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Abstract

This paper studies settings where the analyst is interested in identifying and

estimating the average causal effect of a binary treatment on an outcome. We

consider a setup in which the outcome realization does not get immediately realized

after the treatment assignment, a feature that is ubiquitous in empirical settings.

The period between the treatment and the realization of the outcome allows other

observed actions to occur and affect the outcome. In this context, we study several

regression-based estimands routinely used in empirical work to capture the average

treatment effect and shed light on interpreting them in terms of ceteris paribus

effects, indirect causal effects, and selection terms. We obtain three main and

related takeaways. First, the three most popular estimands do not generally satisfy

what we call strong sign preservation, in the sense that these estimands may be

negative even when the treatment positively affects the outcome conditional on any

possible combination of other actions. Second, the most popular regression that

includes the other actions as controls satisfies strong sign preservation if and only

if these actions are mutually exclusive binary variables. Finally, we show that a

linear regression that fully stratifies the other actions leads to estimands that satisfy

strong sign preservation.
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1 Introduction

We study settings where the analyst is interested in identifying and estimating an av-

erage causal effect of a binary treatment on an outcome, and the treatment status is

determined in the context of a randomized controlled experiment or an observational

study under conditional independence assumptions. We focus on settings where the

outcome of interest does not get immediately realized after treatment assignment, a

feature that is ubiquitous in empirical settings, including the study of long-run effects

in economic history (Voigtländer and Voth, 2012; Angelucci et al., 2022), the analysis of

long-term valuation in industry settings (Jain and Singh, 2002; Akhtari et al., 2021), and

randomized experiments in economics and other social sciences (Beaman et al., 2013;

Moderna, 2021). The delay in the realization of the outcomes creates a time window

between the treatment assignment and the realization of the outcome that, in turn,

opens up the possibility for other observed endogenous actions to take place before the

outcome is finally realized; see Figure 1 for a graphical representation. In this context,

we study the interpretation of several popular estimands that arise from running re-

gressions of the outcome on the treatment and different ways of “controlling” for the

other actions. We emphasize that our use of the term “regression” refers to a linear pro-

jection that is free of any modeling assumptions on potential outcomes or conditional

means. Some of these estimands are not only popular in the economics literature, see,

e.g., Fagereng et al. (2021); Heckman et al. (2013); Chernozhukov et al. (2021), but

are also widely used across other social sciences, like psychology and political science,

as shown by the large number of citations (over 128K) associated with the regression

approach popularized by Baron and Kenny (1986). For each of these estimands, our

results present a decomposition that facilitates their interpretation in terms of ceteris

paribus effects of the treatment on the outcomes, indirect effects caused by the other

actions, and selection terms; and provide a framework that allows us to clarify under

what type of conditions the practice of “controlling” for the presence of other actions

leads to estimands that admit the desired interpretation.

The main findings of this paper can be grouped into three sets of results. First, the

standard practice of studying estimands that arise from a regression of an outcome on the

treatment, with or without “controlling” for the other actions in such regressions, does

not generally satisfy what we call strong sign preservation. Strong sign preservation,

formally characterized in Definition 3.3, is satisfied when an estimand that intends to

measure a ceteris paribus causal effect of a treatment on an outcome is positive when

the effect of the treatment on the outcome is positive conditional on all possible values

of the other actions. Failure to satisfy strong sign preservation introduces a Simpson’s

Paradox-like sign reversal where the estimands may be negative even when the treatment

positively affects the outcome for any possible combination of other actions. Second,

the most popular estimand that linearly controls for the other actions in the regression,
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and that we label the long regression, does not generally provide benefits relative to the

short regression that includes no controls whatsoever. More concretely, while neither the

short nor the long regression satisfies strong sign preservation, the estimand associated

with the long regression admits a decomposition in terms of weighted averages of well-

defined causal effects but where the weights could potentially be negative. This feature

introduces yet another source that may separate the sign of the estimand from the sign

of ceteris paribus causal effects. Notably, this feature also occurs when the regression

includes interaction terms between the treatment and the other actions. Perhaps our

most salient result is the one in Theorem 4.2, which shows that the long regression

delivers easy-to-interpret results if and only if the other actions are all binary and

mutually exclusive random variables. Finally, while non-parametric identification of the

effects is straightforward under the stronger form of our assumptions and follows directly

from a saturated regression, we also show that a linear regression that properly controls

for other actions through complete stratification — what we term the strata fixed effects

regression, due to its link to the practice of including strata fixed effects in randomized

controlled trials with covariate adaptive randomization (see Bugni et al. (2018, 2019))

— always produces estimands that satisfy strong sign preservation.

The decompositions we derive for each of the five estimands we study can be in-

terpreted as decomposing a “total” effect into a “direct” and an “indirect” effect (and

possibly “selection” effect depending on the assumptions), and so our results are linked

to the vast literature on mediation analysis, see, e.g., Baron and Kenny (1986), Pearl

(2001), Robins (2003), Imai et al. (2010), and Remark 2.1 for a discussion. However, as

opposed to the literature on mediation that studies the type of assumptions that would

identify the causal effects of the so-called mediators, which in our context would simply

be the other actions taken before the outcome is realized, here our goal is not to iden-

tify these indirect effects but rather to gain a better understanding of how to properly

interpret certain popular estimands of the effect of the treatment on the outcome.

Beyond the literature on mediation analysis, our paper also connects to several

strands of research in econometrics and biostatistics. First, we are not the first to

acknowledge the importance of the distinctions between “partial” and “total” causal

effects in the econometrics literature, where early discussions include those in Manski

(1997) and Heckman (2000); see Remark 3.1. Second, our results are also related to

a large body of research that interprets regression-based estimands in various contexts

and finds characterizations in terms of weighted averages of causal effects of interest,

including the possibility of negative weights. Examples include De Chaisemartin and

d’Haultfoeuille (2020); Borusyak et al. (2022) in the case of two-way fixed effect es-

timands in difference in difference settings, Canay et al. (2023) in the case of local

instrumental variable estimands in marginal treatment effects settings, Angrist (1998);

Goldsmith-Pinkham et al. (2022) in the case of contamination bias in regressions with
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covariate adjustments, and Zhao and Ding (2022) in the case of factor-based regressions

in factorial experiments from a design-based perspective. The connection to all these

papers is algebraic and mechanical, by virtue of shared basic properties of least squares,

but the specific concerns and questions we consider here, as well as the main lessons

from our analysis, are distinct. Third, our results on the failure of strong sign preser-

vation of the popular estimands are also related to the so-called “surrogate paradox” in

the literature on surrogacy, where the effect of the treatment on the surrogate could be

positive, the surrogate and outcome could be positively correlated, yet the effect of the

treatment on the outcome could be negative, see, e.g., VanderWeele (2013); Chen et al.

(2007). Finally, the decompositions we derive for the specific case of the short regression

are analogous to those derived in the literature on causal interactive effects, where units

may be subject to multiple types of exposures (say, genetic and environmental), see,

e.g., VanderWeele and Tchetgen (2014); Robins and Greenland (1992). Our focus on a

variety of regression estimands, however, is distinct.

The remainder of the paper is organized as follows. Section 2 introduces the basic

notation. Section 3 defines the main concepts we use throughout the paper, including

partial causal effects, direct causal effects, and strong sign preservation. Section 4 in-

troduces the five estimands we study and then presents the main results on how each

of these estimands admits different decompositions into direct, indirect, and selection

effects. Finally, Section 5 concludes.

2 Setup and Notation

Consider a setting where Y denotes the observed outcome of interest, and the actions

taken by individuals or units under study are divided into a “main” action of interest,

denoted by D , and “other” actions, denoted by A:

(D,A) ∈ D ×A . (1)

Let X represent other observed covariates, which include features beyond actions.

All actions are assumed to be discrete. The main action, D, is further assumed to be

binary, i.e., D ≡ {0, 1}. The other actions, A, form a K -dimensional vector taking values

in A ≡ {a = (a1, . . . , aK) : aj ∈ Aj for j = 1, . . . ,K}, where each Aj is a finite set. For

notational convenience, we assume Aj ⊆ N , 0 ∈ Aj , and that when |Aj | = 2 , we have

Aj = {0, 1} . These additional restrictions simplify the discussion and expressions but

are not required for our results.

The setting we study in this paper is one with the following characteristics. First,

the analyst controls the action of interest D via a randomized controlled experiment (or,

alternatively, by an exogeneity assumption like selection on observables). We therefore
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timeline

D = d Y

Treatment Outcome realized

Other actions take place

A1, . . . , AK

Outcome not yet realized

Figure 1: Timeline of actions. The first action, D, is assumed to be (conditionally) exogenous

and is the main action of interest (so we refer to it as the treatment). The outcome is not

instantaneous and may take a short or long period of time to get realized. In the meantime,

units choose the value of the other actions A1, . . . , AK .

alternatively call this action the “treatment”. Second, the outcome Y is not instan-

taneous and takes some time to be realized within the timeline of the experiment. In

the period in-between the treatment assignment and the realization of the outcome,

the other actions contained in A get chosen by the units participating in the experi-

ment. Figure 1 illustrates the setting. Below we describe some empirical applications

in economics, social sciences, and industry that naturally fit into this setting.

The first class of applications that fit our framework is the literature that studies

long-run outcomes in economics. There, interest typically lies in a treatment that hap-

pened several years in the past (oftentimes hundreds of years ago) on some outcome

of interest in more recent times. For example, Voigtländer and Voth (2012) study the

effect of the existence of Black Death pogroms in 1349 (D) on the level of anti-Semitism

in Nazi Germany in 1920s (Y ) at the city level. Other actions that are included in

the analysis include city population in the 1920s (A), among other variables that are

determined closer to the realization of the outcomes. Other examples include Nunn

(2008); Angelucci et al. (2022), among many others. In these applications, it is common

to argue that the treatment is exogenous invoking selection on observables assumptions

or, in some cases, relying on instrumental variables approaches. Our results are limited

to settings exploiting conditional exogeneity.

The second class of applications includes the analysis of long-term valuation in mar-

keting and industry. There, the company (Uber, Google, AirBnb, Microsoft, etc.) owns

a platform where customers can engage in a variety of products offered by the platform

(e.g., buying an item, leaving a review, making a reservation, ordering a delivery, sub-

scribing to membership benefits, renting a movie, etc.) and is interested in measuring

how much value (in the long run) a certain product brings to the company. For exam-

ple, Akhtari et al. (2021) discusses how AirBnB measures the long-term value of actions

and events that take place on their platform. The main case discussed in Akhtari et al.

(2021) is the effect of a guest making a booking at AirBnB (D) on long-term impact

(Y ), where long-term impact is measured as the revenue created by the guest over 365
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days. Other actions A would capture other relevant actions, most notably, cancellations,

leaving a review on the platform, etc. While it is often possible to rely on randomized

experiments to measure the causal effects of some of these actions, others are difficult to

evaluate using experiments due to ethical, legal, or user experience concerns. In these

cases, it is common practice to rely on selection on observables assumptions, and focus

on one action of interest at a time.

The third class of applications includes clinical trials and randomized experiments

with a follow-up period between the treatment assignment and the realization of the

outcome of interest. There, researchers typically fully control the assignment of the

main treatment of interest but are unable to restrict behavior in the follow-up period.

