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Abstract 

 

This paper presents a novel approach to forecasting fertility patterns using micro data, focusing 

on individual-level observations to enhance predictions of fertility rates. Our method leverages 

the advantages of completed fertility rates, which provide more reliable fertility measures when 

birth rates differ by cohorts. Analyzing detailed birth history outcomes from Census Korea 2% 

data, we estimate and predict fertility outcomes, encompassing both the timing and total 

number of childbirths. We find that younger cohorts tend to delay childbirth compared to earlier 

cohorts, with educational attainment and childbirth history playing a significant role in this 

trend. 
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1. Introduction 

The current size and demographic composition of a population play a pivotal role in shaping a 

nation’s future productivity and societal outcomes. Accurate forecasts regarding future 

population trends, in turn, guide present-day policy formulation, empowering policymakers to 

make more informed decisions. The structure of the future population hold profound 

implications across various policy directions, spanning demography (pertaining to age 

distribution and the working-age population), labor economics (encompassing labor supply and 

demand dynamics and intergenerational inequality), macroeconomics (impacting economic 

growth trajectories and government expenditure), and public finance (influencing the 

allocation of resources towards education, healthcare, and social security systems). Given that 

population changes are shaped by the interplay of fertility, mortality, and migration patterns, 

accurate population forecasting necessitates predictions encompassing all three components. 

Of the three determinants of population dynamics, this paper presents a strategy that 

specifically focuses on probabilistic fertility prediction. Fertility holds particular significance 

for policymakers due to its strong association with future population growth and composition. 

Governments can directly influence fertility through a range of policies, including childbirth 

subsidies, maternity and parental leave, and childcare support, among others. In contrast, 

immigration policies, while important, aim to regulate the influx of immigrants who 

complement the domestic working-age population and are influenced by fertility projections. 

Regarding mortality, policies focus on elderly welfare, such as healthcare and social support, 

rather than directly targeting mortality rates as a primary policy goal. Consequently, mortality 

becomes an incidental outcome of these policies rather than the primary target. 

A widely used indicator for predicting future fertility is the total fertility rate (TFR), but it may 

be an inadequate predictor if women born in different years exhibit different fertility behaviors. 

The TFR for a given year is defined by the average number of children a 15-year-old woman 

would have until she reaches 49, assuming that the age-specific birth rates in that year remain 

constant throughout her childbearing years.1 Hence, for the TFR to accurately predict future 

 
1 The age-specific birth rate is the average number of children born within a year by that age 

group. The TFR is the sum of all the age-specific birth rates. 
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fertility, it is essential that the age-specific birth rates in the base year remain unchanged. For 

instance, in Korea, the annual number of children born has decreased over the decades as 

younger cohorts of women have fewer births over their lifetimes than older cohorts. When 

younger cohorts have fewer births over the course of the reproductive years, the TFR will 

systematically over-predict the future fertility rate because it uses the higher birth rates of older 

cohorts to predict the future birth patterns of younger cohorts. 

The objective of this research is to develop a more reliable predictor for fertility rates, one that 

takes into account the variations in birth rates across different cohorts. To achieve this goal, it 

is crucial to have a comprehensive understanding of the trends in birth behavior across cohorts. 

In this context, the completed fertility rate (CFR) emerges as a useful concept. The CFR 

represents the average number of children born to women within a specific cohort over the 

course of their reproductive years. It is realized when a specific cohort reaches the final year 

of childbearing, typically set to 49. By its nature, the CFR utilizes retrospective records, 

providing researchers with a means to assess childbearing behavior from previous years. The 

information obtained from these estimations can then be utilized to make predictions regarding 

future fertility rates. 

This paper develops a method to estimate and predict fertility patterns using micro data. The 

proposed method makes notable contributions to the existing literature in several key aspects. 

First, our method enables one to examine how individual-level factors, such as previous birth 

history or education level, affect the timing and total number of childbirths over a lifetime. By 

accounting for variations in these factors across cohorts, our approach provides insights into 

the evolution of fertility outcomes across generations. Second, unlike previous studies relying 

on aggregate data, our method is based on individual-level data. Its large sample size leads to 

more accurate projections with narrower confidence intervals. Finally, we predict the birth 

schedule, capturing not only the total number of completed births but also the timing of each 

birth. Utilizing a duration model, we can discern how trends in both the ages at childbirth and 

the number of children vary across cohorts. 

