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Abstract. This paper studies causal inference with observational network

data. A challenging aspect of this setting is the possibility of interference in

both potential outcomes and selection into treatment, for example due to peer

effects in either stage. We therefore consider a nonparametric setup in which

both stages are reduced forms of simultaneous-equations models. This results in

high-dimensional network confounding, where the network and covariates of all

units constitute sources of selection bias. The literature predominantly assumes

that confounding can be summarized by a known, low-dimensional function of

these objects, and it is unclear what selection models justify common choices

of functions. We show that graph neural networks (GNNs) are well suited to

adjust for high-dimensional network confounding. We establish a network ana-

log of approximate sparsity under primitive conditions on interference. This

demonstrates that the model has low-dimensional structure that makes estima-

tion feasible and justifies the use of shallow GNN architectures.
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1 Introduction

Treatment assignment is said to be unconfounded if it is as good as random within

subpopulations of observationally equivalent units. In settings where the stable unit

treatment value assumption (SUTVA) is plausible, units with identical covariates are

naturally considered observationally equivalent. However, when units are connected

through a network, they may differ on other observed dimensions that may confound

causal inference if SUTVA is violated and interference is mediated by the network.

These dimensions include, for example, the number of type-x neighbors, the number

of type-x neighbors with m neighbors of type y, and so on through higher-order

neighbors.

Existing formulations of unconfoundedness only utilize a small subset of these

dimensions. For example, a common set of controls used in the literature is the

vector consisting of own covariates, number of neighbors, and average covariates of

neighbors. This choice may be difficult to justify in practice due to a lack of behavioral

models of selection. Neighbor covariates may influence selection into treatment in

more complex ways not adequately captured by the mean. Furthermore, this choice

of controls implies no confounding from higher-order neighbors, which we show rules

out economically interesting sources of interference in treatment selection, such as

endogenous peer effects.

In this paper, we study estimation and inference for treatment and spillover effects

under a fully nonparametric formulation of unconfoundedness motivated by a model

of selection. To allow for peer effects, selection is governed by the reduced form of a

simultaneous-equations model, which is a function of the entirety of X, the matrix

of all units’ covariates, and A, the network adjacency matrix. As a result, it is not

generally possible to summarize confounding by a simple low-dimensional function of

these objects. Our unconfoundedness condition therefore considers units observation-

ally equivalent if they occupy identical positions in the network, meaning that they

match on all observed neighborhood and higher-order neighborhood dimensions.

Existing methods that rule out complex forms of interference in selection may

result in biased estimates of treatment and spillover effects. For example, consider

the causal effect of vaccine adoption on illness. With peer effects in vaccine adoption,

vaccinated individuals tend to have more vaccinated direct and indirect social con-

tacts, and a simple comparison of adopters and nonadopters may overstate vaccine
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efficacy, even after controlling for neighbors’ covariates.

Because peer effects in selection induce high-dimensional network confounding,

they are challenging to accommodate in a nonparametric setting. Most of the litera-

ture on interference in observational settings does not allow for such effects, including

recent work using instrumental variables rather than unconfoundedness conditions

(DiTraglia et al., 2023; Hoshino and Yanagi, 2023a; Kang and Imbens, 2016). Most

papers that do allow for selection peer effects rely on semiparametric, game-theoretic

models of selection, which substantially reduce the dimensionality of the problem but

may be subject to model misspecification (Hoshino and Yanagi, 2023b; Jackson et al.,

2020; Kim, 2020; Lin and Vella, 2021).1

To account for network confounding, an initial idea might be to apply double ma-

chine learning using the lasso for high-dimensional estimation (Chernozhukov et al.,

2018). In the SUTVA setting, implementation of the lasso requires the specification

of a basis tPkpXiqudk“1 for the unit-level covariates Xi. In our setting, however, a

unit i’s “covariates” correspond to its network position pi,X,Aq and it is unclear

how to choose a basis tPkpi,X,Aqudk“1 for such an object. Nothing in the standard

toolbox for high-dimensional estimation suggests that it is possible to nonparametri-

cally adjust for graph-structured confounders, which is presumably why this has been

explicitly avoided in the prior literature.

1.1 Contributions

Our first insight is that graph neural networks (GNNs) can be used to construct a

flexible basis for graph-structured confounders. The advantage of a neural network

architecture is that the basis functions are “learnable,” meaning they are parameter-

ized and estimated from data. Our practical proposal is to estimate treatment and

spillover effects using a doubly robust estimator with first-stage nuisance functions

approximated by GNNs. Whereas a variety of conventional machine learners can be

employed for the first stage in the standard SUTVA setting, none are well suited to

our setting, and the observation that GNNs can fill this gap is novel.

Our primary contribution is to provide theoretical justification for the proposed

estimation strategy under a fully nonparametric behavioral model that allows for

endogenous peer effects in both the outcome and treatment selection stages. We

1An exception is Balat and Han (2023) who study partial identification of a nonparametric model
with strategic complementarities.
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utilize the model of approximate neighborhood interference (ANI) proposed by Leung

(2022a), which posits that interference in the outcome stage decays with network path

distance. Leung shows that ANI allows for endogenous peer effects but focuses on

a setting with randomized assignment. In observational settings, it stands to reason

that peer effects in selection may be a possibility. We therefore relax his assumption of

independent treatment assignment to allow for ANI in treatment selection. Since both

stages are simultaneous-equations models, this creates significant new complications

in the form of high-dimensional network confounding.

Because the first stage of doubly robust estimation involves high-dimensional

nonparametric estimation, theoretical feasibility requires a form of low-dimensional

structure. At the same time, GNNs have been found empirically to perform best

with shallow architectures, which correspond to relatively low-dimensional parame-

terizations, in contrast to the deep architectures popular with convolutional neural

networks (Alon and Yahav, 2021; Li et al., 2018). Here our key insight is to draw a

novel connection between ANI and approximate sparsity conditions in the lasso liter-

ature. We argue that this connection justifies the use of shallow GNN architectures

in our setting.

To understand the idea, let N pi, Kq denote i’s K-neighborhood, the set of units

whose path distance from i is at most K, and pXN pi,Kq,AN pi,Kqq denote the restriction

of pX,Aq to N pi, Kq. The key parameter of a GNN is its depth or number of layers L,

which determines the receptive field pXN pi,Lq,AN pi,Lqq used to predict i’s outcome. For

example, a one-layer GNN only uses i’s 1-neighborhood pXN pi,1q,AN pi,1qq to predict

its outcome, rather than the entirety of pX,Aq. Accordingly, the choice of L depends

on prior information about the function being estimated. If it only depends on the

1-neighborhood of the ego, then L “ 1 suffices, whereas if it depends nontrivially on

the entirety of pX,Aq, then this requires a larger choice of L.

ANI posits that interference decays with distance, so outcomes and treatments are

less affected by distant units and primarily determined by pXN pi,Lq,AN pi,Lqq for rela-

tively small L. This is analogous to approximate sparsity, under which the regression

function primarily depends on a small subset of regressors. As a result, our first-

stage nuisance functions are well approximated by lower-dimensional analogs that

only depend on the L-neighborhood, and these can be directly estimated with shal-

low L-layer GNNs. Our formal result provides primitive conditions on interference

that rationalize small choices of L of order log n.
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We provide conditions under which the doubly robust estimator is approximately

normally distributed as the network size grows large. This type of result is well known

for i.i.d. data (e.g. Farrell, 2018), but it is nontrivial to extend to our setting since

we allow for a complex form of network dependence. For example, asymptotically

linearizing the doubly robust estimator requires a new argument due to dependence,

and application of an appropriate CLT requires verification of a high-level weak de-

pendence condition under a nonparametric model with outcome and selection stages

both governed by simultaneous-equations models. For inference, we utilize a network

HAC estimator due to Kojevnikov et al. (2021) and propose a new bandwidth that

adjusts for estimation error in the first-stage machine learners.

We substantiate the theory in a simulation study and empirical application to

microfinance diffusion. The simulations demonstrate that the use of GNNs can sub-

stantially reduce bias relative to conventional choices of network controls even with

shallow architectures. The empirical illustration revisits the microfinance diffusion

application of He and Song (2024). We show how our estimands can capture comple-

mentary aspects of diffusion relative to their “average diffusion at the margin” mea-

sure. Our theoretical framework allows for more complex diffusion processes without

requiring the econometrician to prespecify the maximum number of within-period

rounds of diffusion. Finally, by including richer controls that account for network

confounding, we find more attenuated diffusion effects.

1.2 Related Literature

There is a large literature on interference, much of which focuses on randomized

control trials (e.g. Athey et al., 2018; Li and Wager, 2022; Toulis and Kao, 2013).

We contribute to a growing recent literature on unconfoundedness, much of which

operates in a partial interference setting where units are partitioned into disjoint

groups with no interference across groups (e.g. Liu et al., 2019; Qu et al., 2022).

Studying a network interference setting, Veitch et al. (2019) propose to use “node

embeddings” as network controls, which are learned functions of the graph. Since

node embeddings can be obtained from a variety of methods, there remains the issue

of justifying a particular choice of network controls. GNNs can be interpreted as a

method of estimating node embeddings (see §3), and our behavioral model provides

justification for their use. We defer to §2.1 a more detailed review of the literature
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on network interference and unconfoundedness.

Auerbach (2022) studies identification conditions distinct from unconfoundedness

but proposes a related strategy of “matching” on certain network statistics. He pro-

vides conditions under which pairwise differencing using unit pairs matched on a novel

codegree statistic eliminates selection bias.

Prior to the GNN literature, graph kernels were the dominant method for graph

learning tasks (Morris et al., 2021). These are to kernel regression as GNNs are to

sieve estimation, so graph kernels require a measure of similarity between regressors,

in this case, between two graphs. Auerbach and Tabord-Meehan (2023) propose a

graph kernel estimator using a novel similarity measure based on graph isomorphism.

Since there is no known algorithm for isomorphism testing with polynomial runtime

in the network size (§A.1 discusses GNNs’ relationship to this problem), many graph

kernel approaches amount to specifying an “embedding,” a mapping from networks

to Euclidean space (Kriege et al., 2020). As noted by Wu et al. (2020), embeddings

are predetermined functions of the network, whereas GNNs produce learnable em-

beddings.

Finally, our paper contributes to recent literature applying neural networks to

econometric problems (Athey et al., 2021; Farrell et al., 2021; Kaji et al., 2020). These

papers employ neural networks as nonparametric sieve estimators for regression func-

tions. Whereas other machine learners can theoretically work well in their settings,

our problem cannot be solved with standard methods. In this respect, our work re-

lates to Pollmann (2023) which studies the problem of constructing counterfactuals

for spatial treatments using convolutional neural networks.

The next section presents the model and its relation to the prior literature and

defines the estimators. We introduce GNNs in §3 and characterize the asymptotic

properties of our estimators in §4. Next, we establish a network analog of approximate

sparsity in §5. We report results from a simulation study in §6, and §7 presents an

empirical application to microfinance diffusion. Finally, §8 concludes.

We represent an undirected network A as an nˆ n binary adjacency matrix with

ijth entry Aij P t0, 1u representing a link between units i and j. We assume no

self-links, so Aii “ 0. Let ℓApi, jq denote the path distance between i, j in A, defined

as the length of the shortest path between them, if one exists, and 8 otherwise. The

K-neighborhood of a unit i in A is denoted by N pi, Kq “ tj P Nn : ℓApi, jq ď Ku and

its size by npi, Kq “ |N pi, Kq|. We refer to the elements of N pi, Kqztiu for K “ 1 as

6
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i’s neighbors and the elements of the same set of K ą 1 as i’s higher-order neighbors.

A unit i’s degree is npi, 1q, the number of neighbors.

2 Setup

Let Nn “ t1, . . . , nu be the set of units connected through the network A. Each unit

i P Nn is endowed with unobservables pεi, νiq P R
dε ˆ R

dν and observables Xi P R
dx .

The model primitives determine outcomes and treatments according to

Yi “ gnpi,D,X,A, εq and Di “ hnpi,X,A,νq, (1)

respectively, where X “ pXiqni“1 is the matrix with ith row equal to X 1
i; Y , D, ε,

and ν are similarly defined; and tpgn, hnqunPN is a sequence of function pairs such

that each gnp¨q has range R and hnp¨q has range t0, 1u. The econometrician observes

pY ,D,X,Aq. Our analysis treats pA,X, ε,νq as random, but the asymptotic theory

in §4 conditions on pX,Aq to avoid imposing additional assumptions on its depen-

dence structure.2

We view the timing of the model as follows. First, nature draws the primitives

pA,X, ε,νq. Next, units select into treatment, potentially based on other units’

decisions, and hnp¨q is the reduced-form outcome of that process. Finally, gnp¨q is the

reduced form of the subsequent process that generates outcomes. Because gnp¨q and

hnp¨q may depend on the primitives of all units, the setup allows Yi and Di to be

outcomes of simultaneous-equations models with endogenous peer effects, as shown

in the next examples.

Example 1 (Linear-in-Means). Consider the outcome model

Yi “ α ` β

řn
j“1AijYj
řn
j“1Aij

`
řn
j“1AijZ

1
j

řn
j“1Aij

γ ` Z 1
jδ ` εi,

where Zi “ pDi, X
1
iq1 (Manski, 1993). The coefficient β captures endogenous peer

effects, the influence of neighbors’ outcomes on own outcomes, while γ captures ex-

ogenous peer effects, the influence of neighbors’ treatments and covariates. Letting Ã

2A design-based analysis would additionally condition on ε. This would generally preclude con-
sistent estimation of the nonparametric functions in the doubly robust estimator defined in §2.3.
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denote the row-normalized adjacency matrix and 1 the n-dimensional vector of ones,

if A is connected, the reduced form of the model can be written in matrix form as

Y “ α

1 ´ β
1 ` Zδ ` γβ

8
ÿ

k“0

βkÃk`1
Z `

8
ÿ

k“0

βkÃk
ε.

This characterizes Yi as a function gnpi,D,X,A, εq.

Example 2 (Binary Game). Consider the binary analog of Example 1 but for selec-

tion into treatment:

Di “ 1

#

α` β

řn
j“1AijDj
řn
j“1Aij

`
řn
j“1AijZ

1
j

řn
j“1Aij

γ ` Z 1
iδ ` νi ą 0

+

. (2)

Unlike Example 1, there may exist multiple equilibria. The equilibrium selection

mechanism is a reduced-form mapping from the primitives pX,A,νq to outcomes

D and therefore characterizes Di as a function hnpi,X,A,νq. This formulation

corresponds to a game of complete information. In a game of incomplete information,

as modeled by Xu (2018) for instance, a unit i’s information set is pνi,X,Aq. Here

an analog of (2) holds with each Dj replaced with σjpX,Aq, the equilibrium belief

that Dj “ 1. This characterizes Di as a function hnpi,X,A, νiq.

Example 3 (Diffusion). He and Song (2024) study the following two-period diffusion

model. Let Di denote i’s decision to adopt microfinance in period 0 and Yi its decision

in period 1. Their equations (2.4) and (3.6) posit that

Yi “ gnpDN pi,Kq, εiq and Di “ 1tW 1
iγ ą νiu,

whereWi is a known function of pX,Aq andK is the maximum distance that adoption

decisions can diffuse through the network between periods 0 and 1. We provide a more

detailed comparison of our models in §7.

Given specification (1), we define potential outcomes as

Yipdq “ gnpi,d,X,A, εq.

Confounding may arise first because Yipdq is potentially correlated with Di due to

8
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the high-dimensional observables pX,Aq and second because of dependence between

unobservables that drive outcomes ε and those that drive selection ν. We restrict the

second source of confounding.

Assumption 1 (Unconfoundedness). For any n P N, ε KK ν | X,A.

As discussed below, unconfoundedness conditions used in the existing literature addi-

tionally limit the first source of confounding to known summary statistics of pX,Aq.
Ours is analogous to standard formulations of unconfoundedness under SUTVA (εi K
K νi | Xi) since we do not impose further restrictions on the nature of observed

confounding.

Because the econometrician only observes a single network, a large-sample theory

requires restrictions on interference in order to obtain some form of weak dependence.