For example, the clinical trial run by Moderna (2021) to study the efficacy of the Mod-

erna COVID-19 vaccine against SARS-CoV-2 infections. Participants in the study were

randomized to Immediate Vaccination Group 1 (receiving the Moderna COVID-19 Vac-

cine on Day 1 and Day 29) or Standard of Care Group 2, with vaccination given at

months 4 and 5. During the months following vaccinations, participants received visits

that checked for infections and could include blood collection, nasal swabs, SARS-CoV-2

screening, COVID-19 symptom checks, and questionnaires. In this example, D would

be an indicator of whether the participant received a vaccine, Y would be an indica-

tor of whether the participant got infected within the 4 months of the study, and A

would include other actions taken by the participants that could affect infection rates,

like whether the participants wear masks in public, whether the participants avoid large

gatherings, etc.1 Another example is Beaman et al. (2013), who conducted a field ex-

periment that provides free fertilizer to women rice farmers in Mali to measure how

farmers choose to use the fertilizer and the overall impact on profitability. The authors

distributed the fertilizer in May 2020 and conducted two follow-up surveys, one in Au-

gust 2020 and one in December 2020, right after the harvest. In this example, D would

be an indicator of whether the farmer received free fertilizer, Y would be a measure of

output like crop yield or just profits, and A would include all relevant complementary

agricultural inputs, such as labor, herbicides, and water usage. Due to its simplicity, we

use this example to illustrate the concepts we define in the next section.

Remark 2.1. What we call the other actions in Figure 1 can be alternatively labeled

as “mediator” variables since these are post-treatment variables that occur before the

outcome is realized, see, e.g., Baron and Kenny (1986), Pearl (2001), Robins (2003), and

Imai et al. (2010), among many others. However, our work deviates from this literature

in two important ways. First, while the literature on causal mediation analysis focuses

on the identification of causal effects induced by mediators, our focus in this paper is to

understand whether common estimands that are used to capture causal effects of main

action D on the outcome Y admit clear interpretations through the lens of total and

1In this paper we abstract away from spillover effects between individuals, which could be relevant
in the context of this and other examples we describe.
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direct effects. Second, our decompositions in terms of direct and indirect effects are

defined in terms of potential values for all of the actions, including those that may be

labeled as mediators, and this implies “indirect” effects in our context do not coincide

with the definition of indirect effects in the mediation literature but rather with the

so-called “controlled” effects discussed by Pearl (2001) and Robins (2003); see Remark

3.2 for additional discussion on this distinction. It is worth noting, however, that several

of our results have implications for the causal mediation literature, and we discuss these

implications as we present our main results.

Remark 2.2. The problems associated with the presence of the other actions A could

arise in settings that do not require the presence of “delayed outcomes”. For example, the

factorial experiments considered by Zhao and Ding (2022), the problems associated with

“bad controls” discussed by Angrist and Pischke (2008), or the mediation framework

described in Remark 2.1, are all about endogenous actions that are not necessarily

related to delayed outcomes. While we do not need to invoke delayed outcomes to

introduce the type of interpretation challenges we discuss here, we choose to do so

because it directly speaks to the examples that motivated this paper.

We denote potential outcomes by Y (d, a) and their expectation by

µ(d, a) ≡ E[Y (d, a)] . (2)

Depending on the setting, we may expand a into (a1, . . . , aK) and write Y (d, a1, . . . , aK)

instead of Y (d, a), although we prioritize the more concise notation whenever possible.

We also introduce the concept of a pooled potential outcome to isolate the counterfactual

outcome associated with the main action of interest (the treatment),

Y (d) =
∑
a∈A

Y (d, a)I{A(d) = a} , (3)

where A(d) denotes potential outcomes for the actions A as a function of the treatment

d. Finally, the observed outcome Y is related to potential outcomes by the relationship

Y =
∑

(d,a)∈D×A

Y (d, a)I{(D,A) = (d, a)} . (4)

With this notation, we can state our basic maintained assumption as follows, where we

denote by X the covariates or pre-determined variables.

Assumption 2.1. For all d ∈ D, D ⊥ Y (d) | X.

Assumption 2.1 can be obtained by the design of the experiment (as in Beaman

et al., 2013) or by relying on a rich set of covariates that would make the exogeneity

requirement credible (as assumed in Akhtari et al., 2021). As we will discuss in the next
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sections, while this assumption is enough to identify certain types of “total” effects of

D on Y and is a natural starting point to uncover causal effects of D on Y , it does not

lead to clean interpretations of ceteris paribus causal effects. For this reason, we also

consider a stronger version of this assumption that requires conditional exogeneity of

potential outcomes with respect to A as well. Formally, we state this as follows.

Assumption 2.2. For all (d, a) ∈ D ×A, (D,A) ⊥ Y (d, a) | X.

Assumption 2.2 essentially re-interprets the problem as a problem of multiple con-

ditionally exogenous treatments where, out of all possible treatments (D,A), the ana-

lyst is interested in the effect of D only. As such, it may not be credible in settings

where a randomized controlled experiment randomly assigned D across units but not

A, but it is often invoked in settings where the main identification argument relies on

selection on observables. The assumption is strong in the sense that it is sufficient to

non-parametrically identify µ(d, a) from the data via the approach in Section 4.5; yet

it is not strong enough to deliver a clean interpretation of popular estimands that are

often used in practice, as we show in the next sections. In addition, it is worth noting

that this assumption is implied by the so-called sequential ignorability assumption, a

commonly used assumption in the literature on mediation analysis; see Section 4.2.

3 Causal Treatment Effects

We start by discussing the type of counterfactual treatment effects that could interest

the researcher in the canonical setting where D is binary. Viewing Y (d, a) as a function

of two types of actions immediately suggests that there could be partial effects, total

effects, direct effects, and indirect effects, all of which may or may not be of interest in

the context of a concrete application. Understanding the variety of causal effects that

one could describe, in turn, will help us provide representations and interpretations of

commonly used target parameters, like the average treatment effect (ATE), in terms of

these types of causal effects. We start with what is perhaps one of the most natural

types of ceteris paribus effects in Definition 3.1.

Definition 3.1 (Average Partial Causal Effect). An average partial causal effect

of D on the outcome Y is any difference of the form µ(d, a)− µ(d′, a), where the value

a ∈ A is kept constant.

Definition 3.1 defines an average partial causal effect of the main action as a mean

comparison that keeps the value of the other actions unchanged in both states of the

comparison. In the farming application of Beaman et al. (2013), it would capture the

average causal effect of using fertilizer on the crop yield, while keeping other inputs, like

labor, herbicides, and water usage, constant in the counterfactual comparison.
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The ceteris paribus effect in Definition 3.1 could also be defined conditional on certain

events or subpopulations. In order to account for this, we also consider the concept in

Definition 3.1 conditional on some set Ω, i.e., E[Y (d, a) − Y (d′, a) | Ω], where Ω is a

function of (D,A,X). For example, Ω = I{D = 1} would lead to an average partial

causal effect on the treated and Ω = I{X = x} would lead to an average partial causal

effect for units with covariates x.

The definition of a partial causal effect for the main action delivers a potentially dif-

ferent causal effect for each possible value of the other actions or, alternatively, provides

a collection of partial causal effects indexed by a ∈ A. While the goal could just be

to identify such a collection of effects, in many settings it may be natural to aggregate

this collection of partial effects in a way that summarizes the effect of the main action

on the outcome of interest. The following definition defines a direct causal effect as any

weighted average of partial causal effects.

Definition 3.2 (Average Direct Causal Effect). The average direct causal effect of

D on the outcome Y is any convex combination of average partial causal effects of D

on Y . That is, ∑
a∈A

ω(a)(µ(d′, a)− µ(d, a)) , (5)

where ω(a) ∈ [0, 1] for all a ∈ A and
∑

a∈A ω(a) = 1.

In the context of our farming example with A only capturing low and high water us-

age for simplicity, the parameter (5) combines the average causal effect of using fertilizer

on the crop yield for units with high water usage, say A = 1, and units with low water

usage, say A = 0. Average direct causal effects could also be defined conditional on a

set Ω. The definition does not determine how the groups are weighted, but it requires

that no group is assigned a negative weight. In this sense, any average direct causal

effect satisfies strong sign preservation, as defined below.

Definition 3.3 (Strong Sign Preservation). A parameter ∆ that measures a causal

effect of the main action D on the outcome Y satisfies strong sign preservation if

µ(d′, a)− µ(d, a) > 0 for all a ∈ A implies ∆ > 0 .

In our farming example with A only capturing low and high water usage, strong sign

preservation of a parameter ∆ implies that whenever fertilizers improve the expected

crop yield both for units with high water usage and units with low water usage, ∆ should

be positive as well. As the name suggests, strong sign preservation does not allow for the

possibility of what it is typically referred to as sign reversal, understood as a situation

where ∆ < 0 when µ(d′, a)− µ(d, a) > 0 for all a ∈ A.
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Remark 3.1. While strong sign preservation may be perceived as a key requirement for

parameters that intend to identify partial causal effects, it may not be a reasonable re-

quirement in settings where the counter-factual question of interest involves total effects,

as introduced and discussed in the next section. The distinctions between “partial” and

“total” causal effects have appeared in the literature in a variety of contexts, even be-

yond the mediation analysis literature discussed in Remark 2.1, where Pearl (2001) and

Robins (2003) provide comprehensive treatments on these distinctions. For example,

Heckman (2000) defines a causal effect as a partial derivative and states that while the

assumption that an isolated action can be varied independently of others is strong but

“...essential to the definition of a causal parameter”. Manski (1997, page 1321 and 1323),

in turn, provides two interpretations of potential outcomes (one that keeps other actions

fixed and another one that lets the other actions change in response to the main action)

and clarifies that the interpretation of treatment effects depends on how we think about

potential outcomes. Here, we do not dwell on discussions about the relative merits of

partial or total effects but rather seek to understand whether commonly used estimands

in empirical work admit either of these (commonly sought after) interpretations under

different assumptions.

Remark 3.2. Our definitions of average causal partial effects and average direct causal

effects are not analogous to the notions of total causal effects, causal mediation effects,

and natural direct effects that are commonly used in the mediation analysis literature.

For example, the average natural direct effect corresponds to E[Y (1, A(0))−Y (0, A(0))]

in our notation, where A(d) denotes potential outcomes for the actions A as a function of

the treatment d. Contrary to these types of effects that are defined in terms of potential

actions, A(d), the effects we focus on are defined in terms of specific values of the actions

A, say A = a for any a ∈ A, and are therefore analogous to the notions of a controlled

effect discussed in Pearl (2001); Robins (2003), among others.

4 Decomposing Common Estimands

In this section, we analyze five natural and highly popular estimands intended to capture

treatment effects of D on Y . For each of these estimands, we derive a decomposition in

terms of parameters that can be labeled according to Definitions 3.1 and 3.2 and discuss

under what assumptions they can be interpreted as intended. To keep our exposition

as simple as possible and be able to zoom in on the type of concerns we intend to

highlight, in what follows we abstract away from issues related to improper control of

the covariates X. In other words, we ignore the role of the covariates in the type of

regressions we consider. This could be interpreted as a situation where the covariates

are discrete, and the regressions are viewed as within-cell regressions with cells given

by X = x, or more generally, where the covariates have been already accounted for by
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other means, like clustering or via a partially linear model, among many possibilities.