We apply our method to the Census Korea 2% data, which offers a large and representative 

sample of women from different cohorts and their socio-demographic characteristics, allowing 

us to construct detailed birth history outcomes. Utilizing this data, we find that younger cohorts 

tend to delay childbirth compared to earlier cohorts, with educational attainment playing a 
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significant role in this trend. Moreover, individuals with a higher number of previous children 

tend to have longer durations between childbirths, indicating a reduced likelihood of having 

additional children. The fertility projections for the 1985, 1990, and 1995 cohorts provide 

insights into future fertility trends. The 1985 cohort is anticipated to delay childbirth more than 

the 1980 cohort, even though they are expected to have a similar overall number of children. 

However, the 1990 and 1995 cohorts are projected to have fewer children overall. 

The paper proceeds as follows. Section 2 reviews the methods of probabilistic population 

forecasting and summarizes the contributions of our approach. Section 3 introduces the Census 

Korea data, presents descriptive statistics, and explains how birth history can be constructed 

from cross-section data. In Section 4, we generalize the concepts of the TFR and the CFR, 

ensuring that the fertility measures are comparable and suitable for estimation and prediction 

purposes. Section 5 discusses the empirical specification, estimates the fertility hazards, and 

presents the prediction results. Finally, Section 6 offers concluding remarks summarizing the 

key findings and implications of the study. 

 

2. Methods of Fertility Prediction 

2.1. Probabilistic Population Forecasting Methods 

There is a large literature dedicated to forecasting fertility (e.g., Alkema et al., 2011; 

Schmertmann et al., 2014), mortality (e.g., Girosi and King, 2008; Lynch and Brown, 2010), 

and migration (e.g., Gorbey, James, and Poot, 1999; Bijak, 2010).2 Some focus on one of the 

three while others undertake all three aspects within a single study, often employing a shared 

methodology. For example, the strategy developed by Lee and Carter (1992) to predict 

mortality is also applied to forecast fertility in Lee (1993). In these papers, mortality and 

fertility time series data are utilized to estimate and anticipate the respective processes. 

Likewise, more recent studies such as those conducted by Hyndman and Booth (2006), Raftery, 

 
2  We exclusively focus on probabilistic forecasting and refrain from utilizing expert-based 

approaches. Some research combines expert information with stochastic forecast models, as 

demonstrated by Billari, Graziani, and Melilli (2014), for instance, but our review and 

discussion center solely on data-driven models. 
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Alkema, and Gerland (2014) and Wisniowski et al. (2015), among others, also rely on nation-

level time series data to project future population trends.3 

The seminal paper by Lee (1993) on fertility forecasting employs the method used for mortality 

prediction developed by Lee and Carter (1992). The main goal of his work is to propose a time 

series model that forecasts long term age-specific fertility rates. After specifying a one-

parameter model which accounts for age-time variations in fertility, he estimates the model by 

using the singular value decomposition approach and predicts the fertility index. The study also 

imposes upper and lower bounds to avoid negative fertility rates and restricts long-run fertility 

rates to equilibrate at a specific level using prior information. The model is fitted to fertility 

data from the United States, and the overall performance of the method is evaluated. 

Instead of adopting identification via the singular value decomposition approach, Hyndman 

and Booth (2006) propose a methodology for stochastic population forecasts using functional 

principal component analysis. The method extracts the principal components from historical 

data on fertility, mortality, and migration. These principal components capture the underlying 

patterns and variability in the data over time. Then, they utilize these components to construct 

functional time series models, such as functional autoregressive models, to forecast future 

demographic trends with probabilistic prediction intervals. Additionally, they discuss the 

application of their methodology to making 20-year forecasts using Australian data for the 

period 1921–2004 and evaluate the performance of their models using empirical data. 

