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1 Introduction

Reductions in trade barriers and advances in communication technologies over the past half
century have facilitated global sourcing of inputs for firms. Recent studies suggest an important
two-way relationship between the use of foreign intermediate inputs and firm productivity: on
the one hand, productive firms self-select into importing foreign inputs; on the other hand, access
to these inputs improves firm performance, both directly and indirectly through interactions with
R&D.1 In modeling and quantifying these channels, the existing literature has focused almost
exclusively on the role of imported production inputs. Yet increasingly, firms across the globe
also adopt foreign R&D inputs by sourcing R&D services from abroad or recruiting immigrant
researchers, which give these firms access to fresh ideas that can serve as an engine for growth.
Figure 1 shows the empirical significance of these two global R&D sourcing strategies for firms
in Denmark, the country of focus in this paper. The left panel is immigrants’ share of the total
R&D-related wage bill. The right panel is the share of foreign-sourced R&D services in total R&D
expenditures. Both panels show an increasing reliance of Danish firms on foreign R&D inputs.2

Why do firms source foreign ideas for R&D activities? How do these foreign R&D inputs
affect firm performance and aggregate productivity? In this paper, we answer these questions by
developing and estimating a dynamic model of firm R&D. We find that immigrant researchers
and imported R&D services play pivotal and complementary roles in shaping firms’ R&D ac-
tivities. Alternative models that omit these inputs or their interaction may lead to different as-
sessments of the effectiveness of innovation policies, such as R&D subsidies, as well as high-skill
immigration and offshoring policies.

We build a model of firm dynamics and endogenous R&D (e.g., Aw, Roberts and Xu, 2011;
Doraszelski and Jaumandreu, 2013; Bøler, Moxnes and Ulltveit-Moe, 2015) with two new mecha-
nisms. First, when undertaking R&D, in addition to domestic researchers, firms can use imported
R&D services and inputs provided by immigrant researchers. Using inputs from diverse sources
enables firms to apply the best idea for each task, à la Antràs, Fort and Tintelnot (2017), thereby
enhancing R&D efficiency. Second, recruiting immigrant researchers and globally sourcing R&D
services require an upfront investment, so only a small fraction of firms can take advantage of
these options. However, as immigrants may be able to provide information about foreign R&D
suppliers, their presence at a firm could reduce the upfront cost of finding overseas suppliers,
leading to dynamic interactions between the two foreign R&D inputs.

We document evidence for these mechanisms and quantify their importance in R&D. Coun-
terfactual analyses suggest that the benefit from foreign R&D inputs is an important reason why
firms undertake R&D in the first place. Without these inputs, the R&D participation rate would

1See, e.g., Amiti and Konings (2007), Goldberg, Khandelwal, Pavcnik and Topalova, 2010, Halpern, Koren and
Szeidl (2015), Bøler, Moxnes and Ulltveit-Moe (2015), and Antràs, Fort and Tintelnot (2017).

2These trends are also prominent in other countries. According to the Patent Cooperation Treaty data, between
2000 and 2010, 10-15% of inventors in developed countries were foreign nationals. Relatedly, many global firms source
R&D services from abroad by establishing overseas R&D centers. Both phenomena have become more prevalent over
the past decades. See, e.g., Miguelez and Fink (2013), Bircan, Javorcik and Pauly (2021), and Fan (2020) for details.
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Figure 1: Increasingly Globalized R&D among Firms Operating in Denmark
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(b) Offshore Share of R&D Expenditures
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Notes: Plotted in the left panel is the immigrants’ share in the total research wage bill, calculated as the ratio of the wage bill of
immigrants in R&D-related occupations over the wage bill of all workers in R&D-related occupations. Plotted in the right panel is
the ratio between offshore R&D expenditures and total R&D expenditures, domestic and offshore combined, for firms operating in
Denmark. In this definition, offshore R&D expenditures have two components: the R&D services purchased from abroad through
arms’ length contracts, and the R&D carried out by foreign entities within the same business group of a firm operating in Denmark
for the use of that firm. See Section 2 for the definition of R&D-related occupations and additional details of the data.

decrease by about 60%, and the effect of R&D on aggregate productivity would shrink by 80%.
Due to the crucial role of foreign inputs in R&D, their omission leads to a substantial under-
estimation of the effect of R&D subsidies on aggregate productivity. Moreover, as we estimate
important complementarity between the two foreign inputs, policies that change the cost of hir-
ing immigrant researchers have a large impact on firms’ offshore R&D decisions, and vice versa.
Not accounting for this interconnection underestimates the impacts of such policies on aggregate
productivity by up to 50%.

Our model is grounded in the new facts we document using administrative data from Statis-
tics Denmark between 2001 and 2015. We link the matched employer-employee data, which al-
lows us to observe the occupation and immigration status of individuals, to several surveys and
administrative datasets at the firm level, covering firms’ location, accounting information, R&D
status, imports and exports, and participation in offshore R&D. Armed with the rich information
on both firms and workers, we can measure whether a firm employs immigrant researchers or
conducts offshore R&D and assess how these decisions correlate with various firm characteristics
and other decisions of the firm.

We document three facts on firms’ use of foreign R&D inputs. First, firms employing immi-
grant researchers are more likely to engage in offshore R&D. This correlation is robust when var-
ious firm and industry characteristics are controlled for; when we focus on the firm-destination-
region-level—for example, firms recruiting immigrants from Eastern Europe are more likely to
source R&D services from Eastern Europe; when we employ a shift-share design that exploits
the increase in the supply of immigrants to rule out reverse causality. This finding supports
the notion that immigrant researchers bring knowledge about their home countries to the firm,
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reducing friction in sourcing R&D from these countries.
The second and third facts highlight a two-way relationship between the use of foreign R&D

inputs and productivity. On the one hand, firms with immigrant researchers and firms engaging
in offshore R&D are more productive than firms doing R&D using only domestic inputs, which
is consistent with self-selection into these activities based on productivity. On the other hand,
controlling for firms’ productivity and R&D expenditures, firms using foreign R&D inputs tend
to have higher future productivity than those doing R&D exclusively with domestic inputs. This
correlation is robust when we control for industry-time fixed effects and firms’ participation in
international markets through importing and exporting of physical goods. This effect is also
present when we use production function estimation techniques to address the simultaneity bias
in measuring productivity arising from firms’ endogenous choice of inputs.

We develop and estimate a structural model to disentangle the mechanisms behind these facts
and conduct policy experiments. In the model, heterogeneous firms choose whether to conduct
productivity-enhancing R&D, and if so, how much to invest in R&D and whether to use immi-
grant researchers and/or imported R&D services. Adopting multiple R&D input types is costly,
but it can increase R&D efficiency by exposing firms to different, potentially better, ideas for R&D
tasks. In addition to giving firms an incentive to use foreign R&D inputs, this mechanism leads
to an interaction between these inputs. For example, the availability of imported R&D services
increases the overall return to R&D, encouraging more firms to participate in R&D and, in turn,
increasing the use of domestic and immigrant researchers as well. To account for the selection
into R&D based on productivity and the transition patterns between different modes of R&D
that use different R&D input types, we incorporate flexible transition costs. For example, our
specification allows firms with immigrant researchers to face potentially different upfront costs
for importing R&D services compared to firms that do not have immigrant researchers.

We carry out the estimation in two tiers. In the first tier, we estimate the effects of foreign R&D
inputs on firm performance using a Generalized Methods of Moments (GMM) approach. We find
that doing R&D with only domestic input, on average, leads to a 1% productivity increase. On
top of that, the use of any kind of foreign R&D input boosts productivity by 2.3%. Breaking
down the use of foreign R&D inputs into immigrants, imported services, or both, we find that
using immigrant researchers increases performance both directly and in conjunction with using
imported R&D services. This finding indicates that the use of foreign R&D inputs increases firm
performance and that these two input types play complementary roles.

To shed light on the nature of the interactions between R&D inputs and to conduct counter-
factual experiments, in the second tier of the estimation, we exploit the restrictions of the model
on firms’ dynamic decisions to recover the structural parameters via indirect inference. In partic-
ular, we pin down the parameters governing the R&D process by matching the GMM estimates
discussed above. We find that there is substantial heterogeneity in the quality of ideas from
different sources, implying a large benefit from having access to foreign R&D inputs. The fixed
and sunk costs of switching between R&D modes discipline selection by productivity into these
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modes. We pin down these costs using two sources of information: the patterns of firms’ transi-
tion between R&D input sources and firms’ response to a natural experiment—an R&D subsidy
program introduced in Denmark in 2011, which reduced the user cost of R&D by 25% for eligible
firms. We find that switching from doing R&D with only domestic researchers to using imported
R&D services incurs an average startup cost of about 1.3 million USD and a fixed operation cost
of 1.1 million USD. The presence of immigrant researchers in a firm reduces this cost by 30%.
Thus, a part of firms’ return from hiring immigrant researchers materializes through the reduced
cost of adopting imported R&D services.

Our counterfactual experiments highlight the quantitative relevance of foreign inputs in R&D.
When we eliminate the heterogeneity in the quality of ideas for R&D from different sources—
thereby eliminating the main source of the benefit from foreign inputs—the R&D participation
rate decreases from the baseline level of 41.3 percentage points (p.p.) to 17.8 p.p., and the econ-
omy retains only 20% of the effect of R&D on aggregate productivity computed in the benchmark
equilibrium. This result has important implications for the effectiveness of innovation policies.
For example, in the absence of heterogeneous ideas across R&D input types, the effect of a de-
crease in the sunk cost of R&D on aggregate productivity would be 85% smaller than the effect
computed in the benchmark model. The omission of foreign R&D inputs leads to a significant
underestimation of the effect precisely because these inputs are an important reason why firms
participate in R&D to begin with.

We also examine the interaction between foreign R&D inputs via the cost of switching R&D
modes. If the presence of immigrant researchers at a firm does not affect the firm’s upfront cost
of using imported R&D services, not only does the share of firms that use imported R&D services
decrease, but also the share of firms that recruit immigrant researchers decreases substantially.
The R&D participation rate decreases by 14.8 p.p. or one-third of its baseline level. Accounting
for this interaction between offshore R&D and immigrant researchers is relevant for evaluating
the policies that target either of them. For example, in evaluating a policy that reduces the sunk
cost of offshore R&D, an alternative model without this mechanism would result in an aggregate
productivity increase that is only half as large as the increase in the benchmark model.

This paper is related to four strands of the literature. First, it contributes to the literature on
the impact of imported intermediate inputs on firm performance (e.g., Amiti and Konings, 2007;
Kasahara and Rodrigue, 2008; Goldberg, Khandelwal, Pavcnik and Topalova, 2010; Halpern, Ko-
ren and Szeidl, 2015; Antràs, Fort and Tintelnot, 2017; Fieler, Eslava and Xu, 2018). Different from
this literature, which focuses on the productivity effect of imported production inputs, our pa-
per focuses on foreign R&D inputs, namely, immigrant researchers and imported R&D services,
which are becoming increasingly important as global integration expands beyond the exchange
of goods to the exchange of ideas and the movement of high-skill workers. We show that the use
of foreign talent or imported R&D services has an independent effect on firm productivity above
and beyond that of imported production inputs. Since R&D investment contributes to firms’
knowledge capital, which is persistent, improvements in R&D efficiency accumulate and amplify
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over time. This dynamic effect of R&D inputs further differentiates this paper from the bulk of
the literature on imported production inputs, which focuses on static effects.

Second, our model of firm dynamics with endogenous R&D and our estimation methodology
build on the work of Aw, Roberts and Xu (2011), Doraszelski and Jaumandreu (2013), and Bøler,
Moxnes and Ulltveit-Moe (2015). Most closely related, Bøler, Moxnes and Ulltveit-Moe (2015)
argue that R&D and intermediate inputs are complements and jointly enhance firm performance.
Enabled by rich administrative data from Denmark, we contribute to this literature by looking
inside the black box of R&D and by examining the interaction between different R&D inputs. We
show that incorporating these R&D input types matters not only for evaluating various policies
on offshoring or immigration but also for understanding the impacts of generic R&D subsidies
that are actively used in many countries.

Our focus on firms’ decision to conduct offshore R&D is also related to the nascent literature
studying the impacts of R&D within multinational corporations (MNCs). For example, Bilir and
Morales (2020) estimate how R&D in the headquarters and foreign affiliates of MNCs affects
production in the same or nearby affiliates; Fan (2020) examines how MNCs optimally allocate
R&D and production among their affiliates around the world. Instead of developing a model of
affiliate production within MNCs, we develop a model of R&D sourcing. This model addresses
a key feature of our data—that our measure of offshore R&D captures the R&D services that a
firm operating in Denmark sources from abroad for itself and excludes the R&D done in foreign
headquarters/affiliates exclusively for local use at those foreign locations.3

Finally, this paper is related to a broad literature on the consequences of high-skill immigra-
tion. The literature has documented two general patterns: that high-skill immigrants increase
firm and regional economic performance, and that immigrants facilitate trade and other business
linkages between the origin and destination countries.4 Our first contribution to this literature
is to document both patterns in the same setting for a specific yet important activity, R&D. We
show that one important mechanism through which immigrants increase firm performance is
by helping the firm establish business connections in their home country. Our second contribu-
tion is to develop and estimate a dynamic heterogeneous firm model of R&D with immigrants,
which allows us to quantify this mechanism. Compared to most existing works that estimate
the impacts of immigrants using structural models (e.g., Burstein, Hanson, Tian and Vogel, 2020;
Caliendo, Parro, Opromolla and Sforza, 2021), our model incorporates two salient features of
the data, both of which are important for the evaluation of immigration policies: first, only the
most productive firms recruit immigrant researchers; second, immigrant researchers and R&D
offshoring interact with each other. A few recent works have developed models with the second
feature. In particular, Morales (2020) shows that foreign MNCs in the U.S. tend to recruit high-

3To the extent that the R&D reported in our measure has spillover effects on the activities of the overseas head-
quarters or affiliates of the firms operating in Denmark, our results underestimate the impact of offshore R&D.

4Examples of research focusing on the first result include Ottaviano, Peri and Wright (2018), Beerli, Ruffner, Siegen-
thaler and Peri (2021), Burchardi, Chaney, Hassan, Tarquinio and Terry (2020). Examples of research on the second
result include Head and Ries (1998), Rauch and Trindade (2002), Burchardi, Chaney and Hassan (2019), Olney and
Pozzoli (2018), Ramanarayanan and Cardoso (2019), among many others.
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skill workers from the headquarters countries, which suggests that foreign employees working
at a U.S. affiliate may act as a bridge facilitating the communication between the U.S. affiliate
and foreign headquarters. Distinct from and complementary to Morales (2020), the facilitating
role of immigrant researchers for communication in our paper is best viewed as the one between
the headquarters in Denmark and the home countries of these immigrants. This mechanism is
similar in spirit to the one proposed in Yeaple (2018), but we are able to estimate it, which Yeaple
(2018) did not pursue.

The rest of the paper is organized as follows. In Section 2, we introduce the data and describe
the salient features of the data. In Sections 3 and 4, we develop and estimate the model. Section
5 reports results from counterfactual experiments. Section 6 concludes.

2 Data and Facts

In this section, we first describe the data used in this paper. We then document new facts on
the relationship between offshore R&D, the employment of immigrant researchers, and firm
performance. These facts motivate the key ingredients of the structural model.

2.1 Data Sources

We merge several datasets from Statistics Denmark on firms and workers for 2001–2015. Be-
low we summarize the key pieces of information from these datasets. Appendix A.1 provides
additional details including the construction of the sample and the definition of key variables.

Workers. The information on workers comes from the Integrated Data for Labor Market
Research (IDA, hereafter), an annual snapshot taken in each November covering all working-age
individuals in the labor force. By supplementing IDA with additional administrative datasets, we
identify workers’ birth country and other demographic information, the firm and establishment
at which they work, and their occupation and wage. This information allows us to construct an
indicator of whether a firm hires immigrants in R&D-related roles, in which immigration status
is defined by a worker’s birth country and R&D-relatedness is determined by their occupation.
We discuss the robustness results under alternative definitions of immigrants in Appendix A.3.

Following Bernard, Fort, Smeets and Warzynski (2020), we classify an occupation as R&D-
related if, according to the job description, it involves creative and/or technical components
such as design, testing, and experimentation. This classification of R&D-related occupations is
broader than the definition of R&D as activities carried out by scientists or university researchers
pushing the boundary of human knowledge. However, it captures the fact that for many firms,
some form of experimentation and innovation is needed to develop a new product.5 Slightly

5Examples of R&D-related occupations include software developers, mechanical engineers, and technicians in
chemical sciences. An advantage of our classification is that because it is based on occupation, it includes only the
personnel directly involved in R&D-related activities and excludes supporting staff in R&D units (e.g. accountants).
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abusing language, we refer to workers in R&D-related occupations as researchers and refer to
researchers not born in Denmark as immigrant researchers.

Firms. The information on the characteristics and activities of firms primarily comes from
two sources. The first source is Regnskabsstatistik (FIRE, hereafter), an annual panel on firms’
accounting information derived from value-added tax administrative data. FIRE covers almost
all private-sector firms above a certain size determined by the firm’s ownership structure.6 The
information we extract from FIRE includes firm sales, value-added, material use, wage bill, and
fixed capital investment. We use fixed capital investment to construct capital stock using the
perpetual inventory method. We deflate the wage bill using the consumer price index and deflate
other variables using the corresponding industry-level deflators. We supplement this dataset
with firm-level trade data to control for firms’ import and export status in goods.

The second source is the Danish equivalent of the European Community Innovation Survey
(the R&D Survey, hereafter), which provides information on firms’ R&D activities. Aiming to
collect as comprehensive information on R&D-active firms as possible, the survey samples all
firms satisfying one of the following criteria: 1) having over 250 employees; 2) having more than
1 billion Danish krone (DKK) in revenue; 3) spending at least 5 million DKK in R&D activities;
or 4) operating in R&D industries (NACE Rev.2 industry 72).7 It also includes a stratified sample
of all remaining firms, resulting in an unbalanced panel of approximately 4,000 firms per year.

A unique and crucial feature of the R&D Survey is that it contains information not only on
firms’ R&D expenditures within Denmark but also on their R&D expenditures overseas, i.e.,
their offshore R&D. The questionnaire specifically requires that the reported offshore R&D ex-
penditures pertain only to the activities of the reporting entity within Denmark. Therefore, any
R&D conducted by a Danish firm’s foreign affiliates for these affiliates themselves, such as the
development of a product intended for production outside Denmark, should not be included.8

The reported offshore R&D, in turn, is best viewed as R&D services imported by the reporting
entity in Denmark.9 Correspondingly, the model we develop focuses on the R&D sourcing and
production decisions of the firms operating in Denmark. In addition to foreign suppliers, firms
can also outsource R&D activities to other firms within Denmark. According to the R&D survey,
the fraction of R&D expenditures via domestic outsourcing remained largely flat at merely 5%

6Reporting to FIRE is mandatory for private corporations with an annual turnover above 500,000 Danish Krone
(DKK), or about 80,000 USD, and for individually-owned companies with an annual turnover above 300,000 DKK.
When matched to IDA, firms in FIRE account for about 86% of total private-sector employment in Denmark. Some
firms in FIRE cannot be matched with IDA because the latter is a snapshot for only each November.

7Our analysis focuses on for-profit firms, so universities and research institutions will not be in our sample.
8Offshore R&D includes both the R&D expenditures incurred by a foreign related party and those outsourced

through arm’s length contracts. The exact wording of the questionnaire for R&D in a related party is ‘FoU udført af
andre dele af koncernen i udlandet og anvendt internt i virksomheden,’ which means ‘R&D performed by other parts
of the business group abroad and used internally in the company.’ Examples of offshore R&D include: the test of a
new drug in an overseas lab; the design of new toy sets by designers in a foreign location for the parent firm.

9This feature differentiates the survey from other available datasets on affiliate R&D, such as the one from the U.S.
Bureau of Economic Analysis, in which R&D reported in a foreign location could, in principle, be carried out for
the use of any entities within the organization. A suitable model for such data should incorporate the domestic and
overseas production of firms (see, e.g., Bilir and Morales, 2020).
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over the sample period. This evidence leads us to focus on foreign R&D sourcing.
For corroborative evidence on the offshore R&D measure, we also leverage the Offshoring

Survey, which is part of a large European collaboration through Eurostat. The main purpose of
this survey is to gather information about global value chains and international sourcing. The
survey samples all firms with 50 or more employees and a representative set of firms with 10-49
employees. It reports whether a firm conducted R&D activities abroad in 2011, either in-house
or through arms’ length contracts, without requiring the reported R&D to be carried out solely
for the benefit of the reporting entity in Denmark. While this notion of offshore R&D is broader
than our baseline measure from the R&D Survey and is available only for 2011, it provides an
alternative measure that we use for validation.

Finally, both the R&D Survey and the Offshoring Survey ask firms about the foreign region in
which they conduct R&D. In Appendix A.2, we use this information to provide further evidence
on the connection between offshore R&D and firms’ employment of immigrant R&D workers.

2.2 Descriptive Statistics

Our baseline sample includes all for-profit private-sector firms that have more than 10 employees
and are in both FIRE and the R&D Survey. To validate the measure for offshore R&D, we will also
use the Offshoring Survey, in which case firms need to be in all three surveys. Table 1 presents
the descriptive statistics of our sample. Since the Offshoring Survey is available only for 2011, we
calculate all statistics based on that year.

Panel A of Table 1 reports the characteristics of the workers at the sample firms by workers’
immigrant status and occupation. Approximately 17% of workers are in occupations related
to R&D defined previously. Among them, about 7% are immigrants. Not surprisingly, both
immigrant and native researchers are more educated than non-R&D workers. They make on
average $47 per hour, well above the hourly wage of non-R&D workers.

Panel B of the table reports the characteristics of the firms in the sample by their size. About
24% of firms in the sample participate in R&D. R&D participation is more common among large
firms than small firms. Conditional on doing R&D, however, it is small firms that devote a larger
fraction of revenues to R&D, which is suggestive of large fixed costs associated with R&D.

The lower panel of Panel B reports firms’ employment of immigrant R&D workers and par-
ticipation in offshore R&D. About 14% of the firms in the sample, or 57% of R&D-active firms,
employ immigrant researchers. The share of firms engaging in offshore R&D is smaller, at around
4% of the sample. Both activities are more common among larger firms. An overwhelming ma-
jority of firms doing offshore R&D—3.15% out of 4.34% overall, 10.51% out of 11.28% among
firms with more than 250 employees—employ immigrant researchers, which suggests that the
two activities are likely interconnected. On the other hand, less than a quarter of the firms
employing immigrant researchers conduct offshore R&D, indicating potential asymmetry.

Panel C of Table 1 reports statistics on the mode of R&D of the firms in the Offshoring Survey,
using the measure of offshore R&D from this survey. Two patterns emerge from the reported
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Table 1: Descriptive Statistics

Panel A: Worker Characteristics

% of obs % College+ % Master + Mean hourly wage (US$)
Immigrant R&D 1.20 73.33 33.90 46.5
Immigrant non-R&D 6.97 22.45 6.90 32.5
Native R&D 15.75 62.46 22.98 47.1
Native non-R&D 76.09 17.10 5.35 35.4

Panel B: Firm Characteristics

Number of employees % of obs Mean VA/L (US$) % R&D firms Mean R&D/Sales (%)
10-49 46.90 111,892 19.88 35.23
50-249 39.88 120,024 23.98 16.01
≥ 250 13.22 126,534 37.69 5.72
All 100 117,072 23.87 21.37

% Immi. R&D % Offshore R&D % Immi. R&D and Offshore R&D
10-49 7.74 2.60 1.08
50-249 14.29 4.08 3.15
≥ 250 33.08 11.28 10.51
All 13.70 4.34 3.15

Panel C: Offshoring Survey

Number of employees % of obs % Immi. R&D % Offshore R&D % Immi. R&D and Offshore R&D
10-49 23.17 12.84 5.05 2.52
50-249 56.54 14.85 5.45 3.85
≥ 250 20.30 33.25 15.97 15.18
All 100 18.12 7.49 5.84

Notes: Panels A and B are based on the matched sample between IDA, FIRE, and the R&D Survey, restricted to private sector
firms with at least 10 employees. Panel C further restricts the aforementioned sample to firms included in the Offshoring Survey.
Immigrants are identified based on their birth country. In Panel B, a reporting firm in Denmark is classified as doing offshore R&D
if it uses R&D services sourced from abroad. In Panel C, a reporting firm is classified as doing offshore R&D if it conducted R&D
activities abroad in 2011, following the definition from the Offshoring Survey. Monetary values are in U.S. dollars. All statistics are
based on 2011. The number of firms in Panels B and C are 2,949 and 1,882, respectively.

statistics. First, across all firm size groups, a larger fraction of firms than reported in Panel B
conducts offshore R&D, consistent with the offshore R&D measure in this survey being broader
than the one in the R&D Survey. Second, like the one in the R&D Survey, this measure also
indicates that the vast majority of firms offshoring R&D employ immigrant researchers, while
less than half of the firms employing immigrant researchers offshore R&D.

2.3 Relationship between Immigrant Researchers, Offshore R&D, and Firm Performance

To understand the asymmetric patterns in conditional probabilities between the use of immigrant
workers and imported services in R&D, we look into the frequency of firms’ transition between
different modes of R&D, defined as: R&D inactive (denoted by 0), R&D with only domestic inputs
(N), R&D with domestic inputs and immigration researchers (NI), R&D with domestic inputs
and imported R&D services (NF), and R&D with all three types of inputs (NIF). We leverage the
information on individual workers’ occupations and countries of origin in IDA, along with data
on offshore R&D expenditures from the R&D survey, to classify firms into these R&D modes; see
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Table 2: R&D Mode Choice and Firm Productivity

Panel A Transition probability between R&D modes
t + 1

t 0 N NI NF NIF

0 0.933 0.034 0.024 0.004 0.006
N 0.330 0.527 0.092 0.041 0.010
NI 0.154 0.055 0.675 0.007 0.110
NF 0.219 0.342 0.041 0.338 0.059
NIF 0.062 0.010 0.277 0.026 0.625

Panel B Frequency distribution and average productivity
0 N NI NF NIF

mean VA/L (US$) 112,999 115,987 136,164 132,113 160,225
% of sample 77.80 7.95 9.14 1.48 3.63

Notes: Panel A of the table reports the fraction of private firms (with at least 10 employees) in a mode in period t (indicated by the
rows) moving into a different mode in period t + 1 (indicated by columns). Each period is defined as a year and the reported values
are the average of year-to-year transition over the sample period. The statistics for Panel B are for 2011. Mean value added per labor
is reported in US$.