In particular, we do not consider the possibility that the analyst improperly controls for

these covariates by simply including a linear term in X in the regressions, as this would

create additional problems to those discussed here; see Goldsmith-Pinkham et al. (2022)

for a detailed treatment on the consequences of not properly controlling for confounders.

We also re-iterate that our use of the term “regression” refers to a linear projection that

is free of any modeling assumptions on potential outcomes or conditional means.

The first such estimand is the usual difference in means, which we write here as the

slope coefficient ∆short in a regression (projection) of Y on D and a constant term,

short regression: Y = β + ∆shortD + U , (6)

where E[UD] = 0 by properties of projections and E[U |D] = 0 follows from D being

binary. We call this the short regression.

The second estimand is the slope coefficient D in a linear regression of Y on D, a

constant term, and the K actions A1, . . . , AK ,

long regression: Y = ∆longD + θ0 +
K∑
j=1

θjAj + V , (7)

where E[V D] = E[V Aj ] = 0 by properties of projections. We call this the long regres-

sion.

The third estimand is the slope coefficient D in a linear regression of Y on D, a

constant term, the K actions A1, . . . , AK , and their interactions with D,

long reg. with interactions: Y = ∆interD + θ0 +
K∑
j=1

θjAj +
K∑
j=1

λjAjD + e , (8)

where E[eD] = E[eAj ] = E[eAjD] = 0 by properties of projections. We call this the

long regression with interactions. Note that this is not a fully saturated regression in

general, since the random variables Aj are allowed to take arbitrary values in N.

The fourth estimand is the slope coefficient D in a regression of Y on D and a set

of indicator functions for all the values that A takes,

sfe regression: Y = ∆sfeD +
∑
a∈A

θ(a)I{A = a}+ ν , (9)

where E[νD] = E[νI{A = a}] = 0 by properties of projections. Note that this is

a regression of Y on D with “strata fixed effects”, where the event {A = a} defines

a stratum for each value of a. As a result, we call this the strata fixed effect (sfe)

regression.
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The last set of estimands are the slope coefficients ∆sat(a), for a ∈ A, in a saturated

regression of Y on a set of indicator functions for all the values that A takes and their

interactions with D,

sat regression: Y =
∑
a∈A

γ(a)I{A = a}+
∑
a∈A

∆sat(a)I{A = a}D + ε , (10)

where E[εDI{A = a}] = 0 by properties of projections and E[ε|D, I{A = a}] = 0

follows from D and I{A = a} being binary for all a ∈ A. We call this the saturated

(sat) regression.

Remark 4.1. The use of short, long, and interaction regressions in the social science

literature is ubiquitous; see Zhao and Ding (2022) for a recent analysis on the properties

of these regressions in factorial experiments from a design-based perspective. Indeed,

Baron and Kenny (1986), the paper that largely established the use of these and related

regressions, has over 128, 000 citations as of 2024.

4.1 Short regression

The short regression is algebraically very simple, so we build up toward the main result

introducing the main concepts and notation along the way. The other regressions, on

the contrary, have more opaque derivations, and so in those cases, we first present the

formal results and then discuss their interpretation.

The slope coefficient ∆short in (6) equals ∆short = E[Y |D = 1] − E[Y |D = 0] by

elementary arguments. If we define

πd(a) ≡ P{A = a|D = d} , (11)

and note that

E[Y |D = d] =
∑
a∈A

E[Y (d, a)|D = d,A = a]πd(a) ,

we can decompose ∆short into the following three terms,

∆short = ∆s
dce + ∆s

ind + ∆s
sel (12)

where

∆s
dce ≡

∑
a∈A

π1(a)E[Y (1, a)− Y (0, a)|D = 1, A = a] (13)

∆s
ind ≡

∑
a∈A

(π1(a)− π0(a))(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0]) (14)

∆s
sel ≡

∑
a∈A

π1(a)(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]) . (15)

11



The three terms in the above decomposition for ∆short have a clear interpretation and

show that there are two channels of endogeneity introduced by the fact that the other

actions, A, take place in-between the treatment assignment and the realization of the

outcome of interest. The term in (13), ∆s
dce, captures an average direct causal effect on

the treated, as in Definition 3.2. Note that this term conditions on Ω = I{D = 1, A = a}
and so it is a conditional effect like those previously defined. The term in (14), ∆s

ind,

admits a clean interpretation for each value a ∈ A under additional assumptions we

introduce below. Without additional assumptions, this term is a type of “indirect” effect

that contains the product of the difference in conditional probabilities, π1(a) − π0(a),

and a term that confounds the average partial causal effect of A moving from 0 to a on

Y , with selection that arises from the distinct conditioning sets {D = 0, A = a} and

{D = 0, A = 0}. Finally, the term in (15), ∆s
sel, is a selection term that captures the

fact that the action A = a may not be independent of Y (0, a) and D.

Two points are worth highlighting. First, the above decomposition does not invoke

either Assumption 2.1 or Assumption 2.2. Importantly, while Assumption 2.1 guarantees

that

∆short = E[E[Y |D = 1, X]− E[Y |D = 0, X]] = E[Y (1)− Y (0)] , (16)

where Y (d) are the pooled potential outcomes in (3), it is not enough to characterize

∆short as an average direct causal effect or as a parameter that satisfies strong sign

preservation. In particular, the two endogeneity channels, ∆s
ind and ∆s

sel, in the decom-

position of ∆short could be positive or negative and, more importantly, lead to ∆short to

have the opposite sign to ∆s
dce. Second, the two endogeneity channels, ∆s

ind and ∆s
sel,

are conceptually different. While the channels entering the term ∆s
ind are difficult to

shut down, the selection term ∆s
sel can be set equal to zero under Assumption 2.2.

Under Assumption 2.2 the three terms entering the decomposition for ∆short simplify

in the following way: ∆s
sel = 0 and

∆s
dce =

∑
a∈A

π1(a)(µ(1, a)− µ(0, a)) (17)

∆s
ind =

∑
a∈A

(π1(a)− π0(a))(µ(0, a)− µ(0, 0)). (18)

That is, the selection term ∆s
sel is no longer present, and the direct effect ∆s

dce and

indirect effect ∆s
ind are now a function of the unconditional expectations µ(d, a). Im-

portantly, the term ∆s
ind is still part of the decomposition since Assumption 2.2 does

not restrict how A may affect outcomes, so that µ(0, a)− µ(0, 0) 6= 0, nor does it affect

how the main action may affect the other ones, so that π1(a) − π0(a) 6= 0. Aside from

removing the term capturing selection bias, Assumption 2.2 also delivers a clean inter-

pretation of the indirect effects captured by ∆s
ind. Each summand in ∆s

ind contains the

average partial causal effect of A moving from 0 to a on Y , µ(0, a)− µ(0, 0), multiplied

12



by the difference π1(a)−π0(a), which admits a causal interpretation of an average direct

causal effect of D on A under the additional assumption A(d) ⊥ D.

We can interpret the terms entering the decomposition of ∆short in (12) in the context

of the examples we introduced in Section 2. For example, in the farming example where

Y is crop yield, D is an indicator of the use of fertilizer, and A is, for simplicity, an

indicator of high water usage. In this setting, ∆s
dce captures the average direct causal

effect of using fertilizer on the crop yield, where the effect weights units with high and

low water usage according to the respective probabilities of these actions happening for

the treated, π1(a). The term ∆s
ind, in turn, captures a piece of the causal effect of water

usage on crop yield that depends on the magnitude of differential water usage between

the treated and the untreated. If water usage causally improves crop yield in the absence

of fertilizer, and getting an exogenous fertilizer incentivizes units to increase their water

usage, this term would be positive.

The following theorem summarizes our discussion above.

Theorem 4.1. Consider the short regression in (6) and assume P{D = d,A = a} > 0

for all (d, a) ∈ D ×A. Then, ∆short can be decomposed as in (12)-(15). If Assumption

2.2 holds, then ∆s
sel = 0 and ∆s

dce and ∆s
ind simplify to the expressions in (17) and (18).

Remark 4.2. It is important to note that, even under the stronger exogeneity condition

in Assumption 2.2, the parameter ∆short does not satisfy strong sign preservation as

defined in Definition 3.3. Indeed, it is certainly possible that µ(1, a) − µ(0, a) > 0 for

all a ∈ A and yet ∆short < 0 due to ∆s
ind < −∆s

dce < 0. This phenomenon, which is

reminiscent of the Simpson’s paradox, is present in similar ways in other causal inference

settings; including two-way fixed effects as in De Chaisemartin and d’Haultfoeuille (2020)

or the surrogate paradox as in VanderWeele (2013).

Remark 4.3. Under Assumption 2.2 and A(d) ⊥ D, ∆short is a linear combination of

average partial causal effects, and it captures a “total” effect rather than a “partial”

effect, as discussed in Remark 3.1. To understand this, notice that ∆ind in (18) is the

product of π1(a) − π0(a) and µ(0, a) − µ(0, 0) for each a ∈ A. Both of these terms

are partial effects, where π1(a) − π0(a) is the average partial effect of D on A and

µ(0, a)− µ(0, 0) is the average partial effect of moving A from 0 to a on the outcome Y

for units with D = 0. With this interpretation, ∆short captures a total effect of D on Y

that adds up the direct effect of D on Y , captured by ∆s
dce, and the indirect effect that

D has on Y via its effect on A and how A affects Y . This distinction between partial

and total effects mimics the usual one associated with total and partial derivatives in

mathematical analysis. Whether total or partial effects are relevant in the context of a

given application has already been discussed elsewhere; see, for example, Manski (1997);

Heckman (2000); Imai et al. (2010); Glynn (2012). Our main goal here is to clarify the

interpretation of estimands like ∆short in terms of these notions.
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In what follows, we prioritize results that hold under Assumption 2.2, with discus-

sions on how the main implications would be affected if Assumption 2.2 is replaced by

its weaker analog, Assumption 2.1. In general, moving from Assumption 2.2 to Assump-

tion 2.1 in all of the cases we study below leads to the same implication: interpreting

the estimands under consideration becomes difficult as a selection term, like ∆s
sel above,

becomes present. Indeed, Robins and Greenland (1992) argued early on in the empirical

mediation literature that direct and indirect effects cannot be separated in randomized

controlled trials without additional assumptions; a problem that at least within the lit-

erature in development economics appears to be well understood, see, for example, Mel

et al. (2009); Duflo et al. (2011); Beaman et al. (2013).

Assumption 2.2 may be particularly difficult to defend in RCT settings in which only

D is randomized. On the other hand, this assumption is more natural in settings in which

the identification argument relies on selection on observables, which are commonly used

in applications in marketing or the literature on long-term outcomes.

4.2 Long Regression

A seemingly natural, and certainly popular, way to mitigate the presence of indirect

effects and obtain an estimand that satisfies strong sign preservation is to control for

the other actions linearly as in (7); an approach we called the long regression. Our main

result below shows that the slope coefficient ∆long in (7) admits a decomposition similar

to that derived by ∆short, and thus includes a combination of direct effects and indirect

effects. However, except in some special cases, the coefficients multiplying each average

partial causal effect, as in Definition 3.1, could be negative and so ∆long may be negative

even in the absence of indirect effects. We formalize this below and provide a proof in

Appendix B.