The empirical specification of Lee (1993) is extended by Wisniowski et al. (2015), who employ 

a Bayesian approach. They first construct a general framework for the projection of mortality, 

fertility, emigration and immigration by adapting the Lee-Carter model. To forecasts the four 

population components, they exploit a Bayesian approach which assumes prior distributions 

for the model parameters. Then, the population components integrate within a cohort 

component projection model. To obtain posterior distributions, they exploit Markov chain 

Monte Carlo approach. By applying their method to data from the United Kingdom, they report 

 
3  In discussions on approaches to population forecasting, Booth (2006) provides a 

comprehensive overview of studies conducted between 1980 and 2005. 
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the advantages of the Bayesian approach for population projection. 

Methods have been developed to produce country-specific probabilistic population projections 

for multiple countries. Concerned about the lack of uncertainty evaluation in previous United 

Nations population projections, Raftery, Alkema, and Gerland (2014) establish Bayesian 

hierarchical models to forecast future fertility and mortality rates for each country. These rates 

are measured by the TFR and life expectancy for females and males. The projections yield 

numerous possible scenarios from the posterior predictive distribution, which are then 

integrated into a cohort component projection model. They assess their methods using the TFRs 

and mortality rates of 159 countries. 

As fertility, mortality, and migration are determined by their specific processes, previous 

research has also developed methods or focused on fertility prediction. For instance, Alkema 

et al. (2011) develop a methodology tailored for probabilistic population projections, 

specifically focusing on fertility rates. Their approach hinges on a Bayesian hierarchical model 

designed to generate country-specific TFR projections for all nations. Drawing from the 

demographic theory of fertility transitions, which delineates pre-transition high fertility, the 

fertility transition, and post-transition low fertility phases, they model the TFR as a sum of two 

logistic functions that depend on the current TFR and a stochastic term. They use the United 

Nations’ estimates of TFR spanning 1950 to 2010 for 196 countries to produce probabilistic 

forecasts of forthcoming fertility trends. 

Earlier literature, such as Bloom (1982) and de Beer (1985), has also utilized the CFR, 

recognizing its advantages over the TFR. These studies note the CFR's robustness, attributed 

to its freedom from tempo distortion. Models employing the CFR to forecast fertility trends 

have since been developed. Schmertmann, Zagheni, Goldstein, and Myrskylä (2014) utilize the 

Human Fertility Database (HFD), combining it with data from other sources to create a final 

dataset covering 37 countries. The data is aggregated at the cohort level by age for each country. 

Their proposed method is a Bayesian model that incorporates prior information about patterns 

over age and time. Cohort schedules are approximated using principal components of HFD 

schedules in the age dimension, while ensuring smoothness and linearity over short spans in 

the time dimension. Forecasts of completed cohort fertility for women born in the 1970s and 

1980s are provided. 
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2.2. Our Contribution 

Utilizing aggregate data facilitates projections spanning decades or even centuries into the 

future, albeit with relatively large confidence intervals. While statistical models based on 

grouped data represent valuable tools for population forecasting, they may not 

comprehensively account for determinants influencing fertility, mortality, and migration due to 

the lack of micro data capturing individual behavioral decisions. Factors at the personal level, 

such as birth history and socio-economic status, can influence fertility decisions but may be 

overlooked in models relying solely on grouped data. Consequently, complementing purely 

statistical models with an understanding of individual-level behavioral decisions could enhance 

the accuracy of population forecasting. 

This paper aims to estimate the dynamics of age-specific fertility over cohorts, leveraging the 

availability of individual-level birth records. Furthermore, our methodology involves 

developing a future population estimate that not only controls for socio-demographic changes 

across cohorts but also incorporates individual-level factors such as educational attainment, 

previous birth, and timing of birth. As highlighted by Lee (1993), disaggregating fertility 

forecasts by age is crucial for generating accurate predictions of birth numbers in conjunction 

with population age distributions. However, generating independent age-specific forecasts can 

be time-consuming and may overlook their strong statistical interdependence.4  While we 

acknowledge Lee’s rationale, particularly in contexts where micro data are unavailable, our 

approach capitalizes on individual-level observations to produce age-cohort-specific forecasts 

tailored to both age and cohort characteristics rather than relying solely on age-specific 

estimates. 