We next specify a nonparametric model of decaying interference that accommodates

the previous examples. For any S Ď Nn, let DS “ pDiqiPS, and similarly define XS

and other such submatrices. Let AS “ pAijqi,jPS denote the subnetwork of A on S,

formally the submatrix of A restricted to S. Recall that N pi, sq is the s-neighborhood

of i in A.

Assumption 2 (ANI). There exists a sequence of functions tpγnp¨q, ηnp¨qqunPN with

γn, ηn : R` Ñ R` such that supnPN maxtγnpsq, ηnpsqu sÑ8ÝÑ 0 and, for any n P N,

max
iPNn

E
“

|gnpi,D,X,A, εq

´ gnpi,sqpi,DN pi,sq,XN pi,sq,AN pi,sq, εN pi,sqq| | D,X,A
‰

ď γnpsq a.s. (3)

and

max
iPNn

E
“

|hnpi,X,A,νq ´ hnpi,sqpi,XN pi,sq,AN pi,sq,νN pi,sqq| | X,A
‰

ď ηnpsq a.s. (4)

This is analogous to the model of approximate neighborhood interference proposed

by Leung (2022a) but imposed on both the outcome and selection models. Whereas

gnpi, . . . q is unit i’s realized outcome, gnpi,sqpi, . . . q is its outcome under a counter-

factual “s-neighborhood model.” In the latter case, we fix all model primitives and

treatments at their realized values, drop units outside of N pi, sq from the model, and

direct the remaining units to interact according to the process gnpi,sqp¨q to produce

9
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counterfactual s-neighborhood outcomes.3 The error from approximating the ob-

served outcome with the s-neighborhood counterfactual is bounded by γnpsq, which

decays with the neighborhood radius s. This formalizes the idea that Yi is primarily

determined by units relatively proximate to i, so that the further a unit is from i, the

less it influences i’s outcome. The second equation imposes the analogous requirement

on Di.

Example 4. For the linear-in-means model in Example 1, an argument similar to

Proposition 1 of Leung (2022a) shows that (3) holds with supn γnpsq ď C|β|s for some

C ą 0. For the binary game in Example 2, an argument similar to Proposition 2 of

Leung (2022a) establishes (4) with supn ηnpsq decaying at an exponential rate with s.

Finally, for the He and Song (2024) diffusion model in Example 3, Yi only depends on

D through DN pi,Kq, so (3) holds with γnpsq “ c 1ts ă Ku for some universal constant

c. In their empirical application, they use own covariates as controls, so Wi “ Xi, in

which case (4) holds with ηnpsq “ 0 for all s.

2.1 Related Literature

The standard SUTVA model and unconfoundedness condition correspond to

Yi “ gpDi, Xi, εiq and εi KK Di | Xi. (5)

To generalize this setup to allow for network interference, the typical approach in the

existing literature is as follows. Define

Ti “ fnpi,D,Aq and Wi “ qnpi,X,Aq (6)

where fnp¨q and qnp¨q are known vector-valued functions. The effective treatment

(Manski, 2013) or exposure mapping (Aronow and Samii, 2017) Ti is a low-dimensional

function of the treatment assignment vector. The network controls Wi are low-

dimensional functions of the covariates. The literature commonly employs the neigh-

3This formulation of ANI is related to an estimation strategy proposed by Xu (2018) for binary
games on networks with incomplete information. His idea is to approximate an agent i’s strategy in
the n-agent game with its strategy in the counterfactual game restricted to i’s s-neighborhood.
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borhood interference model and unconfoundedness condition

Yi “ gpTi,Wi, εiq and εi KK Ti | Wi, (7)

which is a direct generalization of (5) (Emmenegger et al., 2022; Forastiere et al.,

2021; Ogburn et al., 2022). Here Ti entirely summarizes interference while Wi sum-

marizes confounding.

Common examples of Ti and Wi are

Ti “
˜

Di,

n
ÿ

j“1

AijDj

¸

and Wi “
˜

Xi,

n
ÿ

j“1

Aij ,

řn

j“1AijXj
řn
j“1Aij

¸

. (8)

This choice of Ti implies that Yi depends on D only through two statistics: own

treatment and the number of treated neighbors. Variation in the first component

identifies a direct treatment effect and variation in the second a spillover effect. Like

most exposure mappings used in the literature, this only depends on DN pi,1q, so the

outcome model (7) implies no interference beyond the 1-neighborhood. Likewise, this

choice of Wi implies no confounding beyond 1-neighborhood covariates.

More generally, one could restrict the outcome model to depend only on the K-

neighborhood treatments DN pi,Kq for some fixed threshold K. As shown by Leung

(2022a), this rules out economically interesting forms of interference such as endoge-

nous peer effects, which motivates the ANI condition (3). Furthermore, (7) assumes

the econometrician can correctly specify the summary statistic Ti in the outcome

model, which may be difficult to justify (Sävje, 2024).

Whereas Leung (2022a) and Sävje (2024) focus on randomized experiments, we

study observational data on economic agents that choose to select into treatment.

It then becomes important to specify a behavioral model rationalizing the choice of

controls Wi. Sánchez-Becerra (2022) is the first to provide such a model. Under

neighborhood interference (7) and an exposure mapping similar to (8), he shows that

it is sufficient to set Wi “ Xi, that is, to solely control for own covariates. Since much

of the literature utilizes controls such as (8), this raises the question of what model of

selection justifies their use or more broadly the use of “network controls” that depend

more generally on X and A.

Our model (1) provides an answer. The presence of complex interference in both

the outcome and treatment stages induces selection on pX,Aq, so that it is generally

11
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insufficient to control only for a simple summary statistic such as (8). Our outcome

model is considerably weaker than (7) because we do not require correct specification

of a low-dimensional function Ti of pD,Aq to restrict interference. Our unconfound-

edness condition (Assumption 1) is likewise considerably weaker than (7) because we

do not require correct specification of a low-dimensional function Wi of pX,Aq to

summarize confounding.

2.2 Estimand

Following much of the literature, we focus on estimands defined by exposure map-

pings, though the core idea of accounting for high-dimensional network confounding

using GNNs may potentially be applied to other estimands. Recall from the previous

subsection the definition of the exposure mapping Ti “ fnpi,D,Aq, where tfnunPN is

a sequence of functions each with range T , a discrete subset of Rdt . Let Mn Ď Nn

be a subset of the units and mn “ |Mn|. We study the estimand

τpt, t1q “ 1

mn

ÿ

iPMn

`

ErYi | Ti “ t,X,As ´ ErYi | Ti “ t1,X,As
˘

for t, t1 P T . This compares average outcomes of units under two different values

of the exposure mapping while adjusting for high-dimensional network confounders.

The comparison is restricted to a subpopulation Mn, the choice of which can be

important for ensuring overlap, as discussed below. Depending on the choice of fnp¨q,
t, and t1, τpt, t1q may capture an average treatment or spillover effect, as illustrated

in the examples below.

Example 5. Let Ti “ Di and Mn “ Nn. Then τp1, 0q compares average outcomes of

treated and untreated units using the full network, which measures the direct effect

of the treatment.

Example 6. Consider the exposure mapping

Ti “
˜

Di, 1

" n
ÿ

j“1

AijDj ą 0

*

¸

.

For t “ p0, 1q and t1 “ p0, 0q, τpt, t1q compares the average outcomes of untreated units

12
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with and without at least one treated neighbor, which captures a spillover effect. For

t “ p1, 0q and t1 “ p0, 0q, it compares the average outcomes of treated and untreated

units with no treated neighbors, which captures a treatment effect. For overlap, we

need to exclude units with zero degree since a treated neighbor occurs with probability

zero for such units. This is accomplished by choosing Mn to be the subset of units

whose degree npi, 1q ” |N pi, 1q| lies in some desired set excluding zero. That is,

choose some Γ Ď R`zt0u and

Mn “ ti P Nn : npi, 1q P Γu. (9)

Example 7. We obtain a more granular version of Example 6 by setting

Ti “
ˆ

Di,

n
ÿ

j“1

AijDj

˙

(10)

and Mn according to (9) with Γ “ tγu for some γ P N. If we choose γ “ 3, t “ p0, 2q
and t1 “ p0, 0q, then τpt, t1q takes the subpopulation of untreated units with degree

three units and compares those with two versus zero treated neighbors. For this

choice of t, t1, it is important to choose γ ě 2 for overlap since otherwise Ti “ t would

be a zero-probability event.

Our large-sample results pertain to the following subpopulations and exposure

mappings, which include the previous examples.

Assumption 3 (Exposure Mappings). Let Mn be given by (9) for some possibly

unbounded interval Γ Ď R`. For any t P T , there exist d P t0, 1u and a possibly

unbounded interval ∆ Ď Γ such that

1tTi “ tu “ 1

#

Di “ d,

n
ÿ

j“1

AijDj P ∆

+

.

In Example 6 for t “ p0, 1q, this holds for d “ 0, ∆ “ p0,8q, and Γ given in the

example. In Example 7 with t “ p0, 2q, this holds for d “ 0, ∆ “ r1.5, 2.5s, and

Γ “ r2.5, 3.5s.
We restrict to this class of mappings for two reasons. First, it includes the most

widely used examples in the literature, which are those presented above. Second, Di
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can be a complex function of pX,A,νq, and both Ti and Yi can be complex functions

of D, which makes it difficult to characterize the dependence structure necessary for

the application of a central limit theorem without additional structure.

Identification results in Leung (2024) provide conditions under which τpt, t1q has

a causal interpretation. The focus of our paper is estimation, so we provide only a

brief discussion here. Under the neighborhood interference model (7), τpt, t1q has a

transparent causal interpretation. In settings where (7) fails to hold, Leung (2024)

shows that τpt, t1q retains a causal interpretation under restrictions on interference

either in potential outcomes or selection into treatment. For example, suppose treat-

ment adoption follows a nonparametric game of incomplete information where νi is

unit i’s private information, so that Di “ hnpi,X,A, νiq (see Example 2). If pri-

vate information is independent across units conditional on pX,Aq, as is typically

assumed in structural analyses of the model (e.g. Lin and Vella, 2021; Xu, 2018), then

by Theorem 1 of Leung (2024) τpt, t1q can be written as a non-negatively weighted

average of certain unit-level effects.

Returning to the vaccine adoption example in §1, recall that, due to peer effects,

adoption decisions are potentially correlated across units even after adjusting for

low-dimensional network controls (6). However, under the model above, they are

independent if we fully control for pX,Aq, and as a result, τpt, t1q can identify a

causal effect. The remainder of this paper develops an estimation theory for τpt, t1q
with high-dimensional network controls.

2.3 Estimator

Define the generalized propensity score (Imbens, 2000) and outcome regression, re-

spectively, as

ptpi,X,Aq “ PpTi “ t | X,Aq and µtpi,X,Aq “ ErYi | Ti “ t,X,As. (11)

Let p̂tpi,X,Aq and µ̂tpi,X,Aq denote their respective GNN estimators, defined at the

end of §3.2. We use a standard doubly robust estimator for multi-valued treatments

τ̂pt, t1q “ 1

mn

ÿ

iPMn

τ̂ipt, t1q,
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where

τ̂ipt, t1q “ 1tTi “ tupYi ´ µ̂tpi,X,Aqq
p̂tpi,X,Aq ` µ̂tpi,X,Aq

´ 1tTi “ t1upYi ´ µ̂t1pi,X,Aqq
p̂t1pi,X,Aq ´ µ̂t1pi,X,Aq.

To estimate the asymptotic variance, we use the network HAC estimator

σ̂2 “ 1

mn

ÿ

iPMn

ÿ

jPMn

pτ̂ipt, t1q ´ τ̂pt, t1qqpτ̂jpt, t1q ´ τ̂pt, t1qq1tℓApi, jq ď bnu

(Kojevnikov et al., 2021). The particular choice of a uniform kernel is discussed after

Theorem 2 in §4. We propose the bandwidth

bn “ rb̃ns for b̃n “
#

1

4
LpAq if LpAq ă 2 logn

log δpAq
,

LpAq1{4 otherwise,
(12)

where r¨s rounds up to the nearest integer, δpAq “ n´1
ř

i,j Aij is the average degree,

and LpAq is the average path length.4 This is similar to the proposal of Leung (2022a)

but with constants adjusted to account for the first-stage estimates. In §B.2 of the

appendix, we verify high-level assumptions needed to characterize the asymptotic

properties of σ̂2 (see Assumption 7) under the choice of bandwidth (12).

3 Graph Neural Networks

Consider the problem of estimating a nonparametric function of network position

fpi,X,Aq. A GNN estimator for fp¨q is a parameterized function that maps pX,Aq
to a vector of estimates, pf̂pi,X,Aqqni“1. In §3.1 we define the standard GNN archi-

tecture. In §3.2, we define GNN estimators for the nuisance functions in (11). As we

will discuss, GNN architectures impose a nonparametric shape restriction on f̂ called

permutation invariance whose economic content we study in §3.3.

4We assume δpAq ą 1, as is typical in practice. By the average path length, we mean the average
over all unit pairs in the largest component of A. A component is a connected subnetwork such that
all units in the subnetwork have infinite path distance to non-members of the subnetwork.
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3.1 Architecture

The standard GNN architecture consists of nested, parameterized, vector-valued func-

tions called neurons that are arranged in L layers with n neurons per layer. Let h
plq
i

denote the ith neuron in layer l, which may be interpreted as unit i’s node embedding,

a Euclidean representation of its network position. As we progress to higher-order

layers, say h
plq
i to h

pl`1q
i , i’s embedding becomes richer in a sense discussed below.

This idea is common to most modern neural network architectures, that of modeling

some complex object as a Euclidean vector with learnable parameters, be it a node’s

network position (GNNs), a subregion of an image (CNNs), or the meaning of a word

or sentence (transformers).

Connections between neurons in different layers are determined by A through the

following “message-passing” architecture. For layers l “ 1, . . . , L,

h
plq
i “ Φ0l

´

h
pl´1q
i , Φ1l

`

h
pl´1q
i , thpl´1q

j : Aij “ 1u
˘

¯

, (13)

where Φ0lp¨q,Φ1lp¨q are parameterized, vector-valued functions, examples of which are

provided below. We initialize the process with h
p0q
i “ Xi at the input layer, meaning

that the initial node embedding incorporates no network information. In subsequent

layers, unit i’s node embedding is a function of its 1-neighborhood’s embeddings in

the previous layer and therefore incorporates increasingly more network information

as l increases. Neurons in the “hidden layers” l “ 1, . . . , L´1 typically have the same

dimension, and the final output is phpLq
i qni“1 P R

n. We next highlight some important

properties.

1. The second argument of the aggregation function Φ1lp¨q is the “multiset” (a set

with possibly repeating elements) consisting of the node embeddings of the ego’s

1-neighborhood. Because multisets are by definition unordered, the labels of the

units are immaterial, so the output of each layer is permutation invariant in the

sense that the output remains the same under any labeling of the units.

2. The depth L of a GNN determines the L-neighborhood pXN pi,Lq,AN pi,Lqq used

to predict Yi. To see this, it helps to understand why a GNN layer (13) is

often referred to as a “round of message passing.” In this metaphor, h
plq
j is the

information, or message, held by unit j at step l of the process. Messages are

successively diffused to neighbors of j at the next step l ` 1 and neighbors of
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neighbors at step l`2, etc., since at each step, each unit aggregates the messages

of its neighbors. This is reminiscent of DeGroot learning (DeGroot, 1974) but

with more general aggregation functions. Since we initialize the process at

h
p0q
i “ Xi, the final output h

pLq
i is only a function of pXN pi,Lq,AN pi,Lqq.

3. Both Φ0lp¨q and Φ1lp¨q depend on the dimension of covariates dx but not the

number of units. Accordingly, for any fixed architecture, a GNN can take as

input a network of any size, provided unit-level covariates are of the same di-

mension dx. The dimensionality of the parameter space is determined not by

the size of the input network but rather by L and the number of parameters in

each of the parameterized functions Φ0lp¨q,Φ1lp¨q.

The choices of Φ0lp¨q,Φ1lp¨q define different GNN architectures, two of which we

discuss next.