Appendix Table A.5 for a detailed explanation.
Panel A of Table 2 reports the frequency of transition between these modes. Each row sums

up to one. The entry in row m and column n of the matrix shows the fraction of firms in mode m
in year t moving to mode n in year t+ 1. The table shows that among firms employing immigrant
R&D workers (the NI row), about 12% adopt offshore R&D (the NIF or NF column) in the next
year. This is twice as large as the 5% probability that firms doing R&D without immigrant
researchers in year t start using offshore R&D services in year t + 1 (from N to either NIF or
NF). On the other hand, among firms doing offshore R&D, the fraction that starts employing
immigrant R&D workers is around 10% (from NF to either NI or NIF), which is about the same
as the fraction of firms in mode N that switch to either NI or NIF mode.

These patterns support the idea that the presence of immigrant researchers at a firm encour-
ages offshore R&D, which can explain why the majority of firms doing offshore R&D also employ
immigrant researchers. In Appendix A.2, we supplement these findings with regression-based
evidence on the relationship between offshore R&D and a firm’s employment of immigrant re-
searchers. First, we show that this relationship is robust when controlling for productivity and
other firm characteristics, including size, industry affiliation, and past R&D investment. This
analysis rules out the possibility that the higher propensity among firms with immigrant R&D
workers to start offshore R&D is simply due to large, productive, or more R&D-intensive firms
being more active in both decisions. Second, the relationship remains consistent when we focus
on the connection between immigrant researchers from a particular foreign region and offshoring
R&D to that same foreign region. This finding provides support for the role of immigrant re-
searchers in mitigating the information friction on their origin country. Third, only the presence
of immigrant researchers, not other types of immigrants, increases the likelihood of offshore R&D.
This result suggests that the interaction we document is within R&D, rather than between R&D
and other activities. Lastly, we also show that the result is not due to reverse causality by using
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a shift-share instrumental variable (IV) for firms’ employment of immigrant researchers. This
approach leverages variations across Danish regions and industries in the stock of immigrants
from different foreign regions in 2000, alongside the nationwide influx of immigrants between
2001 and 2015. Fact 1 summarizes these findings.

Fact 1: Firms employing immigrant researchers are more likely to start offshore R&D. This
pattern is robust to the inclusion of firm-level controls and an IV strategy that addresses the
reverse causality concern.

The literature has documented that R&D-active firms tend to be more productive than non-
R&D firms and that firms’ participation in R&D is persistent (e.g., Griliches, 2007 and the ref-
erence therein). The statistics in Table 2 show that both the performance premium and the
persistence of R&D apply to the mode of R&D as well. For example, 62.5% of firms in mode NIF
and 67.5% of firms in mode NI will stay in the same mode in the following year. Panel B of
the table reports the average labor productivity—defined as value-added per worker—by R&D
mode. Firms doing R&D with foreign inputs tend to be more productive than firms in the N
mode. These patterns lead to the second fact.

Fact 2: Firms doing R&D with foreign inputs are more productive on average than non-R&D
firms and firms doing R&D without foreign inputs. Both firms’ participation in R&D and the
mode in which they carry out R&D are persistent.

The observed differences in average productivity among firms across R&D modes suggest
the possibility of self-selection based on productivity into the use of foreign R&D inputs, which
motivates a heterogeneous firms model that incorporates fixed costs for adopting foreign R&D
inputs. The persistence in firms’ R&D mode choices, in turn, can either simply reflect such self-
selection in the presence of persistent productivity differences among firms or be attributed to
additional sunk costs for entry into a different R&D mode. We will incorporate both mechanisms
into the model. By disciplining these costs in structural estimation, we will be able to disentangle
self-selection based on productivity from other forces influencing firms’ R&D decisions.

Having shown that the use of foreign R&D input is associated with higher current produc-
tivity, we examine whether, controlling for current productivity, it is also associated with higher
future productivity. We estimate the following specification:

ωit = ρωit−1 + γR&DI(R&Di,t−1) + γoff.I(offit−1) + γimmiI(immi.it−1) + X′
it β⃗ + ϕj(i)t + ζit. (1)

In equation (1), ωit denotes the log labor productivity of firm i in year t. We specify ωit to be a
function of ωit−1 and firm i’s R&D status at t − 1. This specification follows the knowledge capi-
tal model of productivity dating back to Griliches (1979), according to which ωit, the knowledge
capital that determines firm performance, is the sum of un-depreciated knowledge capital from
the previous year, ρωit−1, and the new knowledge capital created through R&D. We postulate
that the amount of knowledge capital created depends not only on whether a firm conducts R&D
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but also on how. Therefore, in addition to the indicator for whether a firm incurs R&D expendi-
tures in period t − 1 (I(R&Di,t−1)), we include the indicators for the use of offshore R&D services
(I(offit−1)) and immigrant researchers (I(immiit−1)) in the specification.10 If drawing ideas from
foreign sources improves R&D efficiency, γoff. and γimmi. should be positive. In some specifi-
cations, we replace I(R&Di,t−1) with intensive margin measures of R&D expenditures to allow
variations in R&D intensity to play a role. Decisions on R&D likely depend on the characteristics
of the industry and other firm-level decisions such as exporting and importing, all of which can
impact firm performance. Denoting firm i’s industry by j(i), we control for these confounding
factors using industry-time fixed effects ϕj(i)t and time-varying firm characteristics Xit.

Table 3 presents the estimation results for equation (1). Column 1 shows that participation
in R&D is associated with a 2.4% higher productivity and that conditional on participation in
R&D, the use of imported R&D services is associated with an additional 3.1% productivity gain.
Column 2 shows a similar finding for the use of immigrant R&D workers. In column 3, when
both types of foreign R&D inputs are included in the regression at the same time, each of them
has a large, positive, and statistically significant coefficient.

It is well-known that participation in importing and exporting of goods is strongly correlated
with productivity (see Bernard, Jensen, Redding and Schott, 2012 for a review). If firms’ R&D
decisions also depend on trade participation (Aw, Roberts and Xu, 2011; Bøler, Moxnes and
Ulltveit-Moe, 2015), then the correlation between R&D and future productivity could be driven
by trade in goods. More importantly, if, due to their business connections abroad, importers
and exporters of goods face lower costs when sourcing foreign R&D inputs and consequently
use these inputs more frequently, our estimates might be susceptible to a selection bias. To
address these concerns, column 4 controls for firms’ importing and exporting status in period
t.11 The indicators for importing and exporting both have large and positive coefficients, and
their inclusion in the regression diminishes the coefficient for R&D participation. Importantly,
however, the coefficients on the indicators for immigrant researchers and offshore R&D remain
largely the same. This result suggests that our findings are not driven by selection into using
foreign R&D inputs based on participation in trade.

Another plausible explanation for the results presented in columns 1-4 is that firms using
foreign R&D inputs are simply out-investing other firms in R&D and the effect of the additional
investment is attributed to immigration and offshore R&D indicators. To investigate this potential
explanation, columns 5 through 8 measure R&D using the log of domestic R&D expenditures.
The coefficients of log domestic R&D expenditures are statistically significant, but the coefficients
associated with the offshore and immigrant R&D indicators do not change significantly from
those in columns 1-4. In column 9, we control for the log of firms’ total, instead of domestic, R&D
expenditures. The estimates for the coefficients on the foreign R&D input indicators remain
virtually the same.

10I(offit−1) takes a value of 1 if firm i has positive offshore R&D expenses according to the R&D survey. I(immiit−1)
takes a value of 1 if firm i employs an immigrant researcher in t − 1.

11Controlling for the lagged importing and exporting status gives essentially the same result.
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Table 3: Sourcing of R&D Inputs and Labor Productivity

Dependent variable: Labor Productivityi,t

Key control Extensive margin of R&D Status Intensive margin: domestic R&D Total R&D

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Labor Productivityi,t−1 0.657*** 0.659*** 0.658*** 0.653*** 0.656*** 0.658*** 0.657*** 0.653*** 0.653***

(0.012) (0.011) (0.012) (0.012) (0.012) (0.011) (0.012) (0.012) (0.012)
I(R&Di,t−1) 0.024*** 0.025*** 0.020*** 0.014**

(0.005) (0.005) (0.005) (0.005)
Log domestic R&D i,t−1 0.004*** 0.004*** 0.004*** 0.003***

(0.001) (0.001) (0.001) (0.001)
Log total R&D i,t−1 0.003***

(0.001)
I(offi,t−1) 0.031*** 0.029** 0.031*** 0.023** 0.022* 0.025** 0.022*

(0.012) (0.012) (0.012) (0.011) (0.011) (0.011) (0.012)
I(immii,t−1) 0.026*** 0.025*** 0.021*** 0.023*** 0.023*** 0.019*** 0.019***

(0.005) (0.006) (0.006) (0.005) (0.006) (0.006) (0.006)
Import dummyi,t 0.043*** 0.042*** 0.042***

(0.006) (0.006) (0.006)
Export dummyi,t 0.016*** 0.015*** 0.015***

(0.006) (0.006) (0.006)

Observations 33,064 37,859 32,914 32,914 33,064 37,859 32,914 32,914 32,914
Industry×year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Labor productivity is defined as the log of real value-added per worker. Domestic R&D refers to domestic R&D expen-
ditures. Total R&D refers to the sum of domestic R&D and offshoring R&D expenditures. All specifications include the log of
firm size, as well as industry×year fixed effects. Industries are defined following the NACE Rev.2 intermediate-level aggregation
(see Appendix Table A.4). The sample includes private sector firms with at least 10 employees, and the sample period covers
2001-2015. Standard errors are clustered at the firm level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

It is still possible that the results reported in Table 3 are subject to a simultaneity bias: since
firms observe their productivity—at least partially—when making input choices, our produc-
tivity measure could be biased. In Section 4, we address this concern by employing a control
function approach in productivity estimation. We summarize our findings in Fact 3.

Fact 3: Conditioning on current productivity and total R&D expenditures, firms that use foreign
R&D inputs tend to have higher future productivity.

Summary and Robustness. Taking stock, we find that foreign R&D inputs in the form of
immigrant researchers or imported R&D services account for a substantial fraction of total R&D
spending made by firms in Denmark. On the one hand, there is evidence of selection into using
foreign R&D inputs based on productivity. On the other hand, the use of these foreign R&D
inputs is associated with improved future performance beyond what can be explained by firms’
total R&D expenditures. Moreover, these two types of foreign R&D inputs are tightly connected:
the propensity to offshore R&D is higher among firms employing immigrant researchers.

We show in Appendix A.3 that these patterns are robust to alternative definitions of immi-
grants (e.g., based on the age at which a person moves to Denmark or upon completion of all
education) and different categorizations of R&D modes (e.g., by varying the minimum employ-
ment of immigrant researchers for a firm to be classified as hiring immigrant researchers; by

13



examining 3- and 5-year transitions instead of year-to-year transitions). We also demonstrate that
the results are not driven by the Danish affiliates of foreign multinational firms.

Together, these facts underscore the contribution of foreign inputs in improving R&D effi-
ciency and highlight the interdependence between the two types of foreign R&D inputs. They
also imply that policies affecting the adoption of one input would affect the adoption of the
other, which in turn could reinforce the direct impact of such policies on R&D. The main goal of
our structural model in the following section is to disentangle these forces and to quantify their
impact on firm performance and aggregate productivity.

3 Model

In this section, we introduce a dynamic model in which heterogeneous firms make productivity-
enhancing R&D investments by combining inputs from both domestic and foreign sources. Stat-
ically, given current productivity and aggregate demand, firms choose the output quantity to
maximize their profit. Dynamically, firms decide how to structure R&D using inputs from do-
mestic researchers, immigrant researchers, and imported R&D services.

3.1 Production, Demand, and Static Profit

We start by describing firms’ static decisions. The production function for firm i at time t is:

qi,t = exp (ωi,t) oi,t, (2)

where oi,t is a composite production input made of capital, labor, and materials; ωi,t denotes
firm i’s current (log) productivity, which depends on the firm’s past productivity and R&D
investment, as will be explained in the next subsection; qi,t is the output. Denoting the cost for
each unit of the composite production input as Wi,t, the marginal cost of production is Wi,t

exp(ωi,t)
.12

Firms face the following Dixit-Stiglitz demand:

qi,t =

(
pi,t

Pt

)η

Qt, (3)

where qi,t and pi,t are the quantity and the price of the variety that firm i produces; η < 0 is the
demand elasticity; Qt is the aggregate demand faced by the firm; and Pt is the corresponding
ideal price index. We interpret Qt and Pt as capturing the conditions of the entire world market
faced by Danish firms. In keeping with this interpretation, we make two simplifications. First,
we abstract from firms’ endogenous export decisions. We motivate this assumption from the

12In the structural model, we assume oit is static and can be flexibly adjusted; when we estimate production function
in the next section, we will be able to relax this assumption, allowing some of the inputs to face adjustment costs.
There, we will parameterize this composite production input along with specifying which inputs are flexible and
which are subject to adjustment costs.
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high degree of integration of Denmark within the world economy.13 To ensure that this assump-
tion does not confound the main channels, we control for firms’ exporting status in subsequent
empirical specifications. Second, we assume that Qt and Pt are exogenous to individual firms
and do not change in the counterfactual exercises. This assumption is motivated by the fact that
the counterfactual shocks we consider lead to only moderate changes in aggregate productivity
and are unlikely to drive a substantial general equilibrium change in Qt and Pt.

Firms choose oit and pit to maximize their static profit. The optimal pricing rule under mo-
nopolistic competition implies pi,t =

η
η+1 ·

Wt
exp(ωi,t)

, with η
η+1 being the markup over the marginal

production cost. The total sales of firm i is then given by [ η
η+1

Wt
exp(ωi,t)

]η+1 Qt
Pη

t
. Therefore, condi-

tional on its productivity, firm i earns the following static profit in period t:

πt(ωi,t) = − 1
η

Φt · exp
(
(η + 1) ln

(
η

η + 1

)
− (η + 1)ωi,t

)
, (4)

in which Φt ≡ Wη+1
t Qt

Pη
t

is a shifter common to all firms, capturing the overall profitability due to
production input costs, demand, and market competition.

3.2 Productivity Evolution and the Sourcing of R&D

Firm i’s productivity evolves according to the following law of motion:

ωi,t = ρωi,t−1 + γ · I(rdi,t−1 > 0) · log (rdi,t−1) + ζi,t, (5)

where ωi,t−1 is the lagged (log) productivity of firm i; rdi,t−1 is firm i’s total effective investment in
R&D in t − 1, with I(rdi,t−1 > 0) being an indicator for whether firm i engaged in R&D in t − 1;
ζi,t represents unanticipated innovation in the productivity evolution process with a mean of zero
and a standard deviation of σζ ; the coefficient γ is the elasticity of productivity with respect to
effective R&D investment.

Firms create effective R&D investment by completing different tasks for R&D. Specifically, in
each year, to carry out R&D, firms need to execute a continuum of firm-specific tasks indexed by
µ ∈ (0, 1). These tasks are combined via a constant elasticity of substitution function to produce
the effective R&D investment, that is,

rdi,t−1 =

(∫ 1

0
ki,t−1(µ)

σ−1
σ dµ

) σ
σ−1

, (6)

where σ > 0 is the elasticity of substitution between these tasks, and ki,t−1(µ) is the efficiency
unit of task µ completed by firm i.

Each task µ ∈ (0, 1) can be completed using one of the three types of R&D inputs—domestic
researchers (N), immigrant researchers (I), or offshore R&D services (F). We denote these in-

13The openness of Denmark, measured as import plus export over GDP, is well over 100%.
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put types by x̃ ∈ {N, I, F}. Since undertaking R&D by using more than one R&D input type can
amount to substantial fixed and sunk costs, as we elaborate in the next section, not all R&D-active
firms use all three types. Following the classification in Section 2, we assume that firms choose
from four combinations of R&D inputs: using only inputs from native researchers (N); using in-
puts from both native and immigrant researchers (NI); using inputs from native researchers and
foreign suppliers of R&D services (NF); using all three types of inputs simultaneously (NIF).14

As before, we call these combinations of inputs as R&D modes. Denoting the R&D-inactive mode
by 0, a firm’s R&D mode in any period is x ∈ X ≡ {0, N, NI, NF, NIF}.

For each task µ ∈ (0, 1), firms in a mode x ∈ X \ {0} choose the least costly way of completing
it among the R&D input sources available to them. For example, firms in mode NIF have access
to three sources, domestic researchers, immigrant researchers, and offshore suppliers of R&D,
and they would choose the best source to complete each task µ. Then, the unit cost of task µ for
firm i in mode x = NIF is

cNIF
i (µ) = min{ pN

aN
i (µ)

,
pI

aI
i (µ)

,
pF

aF
i (µ)

}, (7)

where px̃ denotes the unit cost for input from source x̃ ∈ {N, I, F}; ax̃
i (µ) is the idiosyncratic

efficiency draw of firm i for task µ from source x̃. We assume that these efficiency draws are
independent across firms and R&D sources, and distributed according to a Fréchet distribution
with the scale parameter Ax̃ > 0 and the shape parameter θ > 0.15 Depending on the values
of Ax̃ and px̃, foreign inputs can be, on average, either more cost-effective or less so than the
domestic input. We assume that px̃ and Ax̃ are common across firms; later on, we discuss the
implications of heterogeneous px̃ and Ax̃—and the resulting self-selection of firms into different
R&D modes—on identification and on the interpretation of our estimates.

We define cx
i,t−1(µ) for x = N, NI, NF similarly to equation (7). Integrating cx

i,t−1(µ) over
µ ∈ (0, 1), we obtain the unit cost of effective R&D investment for firms in mode x ∈ X \ {0}

cx
i,t−1 =

(∫ 1

0

(
cx

i,t−1(µ)
)1−σ dµ

) 1
1−σ

(8)

= Γ(θ, σ)

[
AN

(
pN
)−θ

+ AI
(

pI
)−θ

· I(xit−1 ∈ {NI, NIF}) + AF
(

pF
)−θ

· I(xit−1 ∈ {NF, NIF})
]− 1

θ

,

where the second line applies the property of the Fréchet distribution (Eaton and Kortum, 2002).
Γ(θ, σ) is a constant that depends only on θ and σ.16 Under common and time-invariant px̃ and
Ax̃, cx

i,t−1 does not vary by firm or over time. We suppress the firm and time subscripts hereafter.
With θ > 0, equation (8) implies cN > cNI , cNF > cNIF, i.e., firms sourcing more diverse R&D

14Other modes, such as those with only immigrant researchers or offshore suppliers without any native researcher,
rarely occur in our data, so we exclude these options for simplicity.

15Within a firm, draws for a given task can be either independent or correlated across periods.
16θ > 0 is a requirement for the Fréchet distribution. As in Eaton and Kortum (2002), we assume σ < θ + 1 to

ensure that Γ(θ, σ) is well-defined.
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inputs have a lower marginal cost of R&D. This is true even if immigrant researchers and off-
shore suppliers are on average less competent and/or more expensive than domestic researchers.
Intuitively, firms sourcing from diverse sources are exposed to more ideas for each task, captured
in the Fréchet draws. By choosing the idea that is most suitable for each task, they can achieve
higher R&D efficiency. This is the primary advantage of having access to foreign R&D inputs.

Firm i chooses the quantity for each task ki,t−1(µ) for µ ∈ (0, 1). Given the CES structure,
this problem can be cast as choosing the effective R&D investment rdi,t−1 given the unit cost cx,
resulting in a total cost of ei,t−1 ≡ rdi,t−1cx. The above discussion suggests that controlling for
R&D expenditures ei,t−1, firms sourcing R&D inputs more diversely on average make a larger
effective R&D investment and thus see larger productivity improvement than firms accruing all
such expenses on domestic researchers. This is in line with Fact 3 presented in Section 2.

Discussion. Two aspects about firms’ R&D sourcing decisions are worth discussing. First,
as noted in Antràs, Fort and Tintelnot (2017), the sourcing decision described in (6) can be al-
ternatively formulated using the Armington model of trade in intermediate services, in which
firms make effective R&D investment using inputs from different sources that are distinguished
from each other with an elasticity of substitution θ + 1. Such isomorphism, together with the
restriction θ > 0, might give an impression that we impose ex-ante that different R&D input
sources are substitutes—in the sense that an increase in the availability or a decrease in the cost
of one R&D input type will reduce firms’ use of other R&D input types. This is not the case. As
firms adopt more input types, the cost of effective R&D investment decreases, which creates two
sources of complementarity between inputs: more firms will participate in R&D; conditional on
participation, lower marginal cost of R&D incentivizes firms to increase R&D investment. Both
margins increase firms’ R&D expenditures on all inputs.17

Second, we assume that firms’ efficiency draws for each task are independent across R&D
input types. It is possible that draws across input types are correlated asymmetrically.18 For
example, immigrant researchers may share more similar ideas with offshore suppliers than native
researchers. An equally plausible case is that, since both domestic and immigrant researchers
work in Denmark, their ideas are more similar. Asymmetric correlation of this sort implies that
the expenditure share on offshore R&D by firms in the NIF mode should be correlated with their
expenditures share on immigrant researchers. In our data, we do not find a statistically significant
pattern of such implications. Thus, although richer correlation structures between draws can be
flexibly incorporated by generalizing the extreme-value distribution for task-specific draws (e.g.,
Lind and Ramondo, 2022), we adopt a symmetric case as the benchmark due to its theoretical

17The potency of these forces depends on the return to R&D investment γ, the demand elasticity η, and the Fréchet
shape parameter θ. With more elastic demand for goods or higher return to R&D investment, firms will increase their
total R&D spending by more as they adopt additional R&D input types. As a result, the spending on each R&D input
type would increase when new input types are added, effectively making different R&D inputs complements. On the
other hand, if the efficiency draws between R&D sources are more similar (i.e., a larger θ), then the addition of input
sources will divert spending from existing inputs. In this case, different inputs are more likely to be substitutes.

18Our independent-draw setup is isomorphic to a setup in which draws from different input types are correlated
symmetrically; see footnote 14 of Eaton and Kortum (2002).
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simplicity and the lack of empirical support for the alternatives.19

3.3 Dynamic Decisions

Despite the benefits of having access to different sources of ideas, not all firms employ immigrant
researchers or adopt imported R&D services, which hints at significant upfront costs for these
options. Moreover, the persistence of R&D mode decisions observed in the data (Fact 2) naturally
motivates a model with dynamic interactions in choosing an R&D mode. We now introduce the
fixed and sunk costs of R&D and describe firms’ dynamic decisions.

At the beginning of period t, firms discover the realization of ζi,t, hence their current produc-
tivity ωi,t. Knowing ωi,t, firm i chooses output qi,t to maximize the static profit, as described in
Section 3.1, and then decides the R&D mode xi,t and the total effective R&D expenditure rdi,t.

For firms that have chosen mode x in period t − 1, switching to mode x′ in period t requires
an irreversible investment of F̃x,x′ + ιx′

i,t, where F̃x,x′ is the systematic component that is common
to all firms switching from mode x to mode x′. The dependence of the cost on firms’ previous
R&D status reflects the upfront costs associated with entering a new mode, e.g., the cost of setting
up a new R&D team or finding a reliable overseas R&D supplier. ιx′

i,t represents an idiosyncratic
cost for firm i in mode x′, and it is drawn independently (across i, t, and x′) from a mean-zero
Type-I extreme value distribution with a scale parameter ν > 0.20 This idiosyncratic cost can
stem from various factors: for example, some firms may recruit immigrant researchers more
easily because they operate in a region with many immigrants; firms may encounter a talented
immigrant researcher or a reliable foreign supplier by sheer luck. This component accounts for
the possibility that firms with similar observable characteristics choose different R&D modes.

Firms observe the current draw of their idiosyncratic cost for each R&D mode and decide
whether to carry out R&D and how. We denote firm i’s state in period t as si,t = (ωi,t, xi,t−1),
where xi,t−1 is firm i’s R&D mode choice in period t − 1. Then, the expected value before the
realization of ιx

i,t of a firm with state si,t, denoted by Vt(si,t), is given by:

Vt(si,t) = π(ωi,t) +
∫

max
x∈X

[
Vx

t (si,t)− F̃xi,t−1,x − ιx
i,t

]
dι, (9)

where X ≡ {0, N, NI, NF, NIF}

and Vx
t (si,t) ≡

δ · EtVt+1(si,t+1 | si,t), for x = 0

max
rdi,t

{−rdi,t · cx + δEtVt+1(si,t+1 | si,t, x, rdi,t)} , for x ∈ X \ {0}.

In equation (9), the Vx
t (si,t) term inside the integral is the present discounted value of R&D mode

19This same finding also leads us to the assumption that the Fréchet scale parameters Ax̃ are exogenous. If, for
example, firms could increase AF in equation (8) by hiring more immigrant researchers, then NIF firms would exhibit
correlated spending shares on immigrant researchers and offshore R&D, which is not observed in the data.

20The assumption of iid idiosyncratic components in fixed and sunk costs does not imply that the switching cost
between R&D modes is independent across modes. We incorporate potential correlations via the common component
of the mode-switching costs F̃x,x′

, maintaining the independence assumption only for the idiosyncratic component.

18



x for firm i at time t; δ ∈ (0, 1) is the discount rate; rdi,t is the effective investment in R&D as
defined in equation (6). Under the distributional assumption for ιx′

i,t, the probability of a firm
switching from R&D mode x to R&D mode x′ is given by:

mx,x′
t (si,t) =

exp
(

1
ν Vx′

t (si,t)− 1
ν F̃x,x′

)
∑x′′∈X exp

(
1
ν Vx′′

t (si,t)− 1
ν F̃x,x′′

) . (10)

We parameterize the average cost of changing R&D modes, F̃x,x′ , with various interpretable
components. Specifically, we assume that the cost F̃x,x′ is the sum of a fixed operation cost
component independent of firms’ previous R&D status, denoted by f x′ , and a status-dependent
component capturing the sunk cost of switching between modes, denoted by Fx,x′ . Putting this
structure in a matrix form, we have

F̃5×5 = 15×1 · f1×5 + F5×5,

where the subscript of each variable denotes the dimension of the variable. 1 is a 5 by 1 vector of
ones; f = ( f 0, f N , f NI , f NF, f NIF) is a vector of fixed operation costs; F is a 5 by 5 matrix of sunk
cost components. The element in the m-th row and the n-th column of matrix F, for example,
corresponds to the sunk cost of switching from the m-th mode in X to the n-th mode in X.