 
4 According to Lee (1993), “It is important that fertility forecasts be disaggregated by age, so 

that they can be used in conjunction with population age distributions to generate forecasts of 

numbers of births.” He continues, “Yet we do not want to generate independent age-specific 

forecasts, which would be time-consuming and would overlook their strong statistical 

interdependence.” 
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The comparison between previous methods and our proposed strategy is outlined in Table 1, 

highlighting several distinctive features. First, our method leverages the advantages of the CFR. 

As discussed earlier, the CFR is a more reliable measure of fertility when birth rates differ by 

cohorts. Methods targeting the TFR predict the conventional TFR, which represents the total 

number of childbirths over a lifetime. Methods targeting the CFR, including ours, predict the 

fertility schedule, which traces the number of children by age. Predicting the fertility schedule 

allows us to understand both the number and timing of births. Specifically, our method forecasts 

the timing of future childbirths for each individual. These individual forecasts are then 

aggregated to generate cohort-specific predictions. 

Second, previous methods use time series models, whereas our approach utilizes a duration 

model. Previous methods targeting the TFR require time series data of TFR at the national or 

regional level to predict future TFR. Previous methods targeting the CFR require time series 

data of birth rates for every age at the national or regional level to predict future fertility 

schedule. Our approach necessitates the collection of childbirth data for each age of individual 

mothers. The model specification relies on behavioral outcomes, accounting for variations in 

fertility not only by age and cohort but also by childbirth history and individual attributes. 

These factors serve as explanatory variables in our model and are used to predict the future 

fertility schedule. However, it is worth noting that methods targeting the CFR, including ours, 

are not suitable for long-term predictions. This is because age-specific birth data or individual 

birth history data are relatively limited compared to the much longer time series data available 

for TFR.  
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Table 1. Differences between the Existing Methods and the Proposed Method 

 

 Previous TFR Methods Previous CFR Methods Our CFR Method 

    

Target Variable Conventional TFR (Number of 

Childbirth by Age 49) 

Fertility Schedule (Number of Birth 

by Every Age) 

Fertility Schedule (Number of Birth 

by Every Age) 

    

Model Specification Time Series Model Time Series Model Duration Model 

    

Data Requirement Time Series of Nation/Region-Level 

TFR 

Time Series of Age-Specific 

Nation/Region-Level Birth Rates 

Childbirth History of Individuals 

from Different Cohorts 

    

Prediction Horizon Long-Term Prediction (of Several 

Decades or even Centuries) 

Short-Term Prediction (for Cohorts 

that are 15 years old or older) 

Short-Term Prediction (for Cohorts 

that are 15 years old or older) 
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3. Data and Descriptive Statistics 

3.1. The Census Korea Data 

Our main sample is drawn from the 1990, 1995, 2000, 2005, 2010, 2015, 2020 Census Korea 

2% data.5 We collect data on women aged 15 to 45 from each of the seven waves. We limit 

our sample to women whose relationship with the household head falls into one of the 

following categories: herself, spouse, child, or spouse of a child. This is because the parent-

child relationship is not clearly identified for women outside of these categories. By using the 

responses regarding the relationship with the household head, we can identify mothers and their 

children. From the age of each child, we can determine the mother’s age at the birth of each 

child. For example, if a 40-year old mother lives with 15-year old and 10-year old children, she 

is regarded to have children at age 25 and 30. This step reduces the number of individuals from 

1,459,615 to 1,387,480. 

While conventional fertility measures typically encompass women aged 15 to 49, our sample 

is restricted to those up to age 45 to enhance the precision of birth history information. Utilizing 

Census data on household relationships allows us to construct a woman’s birth history based 

on the ages of co-resident children. Since older cohorts began childbirth earlier, typically in 

their early 20s, older women in their 40s are more likely to have children who have moved out, 

potentially leading to underestimations of completed fertility and distortions in birth history 

records. As we present in Table 3, childbirth among women in their 40s is relatively rare, 

diminishing the utility of predicting fertility within this age group. 