Example 8 (GIN). Theoretical results on GNNs commonly pertain to the “graph

isomorphism network” architecture

h
plq
i “ φ0l

˜

h
pl´1q
i ,

n
ÿ

j“1

Aijφ1lphpl´1q
j q

¸

,

where φ0lp¨q, φ1lp¨q are nonparametric sieves such as multilayer perceptrons (MLPs).

The use of sum aggregation in the second argument is motivated by the key insight

that any injective function Φ1lpSq of a multiset S can be written as gpřsPS fpsqq for

some functions f, g when Xi has countable support (Xu et al., 2018). By approxi-

mating the unknown f and g with sieves, this architecture can approximate a large

nonparametric function class, as discussed in §A.1.

Example 9 (PNA). Our simulations and empirical application utilize the “principal

neighborhood aggregation” architecture due to Corso et al. (2020), which generalizes

many available architectures by using multiple aggregation functions:

h
plq
i “ φ0l

´

h
pl´1q
i , Γptφ1lphpl´1q

i , h
pl´1q
j q : Aij “ 1uq

¯

,

where φ0lp¨q, φ1lp¨q are sieves such as MLPs and Γp¨q is a possibly vector-valued func-

tion. The theoretical motivation is that the representation in Example 8 using sum
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aggregation no longer holds when the support of Xi is uncountable, so using multiple

aggregators can result in more powerful architectures (Corso et al., 2020).

For an example of Γp¨q, let µp¨q, σp¨q,Σp¨q,minp¨q, and maxp¨q be respectively the

mean, standard deviation, sum, min, and max functions, defined component-wise for

multisets of vectors. Then setting Γp¨q “ Γ1p¨q for

Γ1p¨q “
´

µp¨q σp¨q Σp¨q minp¨q maxp¨q
¯

results in an architecture utilizing five aggregation functions.

The authors combine multiple aggregators with “degree scalars” that multiply

each aggregation function by a function of the size of the multiset input npi, 1q.
The simplest example is the identity scalar, which maps any multiset to unity. This

trivially multiplies each aggregation function in Γ1p¨q above, but it is useful to consider

non-identity scalars. Let |¨| be the function that takes as input a multiset and outputs

its size. Corso et al. (2020) define logarithmic amplification and attenuation scalers

Sp¨, αq “
ˆ

logp|¨| ` 1q
δ

˙α

, δ “ 1

n

n
ÿ

i“1

log

˜

n
ÿ

j“1

Aij ` 1

¸

, α P r´1, 1s.

The choice of α defines whether the scalar “amplifies” (α “ 1) or “attenuates” (α “
´1) the aggregation function, and α “ 0 is the identity scalar. The purpose of

the logarithm is to prevent small changes in degree from amplifying gradients in an

exponential manner with each successive GNN layer. Thus, an aggregation function

that augments Γ1p¨q with logarithmic amplification and attenuation is

Γ2p¨q “
´

Sp¨, 0q Sp¨, 1q Sp¨,´1q
¯

â

Γ1p¨q,

where
Â

denotes the tensor product, resulting in 15 aggregation functions.

3.2 Estimator

Let FGNNpLq denote the set of all GNNs with L layers ranging over all possible

functions Φ0lp¨q,Φ1lp¨q for l “ 1, . . . , L within some function class (see Examples 8

and 9). For any f P FGNNpLq, we let fpi,X,Aq denote its ith component, which

corresponds to h
pLq
i . A GNN estimator is a function in this set that minimizes a loss
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function ℓp¨q:
f̂GNN P argmin

fPFGNNpLq

ÿ

iPMn

ℓpYi, fpi,X,Aqq. (14)

For Yi P R, we may use squared-error loss

ℓpYi, fpi,X,Aqq “ 0.5pYi ´ fpi,X,Aqq2,

in which case f̂GNNpX,Aq estimates f˚pX,Aq “ pErYi | X,Asqni“1. For Yi P t0, 1u,
we may use the logistic loss

ℓpYi, fpi,X,Aqq “ ´Yifpi,X,Aq ` logp1 ` exppfpi,X,Aqqq,

in which case f̂GNNpX,Aq estimates the log odds f˚pX,Aq “ plogpErYi | X,As{p1´
ErYi | X,Asqqqni“1.

Returning to the doubly robust estimator in §2.3, to estimate the outcome re-

gression with R-valued outcomes, we restrict the sum in (14) to the set of units i for

which Ti “ t and use squared-error loss to obtain µ̂tpi,X,Aq “ f̂GNNpi,X,Aq. To

estimate the generalized propensity score, we replace Yi in (14) with 1tTi “ tu and

use logistic loss to obtain

p̂tpi,X,Aq “ exppf̂GNNpi,X,Aqq
1 ` exppf̂GNNpi,X,Aqq

.

3.3 Invariance

Modern neural network architectures often incorporate prior information in the form

of input symmetries to reduce the dimensionality of the parameter space (Bronstein et al.,

2021). Convolutional neural networks (CNNs), widely used in image recognition, pro-

cess grid-structured inputs and impose translation invariance. GNNs process graph-

structured inputs and impose permutation invariance.

Define a permutation as a bijection π : Nn Ñ Nn. Abusing notation, we write

πpXq “ pXπpiqqni“1, which permutes the rows of matrix X according to π, and similarly

define πpDq and permutations of other such arrays. Likewise, we write πpAq “
pAπpiqπpjqqi,jPNn

, which permutes the rows and columns of the matrix A. We say a

function fpi,X,Aq is (permutation-)invariant if for any bijection π : Nn Ñ Nn and

input pi,X,Aq, we have fpi,X,Aq “ fpπpiq, πpXq, πpAqq.
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As discussed in §3.1, any f P FGNNpLq is invariant, so by using GNNs to esti-

mate the nuisance functions (11), we are implicitly requiring that they are invariant

functions. We next argue that this is an extremely weak and natural requirement.

First consider that we have thus far imposed few restrictions on the distribu-

tion of primitives, so the nuisance functions in (11) may depend arbitrarily on the

unit label i. Computing τ̂pt, t1q would then require estimating, for example, n dis-

tinct propensity score functions pptpi,X,Aqqni“1, which is infeasible. The literature

on neighborhood interference (7) avoids this problem by imposing the additional re-

striction that ptpi,X,Aq “ ppWiq for some function pp¨q that does not depend on i.

That is, units are observationally equivalent if they have identical controls Wi, and

observationally equivalent units have identical probabilities of being assigned to an

exposure mapping realization of t.

In our setting, Wi is insufficient to account for confounding. The natural gener-

alization is to require assignment probabilities to be equivalent for units that have

isomorphic network positions. That is, ptpi,X,Aq “ ptpj,X,Aq if for some per-

mutation π, pj,X,Aq “ pπpiq, πpXq, πpAqq. This is exactly what it means for the

propensity score to be invariant.

Invariance is substantially weaker than the restriction employed under neighbor-

hood interference. To see this, consider Figure 1, where each unit i has a binary

covariate Xi that is an indicator for its color being gray, and let Wi be given as in

(8). Then W4 “ W5, but units 4 and 5 are not isomorphic (they would have been

had units 2 and 3 been unlinked). Whereas the literature requires units 4 and 5 to

have identical propensity scores, our invariance condition does not.

1

4

2

5

3

Figure 1: Units 4 and 5 are not isomorphic.

If the propensity score is invariant, this reduces our problem from estimating n

separate scores to estimating only one because, for any i, there exists a permutation

πi (in particular the one that only permutes units 1 and i) such that ptpi,X,Aq “
ptp1, πipXq, πipAqq and similarly for µtp¨q. The right-hand side is a function ptp1, ¨, ¨q
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that does not depend on i, so evaluating i’s propensity score is now only a matter of

supplying the correct i-specific inputs pπipXq, πipAqq.
We close this section with a result demonstrating that invariance is an extremely

weak requirement. In particular, it holds under minimal exchangeability conditions

on the structural primitives.

Proposition 1. Suppose for any n P N and permutation π,

fnpi,D,Aq “ fnpπpiq, πpDq, πpAqq,
gnpi,D,X,A, εq “ gnpπpiq, πpDq, πpXq, πpAq, πpεqq, and

hnpi,X,A,νq “ hnpπpiq, πpXq, πpAq, πpνqq

a.s., and pA,X, ε,νq d“ pπpAq, πpXq, πpεq, πpνqq. Then for any t P T , ptp¨q and

µtp¨q in (11) are invariant functions.

Proof. See §D.

The first three equations impose invariance on pfn, gn, hnq. Applied to fn, this is a

restriction on the choice of exposure mapping. It is satisfied by most, if not all, such

mappings used in the literature, including those satisfying Assumption 3. Applied to

pgn, hnq, invariance only says that unit identities do not influence behavior beyond

the model primitives pA,X, ε,νq, which is the case for virtually all models used in

the literature. The final requirement says that these model primitives are themselves

distributionally invariant, which is a weak condition in superpopulation settings since

unit labels carry no intrinsic meaning.

4 Asymptotic Theory

We next characterize the asymptotic properties of τ̂pt, t1q and σ̂2 under a sequence of

models sending n Ñ 8. Along this sequence, the functions pfn, gn, hnq may obviously

vary, as may the distribution of the model primitives pA,X, ε,νq, subject to the
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conditions imposed below. Define

ϕt,t1piq “ 1tTi “ tupYi ´ µtpi,X,Aqq
ptpi,X,Aq ` µtpi,X,Aq

´ 1tTi “ t1upYi ´ µt1pi,X,Aqq
pt1pi,X,Aq ´ µt1pi,X,Aq ´ τpt, t1q,

whose average over i P Mn is the doubly robust moment condition, and let

σ2
n “ Var

˜

1?
mn

ÿ

iPMn

ϕt,t1piq
ˇ

ˇ

ˇ

ˇ

X,A

¸

.

Assumption 4 (Moments). (a) There exists M ă 8 and p ą 4 such that for any

n P N, i P Nn, and d P t0, 1un, Er|Yipdq|p | X,As ă M a.s. (b) There exists

rπ, πs Ă p0, 1q such that p̂tpi,X,Aq, ptpi,X,Aq P rπ, πs and mn{n ě π a.s. for all

n P N, i P Mn, t P T . (c) lim infnÑ8 σ
2
n ą 0 a.s.

Part (b) requires sufficient overlap for the propensity scores. Under Assumption 3,

this holds if Γ is a bounded set. Part (b) further imposes overlap on the propensity

score estimator, which is common in the double machine learning literature (e.g.

Chernozhukov et al., 2018; Farrell, 2018; Farrell et al., 2021). It also requires that

Mn is a nontrivial subset of Nn. Part (c) is a standard non-degeneracy condition.

Assumption 5 (GNN Rates). For any t P T , bothm´1
n

ř

iPMn
pp̂tpi,X,Aq´ptpi,X,Aqq2

and m´1
n

ř

iPMn
pµ̂tpi,X,Aq ´ µtpi,X,Aqq2 are opp1q, their product is oppn´1q, and

m´1
n

ř

iPMn
pµ̂tpi,X,Aq ´ µtpi,X,Aqqp1 ´ 1tTi “ tuptpi,X,Aq´1q “ oppn´1{2q.

These are standard conditions (e.g. Assumption 3 of Farrell, 2018) for machine learn-

ers. Farrell et al. (2021) provide primitive conditions for MLPs under i.i.d. data.

Theoretical properties of GNNs are the subject of a very recent field of research, and

to our knowledge, the literature lacks several key intermediate results required for

deriving primitive conditions, especially under network dependence. In §5, we obtain

primitive conditions for a network analog of approximate sparsity, which shows that

the effective dimension of the estimation problem is low. In §A.1 of the appendix, we

reframe and combine several theoretical results in the GNN literature to show that

GNNs can approximate functions in a large nonparametric class.
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The next assumption is used to show that tϕt,t1piquni“1 is ψ-dependent (see Definition C.1,

which is due to Kojevnikov et al., 2021) to apply a central limit theorem. It imposes

restrictions on the rate at which a certain dependence measure decays relative to the

growth rate of network neighborhoods. Define

N Bpi, sq “ tj P Nn : ℓpi, jq “ su and δB
nps; kq “ 1

n

n
ÿ

i“1

|N Bpi, sq|k,

respectively i’s s-neighborhood boundary and the kth moment of the s-neighborhood

boundary size. Let

∆nps,m; kq “ 1

n

n
ÿ

i“1

max
jPN Bpi,sq

|N pi,mqzN pj, s´ 1q|k,

cnps,m; kq “ inf
αą1

∆nps,m; kαq1{αδB
nps;α{pα´ 1qq1´1{α, and

ψnpsq “ max
iPNn

`

γnps{4q ` ηnps{4q
`

1 ` npi, 1q ` Λnpi, s{4qnpi, s{4q
˘˘

, (15)

where Λnpi, s{4q is a constant defined in the next assumption. The second quantity

measures network density. The third bounds the covariance between ϕt,t1piq and

ϕt,t1pjq when ℓApi, jq ď s. Lastly, define

Gnpi,dN pi,sqq “ Ergnpi,sqpi,dN pi,sq,XN pi,sq,AN pi,sq, εN pi,sqq | X,As.

Assumption 6 (Weak Dependence). (a) tpεi, νiquni“1 is independently distributed con-

ditional on pX,Aq. (b) For any n P N, i P Nn, s ě 0, and d,d1 P t0, 1un,

|Gnpi,dN pi,sqq ´ Gnpi,d1
N pi,sqq| ď Λnpi, sq

ÿ

jPN pi,sq

|dj ´ d1
j| a.s.

for some constant Λnpi, sq that may depend on pX,Aq. (c) supnPN maxsě1 ψnpsq ă 8
a.s. (d) For p in Assumption 4(a), some positive sequence vn Ñ 8 and any k P t1, 2u,

1

nk{2

8
ÿ

s“0

cnps, vn; kqψnpsq1´p2`kq{p Ñ 0, n3{2ψnpvnq1´1{p Ñ 0, and

lim sup
nÑ8

8
ÿ

s“0

δB
nps; 2q1{2γnps{2q1´2{p ă 8 a.s. (16)
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Parts (a) and (b) are used to establish that tϕt,t1piquni“1 is ψ-dependent. Part (b)

is a Lipschitz condition that holds if potential outcomes are uniformly bounded. In

particular we can take Λnpsq “ 2M where M is the uniform bound on the ranges

of tgnunPN. Part (a) facilitates the task of verifying ψ-dependence given that treat-

ments are complex functions of unobservables and Yi and Ti are complex functions

of treatments. It can be relaxed to ψ-dependence under additional smoothness con-

ditions on gn, hn (Kojevnikov et al., 2021, Proposition 2.5). The simulation study in

§6 provides evidence that our methods can perform well when unobservables exhibit

network dependence.

Perhaps the most substantive requirement is (d), which regulates the asymptotic

behavior of three quantities in (16). The first two correspond to Condition ND of

Kojevnikov et al. (2021), which they utilize to establish a CLT. The third is simi-

lar and used to asymptotically linearize the doubly robust estimator under network

dependence. We illustrate how to verify (16) in §B.1.

Theorem 1. Under Assumptions 1–6,

σ´1{2
n

?
mn

`

τ̂ pt, t1q ´ τpt, t1q
˘ dÝÑ N p0, 1q.

Proof. See §D.

The next result characterizes the asymptotic properties of σ̂2. Similar to the

design-based setting of Leung (2022a), it is not guaranteed to be consistent due to

conditioning on pX,Aq. However, as in that setting, we can make the case that it is

typically asymptotically conservative. Define

Jnps,mq “
 

pi, j, k, lq P N 4
n : k P N pi,mq, l P N pj,mq, ℓApi, jq “ s

(

.

Assumption 7 (HAC). (a) For some M ą 0 and all n P N, i P Nn, and t P
T , |maxtYi, µ̂tpi,X,Aqu| ă M a.s. (b) m´1

n

ř

iPMn
pp̂tpi,X,Aq ´ ptpi,X,Aqq2 and

m´1
n

ř

iPMn
pµ̂tpi,X,Aq´µtpi,X,Aqq2 are oppn´1{2q. (c) For some ǫ P p0, 1q and bn Ñ

8, limnÑ8 n
´1

ř8
s“0 cnps, bn; 2qψnpsq1´ǫ “ 0 a.s. (d) n´1

řn
i“1 npi, bnq “ opp

?
nq. (e)

n´1
řn
i“1 npi, bnq2 “ Opp

?
nq. (f)

řn
s“0|Jnps, bnq|ψnpsq “ opn2q.