We assume that a decision to do no R&D (x′ = 0) incurs neither cost, i.e., f 0 = 0 and Fx,0 = 0
for every x, and that there is no sunk cost if firms do not switch R&D modes, i.e., Fx,x′ = 0 if
x = x′. We parameterize the remaining components of F as

F =


0 FN FN + FI FN + FF FN + FI + FF − FIF

0 0 FI FF FI + FF − FIF

0 FI0 0 FF + FI0 FF − FIF

0 FF0 FI + FF0 0 FI

0 FI0 + FF0 FF0 FI0 0

 , (11)

where each row and each column correspond to one of the five R&D modes in the order of
{0, N, NI, NF, NIF}, with rows indicating firms’ current mode x and columns indicating their
mode x′ in the next period.

Components in F have intuitive explanations. First, FN , FI , and FF capture the cost of set-
ting up new R&D operations to be carried out by each R&D input type. Second, FI0 and FF0

represent the cost associated with dropping immigrant workers and offshore R&D services from
the R&D process, respectively. Dropping a particular source from the entire set of R&D tasks
could be costly because the rest of the R&D team may need to be reorganized to accommodate
the change.21 Last but not least, the reduced-form facts presented in Section 2 suggest that it

21Since in the data, virtually all R&D-active firms hire native researchers, we assume that when a firm stops em-
ploying native researchers for any R&D task, it shuts down R&D altogether. In this case, there is no need to pay the
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might be easier for firm with immigrant researchers than other firms to add offshore R&D into
the R&D. Moreover, Appendix A.2 shows a strong connection between the origin country of im-
migrant researchers and the destination for offshore R&D. Motivated by these results, as well as
the extensive literature that documents the importance of immigrants in facilitating international
business (e.g., Rauch and Trindade, 2002; Burchardi, Chaney and Hassan, 2019), our specification
of F̃ allows the presence of immigrant researchers to potentially reduce the cost of offshore R&D
through two components: in the sunk cost if FIF > 0 and in the fixed cost if f NIF < f NF. We will
let the data tell whether these inequalities are satisfied and which component is more important.

Discussion. In summary, our model incorporates static and dynamic interactions between
firms’ decisions to use different R&D inputs. Before turning to the estimation, we discuss the
rationale underlying the four key aspects of firms’ dynamic decisions.

First, at the center stage of our model are firms in Denmark looking to optimally source input
for each R&D task µ. While this setup aligns with the measure of offshore R&D in our data, it
does not explicitly account for the fact that some firms in the sample are the Danish affiliates of
foreign MNCs, whose R&D both inside and outside Denmark might be driven by the incentive of
their foreign headquarters. As a robustness check, we show in Appendix A.3 that the empirical
patterns are similar when Danish affiliates of foreign MNCs are excluded.

Second, in the model, only immigrant researchers, not other immigrant workers, can reduce
the cost of offshore R&D. This choice is motivated by the data: as shown in Appendix A.2, in
regressions that include indicators for both immigrant researchers and other immigrant workers,
only the indicator for researchers exhibits a robust correlation with offshore R&D.

Third, we assume that each firm makes only binary decisions of whether to hire immigrant
researchers and to offshore R&D, rather than a decision of which foreign regions to hire immi-
grant researchers from and to offshore R&D to. This assumption greatly simplifies the structural
estimation, but it may appear too restrictive. However, it is worth noting that, in our data, most
firms source R&D from only one foreign region.22 Even among firms with more than 250 em-
ployees, the average number of offshore R&D destination regions is only 1.6. Our model can
thus be viewed as a special case of a more general model with a two-step R&D decision: firms
first choose whether to hire immigrant R&D workers and/or whether to offshore R&D and then
select one foreign region to do so.

Finally, our model implies that, conditional on the current productivity ωi,t, how firms en-
gaged in R&D in the past affects their R&D choice only through their current mode. This setup
rules out the possibility that firms relying more heavily on a certain R&D input type (e.g., I)
in the past might be more inclined to use the same input in the future and hence less likely to
switch. We note that, with a generic matrix for the cost of switching modes (F̃), our model can,
in fact, speak to this channel. For example, one can enrich the cost of switching from mode x
to mode x′ to capture the cost associated with reorganizing the research team originally formed

reorganization cost required to continue R&D, so we assume the cost of dropping the input type N to be zero.
22Examples of foreign regions in the data are Eastern Europe, North America, China, India, etc.
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for mode x to function under mode x′. Following this insight, we show in Appendix B.7 that
by adding such re-organization cost to F̃, our model can be mapped into a model where firms
accumulate source-specific R&D input and different inputs interact dynamically.23

4 Model Estimation

This section explains our model estimation approach, which follows a two-tiered strategy. The
first tier estimates the production function, along the way recovering the dynamic impacts of
both R&D investment and R&D modes on productivity. In the second tier, we recover all struc-
tural parameters necessary for counterfactual exercises by using an indirect inference approach,
leveraging the first-tier estimates and firms’ optimal R&D choice.

4.1 Tier I: R&D and the Evolution of Productivity

In the first tier, we estimate the production function and evaluate the impacts of R&D mode on
productivity. This estimation does not require solving the Bellman equation (9), thus allowing
for a relaxation of some assumptions in the structural model. For example, we can introduce
dynamic production inputs. As explained later in this subsection, our estimation can also accom-
modate some variations in Ax̃ and px̃ across firms. In this sense, the estimates in this subsection
can be consistent with more general models and are not strictly bound by the R&D sourcing
model developed in the previous section.

We estimate the parameters governing the evolution of firms’ productivity characterized by
equations (5). As productivity is unobserved, we apply a two-step control function approach,
which recovers ωi,t jointly with the law of motion for productivity.

Step 1. The first step is to come up with a control function for productivity ωi,t. We start by
expanding the general notation for production inputs, oi,t in equation (2), to allow for various
inputs measured in the data. We write firms’ measured revenues as a function of input use and
the structural parameters of the production function:

ỹi,t ≡ q̃i,t + p̃i,t + ϵ̃i,t (12)

=
η + 1

η
ωi,t + β̃k k̃i,t + β̃l l̃i,t + β̃mm̃i,t + P̃ − 1

η
Q̃ + ϵ̃i,t,

where β̃k ≡
η + 1

η
βk, β̃m ≡ η + 1

η
βm, β̃k ≡

η + 1
η

βm.

In the equation above, ỹi,t is the log measured revenue of firm i in t; q̃i,t and p̃i,t are log output
quantity and log output price, respectively; k̃i,t, l̃i,t, and m̃i,t denote the log of capital, labor, and

23In quantification, we use data on the patterns of transition between modes to pin down F̃. Since our model
matches the transitions well, to the extent that such reorganization cost is important, they are implicitly incorporated
in the quantification.
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materials, respectively; β̃o, o ∈ {m, k, l} is the revenue elasticity of input o that takes into account
the demand elasticity of consumers; ϵ̃i,t is a mean-zero measurement error in log revenue.

Given the realization of productivity, firms choose capital, labor, material, and output quan-
tity to maximize profit. Following the insight of Levinsohn and Petrin (2003) and Ackerberg,
Caves and Frazer (2015), we assume that materials are a static input chosen after firms observe
ωi,t and have decided k̃i,t and l̃i,t. This assumption implies that conditioning on k̃i,t and l̃i,t, ma-
terial use contains all information available to a firm on productivity and that it is monotonic in
productivity. It can therefore be inverted to serve as a control function for productivity.

Formally, we express material use as a generic function of zi,t, as well as k̃i,t, l̃i,t, and ωi,t,
i.e., m̃i,t = mt(ωi,t, k̃i,t, l̃i,t, zi,t). Included in zi,t are various firm-level controls that might affect
firms’ material use but are absent from our structural model. The first set of controls is on firms’
participation in international trade. On the import side, importers might have better access to
foreign suppliers, which reduces the overall price of materials; on the export side, exporters are
likely to face a larger demand than non-exporters and therefore may choose to produce more for
any given level of capital and labor inputs. This motivates us to include firms’ lagged importing
and exporting status in zi,t. Second, since the quality of workers differs across firms (Fox and
Smeets, 2011), l̃i,t might be a noisy proxy for the effective labor at a firm. Following Doraszelski
and Jaumandreu (2013), we include firms’ average wage in zi,t. Finally, firms’ capital stock,
calculated based on the perpetual inventory method, might not accurately reflect the efficiency-
adjusted capital stock. In particular, newer vintages of machines might be more efficient than
older ones. We include the investment rate in zi,t to control for the potentially higher efficiency
of more recent capital installations.

We invert m(·, k̃i,t, l̃i,t, zi,t) to express ωi,t as a function of k̃i,t, l̃i,t, m̃i,t, and zi,t, i.e., ωi,t =

ω̃t(k̃i,t, l̃i,t, m̃i,t, zi,t). Plugging this expression into equation (12) delivers:

ỹi,t = β̃k k̃i,t + β̃l l̃i,t + β̃mm̃i,t + ω̃t(k̃i,t, l̃i,t, m̃i,t, zi,t) + P̃ − 1
η

Q̃ + ϵ̃i,t

≡ ht(k̃i,t, l̃i,t, m̃i,t, zi,t) + ϵ̃i,t.

The log measured revenue is now written as a function of an idiosyncratic measurement error,
ϵ̃i,t, and a generic function ht of k̃i,t, l̃i,t, m̃i,t, and zi,t. We specify ht(·) as the sum of the following
components: a cubic function of materials, dcapital, investment, employment, wage, and the
interaction between these variables; the indicators for firms’ importing and exporting status; and
the yearly and industry dummies. The first step of the control function approach comes down
to estimating hi,t(·) using OLS, separating hi,t(·) from measurement errors in revenue ϵ̃i,t. We
denote the estimated value for firm i in period t as h̃i,t.

Step 2. With h̃i,t in hand, we express ωi,t = η
η+1 [h̃i,t − β̃k k̃i,t − β̃l l̃i,t − β̃mm̃i,t − P̃ + 1

η Q̃]. By
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substituting this expression into the law of motion for productivity in equation (5), we obtain:

(h̃i,t − β̃k k̃i,t − β̃l l̃i,t − β̃mm̃i,t)− ρ · (h̃i,t−1 − β̃k k̃i,t−1 − β̃l l̃i,t−1 − β̃mm̃i,t−1)

− η + 1
η

· γ · I(rdi,t−1 > 0) · log (rdi,t−1)− (1 − ρ)(P̃ − 1
η

Q̃)

=
η + 1

η
ζi,t, (13)

where we express the innovation in productivity (ζi,t) as a function of firm choices and structural
parameters. All firm choice variables on the left-hand side of equation (13) are now observable
except for the effective R&D unit, rdi,t−1, which depends on the firm’s R&D spending and R&D
mode. Firms’ mode of R&D matters because, as discussed in Section 3, firms can improve R&D
efficiency by using diverse inputs. We capture this effect with two specifications.

In the first specification, we adopt a parsimonious parametrization for the effect of R&D
on productivity by replacing γ · I(rdi,t−1 > 0) · log (rdi,t−1) in equation (13) with γ̃0I(xi,t−1 =

N) + γ̃1I(xi,t−1 ∈ {NI, NF, NIF}). This simple reduced-form specification separately captures
the average improvement in productivity from R&D with only domestic researchers and that
from R&D with foreign inputs. We estimate these reduced-form coefficients, γ̃0 and γ̃1, along
with other coefficients on the left-hand side of equation (13).

Our second specification for the effect of R&D on productivity is derived from the sourcing
model presented in Section 3.1. Let ei,t−1 > 0 denote the R&D expenditures that firm i spends at
time t− 1 within Denmark, i.e., on domestic researchers and/or immigrant researchers. We show
in Appendix B.2 that in our sourcing model, the period-t productivity of firm i with positive R&D
investment in t − 1 is given by:

ωit =ρωit−1 + γ log(eit−1)− γ log(cN) (14)

+



ζi,t, if xi,t−1 = N

γ
[
log(cN)− log(cNI)

]
+ ζi,t, if xi,t−1 = NI

γ(θ + 1)
[
log(cN)− log(cNF)

]
+ ζi,t, if xi,t−1 = NF

γ
[
(θ + 1)

(
log(cNI)− log(cNIF)

)
+
(

log(cN)− log(cNI)
)]

+ ζi,t, if xi,t−1 = NIF,

where cx̃ is the cost of the R&D input bundle for firms with mode x̃, as defined in (8); xi,t−1

denotes firm i’s R&D mode choice. Each line in the curly bracket of this equation corresponds
to an R&D mode. The first line in the curly bracket states that for firms in R&D mode N, the
effective R&D bundle is given by log(rdi,t−1) = log(eit−1) − log(cN). The second through the
fourth lines in the curly bracket express the productivity for firms in modes NI, NF, and NIF,
respectively. As discussed in Section 3.2, cNI , cNF < cN and cNI , cNF > cNIF hold. This implies
that conditional on ei,t−1, firms in modes NI, NF, and NIF will see a higher future productivity
gain than firms in mode N, which is captured by the terms inside the curly bracket. For firms
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in the NI mode, the larger productivity effect reflects that because cNI < cN , the same spending
translates into more effective R&D investment. For firms in NIF and NF modes, an additional
channel also contributes to the larger productivity effect—conditional on the total spending on
R&D in Denmark (ei,t−1), these firms also incur expenditures on offshore R&D.24

Following this discussion, our second specification replaces γ · log(rdi,t−1) in (13) with

γ̃0 log(ei,t−1) + γ̃1I(xi,t−1 = NI) + γ̃2I(xi,t−1 = NF) + γ̃3I(xi,t−1 = NIF), (15)

in which γ̃m for m = 0, 1, 2, 3 are functions of the structural parameters of the model, as shown in
equation (14).25 Alternatively, one can also view γ̃m for m = 0, 1, 2, 3 as reduced-form coefficients
capturing how R&D modes affect firm productivity, which can be consistent with other models
for the interactions between R&D inputs.

GMM Sample and Identification. We estimate specification (13) using the generalized method
of moments (GMM), applying the two specifications discussed above separately. Since the pro-
duction function specified in (12) is most appropriate for the manufacturing industry, we restrict
our sample to manufacturing firms (here and in the indirect inference discussed in the next sub-
section). To form the moment conditions, we assume that k̃i,t, ei,t−1, and xi,t−1 are determined
before the innovation term in productivity ζi,t is realized, so they are independent of ζi,t. Labor
use, on the other hand, may respond to ζi,t. Since l̃i,t−1 and k̃i,t−1 are chosen before ζi,t is known,
they can serve as instrumental variables for l̃i,t. The term (1− ρ)(P̃ − 1

η Q̃) captures the aggregate
market demand shifters that are common to all firms. We allow this term to vary across indus-
tries by including industry dummies in the specification and use these dummies as their own
instruments. Finally, under our timing assumption, m̃i,t is chosen after the realization of ζi,t, so it
is endogenous. We estimate β̃m by exploiting firms’ first-order condition for materials (see e.g.,
Griliches, 1979; Gandhi, Navarro and Rivers, 2020).

Specifically, we show in Appendix B.3 that the first-order condition for material use implies:

log
( Pm,t · exp(m̃i,t)

exp
(
ỹi,t
)︸ ︷︷ ︸

measured material/revenue ratio

)
− log(β̃m) = −ϵ̃i,t, (16)

in which Pm,t is the price for materials. The first term on the left-hand side is the (log of) measured
revenue share of materials. The second term is the log of the structural parameter of interest β̃m.
The right-hand side is the negative of the revenue measurement error ϵ̃i,t in equation (12), which
is assumed to be mean-zero. We use the method of moments to estimate β̃m from equation (16). In
the baseline analysis, we assume that β̃m is common across industries and estimate it by pooling
all firms in the sample while including industry fixed effects. In a robustness exercise reported
in Appendix B.4, we allow for industry-specific β̃m. In both cases, we plug in the estimated

24This channel is captured by the coefficient θ + 1, which appears for firms in the NIF and NF modes but not for
firms in the NI mode.

25Concretely, γ̃0 = γ; γ̃1 = γ · log cN

cNI ; γ̃2 = γ(θ + 1) · log cN

cNF ; γ̃3 = γ
(
(θ + 1) · log cNI

cNIF + log cN

cNI

)
.
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Table 4: R&D and Productivity Evolution

GMM estimation of (13)

(1) (2) (3) (4) (5) (6)
ωi,t−1 0.467*** 0.476*** 0.478*** 0.472*** 0.483*** 0.486***

(0.146) (0.138) (0.142) (0.137) (0.135) (0.129)
log(ei,t−1) 0.002*** 0.002*** 0.002***

(0.001) (0.001) (0.001)
I(xi,t−1 = N) 0.010** 0.010** 0.009**

(0.004) (0.004) (0.004)
I(xi,t−1 = NI) 0.023*** 0.022*** 0.022***

(0.008) (0.008) (0.008)
I(xi,t−1 = NF) -0.003 -0.003 -0.004

(0.007) (0.007) (0.007)
I(xi,t−1 = NIF) 0.041*** 0.042*** 0.042***

(0.015) (0.015) (0.015)
I(xi,t−1 ∈ {NI, NF, NIF}) 0.023*** 0.023*** 0.023***

(0.008) (0.008) (0.008)

Revenue elasticities

β̃l 0.491*** 0.490*** 0.489*** 0.487*** 0.486*** 0.486***
(0.018) (0.017) (0.017) (0.012) (0.017) (0.016)

β̃k 0.115*** 0.114*** 0.114*** 0.113*** 0.112*** 0.111***
(0.015) (0.014) (0.016) (0.014) (0.014) (0.013)

β̃m 0.421*** 0.421*** 0.421*** 0.421*** 0.421*** 0.421***
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Industry fixed effects yes yes yes yes yes yes
Lag import dummy yes yes yes yes
Lag export dummy yes yes
Number of observations 9,320 9,320 9,320 9,320 9,320 9,320

Notes: I(xi,t−1 = N) is an indicator for doing domestic R&D, identified from the R&D Survey if firms report positive domestic R&D
expenditures. I(xi,t−1 = NI) is an indicator for having R&D immigrants based on IDA; I(xi,t−1 = NF) is an indicator for offshore
R&D, measured based on offshore R&D expenditures in the R&D survey; I(xi,t−1 = NIF) is an indicator for firms having both
R&D immigrants and offshore R&D. I(xi,t−1 ∈ {NI, NF, NIF}) is an indicator for diversified R&D, i.e. whether the firm either has
immigrant R&D, offshore R&D, or both. βm is estimated via equation (16). All specifications include industry fixed effects, with
industries defined at the NACE Rev.2 intermediate-level aggregation. The sample is manufacturing firms with at least 10 employees.
Bootstrapped standard errors are clustered by firm and reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

value for β̃m into equation (13) and estimate all remaining parameters jointly. To account for the
uncertainty in generated regressors h̃i,t and β̃m, we calculate standard errors by bootstrapping
the entire estimation procedure.

Results. Columns 1-3 in Table 4 report the estimates under the first specification, in which
the effect of R&D is captured parsimoniously by two indicators, I(xi,t−1 = N) and I(xi,t−1 ∈
{NI, NF, NIF}). In column 1, the results indicate that productivity is moderately persistent,
with an autocorrelation of 0.47. R&D participation leads to on average a 1% productivity gain.
Conditional on participating in R&D, sourcing from foreign sources results in an additional 2.3%
productivity gain. Column 2 includes an indicator for firms’ importing status in both the control
function h(·) and the law of motion for productivity. As such, this specification allows import
participation to affect productivity in two ways: directly, and indirectly by altering the firm’s
R&D sourcing efficiency and use of intermediate goods. The result from this specification shows
that the positive effect of using foreign R&D inputs is not due to its correlation with importing.
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Column 3 further includes exporting status in both the control function and the law of motion
for productivity. The estimated coefficients are similar.

Columns 4-6 in Table 4 report the estimates when we adopt the second specification based
on equation (15). Industry fixed effects are included in all three columns, and indicators for par-
ticipation in international trade are included following the same order as presented in Columns
1-3. The estimated coefficient for the intensive margin of R&D is statistically significant in all
cases, albeit relatively small—a finding consistent with our observations in Section 2. As widely
acknowledged, firm-level R&D expenditures are difficult to measure or define accurately. Thus,
the relatively small estimates may be attributed to a potential downward bias stemming from
measurement errors in R&D expenditures.26 Alternatively, this could stem from potentially het-
erogeneous effects of intensive margin R&D across firms with different sizes, leading to an overall
small average effect.27 More importantly to our purpose, in addition to the effect of R&D expen-
ditures, we find statistically significant and economically sizable effects (≈ 2.3%) from employ-
ing immigrant researchers on firm productivity. Employing immigrant researchers and using
imported R&D services at the same time increases productivity by even more (≈ 4.2%). The esti-
mated coefficient for the NF indicator is marginally negative but statistically insignificant, which
could be the result of there being only a small number of firms in the NF mode. The lower
panel of Table 4 reports the estimates for revenue elasticities of capital, labor, and materials. All
estimates are of reasonable values and stable across specifications.

Heterogeneity in R&D Sourcing Cost. Recall that our model maintains that the cost and
efficiency shifters of R&D input types, px̃ and Ax̃, are common to all firms. If px̃ and Ax̃ are
heterogeneous across firms, then firms with different costs or efficiency shifters would follow
different productivity processes, meaning that the coefficients in equation (14) would differ across
firms. As firms choosing a particular R&D mode likely face shifters that make that mode more
attractive, such heterogeneity could introduce a selection bias.

Our estimation strategy accommodates several important sources of heterogeneity, under
which it recovers the average effects of choosing an R&D mode on productivity. The first case is
when these shifters are i.i.d. across firms and periods, and they are realized after firms’ mode
choice. Intuitively, if firms’ selection into R&D or a particular R&D mode does not depend on
the shifters, the difference in productivity evolution between firms in different modes captures
the average causal effect of choosing a mode among all firms. The second potential source of
heterogeneity arises when these shifters systematically vary by mode—i.e., both px̃ and Ax̃ are
mode-specific. For example, AI for firms in the NIF mode could be higher than for firms in
the NI mode due to the synergy between immigrant researchers and offshore suppliers. In such
cases, the effect of choosing an alternative R&D mode on productivity depends on the firm’s

26In addition to conventional measurement errors, another factor affecting the structural interpretation of the es-
timates is that ei,t−1 can include fixed and sunk costs of R&D. To address this concern, rather than interpreting the
coefficient for ei,t−1 as a structural parameter, we will conduct indirect inference, as described in the next subsection.

27Our estimate is in line with existing estimates. For example, focusing on Norway, Bøler, Moxnes and Ulltveit-Moe
(2015) estimate heterogeneous R&D returns by firm size. They find a positive coefficient for large firms, larger in
absolute value than ours, and a negative coefficient for small firms, implying an average return that is similar to ours.
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current mode. The estimation described above recovers the average effect of a mode compared
to not doing R&D only for the firms choosing that mode. As a corollary of the first two cases, the
shifters may have two components—one that is specific to the firm’s current mode, and the other
that is i.i.d. In this scenario, we estimate the average effect of a mode for the firms that choose it
as in the second case. Last but not least, these shifters can vary due to differences in productivity
or other observable components across firms or over time. For example, importers and exporters
may face different shifters from non-traders. This concern is alleviated by the fact that controlling
for importing and exporting status does not materially change any estimates.

Robustness and Summary. We conduct five sets of robustness exercises for Table 4 and
report the results in Appendix B.4. First, one may be concerned that measurement errors in R&D
expenditures might bias the estimates for the coefficients of the indicators in columns 4-6. We
show that replacing the continuous R&D measure in these columns with the indicator for doing
R&D only with domestic researchers (i.e., I(xi,t−1 = N)) does not change the coefficients for
other indicators materially. Second, in the baseline analysis, we classify firms as participating in
R&D activities with domestic researchers if they report incurring R&D expenditures. While this
definition is conventional and consistent with existing estimates of the return to R&D (e.g., Aw,
Roberts and Xu, 2011; Doraszelski and Jaumandreu, 2013; Bøler, Moxnes and Ulltveit-Moe, 2015),
one might be concerned about a potential inconsistency between this measure and our definition
of mode NI that hinges on occupation. We show that the results are robust if we define mode
N based on occupation as well. Third, in the baseline analysis, we estimate a revenue function
derived from firms’ optimal quantity choice under a CES demand. As an alternative, we estimate
a value-added production function, which does not rely on a specific assumption about firms’
optimal output choice. Fourth, we allow the cost share of materials to vary by industry. Finally,
we exclude R&D workers from the measurement of labor, thereby alleviating the concern that
firms doing more R&D have bigger measurement errors for employment.

Results from these exercises show that productivity gains associated with using foreign R&D
inputs are a robust feature of the data that does not rely on many of the model’s assumptions.
In the rest of this section, we use the structure of the model on R&D to recover all the structural
parameters that are necessary for conducting counterfactual exercises.

4.2 Tier II, Step I: The Distribution of Idiosyncratic Cost Shocks

In the second tier of the estimation, we recover all structural parameters required for counterfac-
tual exercises. This process unfolds in two steps. A key part of our structural estimation involves
recovering the matrix of fixed and sunk costs for R&D modes, F̃. An intuitive approach to iden-
tify F̃ is by using the observed transition patterns between R&D modes in the data. A challenge
for this approach, however, is that because F̃ enters firms’ mode choice jointly with the reciprocal
of ν, as shown in equation (10), transition patterns alone do not separately identify F̃ and ν. The
first step of Tier II in our estimation procedure addresses this challenge and identifies ν.

