrium is given by

ŷ − l̂ = e︸︷︷︸
first-order

− f︸︷︷︸
second order

+ higher order terms (E-39)

where e is allocative efficiency given by equation (E-21).

Proof of Lemma 7. Following the same steps as in the proof of Theorem 1, we can derive

d log Y − d log L =
[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]
(d log A + d log q) +M′d logµ (E-40)

and

d log Yn
− d log Ln =

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]
d log A (E-41)

A first-order approximation of the logarithmic change in output per labor is

d(ŷ − l̂) = (d log Y − d log Yn) − (d log L − d log Ln) (E-42)

= (d log Y − d log L) − (d log Yn
− d log Ln) (E-43)

=

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]
d log q +M′d logµ (E-44)

=M′d logµ = e (E-45)
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Differentiating the equation (E-44) again, we obtain

d2(ŷ − l̂) =
[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]
d2 log q +

∑
i

∑
j

d logMi

d logµ j
d logµid logµ j (E-46)

Thus, the second-order component f , consists of two critical components: within-sector
misallocation (Lwithin) and cross-sector misallocation (Lacross)

f = Lwithin +Lacross. (E-47)

The second-order welfare loss due to within-sector misallocation can be expressed as

L
within = −

1
2

∑
i

(
λi
ΨiL

ΛL
−Mi

)
d2 log qi �

1
2
π′H1π, (E-48)

whereH1 = diag((λ ◦ ΨiL
ΛL
−M) ◦ ϵ ◦ (θ−1

− 1)).
The cross-sector misallocation is determined by:

L
across = −

1
2

∑
i

∑
j

d logMi

d logµ j
d logµid logµ j �

1
2
π′H2π. (E-49)

Referring to Baqaee and Farhi (2020), a second-order approximation of the cross-sector
misallocation is given by:

L
across

≈
1
2

∑
j

σ jλ jVarΩ( j,:)(
∑

k

Ψ(k)d logµk) (E-50)

which implies that

L
across

≈
1
2

∑
j

σ jλ jCovΩ( j,:)(Ψ(k),Ψ(l))︸                            ︷︷                            ︸
�B(k,l)

d logµkd logµl =
1
2
π(I −Θ−1)B(I −Θ−1)π (E-51)

Hence,H2 is given by (I −Θ−1)B(I −Θ−1).
□

Proof of Proposition 4. Using Lemma 7, we can approximate the utility function around the
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flexible price equilibrium as 4

U −Un

UyY
≈ ŷ +

1
2

ŷ2 +
1
2

UyyY
Uy

ŷ2 +
UlL
UyY

(l̂ +
1
2

l̂2 +
1
2

UllL
Ul

l̂2) (E-52)

= ŷ +
1 − γ

2
ŷ2
−ΛL(l̂ +

1 + φ
2

l̂2) (E-53)

= ŷ +
1 − γ

2
ŷ2
−ΛL

(
ŷ − e + f +

1 + φ
2

(ŷ − e + f )2

)
(E-54)

= (1 −ΛL)ŷ + ΛL(e − f ) +
1 − γ

2
ŷ2
−

1 + φ
2
ΛL(ŷ − e)2

−
1 + φ

2
ΛL f (2ŷ − 2e + f )︸                       ︷︷                       ︸
O((d logµ)3)

(E-55)

≈ (1 −ΛL)ŷ + ΛL(e − f ) +
1 − γ

2
ŷ2
−

1 + φ
2
ΛL(ŷ − e)2 (E-56)

= (1 −ΛL)ŷ + ΛLe − f +
1 − γ

2
ŷ2
−

1 + φ
2

(ŷ − e)2 + (1 −ΛL)[ f +
1 + φ

2
(ŷ − e)2]︸                             ︷︷                             ︸

O((d logµ)3)

(E-57)

≈ (1 −ΛL)ŷ + ΛLe − f +
1 − γ

2
ŷ2
−

1 + φ
2

(ŷ − e)2 (E-58)

= (1 −ΛL)ŷ + ΛLe − f −
γ + φ

2
(ŷ −

1 + φ
γ + φ

e)2
−
γ − 1

2
1 + φ
γ + φ

e2 (E-59)