Part (a) strengthens Assumption 4(a) to uniformly bounded outcomes. Part (b)
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strengthens Assumption 5(b) but only mildly since we nonparametrically estimate

both nuisance functions. Since it does not require uniform convergence, it is more

readily verifiable for machine learning estimators. Part (c) is Assumption 4.1(iii) of

Kojevnikov et al. (2021). Parts (d)–(f) correspond to Assumptions 7(b)–(d) of Leung

(2022a), which are used to characterize the bias of the variance estimator. We discuss

verification of (c)–(f) in §B.2; the derivations there show that (f) is closely related to

(c).

Theorem 2. Define ϕ̃t,t1piq by replacing τpt, t1q in the definition of ϕt,t1piq with τipt, t1q “
ErYi | Ti “ t,X,As ´ ErYi | Ti “ t1,X,As. Let

σ̂2
˚ “ 1

mn

ÿ

iPMn

ÿ

jPMn

ϕ̃t,t1piqϕ̃t,t1pjq1tℓApi, jq ď bnu and

Rn “ 1

mn

ÿ

iPMn

ÿ

jPMn

pτipt, t1q ´ τpt, t1qqpτjpt, t1q ´ τpt, t1qq1tℓApi, jq ď bnu.

Under Assumption 7 and the assumptions of Theorem 1,

σ̂2 “ σ̂2
˚ ` Rn ` opp1q and |σ̂2

˚ ´ σ2
n|

pÝÑ 0.

Proof. See §D.

This extends Proposition 4.1 of Kojevnikov et al. (2021) and Theorem 4 of Leung

(2022a) to accommodate first-stage estimators. As in the latter theorem, σ̂2 is asymp-

totically biased by Rn.

Note that the HAC estimator σ̂2 uses the uniform kernel 1tℓApi, jq ď bnu. Leung

(2019) first observed that if a positive semidefinite kernel were used instead, then Rn ě
0, so that σ̂2 would be asymptotically conservative without any further conditions.

However, all available positive semidefinite kernels are sloped, and in simulations in

past work, we have found that the uniform kernel controls size substantially better

than all sloped alternatives because it does not downweight the covariances of units

near the ego. This is why we recommend its use even though it does not guarantee

positive semidefiniteness without further conditions.

Observe that Rn is a HAC estimate of the variance of the unit-level contrasts

τipt, t1q. It should therefore well approximate Varpm´1{2
n

ř

iPMn
τipt, t1qq ě 0, in which
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case σ̂2 would be asymptotically conservative. This can be formalized under additional

weak dependence conditions on the superpopulation as in §A of Leung (2022b).

5 Approximate Sparsity

As discussed in §3, the number of layers L in a GNN determines its receptive field,

the neighborhood pXN pi,Lq,AN pi,Lqq used to construct i’s estimate. The choice of

L depends on prior information about the function being estimated, in our case

assumptions about interference. In practice, it is common to choose a small value,

which results in a receptive field that excludes most of the network. This has been

found to achieve better predictive performance than deep architectures with large L

(see §6 and §A.2 for further discussion). In this section, we establish a network analog

of approximate sparsity, which provides low-dimensional structure that justifies the

use of shallow architectures and makes estimation of the nuisance functions feasible.

Recalling the architecture definition in (13), let dkl be the number of parameters

in Φklp¨q for k P t0, 1u, so that
řL

l“1pd0l ` d1lq is the number of parameters in any

element of FGNNpLq used to approximate a target nuisance function.

Definition 1. Let L “ Ln be a possibly diverging sequence of GNN depths. Network

approximate sparsity holds if the following conditions are satisfied for any t P T .

(a) The error from approximating the high-dimensional propensity score with its L-

neighborhood analog is small:

1

mn

ÿ

iPMn

`

ptpi,X,Aq ´ ptpi,XN pi,Lq,AN pi,Lqq
˘2 “ oppn´1{2q (17)

and similarly for the outcome regression µtp¨q. (b) FGNNpLq is low-dimensional in

that
řL
l“1pd0l ` d1lq “ op?

nq.

5.1 Lasso Analogy

To motivate the definition, we draw an analogy to approximate sparsity conditions

in the lasso literature. Let hpXiq “ ErYi | Xis, and consider a lasso regression of Yi

on a vector of basis functions P pXiq. For the lasso prediction P pXiq1β̂ to be a good
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estimate of hpXiq, we require

1

n

n
ÿ

i“1

pP pXiq1β̂ ´ hpXiqq2 “ oppn´1{2q. (18)

To verify this, it is common to impose approximate sparsity, which consists of two

conditions (e.g. Belloni et al., 2014).

(a) There exists β such that n´1
řn
i“1pP pXiq1β ´ hpXiqq2 “ oppn´1{2q.

(b) ‖β‖0 “ op?
nq.

Definition 1 mirrors these conditions, which posit that hp¨q has an approximation

P p¨q1β that can be estimated with a relatively low-dimensional regression.

Example 10. Suppose hpXiq “ ř8
j“1

PjpXiqθj with |θj |
jÑ8ÝÑ 0. That is, one can

order the regressors P1pXiq, . . . , PmpXiq such that their corresponding true regression

coefficients decay to zero. Then the outcome depends primarily on the first few

regressors despite m being potentially high-dimensional. This satisfies (a) and (b)

above given a sufficiently quick rate of decay (Belloni et al., 2014, §4.1.2).

The main idea in our setting is that the dependence of Yi and Di on other units

decays with network distance under ANI (Assumption 2). That is, these quantities

primarily depend on pXN pi,Lq,AN pi,Lqq for some small radius L, which is analogous

to Example 10. We may then approximate ptpi,X,Aq with the lower-dimensional

estimand ptpi,XN pi,Lq,AN pi,Lqq, which we can directly estimate with an L-layer GNN.

5.2 Primitive Conditions

We next provide primitive conditions for network approximate sparsity. The primary

condition is ANI, but this alone is insufficient to show ptpi,X,Aq « ptpi,XN pi,Lq,AN pi,Lqq.
The latter drops from the conditioning event the subnetwork external to the L-

neighborhood, which requires a form of conditional independence. While ANI says

that outcomes and treatments primarily depend on units in a relatively small neigh-

borhood, their primitives may be correlated with those of units far from the neighbor-

hood. We consider it reasonable to assume, in the spirit of ANI, that this correlation

instead decays with distance, which is the substance of the next condition.
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Assumption 8 (Approximate CI). There exist a sequence of functions tλnp¨qunPN

with λn : R` Ñ R` and a linear function rλ : R` Ñ R` such that supnPN λnpsq sÑ8ÝÑ 0,

rλpsq ě s for all s P R`, and

|ErfpεN pi,sq,νN pi,sqq | X,As ´ ErfpεN pi,sq,νN pi,sqq | XN pi,rλpsqq,AN pi,rλpsqqs| ď λnpsq

a.s. for any n P N, i P Nn, s ě 0, and R-valued, bounded, measurable function fp¨q.

This is perhaps simplest to understand in the case where rλ is the identity function.

Then the assumption requires that the unobservables of an s-neighborhood are ap-

proximately conditionally independent of the network outside of this neighborhood,

where the approximation error is shrinking with the radius s. More generally, we

can allow the s-neighborhood to be approximately conditionally independent of the

network outside the greater rλpsq-neighborhood for rλpsq ě s.

Example 11. Suppose there exist K ě 0, a vector-valued function Hp¨q, and a

random vector U independent of pX,Aq such that pεi, νiq “ HpU ,XN pi,Kq,AN pi,Kqq
for all i. Then Assumption 8 holds with rλpsq “ s ` K and λnpsq “ 0 for all s. Here

unobservables all depend on the same common shock U , which serves to illustrate that

they need not be conditionally independent across units to satisfy the assumption.

The unobservables depend on the observables only through the ego’sK-neighborhood,

so for example, εi could be larger if i’s K-neighborhood contains more units of a

certain type, which induces observed confounding.

Example 12. Suppose εi “ vn,1pi,X,A,Uq and νi “ vn,2pi,X,A,Uq for U “
pUiqni“1, an array of (possibly dependent) unit-level shocks that are independent of

pX,Aq. Unlike, the previous example, we have high-dimensional confounding. Simi-

lar to the models for Yi and Di, both εi and νi can be the outputs of network autore-

gressive models such as Example 1 or game-theoretic models such as Example 2. We

can reparameterize model (1) as Yi “ gnpi,D,X,A, εq ” g̃npi,D,X,A,Uq and sim-

ilarly Di “ h̃npi,X,A,Uq. Now suppose ANI holds for the reparameterized model,

that is, replacing pgn, hnq with pg̃n, h̃nq and ε and ν with U in the statement of

Assumption 2. This jointly imposes a version of ANI on the outcome, selection, and

random shock models vn,1, vn,2. Since U KK pX,Aq by supposition, Assumption 8

holds for the reparameterized model with rλpsq “ s and λnpsq “ 0 for all s.
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Example 13. Consider a dyadic network formation model analogous to the one used

by Sánchez-Becerra (2022) where Aij “ 1tV pXi, Xj, ζijq ą 0u for R-valued V p¨q and

tζijuiăj is a set of i.i.d. random variables independent of pX, ε,νq. Suppose there

exists a function Hp¨q and unit-level shocks U “ pUiqni“1 independent of all other

primitives such that pεi, νiq “ HpUi, Xiq. Then Assumption 8 holds with rλpsq “ s

and λnpsq “ 0 for all s. Since Assumption 8 only requires approximate independence,

it may be possible to verify when links are weakly dependent as in some models of

strategic network formation (e.g. Leung and Moon, 2023).

We now state our main result, which provides primitive conditions for Definition 1(a).

Notably, it sets L to be order logn, which quantifies the sense in which we can allow

for shallow GNN architectures.

Theorem 3. Suppose Assumptions 2, 3, and 8 hold, supnmaxtλnpsq, γnpsq, ηnpsqu “
Ope´αsq as s Ñ 8 for some α ą 0, and n´1

řn

i“1 npi, 1q2 “ Opp1q. Then (17) holds if

L “ rλ
`

pp4 ´ ǫqαq´1 log n` 1
˘

for some ǫ P p0, 4q. Further suppose supnPN n
´1

řn

i“1 npi, sq2 “ Oppeξsq as s Ñ 8 for

some ξ ă α. Under Assumptions 1, 4(b), and 7(a), the analog of (17) holds for µtp¨q
if instead L “ rλ

`

pp2 ´ ǫqpα ´ ξqq´1 log n` 1
˘

for some ǫ P p0, 2q.

Proof. See §D.

The specifications of L given in the theorem are not feasible, being dependent on

unknowns rλp¨q and α. This is similar to how finite-sample bounds for the lasso

require restrictions on the penalty parameter involving unknown constants. In §6, we

illustrate the performance of different choices of L in simulations.

The first half of the theorem concerns the propensity score, and the assumptions

are simple to verify. First, it requires exponential decay of the interference bounds in

Assumption 2, which holds in Example 4. Second, real-world networks are typically

sparse, usually formalized as n´1
řn
i“1 npi, 1q “ Opp1q, which the theorem mildly

strengthens to a second-moment condition. The second half of the theorem concerns

µtp¨q. The requirement n´1
řn

i“1 npi, sq2 “ Oppeξsq for ξ ă α says s-neighborhoods

grow at a slower rate ξ than interference α decays. The same type of condition is
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required for a central limit theorem, as discussed in §4 and §B.

Our final result provides primitive conditions for Definition 1(b).

Proposition 2. Suppose the GNN architecture is given by either Example 8 or 9,

and we choose L “ Oplognq GNN layers. For some κ ă 1{4, suppose for each layer

l and k P t0, 1u that φklp¨q is an MLP with width Opnκ log2 nq and depth Oplognq,
uniformly in l. Then Definition 1(b) holds.

Proof. The rate conditions on the MLP widths and depths correspond to those

of Farrell et al. (2021). These choices result in order ρn “ n2κ log5 n parameters for

each MLP uniformly across l (Farrell et al., 2021, p. 187). Then the number of GNN

parameters is
řL
l“1pd0l ` d1lq “ OpLρnq, which is op?

nq given that κ ă 1{4 and

L “ Oplognq.

6 Simulation Study

We design a monte carlo study to serve three purposes. The first is to illustrate

the finite-sample properties of our proposed estimators for different choices of L. The

second is to compare the performance of GNNs to that of commonly used prespecified

controls based on model (7). The third is to demonstrate that shallow GNNs can

perform well even on “wide” networks that ordinarily would require many layers in

the absence of an approximate sparsity result.

6.1 Design

We simulate A from two random graph models. The random geometric graph model

sets Aij “ 1t‖ρi ´ ρj‖ ď rnu for tρiuni“1

iid„ Upr0, 1s2q and rn “ p5{pπnqq1{2, where π is

the transcendental number. The Erdős-Rényi model sets Aij
iid„ Berp5{nq. Both have

limiting average degree equal to five. The former model results in “wide” networks

with high average path lengths that grow at a polynomial rate with n, while the latter

results in low average path lengths of logn order. For n “ 2000, the average path

length is about 39.5 for random geometric graphs and 4.9 for Erdős-Rényi graphs.

Independent of A, we draw tεiuni“1

iid„ N p0, 1q, tνiuni“1

iid„ N p0, 1q, and tXiuni“1

iid„
Upt0, 0.25, 0.5, 0.75, 1uq, with all three mutually independent. For some vectors W “
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pWiqni“1 and ν “ pνiqni“1, define

VipW ,ν; θq “ α` β

řn

j“1AijWj
řn

j“1Aij
` δ

řn

j“1AijXj
řn

j“1Aij
` γXj ` νi `

řn

j“1Aijνj
řn

j“1Aij

where θ “ pα, β, δ, γq. We generate tYiuni“1 from the linear-in-means model, where

Yi “ VipY , ε; θyq and θy “ p0.5, 0.8, 10,´1q. We generate tDiuni“1 according to

Example 2, so that Di “ 1tVipD,ν; θdq ą 0u with θd “ p´0.5, 1.5, 1,´1q. The

equilibrium selection mechanism is myopic best-response dynamics starting from the

initial condition tD0
i uni“1 for D0

i “ 1tVip0,ν; θdq ą 0u.
The design induces a greater degree of dependence than what our assumptions

allow. The error term νi`
řn

j“1Aijνj{
řn

j“1Aij is not conditionally independent across

units unlike what Assumption 6(a) requires. Also, back-of-the-envelope calculations

indicate that peer effects are sufficiently large in magnitude that Assumption 6(d) is

violated.

We use the estimand in Example 5 whose true value is zero. About 57 percent

of units select into treatment, so the effective sample size used to estimate the out-

come regressions is around n{2 since ErYi | Ti “ t,X,As is estimated only with

observations for which Ti “ t. We report results for n “ 1000, 2000, 4000.

6.2 Nonparametric Estimators

The GNNs use the PNA architecture in Example 9 with aggregator Γ2p¨q defined

in the example and L “ 1, 2, 3. Both φ0l and φ1l are one-layer MLPs with width

H “ 1, 3, 5. We optimize the GNNs using the popular Adam variant of stochastic

gradient descent with the default PyTorch implementation (Paszke et al., 2019) using

random initial parameter values and learning rate 0.01.

For φ1lp¨q, we use a linear layer (no activation function), which is the default

for the PNAConv class in the PyTorch Geometric package (Fey and Lenssen, 2019).

That is, φ1lpxq “ pαl,h,1 ` x1βl,h,1qHh“1, where αl,h,1 is a scalar and βl,h,1 a vector. For

φ0lp¨q with l ă L, we use ReLU activation, so φ0lpxq “
`

σpαl,h,0 ` x1βl,h,0q
˘H

h“1
for

σpxq “ maxtx, 0u. Finally, φ0Lp¨q is similar except we use linear activation (replacing

σ with the identity function) since it is the output layer.

We compare GNNs to nonparametric estimators using the prespecified controls

given in (8), which are analogous to those used in the simulations of Emmenegger et al.
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(2022) and Forastiere et al. (2021). For these, we estimate the nuisance functions us-

ing GLMs (logistic and linear regression) with polynomial sieves of order 1, 2, or 3.