We take advantage of a natural experiment in Denmark—the introduction of an R&D subsidy
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policy in 2011—for identification. This policy rebates 25% of total R&D expenses for firms incur-
ring a loss, thereby reducing their effective cost of R&D. This, in turn, encourages more firms to
conduct R&D. We can therefore identify ν by examining how the subsidy changes the probability
of switching R&D modes among eligible firms.

Consider the choice of the firms entering period t with R&D mode x ∈ {N, NI, NF, NIF} and
productivity ωi,t, i.e., si,t = (ωi,t, x). Combining equations (9) and (10) gives us the log of the
ratio between the share of these firms quitting R&D and the share staying in the current mode x:

log

(
mx,0

t (si,t)

mx,x
t (si,t)

)
=

1
ν

[cx × rd∗i,t(ωi,t, x) + f x]︸ ︷︷ ︸
≡e∗i,t(ωi,t,x) (i.e., R&D expenses)

(17)

+
δ

ν
[EtVt+1

(
ωi,t+1|ωi,t, rdi,t = 0

)
− EtVt+1

(
ωi,t+1|ωi,t, rdi,t = rd∗i,t(ωi,t, x)

)︸ ︷︷ ︸
Improvement in continuation value from optimally chosen R&D

].

In the above expression, rdi,t = rd∗i,t(ωi,t, x) is the optimal effective R&D for firm i with produc-
tivity ωi,t if R&D is carried out under mode x.28 The expression shows that the log odds ratio
is the sum of two components—R&D expenses, and dynamic gains due to the improvement in
expected future productivity—with each component divided by ν.

With the aforementioned R&D subsidy policy in place, firms’ R&D choice also depends on
whether they are eligible for the subsidy, i.e., whether they make a positive accounting profit. For
loss-making firms, both R&D mode and R&D spending can change, affecting both components of
the log-odds ratio.29 Given the uncertain and temporary nature of this policy and the restriction
on eligibility for only loss-making firms, we assume that firms perceive the future value function
in the post-policy world to be similar to that before the policy.30 Under this assumption and
by invoking the Envelope Theorem, we show in Appendix B.5 that, up to the first-order, the
difference in the log odds ratio between otherwise similar loss-making firms—with the subsidy

28As firms’ choice between modes 0 and x can be inferred from the definition of rdi,t, (i.e., rdi,t = 0 means the firm
chooses to quit R&D; rdi,t = rd∗i,t(ωi,t, x) means the firm continues with mode x), we suppress firms’ mode from their
value functions. In particular, we use EtVt+1

(
ωi,t+1|ωi,t, rdi,t = 0

)
as shorthand for EtVt+1

(
(ωi,t+1, 0)|(ωi,t, x), rdi,t =

0
)

and EtVt+1
(
ωi,t+1|ωi,t, rdi,t = rd∗i,t(ωi,t, x)

)
as shorthand for EtVt+1

(
(ωi,t+1, x)|(ωi,t, x), rdi,t = rd∗i,t(ωi,t, x)

)
.

29In our model, when making R&D decisions, firms already know their current productivity, which allows them to
calculate π(ω). Therefore, firms know whether they would be eligible for the policy if they opt to carry out R&D.
While π(ω) is always positive, we can assume that there is an idiosyncratic fixed overhead cost that firms have to pay,
in which case a firm would incur an operation loss if its productivity is low or if the realization of the operation cost
is high. Since our model does not focus on exits, we do not include this cost for simplicity.

30From the perspective of firms qualifying for this subsidy in year t, they would qualify again in the next year only
if all of the following conditions are met: i) the subsidy policy is still active; ii) they continue to be in a loss position;
iii) they are actively doing R&D. Given the uncertainty in policy and the potential upside risk of R&D-active firms, it
is likely that firms do not anticipate all three conditions holding in the future. We also note that our assumption is
not that firms perceive their continuation values to be the same as before with certainty. Instead, the assumption is
that the perceived continuation value, given the chosen R&D mode and the realized productivity in the next period,
remains the same as in the absence of the policy.
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in effect (log
(

m′x,0
t (si,t)

m′x,x
t (si,t)

)
) and without it (log

(
mx,0

t (si,t)
mx,x

t (si,t)

)
)—is:

log

(
m′x,0

t (si,t)

m′x,x
t (si,t)

)
︸ ︷︷ ︸

with subsidy

− log

(
mx,0

t (si,t)

mx,x
t (si,t)

)
︸ ︷︷ ︸

without subsidy

≈ −1
ν
× τ × e∗i,t(ωi,t, x), (18)

where e∗i,t(ωi,t, x) is the firm’s optimal R&D spending in the absence of the subsidy, as defined in
equation (17). Expression (18) shows that the change in the propensity of a loss-making firm’s
continuing R&D due to the R&D subsidy depends on the amount of the subsidy τ × e∗i,t(ωi,t, x),
and the parameter ν which governs firms’ responsiveness to the subsidy. In the model, firms’
characteristics are uniquely determined by their current productivity and participation in R&D in
the previous period. Equation (18) suggests that we can determine ν by checking if, conditional
on firms’ R&D mode and other characteristics, loss-making firms are less likely to quit doing
R&D after the policy is introduced.

Table 5 takes a first look at the transition of loss-making firms between doing R&D with
any mode and quitting R&D. The left side presents the patterns in 2011 (pre-policy), whereas
the right side presents the patterns in 2012 (post-policy). Each period includes approximately
600 loss-making firms. In 2011, 26% of the firms that were active in R&D in the previous year
stopped doing R&D. This percentage decreased to 14% in 2012 following the implementation
of the policy. These shifts are further confirmed by Panel B, which focuses on loss-making
manufacturing firms.

To account for the role of R&D mode and other dimensions of firm heterogeneity in shaping
the transition pattern described in Table 5, we conduct a regression analysis. We divide the ob-
servations for each year (2011 and 2012) according to the firm’s beginning-of-period R&D mode.
We assess, within each group, whether the observations from 2012 exhibit a higher likelihood
of discontinuing R&D compared to those from 2011. We control for industry fixed effects, em-
ployment, lagged productivity, and the interaction between productivity and firms’ R&D mode.
According to the model, productivity and R&D mode characterize a firm’s state. In effect, we
use firms in 2011 with similar observed characteristics as a comparison group for firms in 2012.
We estimate the following linear probability model:

I(i quits R&D in t) = β0I(t = 2012) + βx · Xi,t + ϵi,t,

where I(i quits R&D in t) is an indicator variable that takes a value of 1 if a firm-year observation
stops doing R&D according to the R&D expenses in the R&D survey; I(t = 2012) is an indicator
for the year when the R&D subsidy policy was implemented; and Xi,t is the vector of control
variables mentioned above. β0 is the key coefficient of interest, capturing the effect of the policy.

In Table 6, column 1 reports the results from this specification, indicating a decrease of ap-
proximately 10.5% in the probability of firms discontinuing R&D after the policy. In column 2,
we conduct a placebo test focusing on profit-making firms that were ineligible for the subsidy.
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Table 5: R&D Decisions of Loss-Making Firms

Loss-making firms in 2011 Loss-making firms in 2012

Panel A: all industries
2011 2012

R&D no R&D R&D no R&D

2010
R&D 113 39

2011
R&D 144 24

no R&D 27 427 no R&D 37 373

Panel B: manufacturing
2011 2012

R&D no R&D R&D no R&D

2010
R&D 52 17

2011
R&D 67 11

no R&D 15 135 no R&D 19 116

Notes: The sample consists of loss-making firms in 2011 and 2012 with at least 10 employees in all industries (Panel A) and manu-
facturing only (Panel B). ‘R&D’ denotes firms reporting positive R&D expenditures, regardless of the mode, while ‘no R&D’ refers
to firms doing no R&D.

Table 6: R&D Subsidy and R&D Participation

Linear Probability Model Logistic Model

Loss-making firms Placebo: profitable firms All industries Manufacturing

(1) (2) (3) (4)
β0 -0.105** -0.027 -0.147*** -0.196**

(0.048) (0.024) (0.049) (0.081)

Observations 277 893 201 83
Firm sizei,t−1 Yes Yes Yes Yes
Productivityi,t−1 Yes Yes Yes Yes
R&D modei,t−1# Productivityi,t−1 Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes

Notes: The first two columns report results from a linear probability model; the last two columns report results from a logistic model
on loss-making firms. All specifications control for lagged log firm size, a quadratic function of lagged firm productivity (defined
as log valued-added per worker), lagged R&D mode interacted with a quadratic function of lagged firm productivity, and industry
fixed effects. The sample consists of firms in the entire private sector or manufacturing in 2011 and 2012 with at least 10 employees.
Robust standard errors are reported in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The finding suggests that the results in column 1 are not attributed to broader macroeconomic
conditions affecting all firms simultaneously between 2011 and 2012.31

Estimates based on the linear probability model do not easily translate into the structural
parameter of interest 1

ν . To address this, we estimate a logistic specification with the independent
variable being the log of R&D expenditures, as shown below:

I(i quits R&D in t) =

{
1, if β0 · I(t = 2012) · log(e∗i,t) + βx · Xi,t + ϵi,t > 0

0, otherwise,
(19)

in which e∗i,t is the optimal R&D expenditures for firm i if it chooses to continue R&D. Assuming
ϵi,t is drawn from a standard logistic distribution, this specification serves as the reduced-form

31The difference between the estimates in the first two columns essentially constitutes a difference-in-differences
estimate for the effect of the policy.
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counterpart of the structural equation (18).32 We estimate the elasticity from equation (19) and
subsequently convert it to semi-elasticity τ

ν .33 For firms continuing R&D, we use their R&D
expenditures to measure e∗i,t. For the firms that quit doing R&D in period t, we do not observe
the actual R&D expenditures, so we use their lagged R&D expenditures as a proxy.

Columns 3 and 4 of Table 6 report the results from the logistic regression. The estimated
coefficient for all firms is around −0.15, and it is larger in absolute terms for manufacturing firms.
Since our productivity estimation and counterfactual simulations will focus on the manufacturing
sector, we convert the estimate for manufacturing firms, −0.196, into the semi-elasticity given
in equation (18), − τ

ν . For a typical firm (the median firm) that incurs 0.374 million USD in
expenditures on R&D, our semi-elasticity estimate implies − τ

ν = −0.196
0.374 . Plugging in the actual

subsidy rate τ = 0.25 delivers ν = 0.477.

4.3 Tier II, Step II: Indirect Inference of the Remaining Structural Parameters

The final step of our estimation is to pin down the remaining structural parameters. We adopt
the indirect inference method in this step to jointly identify different sets of parameters while
maintaining a clear connection between the parameters and the targeted moments.

With the estimate of ν in hand, there are three sets of parameters remaining to be determined.
The first set includes the parameters that govern the evolution of firm productivity: ρ, γ, the
standard deviation σζ of the error term in equation (5), and the unit cost of R&D for each mode
(cx for each R&D mode x ∈ {N, NI, NF, NIF}). These costs are composite parameters that
depend on the efficiency Ax̃ and the price px̃ of each type of R&D input x̃ ∈ {N, I, F}. However,
as equation (14) shows, the impact of Ax̃ and px̃ on productivity is summarized entirely by the
elasticity of productivity with respect to domestic R&D investment and the marginal contribution
of each R&D mode, i.e., γ̃i for i = 0, 1, 2, 3 in equation (15). Moreover, as we show in the next
section, counterfactuals that change the availability of foreign inputs can be implemented by
altering γ̃i’s directly. Therefore, conditional on γ̃i’s, we do not need to separately identify Ax̃ and
px̃. We collect ρ, σζ , and γ̃i for i = 0, 1, 2, 3 in λλλ = (ρ̃, γ̃̃γ̃γ, σζ) as the first set of parameters.34

The second set of parameters is about the macroeconomic environment that determines the
size of the market, i.e., Pt, Wt, Qt. These parameters enter the model only through the aggregate
demand shifter Φt. The third set of parameters are the fixed and sunk costs of R&D modes, F̃.

32The logistic assumption in equation (19) implies that the pre- and post-policy log odds ratios are log
(

mx,0
t (si,t)

mx,x
t (si,t)

)
=

βx · Xi,t and log
(

m′x,0
t (si,t)

m′x,x
t (si,t)

)
= β0 log(e∗i,t) + βx · Xi,t, respectively. The difference between the two yields the elasticity

specification in equation (18).
33An alternative is to use the level of R&D expenditures as the explanatory variable to directly estimate − τ

ν . We do
not adopt this alternative approach because with the distribution of R&D expenditures being skewed, specifications
with the level of expenditures as the explanatory variable are heavily influenced by a small number of big firms.
Nevertheless, using a level specification gives qualitatively similar results.

34In estimating structural parameters and conducting counterfactuals, we assume that all production inputs are
flexible. This allows us to circumvent having capital and employment as state variables and to avoid solving numer-
ically for investment and employment decisions. These benefits appear larger than the cost of this abstraction given
that our counterfactual exercises focus on steady-state outcomes.
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We stack these three sets of parameters in (λλλ, Φt, F̃) and estimate them jointly. We focus on
manufacturing firms as in productivity estimation. Below, we describe the moments that identify
each parameter and our estimation procedures in detail.

Parameters about the Evolution of Firm Productivity. We use the estimates reported in
Table 4 to identify λλλ. Ideally, we would like to directly assign the estimates in columns 4-6 to
γ̃i. However, as discussed earlier, the difficulty in accurately measuring intensive-margin R&D
expenditures, eit, may introduce biases into these estimates. To circumvent this problem, we
use the estimates of column 3, which uses indicators and is therefore less susceptible to such
biases. We take three estimates from column 3: the autocorrelation coefficient, the coefficients on
the R&D indicator, and the diverse R&D indicator. We supplement these estimates with three
additional empirical moments: the average R&D expenditure share on domestic inputs among
NI firms (0.903, denoted by sN

NI), the average R&D expenditure share on domestic inputs among
NIF firms (0.558, denoted by sN

NIF), and the standard deviation of log firm sales (1.44). We collect
these moments in a vector as below

α̂αα = (0.478, 0.009, 0.023, 0.903, 0.558, 1.44). (20)

α̂αα will be the target in the indirect inference procedure to pin down the parameters in λλλ.
The intuition for identification is as follows. The standard deviation of log firm sales pins

down σζ . sN
NI and sN

NIF contain the information needed to identify the cost difference between
different R&D modes (e.g., log cN

cNI and log cN

cNF ). As demonstrated in Appendix B.6, when paired
with the estimated coefficients for the indicators in column 3 of Table 4, these shares separately
identify γ̃i for i = 0, 1, 2, 3, and are sufficient for our counterfactual exercises.35

Aggregate Demand Shifter. Φt in equation (4) represents the aggregate demand shifter that
affects the scale of all firms. Focusing on the steady state of the model, we assume that Φt = Φ
is a constant and choose Φ such that the median sales among the model firms match the value
of 25.6 million USD, the median sales among manufacturing firms in our empirical sample.

Fixed and Sunk Costs of R&D Modes. The matrix F̃ directly determines the probability of a
given firm transitioning from one R&D mode to another. We pin down F̃ by using the observed
transition matrix between R&D modes. Since each row of the transition matrix sums to 1, we
have 20 independent moments to pin down the 10 parameters in F̃, as specified in equation (11).

Estimation Procedures. We collect all parameters to be estimated in (λλλ, Φ, F̃) ∈ Λ, where Λ
denotes the parameter space. These parameters fall into two categories. The parameters in the
first category, λλλ and Φ, are just-identified, with the same number of moments as the number of
parameters. The second category of the parameters, F̃, are over-identified. To maintain a tight
connection between the parameters and the moments identifying them, our estimation solves the

35Note from equation (13) that the R&D coefficient estimated with GMM is the product of the true R&D coefficients
governing the evolution of firms’ productivity and η+1

η , where η is the demand elasticity of the product market. For
consistency, in generating the model counterpart of α̂αα, we also scale the regression coefficients from the simulated data
by η+1

η , in which η is externally assigned, as shown in Table 7.
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following constrained optimization problem:

min
(λλλ,Φ,F̃)∈Λ

∑
x,x′

n(x) ·
(

mx,x′(λλλ, Φ, F̃)− m̂x,x′
)2

(21)

s.t. ααα(λλλ, Φ, F̃) = α̂αα,

where the variables with a hat denote empirical moments and those without a hat are model-
implied values under a particular choice of (λλλ, Φ, F̃) ∈ Λ. In the objective function, mx,x′(λλλ, Φ, F̃)
is the model-implied fraction of firms in mode x that move to mode x′ in the next period; n(x) is

the fraction of firms in mode x in the steady state. Therefore, ∑x,x′ n(x) ·
(

mx,x′(λλλ, Φ, F̃)− m̂x,x′
)2

simply adds up the discrepancies in the transition patterns between the model and the data,
weighted by the steady-state share of firms in each mode. The weight reflects that the empirical
moments m̂x,x′ converge to their asymptotic value as n increases, so modes with a smaller number
of observations have more noisy moments and should be weighted less.

The constraint of this optimization problem ensures all the moments that just-identify the
parameters λλλ and Φ, are matched exactly. The first three elements of α̂αα in the constraint, as
defined in equation (20), are the first three estimated coefficients reported in column 3 of Table
4. The remaining three elements of α̂αα are the two R&D expenditure shares (sN

NI and sN
NIF) and the

standard deviation of the log of firm sales. ααα(λλλ, Φ, F̃) are the model-generated values for those
six moments under parameters (λλλ, Φ, F̃).36

In implementing the estimation, for any given set of values of (λλλ, Φ, F̃), we simulate the
model. With the simulated data, we calculate the transition matrix between R&D modes, the
standard deviation of log sales, and the domestic R&D shares sN

NI and sN
NIF. We also estimate the

coefficients following the specification in column 3 of Table 4 with the simulated data. Subse-
quently, we choose (λλλ, Φ, F̃) to solve the optimization problem outlined above.37

Estimation Results and the Model Fit. Panel A of Table 7 reports the parameters that we
take as given in the indirect inference. We estimated ν = 0.477 from the previous step. We set the
demand elasticity η to be −6.56. This choice follows the estimate of Aw, Roberts and Xu (2011)
and implies a constant markup of around 18%. Finally, the discount rate is set to 0.95.

Panel B of Table 7 summarizes the results from the indirect inference procedure. The estimate
for ρ̃ is 0.473, which is very close to the moment that pins it down (0.478). γ̃0 from the joint esti-
mation is almost three times the estimated coefficient in column 4 of Table 4, which is consistent
with a downward bias due to measurement errors in R&D expenditures. Likely because inten-
sive margin returns pick up a larger fraction of the total returns to R&D, the estimates for γ̃1 and

36An alternative view of the constrained optimization problem is that the moments in the constraint represent macro
moments (those reflecting the average outcomes of firms) and that the moments in the objective function are micro
moments specific to firms in a particular mode. Our estimation aims to fit all macro moments and as many micro
moments (weighted according to their informativeness) as possible.

37Appendix B.6 shows that, for a given guess of γ̃̃γ̃γ and without knowledge of Ax̃ or px̃, for x̃ ∈ {N, I, F}, we can
verify whether the expenditure shares in the model, sN

NI and sN
NIF, are equal to their empirical counterparts. It also

shows that the problem in (21) identifies the parameters relevant for firm’s R&D decisions without having to first
estimate Ax̃ or px̃ for x̃ ∈ {N, I, F}.
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Table 7: Summary of Structural Parameters

Parameters Descriptions Source/Target Value (s.e.)

A. Estimated in Tier II - Step 1 / Independently Calibrated

ν scale parameter for the idiosyncratic cost in R&D Table 6 ν = 0.477 (-)
η demand elasticity Aw, Roberts and Xu (2011) -6.56 (-)
δ discount rate - 0.95 (-)

B. Jointly Estimated in Tier II - Step 2

Φ aggregate demand median sales: 16.9 million USD -
ρ̃ autocorrelation in productivity Table 4 Column 3 0.473 (1.ee-2)
γ̃̃γ̃γ return to R&D Table 4 Column 3, SN

NI , and SN
NIF γ̃0 = 0.0057 (6.7e-4)

γ̃1 = 0.0017 (3.6e-4)
γ̃2 = 0.016 (1.7e-2)
γ̃3 = 0.013 (2.1e-3)

σξ sd. of the innovation term in productivity sd(log(sales))=1.268 0.20 (1.3e-3)
F̃ fixed and sunk costs in R&D Table 8 Table 8

Notes: Panel A reports the parameters estimated in Step 1 of Tier II of our estimation procedure and those externally calibrated.
Panel B reports the outcome from Tier II - Step 2 of the structural estimation. The numbers in parentheses in the last column of Panel
B are the standard errors, generated through 200 bootstraps of the entire estimation procedure, including the GMM estimation and
the indirect inference described in equation (21).

γ̃3 from indirect inference are smaller than their counterparts in the specification in column 4 of
Table 4. Finally, we estimate a positive value for γ̃2. The contrast between this estimate and the
negative and statistically insignificant estimates in columns 4-6 in Table 4 stems from the differ-
ence in the source of identification: in this joint estimation, γ̃2 is identified from the diversified
R&D indicator in combination with the R&D expenditure shares sN

NI and sN
NIF, whereas in Table

4, it is primarily identified from a small number of observations in the NF mode.
We show in Appendix B.6 that our estimate of γ̃̃γ̃γ implies θ = 0.32 as the Fréchet shape

parameter, implying a large heterogeneity in the efficiency across ideas from different sources.
This estimate is tightly connected to the large estimated gains from using diverse R&D modes
in Table 4. It also suggests that an important reason for firms to access foreign R&D inputs is to
exploit better ideas for some of the R&D tasks.38

Panel A of Table 8 reports the empirical transition matrix for manufacturing firms and the
model counterpart. Our model fits the transition patterns reasonably well, with a mean difference
between the model and the data being 0.014. The fit of the NF row is worse than that of other
rows, likely due to the relatively lower weight on these moments given the small number of firms
in the NF mode. The last row of Panel A reports the R&D mode distribution of firms. The model
fits the data closely despite the mode distribution not being directly targeted.

Panel B of Table 8 reports the estimates for fixed and sunk cost parameters in F̃. The upper
part of the panel is the total cost of transition between R&D modes, combining fixed and sunk
cost components. Two observations are noteworthy. First, the diagonal elements are substantially
smaller than other values in the same column, suggesting that sunk costs play an important role.
In terms of magnitude, we find that the average startup cost of doing R&D with mode N is 1.61
million USD. Compared to the average R&D expenditures of 1.78 million USD in the data, this

38Our estimate is lower than that of Antràs, Fort and Tintelnot (2017), who estimate a heterogeneity parameter of
1.8 among different suppliers of the same good. This difference could reflect the distinct nature of ideas versus goods.
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Table 8: Transition Matrix and Cost Estimates

Panel A: Transition probability and steady state distribution: model versus data
0 N NI NF NIF

Data Model Data Model Data Model Data Model Data Model
0 0.890 0.897 0.061 0.075 0.033 0.015 0.005 0.008 0.011 0.005
N 0.276 0.245 0.592 0.576 0.082 0.114 0.042 0.039 0.008 0.027
NI 0.115 0.119 0.059 0.061 0.684 0.682 0.011 0.003 0.131 0.134
NF 0.140 0.119 0.380 0.284 0.033 0.058 0.407 0.342 0.040 0.196
NIF 0.049 0.044 0.011 0.022 0.252 0.251 0.021 0.019 0.667 0.663
SS dist. 0.582 0.587 0.134 0.144 0.171 0.157 0.021 0.019 0.092 0.094
Panel B: The estimated cost matrix and breakdowns
F̃ 0 N NI NF NIF

0 0 - 1.613 (0.047) 2.838 (0.11) 4.073 (1.23) 4.652 (0.21)
N 0 - 0.001 (0.003) 1.225 (0.105) 2.460 (1.23) 3.039 (0.22)
NI 0 - 0.714 (0.10) 0.001 (2e-4) 3.173 (1.24) 1.815 (0.17)
NF 0 - 0.005 (0.003) 1.230 (0.10) 1.118 (1.25) 1.785 (0.20)
NIF 0 - 0.718 (0.10) 0.005 (0.001) 1.831 (1.25) 0.560 (0.13)

Breakdown f N f NI f NF f NIF FN FI FF FIF FI0 FF0

0.001 0.001 1.118 0.560 1.613 1.225 1.342 0.087 0.713 0.004
(0.003) (2e-4) (1.24) (0.13) (0.047) (0.11) (0.14) (0.008) (0.10) (9e-4)

Notes: Panel A of the table reports the transition probability between modes in the steady state of the estimated model and that in
the data, averaged among manufacturing firms with more than 10 employees over the sample period. The steady-state distribution
for the data represents firms’ frequency distribution across modes over the same period. Panel B reports the estimates for the
cost parameter matrix F̃ and its breakdown into individual components, as described in Section 3. Numbers in parentheses are
bootstrapped standard errors. Numbers in the lower panel are in million US dollar.

average estimate implies that a significant portion of R&D expenses is allocated to fixed and sunk
cost components.39

Second, our estimates exhibit F̃N,NF − F̃NI,NIF > 0, which is statistically significant at 10%.
Firms with immigrant R&D workers face 30% lower costs in starting offshore R&D compared
to firms without any immigrant R&D workers. This finding suggests that the higher propensity
for starting offshore R&D among firms with immigrant researchers in the data cannot be solely
attributed to the increased R&D efficiency generated by static interactions between offshore R&D
and high-skill immigrants. Reduced fixed and sunk costs of offshore R&D due to immigrant
researchers are also an important source of such complementarity.40

The last row of Panel B breaks down the composite cost matrix by mode-specific fixed costs
and the sunk costs associated with mode switching. Decomposing F̃N,NF − F̃NI,NIF into the sunk
cost component FIF and the fixed cost component f NF − f NIF reveals that both components

39The average masks substantial heterogeneity. Under the estimated value of ν, the two-standard-deviation range
of FN + ιN

i,t is (1.61 − 0.89, 1.61 + 0.89).
40One might be concerned that the key elements in the transition matrix identifying F̃N,NF > F̃NI,NIF, e.g., a higher

frequency of the NI → NIF switch than that of the NI → NF switch, are entirely driven by large and productive
firms doing more of all activities. If so, our estimation could be imposing a size-driven effect on the information
values of immigrant researchers. We note that, first, as shown in Appendix A.2, the transition pattern remains robust
after controlling for firm size and productivity. Second, and more importantly, to the extent that size plays a role
in firms’ joint use of imported R&D services and immigrant researchers, our heterogeneous firm model incorporates
such channels. In this sense, our estimate of F̃ picks up what cannot be explained by firm size alone.
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matter, with the fixed component playing a relatively larger role.