Theorem 4.2. Let Assumption 2.2 hold and assume that assume P{D = d,A = a} > 0

for all (d, a) ∈ D×A and that the covariance matrix of (D,A) is positive definite. Then,

the coefficient ∆long in (7) admits the decomposition

∆long = ∆l
dce + ∆l

ind , (19)

where

∆l
dce ≡

∑
a∈A

ωl
dce(a)(µ(1, a)− µ(0, a)) (20)

∆l
ind ≡

∑
a∈A

ωl
ind(a)(µ(0, a)− µ(0, 0)) , (21)

and {ωl
dce(a) : a ∈ A} and {ωl

ind(a) : a ∈ A} are as defined in Theorem B.1 and satisfy∑
a∈A ω

l
dce(a) = 1 and

∑
a∈A ω

l
ind(a) = 0. Furthermore, the following statements are
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equivalent:

(a) A are mutually exclusive binary variables, i.e., Aj = {0, 1} for j = 1, . . . ,K and

AjAl = 0 for all j, l = 1, . . . ,K with j 6= l.

(b) For any distribution of (A,D), ωl
dce(a) ≥ 0 for all a ∈ A.

(c) For any distribution of (A,D), ωl
ind(a) = 0 for all a ∈ A.

Theorem 4.2 shows that ∆long can be decomposed into direct and indirect effects,

but it leaves open the possibility that the coefficients entering each of these terms could,

in general, be negative. An immediate implication is that, except in the special case

where the actions in A are all mutually exclusive binary variables, which includes the

case where A is a scalar binary variable as a special case, the term ∆l
dce could be negative

even if µ(1, a) − µ(0, a) > 0 for all a ∈ A. This is because ωdce(a) may be negative for

some a ∈ A. As a result, ∆long generally does not satisfy strong sign preservation for the

following two reasons. First, it may be possible that ∆l
ind < −∆l

dce, so that the indirect

effect dominates the direct effect. This phenomenon is the same as the one we discussed

for the short regression. Second, even in the absence of indirect effects, where ∆l
ind = 0,

the term ∆l
dce could be negative by itself even if µ(1, a)− µ(0, a) > 0 for all a ∈ A, due

to ωdce(a) < 0 for some a ∈ A. This second possibility represents a stark distinction

between the long regression estimand, ∆long, and the short regression estimand, ∆short,

in the sense that ∆long does not even measure a total causal effect of D on Y without

additional assumptions, cf. Remark 4.3. It is also important to highlight that this result

does not depend on the distribution of Y given (A,D), and so ∆long and ∆l
dce could be

arbitrarily negative, even if µ(1, a)− µ(0, a) > 0 for all a ∈ A, when the actions are not

mutually exclusive and binary.

We emphasize that the results in Theorem 4.2 are all equivalent. Obtaining an

easy-to-interpret characterization of ∆long in terms of partial effects when the actions

are all binary and mutually exclusive should not come as particularly surprising given

related results on the properties of this estimand in different but related settings (see,

for example, Zhao and Ding, 2022; Goldsmith-Pinkham et al., 2022). To the best of our

knowledge, however, a novel lesson of Theorem 4.2 is that this is precisely the only way

to guarantee a proper weighted average representation for ∆long for any distribution

of (A,D). Importantly, the equivalence we establish in Theorem 4.2 also holds under

the weaker Assumption 2.1. In that case, formally presented in Theorem B.1 in the

appendix, the decomposition of ∆long includes a selection term ∆l
sel but the equivalence

between the properties of the weights ωl
dce(a) and ωl

ind(a) and the actions A being

mutually exclusive binary variables is preserved. This result could also be interpreted

in the context of “bad controls” discussed in Angrist and Pischke (2008), as it clarifies

the unique way in which seemingly bad controls could actually become “good controls”.
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Remark 4.4. Replacing Assumption 2.2 with Assumption 2.1 leads to a decomposition

of ∆long that introduces three changes relative to the one in Theorem 4.2. First, the

term ∆l
dce becomes a linear combination of expectations that condition on Ω = I{D =

1, A = a}. Second, the interpretation of ∆l
ind becomes convoluted for the same reasons

discussed for ∆s
ind before. Finally, the decomposition additionally includes a selection

term that is conceptually identical to ∆s
ind in the short regression. However, the equiva-

lence between the properties of the weights ωl
dce(a) and ωl

ind(a) and the actions A being

mutually exclusive binary variables remains unchanged. The details of these expressions

are presented in Theorem B.1 in the appendix.

The possibility of ωl
dce(a) being negative for some a ∈ A does not depend on patholog-

ical data-generating processes. It can occur in relatively simple settings with reasonable

distributions for (A,D); see Section A in the Appendix for two basic examples. This

raises a significant concern for the use of linear-in-A regressions, as they can lead to

results that are difficult to interpret and, in many cases, offer no improvement over the

short regression in (6).

Remark 4.5. It is important to note that, even under the stronger exogeneity condition

in Assumption 2.2, the parameter ∆long does not generally satisfy strong sign preserva-

tion as defined in Definition 3.3. Indeed, it is certainly possible that µ(1, a)−µ(0, a) > 0

for all a ∈ A and yet ∆long < 0 due to either ∆l
ind < −∆l

dce < 0 or simply ∆l
dce < 0

because of negative weights {ωl
dce(a) : a ∈ A}. This second condition implies that not

even ∆l
dce satisfies strong sign preservation and thus, in general, ∆long does not offer

much of a benefit relative to ∆short, as ∆short can at least be interpreted as a kind of

“total” effect, as discussed in Remark 4.3.

Remark 4.6. As discussed in Remark 4.1, the long regression in (7) is used extensively

in the social sciences and the mediation literature. In economics, Heckman et al. (2013,

Eq. (6)) consider a long regression in the context of a more restrictive model for potential

outcomes that is linear and separable in (d, a). More recently, Fagereng et al. (2021, Eq.

(7)) use the same mediation model from Heckman et al. (2013), in combination with the

long regression in (7), to disentangle the average causal effect on outcomes into direct

and indirect effects. The causal interpretation assigned to the estimands in this last set

of papers is correct under the modeling assumptions for potential outcomes, despite both

applications involving actions A that are multidimensional and non-mutually exclusive.

Our results, however, imply that the main conclusions from such an analysis delicately

rely on a linear model for µ(d, a) and do not generally extend to nonlinear ones.

The results in Theorem 4.2 are novel to the best of our knowledge, though there

are related results that differ in focus and scope. For example, Imai et al. (2010) study

the interpretation of the long regression popularized by Baron and Kenny (1986) under
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an assumption they refer to as sequential ignorability and a linear model for potential

outcomes. We state this assumption below.

Assumption 4.1 (Sequential Ignorability). Let A(d) denote the potential outcome for

A and assume that: (i) (Y (d′, a), A(d)) ⊥ D|X = x, and (ii) Y (d′, a) ⊥ A(d)|D = d,X =

x, both for d, d′ = 0, 1 and all x.

The results in Imai et al. (2010) about the long regression in (7) invoke (a) sequential

ignorability, (b) a scalar random variable A (though not necessarily binary), and (c) a

linear model for µ(d, a) in (d, a). Under these conditions (a)-(c), and ignoring the X

for simplicity, Imai et al. (2010, Theorem 2) shows that ∆long identifies ζ̄ = ζ̄(1) = ζ̄(0)

where ζ̄(d) ≡ E[Y (1, A(d))] − E[Y (0, A(d))] =
∑

a∈A(µ(1, a) − µ(0, a))πd(a), and the

equality follows from Assumption 4.1 implying Y (d′, a) ⊥ A(d); see Lemma C.2 in

Appendix C. The linear model for µ(d, a) implies that the difference µ(1, a) − µ(0, a)

does not depend on the value of a, and so it is just a constant that we can denote

by ζ̄ without loss of generality. The fact that ζ̄ = ζ̄(1) = ζ̄(0) then follows from∑
a∈A πd(a) = 1 for d ∈ {0, 1}.

The additional assumptions (a)-(c) mentioned above have implications on the con-

clusions of Theorem 4.2, which does not invoke any of these assumptions. In particular,

the linearity of µ(d, a) implies that ∆l
dce in (20) equals ζ̄

∑
a∈A ω

l
dce(a) = ζ̄ by the weights

adding up to one according to Theorem 4.2. The same linearity assumption also implies

that

∆l
ind ≡

∑
a∈A

ωl
ind(a)(µ(0, a)− µ(0, 0)) ∝

∑
a∈A

ωl
ind(a)a = 0 ,

where the last equality follows from Theorem B.1 in the appendix. We conclude that

Theorem 4.2 coincides with the results in Imai et al. (2010) in delivering ∆long being

equal to ζ̄ under the additional assumption that µ(d, a) is linear in (d, a). This means

that, while sequential ignorability is a stronger assumption than Assumption 2.2 (we

prove this claim in Lemma C.1 in Appendix C), the main driving force of this result

is the linear model for the potential outcomes or, equivalently, the linear model for

µ(d, a).2 As we discussed in Remark 4.6, this linearity assumption has been used in

economic applications, e.g., Heckman et al. (2013); Fagereng et al. (2021), and while

it imposes enough restrictions to provide a clean interpretation to the coefficient ∆long,

our results show that such a clean interpretation generally breaks down when µ(d, a) is

not linear in (d, a).

Remark 4.7. We note that while Theorem 4.2 is a result on how to properly interpret

∆long in the context of a long regression, Imai et al. (2010, Theorem 2) is a result

on the identification of natural indirect effects via the same type of regression and

2Sequential ignorability without a linear model for potential outcomes has been also used in the
literature on causal mediation analysis to construct semi-parametrically efficient estimators; see Tchetgen
Tchetgen and Shpitser (2012).
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the additional conditions (a)-(c) above. Related to our discussion in Remark 3.2, the

natural indirect effect does not coincide with our notion of indirect effect in Theorem

4.2. To see the difference, note that the natural indirect effect, defined as δ̄(d) =

E[Y (d,A(1))− Y (d,A(0))], can be written as

δ̄(d) =
∑
a∈A

(µ(d, a)− µ(d, 0))(π1(a)− π0(a)) , (22)

under sequential ignorability, and is distinct from ∆l
ind in (21) because ωl

ind(a) 6= π1(a)−
π0(a). Conceptually, the literature on mediation analysis defines an indirect effect as a

target parameter and then determines conditions under which such indirect effects could

be identified from the data. In contrast, we characterize the decomposition of estimands

in terms of average direct causal effects, as defined in Definition 3.2, and then group

the remaining terms as indirect or selection terms, depending on the case. We note,

however, that our indirect effects coincide with those characterized by δ̄(d) in the case

of the short regression from Section 4.1. That is, ∆s
ind in (18) equals δ̄(0).

4.3 Long regression with interactions

A common variant of the long regression additionally includes interactions between the

K actions, A1, . . . , AK , and the treatment D; that is, the slope coefficient ∆inter in (8).