Recall that a GNN with L “ 1 corresponds to a receptive field that only encompasses

the ego’s 1-neighborhood. This is the same as the implied receptive field of the GLM

estimators.

Table 1: Simulation results for random geometric graph

L “ 1 L “ 2 L “ 3

n 1000 2000 4000 1000 2000 4000 1000 2000 4000
# treated 567 1137 2277 567 1137 2277 567 1137 2277
H 1 3 5 1 3 5 1 3 5

τ̂p1, 0q 0.0783 0.0753 0.0680 0.0937 0.0382 0.0226 0.1288 0.0712 0.0353
CI 0.9316 0.9332 0.9324 0.9318 0.9368 0.9464 0.9360 0.9286 0.9384
SE 0.4279 0.3057 0.2166 0.5134 0.2961 0.2037 0.5745 0.3143 0.2021
Oracle CI 0.9426 0.9434 0.9358 0.9450 0.9498 0.9572 0.9464 0.9420 0.9472
Oracle SE 0.4473 0.3180 0.2190 0.5507 0.3153 0.2116 0.5994 0.3369 0.2094
W τ̂p1, 0q 0.1800 0.1701 0.1555 0.1597 0.1484 0.1356 0.1249 0.1211 0.1116
W CI 0.9160 0.9042 0.8906 0.9200 0.9136 0.9056 0.9174 0.9140 0.9114
W SE 0.4338 0.3082 0.2177 0.4311 0.3072 0.2175 0.4182 0.2998 0.2132
IID CI 0.6968 0.6818 0.6862 0.6688 0.6704 0.6926 0.6658 0.6638 0.6822
IID SE 0.2363 0.1667 0.1174 0.2711 0.1567 0.1078 0.3015 0.1656 0.1063

5k simulations. The estimand is τp1, 0q “ 0. “# treated” « effective sample size for GNN regression estimators. GNN
depth is L, and MLP width is H. Rows beginning with “W ” use GLMs with prespecified controls and polynomial sieves
of order L in place of GNNs. “CI” rows display the empirical coverage of 95% CIs.

6.3 Results

Tables 1 and 2 report the results of 5000 simulations for the random geometric graph

and Erdős-Rényi models, respectively. Row “ τ̂p1, 0q” reports the average of our esti-

mates, and their absolute values also equal the bias since τp1, 0q “ 0. Row “CI” shows

the coverage of our CIs using the HAC estimator. The “W ” rows report estimates

using GLMs with polynomial sieves where L is the order of the polynomial. The

“Oracle” rows correspond to true standard errors, computed by taking the standard

deviation of τ̂ p1, 0q across simulation draws. The “IID” rows report i.i.d. standard

errors, which illustrate the degree of dependence.

We first compare the GNN estimators with the GLM estimators in the “W ” rows.

The bias of the latter is larger for all polynomial orders, often more than twice the
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Table 2: Simulation results for Erdős-Rényi graph

L “ 1 L “ 2 L “ 3

n 1000 2000 4000 1000 2000 4000 1000 2000 4000
# treated 593 1187 2372 593 1187 2372 593 1187 2372
H 1 3 5 1 3 5 1 3 5

τ̂p1, 0q 0.0294 0.0366 0.0354 0.0503 0.0244 0.0191 0.0688 0.0443 0.0300
CI 0.9326 0.9276 0.9292 0.9274 0.9298 0.9322 0.9230 0.9170 0.9142
SE 0.1867 0.1336 0.0954 0.2126 0.1318 0.0918 0.2313 0.1388 0.0928
Oracle CI 0.9592 0.9458 0.9402 0.9418 0.9492 0.9472 0.9388 0.9404 0.9374
Oracle SE 0.2072 0.1399 0.0996 0.2291 0.1410 0.0976 0.2472 0.1506 0.0999
W τ̂p1, 0q 0.1310 0.1372 0.1367 0.1111 0.1168 0.1162 0.0810 0.0920 0.0936
W CI 0.8954 0.8376 0.7240 0.9038 0.8584 0.7842 0.9044 0.8774 0.8356
W SE 0.1993 0.1420 0.1012 0.1957 0.1400 0.0999 0.1873 0.1353 0.0978
IID CI 0.8098 0.7972 0.7828 0.8012 0.7996 0.7920 0.7968 0.7768 0.7760
IID SE 0.1324 0.0936 0.0664 0.1504 0.0918 0.0634 0.1640 0.0973 0.0644

5k simulations. The estimand is τp1, 0q “ 0. “# treated” « effective sample size for GNN regression estimators. GNN
depth is L, and MLP width is H. Rows beginning with “W ” use GLMs with prespecified controls and polynomial sieves
of order L in place of GNNs. “CI” rows display the empirical coverage of 95% CIs.

bias of the GNN estimates. This is the case even for L “ 1, which corresponds

to the same receptive field as the GLMs. It suggests that GNNs learn a different

function of pX,Aq than Wi, one that apparently better adjusts for confounding. The

improvement in bias using GNNs does not come at an apparent cost to variance.

Second, we compare the GNN estimators across different choices of L. The best

performance is achieved with L “ 2, which results in low bias. This is the case

for both random graph models and is particularly notable for the random geometric

graph because its width is substantially larger than the radius of the receptive field

when L “ 2. This demonstrates that we can achieve good performance despite

only controlling for pXN pi,2q,AN pi,2qq, which is possible due to approximate sparsity.

Our CIs exhibit some undercoverage, which is not unusual for HAC estimators, but

coverage tends to the nominal level as n grows for L “ 2. The oracle CIs achieve

coverage close to the nominal level across most sample sizes and architectures, which

illustrates the quality of the normal approximation.

Unsurprisingly, L “ 2 outperforms L “ 1 since the latter only adjusts for 1-

neighborhood confounding. In principle, L “ 3 accounts for higher-order network

confounds, but the bias turns out to be slightly larger and the coverage worse, though

the performance still dominates that of GLMs with large enough samples.
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A choice of L “ 2 is not unusual in the literature. Zhou et al. (2021) compute

the prediction error of GNNs on several different datasets with L “ 2, 4, 8, . . . and

find that L “ 2 has the best performance across several architectures. The fact that

GNN performance often fails to improve (and indeed can worsen) with larger L is

well known in the GNN literature, and we survey different explanations in §A.2.5

7 Empirical Application

We revisit the analysis of He and Song (2024) of the diffusion of microfinance through

rural villages in Karnataka, India. They utilize a dataset due to Banerjee et al. (2013)

which contains twelve dimensions of social relationships, demographic details, and

microfinance adoption decisions from 43 villages involved with Bharatha Swamukti

Samsthe’s (BSS) microfinance program in 2007. BSS initiated the program by meeting

with a select group of village “leaders” who were asked to spread the word about

microfinance.

Following the analysis of He and Song (2024), the unit of observation is the house-

hold, and household observables Xi are (a) the normalized total number of households

within each village and indicators for (b) participation in self-help groups, (c) savings

activities, and (d) caste composition. They construct three social networks from the

multigraph data: Gee represents connections through material exchanges like borrow-

ing or lending essentials, Gsc captures social activities including advice sharing or

joint religious attendance, and Gall is the union of Gee and Gsc. We report results for

A set to each one of these options.

We consider three different definitions of the treatment. In the “leader case,” Di

is an indicator for whether household i has a leader. In the “leader-adopter case,” it

is an indicator for whether the household has a leader who adopts microfinance in

the first trimester of the study. These cases are due to He and Song (2024). In the

“adopter case,” Di is simply an indicator for whether any household member adopts

microfinance in the first trimester. The outcome Yi is an indicator for whether an

individual in household i adopts microfinance starting in the first trimester of the

5Bronstein (2020) writes, “Significant efforts have recently been dedicated to coping with the
problem of depth in graph neural networks, in hope to [sic] achieve better performance and perhaps
avoid embarrassment in using the term ‘deep learning’ when referring to graph neural networks with
just two layers.”
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study or later.6

7.1 Comparison with He and Song (2024)

We next discuss causal estimands in the context of the adopter case. He and Song

(2024) propose a novel estimand called “average diffusion at the margin” (ADM). This

is the average effect of a unit’s initial adoption decision Di on neighbors’ subsequent

adoption decisions Yj for j P N pi, 1q. To identify the ADM, they assume the following.

First, initial adoption decisions are unconfounded (their Assumption 2.1), and in the

application, they use household observables Xi as the controls. Second, their selection

model, as described in Example 3, is a parametric single-agent discrete choice model.

Third, they assume adoption decisions are irreversible in that Yi ě Di, which is true in

the application. Finally, as discussed in Example 3, the econometrician must specify

the maximum number of rounds of diffusion that take place between the measurement

of Di and Yi, and they choose K “ 1 in the application.

We use a richer set of network controls that includes covariates of higher-order

neighbors, without assuming a known function Wi as in (7). We employ a nonpara-

metric selection model allowing for peer effects in initial adoption. Our outcome

model (1) also allows for peer effects in subsequent adoption, as well as higher-order

diffusion beyond the K “ 1 neighborhood since outcomes depend on the entire initial

adoption vector D. ANI posits that this dependence decays with distance, which is

a feature of most diffusion models, as information from distant units is less likely to

diffuse to the ego. Note that ANI does not require knowledge of the number of within-

period rounds of diffusion. Finally, we do not require Yi ě Di since our methodology

applies more broadly to non-binary outcomes.

The cost of imposing less structure than He and Song (2024) is that the ADM

may not be identified under our assumptions. Instead, we consider two estimands

τpt, t1q defined by the following exposure mappings:

T
p1q
i “

#

1 if
řn

j“1AijDj “ 1

0 otherwise,
and T

p2q
i “

#

1 if
řn

j“1AijDj ą 1

0 otherwise.

6In the adopter case, the treatment time period intersects with that of the outcome in the first
trimester, which generates unwanted feedback between the outcome and selection models. To avoid
this, we should define Yi as an indicator for adoption after the first trimester. Fortunately, this
actually coincides with the original definition of Yi because adoption decisions are never reversed in
the data.
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For the first (second) choice, τpt, t1q measures the effect of going from 0 to 1 (more than

1) adopting neighbor(s).7 This sheds light on a different dimension of diffusion relative

to the ADM. Whereas the ADM measures how many others are affected by the ego’s

adoption, our estimands quantify the effect of having multiple adopting neighbors on

the ego’s adoption. We find below that having multiple adopting neighbors has a

much larger effect than having only one.

As previously stated, He and Song (2024) define the treatment in two ways. One is

a binary indicator for having a leader in the household, the idea being that all leaders

were initially informed about microfinance and told to spread the word. However,

not all leaders adopted in the first trimester, which perhaps motivates the second

definition, a binary indicator for having an adopting leader in the household. In our

view, it may be plausible to argue that microfinance adoption in the initial period is as

good as random within observable subpopulations, but it is less plausible to make the

same case for being a leader, which is likely determined by a complex social process.

We therefore consider a third definition, which is simply an indicator for adopting

microfinance in the initial period, irrespective of having a leader in the household.

Indeed, recall the interpretations of the causal estimands above pertain to the third

definition; in our view, the interpretations are less clear when treatment is defined

otherwise. Finally, to bolster the plausibility of the unconfounded initial adoptions,

we add network controls.

7.2 Results

We present estimates of τpt, t1q and the ADM for the three network specifications

and three treatment definitions introduced above. We use two different estimators

for τpt, t1q. The first estimates the nuisance functions with GNNs for L “ 1, 2, 3

layers. These use the same PNA architecture and learning rate as the simulation

study (see §6.2). The MLPs in each layer have H “ 4 hidden layers to match the

number of household covariates Xi, and we estimate the GNNs using the PyTorch

Geometric package (Fey and Lenssen, 2019). The second estimator uses GLMs and

polynomial sieves of order 1–3 instead of GNNs. As in §6.2, we use a logit to estimate

the propensity score and outcome regressions.

7Assumption 2.1 of He and Song (2024) implies that tDiu
n
i“1

is independent conditional on ob-
servables. Under the same condition, our estimands identify causal effects by Theorem 1 of Leung
(2024).
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To compute the estimates, we concatenate the village networks into a single adja-

cency matrix of size n “ 4413. For the GNN and GLM estimates, we trim observations

with propensity scores outside of r0.01, 0.99s. Standard errors are obtained from the

network HAC variance estimator defined in §2.3.

Table 3: Exposure Mapping T
p1q
i

ADM GNN GLM

1 Layer 2 Layer 3 Layer Order 1 Order 2 Order 3

Leader case
Gee -0.052 -0.002 (0.020) -0.004 (0.021) 0.012 (0.017) 0.000 (0.018) -0.003 (0.016) 0.037 (0.014)
Gsc -0.049 0.018 (0.023) 0.044 (0.019) 0.041 (0.019) 0.014 (0.020) 0.023 (0.020) -0.025 (0.012)
Gall -0.050 0.026 (0.026) 0.022 (0.022) 0.029 (0.022) 0.010 (0.023) 0.018 (0.025) -0.038 (0.012)
Leader-adopter case
Gee 0.215 0.096 (0.016) 0.085 (0.033) 0.092 (0.025) 0.086 (0.029) 0.086 (0.027) 0.485 (0.017)
Gsc 0.434 0.032 (0.057) 0.074 (0.022) 0.071 (0.023) 0.073 (0.022) 0.076 (0.020) 0.469 (0.019)
Gall 0.435 0.076 (0.019) 0.066 (0.021) 0.080 (0.016) 0.069 (0.022) 0.122 (0.021) 0.452 (0.020)
Adopter case
Gee 0.423 0.061 (0.017) 0.056 (0.015) 0.055 (0.016) 0.057 (0.016) 0.054 (0.016) 0.277 (0.018)
Gsc 0.622 0.034 (0.015) 0.028 (0.014) 0.029 (0.014) 0.025 (0.014) 0.032 (0.014) 0.166 (0.018)
Gall 0.657 0.024 (0.013) 0.019 (0.014) 0.024 (0.014) 0.019 (0.015) 0.044 (0.014) 0.144 (0.018)

n “ 4413. Standard errors are in parentheses. This table presents the effect of a single neighbor adopting microfi-
nance on own adoption.

Table 4: Exposure Mapping T
p2q
i

ADM GNN GLM

1 Layer 2 Layer 3 Layer Order 1 Order 2 Order 3

Leader case
Gee -0.052 -0.022 (0.021) -0.007 (0.023) -0.009 (0.022) -0.013 (0.020) -0.014 (0.020) 0.077 (0.015)
Gsc -0.049 -0.007 (0.023) 0.017 (0.019) 0.017 (0.019) -0.011 (0.021) 0.001 (0.021) -0.108 (0.017)
Gall -0.050 -0.016 (0.026) 0.004 (0.018) 0.027 (0.018) -0.010 (0.022) 0.010 (0.024) -0.137 (0.017)
Leader-adopter case
Gee 0.215 0.302 (0.008) 0.249 (0.010) -0.172 (0.010) 0.273 (0.065) 0.045 (0.036) 0.522 (0.015)
Gsc 0.434 0.309 (0.029) 0.335 (0.014) 0.230 (0.025) 0.149 (0.060) 0.118 (0.045) 0.518 (0.017)
Gall 0.435 0.222 (0.025) 0.418 (0.015) 0.285 (0.018) 0.166 (0.062) 0.153 (0.047) 0.504 (0.017)
Adopter case
Gee 0.423 0.205 (0.033) 0.206 (0.027) 0.185 (0.022) 0.195 (0.031) 0.177 (0.032) 0.381 (0.017)
Gsc 0.622 0.183 (0.025) 0.176 (0.018) 0.179 (0.020) 0.176 (0.025) 0.187 (0.026) 0.281 (0.018)
Gall 0.657 0.171 (0.021) 0.166 (0.019) 0.175 (0.021) 0.162 (0.024) 0.184 (0.021) 0.250 (0.018)

n “ 4413. Standard errors are in parentheses. This table presents the effect of a multiple neighbors adopting microfi-
nance on own adoption.

Tables 3 and 4 respectively report results for the exposure mapping T
p1q
i and

T
p2q
i . We do not report ADM confidence intervals (for the leader and leader-adopter

cases these can be found in Table 8 of He and Song (2024)), but the estimates are

statistically significant in the leader-adopter and adopter cases and insignificant in
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the leader case.