5 Counterfactuals

We use the estimated model to conduct counterfactual experiments, with two primary objectives:
first, to understand what determines firms’ choice to use foreign R&D inputs and the importance
of these foreign inputs for overall R&D; second, to examine how these inputs influence the
outcomes of policies targeting either overall R&D or the use of specific foreign R&D inputs.

5.1 Benefits from Diverse Ideas and the Information Value of Immigrant Researchers

In the model, a key motive for using foreign R&D inputs arises from the heterogeneity in the
quality of ideas across input sources. With such heterogeneity, firms that obtain inputs from di-
verse sources can leverage superior ideas for each task, thereby achieving higher R&D efficiency.
In addition to this incentive, as revealed by our structural estimation, employing immigrant re-
searchers provides an extra benefit by facilitating communications with offshore R&D suppliers,
thus reducing the cost of starting offshore R&D. For the sake of brevity, we refer to this as the
“information channel” in this section.

In this subsection, we conduct two experiments to understand the importance of the infor-
mation channel and idea heterogeneity in firms’ R&D decisions. In the first experiment, we shut
down the information channel by increasing f NIF to the level of f NF and reducing FIF to zero,
thereby removing the cost advantage in doing offshore R&D enjoyed by firms with immigrant
researchers. In the second experiment, we shut down the heterogeneity in ideas for R&D tasks
across sources by setting θ to infinity.41 In this limit case, the only reason a firm would pay
higher fixed and sunk costs to adopt foreign-sourced R&D inputs is that they have a favorable
idiosyncratic cost draw ι for the R&D mode using foreign inputs. Thus, this experiment can also
be viewed as shutting down the benefit from using foreign R&D inputs.

The first panel in Table 9 reports the distribution of firms across R&D modes in the benchmark
and the two counterfactual economies. When the information channel is eliminated, the share of
firms in mode NIF decreases by more than 90%. Interestingly, the share of firms in the NI mode
also decreases by 46%, even though the firms that have chosen this mode are not directly affected
by the change in fixed and sunk costs implemented in this experiment. This decline indicates
that many firms selecting the NI mode in the benchmark economy are driven by the prospect of
more easily transitioning into the NIF mode in the future. In total, the fraction of R&D-active
firms decreases by 15 p.p., from 41% to 26%, underscoring the importance of the information
channel in influencing R&D participation. When we eliminate the heterogeneity in ideas across

41Note from equations (8) that as θ → ∞, cNI , cNIF, and cNIF all converge to cN (and γ̃m → 0 for m = 1, 2, 3)
if domestic researchers are, on average, more cost-efficient than foreign sources. This condition is satisfied in our
setting given that firms in the NIF mode spend the highest fraction of expenditures on domestic researchers (recall
sN

NIF = 0.558). Therefore, modifying the law of motion for productivity by setting γ̃m → 0 for m = 1, 2, 3 implements
the counterfactual of θ → ∞ without recovering the level of Ax̃ or px̃.
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sources, as shown in the third column of panel (a), less than 18% of firms conduct R&D, 23 p.p.
less than in the benchmark economy. Also, firms do R&D overwhelmingly in mode N, except
for the firms that happen to have a favorable draw ι for using foreign inputs.

The shift in firms’ R&D mode choices between the benchmark model and alternative specifi-
cations translates into a qualitatively similar shift in the distribution of R&D expenditures across
modes, as reported in panel (b) of Table 9. Quantitatively, the decrease in the share of R&D
spending by firms in modes NI and NIF is smaller than the decrease in the share of firm counts
in these modes. This disparity demonstrates a compositional shift resulting from selection. For
instance, when the information channel is absent, the average cost of transitioning to the NIF
mode is higher than in the benchmark model. As a result, compared to the benchmark, firms
opting for the NIF mode in the absence of the information channel are, on average, larger and
more productive, leading them to outspend firms in other modes of R&D.

We now examine the impact of these model mechanisms on aggregate productivity. Reported
in panel (c) of Table 9 is the sales-weighted average log productivity among all firms and by R&D
mode. Eliminating the information channel reduces aggregate productivity by 0.5% from the
benchmark, and shutting down the heterogeneity in ideas decreases aggregate productivity by
0.8%.42 Intuitively, both experiments effectively increase the overall cost of R&D, leading to lower
R&D participation. Somewhat unexpectedly, despite the decrease in aggregate productivity, the
average productivity in all modes increases when the information channel is removed. This result
is entirely driven by the shift in the composition of firms among R&D modes: as the entry into
the NIF mode becomes more costly due to the removal of the information channel, the most
productive firms remain in the NIF mode, while the less productive firms transition to other
modes. Because the switchers are still more productive than existing firms in the less costly R&D
modes, the average productivity in all modes increases. This finding highlights the importance
of the selection mechanism in interpreting the productivity disparity across R&D modes evident
in the data (see Table 2), a factor we account for through the structural model.

To assess the importance of foreign R&D inputs in the overall gains in aggregate productivity
from R&D, we conduct an additional experiment that eliminates entirely the incentive to conduct
R&D by assuming that doing R&D has no impact on firms’ future productivity. In this experi-
ment, aggregate productivity declines to 0.276, slightly lower than 0.278, which is the aggregate
productivity when we eliminate the heterogeneity in ideas from the benchmark. The modest
difference between these two numbers illustrates that, in a small open economy like Denmark,
most of the productivity gains from R&D originate from access to foreign ideas. When forced to
carry out R&D with only domestic inputs, most firms stop doing R&D and the economy reaps
only 20% (= 0.278−0.276

0.286−0.276 × 100) of the total returns from R&D.
In summary, the counterfactual results show that the heterogeneity in ideas accounts for

56% of firms’ participation in R&D and 80% of the gains in aggregate productivity from R&D.

42The modest effects on overall productivity mirror the relatively small estimates for the returns to R&D presented
in Table 4. Since our emphasis lies on the significance of foreign inputs and the interaction between them, we focus
on the relative levels of aggregate productivity gains across counterfactuals.
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Table 9: Firms’ R&D Choice and Aggregate Productivity: Benchmark vs. Alternative Models

(a) Share of firms (%) (b) Share of R&D expenditure (%) (c) Aggregate (log) productivity

R&D modes Benchmark No info θ → ∞ Benchmark No info θ → ∞ Benchmark No info θ → ∞
No R&D 58.67 73.50 82.24 - - - 0.257 0.263 0.270

N 14.36 15.63 14.17 37.11 59.89 79.84 0.280 0.291 0.312
NI 15.70 8.44 3.39 41.10 33.27 19.00 0.277 0.299 0.305
NF 1.90 1.97 0.09 3.41 5.44 0.53 0.420 0.443 0.312
NIF 9.37 0.45 0.11 18.38 1.40 0.63 0.364 0.409 0.305
All 100 100 100 100 100 100 0.286 0.281 0.278

Notes: Columns marked as ‘No info’ report the results from the alternative model specification where there is no information
channel for immigrant researchers, and columns marked as ‘θ → ∞’ report the results from the alternative specification where
we set θ to infinity to shut down the heterogeneity in ideas. Panels (a) and (b) report the share (%) of firms by R&D mode
and the share (%) of R&D expenditure of firms from each mode, respectively. Panel (c) reports the (sales-weighted) average log
productivity among all firms and firms in each R&D mode.

Moreover, firms’ R&D choices crucially depend on the cost of doing R&D in different modes and
the extent to which such costs can be mitigated by immigrant researchers. Incorporating these
mechanisms is vital for explaining observed R&D choices and, as we will show in the subsequent
subsections, for evaluating policy outcomes.

5.2 High-Skill Immigration and Offshore R&D Policies

Firms’ access to immigrant researchers and offshore R&D services is heavily influenced by na-
tional policies, often sparking heated debates. We investigate the impacts of two policies—high-
skill immigration liberalization and offshore R&D promotion—using the model. We model these
policies as a 50% reduction in the sunk costs of hiring immigrant researchers and starting offshore
R&D, FI and FF, respectively. The reduction in FI can be viewed as a reform that eases friction
in hiring foreign researchers. The decrease in FF could represent advancements in information
technology (IT) facilitating cross-border collaboration or an investment treaty that makes it easier
for firms to set up R&D operations abroad. While these 50% adjustments might seem large, it is
worth noting that the integration of new member states into the EU stands as one of the most
significant liberalizations in immigration in recent decades, resulting in rapid migration increases
in the region (Caliendo, Parro, Opromolla and Sforza, 2021). Furthermore, the advancement of
IT over the last two decades has made cross-border communication easier than ever.

Table 10 presents the results from these experiments. The high-skill immigration liberalization
increases the share of firms with immigrant researchers by 10.4 p.p. Approximately one-third of
this increase occurs in mode NIF. The offshore R&D promotion increases the share of firms in
NF or NIF modes by around 13.4 p.p., with the vast majority of this increase also happening in
the NIF mode. As offshore R&D becomes less expensive, we also observe more firms opting for
the NI mode, reflecting the information value of immigrant researchers.

We examine the impact of these two policies on aggregate productivity. As shown in the last
row of panel (c) in Table 10, the immigration liberalization policy increases aggregate productiv-
ity by 0.2%, whereas the offshore R&D promotion policy results in a 0.5% increase in aggregate
productivity. The average productivity in individual modes, on the other hand, declines from
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Table 10: Changes in R&D and Productivity– Benchmark versus Counterfactual Policy Changes

(a) Share of firms (b) Share of total (c) Aggregate
by mode (%) R&D expenditure (%) (log) productivity

R&D modes Benchmark Immigration Offshoring Benchmark Immigration Offshoring Benchmark Immigration Offshoring
No R&D 58.67 46.67 35.93 - - - 0.257 0.252 0.248

N 14.36 15.62 12.85 37.11 31.20 22.17 0.280 0.272 0.266
NI 15.70 22.93 26.60 41.10 46.68 46.60 0.277 0.276 0.264
NF 1.90 2.20 3.09 3.41 2.97 3.54 0.420 0.404 0.389
NIF 9.37 12.58 21.53 18.38 19.15 27.69 0.364 0.362 0.347
All 100 100 100 100 100 100 0.286 0.288 0.291

Notes: Columns marked as ‘Immigration’ report the results from the counterfactual scenario of the immigration liberalization policy,
and the columns marked as ‘Offshoring’ report the results from the counterfactual scenario of the offshoring policy, as described
in the text. Panels (a) and (b) report the share (%) of firms by R&D mode and the share (%) of R&D expenditure from each mode,
respectively. Panel (c) reports the (sales-weighted) average log productivity among all firms and firms in each R&D mode.

Table 11: Counterfactual Changes with and without the Information Channel

(a) Immigration policy (b) Offshoring R&D policy

No R&D N NI NF NIF No R&D N NI NF NIF

I. Changes in the share of firms by mode (p.p.)
with the information channel -12.00 1.27 7.23 0.30 3.20 -22.74 -1.51 10.90 1.19 12.16
without the information channel -10.73 1.71 8.54 0.04 0.43 -6.65 2.06 1.40 2.46 0.73

II. Changes in aggregate productivity (overall, %)
with the information channel 0.21 0.54
without the information channel 0.12 0.23

Notes: Panel I reports changes (in percentage points) in the share of firms by R&D mode between the benchmark equilibrium
and the new equilibrium under either the immigration policy (panel (a)) or the offshoring policy (panel (b)), with or without the
information channel in play. Panel II reports changes (in %) in overall aggregate productivity between the benchmark equilibrium
and the new equilibrium under either the immigration policy (panel (a)) or the offshoring policy (panel (b)), with or without the
information channel in play.

the benchmark levels. Once again, the difference between the responses in aggregate and mode-
specific productivity arises from a composition change: firms that switch from a less costly R&D
mode to a more costly one are less productive than existing participants in the more costly mode
but more productive than the firms remaining in the less costly mode. Consequently, their shift
lowers the average productivity across all modes.

The results in Section 5.1 highlight the importance of the information channel in influencing
firms’ R&D choices. To understand how this channel interacts with the two policies, we simulate
each policy using the alternative model without the information channel, as defined in Section
5.1. We then compare the effects of each policy between the benchmark and the alternative model.
Table 11 reports the findings. For both policies, the information channel significantly amplifies
the extent of changes in firms’ R&D mode choices, pushing more firms to the NIF mode. The
lower panel in the table reports the impacts of these two policies on aggregate productivity in
the benchmark and the alternative model. It shows that approximately half of the productivity
impact resulting from the immigration and offshore R&D liberalization policies is attributed to
the information value of immigrant researchers.
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Table 12: Changes in R&D and Productivity: Benchmark versus R&D Subsidy

(a) Share of firms by mode (%) (b) Share of total R&D expenditure (%) (c) Aggregate (log) productivity

R&D modes Benchmark R&D subsidy Benchmark R&D subsidy Benchmark R&D subsidy
No R&D 58.67 18.05 - – 0.257 0.225

N 14.36 14.01 37.11 20.38 0.280 0.243
NI 15.70 19.82 41.10 29.52 0.277 0.251
NF 1.90 13.91 3.41 12.95 0.420 0.349
NIF 9.37 34.21 18.38 37.16 0.364 0.328
All 100 100 100 100 0.286 0.297

Notes: Columns marked as ‘R&D subsidy’ report the results from the counterfactual scenario of the R&D subsidy policy, as
described in the text. Panels (a) and (b) report the share (%) of firms by R&D mode and the share (%) of R&D expenditure from
each mode, respectively. Panel (c) reports the (sales-weighted) average log productivity among all firms and firms in each R&D
mode.

5.3 R&D Policy in the Age of Globalized R&D

Many countries adopt direct subsidies or tax rebates to promote R&D investment. These poli-
cies, such as the one implemented in Denmark for loss-incurring firms, often cover a significant
portion of firms’ R&D costs. In the last set of exercises, we examine the significance of foreign
inputs in assessing R&D policies. We consider a policy that reduces the fixed and sunk R&D
costs by half from the baseline values.43

Table 12 summarizes the results of this experiment. With the subsidies, a significantly larger
number of firms engage in R&D, particularly through the NF and NIF modes, leading to a shift
in R&D expenditures towards these modes. Similar to the cases of the immigration policy and
the offshoring policy in Section 5.2, aggregate productivity increases modestly by 1.1%, while the
average productivity of each R&D mode decreases due to the compositional shift toward more
diversified R&D modes.

Table 13: Counterfactual Changes from an R&D Subsidy

No R&D N NI NF NIF

I. Changes in the share of firms by mode (pp)
Benchmark -40.61 -0.34 4.12 12.00 24.83
θ → 0 -25.88 11.68 10.55 1.46 2.19

II. Changes in the aggregate productivity (overall, %)
Benchmark 1.20
θ → 0 0.19

Notes: Panel I reports changes (in percentage points) in the share of firms by R&D mode between
the benchmark equilibrium and the new equilibrium under the R&D subsidy policy, in the baseline
model, and in an alternative model with θ → 0. Panel II reports changes (in %) in the overall
aggregate productivity between the benchmark equilibrium and the new equilibrium under the
R&D subsidy policy under these two model specifications.

Compared to existing studies estimating firms’ return to R&D, the main innovation of this
paper lies in allowing for the use of foreign-sourced R&D inputs. Does this feature matter in
evaluating the effect of R&D subsidies on firms’ R&D choices and aggregate productivity? To
answer this question, Table 13 compares the effect of the same R&D subsidy policy between the

43To put this number in context, in 2021, among the OECD countries, the implied tax subsidy rates on R&D
expenditures (both fixed and variable) for large firms exceeds 30% in Portugal, Slovakia, France, Spain, and Iceland.
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benchmark model and an alternative model without the heterogeneity in ideas (i.e., θ → ∞). In
this alternative model, the R&D subsidy leads to a much smaller increase in firms’ participation
in R&D compared to the increase demonstrated in the benchmark model. Moreover, this smaller
increase in R&D participation is concentrated primarily among the N and NI modes, as opposed
to the NIF mode. This difference results in a significantly different prediction for aggregate
productivity: the same R&D subsidy policy generates only 0.19% aggregate productivity gains,
less than one-sixth of the prediction of the benchmark model.

In the era of globalized R&D, foreign R&D inputs are playing an increasingly important
role and have emerged as a principal source of returns to R&D. Our experiment suggests that
overlooking the role of these inputs could substantially underestimate the effect of R&D policies.

6 Conclusion

While substantial progress has been made in understanding firms’ foreign sourcing of production
inputs, much less is known about their foreign sourcing of R&D inputs. Leveraging unique
data from Denmark, this paper investigates firms’ choices regarding two foreign R&D inputs—
immigrant researchers and imported R&D services—and analyzes the consequences of these
decisions on firm performance and aggregate productivity.

We provide evidence demonstrating that firms’ use of immigrant researchers and imported
R&D services interacts with each other, and that these foreign inputs enhance overall R&D effec-
tiveness. We rationalize these findings through a model of firm dynamics with R&D sourcing.
Our counterfactual experiments underscore the pivotal role of access to foreign-sourced ideas in
firms’ R&D returns and participation. Omitting these inputs or their interaction would lead to
different assessments of the effectiveness of innovation, immigration, and offshoring policies.

This paper is a step toward a more comprehensive understanding of firms’ global organiza-
tion of R&D. Our model revolves around the R&D sourcing decision from the perspective of a
firm operating in Denmark, leveraging uniquely suited data. However, it does not delve into how
R&D sourcing affects the firm’s global production. Understanding firms’ decisions to carry out
R&D in various locations, for both local and global purposes, and how these decisions interact
with immigration policies, is an important avenue for future research.

While our findings are drawn from Denmark, an economy that may not be representative of
other developed countries, we emphasize that the reliance on foreign ideas and talent in R&D
extends beyond Denmark. As discussed in the introduction, the shares of patents invented by
immigrants and the proportion of enterprise R&D conducted in offshore locations have both
grown substantially over the past decades around the globe. Another important direction for
future research involves assessing whether the significance of foreign R&D inputs generalizes to
other larger economies and exploring the reasons behind potential heterogeneity across countries.
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Appendix A Data and Empirics

A.1 Data Source and Variable Construction

Summary. Our analysis uses multiple datasets on both workers and firms, linked together
through unique worker and firm identifiers. Table A.1 summarizes the dataset from which each
piece of information is obtained, and Table A.2 provides an overview of how each sample is
constructed, linking samples to the corresponding tables in the paper. The remainder of this
subsection introduces individual datasets and explains the construction of the key variables.

Table A.1: Summary of Data Sources

Information on firms Information on workers

Dataset Contains the information on Dataset Contains the information on

IDA worker Id IDA employment status, hourly
wage, occupation, city

FIRE main industry, and balance
sheet and income statement
items

BEF immigration status and
country of origin

FUI (The R&D Survey) domestic R&D and offshore
R&D status/expenditures, for-
eign region of R&D affiliates

UDDA education

The Offshoring Survey whether a firm has offshore ac-
tivities in 2011, and in which
foreign regions

UHDI firm import and export flows

FATI whether a firm is an affiliate of
a foreign firm

Table A.2: Summary of Samples

Sample Description (coverage and source) Results using this sample

Baseline sample For-profit private-sector firms with more
than 10 employees, in both FIRE and the
R&D survey

Table 1 Panels A and B, Table 2, Ta-
ble 3, Panel A of Table 5 and parts
of 6 (restricted to loss-making R&D-
active firms), Appendix Tables A.6,
A.7, A.9, A.10, A.11, A.12, A.13, A.14,
A.15, A.16

Manufacturing
sample

Manufacturing firms in the baseline sam-
ple

Table 4, Panel B of Table 5 and parts
of 6 (restricted to loss-making R&D-
active firms), Table 7, Panel A of Table
8, Appendix Tables B.2, B.3, B.4, B.5

Offshoring sur-
vey sample

Firms both in the baseline sample and in
the Offshoring Survey

Panel C of Table 1, Table A.8
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A.1.1 Detailed Description of Each Database

IDA. The Integrated Database for Labor Market Research (IDA) is a linked employer-employee
database provided by Statistics Denmark (DST, hereafter), containing information on the uni-
verse of workers and firms in Denmark. The IDA database comprises four datasets with details
on individuals, employment, workplaces, and firms, linked through common identifiers. The
employment data represent a snapshot in November for each year, excluding workers out of the
labor force during that month. In cases where workers report multiple employment spells in
November, we retain their primary job.

We identify workers in R&D-related tasks based on their reported occupation in IDA, coded
according to the Danish equivalent of the International Standard Classification of Occupations
(DISCO codes, hereafter). For each occupation, we classify it as being R&D-related or not based
on whether the job likely involves testing, creation, or designing, or requires technical knowledge
of a STEM subject. Our classification strategy follows Bernard, Fort, Smeets and Warzynski
(2020), who classify occupations into four groups: R&D, management, production and manual
work, and services and support activities.

Our empirical analysis focuses on the period between 2001 and 2015. A major change in the
DISCO codes occurred in 2008. We classify occupations in the DISCO codes both before and
after the change (DISCO88 and DISCO08, respectively). We carefully verify that the change in
occupation classifications in 2008 does not in itself lead to abrupt changes in the share of R&D
workers.

Table A.3 reports occupations classified as R&D-related in both DISCO88 and DISCO08. We
classify occupation based on the nature of required tasks instead of the skill or wage of the work-
ers in an occupation. In general, occupations related to R&D activities form a subset of DISCO
Groups 2 (‘Work that requires knowledge at the highest level within the area in question’) and
3 (‘Work that requires intermediate level knowledge’). Occupations related to management (of-
ten associated with DISCO Group 1) are excluded. To minimize subjective judgment, we base
classifications on 3-digit occupation codes. Doing so have some drawbacks. For example, we clas-
sify the 3-digit occupation 222—‘Work on topics in medicine, dentistry, veterinary science and
pharmacy’—as R&D-related because some workers in this occupation are doing R&D-related
work. But there must also be some health care practitioners that do not engage in R&D at all. We
think this concern is unlikely to impact our results for two reasons. First, our descriptive statistics
focus on for-profit firms with more than 10 employees; in structural estimation, we further re-
strict the sample to manufacturing firms. Thus, major biology research institutes, hospitals, and
most private healthcare practices are not included in our sample. Second, throughout extensive
robustness checks, we consistently find that the key channels we document exist predominantly
for, or are stronger among, R&D workers compared to non-R&D workers. If anything, a narrower
definition of R&D than ours likely leads to even stronger empirical findings.

The dataset comprises approximately 2.4 million individuals aged between 15 and 70, and
140,000 firms per year. Many firms in Denmark are small. Restricting the sample to firms
with at least 10 employees leaves us with around 2.1 million workers and 28,000 firms per year.
Focusing on this sample, we construct workers’ hourly wage and determine the municipality
of their workplace. This information allows us to compute the primary (or modal) geographic
location of each firm in Denmark.

BEF. We complement IDA with information from the national registers (BEF, provided by
DST, covering the universe of individuals in Denmark) to identify immigrants. In the baseline
analysis, we define immigrants as those born outside Denmark. In various robustness exercises
reported in Appendix Section A.3, we also explore alternative definitions of immigrants, lever-
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Table A.3: R&D-Related Occupations in DISCO88 and DISCO08 Classifications

DISCO 88 Classification (3-digit)
Work that requires the highest level of skills in the field in question
211 Working on topics in physics, chemistry, astronomy, meteorology, geology and geophysics
212 Working with mathematical and statistical concepts, theories and methods
213 Computer planning and system development
214 Architectural and engineering work, etc.
221 Working on topics within the biological branches of science
222 Work on topics in medicine, dentistry, veterinary science and pharmacy
Work requiring intermediate skills
311 Technician work in physics, chemistry, mechanics and so on
312 Computer technical work
313 Work with sound, light and images at film and theater performances, etc. and operation of medical equipment
321 Technician work in biology, medicine, agriculture and so on
DISCO 08 Classification (3-digit)
Work that requires the highest level of skills in the field in question
211 Work in Physics and Geology
212 Working with mathematical, actuarial and statistical methods and theories
213 Working in life sciences
214 Engineering (except in electrical engineering)
215 Engineering work in electrical technology
216 Working with architecture, infrastructure and design
221 Medical work
222 Nursing and midwifery work
223 Work in natural medicine and alternative medicine
224 Paramedical work
225 Veterinary work
226 Other health work
251 Development and analysis of software and applications
252 Working with databases and networks
Work requiring intermediate skills
311 Engineering work in the physical sciences and engineering
314 Technician work in life sciences
321 Technician work in the medical and pharmaceutical field
351 Operations technician work and user support work in the field of information and communication technology
352 Technician work in audiovisual media and telecommunications

aging the rich set of demographic information available in the data.
UDDA. We augment IDA with education information from the education register (UDDA,

provided by DST). We consider two levels of higher education: at least some college education
and at least a master’s degree. In the data, the first group corresponds to the following codes:
‘short higher education’, ‘medium-term higher education’, ‘bachelor’, and ‘master’s and PhD
programs’, while the second group includes only ‘master’s and PhD programs’.

FIRE. We match IDA with the Accounting Statistics (FIRE) from 2000 to 2015. FIRE provides
accounting information such as revenues, value-added, investments, materials, wage bill, and
employment. This dataset also includes information about the firm’s primary industry, based on
the NACE industry classification, concorded to NACE Rev.2.