 

3.2. Descriptive Statistics 

Table 2 reports descriptive statistics. The first column of Table 2 presents descriptive statistics. 

On average, the women in this sample are 30.75 years old and have completed 12.92 years of 

education. In this sample, 51% of the women are spouse of the household head and 33% of the 

women are child of the household head, respectively. The proportion of single women is 39% 

 
5 We also use the 1966, 1970, 1975, …, 1985 Census Korea 2% data to construct historical 

fertility rates. 
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and that of married women is 58%. 

In more recent waves the average ages are larger, reflecting a decreasing trend in the cohort 

size. Younger women have higher education level. The average years of education of women 

increased from 11.08 to 14.43. The proportion of household head is also increased. Only 7% 

of women were household head in 1990, but 27% of women are household head in 2020. The 

women in more recent wave are more likely to be single. The proportion of single women rose 

from 34% to 53%. 
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Table 2. Descriptive Statistics 

 Wave 

Variable Total 1990 1995 2000 2005 2010 2015 2020 

Age 30.75 28.96 29.89 30.84 31.50 31.53 31.43 31.37 

Years of Education 12.92 11.08 11.84 12.46 13.51 13.63 14.08 14.43 

Relation w/ Head         

  Herself 0.14 0.07 0.08 0.10 0.13 0.17 0.18 0.27 

  Spouse 0.51 0.58 0.60 0.58 0.53 0.46 0.42 0.34 

  Child 0.33 0.30 0.29 0.30 0.32 0.35 0.38 0.38 

  Spouse of Child 0.02 0.04 0.03 0.02 0.02 0.02 0.01 0.01 

Marital Status         

  Single 0.39 0.34 0.33 0.34 0.37 0.42 0.47 0.53 

  Married 0.58 0.64 0.65 0.63 0.59 0.54 0.50 0.44 

  Widowed 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.00 

  Divorced 0.02 0.01 0.01 0.02 0.03 0.03 0.03 0.03 

Observations 1,387,480 202,607 221,707 222,411 202,060 194,365 179,488 164,842 
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4. Generalization of TFR and CFR 

This section generalizes the concepts of the TFR and the CFR. First, the conventional TFR is 

obtained by the sum of the age-specific birth rates from age 15 to 49 in a given year. We define 

the generalized version of TFR, 𝑇𝐹𝑅𝑏(𝑥), as the sum of the age-specific birth rates from age 

15 to x among women born in year b, where x is a natural number between 15 and 49. For 

example, suppose that we are interested in the TFR of year 2015. The TFR in 2015 is often 

considered as the expected number of children a 15-year-old woman would have throughout 

her lifetime. In 2015, women born in 2000 become age 15. Therefore, the conventional TFR in 

year 2015 is 𝑇𝐹𝑅2000(49). 

Second, the conventional CFR is the sum of the age-specific birth rates from age 15 to 49 of a 

given cohort. To calculate the CFR, the birth history of 49-year-old women is used. We define 

the generalized CFR, 𝐶𝐹𝑅𝑏(𝑥), as the sum of the age-specific birth rates from age 15 to x for 

women born in year b, where x is a natural number between 15 and 49. The conventional CFR 

for women born in 2000 is 𝐶𝐹𝑅2000(49). 

Table 3 reports 𝑇𝐹𝑅𝑏(49) for 𝑏 = 1951, 1955, 1960, 1965, … , 2000 using the Census data 

and compare them with officially calculated TFR. The officially calculated TFR is derived by 

the Statistical Office of Korea using administrative data. The first and second columns present 

𝑇𝐹𝑅𝑏(49) using the Census data and officially calculated TFR, respectively. Our measures 

tend to understate the officially calculated TFR. However, for 𝑏 = 1975, … , 2000 , the 

difference seems negligible. 