≈ (1 −ΛL)ỹ + ΛLe − f −
γ + φ

2
(ỹ −

1 + φ
γ + φ

e)2
−
γ − 1

2
1 + φ
γ + φ

e2

+ (ŷ − ỹ)︸ ︷︷ ︸
O((d logµ)2)

[
(1 −ΛL) −

γ + φ

2
(ŷ + ỹ − 2

1 + φ
γ + φ

e)
]

︸                                          ︷︷                                          ︸
O(d logµ)

(E-60)

≈ (1 −ΛL)ỹ + ΛLe − f −
γ + φ

2
(ỹ −

1 + φ
γ + φ

e)2
−
γ − 1

2
1 + φ
γ + φ

e2. (E-61)

In this derivation, we uses the fact that the difference between ŷ and ỹ is given by second
order terms:

ŷ − ỹ ≈
1
2

{
1

γ + φ
λ̃′ +

φ

γ + φ

[
(λ ◦

Ψ(L)

ΛL
)′ −M′

]}
d2 log q

+
1
2

φ

γ + φ

∑
i

∑
j

d logMi

d logµ j
d logµid logµ j (E-62)

Substituting e = J ′π and f = 1
2π
′
H1π+

1
2π
′
H2π into equation (E-61), the welfare function

4Under the assumption of small distortions in the equilibrium, the product of 1 − ΛL with a second-order
term is a third-order timer and can be dropped from the approximation.
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is then given by

W = (1 −ΛL)ỹ + ΛLJ
′π︸                  ︷︷                  ︸

first-order bias

−
γ + φ

2
(ỹ −

1 + φ
γ + φ

J
′π)2︸                         ︷︷                         ︸

Volatility of output gap

−
1
2
π′H1π︸      ︷︷      ︸

Within-sector price dispersion

−
1
2
π′H2π︸      ︷︷      ︸

Cross-sector price dispersion

−
γ − 1

2
1 + φ
γ + φ

π′JJ ′π︸                      ︷︷                      ︸
Variation in allocative efficiency

. (E-63)

□

Proof of Proposition 5. The optimal monetary policy problem can be written as

max
ỹ,π
W = (1 −ΛL)ỹ + ΛLJ

′π −
γ + φ

2

(
ỹ −

1 + φ
γ + φ

J
′π

)2

−
1
2
π′Hπ −

γ − 1
2

1 + φ
γ + φ

π′JJ ′π

subject to
π = K ỹ +Vd log A.

The Lagrangian L is

L(ỹ, π;ψ) =W(ỹ, π) − ψ′(π −K ỹ −Vd log A) (E-64)

The corresponding first-order conditions are

(1 −ΛL) − (γ + φ)
(
ỹ −

1 + φ
γ + φ

J
′π

)
+ ψ′K = 0 (E-65)

and

ΛLJ
′ + (1 + φ)

(
ỹ −

1 + φ
γ + φ

J
′π

)
J
′
− π′H − (γ − 1)

1 + φ
γ + φ

π′JJ ′ − ψ′ = 0. (E-66)

Combine two equations above and obtain

ΛLJ
′ +

1 + φ
γ + φ

(1 −ΛL + ψ
′
K )J ′ − π′H − (γ − 1)

1 + φ
γ + φ

π′JJ ′ − ψ′ = 0, (E-67)
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or equivalently,

ψ′ =

[
ΛLJ

′ +
1 + φ
γ + φ

(1 −ΛL)J ′ − π′H − (γ − 1)
1 + φ
γ + φ

π′JJ ′
] [

I −
1 + φ
γ + φ

KJ
′

]−1

. (E-68)

To simplify the equation, we observe that[
I −

1 + φ
γ + φ

KJ
′

]−1

= I +
(1 + φ)Ψ̂ f

J
′

(1 − Λ̂L) + φ(1 − Λ̂L − ξ) − (1 + φ)J ′Ψ̂ f
= I +

1 + φ
ξ
Ψ̂ f
J
′ (E-69)

and[
I −

1 + φ
γ + φ

KJ
′

]−1

K =
γ + φ

(1 − Λ̂L) + φ(1 − Λ̂L − ξ)

[
Ψ̂ f +

1 + φ
ξ
Ψ̂ f
J
′Ψ̂ f

]
=
γ + φ

ξ
Ψ̂ f . (E-70)