The information in FIRE originates from the Tax Authorities, requiring companies with an an-
nual turnover above 0.5 million Danish krone (DKK) and individually-owned companies with an
annual turnover above 0.3 million DKK to report accounting information. Due to this sampling
strategy, we exclude firms with an annual turnover of less than 0.3 million DKK. Additionally, we
exclude government activities and public services firms, not-for-profit firms (determined by le-
gal status, such as not-for-profit funds, associations, non-profit associations, government-owned,
church-owned, and not specified), and firms in agriculture or extraction. After matching this
FIRE sample with the IDA sample, we end up with approximately 95,000 firms per year. Re-
stricting the sample further to firms with at least 10 employees leaves us with around 17,000
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Table A.4: NACE Rev.2 Intermediate Level Aggregation - Private Sector Classification

A*38 Code ISIC Rev. 4/ NACE Rev. 2 Divisions (NACE-2)

CA Manu. of food products, beverages and tobacco products 10 to 12
CB Manu. of textiles, apparel, leather and related products 13 to 15
CC Manu. of wood and paper products, and printing 16 to 18
CD Manu. of coke, and refined petroleum products 19

CE-CF Manu. of chemicals, chemical products and pharmaceuticals 20 to 21
CG Manu. of rubber and plastics products, and other non-metallic mineral products 22 to 23
CH Manu. of basic metals and fabricated metal products, except machinery and equipment 24 to 25

CI-CJ Manu. of computer, electronic, optical products, electrical equipment 26 to 27
CK Manu. of machinery and equipment n.e.c. 28
CL Manu. of transport equipment 29 to 30
CM Other manu., and repair and installation of machinery and equipment 31 to 33
D-E Utilities 35 to 39

F Construction 41 to 43
G Wholesale and retail trade and repair of motor vehicles and motorcycles 45
G Wholesale trade, except of motor vehicles and motorcycles 46
G Retail trade, except of motor vehicles and motorcycles 47
H Transportation and storage 49 to 52
H Postal and courier activities 53
I Accommodation and food service activities 55 to 56

JA Publishing, audiovisual and broadcasting activities 58 to 60
JB Telecommunications, IT and other information services 61
JC IT and other information services 62 to 63
K Financial and insurance activities 64 to 66
L Real estate activities 68

M-N Professional services 69 to 82

firms per year.1

We deflate the wage bill by the consumer price index and deflate revenues, value-added,
capital, investment, and materials by their respective industry-specific deflators, all provided
by DST. The industry-specific deflators are at the NACE Rev.2 Intermediate Aggregation level
(A*38 Codes, see Table A.4), and we define the industry of firms accordingly. In total, there are
25 industry groups for the entire private sector and 11 industry groups for the manufacturing
sector.

We calculate firms’ capital stock using the perpetual inventory method to their fixed capital
investments, assuming a depreciation rate of 8%: Ki,t = 0.92 ∗ Ki,t−1 + Ir

i,t. In the initial year when
a firm appears in the sample, we use its total assets as the initial capital stock.

FUI (the R&D Survey). We match the IDA×FIRE matched data with FUI, an R&D Survey
released by DST since 1991. The survey is the Danish equivalent of the European Community
Innovation Survey, covering all firms with over 250 employees, more than 1 billion DKK in
revenue, spending at least 5 million DKK on R&D activities, or operating in R&D industries
(defined as NACE 2-digit Rev.2 industry 72). In addition, it includes a stratified sample of all
remaining firms that do not satisfy any of these criteria. The R&D sample is an unbalanced panel
of around 4,000 firms per year.

The survey reports firms’ R&D expenditures in Denmark, which we label as domestic R&D
expenditures, for all years from 2001. We classify firms as conducting domestic R&D in year t
if they report positive domestic R&D expenditures that year. The survey also captures informa-
tion on R&D expenditures sourced overseas, either via a foreign subsidiary, foreign consultants,

1To avoid biases arising from reporting errors in our structural estimation, we exclude observations exhibiting
abnormal accounting statistics. Specifically, we exclude observations with revenue labor ratio, material labor ratio, or
capital labor ratio falling outside the 1st to 99th percentile of their respective broad industry groups.
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foreign unrelated firms, or foreign research institutes. This variable is available for the following
years: 2001-2003, 2005 and 2007-2014. The survey question specifies that only R&D expenditures
for the exclusive use of the reporting firm in Denmark should be included.2 We classify a firm as
doing offshore R&D in year t if it reports positive R&D expenditures bought overseas for the use
of the surveyed entity in Denmark during that year.

Finally, the survey also inquires whether firms have R&D workers present in their foreign
affiliates, categorized by broad geographic locations. This information is available from 2009 to
2012 for four geographic areas (Europe, United States and Canada, China, Rest of the World)
and from 2013 to 2016 for eight geographic areas (EU15, New European Member States, Other
European Countries, United States and Canada, China, India, Central or South America, Rest of
the World). We consolidate the 2013-2016 geographic information into the four geographic areas
of 2009-2012. We define firms as having R&D workers in a foreign region n in year t if they report
having R&D personnel in that region in year t.

Our final IDA×FIRE×FUI sample, limited to firms with at least 10 workers, comprises ap-
proximately 47,000 firm-year observations spanning 2001-2015, which amounts to around 3,000
firms per year. This is the sample from which we derive descriptive statistics in Section 2 of the
paper.

The Offshoring Survey. As corroborative measures of offshore R&D, we use a survey on
offshoring conducted in 2012 by DST in partnership with Eurostat. This survey samples all firms
with 50 or more employees and a representative set of firms with 10-49 employees, resulting in a
sample of approximately 4,500 firms. The survey specifically asks whether a firm conducts R&D
activities abroad in 2011, either in-house or through arms-length contracts.3 This information is
further broken down by eight broad geographical areas (EU15, New European Member States,
Other European Countries, United States and Canada, China, India, Other Asian Countries, Rest
of the World). Due to potential data sparsity in the last two regions (Other Asian Countries
and Rest of the World), when using the geographical dimension of the Offshoring Survey, we
consider only the first six regions. Matching the Offshoring Survey with our IDA×FIRE×FUI
sample results in around 1,900 firms for 2011.

UHDI. We supplement our data with the information on firms’ participation in international
trade from 2001 to 2015 (UHDI, provided by DST). UHDI is derived from two main sources:
Intrastat and Extrastat. Intrastat is based on reports to DST from approximately 7,000 compa-
nies per year about their trade in goods with companies in other EU countries. The reporting
thresholds under Intrastat are set to ensure that the reporting companies’ trade volume repre-
sents at least 93% of all Danish EU imports and 97% of all Danish EU exports. Extrastat covers
the universe of import and export transactions between Denmark and non-EU countries.

We aggregate the UHDI data, which are at the firm×year×product×country level, to either
the firm×year or the firm×year×country level. From this, we determine whether firms are
exporting or importing goods in a given year and identify the specific foreign regions with which
firms are trading.

FATI. In a robustness exercise in Section A.3, we show that the information value of immi-
grant researchers in facilitating offshore R&D can be seen among firms that are not an affiliate
of a foreign multinational. To this end, we augment the main data with FATI (provided by DST),
which identifies foreign multinational firms in Denmark.

2The exact wording of the questionnaire is ‘FoU udført i udlandet og anvendt internt i virksomheden,’ which
means ‘R&D performed abroad and used internally in the company.’

3Note that the offshore R&D measure from this survey differs from the one in the R&D Survey. While the Off-
shoring Survey reports offshore R&D performed by suppliers and affiliates, it does not specify whether it is exclusively
for the firm’s use in Denmark. Therefore, it may also include R&D conducted solely for the use of the firm’s affiliates.
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A.1.2 Construction of the Key Variables

Table A.5 summarizes how each of the key variables is constructed with our data.

Table A.5: Summary of Variable Construction

Category Variable Notation Empirical definition

R&D
modes

R&D with only natives N Firms with positive domestic R&D spending
from the R&D survey
(Alternative definition in the appendix: Firms
employing researchers according to IDA)

R&D with natives and im-
migrants

NI N and employing immigrant researchers ac-
cording to IDA

R&D with natives and off-
shore R&D services

NF N and positive offshore R&D expenses from the
R&D survey

R&D with all input types NIF NI and NF

Indicators R&D indicator I(R&Dit−1) Firms with positive reported R&D expenditures
in Denmark according to the R&D survey
(Alternative definition in the appendix: Firms
employing researchers according to IDA)

Offshore R&D indicator I(offit−1) Firms reporting to have offshore activities in
R&D according to the R&D survey

R&D immigrant indicator I(immiit−1) Firms employing immigrant researchers accord-
ing to IDA

R&D
expenses

Total R&D spending N.A. Domestic + offshore R&D spending from the
R&D survey

Domestic R&D spending ei,t−1 Reported R&D expenditures in Denmark in the
R&D survey

A.2 Regression Evidence on the Information Value of Immigrant Researchers

Table 2 in the text shows that a higher fraction of firms with immigrant researchers than those
without immigrants start doing offshore R&D in the next period. This pattern is consistent with
immigrant researchers reducing the frictions firms face in sourcing R&D services from abroad.
One concern with this interpretation is that the observed pattern could be confounded by other
firm characteristics, such as their industry or size. In this section, we present regression evidence
to address these and additional concerns.

Specifically, in Section A.2.1, we estimate firm-level regressions to directly control for indus-
try and firm characteristics that might be correlated with R&D offshoring decisions. In Sections
A.2.2 and A.2.3, we exploit variation at the firm-foreign region level, enhancing the credibility of
the role of employing immigrant researchers in helping firms start offshore R&D. Additionally,
we employ a shift-share design that capitalizes on the increase in the supply of immigrant re-
searchers from different foreign regions in Denmark to further address the concern of reverse
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causality—i.e., firms may hire immigrant researchers because establishing a foreign source of
imported R&D services reduces the cost of hiring immigrant researchers.

A.2.1 Firm-Level Evidence

Our firm-level specification for the relationship between offshore R&D and having immigrant
researchers is as below:

I(offit) = β I(immiit−1) + ν̃d(i)j(i)t +⃗̃αX⃗it + ẽit. (A.1)

In this specification, the outcome variable is an indicator for whether firm i in industry j(i),
located in a Danish location d(i), reports in the R&D Survey that it engages in offshore R&D
in period t. To avoid confusion when exploring variations across foreign regions later, we split
Denmark into 5 geographic regions and refer to each geographic region as a ‘city’. The key ex-
planatory variable is I(immiit−1), an indicator for whether firm i had an immigrant employee in
R&D-related occupations in period t − 1. ν̃d(i)j(i)t represents city-industry-year fixed effects, en-
suring that our estimate of β does not pick up a higher propensity of hiring immigrant researchers
or offshoring R&D among firms in specific cities or industries. X⃗it is a vector of time-varying firm
characteristics, including size, labor productivity, and lagged importing and exporting status.

Table A.6 reports the estimation results. The first column controls for fixed effects only. In the
second and third columns, we further control for log employment and labor productivity of the
firm, which rules out the possibility that the correlation is simply due to large and productive
firms being more likely to engage in both activities. The coefficient of interest, β, is positive and
statistically significant in all three columns.

The literature has documented a strong impact of the presence of immigrants on regional
and industry-level imports and exports (e.g. Ottaviano et al., 2018). To show that our estimate
is not merely capturing the relationship documented in these studies, columns 4 and 5 control
for firm-level import and export status, which has minimal impact on the point estimate of β.
Column 5 represents our preferred specification, suggesting that, compared to similar firms in
the same city and industry, firms with immigrant researchers have a 4 percentage point higher
likelihood of conducting offshore R&D.

The Role of Immigrants Working outside R&D. Building on the specification in column 5,
we include an indicator for whether a firm employs immigrants outside R&D-related occupations
according to the IDA and report the results in column 6. We find a small negative coefficient for
this indicator, I(non-R&D-immii,t−1), indicating that the presence of non-research immigrants is
not positively correlated with offshore R&D.4 More importantly, the coefficient for the immigrant
researcher indicator does not change, which lends support to the focus of our model on the
information value of immigrant researchers.

The Role of the Firm’s Past R&D Investment. Lastly, we investigate whether the empirical
evidence concerning the effect of immigrant researchers on a firm’s offshore R&D is driven by the
firm’s past R&D investment. While likely highly correlated with the existing controls in columns
2-5, we add the log of a firm’s R&D investment from the previous period to the specifications
reported in columns 5-6, respectively, and report the results in columns 7-8. To check if R&D
investment strictly within Denmark has a different impact from total R&D investment, we also

4While the coefficient for non-research immigrants is statistically significant in this particular specification, in
other specifications (OLS or IV, firm-level or firm-destination level; see Table A.7), both the sign and the statistical
significance of the coefficient differ. Thus, there is no robust evidence for the correlation between the presence of
non-research immigrants and offshore R&D in either direction.
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control for the log of domestic R&D investment from the previous period and report the results
in columns 9-10. The strength of the effect of having immigrant researchers slightly diminishes
when including firms’ previous R&D investment, but a statistically significant effect persists.

Table A.6: Immigrant Researchers and Offshore R&D: Firm-Level Regressions

OLS (2001-2014)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

I(immii,t−1) 0.081*** 0.041*** 0.038*** 0.038*** 0.038*** 0.038*** 0.027*** 0.027*** 0.020*** 0.020***
(0.007) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

I(non-R&D-immii,t−1) -0.011** -0.010* -0.008
(0.004) (0.006) (0.005)

log(R&Di,t−1) 0.111*** 0.111***
(0.008) (0.008)

log(Domestic R&Di,t−1) 0.018*** 0.018***
(0.001) (0.001)

Observations 30,930 30,930 30,589 30,589 30,589 30,589 19260 19260 19260 19260
Firm sizei,t yes yes yes yes yes yes yes yes yes
Productivityi,t yes yes yes yes yes yes yes yes
Import statusi,t−1 yes yes yes yes yes yes yes
Export statusi,t−1 yes yes yes yes yes yes
City×industry×year FE yes yes yes yes yes yes yes yes yes yes

Notes: The sample consists of private sector firms with at least 10 employees from 2001 to 2014. The outcome variable is an indicator,
taking a value 1 if firm i offshores R&D to any destination in year t and 0 otherwise. Offshoring is defined based on the R&D Survey.
Note that I(immii,t−1) is based on immigrants working in R&D-related occupations, while I(non-R&D-immii,t−1) is an indicator for
whether a firm has immigrants in non-R&D-related occupations. Firm size is measured by log employment, and productivity is
measured by log value added per worker. Cities are defined as the five main geographic regions within Denmark, and industries
are classified at the NACE Rev.2 two-digit level. Standard errors (in parentheses) are clustered by firm. * p < 0.10, ** p < 0.05, ***
p < 0.01.

A.2.2 Firm-Destination-Level Evidence and Results from a Shift-Share Design

Table A.6 indicates that, conditional on other characteristics, firms with immigrant researchers
are more likely to engage in offshore R&D. One plausible mechanism driving this correlation is
that, by hiring immigrant researchers, firms gain tacit knowledge about the home countries of
these immigrants, thereby reducing the frictions in sourcing R&D services from these countries.
This mechanism aligns with the reduced-form research on the network effect of immigrants on
international business (Rauch and Trindade, 2002). If this channel is indeed the driving force,
we would expect the effect to be specific to the origin country of immigrants. For example,
immigrant researchers from China might use their knowledge of the language and local business
to help the firm source R&D services from China, but their knowledge would be less useful for
firms looking to source R&D services from Latin America.

In this subsection, we use firm-destination-level variation to test whether having immigrant
researchers from a foreign region n is correlated with offshoring R&D to the same foreign region
n. An additional advantage of using a firm-destination-level specification is the ability to exploit
the variation in the supply of immigrant researchers from different foreign regions to establish a
causal effect of the presence of immigrant researchers.

OLS Specification. Our firm-destination-level specification is as follows:

I(offn
it) = β I(immin

it−1) + ϕ̃it + ν̃n
d(i)t + η̃n

j(i)t +⃗̃αX⃗n
it + ẽn

it. (A.2)

Compared to Equation (A.1), the main difference in this specification is that both the outcome
variable and the main explanatory variable are specific to each foreign region n.

8



We use the R&D Survey to construct I(offn
it). Between 2009 and 2015, the R&D Survey inquires

about the foreign regions where a firm has affiliate R&D employment, providing an extensive
margin measure of offshore R&D by firm i in foreign region n.5 Between 2009 and 2012, the
survey groups foreign countries into 4 regions: EU, USA and Canada, China, and the Rest of the
World. Between 2013 and 2015, the survey divides foreign countries into eight regions: EU15, EU
New Member States (former Eastern European countries), Other European countries, USA and
Canada, Central and South America, China, India, and RoW. For brevity, in what follows, we
aggregate the latter eight regions into the four regions used in 2009-2012, ensuring consistency
in defining foreign regions across 2009-2015.6

The key explanatory variable is I(immin
it−1), an indicator for whether firm i has immigrants

from region n in R&D related occupations, constructed from the IDA database. ϕ̃it represents
firm-year fixed effects, absorbing time-varying firm characteristics that might drive the correla-
tion between I(offn

it) and I(immin
it−1). Some firms may be located in a Danish region (city) with

a strong connection to a foreign region or operate in an industry in which foreign region n is a
common offshore destination. These factors could influence both I(offn

it) and I(immin
it−1). To ad-

dress this concern, we include industry-destination-time and city-destination-time fixed effects,
denoted by ν̃n

d(i)t and η̃n
j(i)t. In fact, we will include the more demanding ν̃n

d(i)t × η̃n
j(i)t fixed effects

as a control. Finally, X̃n
it comprises control variables which capture other potential connections

between firm i and region n.
Columns 1 to 3 of Table A.7 report the OLS estimation results. We find that firms with

immigrant researchers from foreign region n are more likely to engage in offshore R&D with
region n. This effect persists when city-industry-destination-year fixed effects are controlled for.
Furthermore, it is not attributable to the correlation between either of the two decisions and
firms’ importing/exporting relationship with region n. In column 3, we also control for whether
the firm hires immigrants for non-research occupations from region n, and the point estimate for
the coefficient on I(immin

it−1) changes very little. The point estimate indicates that firms hiring
immigrant researchers from a foreign region n will experience a 1% increase in the probability
of conducting offshore R&D in location n. This coefficient is smaller than the coefficient from
the firm-level regressions (which was around 4%), possibly due to the battery of fixed effects
magnifying the attenuation bias.

A shift-share Design. A remaining concern is that firms might choose to hire immigrants
and conduct offshore R&D due to firm-destination-specific factors unobserved by the econome-
trician. It is also possible that our finding is driven by reverse causality — by sourcing R&D
services from a foreign region, firms can more easily tap into the local talent pool and bring
immigrant researchers to work in Denmark.7

To address this concern, we employ an alternative approach based on a shift-share instru-
mental variable that exploits the variation in firms’ exposure to immigrant researchers in their

5While this measure captures geographic variation, it does not encompass offshore R&D conducted through arms’
length transactions. In Section A.2.3 of this appendix, we use a measure from the Offshoring Survey, which includes
both in-house and arms’ length offshore R&D by geographic region.

6As an alternative, we also focus on the period 2013-2015 and use the 8-region grouping. This approach enables
us to distinguish India and different parts of the EU from larger groups. The results are similar and available upon
request.

7Our OLS specification partly addresses this concern by using the lagged immigrant researcher indicator as the
explanatory variable. We also note that the reverse causality concern, in itself, does not invalidate our model. It also
implies that the two activities are complements, and that policies affecting one will have an indirect effect on the other,
which is exactly what our model seeks to capture.
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Table A.7: Immigrant Researchers and Offshore R&D: Firm-Destination-Level Regressions

OLS (2009-2015) IV (2009-2015)

(1) (2) (3) (4) (5) (6)

I(immin
i,t−1) 0.011*** 0.011*** 0.010*** 0.124*** 0.125*** 0.123***

(0.004) (0.004) (0.004) (0.039) (0.039) (0.038)
I(Non-R&D-immin

i,t−1) 0.005*** -0.002
(0.002) (0.002)

Observations 89,320 89,320 89,320 79,624 79,624 79,624
Import statusn

i,t−1 yes yes yes yes
Export statusn

i,t−1 yes yes yes yes
Firm×year FE yes yes yes yes yes yes
City×industry×destination×year FE yes yes yes
City×destination×year FE yes yes yes
Industry×destination×year FE yes yes yes
Exclude 2000 firms yes yes yes
First stage
sn

j(i),d(i),2000 · (Ln
t − Ln

2000) 6.052*** 6.024*** 6.309***
(1.235) (1.225) (1.295)

Robust first-stage F 24.00 24.18 23.72
Notes: This table presents the results from the estimation of Equation (A.2). In this table, a firm is classified as offshoring if it
reports having R&D workers at its foreign affiliates in destination n (this information is available for 2009-2015). Destinations consist
of 4 groups: European Union, United States and Canada, China and the rest of the world. The indicators for immigrant R&D
workers (I(immin

i,t−1)) and immigrant non-R&D workers (I(Non-R&D-immin
i,t−1)) reflect immigrants from offshoring destination n.

Cities and industries are defined as in Table A.6. Columns 1 to 3 report the OLS specifications, while columns 4 to 6 report the IV
specifications. For the IV specifications, we exclude firms reporting having immigrant R&D workers in 2000. The sample consists
of private-sector firms over 2009-2015, with at least 10 employees. Standard errors are reported in parentheses and clustered by
firm*year in 1-3 and by industry*city*destination in 4-6. * p < 0.10, ** p < 0.05, *** p < 0.01.

Danish location and industry. Specifically, we use the following as an instrument for I(immin
it−1):

sharen
j(i),d(i),2000 · (Ln

t−1 − Ln
2000).

where j(i) and d(i) denote the industry and the (Danish) city of firm i, respectively; sharen
j(i),d(i),2000

is the share of immigrant researchers from a foreign region n in year 2000 working in city d(i)
and industry j(i); (Ln

t−1 − Ln
2000) is the increase in the total number of immigrant researchers from

country n between 2000 and year t − 1.
The relevance of this instrument comes from the fact that immigrants tend to be attracted

to locations and industries with a high density of existing immigrants from the same origin.
The exclusion restriction we impose for identification is that, conditioning on firm fixed effects
and a number of industry, city, and foreign region controls, the initial distribution of immigrant
researchers affects offshoring decisions through firms’ employment of immigrant researchers.
Since the instrument is constructed using the 2000 distribution of high-skill immigrants, this
assumption would be violated if firms employing immigrant researchers in 2000 show up in
our regression panel, leading to a mechanical first stage. To rule out this concern, in the IV
specifications, we exclude firms that hire immigrant researchers in 2000.8

Columns 4 to 6 of Table A.7 report the IV estimation results. Our design exhibits a reason-

8For robustness, we use 1995 as the base year for constructing the instrument while excluding firms that hired
immigrant researchers in 1995. This specification yields similar results. Due to differences in firms’ industry classifi-
cation prior to 2000 compared to that between 2000 and 2015, we choose to focus on the instrument using 2000 as the
base year for consistency with the rest of the paper.
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ably strong first stage, with the expected sign and a K-P F statistics exceeding 20. The point
estimate of the coefficient of interest is positive and statistically significant. Notably, the estimate
is an order of magnitude larger than the OLS counterpart, possibly indicating that the IV ap-
proach helps address measurement errors. Perhaps more importantly, this could also arise from
heterogeneous effects. The instrument leverages variations in the supply of immigrants from a
particular origin in the local labor market. Firms operating in a local labor market with a greater
presence of immigrants from a particular origin might reap more returns if the hired immigrants
can provide valuable information through their connection to the home country within the local
immigrant community. This finding resonates with results from the literature that uses regional
and industry-level data, supporting the external values of immigrants.

The difference in magnitude notwithstanding, the OLS and the IV results offer complemen-
tary evidence—based on orthogonal variations—that the presence of immigrant researchers in a
firm encourages offshore R&D. On the other hand, the presence of other non-R&D immigrants
does not exhibit a robust correlation with offshore R&D.

A.2.3 Corroborative Evidence from the Offshoring Survey

As discussed earlier, the foreign-region-specific measure of offshore R&D from the R&D Survey
pertains to in-house employment only. However, firms can also source R&D services from in-
dependent foreign suppliers. One concern is that if in-house employment crowds out outside
suppliers, the results in Table A.7 might capture this substitution effect rather than implying that
firms use imported R&D services more frequently.9 To address this concern, we use an alter-
native measure of offshore R&D from the Offshoring Survey, which captures in-house as well
as outsourced offshore R&D. Because this survey is only available for the year 2011, we use a
cross-sectional specification.

Table A.8: Immigrant Researchers and Offshore R&D: Evidence from the Offshoring Survey

OLS (2011)

Firm-Level Firm-Destination-Level

(1) (2) (3) (4)
I(immii,t−1) 0.048*** 0.048*** 0.013* 0.012*

(0.015) (0.015) (0.007) (0.007)
I(Non-R&D-immii,t−1) -0.005 0.008**

(0.011) (0.003)
Observations 4,042 4,042 24,336 24,336
Firm sizei,t Yes Yes
Productivityi,t Yes Yes
Firm FE Yes Yes
Importi,t−1 Yes Yes Yes Yes
Exporti,t−1 Yes Yes Yes Yes
City×industry FE yes yes
City×industry×destination FE yes yes

Notes: In this table, a firm is classified as offshoring if it reports having R&D activities abroad in the Offshoring Survey for the year
2011. The sample consists of private-sector firms with at least 10 employees. Specifications are at the firm level (columns 1 and
2) and the firm-foreign region-level (columns 3 and 4), meaning that the two indicator functions as explanatory variables are also
region-specific for columns 3 and 4. Foreign regions in columns 3 and 4 comprise 6 groups: EU15, New European Member States
(former Eastern European countries), other European countries, United States and Canada, China, and India. Control variables are
defined as in Table A.6 and Table A.7. Standard errors (in parentheses) are clustered by firm. * p < 0.10, ** p < 0.05, *** p < 0.01.

9This concern does not apply to the results in Table A.6.
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Table A.8 reports the estimation results. Columns 1 and 2 are at the firm-level as in Equation
(A.1), and columns 3 and 4 are at the firm-foreign region-level, with 6 foreign regions: EU15, New
European Member States (former Eastern European countries), other European countries, United
States and Canada, China, and India. In other words, the two explanatory variables reported in
Table A.8 are I(immin

i,t−1) and I(Non-R&D-immin
i,t−1) in columns 3 and 4. The results show that

this alternative measure of offshore R&D yields quantitatively similar estimates for both firm-
and firm-foreign region-level specifications, even though it is from a different source and covers
only one year. Moreover, we consistently observe that the coefficient of non-R&D immigrants
has different signs, with or without statistical significance, across specifications. This suggests
that the information value for offshore R&D is primarily associated with immigrants with R&D-
related occupations.