Next, we compare 𝑇𝐹𝑅𝑏(49)  and 𝑇𝐹𝑅𝑏(40)  for 𝑏 = 1951, 1955, 1960, 1965, … , 2000 

both using the Census data. This is to demonstrate that fertility in the 40s are negligible and 

that the two estimates are close to each other. This is useful to 𝑇𝐹𝑅𝑏(40) will be directly 

comparable with 𝐶𝐹𝑅𝑏(40) . The first and third columns of Table 3 suggest that the two 

estimates are almost same except for older cohorts 𝑏 = 1951, 1955, 1960. 
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Table 3. Generalized Total Fertility Rates from Census and Population 

 (1) (2) (3) (4) 

 𝑇𝐹𝑅𝑏(49) 𝑇𝐹𝑅𝑏(49) 𝑇𝐹𝑅𝑏(40) 𝐶𝐹𝑅𝑏(40) 

B Census Official Census Census 

1951 4.19 4.99 3.92 2.39 

1955 3.83 4.53 3.64 1.93 

1960 2.81 3.43 2.74 1.75 

1965 2.37 2.82 2.35 1.76 

1970 1.54 1.66 1.53 1.63 

1975 1.51 1.57 1.50 1.50 

1980 1.63 1.63 1.62 1.36 

1985 1.44 1.48 1.43  

1990 1.07 1.09 1.06  

1995 1.21 1.23 1.19  

2000 1.22 1.24 1.20  

TFRs in columns (1) and (3) are derived by authors’ calculation using Census 2% sample. 

TFRs in column (2) are from Statistical Office of Korea. 

CFRs in column (4) are derived by authors’ calculation using Census 2% sample. 

 

We compare figures for 𝑇𝐹𝑅𝑏(40)  and 𝐶𝐹𝑅𝑏(40)  for 𝑏 = 1951, 1955,1960, … , 1995 . 

The objective of this exercise is to verify that when there is a decreasing trend in fertility, the 

TFR will overstate the true fertility. According to our TFR calculation, the 1951 cohort was 

expected to have 3.92 children by age 40. However, the 1951 cohort actually had 2.39 children 

on average over the lifetime according to the realized CFR. For the 1955, 1960, and 1965 

cohorts, the TFR is an overestimate of actual number of children born by 1.71, 0.99, and 0.59 

children, respectively. The discrepancy between the TFR and the CFR narrows for the 1970 

and 1975 cohorts but widens for the 1980 cohort. For more recent cohorts, the TFR estimates 

drop to 1.43 for the 1985 cohort and continue decreasing for younger cohorts, but comparison 

with the CFR is not possible because the CFR needs to be predicted. Figure 1 illustrates 

𝑇𝐹𝑅𝑏(𝑎)  and 𝐶𝐹𝑅𝑏(𝑎) , respectively, for 𝑎 = 15, 16, … , 40  for each 𝑏 =

1951, 1955,1960, … , 1995. 

The generalized CFR in Figure 1 reveals interesting findings because we can observe the 

mother’s age at birth. For example, the 1960 and 1965 cohorts have the same CFR at age 40 as 

the two lines meet at age 40. The CFR 1965 line, however, is below the CFR 1960 line between 
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ages 20 and 30. It implies that the 1965 cohort delay having children than the 1960 cohort. Two 

notable observations are evident in the right panel of Figure 1. First, younger cohorts exhibit 

lower fertility rates. We observe a decreasing trend in fertility rates, denoted by 𝐶𝐹𝑅𝑏(40), 

with respect to mother’s birth year. Indeed, 𝐶𝐹𝑅𝑏(𝑎𝑔𝑒) decreases for any given 𝑎𝑔𝑒 with 

respect to 𝑏. Second, more of the younger cohorts give birth at older ages compared to earlier 

cohorts, as evidenced by the steeper birth schedule at older ages for younger cohorts. Delaying 

childbirth does not alter the completed number of childbirths over an individual’s lifetime, but 

does contribute to a decrease in the population due to children being born later. Overall, 

younger cohorts tend to have fewer births compared to earlier cohorts, and they exhibit a 

tendency toward later childbirth. 
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Figure 1. Generalized Total Fertility and Completed Fertility Rates by Cohorts 
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5. Empirical Analysis 