We refer to this as the long regression with interactions. Our result below shows that

the slope coefficient ∆inter in (8) admits a decomposition with the same shortcomings

as the one we derived for ∆long, including the possibility of ∆inter being negative, even

in the absence of indirect effects. We prove this result in Appendix B.

Theorem 4.3. Let Assumption 2.2 hold and assume that assume P{D = d,A = a} > 0

for all (d, a) ∈ D ×A and that the covariance matrix of (D,A,AD) is positive definite.

Then, the coefficient ∆inter in (8) admits the decomposition

∆inter = ∆i
dce + ∆i

ind , (23)

where

∆i
dce ≡

∑
a∈A

ωi
dce(a)(µ(1, a)− µ(0, a)) ,

∆i
ind ≡

∑
a∈A

ωi
ind(a)(µ(0, a)− µ(0, 0)) ,

and {ωi
dce(a) : a ∈ A} and {ωi

ind(a) : a ∈ A} are as defined in Theorem B.2 and satisfy∑
a∈A ω

i
dce(a) = 1 and

∑
a∈A ω

i
ind(a) = 0. Furthermore, the following statements are

equivalent:
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(a) A are mutually exclusive binary variables, i.e., Aj = {0, 1} for j = 1, . . . ,K and

AjAl = 0 for all j, l = 1, . . . ,K with j 6= l.

(b) For any distribution of (A,D), ωi
dce(a) ≥ 0 for all a ∈ A.

(c) For any distribution of (A,D), ωi
ind(a) = 0 for all a ∈ A.

Theorem 4.3 is analogous to Theorem 4.2 and has very similar implications. Except

in the special case where the actions in A are all mutually exclusive binary variables,

which includes the case where A is a scalar binary variable as a special case, the term

∆i
dce could be negative even if µ(1, a)−µ(0, a) > 0 for all a ∈ A. This is because ωi

dce(a)

may be negative for some a ∈ A.3 As a result, ∆inter generally does not satisfy strong

sign preservation for the same two reasons ∆long did not satisfy it either. That is, (a) it

is possible that ∆i
ind < −∆i

dce, and (b) even if ∆i
ind = 0 the term ∆i

dce could be negative

by itself, even if µ(1, a)− µ(0, a) > 0 for all a ∈ A, due to negative weights. Again, this

second possibility separates ∆long and ∆inter from the short regression estimand, ∆short.

While Theorem 4.3 focuses on the properties of the estimand ∆inter, in settings with

interactions terms, it is most often the case that the analyst would rather focus on

the estimand ∆inter +
∑K

j=1 λjE[Aj ] (or, simply, ∆inter +
∑K

j=1 λjaj for given values aj ,

j = 1, . . . ,K). In Lemma C.4 in Appendix C, we show that

∆inter +
K∑
j=1

λjE[Aj ] =
∑
a∈A

ωi?
dce(a)(E[Y (1, a)−Y (0, a)]) +ωi?

ind(a)(E[Y (0, a)−Y (0, 0)]) ,

where the “weights” {(ωi?
dce(a), ωi?

ind(a)) : a ∈ A} may be negative in general, and thus

leading to an estimand with similar properties to those of ∆inter. The one special

case where the estimand ∆inter +
∑K

j=1 λjE[Aj ] identifies the intended causal effects is

when µ(d, a) is assumed to take the functional form µ(d, a) = κ0 + κ1d+
∑K

j=1 κ2,aaj +

d
∑K

j=1 κ3,jaj , which is equivalent to assuming that the conditional mean of the observed

outcome, Y , is correctly specified in the interaction regression in (8). Lemma C.5 in

Appendix C shows that ∆inter +
∑K

j=1 λjaj = µ(1, a) − µ(0, a) in this case, delivering

an average partial causal effect given a = (a1, . . . , aK), as defined in Definition 3.1. It

follows from these results that a clean interpretation of ∆inter or ∆inter +
∑K

j=1 λjaj

in terms of the definitions introduced in Section 3 essentially depends on a correctly

specified linear model for potential outcomes and does not generally apply to nonlinear

models, similarly to our results about the long regression in Section 4.2.

Remark 4.8. Replacing Assumption 2.2 with Assumption 2.1 leads to a decomposition

of ∆inter that introduces three changes relative to the one in Theorem 4.3. First, the term

∆i
dce becomes a linear combination of expectations that condition on {D = 1, A = a}.
3The possibility of ωi

dce(a) being negative for some a ∈ A can occur in simple settings with reasonable
distributions for (A,D); see the proof of Theorem 4.3.
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Second, the interpretation of ∆i
ind becomes convoluted for the same reasons discussed

for ∆s
ind. Finally, the decomposition additionally includes a selection term that is con-

ceptually identical to ∆s
ind in the short regression. The details of these expressions are

presented in Theorem B.2 in Appendix B.

Remark 4.9. Similar to the long regression in (7) that we discussed in Remarks 4.1

and 4.6, the interaction regression is used extensively in the mediation literature. In

the context of mediation analysis, this variant has been popularized and advocated

by Judd and Kenny (1981); Kraemer et al. (2002, 2008). However, the main goal in

that particular setting has been to test for the existence of mediation effects using the

estimated coefficients in (8), see Kraemer et al. (2008) for details on the proposed test

and Imai et al. (2010) for a result that shows that, under Assumption 4.1, such a test

does not provide evidence in favor or against the parameter δ̄(d) in (22) being zero.

Our results, on the other hand, imply that even in settings where mediation effects

are a nuisance and the main goal is to interpret the coefficients directly related to the

treatment D, the main conclusions depend on the distribution of (A,D).

4.4 Strata fixed effects (SFE) regression

Theorems 4.2 and 4.3 show that adding other actions linearly in the regression is gener-

ally useful only when the actions are binary and mutually exclusive. If we could make

the actions binary and mutually exclusive, we would obtain an estimand free from indi-

rect effects and with strong sign preservation. This is possible by considering the slope

coefficient ∆sfe in (9), where the regression controls for all possible values of A, i.e.,

{I{A = a} : a ∈ A}. We call this a strata-fixed effects regression, due to its connection

to the use of strata fixed effects in randomized controlled trials with covariate adaptive

randomization; see Bugni et al. (2018, 2019). Our result shows that ∆sfe in (9) has a

decomposition free from indirect effects (see Appendix B).

Theorem 4.4. Let Assumption 2.2 hold and assume that P{D = d,A = a} > 0 for all

(d, a) ∈ D ×A. Let πd(a) be defined as in (11). Then

∆sfe =
∑
a∈A

ωsfe(a)(µ(1, a)− µ(0, a)) ,

where the weights {ωsfe(a) : a ∈ A} are given by

ωsfe(a) ≡ π1(a)π0(a)/pa∑
a′∈A π1(a

′)π0(a′)/pa′
(24)

for pa ≡ P{A = a}, and satisfy
∑

a∈A ωsfe(a) = 1 and ωsfe(a) ≥ 0.

Theorem 4.4 shows that ∆sfe identifies an average direct causal effect as in Definition

3.2. Importantly, it does not contain indirect effects and, as a result, ∆sfe satisfies strong
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sign preservation as in Definition 3.3. The weight ωsfe(a) admits a simple representation

and depends only on the conditional probabilities that the action a happens for the

treated and control group, π1(a) and π0(a). These weights are generally different than

the weights associated with the direct effect in the short regression, ∆s
dce, which are

simply π1(a), unless D and A are independent. We emphasize that the result in Theorem

4.4 does not require the other actions, A, to be singled-valued or mutually exclusive.

The estimand ∆sfe has been studied in other settings. For example, Bugni et al.

(2018, 2019) study the properties of this estimand and present results on how to properly

compute standard errors in randomized controlled experiments with covariate adaptive

randomization. These papers, however, do not represent ∆sfe as a weighted average

of causal effects since the strata are not viewed as counter-factual features in such

experiments. As another example, Angrist (1998) studies regressions of Y on D under

Assumption 2.1 and considers a linear regression that saturates on the covariates, X, to

obtain an expression that parallels the one in Theorem 4.4; see Angrist (1998, footnote

11). In this sense, our result may be interpreted as another instance where stratifying

confounding variables leads to easy-to-interpret results (though, it is important to notice

that this result relies on the fact the treatment variable D in our case is binary, c.f.

Goldsmith-Pinkham et al. (2022)).

4.5 Saturated (SAT) Regression

We now turn our attention to the last set of estimands we study in this paper; the slope

coefficient ∆sat in (10). As we have stated in the introduction, under Assumption 2.2, it

follows that µ(d, a) is immediately identified from E[Y |D = d,A = a] for any d ∈ {0, 1}
and a ∈ A and so identification of any contrast of means µ(d, a) is straightforward.

From this, it immediately follows that the same result could be achieved by running a

saturated regression, as in (10), that we re-write here for readability,

Y =
∑
a∈A

γ(a)I{A = a}+
∑
a∈A

∆sat(a)I{A = a}D + ε .

Standard results on saturated regressions imply that ∆sat(a) = µ(1, a) − µ(0, a) for all

a ∈ A, and so ∆sat(a) captures an average causal partial effect of D on Y for each value

of the other actions, a ∈ A, aligned with Definition 3.1. For completeness, we state

and prove this result formally in Theorem B.4 in the appendix. The same theorem also

shows that replacing Assumption 2.2 with Assumption 2.1 leads to a decomposition of

∆sat(a) that includes a selection term, as it was also the case for the other estimands we

considered. Finally, we note that this approach is equivalent to a multi-way ANOVA,

since the mean for the outcome variable depends exclusively on categorical variables.
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5 Concluding Remarks

In this paper, we study settings where the analyst aims to identify and estimate the

average causal effect of a binary treatment on an outcome, when outcomes are delayed

and do not immediately follow treatment assignment. This delay allows other observed

endogenous actions to occur before the outcome is realized. We decompose popular

estimands from regressions of the outcome on the treatment and different approaches

to controlling for these actions, providing insights into their interpretation. Our results

show when controlling for other actions yields estimands with causal interpretations.

Notably, we demonstrate that the most popular estimand, which linearly controls for

actions (with or without interactions), fails to identify the total causal effect without

additional assumptions and offers no advantage over a simple regression of outcome on

treatment.
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APPENDIX

A Example of negative weights

In this section we present two canonical simple cases that leads to negative weights ωl
dce(a)

in the long regression. The first example is one where A is a scalar random variable taking

multiple values, and the second example is one where A = (A1, A2) with A1 and A2 being

binary. Additional examples appear in the proof of Theorem 4.2.

Consider first the case where A = A1 is a scalar random variable taking values in A1 =

{0, 1, 2, . . . , ā1}. The regression in (7) simplifies to

Y = ∆longD + θ0 + θ1A1 + V . (A-1)

Theorem B.1 provides general closed-form expressions for {ωl
dce(a) : a ∈ A} and {ωl

ind(a) : a ∈
A} that, when applied to this specific example, lead to

ωl
dce(a) ∝

(
π1(a)− Cov(D,A1)(a− E[A1])

Var(A1)(1− p)

)
, (A-2)

where p = P{D = 1}. From this expression, it follows that any distribution of (A,D) for which

Cov(D,A1)(a − E(A1)) > Var(A1)(1 − p)π1(a), would lead to negative weights. For example,

consider the case where p = 0.8, ā1 = 3, {A|D = 1} ∼ Bi(3, 0.8), and {A|D = 0} ∼ Bi(3, 0.2),

where Bi(n, π) denotes a Binomial distribution with n trials and success probability π. In this

case, ωl
dce(3) = −0.41 < 0. Figure 2 plots the weights ωl

dce(a) as a function of p and shows that

ωl
dce(3) is negative for any p > 0.4 in this example.