A.3 Robustness Exercises for Reduced-Form Facts

In this section, we report additional robustness exercises for the reduced-form facts. These ex-
ercises address three main categories of concerns: the definition of immigrants, potential mea-
surement errors associated with the categorization of firms’ R&D modes, and the role of foreign
multinational firms in driving our findings.

A.3.1 Alternative Definitions of Immigrants

The first overarching concern pertains to the definition of immigrants. In our baseline analysis,
immigrants are defined as individuals born outside Denmark. Our model highlights two key
roles of immigrants: their possession of specific knowledge about their home country, contribut-
ing valuable information to the firm, and the additional value they bring to the R&D process
through diverse backgrounds and expertise. However, not all researchers born outside Denmark
can play these roles. For example, an immigrant who arrived in Denmark as an infant might not
be able to speak the language of her home country, and having been educated in Denmark, might
not provide the diversity of ideas to the R&D process. This concern also extends to immigrant
researchers from other Scandinavian countries, who may be relatively more similar to Danish re-
searchers. Consequently, our reduced-form findings might potentially reflect the close economic
ties between Scandinavian countries rather than capturing the broader role that immigrants could
play in their local economy.

We acknowledge that if such concerns are empirically relevant, our empirical analysis, which
includes all immigrants rather than only those likely to fulfill the two roles outlined a priori,
could potentially underestimate the role of immigrants. In this subsection, we present direct ev-
idence demonstrating that excluding immigrants who may not differ significantly from native
workers does not weaken our reduced-form results. Specifically, we explore alternative defini-
tions of immigrants, including those who enter Denmark at age 18 or above, at age 22 or above,
and after completing their highest level of education. Additionally, we exclude immigrants from
Sweden and Norway.

Table A.9 reports evidence on the role of immigrant researchers in facilitating firms’ offshore
R&D under narrower definitions of immigrant researchers. For conciseness, we focus on the firm-
level OLS specifications. Column 1 replicates our preferred specification from Table A.6 (column
5). The subsequent columns report results using various alternative definitions of immigrant
researchers. Notably, we find that the impact of having immigrant researchers on offshore R&D is
stronger when we focus on immigrant researchers likely to differ more from Danish researchers,
as indicated by these alternative definitions.
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Table A.10 reports robustness exercises for Table 3 from the paper, focusing on the sourcing of
R&D inputs and firm performance. The first two columns reproduce our preferred specifications
from Table 3 (columns 4 and 8). The remaining columns estimate the same specifications with
alternative definitions of immigrant researchers. Across specifications, we find that estimates for
the immigrant researcher indicator with alternative definitions are either similar to or slightly
larger than those in the baseline specification.

Table A.9: Immigrant Researchers and Offshore R&D: Alternative Definitions of Immigrants

baseline > 18 yr > 22 yr completed education non-Scandinavians

(1) (2) (3) (4) (5)

I(immii,t−1) 0.038*** 0.044*** 0.048*** 0.058*** 0.041***
(0.005) (0.006) (0.006) (0.007) (0.006)

Observations 32,858 32,858 32,858 32,858 32858
Firm sizei,t yes yes yes yes yes
Productivityi,t yes yes yes yes yes
Import statusi,t−1 yes yes yes yes yes
Export statusi,t−1 yes yes yes yes yes
City×industry×year FE yes yes yes yes yes

Notes: This table reports the robustness for the relationship between employing immigrant researchers and offshore R&D based on
different definitions of immigrants. Specifications follow column 5 of Table A.6. Column 1 replicates the baseline result; columns
2 and 3 focus on immigrants arriving in Denmark after age 18 and 22, respectively; column 4 focuses on immigrants arriving
in Denmark after having completed all education; column 5 exclude immigrants from Norway and Sweden. Standard errors (in
parentheses) are clustered by firm. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.10: R&D Input Sourcing and Labor Productivity: Alternative Definitions of Immigrants

baseline >18 yr >22 yr completed education non-Scandinavians

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

I(R&Di,t−1) 0.014** 0.014** 0.014** 0.014*** 0.014**
(0.005) (0.005) (0.005) (0.005) (0.005)

Log domestic R&D i,t−1 0.003*** 0.003*** 0.003*** 0.003*** 0.003***
(0.001) (0.001) (0.001) (0.001) (0.001)

I(off.i,t−1) 0.031*** 0.025** 0.031*** 0.024** 0.031*** 0.024** 0.030** 0.024** 0.031*** 0.024**
(0.012) (0.011) (0.012) (0.011) (0.012) (0.011) (0.012) (0.011) (0.012) (0.011)

I(immi.i,t−1) 0.021*** 0.019*** 0.021*** 0.019*** 0.022*** 0.020*** 0.023*** 0.021*** 0.023*** 0.021***
(0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Observations 32,914 32,914 32,914 32,914 32,914 32,914 32,914 32,914 32,914 32,914
Industry×year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Other firm-level controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: This table reports the robustness exercises for the relationship between firms’ labor productivity and sourcing of R&D inputs.
The first two columns reproduce columns 4 and 8 of Table 3. The remaining columns estimate the same specifications with alternative
definitions for immigrant researchers. See the notes of Table A.9 for these alternative definitions. All specifications control for firms
size, lagged productivity, and import and export status. Standard errors (in parentheses) are clustered by firm. * p < 0.10, **
p < 0.05, *** p < 0.01.

A.3.2 Measurement Errors in Firms’ R&D Modes

In the baseline specifications, we classify a firm as employing immigrant researchers if at least
one immigrant researcher is on its payroll. One might be concerned that this classification is
too liberal—perhaps, more than one employee is needed for a firm to reap the full benefit from
immigrant researchers. If so, our classification introduces measurement errors in firms’ R&D
modes. Such measurement errors could have implications for both reduced-form and structural
analyses. In the reduced-form analysis, they tend to bias the coefficient of interest towards zero;
for the structural estimation, in the presence of measurement errors, the year-to-year transition
matrix we use to recover the fixed and sunk costs of R&D might differ from the actual transition
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patterns, potentially leading to biases in the inferred impact of having immigrant researchers on
firm’s offshore R&D.

We address the concern on reduced-form and structural estimation separately. Tables A.11
and A.12 report the evidence on the information value of immigrant researchers for offshore
R&D and on the relationship between international sourcing of R&D and firm performance,
with different cutoffs for the number of immigrant researchers used to classify firms as hiring
immigrants for R&D. The results are consistent across specifications.

Table A.11: Immigrant Researchers and Offshore R&D: Alternative Mode Classifications

baseline # of immi ≥ 2 # of immi ≥ 5

(1) (2) (3)

I(immii,t−1) 0.038***
(0.005)

I(immii,t−1 ≥ 2) 0.079***
(0.006)

I(immii,t−1 ≥ 5) 0.133***
(0.006)

Observations 32,858 32,858 32,858
Firm sizei,t yes yes yes
Productivityi,t yes yes yes
Import statusi,t−1 yes yes yes
Export statusi,t−1 yes yes yes
City×industry×year FE yes yes yes

Notes: This table reports robustness results for different thresholds when classifying firms as employing immigrant researchers.
Specifications follow column 5 of Table A.6. Column 1 replicates the baseline result; columns 2 and 3 define a firm as employing
immigrant researchers if at least two and five immigrant researchers, respectively, are on the payroll. Standard errors (in parentheses)
are clustered by firm. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table A.12: Sourcing of R&D Inputs and Labor Productivity: Alternative Mode Classifications

baseline # of immi. ≥ 2 # of immi. ≥ 5

(1) (2) (3) (4) (5) (6)

I(R&D_i, t − 1) 0.014** 0.012** 0.015***
(0.005) (0.005) (0.005)

Log domestic R&D i,t−1 0.003*** 0.002*** 0.003***
(0.001) (0.001) (0.001)

I(off.i,t−1) 0.031*** 0.025** 0.028** 0.022* 0.029** 0.022*
(0.012) (0.011) (0.012) (0.011) (0.012) (0.012)

I(immi.i,t−1) 0.021*** 0.019***
(0.006) (0.006)

I(immi.i,t−1 ≥ 2) 0.041*** 0.039***
(0.007) (0.007)

I(immi.i,t−1 ≥ 5) 0.036*** 0.032***
(0.010) (0.010)

Observations 32,914 32,914 32,914 32,914 32,914 32,914
Industry×year FE Yes Yes Yes Yes Yes Yes
Other firm-level controls Yes Yes Yes Yes Yes Yes

Notes: The first two columns reproduce columns 4 and 8 of Table 3. The remaining columns estimate the exact same specifications as
the first two columns but require a firm to have at least two and five immigrant researchers respectively to be considered as having
immigrant researchers. Standard errors (in parentheses) are clustered by firm. * p < 0.10, ** p < 0.05, *** p < 0.01.

To demonstrate that the baseline classification does not introduce significant biases into the
structural estimation, we report two additional sets of results. First, in Table A.13, we report
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firms’ transition patterns between different R&D modes under three different classifications of
hiring immigrant researchers. Since the structural estimation focuses on manufacturing firms,
we do so for manufacturing firms only. The left panel of Table A.13 replicates the transition
matrix in Table 8 of the text. The middle and right panels correspond to the cases where at
least two and five immigrant researchers, respectively, need to be on the payroll for a firm to be
considered as hiring immigrant researchers. Not surprisingly, fewer firms move to either NI or
NIF mode under these classifications. Nevertheless, the key patterns that identify the importance
of sunk costs, and the presence and direction of the effect of having immigrant researchers on
offshore R&D, are consistent across the three panels. First, the diagonal elements tend to be
larger than off-diagonal ones, indicating substantial sunk costs. Second and third, highlighted
in bold: the frequency of the NI to NIF transition is much higher than the frequency of the
N to NF transition, but the frequency of the NF to NIF transition is not much higher than
the frequency of the N to NI transition. These patterns are consistent with the information
value of immigrant researchers for offshore R&D, but not the other way around. Thus, even
though different classifications of firms’ R&D modes generate different transition matrices, these
transition matrices will lead to qualitatively similar estimates for the fixed and sunk costs.

A distinct, though related, concern is that by focusing on the year-to-year mode changes,
we might introduce excess mobility in the transition matrix. In particular, if a firm lost its only
immigrant researcher in November but was not able to fill the position until a month later, we
would count this firm as transitioning out of the NI mode in the current year, only to transition
back in the next year. To address this concern, we report in Table A.14 both three- and five- year
transition matrices. The qualitative patterns that identify the information value of immigrant
researchers for offshore R&D are robust.
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Table A.13: Transition between R&D Modes: Alternative Classifications

Baseline definition
t + 1

t 0 N NI NF NIF

0 0.89 0.06 0.03 0.01 0.01
N 0.28 0.59 0.08 0.04 0.01
NI 0.11 0.06 0.68 0.01 0.13
NF 0.14 0.38 0.03 0.41 0.04
NIF 0.05 0.01 0.25 0.02 0.67

# of Immi. ≥ 2
t + 1

t 0 N NI NF NIF

0 0.89 0.08 0.02 0.01 0.01
N 0.24 0.64 0.06 0.05 0.01
NI 0.09 0.08 0.65 0.02 0.16
NF 0.13 0.36 0.05 0.40 0.06
NIF 0.04 0.02 0.21 0.03 0.70

# of Immi. ≥ 5
t + 1

t 0 N NI NF NIF

0 0.89 0.09 0.01 0.01 0.00
N 0.21 0.69 0.02 0.08 0.00
NI >0.05 0.10 0.61 <0.02 0.22
NF >0.08 0.37 <0.03 0.49 0.04
NIF 0.03 0.02 0.16 0.02 0.76

Notes: The left panel reproduces the transition matrix used to discipline the model (Table 8 of the text). The middle and right panels require firms to employ at least 2 and
5 immigrant researchers, respectively, to be in the NI or NIF modes. In some cells in the right panel, only the range is reported because tabulating the status of firms for
groups below a certain size is prohibited per the confidentiality requirement of Statistics Denmark.

Table A.14: Transition between R&D Modes: Longer Durations

Baseline (1 year transition)
t + 1

t 0 N NI NF NIF

0 0.89 0.06 0.03 0.01 0.01
N 0.28 0.59 0.08 0.04 0.01
NI 0.11 0.06 0.68 0.01 0.13
NF 0.14 0.38 0.03 0.41 0.04
NIF 0.05 0.01 0.25 0.02 0.67

3 year transition
t + 3

t 0 N NI NF NIF

0 0.81 0.09 0.08 0.01 0.01
N 0.37 0.42 0.16 0.04 0.02
NI 0.18 0.07 0.54 0.01 0.19
NF 0.26 0.32 0.15 0.16 0.11
NIF 0.08 0.02 0.31 0.03 0.56

5 year transition
t + 5

t 0 N NI NF NIF

0 0.72 0.12 0.12 0.01 0.03
N 0.35 0.33 0.22 0.06 0.04
NI 0.18 0.11 0.50 0.01 0.20
NF 0.24 0.35 0.20 0.12 0.10
NIF 0.07 0.05 0.31 0.02 0.55

Notes: The left panel reproduces the year-to-year transition matrix used to discipline the model (Table 8 of the text). The middle and right panels are 3- and 5-year transition
matrices, respectively.
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A.3.3 The Role of Foreign Multinationals

Finally, we discuss the possibility that the evidence on the effect of having immigrant researchers
on offshore R&D is entirely driven by Danish affiliates of foreign multinational firms. Suppose,
for example, that the Danish subsidiary of General Electric hires American engineers while using
R&D services produced at the U.S. headquarters at the same time. This might not necessarily
be due to these American engineers bringing knowledge about the U.S. headquarters that could
help the affiliate use the imported R&D services. Instead, the use of American engineers and
American R&D services could be independent decisions within the conglomerate.

To address this concern, we show that excluding the affiliates of multinational firms from
the sample does not affect our findings. Table A.15 reports the results from firm- and firm-
destination-level regressions focusing on domestic firms only. The first two columns of the table
replicate columns 5 and 6 of Table A.6. Columns 3 and 4 replicate columns 2 and 3 of Table A.7.
The sample shrinks by around 25%, but the estimates remain essentially the same.

Table A.15: Immigrant Researchers and Offshore R&D: Excluding Affiliates of Foreign Multina-
tionals

Firm-Level (2001-2014) Firm-Destination (2009-2015)

(1) (2) (3) (4)
I(immii,t−1) 0.036*** 0.036*** 0.014** 0.013**

(0.007) (0.007) (0.006) (0.006)
I(Non-R&D-immii,t−1) -0.009** 0.006***

(0.004) (0.002)
Observations 23,371 23,371 67,636 67,636
Firm sizei,t Yes Yes - -
Productivityi,t Yes Yes - -
Importi,t−1 Yes Yes - -
Exporti,t−1 Yes Yes - -
City×industry× year FE Yes Yes - -
Firm-year FE Yes Yes
Import statusn

i,t−1 Yes Yes
Export statusn

i,t−1 Yes Yes
City×industry×destination× year FE Yes yes

Notes: This table reports the robustness for the relationship between employing immigrant researchers and offshore R&D, excluding
affiliates of foreign multinationals from the sample. Columns 1 and 2 follow the specifications in columns 5 and 6 of Table A.6;
columns 3 and 4 follow the specifications in columns 2 and 3 of Table A.7. As defined previously, I(immii,t−1) is an indicator
function for immigrants in R&D-related occupations, and I(Non-R&D-immii,t−1) is the one for immigrants in non-R&D-related
occupations. Standard errors (in parentheses) are clustered by firm. * p < 0.10, ** p < 0.05, *** p < 0.01.

A.4 Descriptive Statistics on the Source of Immigrants

Table A.16 reports the shares of the top 10 source countries for immigrants working in R&D or
non-R&D for the year 2011. Immigrant researchers are mostly from other advanced countries
(Germany, the UK, etc.) and countries with an abundant supply of engineering talent, such as
Iran, Poland, China, and India. On the other hand, a higher share of immigrants in non-R&D
related fields are from South Asia. Germany and Poland are among the top senders of both
types of immigrants, likely because of their large size, geographic proximity to Denmark, and
EU membership.
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Table A.16: The Origin Countries of Immigrants

Immigrants in R&D Immigrant not in R&D

Country Share Country Share

Germany 8.55% Poland 11.35%
UK 6.92% Turkey 8.27%
Iran 5.18% Germany 5.58%

Poland 4.90% Bosnia 5.18%
Sweden 4.24% Sri Lanka 3.31%
China 4.04% Thailand 3.28%
Bosnia 3.81% Vietnam 3.13%
India 3.78% Iraq 3.00%

Norway 3.66% Philippines 2.98%
USA 3.55% Romania 2.91%

All others 51.37% All others 51.00%
Note: All statistics are based on the same sample underlying Table 1. The left panel reports the top 10 sending countries of immigrant
researchers; the right panel reports the top 10 sending countries of immigrant non-researchers.

Appendix B Theory and Structural Estimation

B.1 Deriving Equation (4)

Under the monopolistic competition setting,
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is an aggregate demand shifter that is common to all firms.

B.2 Deriving Equation (14)

Let sx̃
x denote the share of R&D expenditures of a firm in mode x ∈ X {NI, NF, NIF} that is spent

on input x̃ ∈ {N, I, F}. Analogous derivations to Eaton and Kortum (2002) deliver:
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where cx, x ∈ {N, NI, NF, NIF}, is defined in equation (8). Note here we follow the convention
in the text to omit the i, t subscripts.

Let ei,t−1 be the total R&D expenditures on inputs within Denmark. Then, the effective R&D
investment (for all sources) for firms in mode x ∈ {N, NI} is given by

rdi,t−1 =


ei,t−1

cN , if x = N

ei,t−1

cNI =
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cN · cN

cNI , if x = NI.
(B.2)

Using equation (B.1), the effective investment for firms in mode x ∈ {NF, NIF} is given by
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(B.3)

Plugging equations (B.2) and (B.3) into equation (5) delivers equation (14).

B.3 Estimating the Material Share

Under our assumption on the timing of firms’ actions, firms choose materials to maximize their
profit, given k̃i,t, l̃i,t, and ωi,t. The profit of firm i as a function of its material use is:

exp
(

ỹi,t(m̃i,t|ωi,t, k̃i,t, l̃i,t)
)
− Pm,t · exp(m̃i,t),

in which Pm,t · exp(m̃i,t) is the cost of materials with Pm,t being the price of material, and ỹi,t(m̃i,t|ωi,t, k̃i,t, l̃i,t)
is the firm’s actual revenue:

ỹi,t(m̃i,t|ωi,t, k̃i,t, l̃i,t) ≡
η + 1

η
ωi,t + β̃k k̃i,t + β̃l l̃i,t + β̃mm̃i,t + P̃t −

1
η

Q̃t.

Taking the first order condition of the profit maximization problem with respect to m̃i,t gives us:

exp
(

ỹi,t(m̃i,t|ωi,t, k̃i,t, l̃i,t)
)
· β̃m = Pm,t · exp(m̃i,t). (B.4)

We measure the revenue of firm i with a (log-additive) error ϵ̃i,t, i.e., the actual log revenue of
firm i is the measured log revenue minus ϵ̃i,t:

ỹi,t(m̃i,t|ωi,t, k̃i,t, l̃i,t) = ỹi,t − ϵ̃i,t.

From equation (B.4), we thus have:

Pm,t · exp(m̃i,t)

exp
(
ỹi,t
) = β̃m exp(−ϵ̃i,t) (B.5)

⇐⇒ log
(

Pm,t · exp(m̃i,t)

exp(ỹi,t)

)
= log(β̃m)− ϵ̃i,t.
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In this specification, the left-hand side is the measured log revenue share of materials. The
right-hand side is the log revenue elasticity with respect to materials (scaled by a function of the
demand elasticity) and a measurement error. Since material use is independent of measurement
error, we can use the method of moments to estimate β̃m by computing the sample average of
log( Pm,t·exp(m̃i,t)

exp(ỹi,t)
).

In the baseline estimation (Table 4), we pool all firms to estimate the average material share.
For robustness, we also estimate equation (B.5) by industry to obtain industry-specific material
shares, which we then plug into the GMM estimation. The main findings from this exercise,
reported in Section B.4 of this appendix, are materially the same as the baseline results.

B.4 Robustness Exercise for Production Function Estimation

In this section, we conduct five sets of robustness exercises on the GMM estimation of the pro-
duction function. In the first two exercises, respectively, we use only indicators for R&D modes
rather than the log of R&D expenditures, and alternative definition of firms’ R&D status; in the
third and fourth exercises, we treat materials in the production function in two different ways: by
estimating a value-added production function, implicitly assuming materials enter total revenue
additively, and by extending the baseline specification to incorporate industry-specific material
shares. In the final exercise, we include only non-R&D labor when estimating equation (13). The
key findings—the positive impact of R&D on productivity and the value of using diverse R&D
inputs—remain robust to these alternative choices.

B.4.1 Estimation with Discrete R&D Measure

In Columns 4-6 of Table 4 in the text, we use the log of R&D spending and indicators for the
use of foreign R&D inputs to estimate the impacts of R&D on firm productivity. One may be
concerned that measurement errors with R&D expenditures can lead to bias in our estimates.
We replicate the results in Columns 4-6 of Table 4 using only indicators for firms’ R&D modes.
The results are reported in Table B.1 below. As the table shows, the input elasticities and the
coefficients for indicator for using foreign R&D inputs are both similar to the results in Table 4.

B.4.2 Alternative Classification of R&D Modes

Recall that in estimating the law of motion of productivity, we include the indicators for whether
a firm conducts R&D and in which mode. We use the employment of immigrant researchers
and the sourcing of R&D from abroad, reported in the R&D Survey, to define the modes with I
and F options, respectively. In defining the modes with N, i.e., R&D with domestic researchers,
there are two options. As the baseline, we define mode N based on whether a firm reports
positive domestic R&D expenditures. This treatment has the advantage of being consistent with
how R&D has been measured in existing studies. However, some firms might report incurring
R&D expenditures and do not have employees in R&D-related occupations, and vice versa. Such
discrepancies arise because the expenses firms can include as ‘R&D expenditures’ according to
the accounting principles do not always align with the occupational contents of their employees.
An alternative option is to define modes with N based on the employment of Danish workers in
R&D-related occupations. We show that our main finding is robust to this alternative.

In this exercise, a firm is considered to be in the N mode only if it employs native researchers;
correspondingly, a firm is considered to be in NI, NF, or NIF modes if, in addition to I and/or
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Table B.1: Specification with Discrete R&D Measure

GMM estimation of (13)

(1) (2) (3)
ωi,t−1 0.472*** 0.482*** 0.485***

(0.150) (0.122) (0.138)
I(xi,t−1 = N) 0.010** 0.009** 0.009**

(0.004) (0.004) (0.004)
I(xi,t−1 = NI) 0.024*** 0.024*** 0.023***

(0.008) (0.008) (0.008)
I(xi,t−1 = NF) 0.000 -0.000 -0.000

(0.007) (0.007) (0.008)
I(xi,t−1 = NIF) 0.047*** 0.048*** 0.048***

(0.017) (0.015) (0.015)

Revenue elasticities

β̃l 0.489*** 0.487*** 0.487***
(0.017) (0.016) (0.015)

β̃k 0.114*** 0.113*** 0.112***
(0.016) (0.013) (0.014)

β̃m 0.421*** 0.421*** 0.421***
(0.002) (0.002) (0.002)

Industry fixed effects yes yes yes
Lag import dummy yes yes
Lag export dummy yes
Number of observations 9,320 9,320 9,320

Notes: This table replicates Columns 4-6 of Table 4 in the text, replacing the control log(ei,t−1) with an indicator variable for I(xi,t−1 =
N). Bootstrapped standard errors are clustered by firm and reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

F, it also employs native researchers. Table B.2 reports the results, which follow the specifications
in Table 4. The coefficients on R&D and different modes of R&D are similar to those in Table 4.

Table B.2: R&D and Productivity Evolution: Alternative Classification of R&D Modes

GMM estimation of (13)

(1) (2) (3) (4) (5) (6)
ωi,t−1 0.472*** 0.479*** 0.480*** 0.465*** 0.476*** 0.479***

(0.129) (0.110) (0.116) (0.146) (0.131) (0.125)
log(ei,t−1) 0.002*** 0.002*** 0.002***

(0.001) (0.001) (0.001)
I(xi,t−1 = N) 0.013** 0.011** 0.011**

(0.006) (0.006) (0.006)
I(xi,t−1 = NI) 0.024*** 0.023*** 0.023***

(0.008) (0.008) (0.008)
I(xi,t−1 = NF) -0.000 -0.001 -0.001

(0.008) (0.008) (0.008)
I(xi,t−1 = NIF) 0.042*** 0.044*** 0.044***

(0.016) (0.015) (0.015)
I(xi,t−1 ∈ {NI, NF, NIF}) 0.038*** 0.037*** 0.036***

(0.012) (0.010) (0.011)
Industry fixed effects yes yes yes yes yes yes
Lag import dummy yes yes yes yes
Lag export dummy yes yes
Number of observations 9,237 9,237 9,237 9,237 9,237 9,237

Notes: This table replicates Table 4 in the text using different classifications of R&D indicators. In particular, a firm is considered to
be in mode N if it employs native researchers; a firm is considered to be in NI, NF, or NIF modes, if in addition to I and/or F,
it also employs native researchers. Bootstrapped standard errors are clustered by firm and reported in parentheses. * p < 0.10, **
p < 0.05, *** p < 0.01.

21



B.4.3 Estimation of the Value-added Production Function

In the baseline specifications, we estimate the law of motion parameters by specifying a produc-
tion function for total revenue. This specification is advantageous in maintaining compatibility
with the monopolistic competition environment. As an alternative, we can focus on value-added,
following the approach in the seminal works by Olley and Pakes (1996), Levinsohn and Petrin
(2003), and Ackerberg et al. (2015). This alternative implicitly treats materials as additive in the
total revenue function.

Concretely, we assume that firms’ log value-added is given by:

ỹi,t = ωi,t + β̃k k̃i,t + β̃l l̃i,t + ϵ̃i,t,

where ϵ̃i,t represents a measurement error in revenue; l̃i,t and k̃i,t are log labor and capital, re-
spectively; ωi,t denotes total factor productivity for the value-added version of equation (13).
Following the approach in Olley and Pakes (1996), firms make the investment decision in t − 1,
after the realization of ζi,t−1.