First consider the estimand using T
p1q
i , which contrasts microfinance adoption

rates for units with 1 versus 0 initially adopting neighbors. The GNN results are

consistent across L. For the leader case, we obtain precise zeros for almost all es-

timates, including the ADM. For the leader-adopter case, the GNN estimates are

substantially smaller in magnitude than the ADM with an effect size of at most 10

percentage points compared to the smallest ADM estimate of 20 percentage points.

This may be attributed to the use of richer network controls. For the adopter case,

the contrast is even starker. Our estimates are an order of magnitude smaller than

the corresponding ADM estimates. The GLM estimates are typically slightly smaller

than the GNN estimates except for the order-3 polynomials, which are outliers in

terms of magnitude.

The estimand using T
p2q
i contrasts units with 2` versus 0 initially adopting neigh-

bors. The estimates for the leader case are similar to those of T
p1q
i . We find sizeable

effects for the leader-adopter case, almost of the same order as ADM, but the robust-

ness of the result is partly tempered by the large amount of trimming discussed below.

The adopter case sees estimates of around 20 percentage points, whereas the ADM

is double or triple that. Once again the GLM estimates are often slightly smaller

relative to the GNN estimates, except for the order-3 polynomials.

The number of observations trimmed for T
p1q
i is negligible in the leader and adopter

cases. In the leader-adopter case, more units are trimmed since fewer units are leader-

adopters, but trimming never drops more than 200 observations. The story is quite

different for T
p2q
i , as reported in Table 5. The first three columns of the table report

the number of observations for which the number of initially adopting neighbors

Ni “ řn
j“1AijDj satisfies the stated criterion. The last two columns report the

smallest sample size after trimming for the GNN and GLM estimates within each

category. The problematic category is the leader-adopter case, where the number

of observations for which Ni is two or greater is exceedingly small. As a result, an

extremely large amount of observations end up trimmed. This explains the unusual

´0.172 GNN point estimate in Table 4, which has a sample size of only 283 after

trimming.

Ultimately, the results demonstrate that the addition of network controls attenu-

ates the diffusion effect. However, while the impact of having one adopting neighbor

is relatively small, the effect of having multiple adopting neighbors is much larger
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in magnitude. In quantifying the impact of having more adopting peers, our esti-

mands complement the ADM, which measures the average effect of own adoption on

neighbors’ adoption.

Table 5: Trimming Statistics for T
p2q
i

Ni “ 1 Ni “ 2 Ni ě 3 GNN n GLM n

Leader case
Gee 1481 777 306 4243 4365
Gsc 1362 956 539 4021 4246
Gall 1317 964 595 4098 4186
Leader-adopter case
Gee 365 26 0 267 596
Gsc 539 63 3 2263 1990
Gall 571 68 3 401 2087
Adopter case
Gee 1087 384 122 4221 4395
Gsc 1265 506 229 4406 4412
Gall 1281 557 243 4405 4411

Ni “ number of treated neighbors. For the Ni columns, the rows
count the number of observations satisfying the column condition.
GNN n reports the smallest sample size after trimming for any
GNN estimate in the category and similarly for GLM n.

8 Conclusion

Existing work on network interference under unconfoundedness assumes that it suf-

fices to control for a known, low-dimensional function of the network and covariates,

but the literature lacks selection models justifying common choices of controls. We

propose to use GNNs to effectively learn this function and provide a behavioral model

under which it is low-dimensional and estimable with shallow GNNs.

Our analysis allows for approximate neighborhood interference in both the out-

come and treatment selection stages. Leung (2022a) studies the implications of ANI

for asymptotic inference in randomized control trials, and we highlight its utility for

handling high-dimensional network confounding, which arises when the decision to

select into treatment is subject to peer influence. We provide conditions under which

the propensity score and outcome regression, which ordinarily may depend on the en-

tirety of the network, can be approximated by functions of the ego’s L-neighborhood

network for relatively small L. This is analogous to approximate sparsity conditions
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in the lasso literature, which posit that a high-dimensional regression function is

well-approximated by a function of a relatively small number of covariates.

A Additional Results on GNNs

Primitive conditions for Assumption 5 appear to be beyond the scope of the existing

GNN literature, but we provide some potentially useful intermediate results. Consider

the problem of establishing a rate of convergence for the propensity score:

1

mn

ÿ

iPMn

`

p̂tpi,X,Aq ´ ptpi,X,Aq
˘2 “ oppn´1{2q.

Under network approximate sparsity (Definition 1), the problem simplifies to showing

1

mn

ÿ

iPMn

`

p̂tpi,X,Aq ´ ptpi,XN pi,Lq,AN pi,Lqq
˘2 “ oppn´1{2q. (A.1)

Since p̂tpi,X,Aq is an L-layer GNN, which only uses information from pXN pi,Lq,AN pi,Lqq,
this should well approximate ptpi,XN pi,Lq,AN pi,Lqq under appropriate conditions, so

(A.1) should be more feasible to verify directly.

Farrell et al. (2021) provide a bound analogous to (A.1) for MLPs, which, were it

applicable to our setting, would be of the form

1

n

n
ÿ

i“1

`

p̂tpi,X,Aq´ptpi,XN pi,Lq,AN pi,Lqq
˘2 ď C

ˆ

WL logR

n
logn ` log log n` γ

n
` ǫ2

˙

(A.2)

with probability at least 1 ´ e´γ . Here W is the number of GNN parameters, C

is a constant that does not depend on n, R depends on the architecture through

the number of hidden neurons, and ǫ is the function approximation error, a measure

of the ability of the neural network to approximate any function in a desired class.

Establishing a corresponding result for GNNs requires an analog of Lemma 6 of

Farrell et al. (2021), which is a bound on the pseudo-dimension of the GNN class,

and concentration inequalities for ψ-dependent data. Jegelka (2022) surveys the few

available complexity and generalization bounds for GNNs. These are not sufficiently

general for our setup and only apply to settings where the sample consists of many

independent networks.
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To use a bound of the form (A.2) to verify Assumption 5, we require knowledge of

how ǫ varies with key aspects of the architecture, such as W,R, L, n. As a first step

toward obtaining such a result, it is necessary to characterize the function class that

GNNs can approximate. Our next result, which draws heavily from existing results in

the GNN literature, shows that an additional shape restriction on the function class

beyond invariance (§3.3) is required.

A.1 WL Function Class

MLPs can approximate any measurable function (Hornik et al., 1989), so given the

discussion in §3.3, a natural question is whether GNNs can approximate any mea-

surable, invariant function of graph-structured inputs. In other words, is it enough

to require invariance (and regularity conditions), or are stronger restrictions on the

function class necessary? For reasons related to the graph isomorphism problem, it

turns out stronger restrictions are necessary. We next motivate the need for such

restrictions and then state our function approximation result.

Chen et al. (2019) show that, for a function class such as GNNs to approximate

any invariant function, some element of the class must be able to separate any pair of

non-isomorphic graphs. By “separate,” we mean that for any non-isomorphic “labeled

graphs” pX,Aq, pX 1,A1q, the function f satisfies fpX,Aq ‰ fpX 1,A1q.8 Hence, a

function with separating power of this sort solves the graph isomorphism problem,

a problem for which no known polynomial-time solution exists (Kobler et al., 2012;

Morris et al., 2021). Since GNNs can be computed in polynomial time, this suggests

that approximating any invariant function is too demanding of a requirement.

To define the subclass of invariant functions that GNNs can approximate, we

need to take a detour and discuss graph isomorphism tests. The subclass will be

defined by a weaker graph separation criterion than solving the graph isomorphism

problem, in particular one defined by the Weisfeiler-Leman (WL) test. This is a

(generally imperfect) test for graph isomorphism on which almost all practical graph

isomorphism solvers are based (Morris et al., 2021).

Given a labeled graph pX,Aq, the WL test outputs a graph coloring (a vector of

8Their result is for R-valued functions fp¨q, so to properly apply GNNs as they define them
to isomorphism testing, we would additionally need to take the R

n-valued output fpX,Aq “
pfpi,X,Aqqn

i“1
of a GNN as we define it and aggregate it in an invariant manner to obtain R-

valued output. An example of an invariant aggregator is the sum
ř

n

i“1
fpi,X,Aq.
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labels for each unit) according to the following recursive procedure, whose definition

follows Maron et al. (2019). At each iteration t ą 0, each unit i is assigned a color

Ctpiq from some set Σ (e.g. the natural numbers) according to

Ctpiq “ Φ pCt´1piq, tCt´1pjq : Aij “ 1uq , (A.3)

where Φp¨q is a bijective function that takes as input a color and a multiset of neigh-

bors’ colors.9 Intuitively, at each iteration, two units are assigned different colors if

they differ in the number of identically colored neighbors, so that at iteration t, colors

capture some information about a unit’s pt´ 1q-neighborhood. Colors are initialized

at t “ 0 using a deterministic rule that assigns each i to the same color C0piq P Σ

if and only if they have the same covariates Xi. At each iteration, the number of

assigned colors increases, and the algorithm converges when the coloring is the same

in two adjacent iterations. This takes at most n ´ 1 iterations since there cannot be

more than n distinctly assigned colors.

To test whether two labeled graphs are isomorphic, the procedure is run in parallel

on both graphs until some number of iterations, typically until convergence. At this

point, if there exists a color such that the number of units assigned that color differs

in the two graphs, then the graphs are considered non-isomorphic. This procedure

correctly identifies isomorphic graphs, but it is underpowered since there exist non-

isomorphic graphs considered isomorphic by the WL test (Morris et al., 2021). Also,

because the number of colors increases each iteration, the test is more powerful when

run longer.

Morris et al. (2019) and Xu et al. (2018) note the similarity between the GNN

architecture (13) and WL test (A.3). The former may be viewed as a continuous

approximation of the latter, replacing the hash function Φp¨q with a learnable aggre-

gator Φ1lp¨q. They formally show that any GNN has at most the graph separation

power of the WL test and furthermore there exist architectures as powerful.

Returning to the original problem, we now define the class of functions approxi-

mated by GNNs in terms of the WL test. Let H denote the support of pX,Aq.

Definition 2. For any set of functions F with domain H , let ρpFq be the subset of

9Strictly speaking, this is the 1-WL test.
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H2 such that

ph, h1q P ρpFq if and only if fphq “ fph1q for all f P F .

For any two sets of functions E ,F with domain H , we say that E is at most as

separating as F if ρpFq Ď ρpEq.

This is essentially Definition 2 of Azizian and Lelarge (2021). Intuitively, if E is at

most as separating as F , the latter is more complex in the sense that some function

in F can separate weakly more elements of H than any function in E .

Let fWL,L denote the function of pX,Aq with range Σn that outputs the vector

of node colorings from the WL test run for L iterations. Let CpHq be the set of

continuous functions with domain H . For any L P N, define the WL function class

FWLpLq “ tf˚ P CpHq : ρptfWL,Luq Ď ρpf˚qu.

This is the set of continuous functions of pX,Aq that are at most as separating as

the WL test with L iterations.

The next result says that ptp¨q and µtp¨q can be approximated by L-layer GNNs

under the shape restriction that they are elements of the WL function class. This is

a stronger shape restriction than invariance because, by construction, the output of

the WL test is invariant, so FWLpLq is a subset of the set of all invariant functions.

Consider the GNN architecture in Example 8 with φ0lp¨q, φ1lp¨q being MLPs. For

technical reasons, we augment the architecture with an additional MLP layer L`1 at

the output stage with n neurons and the ith neuron given by h
pL`1q
i “ φL`1phpLq

i , thpLq
j : j P

Nnuq. Interpret this as the actual output layer, and let L only enumerate the num-

ber of hidden layers (i.e. not counting the input h
p0q
i and output h

pL`1q
i layers). Let

FGNN˚pLq denote the set of such GNNs with L layers, ranging over the parameter

space of the MLPs, including their widths and depths.

Theorem A.1. Fix n, L P N. Suppose that each Xi has the same common, finite

support. For any f˚ P FWLpLq, there exists a sequence of GNNs tfkukPN Ď FGNN˚pLq
such that

sup
pX,AqPH

|fkp1,X,Aq ´ f˚p1,X,Aq| kÑ8ÝÑ 0. (A.4)
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In other words, any function in the class FWLpLq can be approximated by L-layer

GNNs in FGNN˚pLq. The result is a consequence of a Stone-Weierstrauss theorem due

to Azizian and Lelarge (2021) and a version of the Morris et al. (2019) and Xu et al.

(2018) result on the equivalent separation power of GNNs and the WL test. The

proof is given below.

The result is essentially Theorem 4 of Azizian and Lelarge (2021) but with the

distinction that they use YLFGNN˚pLq in place of FGNN˚pLq and tfWL,8u in place of

tfWL,Lu. That is, their theorem states that the set of GNNs ranging over all possible

numbers of layers can approximate any continuous function at most as separating as

the WL test run until convergence.

Theorem A.1 states their result for fixed L, and the proof is straightforward from

prior results. However, our framing clarifies one of the roles of depth, namely that it

determines the strength of the shape restriction implicitly imposed on the function

being approximated by GNNs. In particular, because the WL test is more powerful

when L is larger, meaning when run for more iterations, Theorem A.1 implies that

deeper GNNs can approximate weakly richer function classes, or equivalently, impose

weaker shape restrictions. We discuss this point further in the next subsection.

Proof of Theorem A.1. Lemma 35 of Azizian and Lelarge (2021) (in particu-

lar the result for MGNNE) shows that there exists a sequence of GNNs tfkukPN Ď
YLFGNN˚pLq such that (A.4) holds for any f˚ in the class

tf˚ P CpHq : ρpYLFGNN˚pLqq Ď ρpf˚qu.

In contrast, we would like to establish that, for any fixed L, there exists a sequence

of GNNs tfkukPN Ď FGNN˚pLq such that (A.4) holds for any f˚ in the class

tf˚ P CpHq : ρpFGNN˚pLqq Ď ρpf˚qu, (A.5)

meaning that an L-layer GNN can arbitrarily approximate any continuous function

at most as separating as an L-layer GNN. The argument in the proof of Lemma 35

actually applies to (A.5) after some minor changes to notation. The first part of the

proof (“We now move to the equivariant case. . . ”) up to verifying their equation (26)

carries over by redefining the MGNNE class as having a fixed depth L. To show (26),

Azizian and Lelarge (2021) begin with a GNN f with L layers (their notation uses
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T in place of L) and add an additional MLP layer that implements their equation

(26). Here we use the additional MLP layer added to the output of our architecture

(see the paragraph prior to the statement of Theorem A.1). In particular, for any

f P FGNN˚pLq, consider the mapping

pX,Aq ÞÑ
˜

n
ÿ

i“1

fpi,X,Aq, . . . ,
n
ÿ

i“1

fpi,X,Aq
¸

looooooooooooooooooooooomooooooooooooooooooooooon

n times

P R
n

(their (26) in our notation) corresponds to adding a linear output layer L ` 1 that

is implementable by an MLP of the form φL`1phpLq
i , thpLq

j : j P Nnuq. The mapping

remains an element of FGNN˚pLq, which completes the argument for (A.5).

By Theorems VIII.1 and VIII.4 of Grohe (2021), which use finiteness of the support

of Xi, ρpFGNN˚pLqq “ ρptfWL,Luq. That is, L-layer GNNs have the same separation

power as the WL test run for L iterations.

A.2 Disadvantages of Depth

The receptive field is the main consideration when selecting L, but Theorem A.1

provides a second consideration, which is imposing a weaker implicit shape restriction.

It shows that, for GNNs to approximate a target function well, the target must satisfy

a shape restriction stronger than invariance, namely that it is at most as separating

as the WL test with L iterations. The larger the choice of L, the weaker the shape

restriction imposed. However, there are several reasons why shallow architectures

remain preferable.

Low returns to depth. A natural question is how many iterations are required

for the WL test to converge for a given graph, which corresponds to the choice of L

for which the shape restriction is weakest. Unfortunately, the answer is not generally

known, being determined by the topology of the input graph in a complex manner.