Consider the case where A = (A1, A2) with A1 and A2 both being binary variables, so that
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Figure 2: Weights ωl
dce(a) as a function of p when {A|D = 1} ∼ Bi(3, 0.8), and {A|D = 0} ∼ Bi(3, 0.2)
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A = {(0, 0), (1, 0), (0, 1), (1, 1)}. The regression in (7) simplifies to

Y = ∆longD + θ0 + θ1A1 + θ2A2 + V .

The closed-form expressions for {ωl
dce(a) : a ∈ A} and {ωl

ind(a) : a ∈ A} derived in Theorem B.1

also simplify to this case and lead to simple conditions for which

ωl
dce(1, 1) = −ωl

dce(1, 0) . (A-3)

That is, whenever one of the average partial causal effects gets a positive weight, the other

necessarily gets a negative one. As an illustrative example, consider the case where Cov[A1, A2] =

0,

P{D = 1} = P{A2 = 1} =
1

2
, P{A1 = 1 | D = 1} = 2P{A1 = 1} , (A-4)

and

P{A1 = A2 = 1 | D = 1} = P{A1 = 1, A2 = 0 | D = 1} =
1

4
. (A-5)

Using the expressions in Theorem B.1, we obtain ωl
dce(1, 0) = −ωl

dce(1, 1) = −0.30, which

one more time illustrates that negative weights arise naturally in settings with non-pathological

DGPs. In the proof of Theorem 4.2, we present even simpler counter-examples that also illustrate

how the weights {ωl
ind(a) : a ∈ A} are generally non-zero and potentially negative, as well as

how ωl
dce(a) may be negative without necessarily satisfying (A-3).

B Proofs

Proof of Theorem 4.1. This proof follows from derivations in Section 4.1 and basic algebraic

manipulations.

Theorem B.1. Consider the long regression in (6) and assume that P{D = d,A = a} > 0 for

all (d, a) ∈ D×A. Assume that the variance-covariance matrix of (A,D) is positive definite and

let M = Cov(D,A) Var(A)−1. Then,

∆long =
∑
a∈A

ωl
dce(a)E[Y (1, a)− Y (0, a)|D = 1, A = a]

+
∑
a∈A

ωl
ind(a)(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])

+
∑
a∈A

ωl
dce(a)(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]) , (B-6)

where

ωl
dce(a) ≡

π1(a)[Var(D)− P{D = 1}
∑K

j=1Mj(aj − E[Aj ])]

Var(D)− Cov(D,A) Var(A)−1 Cov(A,D)

ωl
ind(a) ≡

Var(D)[π1(a)− π0(a)]− P{A = a}
∑K

j=1Mj(aj − E[Aj ])

Var(D)− Cov(D,A) Var(A)−1 Cov(A,D)
, (B-7)

and πd(a) is defined in (11). Furthermore,
∑

a∈A ω
l
dce(a) = 1,

∑
a∈A aω

l
ind(a) = 0, and∑

a∈A ω
l
ind(a) = 0.
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Proof. Let θ ≡ (θj : j = 1, . . . ,K). By properties of projections,

E[(1, D,A′)′(Y − (∆longD + θ0 + θ′A))] = 0 . (B-8)

Profiling θ0 leads to

Cov(D,Y ) = Var(D)∆long + Cov(A,D)′θ (B-9)

Cov(A, Y ) = Cov(A,D)∆long + Var(A)θ . (B-10)

Since Cov(D,A) is positive definite, Var(A) is positive definite. Then, (B-10) implies that

θ = Var(A)−1(Cov(A, Y )− Cov(A,D)∆long). If we plug this into (B-9), we get

(Var(D)− Cov(D,A) Var(A)−1 Cov(A,D))∆long = Cov(D,Y )−M Cov(A, Y ) . (B-11)

Since Cov(D,A) is positive definite, Cov(D,A) Var(A)−1 Cov(A,D) > 0, and so (B-11) implies

that

∆long =
Var(D)∆short −

∑K
j=1Mj Cov(Aj , Y )

Var(D)− Cov(D,A) Var(A)−1 Cov(A,D)
, (B-12)

where we used that Var(D)∆short = Cov(D,Y ). For any j = 1, . . . ,K, some algebra shows that

Cov(Aj , Y ) =
∑
a∈A

E[Y (1, a)− Y (0, a)|D = 1, A = a](aj − E[Aj ])π1(a)E[D]

+
∑
a∈A

(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])(aj − E[Aj ])P{A = a}

+
∑
a∈A

(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a])(aj − E[Aj ])π1(a)E[D] .

(B-13)

Then, (B-6) follows from combining (12), (B-12), and (B-13).

To show
∑

a∈A ω
l
dce(a) = 1, consider the following derivation.

∑
a∈A

ωl
dce(a)

(1)
=

Var(D)− P{D = 1}
∑K

j=1Mj(E[Aj |D = 1]− E[Aj ])]

Var(D)− Cov(D,A) Var(A)−1 Cov(A,D)

(2)
=

Var(D)−M Cov(A,D)

Var(D)− Cov(D,A) Var(A)−1 Cov(A,D)

(3)
= 1 ,

where (1) holds by
∑

a∈A π1(a) = 1 and
∑

a∈A π1(a)aj = E[Aj |D = 1], and (2) holds by

P{D = 1}(E[Aj |D = 1]− E[Aj ]) = Cov(Aj , D), and (3) holds by definition of M .

We show
∑

a∈A ω
l
ind(a) = 0 by the following derivation applied to its numerator:

Var(D)
∑
a∈A

[π1(a)− π0(a)]−
∑
a∈A

P{A = a}
K∑
j=1

Mj(aj − E[Aj ]) = 0 ,

where the equality holds by
∑

a∈A π1(a) =
∑

a∈A π0(a) =
∑

a∈A P{A = a} = 1 and
∑

a∈A P{A =

a}aj = E[Aj ].

Finally, we show
∑

a∈A auω
l
ind(a) = 0 for any u = 1, . . . ,K. Once again, we focus on the
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following derivation applied to its numerator:

∑
a∈A

au Var(D)[π1(a)− π0(a)]−
∑
a∈A

auP{A = a}
K∑
j=1

Mj(aj − E[Aj ])

(1)
= Var(D)[E[Au|D = 1]− E[Au|D = 0]]−M Cov(Au, A)

(2)
= Cov(D,Au)− Cov(D,A) Var(A)−1 Cov(A,Au)

(3)
= 0 ,

where (1) holds by
∑

a∈A πd(a)aj = E[Aj |D = d] for d = 0, 1, and
∑

a∈A auP{A = a}(aj −
E[Aj ]) = Cov(Au, Aj), (2) holds by Var(D)[E[Au|D = 1] − E[Au|D = 0]] = Cov(D,Au) and

the definition of M , and (3) holds by the fact that Var(A)−1 Cov(A,Au) equals a column vector

with zeros except for a one in the uth position.

Proof of Theorem 4.2. The first part follows from Theorem B.1, which also yields∑
a∈A ω

l
dce(a) = 1 and

∑
a∈A ω

l
ind(a) = 0. To complete the proof, we now show the equiva-

lence between (a), (b), and (c).

First, we show that (a) implies (b) and (c). To this end, assume (a) holds. Then, the long

regression in (7) is equivalent to an SFE regression in (9). To see why, note that (a) implies that

A is a K dimensional vector that is either equal to 0 or a canonical vector (i.e., a vector with

a 1 in only one of its coordinates and zeroes otherwise). If we then let θ(a) = θ0 for a = 0 and

θ(a) = θj for a being the canonical vector with jth coordinate equal to one, we get

θ0 + θ′A =
∑
a∈A

θ(a)I{A = a} .

Therefore, ∆long = ∆sfe and Theorem B.3 imply (b) (with ωl
dce(a) = ωf

dce(a)) and (c).

Second, we show that (b) or (c) implies (a) or, equivalently, the negation of (a) implies the

negation of (b) and the negation of (c).

Start by considering the case when K = 1. Then, (a) fails when A 6= {0, 1}. For example,

consider the case where A = {0, 1, 2} with {A|D = 1} ∼ Bi(2, 0.3), {A|D = 0} ∼ Bi(2, 0.9), and

P{D = 1} = 0.5, where Bi(n, p) denotes a Binomial distribution with n trials and probability

p. With this distribution of (A,D), the weights in (B-7) become ωl
dce ≈ [−0.1, 0.76, 0.34] and

ωl
ind ≈ [−0.14, 0.28,−0.14], and so (b) and (c) fail.

Next, consider the case when K = 2. In this case, (a) can fail when (i) Aj 6= {0, 1} for

some j = 1, 2 or (ii) Aj = {0, 1} for all j = 1, 2 but A1A2 6= 0. For (i), consider {A1|D =

1} ∼ Bi(2, 0.3), {A1|D = 0} ∼ Bi(2, 0.9), P{D = 1} = 0.5, A2 ⊥ {D,A1}, and Var(A2) > 0.

The fact that A2 ⊥ {D,A1} and Var(A2) > 0 implies that A2 drops out of the expressions

in (B-7), and the example becomes identical to the one considered when K = 1, where (b)

and (c) fail. For (ii), let Ber(p) denote a Bernoulli distribution with parameter p and consider

{Aj |D = 0} ∼ Ber(0.1) and {Aj |D = 1} ∼ Ber(0.7) for j = 1, 2, with P{D = 1} = 0.5, so that

Aj = {0, 1} for j = 1, 2 and P{A1A2 = 0} ≈ 0.45. With this distribution of (A,D), the weights

in (B-7) become ωl
dce ≈ [0.34, 0.38, 0.48,−0.10] and ωl

ind ≈ [−0.14, 0.14, 0.14,−0.14], and so (b)

and (c) fail.

Finally, consider the case K > 2. Then, (a) can fail when (i) Aj 6= {0, 1} for some j =
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1, . . . ,K or (ii) Aj = {0, 1} for all j = 1, . . . ,K but AjAl 6= 0 for some j, l = 1, . . . ,K with j 6= l.

In either case, we can repeat the examples used for K = 2 by adding coordinates j = 3, . . . ,K

with {Aj : j > 2} ⊥ {D, {Aj : j ≤ 2}}, and Var(Aj) > 0 for j > 2. By construction, {Aj : j > 2}
drops out of the expressions in (B-7), and the examples considered with K = 2 imply the failure

of (b) and (c).

Theorem B.2. Consider the long regression with interactions in (8) and assume that P{D =

d,A = a} > 0 for all (d, a) ∈ D×A. Assume that the variance-covariance matrix of (A,D,AD),

denoted y Σinter, is positive definite and let M = Cov(D,W ) Var(W )−1 with W ≡ (A′, A′D)′.