Hence, combining equations (E-65) and (E-68) yields

(γ + φ)(ỹ −
1 + φ
γ + φ

J
′π) +

γ + φ

ξ
(Ψ̂ f )′Hπ +

(1 + φ)(γ − 1)(1 − Λ̂L − ξ)
ξ

J
′π (E-71)

=1 −ΛL +
[
1 + φ + (γ − 1)ΛL

]
(1 − Λ̂L − ξ)/ξ (E-72)

Using divine coincidence condition, we get[
λ̃′(Θ−1

− I) −J ′ +
γ + φ

ξ
(Ψ̂ f )′H +

(1 + φ)(γ − 1)(1 − Λ̂L − ξ)
ξ

J
′

]
π

=1 −ΛL +
[
1 + φ + (γ − 1)ΛL

]
(1 − Λ̂L − ξ)/ξ (E-73)

Note that when the flexible price equilibrium is efficient,ΛL = 1,J = 0 and 1−Λ̂L−ξ = 0.
The condition above degenerates to the results of La’O and Tahbaz-Salehi (2022) and Rubbo
(2023): [

λ̃′(Θ−1
− I) +

γ + φ

1 − Λ̂L
(Ψ̂ f )′H

]
π = 0

□
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F Cobb-Douglas Economy

In this section, we explore a Cobb-Douglas model economy characterized by unitary
elasticities of substitution in both consumption and production (σi = 1,∀i).

F.1 Supply-Side Effect in a Cobb-Douglass Economy

With unitary elasticity of substitution, the supply-side effect of monetary policy in Propo-
sition 1 can be simplified as,

d log TFP
d log w

=

N∑
j=0

λ j

µ̄ j
CovΩ̃( j,:)

(
Ψ̂iL,

ΨiL

ΛL

)
(F-1)

=1 − Λ̂L −

N∑
j=1

λ j
ΨiL

ΛL

1 − θ j

θ j
Ψ̂ jL (F-2)

=

N∑
j=1

λ̃ j(1 −
λ j

λ̃ j

ΨiL

ΛL
)
1 − θ j

θ j
Ψ̂ jL (F-3)

where the second equality is obtained by taking directive of both sides of equation (C-27)
with respect to d log w, and the last equality uses the fact that

1 − Λ̂L =

N∑
j=1

λ̃ j
1 − θ j

θ j
Ψ̂ jL. (F-4)

Alternatively, the sufficient statistic for the supply-side effect can be derived through the
following lemma.

Lemma 8. In a Cobb-Douglas economy, the change in TFP, in terms of productivities and ex-post
markups, is determined by the following expression:

d log TFP = λ̃′d log A +
[
(λ ◦

Ψ(L)

ΛL
)′ − λ̃′

]
d logµ (F-5)
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Proof of Lemma 8. When all cross-sector elasticities are set to one, we have

Mk =

N∑
j=0

λ j

µ̄ j
CovΩ̃( j,:)

(
Ψ̃ik,
ΨiL

ΛL

)
(F-6)

=

N∑
j=0

λ j

µ̄ j


∑

i

Ω̃ jiΨ̃ik
ΨiL

ΛL
−

∑
i

Ω̃ jiΨ̃ik

︸         ︷︷         ︸
Ψ̃ jk−δ jk

∑
i

Ω̃ ji
ΨiL

ΛL
)

︸           ︷︷           ︸
µ̄ jΨ jL/ΛL


(F-7)

=

N∑
j=0

λ j

N+1∑
i=1

Ω jiΨ̃ik
ΨiL

ΛL
−

N∑
j=0

λ j(Ψ̃ jk − δ jk)
Ψ jL

ΛL
(F-8)

=

N+1∑
i=1

Ψ̃ik
ΨiL

ΛL

N∑
j=0

λ jΩ ji︸    ︷︷    ︸
λi

−

N∑
j=0

λ jΨ̃ jk
Ψ jL

ΛL
+ λk
ΨkL

ΛL
(F-9)

=

N∑
i=1

λiΨ̃ik
ΨiL

ΛL
−

N∑
j=0

λ jΨ̃ jk
Ψ jL

ΛL
+ λk
ΨkL

ΛL
(F-10)

= −λ0Ψ̃0k
Ψ0L

ΛL︸      ︷︷      ︸
λ̃k

+λk
ΨkL

ΛL
(F-11)