However, there is a range of results bounding the number of iterations required for

convergence. For instance, Kiefer and McKay (2020) construct graphs for which the

WL test requires n ´ 1 iterations to converge, so such graphs require n´ 1 layers to

obtain the weakest shape restriction. This makes the estimation problem extremely

high-dimensional, requiring substantially more layers than what is typically required
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for the receptive field to encompass the entirety of the network.

Fortunately, theoretical and empirical evidence suggests that such examples are

more the exception than the rule and that small choices of L typically already impose

weak shape restrictions. Babai et al. (1980) show that, with probability approaching

one as n Ñ 8, in an n-unit network drawn uniformly at random from the set of all

possible networks, the WL test assigns all units different colors (recall the test must

converge at this point) after only two iterations (Morris et al., 2021). Thus, roughly

speaking, for large networks, the weakest possible shape restriction is generically

achieved with only L “ 2. Of course, having the network drawn uniformly at random

is a strong assumption, so this result resides in the opposite extreme relative to the

worst-case examples requiring L “ n´ 1. Nonetheless, it suggests that relatively few

layers may often suffice in practice. Indeed, Zopf (2022) provide empirical evidence on

this point, showing that the vast majority of graphs in their dataset can be separated

using the WL test after a single iteration.

Cost of depth. Several explanations have been proposed for why larger L often

results in worse predictive performance. The “oversmoothing” phenomenon (Li et al.,

2018; Oono and Suzuki, 2020) posits that node embeddings tend to become indis-

tinguishable across many units as the number of layers grows. In random geometric

graphs (see §6), L-neighborhood sizes grow polynomially with L, while in Erdős-Rényi

graphs, the growth rate is exponential. Accordingly, a small increase in L can induce

a large increase in the number of elements aggregated by Φ1lp¨q, so by a law of large

numbers intuition, the resulting node embeddings tend to concentrate on the same

value. Since node embeddings are meant to represent network positions, which tend

to be quite heterogeneous across units, this results in poor predictive performance.

The “oversquashing” phenomenon (Alon and Yahav, 2021; Topping et al., 2022)

posits that, as L grows, the GNN aggregates an exceedingly large amount of infor-

mation due to the growth in neighborhood sizes. This information is stored in node

embeddings of relatively small dimension H , resulting in information loss, so the

effective size of the receptive field remains small as L grows.

Zhou et al. (2021) provide a third explanation, that certain features of common

architectures are responsible for variance inflation. In fact, even weaker shape restric-

tions than that imposed by Theorem A.1 are possible using more complex “k-GNN”

architectures, which would theoretically improve bias, but these have greater compu-

tational cost and empirically exhibit worse predictive performance and higher variance
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than the standard architecture (13) (Dwivedi et al., 2022). These disadvantages may

partly explain the common use in practice of the standard architecture with few

layers.

B Verifying §8 Assumptions

Leung (2022a), §A, verifies analogs of Assumptions 6(d) and 7(c) from an older work-

ing paper version of Kojevnikov et al. (2021). This section repeats the exercise for As-

sumptions 6(d) and 7(c) and (d). We assume throughout that maxtγnps{2q, ψnpsqu ď
expp´cp1 ´ 4{pq´1sq for some c ą 0 and p in Assumption 4(a). As in Leung (2022a),

we say a sequence of networks exhibits polynomial neighborhood growth if

sup
n

max
iPNn

|NApi, sq| “ Csd

for some C ą 0, d ě 1. The sequence exhibits exponential neighborhood growth if

sup
n

max
iPNn

|NApi, sq| “ Ceβs

for some C ą 0 and β “ log δpAq (Leung, 2022a, §A discusses this choice of β).

B.1 Assumption 6(d)

For polynomial neighborhood growth, choose vn “ n1{pαdq for α ą 2. The sec-

ond term in (16) is at most n3{2expp´c n1{pαdqq “ op1q. The third term is at most
ř8
s“0Cs

dexpp´c sq ă 8. The first term is ď n´1{2
ř8
s“0pCn1{αqpCsdqexpp´c sq “ op1q

for k “ 1, and for k “ 2, it is at most n´1
ř8
s“0pCn1{αq2pCsdqexpp´c sq “ op1q.

For exponential neighborhood growth, choose vn “ αβ´1 logn, α P p1.5βc´1, 0.5q,
with c from the definition of ψnpsq above. Such an α exists only if c ą 3β, which

requires ψnpsq to decay sufficiently fast relative to neighborhood growth. The second

term in (16) is then at most n3{2expp´cαβ´1 log nq “ n1.5´cαβ´1 “ op1q. The third

term is at most
ř8
s“0Cexpppβ ´ cqsq ă 8. Finally, for k “ 1, the first term is at

most n´1{2
ř8
s“0C

2exppα log nqexpppβ ´ cqsq “ op1q, and for k “ 2, it is at most

n´1
ř8
s“0C

2expp2α lognqexpppβ ´ cqsq “ op1q.
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B.2 Bandwidth

We employ a mix of formal and heuristic arguments to show that the bandwidth

(12) satisfies Assumption 7(c)–(f). Under polynomial neighborhood growth, as ar-

gued in §A.2 of Leung (2022a), LpAq « n1{d, in which case bn “ LpAq1{4 « n1{p4dq.

Then Assumption 7(d) holds because n´1
řn

i“1 npi, bnq “ Cbdn « n1{4 “ op?
nq,

and Assumption 7(e) holds because n´1
řn
i“1 npi, bnq2 “ Cb2dn « n1{2 “ Op?

nq.
Assumption 7(c) holds because, taking ǫ “ 1 ´ 4{p,

n´1

8
ÿ

s“0

cnps, bn; 2qψnpsq1´4{p ď C3n´1

8
ÿ

s“0

b2dn s
dexpp´c sq (B.1)

« n´1
?
n

n
ÿ

s“0

sdexpp´c sq “ Opn´1{2q.

Finally, Assumption 7(f) holds because

1

n2

n
ÿ

s“0

|Jnps, bnq|ψnpsq ď 1

n2

n
ÿ

s“0

n
ÿ

i“1

ÿ

j : ℓApi,jq“s

npi, bnqnpj, bnqψnpsq ď (B.1).

Under exponential neighborhood growth, as argued in §A.2 of Leung (2022a),

LpAq « log n{ log δpAq, in which case bn « 0.25 logn{ log δpAq. Then Assumption 7(d)

holds because n´1
řn
i“1 npi, bnq “ Cexppβbnq « n1{4, and Assumption 7(e) holds be-

cause n´1
řn

i“1 npi, bnq2 “ Cexpp2βbnq « ?
n. Assumption 7(c) holds because, taking

ǫ “ 1 ´ 4{p,

n´1

8
ÿ

s“0

cnps, bn; 2qψnpsq1´4{p ď C3n´1

8
ÿ

s“0

exppβbnqexppβsqexpp´c sq (B.2)

« n´1expp0.5 lognq
n
ÿ

s“0

expppβ ´ cqsq “ Opn´1{2q,

which is op1q if c ą β, which is weaker than the requirement c ą 3β in §B.1. Finally,

Assumption 7(f) holds because, if c ą β, n´2
řn
s“0|Jnps, bnq|ψnpsq ď (B.2).
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C Supporting Lemmas

Lemma C.1. Under Assumptions 2, 3, and 8, there exists C ą 0 such that for any

n P N, i P Nn, and s sufficiently large,

|ptpi,X,Aq ´ ptpi,XN pi,rλps`1qq,AN pi,rλps`1qqq|
ď C

`

λnps ` 1q ` ηnpsqp1 ` npi, 1qq
˘

a.s. (C.1)

Furthermore, if Assumptions 1, 4(b), 6(b), and 7(a) hold, then there exists C ą 0

such that for any n P N, i P Nn, and s sufficiently large,

|µtpi,X,Aq ´ µtpi,XN pi,rλpsqq,AN pi,rλpsqqq|
ď C

`

γnps{2q ` λnpsq ` ηnps{2qp1 ` npi, 1q ` Λnpi, s{2qnpi, s{2qq
˘

a.s., (C.2)

where Λnpi, s{2q is the Lipschitz constant in Assumption 6(b).

Proof. Fix i P Nn such that npi, 1q “ γ P Γ.

Proof of (C.1). Abbreviate Vi “ řn
j“1AijDj . Since Vi is integer-valued and

∆ defined in Assumption 3 is an interval, by that assumption, there exist e ą 0,

a, b, α P R and β P R Y t8u with a ă b and α ă β such that for any ǫ P p0, eq and

d P t0, 1un,

tfnpi,d,Aq “ tu “
#

di P ra, bs,
n
ÿ

j“1

Aijdj P rα, βs
+

“
#

di P ra´ ǫ, b ` ǫs,
n
ÿ

j“1

Aijdj P rα ´ ǫ, β ` ǫs
+

. (C.3)

For example, if Ti “ pDi,
řn

j“1AijDjq and t “ p1, 4q, then this holds for a “ 0.5,

b “ 1.5, α “ 3.5, β “ 4.5, and e “ 0.1.

Fix s, and abbreviate D1
j “ hnpj,sqpj,XN pj,sq,AN pj,sq,νN pj,sqq, V 1

i “ řn

j“1
AijD

1
j ,
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and D1
B “ pD1

jqjPB for any B Ď Nn. Using the first equality of (C.3),

ptpi,X,Aq “ P pD1
i ` pDi ´ D1

iq P ra, bs, V 1
i ` pVi ´ V 1

i q P rα, βs | X,Aq
ď P pD1

i P ra´ ǫ, b` ǫs, V 1
i P rα´ ǫ, β ` ǫs | X,Aq

` P p|Di ´ D1
i| ą ǫ | X,Aq ` P p|Vi ´ V 1

i | ą ǫ | X,Aq
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

R0

.

By (C.3), the right-hand side equals

P pD1
i P ra, bs, V 1

i P rα, βs | X,Aq ` R0 “ Ppfnpi,D1,Aq “ t | X,Aq ` R0,

so that

ptpi,X,Aq ď Ppfnpi,D1,Aq “ t | X,Aq ` R0. (C.4)

By the same argument,

Ppfnpi,D1,Aq “ t | X,Aq “ P pD1
i P ra, bs, V 1

i P rα, βs | X,Aq
ď PpD1

i ` pDi ´ D1
iq P ra´ ǫ, b` ǫs, V 1

i ` pVi ´ V 1
i q P rα´ ǫ, β ` ǫs | X,Aq

` P p|Di ´ D1
i| ą ǫ | X,Aq ` P p|Vi ´ V 1

i | ą ǫ | X,Aq
“ P pDi P ra, bs, Vi P rα, βs | X,Aq ` R0

“ ptpi,X,Aq ` R0. (C.5)

Combining (C.4) and (C.5),

|ptpi,X,Aq ´ Ppfnpi,D1,Aq “ t | X,Aq| ď R0 ď ǫ´1p1 ` npi, 1qqηnpsq, (C.6)

the second inequality due to Markov’s inequality and Assumption 2.

Observe that fnpi,D1,Aq is a deterministic function of pXB,AB, εB,νBq for B “
N pi, s` 1q by definition of D1

j and Assumption 3. Then by Assumption 8,

|Ppfnpi,D1,Aq “ t | X,Aq
´ Ppfnpi,D1,Aq “ t | XN pi,rλps`1qq,AN pi,rλps`1qqq| ď λnps ` 1q (C.7)
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Combining (C.6) and (C.7) and using the law of iterated expectations,

|ptpi,X,Aq ´ ptpi,XN pi,rλps`1qq,AN pi,rλps`1qqq| ď λnps ` 1q ` 2R0.

Proof of (C.2). Noting that µtpi,X,Aq “ ErYi1iptq | X,As{ptpi,X,Aq, we first

bound the numerator. For B “ N pi, sq, define Y 1
i “ gnpi,sqpi,D1

B,XB,AB, εBq. By

Lemma C.2,

|ErYi1iptq | X,As ´ ErY 1
i 1iptq | X,As| ď γnpsq ` Λnpi, sqnpi, sqηnpsq

loooooooooooooooomoooooooooooooooon

R1

. (C.8)

Recalling Assumption 3, define 1iptq1 “ 1tD1
i “ d,

řn
j“1AijD

1
j P ∆u. By Lemma C.3,

there exists C 1 ą 0 such that for any n P N and i P Nn,

ErY 1
i |1iptq ´ 1iptq1| | X,As ď C 1p1 ` npi, 1qqηnpsq

looooooooooomooooooooooon

R2

.

This and (C.8) yield

|ErYi1iptq | X,As ´ ErY 1
i 1iptq1 | X,As| ď R1 ` R2. (C.9)

By Assumption 8, which is applicable because Yi is a bounded function by Assumption 7(a),

|ErY 1
i 1iptq1 | X,As ´ ErY 1

i 1iptq1 | XN pi,rλp2sqq,AN pi,rλp2sqqs| ď λnp2sq

since Y 1
i 1iptq1 is a deterministic function of pXB1 ,AB1, εB1,νB1q for B1 “ N pi, 2sq.

Using (C.9) and the law of iterated expectations,

|ErYi1iptq | X,As ´ ErYi1iptq | XN pi,rλp2sqq,AN pi,rλp2sqqs| ď λnp2sq ` 2pR1 ` R2q
loooooooooooomoooooooooooon

R˚
1

.

(C.10)

By (C.1) and (C.10),

µtpi,X,Aq “ ErYi1iptq | X,As
ptpi,X,Aq “ ErYi1iptq | XN pi,rλp2sqq,AN pi,rλp2sqqs ` R˚

1

ptpi,XN pi,rλp2sqq,AN pi,rλp2sqqq ` R˚
2

“ µtpi,XN pi,rλp2sqq,AN pi,rλp2sqqq ` R˚
3
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where, using Assumption 4(b),

|R˚
1 | ď λnp2sq ` 2

`

γnpsq ` Λnpi, sqnpi, sqηnpsq ` C 1p1 ` npi, 1qqηnpsq
˘

,

|R˚
2 | ď C

`

λnp2sq ` p1 ` npi, 1qqηnp2s´ 1q
˘

, and

|R˚
3 | ď C2p|R˚

1 | ` |R˚
2 |q

for some universal C2 ą 0. Substituting s{2 for s yields the result.

Lemma C.2. Define Bi “ N pi, sq, D1
j “ hnpj,sqpj,XBj

,ABj
,νBj

q, D1
Bi

“ pD1
jqjPBi

,

and Y 1
i “ gnpi,sqpi,D1

Bi
,XBi

,ABi
, εBi

q. Under Assumptions 2, 1, and 6(b),

|ErYi1iptq | X,As ´ ErY 1
i 1iptq | X,As| ď γnpsq ` Λnpi, sqnpi, sqηnpsq,

where Λnpi, sq is defined in Assumption 6(b).

Proof. By Assumption 2,

|ErYi1iptq | D,X,As ´ Ergnpi,sqpi,DBi
,XBi

,ABi
, εBi

q1iptq | D,X,As| ď γnpsq.

By Assumption 1,

Ergnpi,sqpi,DBi
,XBi

,ABi
, εBi

q1iptq | D “ d,X “ x,A “ as
“ Ergnpi,sqpi,dBi

,XBi
,ABi

, εBi
q1iptq | X “ x,A “ as,

which, together with the law of iterated expectations and Assumption 6(b), implies

|Ergnpi,sqpi,DBi
,XBi

,ABi
, εBi

q1iptq | X,As
´ Ergnpi,sqpi,D1

Bi
,XBi

,ABi
, εBi

q1iptq | X,As|
ď Λnpi, sq

ÿ

jPBi

Er|Dj ´ D1
j| | X,As ď Λnpi, sqnpi, sqηnpsq,

where the last inequality uses Assumption 2. Therefore,

ErYi1iptq | X,As “ ErY 1
i 1iptq | X,As ` R1
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for |R1| ď γnpsq ` Λnpi, sqnpi, sqηnpsq.

Lemma C.3. Define Y 1
i , D

1
i as in Lemma C.2 and 1iptq1 “ 1tD1

i “ d,
řn
j“1AijD

1
j P

∆u. Under Assumptions 2, 1, 3, and 4(a), there exists C ą 0 such that for any

n P N, i P Nn, and s ě 0,

ErYi|1iptq ´ 1iptq1| | X,As ď C p1 ` npi, 1qqηnpsq.