Then,

∆inter =
∑
a∈A

ωi
dce(a)E[Y (1, a)− Y (0, a)|D = 1, A = a]

+
∑
a∈A

ωi
ind(a)(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])

+
∑
a∈A

ωi
dce(a)(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]) , (B-14)

where

ωi
dce(a) ≡

π1(a)
[
σ2
D − p

∑K
j=1Mj(aj − E[Aj ])− p

∑K
j=1Mj+K(aj − pE[Aj |D = 1])

]
σ2
D −M Cov(W,D)

(B-15)

ωi
ind(a) ≡

σ2
D(π1(a)− π0(a))−

∑K
j=1Mjpa(aj − E[Aj ])− p

∑K
j=1Mj+K(π1(a)aj − paE[Aj |D = 1])

σ2
D −M Cov(W,D)

,

p = P{D = 1}, pa = P{A = a}, σ2
D = Var(D), and πd(a) is defined in (11). Furthermore,∑

a∈A ω
i
dce(a) = 1,

∑
a∈A aω

i
ind(a) = 0, and

∑
a∈A ω

i
ind(a) = 0.

Proof. Let θ = (θj : j = 1, . . . ,K), λ = (λj : j = 1, . . . ,K), and α = (θ′, λ′)′. By properties of

projections,

E[(1, D,A′, DA′)′(Y − (∆interD + θ0 + α′W ))] = 0 . (B-16)

Profiling θ0 leads to,

Cov(D,Y ) = Var(D)∆inter + Cov(W,D)′α (B-17)

Cov(W,Y ) = Cov(W,D)∆inter + Var(W )α . (B-18)

Since Σinter is positive definite, Var(W ) is positive definite. Then, (B-18) implies that α =

Var(W )−1(Cov(W,Y )− Cov(W,D)∆inter). If we plug this into (B-17), we get

(Var(D)−M Cov(W,D))∆inter = Cov(D,Y )−M Cov(W,Y ) . (B-19)

Since Σinter is positive definite, Var(D) − Cov(W,D)′Var(W )−1 Cov(W,D) > 0 and so (B-19)

implies that

∆inter =
Cov(D,Y )−

∑K
j=1Mj Cov(Aj , Y )−

∑K
j=1Mj+K Cov(DAj , Y )

Var(D)−M Cov(W,D)
, (B-20)

30



where we used that Var(D)∆short = Cov(D,Y ). For any j = 1, . . . ,K, some algebra shows that

Cov(Aj , Y ) =
∑
a∈A

E[Y (1, a)− Y (0, a)|D = 1, A = a](aj − E[Aj ])π1(a)p

+
∑
a∈A

(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])(aj − E[Aj ])pa

+
∑
a∈A

(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a])(aj − E[Aj ])π1(a)p , (B-21)

and

Cov(DAj , Y ) = p
∑
a∈A

E[Y (1, a)− Y (0, a)|D = 1, A = a]π1(a)(aj − pE[Aj |D = 1])

+ p
∑
a∈A

(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a])π1(a)(aj − pE[Aj |D = 1])

+ p
∑
a∈A

(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])(π1(a)aj − paE[Aj |D = 1]) .

(B-22)

By plugging in (12), (B-21), and (B-22) into (B-20), (B-14) follows.

To show
∑

a∈A ω
i
dce(a) = 1, consider the following derivation.

∑
a∈A

ωi
dce(a)

(1)
=
σ2
D − p

∑K
j=1Mj(E[Aj |D = 1]− E[Aj ])−

∑K
j=1Mj+Kσ

2
DE[Aj |D = 1]

σ2
D −M Cov(W,D)

(2)
=
σ2
D −

∑K
j=1Mj Cov(D,Aj)−

∑K
j=1Mj+K Cov(D,DAj)

σ2
D −M Cov(W,D)

(3)
= 1 ,

where (1) holds by
∑

a∈A π1(a) = 1,
∑

a∈A π1(a)aj = E[Aj |D = 1], and σ2
D = p(1−p), (2) holds

by p(E[Aj |D = 1] − E[Aj ]) = Cov(D,Aj) and σ2
DE[Aj |D = 1] = Cov(DAj , D), and (3) holds

by definition of M .

We show
∑

a∈A ω
i
ind(a) = 0 by the following derivation applied to its numerator:

σ2
D

∑
a∈A

(π1(a)−π0(a))−
K∑
j=1

Mj

∑
a∈A

pa(aj−E[Aj ])−p
K∑
j=1

Mj+K

∑
a∈A

(π1(a)aj−paE[Aj |D = 1]) = 0 ,

where the equality holds by
∑

a∈A π1(a) =
∑

a∈A π0(a) =
∑

a∈A pa = 1,
∑

a∈A paaj = E[Aj ],

and
∑

a∈A π1(a)aj = E[Aj |D = 1].

Finally, we show
∑

a∈A auω
i
ind(a) = 0 for any u = 1, . . . ,K. Once again, we focus on the
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following derivation applied to its numerator:

∑
a∈A

auσ
2
D(π1(a)− π0(a))−

K∑
j=1

Mj

∑
a∈A

aupa(aj − E[Aj ])− p
K∑

j=1

Mj+K

∑
a∈A

au(π1(a)aj − paE[Aj |D = 1])

(1)
= σ2

D[E[Au|D = 1]− E[Au|D = 0]]

−
K∑

j=1

Mj Cov(Au, Aj)−
K∑

j=1

Mj+Kp(E[AuAj |D = 1]− E[Au]E[Aj |D = 1])

(2)
= Cov(D,Au)−

K∑
j=1

Mj Cov(Aj , Au)−
K∑

j=1

Mj+K Cov(DAj , Au)

(3)
= Cov(D,Au)− Cov(D,W ) Var(W )−1cov(W,Au)

(4)
= 0 ,

where (1) holds by
∑

a∈A πd(a)aj = E[Aj |D = d] for d = 0, 1,
∑

a∈A auP{A = a}(aj−E[Aj ]) =

Cov(Au, Aj), and
∑

a∈A aupa = E[Au], (2) holds by Var(D)[E[Au|D = 1] − E[Au|D = 0]] =

Cov(D,Au) and p(E[AuAj |D = 1] − E[Au]E[Aj |D = 1]) = Cov(DAj , Au), (3) holds by the

definition of M , and (4) holds by the fact that Var(W )−1 Cov(W,Au) equals a column vector

with zeros except for a one in the uth position.

Proof of Theorem 4.3. The first part follows from Theorem B.2, which also yields that∑
a∈A ω

i
dce(a) = 1 and

∑
a∈A ω

i
ind(a) = 0. To complete the proof, we now show the equiva-

lence between (a), (b), and (c).

First, we show that (a) implies (b) and (c). To this end, assume (a) holds. Then, the long

with interactions regression in (8) is equivalent to an SAT regression in (9). To see why, note

that (a) implies that A = {0K×1, {ej : j = 1, . . . ,K}}, where ej ∈ RK×1 has a one in the j’th

coordinate and zero otherwise. By defining A0 = 1−
∑K

j=1Aj , γ(a) = θ0 and ∆sat(a) = ∆inter

for a = 0, and γ(a) = θ0 + θj and ∆sat(a) = ∆inter + λj for a = ej with j = 1, . . . ,K, we get

∆interD + θ0 + θ′A+ λ′AD =
∑
a∈A

γ(a)I{A = a}+
∑
a∈A

∆sat(a)I{A = a}D .

Therefore, ∆inter = ∆sat(0) and Theorem B.4 imply (b) (with ωdce(0) = 1 and ωdce(ej) = 0 for

j = 1, . . . ,K) and (c).

To conclude, we now show that (b) or (c) implies (a) or, equivalently, the negation of (a)

implies the negation of (b) and the negation of (c).

First, consider the case when K = 1. Then, (a) fails when A 6= {0, 1}. For example,

if {A|D = 0} ∼ Bi(2, 0.3), {A|D = 1} ∼ Bi(2, 0.9), and P{D = 1} = 0.5, and so A =

{0, 1, 2}. By evaluating this information on (B-15), we get ωdce ≈ [0.19, 1.62,−0.81] and ωind ≈
[−0.72, 1.44,−0.72], i.e., (b) and (c) fail.

Second, consider the case when K = 2. Then, (a) can fail when (i) Aj 6= {0, 1} for some j =

1, 2 or (ii) Aj = {0, 1} for all j = 1, 2 but A1A2 6= 0. For (i), consider {A1|D = 0} ∼ Bi(2, 0.3),

{A1|D = 1} ∼ Bi(2, 0.9), P{D = 1} = 0.5, A2 ⊥ {D,A1}, and Var(A2) > 0. The fact that

A2 ⊥ {D,A1} and Var(A2) > 0 implies that A2 drops out of the expressions in (B-15), and the

example becomes identical to the one considered when K = 1 and, thus, (b) and (c) fail. For (ii),

consider {Aj |D = 0} ∼ Be(0.3) and {Aj |D = 1} ∼ Be(0.9) for j = 1, 2, and P (D = 1) = 0.5,

and so Aj = {0, 1} for j = 1, 2 and P (A1A2 = 0) ≈ 0.25. By evaluating this information on
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(B-15), we get ωdce ≈ [0.19, 0.81, 0.81,−0.81] and ωind ≈ [−0.72, 0.72, 0.72,−0.72], i.e., (b) and

(c) fail.

Finally, consider K > 2. Then, (a) can fail when (i) Aj 6= {0, 1} for some j = 1, . . . ,K

or (ii) Aj = {0, 1} for all j = 1, . . . ,K but AjAl 6= 0 for some j, l = 1, . . . ,K with j 6= l. In

either case, we can repeat the examples used for K = 2 by adding coordinates j = 3, . . . ,K with

{Aj : j > 2} ⊥ {D, {Aj : j ≤ 2}}, and Var(Aj) > 0 for j > 2. By construction, {Aj : j > 2}
drops out of the expressions in (B-15), and the examples considered with K = 2 imply the failure

of (b) and (c).

Theorem B.3. Consider the SFE regression in (9), and assume that P{D = d,A = a} > 0 for

all (d, a) ∈ D ×A. Then,

∆sfe = ∆f
dce + ∆f

sel , (B-23)

where

ωsfe(a) ≡ P{D = 0|A = a}P{D = 1|A = a}P{A = a}∑
ã∈A P{D = 1|A = ã}P{D = 0|A = ã}P{A = ã}

for all a ∈ A (B-24)

∆f
dce ≡

∑
a∈A

ωsfe(a)E[Y (1, a)− Y (0, a)|D = 1, A = a] (B-25)

∆f
sel ≡

∑
a∈A

ωsfe(a)(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]) . (B-26)

Furthermore, note that
∑

a∈A ωsfe(a) = 1 and ωsfe(a) ≥ 0.