= λk
ΨkL

ΛL
− λ̃k (F-12)

This, combining with equation (E-9), completes the proof. □

By Lemma 8, we obtain

d log TFP
d log w

=

[
(λ ◦

Ψ(L)

ΛL
)′ − λ̃′

]
(I −Θ−1)Ψ̂ f (F-13)

=

N∑
j=1

λ̃ j(1 −
λ j

λ̃ j

ΨiL

ΛL
)
1 − θ j

θ j
Ψ̂ jL (F-14)
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F.2 Network-Adjusted Markups

Inspired by equation (F-14), we define χi as a network-adjusted markup. Specifically, for
all i ∈ N , it is given by:

χi =

(
λi

λ̃i

ΨiL

ΛL

)−1

, (F-15)

where λi
λ̃i

captures sector i’s downstream markup, while ΨiL
ΛL

represents sector i’s upstream

markup relative to the aggregate wedge. Therefore, their product λi
λ̃i

ΨiL
ΛL

captures the network-
adjusted markup of sector i. 5

With this definition, equation (F-14) simplifies to

d log TFP
d log w

=

N∑
j=1

(1 − χ−1
j )λ̃ j

1 − θ j

θ j
Ψ̂ jL. (F-16)

This equation illustrates that, in a Cobb-Douglas economy, the supply-side effect depends
on the interaction between network-adjusted markups measured by 1 − χ−1

i and network-
adjusted nominal rigidities represented by (θ−1

i − 1)Ψ̂iL. Without either initial distortions
(χi = 1,∀i ∈ N), or nominal rigidities (θ = 1), there is no supply-side effect.

Note that if a sector has a higher markup, and its upstream and downstream sectors
also have higher markups, it is generally associated with higher network-adjusted markups
(higher χi). Specifically, when two sectors i and j are symmetric both upstream and down-
stream, that is, they share identical production technologies and have the same roles as
input suppliers to firms and in household preferences (La’O and Tahbaz-Salehi, 2022), their
network-adjusted markups, χi and χ j, directly reflect their respective markups, µ̄i and µ̄ j, as
demonstrated in Lemma 9.

Lemma 9. If sector i and j are upstream and downstream symmetric, then χi > χ j if and only if
µ̄i > µ̄ j.

Proof of Lemma 9. Given sector i and j are upstream and downstream symmetric, we have

λ̃i = λ̃ j. Hence,
(
λi
λ̃i

ΨiL
ΛL

)−1
>

(
λ j

λ̃ j

Ψ jL

ΛL

)−1
is equivalent to λiΨiL < λ jΨ jL.

5For example, in a vertical economy, the downstream and upstream markups are given by,

λi

λ̃i
=

i−1∏
k=1

µ̄−1
k and

ΨiL

ΛL
=

∏N
k=i µ̄

−1
k∏N

k=1 µ̄
−1
k

=

i−1∏
k=1

µ̄k.

Here, downstream and upstream markups exactly cancel each other out, resulting in network-adjusted markups
uniformly being equal to one.
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Similar to Lemma 4, we find:

∂ logλk

∂ log µ̄k
= −(Ψkk − 1) ≤ 0 (F-17)

and
∂ logΨkL

∂ log µ̄k
= −Ψkk < 0. (F-18)

Therefore, λiΨiL < λ jΨ jL is also equivalent to µ̄i > µ̄ j.
□

F.3 Optimal Monetary Policy in a Cobb-Douglas Economy

Following La’O and Tahbaz-Salehi (2022), we rewrite the optimal policy weight for in-
dustry i, ϕ∗i , as a sum of components related to the output gap (o.g.), within-sector price
dispersion (within), cross-sector price dispersion (across), and variations in allocative effi-
ciency (adjust):

ϕ∗i ≡ ϕ
o.g.
i + ϕwithin

i + ϕacross
i + ϕ

adjust
i . (F-19)

To investigate the optimal monetary policy in a Cobb-Douglas economy, we begin by
analyzing matrices H1 and H2, which are associated with within-sector and cross-sector
misallocations, respectively.

Within-Sector Misallocation

The matrixH1 associated with within-sector misallocation is

H1 = diag(λ̃ ◦ ϵ ◦ (θ−1
− 1)) (F-20)

The derivation of this equation is based on Lemma 8, which statesMk = λk
ΨkL
ΛL
− λ̃k.