We express the investment policy function as ii,t = it(ωi,t, k̃i,t, l̃i,t, zi,t), where zi,t represents the
set of controls that might affect a firm’s investment decision, such as the firm’s import/export
status and average wage. Given our assumption on the evolution of productivity, strict mono-
tonicity of ii,t in ωi,t holds. Thus, we can invert the investment function to obtain a proxy for
productivity, i.e.,

ωi,t = i−1(ii,t, k̃i,t, l̃i,t, zi,t).

We adopt a two-step procedure similar to Olley and Pakes (1996). In the first step, we employ a
flexible function of ii,t, k̃i,t, l̃i,t, and zi,t to purge out measurement errors in the value-added. In
the second stage, we estimate β̃k, β̃l , along with the other parameters in the productivity law of
motion using GMM, as in the baseline analysis. We bootstrap (by firm) the entire procedure for
statistical inference.

Table B.3 reports the results. Focusing on value-added, this approach yields a higher persis-
tence in productivity compared to the baseline specifications. Reassuringly, the key coefficients
of interest—those associated with R&D status—remain qualitatively similar to those in Table 4.

B.4.4 Industry-Specific Material Shares

By focusing on the value-added production function, the robustness exercise reported in Table
B.3 allows individual firms to differ in their material use. In this subsection, we conduct an
alternative robustness exercise by estimating a revenue production function, allowing for material
shares to differ by industry.

To achieve this, we first estimate equation (B.5) by industry, obtaining industry-specific ma-
terial shares. Subsequently, we plug these shares into equation (13) and estimate it via GMM,
using the same set of instruments as in the baseline analysis. Table B.4 reports the results. The
estimates remain robust even when applying industry-specific material shares to all firms.

B.4.5 Using Only Non-R&D Labor in Estimating the Production Function

As we consider potentially distinct roles played by researchers and non-researchers, one may
think that the estimation of the production function should exclusively involve non-R&D work-
ers. To address this concern, we replicate the analysis from Table 4 in the main text by excluding
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Table B.3: R&D and Productivity Evolution: Value-Added Production Function

GMM estimation of (13)

(1) (2) (3) (4) (5) (6)
ωi,t−1 0.679*** 0.688*** 0.692*** 0.696*** 0.707*** 0.712***

(0.089) (0.089) (0.090) (0.096) (0.097) (0.098)
log(ei,t−1) 0.002*** 0.002*** 0.002***

(0.001) (0.001) (0.001)
I(xi,t−1 = N) 0.010** 0.009** 0.009**

(0.004) (0.004) (0.004)
I(xi,t−1 = NI) 0.019*** 0.019** 0.018**

(0.007) (0.007) (0.008)
I(xi,t−1 = NF) -0.019* -0.019* -0.019*

(0.011) (0.010) (0.011)
I(xi,t−1 = NIF) 0.027** 0.028** 0.028**

(0.011) (0.012) (0.012)
I(xi,t−1 ∈ NI

⋃
NF

⋃
NIF) 0.018** 0.018** 0.018**

(0.007) (0.007) (0.007)
Industry fixed effects yes yes yes yes yes yes
Lag import dummy yes yes yes yes
Lag export dummy yes yes
Number of observations 9,260 9,260 9,260 9,260 9,260 9,260

Notes: This table follows the same sample and specifications as in Table 4. In contrast to Table 4, where we estimate a revenue
production function, this table focuses on estimating a value-added production function. Bootstrapped standard errors, clustered by
firm, are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

Table B.4: R&D and Productivity Evolution: Industry Specific Material Shares

GMM estimation of (13)

(1) (2) (3) (4) (5) (6)
ωi,t−1 0.446*** 0.464*** 0.465*** 0.452*** 0.471*** 0.474***

(0.132) (0.155) (0.145) (0.138) (0.153) (0.140)
log(ei,t−1) 0.002*** 0.002*** 0.002***

(0.001) (0.001) (0.001)
I(xi,t−1 = N) 0.009** 0.008** 0.008**

(0.004) (0.004) (0.004)
I(xi,t−1 = NI) 0.026*** 0.025*** 0.025***

(0.008) (0.008) (0.008)
I(xi,t−1 = NF) -0.002 -0.003 -0.004

(0.008) (0.007) (0.007)
I(xi,t−1 = NIF) 0.042*** 0.044** 0.044**

(0.016) (0.018) (0.017)
I(xi,t−1 ∈ {NI, NF, NIF}) 0.025*** 0.025*** 0.025***

(0.008) (0.009) (0.009)
Industry fixed effects yes yes yes yes yes yes
Lag import dummy yes yes yes yes
Lag export dummy yes yes
Number of observations 9,320 9,320 9,320 9,320 9,320 9,320

Notes: This table replicates the results from Table 4 in the text, incorporating industry-specific material shares. Bootstrapped standard

errors, clustered by firm, are reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

researchers. The results, presented in Table B.5, indicate that the estimation results closely align
with the baseline results.

B.5 R&D Subsidy Estimating Equation: Deriving Equation (18)

With the R&D subsidy in place, the log odds ratio of a firm discontinuing R&D versus remaining
in the same mode is
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Table B.5: R&D and Productivity Evolution: Using Non-R&D Labor

GMM estimation of (13)

(4) (5) (6) (1) (2) (3)
ωi,t−1 0.488*** 0.499*** 0.499*** 0.498*** 0.511*** 0.512***

(0.131) (0.141) (0.131) (0.133) (0.140) (0.135)
log(ei,t−1) 0.003*** 0.003*** 0.003***

(0.001) (0.001) (0.001)
I(xi,t−1 = N) 0.013** 0.012** 0.012**

(0.006) (0.006) (0.006)
I(xi,t−1 = NI) 0.035*** 0.034*** 0.034***

(0.007) (0.007) (0.007)
I(xi,t−1 = NF) -0.005 -0.006 -0.006

(0.008) (0.008) (0.008)
I(xi,t−1 = NIF) 0.052*** 0.053*** 0.053***

(0.014) (0.015) (0.015)
I(xi,t−1 ∈ {NI, NF, NIF}) 0.035*** 0.034*** 0.034***

(0.011) (0.012) (0.011)
Industry fixed effects yes yes yes yes yes yes
Lag import dummy yes yes yes yes
Lag export dummy yes yes
Number of observations 9,073 9,073 9,073 9,073 9,073 9,073

Notes: This table replicates Table 4 using non-R&D-labor as the labor input. Bootstrapped standard errors, clustered by firm, are

reported in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

log

(
m

′x,0
t (si,t)

m
′x,x
t (si,t)

)
=(1 − τ)× 1

ν
[cx × rd∗

′
i,t(ωi,t, x) + f x] (B.6)

+
δ

ν

[
EtV ′

t+1
(
ωi,t+1|ωi,t, rdi,t = 0

)
− EtV ′

t+1
(
ωi,t+1|ωi,t, rdi,t = rd∗

′
i,t(ωi,t, x)

)]
,

where ′ indicates variables in the presence of the subsidy (e.g. rd∗
′

i,t(ωi,t, x), V ′
t+1), and τ indicates

the subsidy rate.
Given the uncertain and temporary nature of this policy and the restriction on eligibility

for only loss-making firms, we assume that firms perceive the value function in the post-policy
world as similar to the one before the policy, i.e., Vi,t(·) ≈ V

′
i,t(·).10 Under this assumption, we

can express firms’ continuation value net of R&D investment as:

δEtV ′
t+1
(
ωi,t+1|ωi,t, rdi,t = rd∗

′
i,t(ωi,t, x)

)
− (1 − τ)× [cx × rd∗

′
i,t(ωi,t, x) + f x] (B.7)

= max
rdi,t

{δEtV ′
t+1
(
ωi,t+1|ωi,t, rdi,t

)
− (1 − τ)× (cx × rdi,t + f x)}

≈ max
rdi,t

{δEtVt+1
(
ωi,t+1|ωi,t, rdi,t

)
− (1 − τ)× (cx × rdi,t + f x)︸ ︷︷ ︸

≡ f (rdi,t, τ)

}

≈ max
rdi,t

{ f (rdi,t, 0)}+ τ · ∂ f (rdi,t, τ)

∂τ
|rdi,t=arg maxrdi,t

{ f (rdi,t, 0)}

= δEtVt+1
(
ωi,t+1|ωi,t, rdi,t = rd∗i,t(ωi,t, x)

)
− [cx × rd∗i,t(ωi,t, x) + f x]︸ ︷︷ ︸

maxrdi,t
{ f (rdi,t, 0)}

+τ × [cx × rd∗i,t(ωi,t, x) + f x].

10Assuming Vi,t(·) ≈ V
′

i,t(·) does not imply that firms perceive their continuation values to be the same as before
because by adjusting R&D expenditures, firms can change the future states.
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The first equality in (B.7) follows from the definition of rdi,t as the solution to the Bellman equa-
tion (9); the approximation in the second line stems from our assumption of Vi,t(·) ≈ V

′
i,t(·); the

third and fourth lines result from an application of the Envelope Theorem. Intuitively, in the
absence of the subsidy, firms were optimally choosing R&D expenditures to maximize the net
value f (rdi,t, 0). After the subsidy is introduced, firms’ response in the R&D expenditures only
has a second-order effect. Thus, the first-order effect of the subsidy on firms’ net value is simply
the subsidy rate times the optimal R&D expenditures in the absence of the subsidy.11

By combining equations (B.7) with equations (17) and (B.6), along with the earlier assumption
that results in Vi,t(·) ≈ V

′
i,t(·), we arrive at the expression described in the text.:

log

(
m′x,0

t (si,t)

m′x,x
t (si,t)

)
− log

(
mx,0

t (si,t)

mx,x
t (si,t)

)

= − δ

ν
EtVt+1

(
ωi,t+1|ωi,t, rdi,t = rd∗i,t(ωi,t, x)

)
+

1
ν
[cx × rd∗i,t(ωi,t, x) + f x] . . .

−1
ν

τ[cx × rd∗i,t(ωi,t, x) + f x] +
δ

ν
EtV ′

t+1
(
ωi,t+1|ωi,t, rdi,t = 0

)
− 1

ν
[cx × rd∗i,t(ωi,t, x) + f x] . . .

− δ

ν
EtVt+1

(
ωi,t+1|ωi,t, rdi,t = 0

)
+

δ

ν
EtVt+1

(
ωi,t+1|ωi,t, rdi,t = rd∗i,t(ωi,t, x)

)
≈ −1

ν
× τ × [cN × rd∗i,t(x, ωi,t) + f x]

B.6 Identification of Structural Parameters from Problem (21)

In this section, we first show that, for a given γ̃i, i = 0, 1, 2, 3, and without the knowledge of
Ax̃ and px̃ for x̃ ∈ {N, I, F}, we can verify whether the model-implied sN

NI and sN
NIF equal their

empirical counterparts, ŝN
NI and ŝN

NIF. We then proceed to show that γ̃i, i = 0, 1, 2, 3, together with
ŝN

NI and ŝN
NIF, are sufficient to identify θ and conduct counterfactual exercises.

Checking ŝN
NI and ŝN

NIF. Specifically, from equations (14) in the text, we have the following
mapping from γ̃i, i = 0, 1, 2, 3 to the structural parameters of the model:

γ̃0 = γ, (1)

γ̃1 = γ
[
log(cN)− log(cNI)

]
, (2)

γ̃2 = γ(θ + 1)
[
log(cN)− log(cNF)

]
, (3)

γ̃3 = γ
[
(θ + 1)

(
log(cNI)− log(cNIF)

)
+
(

log(cN)− log(cNI)
)]

. (4)

(B.8)

Using the first two lines of the equation, we have

γ = γ̃0, log(
cN

cNI ) =
γ̃1

γ̃0
.

Plug the above into line 4 of equation (B.8) and re-arrange it to obtain

log(
cN

cNIF ) =
1

(θ + 1)γ̃0
(γ̃3 + γ̃1θ).

11Note that firms’ optimal R&D expenditures will change after the introduction of the subsidy. Still, the impact on
firms’ continuation value is captured by the original R&D expenditures.
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Using the expressions of sN
NI and sN

NIF from equation (B.1), for the model to match ŝN
NI and ŝN

NIF,
it must be the case that

− log(
cN

cNI ) · θ = log(ŝN
NI)

− log(
cN

cNIF ) · θ = log(ŝN
NIF),

in which the right-hand side is the data, and the left-hand side can be backed out from γ̃.
Combining the above equations, we obtain:

− γ̃1

γ̃0
θ = log(ŝN

NI) (B.9)

− θ

γ̃0(θ + 1)
[γ̃3 + γ̃1θ] = log(ŝN

NIF).

Thus, to verify whether a given guess of λλλ can match ŝN
NI and ŝN

NIF, we first use the first line
of equation (B.9) to back out θ. Subsequently, we substitute this θ into the second line of (B.9)
and verify whether the equation holds. If the equality holds, it indicates that γ̃i, i = 0, 1, 2, 3 can
satisfy both constraints. This result enables us to choose parameters that minimize the deviation
of the model from the data on transition patterns, within the set of parameters matching both
ŝN

NI and ŝN
NIF, without estimating Ax̃ and px̃ for x̃ ∈ {N, I, F}.

Solving the Firms’ Problem without the Fundamentals. In solving problem (21), we need
to simulate firms’ decisions. For any given γ̃i, i = 0, 1, 2, 3, we solve the firms’ optimization
problem using equation (14) as their law of motion for productivity, allowing firms to choose
both the mode of R&D and R&D spending ei,t−1. An additional aspect of solving the firms’
problem is that ei,t−1 in equation (14) corresponds to firms’ total R&D spending on factors within
Denmark and does not include spending on offshore sources. However, it is the total spending
on all sources that enters the Bellman equations (see equation (9)). Therefore, when solving for
firms’ decisions, we need to account for the fact that the R&D level governing the law of motion
of productivity is not always the same as firms’ total R&D spending.

To account for this difference, we analytically derive the share of offshore R&D expenditures
in total R&D expenditures for firms in mode x = NF, NIF as a function of γ̃i, i = 0, 1, 2, 3. Recall
from equation (B.1) that

sN
NIF + sI

NIF =

(
cNI

cNIF

)−θ

sN
NF =

(
cN

cNF

)−θ

.

Combining this with equation (B.8) delivers

sN
NF = exp

(
− γ̃2θ

γ̃0(θ + 1)

)
(B.10)

sN
NIF + sI

NIF = exp
(
− (γ̃3 − γ̃1)θ

γ̃0(θ + 1)

)
.

Thus, for firms in mode NF, the total spending is given by ei,t−1/sN
NF. Similarly, for firms in
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mode NIF, the total spending is ei,t−1/(sN
NIF + sI

NIF).
In solving the problem (21), for any given λλλ, we solve the firm’s decision in t − 1 using the

law of motion implied by γ̃i, i = 0, 1, 2, 3. Firms choose the mode x and ei,t−1 to maximize their
value function. When calculating these values, we consider that the actual R&D expenses are
the sum of ei,t−1 and the offshore component. The relationship between the two is governed by
equation (B.10), which can be readily calculated with γ̃i, i = 0, 1, 2, 3 and θ.

Identification of Structural Parameters and Counterfactuals. The above discussion suggests
that when the constraint in problem (21) is satisfied, we also recover θ from equation B.9. Plug-
ging the recovered θ into equation (B.8) delivers

[
log(cN)− log(cNI)

]
,
[
log(cN)− log(cNF)

]
, and[

log(cN)− log(cNIF)
]

as function of θ and γ̃i, i = 0, 1, 2, 3.
Note that even though we do not identify Ax̃ and px̃ for x̃ ∈ {N, I, F}, the differences in

the effective cost of R&D investment between different modes are sufficient for the counterfac-
tuals that we are interested in. For example, by setting

[
log(cN)− log(cNI)

]
to zero and set-

ting
[
log(cN)− log(cNIF)

]
to be the same as

[
log(cN)− log(cNF)

]
and calculating the implied

γ̃i, i = 0, 1, 2, 3 using equation (B.8), we can conduct a counterfactual where foreign R&D inputs
do not bring any additional gains in firm productivity.

B.7 A Model of R&D with Source-Specific Input Accumulation

In this section, we develop a model of R&D with source-specific R&D input accumulation and
demonstrate how this model can be mapped to the benchmark model presented in Section 3
through a re-interpretation of the cost of switching R&D modes, F̃.

To establish a clear connection to the benchmark model, we begin by micro-founding the
productivity law of motion (equation (5)) in the benchmark model, using a model of know-how
accumulation via R&D.

Setup. We assume that the productivity of firm i in period t depends on two factors: the
stock of accumulated intangible capital, encompassing factors such as production know-how
and consumer brand loyalty, and an idiosyncratic term. Formally, we specify

ωi,t = log(Hi,t) + ζi,t,

where Hi,t is the stock of intangible capital, and ζi,t is the idiosyncratic term. We assume that Hi,t
evolves with Hi,t−1 and the firm’s effective R&D in t − 1, rdi,t−1, according to the following:

Hi,t =

{
(Hi,t−1)

ρ(rdi,t−1)
γ, rdi,t−1 > 0

(Hi,t−1)
ρ, rdi,t−1 = 0.

Then, this setup leads to a law of motion for productivity akin to equation (5) with the following
mapping: the auto-correlation parameter ρ in equation (5) is converted into the (geometric) de-
preciation rate of intangible capital, and the return-to-R&D parameter γ in equation (5) is now
the elasticity of period-t intangible capital stock to effective R&D investment in period t − 1.

We now consider a more general setting, in which firms can accumulate intangible capital
from different sources (N, I, and F), all of which will then be combined to form the overall
intangible capital of the firm. Let H x̃

i,t, denote the stock of intangible capital in firm i accumulated
from source x̃ ∈ {N, I, F}. The accumulation of H x̃

i,t is governed by

H x̃
i,t = I(rdx̃

i,t−1 > 0) · [H x̃
i,t−1]

ρ[rdx̃
i,t−1]

γ +
(
1 − I(rdx̃

i,t−1 > 0)
)
· [H x̃

i,t−1]
ρ,
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in which rdx̃
i,t−1 represents the flow investment in R&D input of type x̃ with a price of px̃. The

source-specific stock is then combined into firm-wide intangible stock through the following
technology

Hit =
[
(AN)

1
θ (HN

i,t)
θ−1

θ + (AI)
1
θ (H I

i,t)
θ−1

θ + (AF)
1
θ (HF

i,t)
θ−1

θ

] θ
θ−1

, (B.11)

where θ is the elasticity of substitution between different input types.
Steady-State R&D Input Composition. In this setup, the optimal mix of R&D flow for firms

depends on the composition of their current stock. For example, for firms in mode NIF, the

ratio between the optimal investment in input N and F, denoted by
rdN

i,t
rdF

i,t
, depends not only on the

relative prices pN

pF but also on
HN

i,t
HF

i,t
.

We consider a particular composition of intangible stocks in period t—what we call the
‘steady-state composition’, under which firms’ optimal investment is such that the composition
of the stock of different intangible inputs stays the same. For example, for a firm in mode NIF,
under the steady-state input mix of this mode, we have:

HN
i,t

HF
i,t

=

(
HN

i,t−1

HF
i,t−1

)ρ(
rdN

i,t−1

rdF
i,t−1

)γ

=⇒
HN

i,t

HF
i,t

=
HN

i,t−1

HF
i,t−1

=

(
rdN

i,t−1

rdF
i,t−1

) γ
1−ρ

, (B.12)

and we can derive the steady-state ratio between HN
i,t and H I

i,t analogously.
We derive the steady-state composition of H x̃

i,t and rdx̃
i,t for x̃ ∈ {N, I, F} for firms in the NIF

mode. First, suppose that firms are restricted to the NIF mode, in which case firms do not need
to consider the value of different stocks when they switch to another R&D mode in the future.12

Then, the R&D cost minimization problem in period t − 1 is given by:

minrdN
i,t−1, rdF

i,t−1, rdI
i,t−1

[PN · rdN
i,t−1 + PF · rdF

i,t−1 + PI · rdI
i,t−1]

s.t.
[
(AN)

1
θ (HN

i,t)
θ−1

θ + (AI)
1
θ (H I

i,t)
θ−1

θ + (AF)
1
θ (HF

i,t)
θ−1

θ

] θ
θ−1 ≥ Hi,t

HN
i,t ≥ (HN

i,t−1)
ρ(rdN

i,t−1)
γ

HF
i,t ≥ (HF

i,t−1)
ρ(rdF

i,t−1)
γ

H I
i,t ≥ (H I

i,t−1)
ρ(rdI

i,t−1)
γ.

Imposing that
HN

i,t
HF

i,t−1
=

HN
i,t−1

HF
i,t−1

and that
HN

i,t
H I

i,t−1
=

HN
i,t−1

H I
i,t−1

, the first-order conditions of the problem

12We relax this assumption later and show that if the switching firms convert their existing stock of intangibles to
the same composition as the steady-state composition of the new mode by paying the cost of transitioning modes F̃, then
the cost minimization problem solved by the firm is isomorphic to the one discussed here.
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satisfy:

rdN
i,t−1

rdF
i,t−1

=

(
AN

AF

) 1−ρ
θ(1−ρ)+γ(1−θ)

·
(

pN

pF

) −(1−ρ)θ
θ(1−ρ)+γ(1−θ)

(B.13)

rdN
i,t−1

rdI
i,t−1

=

(
AN

AI

) 1−ρ
θ(1−ρ)+γ(1−θ)

·
(

pN

pI

) −(1−ρ)θ
θ(1−ρ)+γ(1−θ)

HN
i,t−1

HF
i,t−1

=

(AN

AF

) 1−ρ
θ(1−ρ)+γ(1−θ)

·
(

pN

pF

) −(1−ρ)θ
θ(1−ρ)+γ(1−θ)


γ

1−ρ

(B.14)

HN
i,t−1

H I
i,t−1

=

(AN

AI

) 1−ρ
θ(1−ρ)+γ(1−θ)

·
(

pN

pI

) −(1−ρ)θ
θ(1−ρ)+γ(1−θ)


γ

1−ρ

.

We can analogously derive the steady-state composition for firms restricted to R&D modes NI
and NF, respectively. It follows immediately that for firms in the NI mode, the steady-state ratio
between HN

i,t and HF
i,t is the same as for firms in the NIF mode; similarly, for firms in the NF

mode, the steady-state ratio between HN
i,t and H I

i,t is the same as for firms in the NIF mode.
Incorporating Mode Switching. Now, we introduce mode switching. In addition to the

fixed and sunk costs associated with entering a mode, we assume that, upon a mode switch, the
switching firm incurs a one-time cost to adjust the composition of its intangible stocks to match the
steady-state composition of the new mode, as derived in equation (B.14). This adjustment alters
the composition of source-specific intangible while maintaining the overall intangible stock, as
defined in equation (B.11). For example, suppose a firm is currently in mode N with only HN

i,t
as its stock of intangibles; by paying the cost of switching to mode NIF, this firm adjusts its
composition according to the equation (B.14) while maintaining its overall intangible.

The implication of this adjustment is twofold. First, the firm will have the same productivity
immediately after mode switching (but before R&D is carried out). Second, each time a firm
switches modes and undergoes this adjustment, its composition of intangible stocks aligns with
the steady-state composition of the new mode. Consequently, firms in any R&D mode always
exhibit the corresponding steady-state composition. By corollary, it means that firms in all modes
make their flow R&D investment according to the steady-state R&D composition of that mode
(see equation (B.13) for firms in the NIF mode).

Implications for Productivity Dynamics. We now discuss the implication of this alternative
model for firms’ productivity dynamics. Consider firms in the NIF mode. Following equation
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(B.14), the combined intangible stock of the firms in this model satisfies

Hit =
[
(AN)

1
θ (HN

i,t)
θ−1

θ + (AI)
1
θ (H I

i,t)
θ−1

θ + (AF)
1
θ (HF

i,t)
θ−1

θ

] θ
θ−1

(using equations (B.13) and B.14)

= (Hi,t−1)
ρ · (rdN

i,t−1)
γ ·

(AN)
1
θ + (AI)

1
θ ·
(

rdN
i,t−1

rdI
i,t−1

) γ
1−ρ ·

θ−1
θ

+ (AF)
1
θ ·
(

rdN
i,t−1

rdF
i,t−1

) γ
1−ρ ·

θ−1
θ


θ

θ−1 (1−ρ)

(B.15)

= (Hi,t−1)
ρ · (rdN

i,t−1)
γ·(AN)

1
θ + (AI)

1
θ ·
(

AN

AI

) γ
θ(1−ρ)+γ(1−θ)

θ−1
θ

·
(

pN

pI

) γ(θ−1)
θ(1−ρ)+γ(1−θ)

+ (AF)
1
θ ·
(

AN

AF

) γ
θ(1−ρ)+γ(1−θ)

θ−1
θ

·
(

pN

pF

) γ(θ−1)
θ(1−ρ)+γ(1−θ)


θ(1−ρ)

θ−1

︸ ︷︷ ︸
≡exp(γNIF)

.

It follows that the productivity of the firm evolves according to

ωi,t = ρωi,t−1 + γ log(rdN
i,t−1) + γ3I(xi,t−1 = NIF) + ζi,t,

where γNIF is defined in equation (B.15). We can derive an analogous equation for firms in
modes 0, N, NI, NF, which leads to the same reduced-form specification as equation (14).

Discussion. The above derivation suggests that a model with mode-specific input accumula-
tion can be mapped to the benchmark model developed in Section 3, provided that we generalize
the cost of transitioning modes F̃ to incorporate the cost of adapting the intangible input compo-
sition of a firm from the current values to the steady-state value associated with the new mode.
We think of such cost as being associated with reorganizing the research direction so that it is in
line with the most efficient way of splitting the task across R&D input types according to their
efficiencies Ax̃ and prices px̃.

This mapping indicates that the alternative model leads to the same reduced-form specifi-
cation for the productivity dynamics, which we estimate in Section 4. Although the structural
interpretation of the estimates differs between the two models, the alternative model implies the
same counterfactual outcomes to the extent that many counterfactuals can be carried out using
these reduced-form coefficients alone.13

13One such example is to set the coefficients for I(xi,t−1 = NI), I(xi,t−1 = NF), and I(xi,t−1 = NIF) to be zero,
thereby eliminating the gains from R&D diversification.
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