Proof. By properties of projections,

E[Y D] = ∆sfeE[D] +
∑
a∈A

θ(a)E[I{A = a}D] (B-27)

E[Y I{A = a}] = ∆sfeE[DI{A = a}] + θ(a)P{A = a} for all a ∈ A . (B-28)

By P{A = a} > 0 for all a ∈ A, (B-28) implies that

θ(a) = E[Y |A = a]−∆sfeE[D|A = a] for all a ∈ A . (B-29)

Then, (B-27), (B-29), and some algebra imply that

E[Y |D = 1]−
∑
a∈A

E[Y |A = a]P{A = a|D = 1}

= ∆sfe

∑
a∈A

P{D = 1|A = a}P{D = 0|A = a}P{A = a}
P{D = 1}

, (B-30)

Under P{A = a} > 0 and P{D = 1|A = a} ∈ (0, 1) for all a ∈ A, (B-30) implies that

∆sfe =
P{D = 1}E[Y |D = 1]−

∑
a∈AE[Y |A = a]P{A = a,D = 1}∑

a∈A P{D = 1|A = a}P{D = 0|A = a}P{A = a}

=
∑
a∈A

ωsfe(a)
(
E[Y |A = a,D = 1]− E[Y |A = a,D = 0]

)
. (B-31)

By doing algebra on (B-31), (B-23) follows. Finally, verifying
∑

a∈A ωsfe(a) = 1 and ωsfe(a) ≥ 0
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is straightforward given the definition in (B-24).

Proof of Theorem 4.4. This result follows immediately from Theorem B.3.

Theorem B.4. Consider the SAT regression in (10) and assume that P{D = d,A = a} > 0 for

all (d, a) ∈ D ×A. Then, for all a ∈ A,

∆sat(a) = ∆t
dce(a) + ∆t

sel(a) , (B-32)

where

∆t
dce(a) ≡ E[Y (1, a)− Y (0, a)|D = 1, A = a] (B-33)

∆t
sel(a) ≡ E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a] . (B-34)

Furthermore, under Assumption 2.2, ∆t
sel(a) = 0 and

∆sat(a) = ∆t
dce(a) = µ(1, a)− µ(0, a) . (B-35)

Proof. Fix a ∈ A arbitrarily throughout this proof. By projection,

E[Y I{A = a}] = γ(a)P{A = a}+ ∆sat(a)E[DI{A = a}]

E[Y DI{A = a}] = (γ(a) + ∆sat(a))E[DI{A = a}] . (B-36)

By P{A = a} > 0, (B-36) implies that

γ(a) = E[Y |A = a]−∆sat(a)P{D = 1|A = a} (B-37)

E[Y D|A = a] = (γ(a) + ∆sat(a))P{D = 1|A = a} . (B-38)

By plugging in (B-37) into (B-38), we get

E[Y D|A = a]− E[Y |A = a]P{D = 1|A = a} = ∆sat(a)P{D = 1|A = a}P{D = 0|A = a} .
(B-39)

By (B-39) and P{D = 1|A = a} ∈ (0, 1), we get that

∆sat(a) = E[Y (1, a)|D = 1, A = a]− E[Y (0, a)|D = 0.A = a]. (B-40)

The desired result follows from adding and subtracting E[Y (0, a)|D = 1, A = 1] to (B-40).

C Auxiliary Lemmas

Lemma C.1. The following statements are true.

(a) Assumption 4.1 implies Assumption 2.2.

(b) Assumption 2.2 does not imply Assumption 4.1.

(c) Assumption 4.1 implies that Y (d̃, a) ⊥ A(d) | X for (d̃, d, a) ∈ D ×D ×A.
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Proof. Part (a). For any (d̃, ã, y, a, d), we have

P{Y (d̃, ã) ≤ y,A(d) = a,D = d|X} (1)
= P{Y (d̃, ã) ≤ y|X} P{A(d) = a|X} P{D = d|X}
(2)
= P{Y (d̃, ã) ≤ y|X} P{A(d) = a,D = d|X}
(3)
= P{Y (d̃, ã) ≤ y|X} P{A = a,D = d|X} , (C-41)

where (1) holds by Assumption 4.1, (2) holds by Assumption 4.1(i), and (3) holds by A(D) = A.

Since (d̃, ã, y, a, d) is arbitrary, (C-41) implies Assumption 2.2.

Part (b). Consider the following example. Assume X ⊥ (D, (A(d) : d ∈ D)′, (Y (d̃, a) :

(d̃, a) ∈ D × A)′)′, Y (d, a) = 0 for all (d, a), (A(1), A(0)) = (D,D), and D ∼ Be(0.5). Since

Y (d, a) = 0, it is independent of (D,A(D)) = (D,D). Thus, Assumption 2.2 holds. By Y (d, a) =

0 for all (d, a) and also A(d) = D, we have Y (d̃, a) ⊥ A(d)|D, so Assumption 4.1(ii) holds.

However, (Y (d̃, a), A(d)) = (0, D) 6⊥ D, and so Assumption 4.1(i) fails.

Part (c). For any (d̃, ã, y, a, d), we have

P{Y (d̃, ã) ≤ y,A(d) = a|X} (1)
= P{Y (d̃, ã) ≤ y,A(d) = a|X,D}
(2)
= P{Y (d̃, ã) ≤ y|X,D} P{A(d) = a|X,D}
(3)
= P{Y (d̃, ã) ≤ y|X} P{A(d) = a|X} , (C-42)

where (1) and (3) hold by Assumption 4.1(i), and (2) holds by Assumption 4.1(ii). Since

(d̃, ã, y, a, d) is arbitrary, (C-42) implies Assumption 2.2.

Lemma C.2. Assume the conditions in Theorem 4.2, and that

µ(d, a) = κ0 + κ1d+ κ′2a for all (d, a) ∈ {0, 1} × A (C-43)

for some constants κ0, κ1, κ2. First, the coefficients in (7) satisfy ∆long = κ1, θ0 = κ0, and

θ1 = κ2. Second, the terms in the decomposition in (19) are ∆l
dce = κ1 and ∆l

ind = 0.

Proof. Assumption 2.2 implies that E(Y |D = d,A = a) = µ(d, a) which, combined with (C-43),

implies that the conditional expectation of Y is linear in (1, a, d). From here, the first result

holds because the linear regression consistently estimates the parameters of a linear conditional

expectation. The second part follows immediately from combining (C-43) with
∑

a∈A aω
l
ind(a) =

0 and
∑

a∈A ω
l
dce(a) = 1 (both shown in Theorem B.1).

Lemma C.3. The examples used in the proofs of Theorem 4.2 and 4.3 can be completed to

satisfy Assumption 4.1.

Proof. For brevity, we focus on the example in the proof of Theorem 4.2 when K = 1. A similar

argument can be made for all other examples.

Recall that the example in the proof of Theorem 4.2 when K = 1 is as follows: {A|D = 0} ∼
Bi(2, 0.3), {A|D = 1} ∼ Bi(2, 0.9), and P{D = 1} = 0.5, and so A = {0, 1, 2}. The example

is silent about X or {Y (d, a) : (d, a) ∈ D × A}, and so it is unclear whether Assumption 4.1
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holds or not. We now provide one way to complete the specification of the example in a manner

compatible with Assumption 4.1.

Assume that X ⊥ ({Y (d, a) : (d, a) ∈ D ×A}, D, {A(d̃) : d̃ ∈ D}), {Y (d, a) : (d, a) ∈ D ×A}
non-stochastic and equal to {µ(d, a) : (d, a) ∈ D × A}, A(0) ∼ Bi(2, 0.3), A(1) ∼ Bi(2, 0.9),

D ∼ Be(0.5), and {A(1), A(0), D} are independent random variables. These conditions imply

that A(0)
d
= {A(0)|D = 0} = {A|D = 0} ∼ Bi(2, 0.3), A(1)

d
= {A(1)|D = 1} = {A|D = 1} ∼

Bi(2, 0.9), and P{D = 1} = 0.5, as required by the example. Next, we show that the completed

example satisfies Assumption 4.1. First, we have that Assumption 4.1(i) holds from the fact that

X is independent of the rest of the problem, {Y (d, a) : (d, a) ∈ D × A} is non-stochastic, and

A(d) ⊥ D. Second, we have that Assumption 4.1(ii) follows from the fact that X is independent

of the rest of the problem and {Y (d, a) : (d, a) ∈ D ×A} is non-stochastic.

Lemma C.4. Consider the setup in Theorem 4.3 and that A is scalar. Then, the coefficients in

(8) satisfy the following decomposition:

∆inter + E[A]λ =
∑
a∈A

ωi?
dce(a)(E[Y (1, a)− Y (0, a)]) + ωi?

ind(a)(E[Y (0, a)− Y (0, 0)]) , (C-44)

where

∆ = Var(AD) Var(A)− (Cov(DA,A))2

Ψ = 1 +
E[A]

∆
(Cov(A,DA) Cov(A,D)−Var(A) Cov(DA,D))

ωi?
dce(a) = Ψωi

dce(a) +
E[A]

∆
(Var(A)pπ1(a)(a− pE[A|D = 1])− Cov(A,DA)(a− E[A])π1(a)p)

ωi?
ind(a) = Ψωi

ind(a) +
E[A]

∆
(Var(A)p(π1(a)a− paE[A|D = 1])− Cov(A,DA)(a− E[A])pa) .

(C-45)

Moreover,
∑

a∈A ω
i?
dce(a) = 1 and

∑
a∈A ω

i?
ind(a) = 0. Furthermore, it is possible to have

ωi?
dce(a) < 0 and ωi?

ind(a) 6= 0 for some a ∈ A.

Proof. By properties of projection,

(Var(W ))−1(Cov(W,Y )− Cov(W,D)∆inter) = α = (θ′, λ′)′ .

We can use the fact that A is scalar to obtain an explicit formula for (Var(W ))−1. With this

expression in hand, we get

∆inter + E[A]λ = Ψ∆inter +
E[A]

∆
(Var(A) Cov(DA,Y )− Cov(A,DA) Cov(A, Y )) , (C-46)

By plugging in the expressions for (B-14), (B-21), (B-22) on the right-hand side of (C-46),

imposing Assumption 2.2, we obtain (C-44) and (C-45).

By the definition of {(ωi?
dce(a), ωi?

ind(a)) : a ∈ A} in (C-45) and repeating arguments used in

the proof of Theorem B.2, it is immediate to show that
∑

a∈A ω
i?
dce(a) = 1 and

∑
a∈A ω

i?
ind(a) = 0.

To conclude, it suffices to find an example in which ωi?
dce(a) < 0 and ωi?

ind(a) 6= 0 for some

a ∈ A. To this end, consider an example with {A|D = 0} ∼ Bi(2, 0.9), {A|D = 1} ∼ Bi(2, 0.1),
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and P{D = 1} = 0.3, and so A = {0, 1, 2}. By evaluating this information on (C-45), we get

ωdce ≈ [−0.2, 1.08, 0.12] and ωind ≈ [−0.26, 0.52,−0.26], i.e., (b) and (c) fail.

Lemma C.5. Assume the conditions in Theorem 4.3, and that

µ(d, a) = κ0 + κ1d+ κ2a+ κ′3ad for all (d, a) ∈ {0, 1} × A (C-47)

for some constants κ0, κ1, κ2, κ3. Then, the coefficient in (8) satisfies ∆inter = κ1, θ0 = κ0,

θ = κ2, and λ = κ3. Furthermore, the decomposition in (23) are ∆i
dce = κ1 and ∆i

ind = 0.

Proof. Assumption 2.2 implies that E(Y |D = d,A = a) = µ(d, a) which, combined with (C-47),

implies that the conditional expectation of Y is linear in (1, a, d, ad). From here, the first result

follows from the fact that the linear regression consistently estimates the parameters of a linear

conditional expectation. The second part follows from combining
∑

a∈A aω
i
ind(a) = 0 (shown in

Theorem B.2) and (C-47).
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