Cross-Sector Misallocation

In terms of cross-sector misallocations, we deduce from Lemma 10 that for Cobb-Douglas
elasticities across all sectors.

Lemma 10. When elasticities of substitution are Cobb-Douglas across all sectors, σ j = 1,∀ j, then

B(k, l) =
∑

j

λ jCovΩ( j,:)(Ψ(k),Ψ(l)) = λkλl

[
Ψlk

λk
+
Ψkl

λl
−
δkl

λk
− 1

]
(F-21)
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Proof of Lemma 10.

∑
j

λ jCovΩ( j,:)(Ψik,Ψil) =
∑

j

λ j


∑

i

Ω jiΨikΨil −

∑
i

Ω jiΨik

︸         ︷︷         ︸
Ψ jk−δ jk

∑
i

Ω jiΨil

︸        ︷︷        ︸
Ψ jl−δ jl


(F-22)

=

N+1∑
i=1

ΨikΨil

N∑
j=0

λ jΩ ji︸    ︷︷    ︸
λi

−

N∑
j=0

λ j(Ψ jk − δ jk)(Ψ jl − δ jl) (F-23)

=

N∑
i=1

λiΨikΨil −

N∑
j=1

λ j(Ψ jk − δ jk)(Ψ jl − δ jl) − λ0Ψ0kΨ0l︸     ︷︷     ︸
λkλl

(F-24)

= λkλl

[
Ψlk

λk
+
Ψkl

λl
−
δkl

λk
− 1

]
(F-25)

□

In this paper, we refine our understanding of cross-sector misallocation in a Cobb-
Douglas economy. We derive the following expression for Lacross:

L
across =

N∑
i=1

N∑
j=1

λ jΨ ji
ΨiL

ΛL
d logµid logµ j −

1
2

N∑
i=1

λi
ΨiL

ΛL
d log2 µi −

1
2

 N∑
i=1

λi
ΨiL

ΛL
d logµi


2

(F-26)

=

N∑
i=1

N∑
j=1

λkλl

[
Ψlk

λk

ΨkL

ΛL
+
Ψkl

λl

ΨlL

ΛL
−
δkl

λk

ΨkL

ΛL
−
ΨkL

ΛL

ΨlL

ΛL

]
d logµkd logµl (F-27)

This leads to the expression for the matrixH2 associated with cross-sector misallocation:

H2 = (I −Θ−1)B(I −Θ−1), (F-28)

where B = D +D′ − diag(λ ◦ Ψ
f

ΛL
) − (λ ◦ Ψ

f

ΛL
)(λ ◦ Ψ

f

ΛL
)′ andD = diag(λ)Ψndiag(Ψ

f

ΛL
).

Finally, we derive the components of the inflation index under optimal monetary policy,
which can be simplified as follows:
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ϕ
o.g.
i = (θ−1

i − 1)λiΨiL/ΛL = (θ−1
i − 1)λ̃iχ

−1
i , (F-29)

ϕwithin
i =

γ + φ

ξ
(θ−1

i − 1)λ̃iεiΨ̂iL, (F-30)

ϕacross
i =

γ + φ

ξ
(θ−1

i − 1)

 N∑
k=1

(θ−1
k − 1)Ψ̂kL(λkΨkiΨiL + λiΨikΨkL) − λiΨiL[Ψ̂iL(θ−1

i − 1) + ξ]

 /ΛL,

(F-31)

ϕ
adjust
i =

(1 + φ)(γ − 1)(1 − Λ̂L − ξ)
ξ

(θ−1
i − 1)λ̃i(1 − χ−1

i ), (F-32)

In a Cobb-Douglas economy, the output-gap stabilization policy is equivalent to
∑

i ϕ
o.g.
i π =

0, with ϕo.g. = (θ−1
i − 1)λiχ−1

i , indicating that the monetary authority could utilize alloca-
tive efficiency by allowing for higher inflation in sectors with higher network-adjusted
markups (higher χi). Moreover, Lemma 9 indicates that sectors with higher network-
adjusted markups generally correspond to lower initial markups.