Proof. Recall the definition of a, b, α, β, ǫ prior to (C.3). Define Vi “ řn

j“1AijDj ,

V 1
i “ řn

j“1AijD
1
j, and C “ t|Di ´ D1

i| ď ǫ, |Vi ´ V 1
i | ď ǫu. Then

ErYi|1iptq ´ 1iptq1| | X “ x,A “ as
ď ErYi|1iptq ´ 1iptq1| | C,X “ x,A “ as ` C PpCc | X “ x,A “ aq (C.11)

for some universal C ą 0 by Assumptions 1 and 4(a). By Assumption 3,

1iptq “ 1 tDi P ra, bs, Vi P rα, βsu and 1iptq1 “ 1 tD1
i P ra, bs, V 1

i P rα, βsu .

Under event C,

1
 

Di P ra, bs, Vi P rα, βs
(

“ 1tD1
i ` pDi ´ D1

iq P ra, bs, V 1
i ` pVi ´ V 1

i q P rα, βsu
ď 1

 

D1
i P ra´ ǫ, b ` ǫs, V 1

i P rα´ ǫ, β ` ǫs
(

“ 1
 

D1
i P ra, bs, V 1

i P rα, βs
(

,

where the inequality is due to event C and the last equality is due to (C.3). By

the same argument, 1
 

D1
i P ra, bs, V 1

i P rα, βs
(

ď 1
 

Di P ra, bs, Vi P rα, βs
(

, so

1iptq “ 1iptq1 under event C. Hence, by Markov’s inequality and Assumption 2,

(C.11) ď Cǫ´1p1 ` npi, 1qqηnpsq.

The following notion of weak network dependence is due to Kojevnikov et al.

(2021). For any H,H 1 Ď Nn, define ℓApH,H 1q “ mintℓApi, jq : i P H, j P H 1u. Let

tZiuni“1 Ď R be a triangular array, ZH “ pZiqiPH , Ld be the set of bounded R-valued

53



Leung and Loupos

Lipschitz functions on R
d, Lippfq be the Lipschitz constant of f P Ld, and

Pnph, h1; sq “ tpH,H 1q : H,H 1 Ď Nn, |H | “ h, |H 1| “ h1, ℓApH,H 1q ě su .

Definition C.1. A triangular array tZiuni“1 is conditionally ψ-dependent given Fn if

there exist C P p0,8q and an Fn-measurable sequence tψnpsqus,nPN with ψnp0q “ 1

for all n such that

|CovpfpZHq, f 1pZH 1qq| ď Chh1p‖f‖8 ` Lippfqqp‖f 1‖8 ` Lippf 1qqψnpsq a.s. (C.12)

for all n, h, h1 P N; s ą 0; f P Lh; f
1 P Lh1; and pH,H 1q P Pnph, h1; sq. We call ψnpsq

the dependence coefficient of tZiuni“1.

Lemma C.4. Under Assumptions 1, 2, 3, 4(a) and (b), and 6(a) and (b), for any

t, t1 P T , tϕt,t1piquni“1 is conditionally ψ-dependent given pX,Aq (Definition C.1) with

dependence coefficient ψnpsq defined in (15).

Proof. Let Fn be the σ-algebra generated by pX,Aq, ph, h1q P N ˆ N, pf, f 1q P
Lh ˆ Lh1, s ą 0, and pH,H 1q P Pnph, h1; sq. Define Zi “ ϕt,t1piq, ZH “ pZiqiPH ,

ξ “ fpZHq, ζ “ f 1pZH 1q, and

D
psq
i “ hnpi,sqpi,XN pi,sq,AN pi,sq,νN pi,sqq.

For D
psq
N pi,s1q “ pDpsq

j qjPN pi,s1q, let

1
psq
i ptq “ 1tfnpi,s{2qpi,Dps{2q

N pi,s{2q,AN pi,s{2qq “ tu,
Y

psq
i “ gnpi,s{2qpi,Dps{2q

N pi,s{2q,XN pi,s{2q,AN pi,s{2q, εN pi,s{2qq,

Z
psq
i “ 1

psq
i ptqpY psq

i ´ µtpi,X,Aqq
ptpi,X,Aq ` µtpi,X,Aq

´ 1
psq
i pt1qpY psq

i ´ µt1pi,X,Aq
pt1pi,X,Aq ´ µt1pi,X,Aq ´ τipt, t1q.

Finally, let ξpsq “ fppZpsq
i qiPHq and ζ psq “ f 1ppZpsq

i qiPH 1q.

54



GNNs for Network Confounding

By Assumption 6(a), pZps{2,ξq
i qiPH KK pZps{2,ζq

j qjPH 1 | Fn, so

|Covpξ, ζ | Fnq| ď |Covpξ ´ ξps{2q, ζ | Fnq| ` |Covpξps{2q, ζ ´ ζ ps{2q | Fnq|
ď 2‖f 1‖8Er|ξ ´ ξps{2q| | Fns ` 2‖f‖8Er|ζ ´ ζ ps{2q| | Fns
ď 2

`

h‖f 1‖8Lippfq ` h1‖f‖8Lippf 1q
˘

max
iPNn

Er|Zi ´ Z
ps{2q
i | | Fns.

By Assumption 4(a) and (b), there exists C ą 0 such that for any n P N and i P Nn,

Er|Zi ´ Z
ps{2q
i | | Fns ď C

`

Er|1iptq ´ 1
ps{2q
i ptq| | Fns ` Er|Yi ´ Y

ps{2q
i | | Fns

˘

.

By an argument similar to the proof of Lemma C.2,

Er|Yi ´ Y
psq
i | | Fns ď γnps{2q ` Λnpi, s{2qnpi, s{2qηnps{2q.

By an argument similar to the proof of Lemma C.3,

Er|1iptq ´ 1
psq
i ptq| | Fns ď C 1p1 ` npi, 1qqηnps{2q

for some universal constant C 1 ą 0. Hence, for some universal C2 ą 0,

max
iPNn

Er|Zi ´ Z
ps{2q
i | | Fns

ď C2 max
iPNn

`

γnps{4q ` ηnps{4q
`

1 ` npi, 1q ` Λnpi, s{4qnpi, s{4q
˘˘

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

ψnpsq

.

Lemma C.5. Under Assumptions 2, 1, 4(a), and 6(a), CovpYi, Yj | D,X,Aq ď
Cγnps{2q1´2{p a.s. for p given in Assumption 4(a) and some universal constant C ą 0.

Proof. Let F 1
n be the σ-algebra generated by pD,X,Aq. We show that tYiuni“1

is conditionally ψ-dependent given F 1
n (Definition C.1) with dependence coefficient

γnps{2q (cf. Kojevnikov et al., 2021, Proposition 2.3). Define ph, h1q P NˆN, pf, f 1q P
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Lh ˆ Lh1, s ą 0, pH,H 1q P Pnph, h1; sq,

Y
psq
i “ gnpi,sqpi,DN pi,sq,XN pi,sq,AN pi,sq, εN pi,sqq,

ξ “ fppYiqiPHq, ζ “ f 1ppYiqiPH 1q, ξpsq “ fppY psq
i qiPHq, and ζ psq “ f 1ppY psq

i qiPH 1q. By

Assumption 6(a),

|Covpξ, ζ | F 1
nq| ď |Covpξ ´ ξps{2q, ζ | F 1

nq| ` |Covpξps{2q, ζ ´ ζ ps{2q | F 1
nq|

ď 2‖f 1‖8Er|ξ ´ ξps{2q| | F 1
ns ` 2‖f‖8Er|ζ ´ ζ ps{2q| | F 1

ns
ď 2

`

h‖f 1‖8Lippfq ` h1‖f‖8Lippf 1q
˘

max
iPNn

Er|Yi ´ Y
ps{2q
i | | F 1

ns

ď 2
`

h‖f 1‖8Lippfq ` h1‖f‖8Lippf 1q
˘

γnps{2q,

the last line using Assumption 2. Given ψ-dependence, the claim follows from Corol-

lary A.2 of Kojevnikov et al. (2021), which we may apply in light of the moment

conditions implied by Assumptions 1 and 4(a).

D Proofs of Main Results

Proof of Proposition 1. By definition, Tπpiq “ fnpπpiq,D,Aq and

Yπpiq “ gpπpiq,D,X,A, εq “ gpπpiq, phnpj,X,A,νqqnj“1,X,A, εq.

By the invariance assumptions on fn, gn, hn,

Yi “ gpi,D,X,A, εq “ gnpπpiq, πpDq, πpXq, πpAq, πpεqq
“ gnpπpiq, phnpπpjq, πpXq, πpAq, πpνqqqnj“1, πpXq, πpAq, πpεqq,

and

Ti “ fnpπpiq, πpDq, πpAqq “ fnpπpiq, phnpπpjq, πpAq, πpνqqqnj“1, πpXq, πpAqq,

so by the distributional exchangeability assumption,

pYi, Ti,X,Aq d“ pYπpiq, Tπpiq, πpXq, πpAqq.
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It follows that

µtpi,X,Aq “ ErYi | Ti “ t,X,As
“ ErYπpiq | Tπpiq “ t, πpXq, πpAqs “ µtpπpiq, πpXq, πpAqq

and similarly for the generalized propensity score.

Proof of Theorem 1. Decompose

?
mnpτ̂ pt, t1q ´ τpt, t1qq “ 1?

mn

ÿ

iPMn

ϕt,t1piq ´ R1t ` R1t1 ´ R2t ` R2t1 ,

where

R1t “ 1?
mn

ÿ

iPMn

1iptqpYi ´ µtpi,X,Aqq
p̂tpi,X,Aqptpi,X,Aq pp̂tpi,X,Aq ´ ptpi,X,Aqq,

R2t “ 1?
mn

ÿ

iPMn

pµ̂tpi,X,Aq ´ µtpi,X,Aqq
ˆ

1 ´ 1iptq
p̂tpi,X,Aq

˙

,

and likewise for R1t1 and R2t1 . Let Fn denote the σ-algebra generated by pX,Aq.
By Lemma C.4, tϕt,t1piquni“1 is conditionally ψ-dependent given Fn in the sense of

Definition C.1 with dependence coefficient ψnpsq. By Assumptions 4 and 6(c) and (d),

we may apply Theorem 3.2 of Kojevnikov et al. (2021) to n´1{2
řn
i“1

a

n{mnϕt,t1piq1ti P
Mnu to obtain

σ´1
n

1?
mn

ÿ

iPMn

ϕt,t1piq dÝÑ N p0, 1q.

It therefore remains to show that the remainder terms R1t, R2t are opp1q.
We first bound R1t. The argument is more complicated than the i.i.d. case

due to covariance terms. Abbreviate µi “ µtpi,X,Aq, pi “ ptpi,X,Aq, and p̂i “
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p̂tpi,X,Aq. For some universal constants C,C 1 ą 0, ErR2
1ts equals

1

mn

ÿ

iPMn

ÿ

jPMn

E

„

E rpYi ´ µiqpYj ´ µjq | D,X,As 1iptq1jptqpp̂i ´ piqpp̂j ´ pjq
p̂ipip̂jpj



ď C

8
ÿ

s“0

γnps{2q1´2{p n

mn

1

n

n
ÿ

i“1

n
ÿ

j“1

1tℓApi, jq “ suC 1
E r|p̂i ´ pi|s

ď C C 1
8
ÿ

s“0

γnps{2q1´2{p n

mn

˜

1

n

n
ÿ

i“1

|N Bpi, sq|2
¸1{2˜

1

n

n
ÿ

i“1

E
“

pp̂i ´ piq2
‰

¸1{2

where the second line uses Lemma C.5 and Assumption 4(b). The last line is opp1q
by Assumptions 4(b), 5, and 6(d).

Finally, from the proof of Theorem 3.1 of Farrell (2018), R2t “ opp1q. This part

of the argument only uses Assumptions 4 and 5.

Proof of Theorem 2. Define

σ̃2 “ 1

mn

ÿ

iPMn

ÿ

jPMn

ϕt,t1piqϕt,t1pjq1tℓApi, jq ď bnu.

We first show that |σ̂2 ´ σ̃2|
pÝÑ 0. For ϕ̂t,t1piq “ τ̂ipt, t1q ´ τ̂ pt, t1q,

|σ̂2 ´ σ̃2| “
ˇ

ˇ

ˇ

ˇ

1

mn

ÿ

iPMn

`

ϕ̂t,t1piq ´ ϕt,t1piq
˘

ÿ

jPMn

`

ϕ̂t,t1pjq ` ϕt,t1pjq
˘

1tℓApi, jq ď bnu
ˇ

ˇ

ˇ

ˇ

ď n

mn

˜

1

n

n
ÿ

i“1

`

ϕ̂t,t1piq ´ ϕt,t1piq
˘2 1

n

n
ÿ

i“1

max
jPNn

`

ϕ̂t,t1pjq ` ϕt,t1pjq
˘2
npi, bnq2

¸1{2

. (D.1)

By Assumptions 4(b) and 7(a) and (e), for some universal C ą 0

1

n

n
ÿ

i“1

max
jPNn

`

ϕ̂t,t1pjq ` ϕt,t1pjq
˘2
npi, bnq2 ď C

1

n

n
ÿ

i“1

npi, bnq2 “ Opp
?
nq. (D.2)

We next show that

1

n

n
ÿ

i“1

`

ϕ̂t,t1piq ´ ϕt,t1piq
˘2 “ oppn´1{2q, (D.3)

Abbreviate µtpiq “ µtpi,X,Aq, ptpiq “ ptpi,X,Aq, µ̂tpiq “ µ̂tpi,X,Aq, p̂tpiq “
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p̂tpi,X,Aq, and

∆iptq “ pµ̂tpiq ´ µtpiqqptpiq ´ 1iptq
ptpiq

´ 1iptqpYi ´ µ̂tpiqqpp̂tpiq ´ ptpiqq
p̂tpiqptpiq

.

The left-hand side of (D.3) equals

1

n

n
ÿ

i“1

ˆ

∆iptq ´ ∆ipt1q ´ τ̂pt, t1q ` τpt, t1q
˙2

.

Using Assumption 7(a) and (b) and Theorem 1, this is oppn´1{2q, which establishes

(D.3). It follows from (D.2) and Assumption 4(b) that (D.1) “ opp1q.
Next, the proof of Theorem 4 of Leung (2022a) can be applied to show that

σ̃2 “ σ̂2
˚ ` Rn ` opp1q.

The argument follows from substituting ϕ̃t,t1piq for his Zi ´ τipt, t1q and our Assump-

tions 7(d)–(f) for his Assumptions 7(b)–(d).

Finally, we apply Proposition 4.1 of Kojevnikov et al. (2021) to show |σ̂2
˚ ´σ2

n|
pÝÑ

0. First, Erϕ̃t,t1piq | X,As “ 0 under Assumption 1, as required by their setup. Their

Assumption 2.1 is a consequence of our Lemma C.4 and Assumption 6(c). Their

Assumption 4.1(i) is satisfied due to our Assumption 7(a). Their Assumption 4.1(ii)

is a consequence of their Proposition 4.2. Lastly, their Assumption 4.1(iii) corresponds

to our Assumption 7(c).

Proof of Theorem 3. Under the assumptions of the theorem, Lemma C.1

holds. The average (over i) of the square right-hand side of (C.1) is at most of

order e´2αsn´1
řn
i“1 npi, 1q2, which is oppn´1{2q if s “ pp4 ´ ǫqαq´1 log n. From the

left-hand side of (C.1), this choice of s corresponds to L “ rλppp4´ ǫqαq´1 log n` 1q.
The average (over i) of the square of the right-hand side of (C.2) is at most of

order e´αspn´1
řn
i“1 npi, 1q2`n´1

řn
i“1 Λnpi, s{2q2npi, s{2q2q. Under Assumption 7(a),

we satisfy Assumption 6(b) by choosing λnpi, s{2q “ 2M . Then the assumptions of

the theorem imply that this is oppn´1{2q if s “ pp2 ´ ǫqpα ´ ξqq´1 logn. From the

left-hand side of (C.2), this corresponds to L “ rλppp2 ´ ǫqpα ´ ξqq´1 logn ` 1q.
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