G Optimal Policy in Example Economies

Example 1. Vertical Economy

The optimal monetary policy in a vertical economy can be simplified as
γ + φ

1 − Λ̂L
(Ψ̂n

(L))
′
H1︸               ︷︷               ︸

Within-sector price dispersion

+ Θ−1
− I︸  ︷︷  ︸

Output gap


π = 1 −

∏
i

µ̄−1
i

In a vertical economy, cross-sectional resource allocation is always efficient regardless
of initial wedges and pricing rigidities, therefore, the industry weights corresponding to
cross-sector misallocation and adjustment from allocative efficiency should be zero: ϕacross

i =

ϕ
adjust
i = 0 for all i ∈ N . Despite this, within-sector price dispersion persists due to pricing

frictions, requiring the optimal policy to trade off output gap volatility against within-sector
misallocation, as emphasized in the standard New Keynesian literature. Equation in (10)
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implies that the optimal price-stabilization target is given by
∑

i ϕ
∗

iπi = 1 −
∏

i µ̄
−1
i , and

ϕ∗i ≡ ϕ
o.g.
i + ϕwithin

i

where

ϕ
o.g.
i = 1/θi − 1

ϕwithin
i =

γ + φ

1 −
∏N

k=1 θk
(1/θi − 1)εi

N∏
k=i

θk

The optimal policy, therefore, allocates larger weights to industries with: (i) higher price
stickiness; (ii) larger within-sector elasticities of substitution; and (iii) a more upstream
position in the production chain. It is not surprising that our inflation index aligns with the
findings of La’O and Tahbaz-Salehi (2022), as there is no cross-sector misallocation in the
vertical economy, thus eliminating any supply-side effect of monetary policy.

Example 2. Horizontal Economy

In this section, we use the horizontal economy from section 3.3 as an example to demon-
strate how our model primitives characterize the optimal conduct of monetary policy. For
simplicity, we assume that the elasticity of substitution in consumption is equal to one.

As illustrated in section 3.3, when initial wedges covary with price rigidities, monetary
policy has a supply-side effect. Consequently, the optimal policy component that accounts
for the interaction between allocative efficiency and pure technology effect ϕadjust

i is nonzero.
Next, in contrast to the vertical economy, a dispersion on price rigidities result in sectoral
relative prices fails to fully reflect their corresponding productivities in response to pro-
ductivity and monetary shocks, which implies the component of monetary policy targets
cross-sector misallocation ϕacross

i is also nonzero. Finally, combining the the components
of optimal policy aimed at reducing welfare losses arising from output gap volatility and
within-sector price dispersion, the optimal monetary policy in a horizontal economy consists
of four components,

ϕ∗i ≡ ϕ
o.g.
i + ϕwithin

i + ϕacross
i + ϕ

adjust
i
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where

ϕ
o.g.
i = (1/θi − 1)

biµ̄−1
i

Eb(µ̄−1)

ϕwithin
i =

γ + φ

1 − Eb(θµ̄−1)
Eb(µ̄−1)

(1 − θi)biεi

ϕacross
i = (γ + φ)(1/θi − 1)

∑
k bkµ̄

−1
k (θk − θi)

Eb(µ̄−1) − Eb(θµ̄−1)

biµ̄−1
i

Eb(µ̄−1)

ϕ
adjust
i = −(1 + φ)(γ − 1)(1/θi − 1)bi

 µ̄−1
i

Eb(µ̄−1)
− 1

 Covb(θ, µ̄−1)
Eb(µ̄−1) − Eb(θµ̄−1)

.

and the optimal inflation bias is determined by

π∗ = 1 − Eb(µ̄−1)︸        ︷︷        ︸
Aggregate wedge

+ [1 + φ + (γ − 1)Eb(µ̄−1)]
Covb(θ, µ̄−1)

Eb(µ̄−1) − Eb(θµ̄−1)︸                                                    ︷︷                                                    ︸
Supply-side effect

In the horizontal economy, the optimal policy assigns a larger industry weight to indus-
tries with (i) higher price stickiness, (ii) larger consumption shares, and (iii) lower initial
wedges.6 It’s also noteworthy that when initial wedges are uniform across sectors, the
industry weight ϕ∗i is independent of these initial wedges for all i ∈ N and the inflation
bias arising from supply-side effect is zero. However, as long as initial markups exist, the
aggregate wedge 1 − Eb(µ̄−1) still results in an inflation bias.

6We can reasonably disregard ϕadjust
i due to its quantitatively minor significance.
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