5.1. Empirical Specification 

This section discusses how to predict 𝐶𝐹𝑅𝑏(𝑥) of the future using realized 𝐶𝐹𝑅𝑏(𝑥) of the 

past. For a woman who has ever given birth, we define 𝑡0  be the age at her most recent 

childbirth. For a woman who has not experience a childbirth, 𝑡0 is set to be 15. The survival 

time, 𝑡, is defined as the number of years since 𝑡0. Using the natural logarithm of the survival 

time, 𝑙𝑜𝑔𝑡𝑖, we consider an accelerated failure time model specified by 

(1) 𝑙𝑜𝑔𝑡𝑖 = 𝛽0 + 𝛽1𝑡0𝑖 + 𝛽2𝑡0𝑖
2 + 𝛽3𝑡0𝑖

3 + 𝛽4𝑛𝑜𝑐ℎ𝑖𝑙𝑑𝑖 + 𝛽5𝑛𝑏𝑜𝑟𝑛𝑖 + 𝛽6𝑒𝑑𝑢𝑐𝑖 

+(𝛾0 + 𝛾1𝑡0𝑖 + 𝛾2𝑡0𝑖
2 + 𝛾3𝑡0𝑖

3 + 𝛾4𝑛𝑜𝑐ℎ𝑖𝑙𝑑𝑖 + 𝛾5𝑛𝑏𝑜𝑟𝑛𝑖 + 𝛾6𝑒𝑑𝑢𝑐𝑖) ∗ 𝑦𝑜𝑏𝑖 + 𝜀𝑖, 

where 𝑛𝑜𝑐ℎ𝑖𝑙𝑑 is a dummy variable that takes on a value of one if there has been no childbirth 

by 𝑡0 ., 𝑛𝑏𝑜𝑟𝑛  is the cumulative number of children born by 𝑡0 , 𝑒𝑑𝑢𝑐  is the years of 

education, 𝑦𝑜𝑏 is the year of birth, and 𝜀𝑖 is the error term. We interact year of birth with all 

the other control variables to reflect any possible trend by birth cohort. 

The error term is assumed to have a logistic distribution, which is equivalent to specifying a 

loglogistic survivor function. The corresponding hazard rate initially increases, reaches its peak, 

and then decreases. This property goes well with the observation that births are concentrated at 

a specific age range. For example, the hazard of having a child increases initially and the chance 

of having a child later in the life declines. 

 

5.2. Estimation Results 

Table 4 presents the estimation results. The age at time zero is set to 15 for individuals who 

have not given birth before. For those who have previously given birth, the age at time zero 

corresponds to the age at their most recent birth. Note that a positive coefficient indicates an 

increase in the time it takes for a childbirth to occur. This would imply a longer duration or 

delay in having a child, which can be interpreted as a decreased probability or reduced 

likelihood of having a childbirth over the lifetime. 

In Column (1), we present the results from the simplest specification, where our interpretation 

focuses on the signs of the estimates. A negative coefficient on the age at time zero suggests 
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that the duration of birth becomes shorter with age, indicating an increased likelihood of giving 

birth as individuals grow older. The positive coefficient on the number of children implies that 

the duration of birth increases with the number of children. This suggests that mothers with 

more children are less likely to have additional births. Similarly, education is associated with 

an increased duration, suggesting that more educated individuals are less likely to give birth. 

Column (2) investigates whether females from different cohorts exhibit varying tendencies 

towards childbearing. The coefficient for the year of birth is positive and statistically significant, 

suggesting that the younger cohort is expected to take longer to reach childbirth compared to 

the older cohort at the same age. For instance, when comparing two females born in 1970 and 

1980, the duration to childbirth for the younger cohort woman at age 30 is expected to be 

approximately 19% (=1.9% * 10) longer than that of the older cohort woman at the same age. 

In column (3), we extend the specification by interacting the year of birth with age at time zero, 

number of children at time zero, and education. A notable finding emerges, indicating that the 

inclination to delay childbirth in response to educational attainment is more pronounced among 

younger cohorts compared to older cohorts. Accompanied by the fact that younger generation 

has higher levels of education on average, younger cohorts are less likely give birth of a child 

than older cohorts. Furthermore, younger cohorts demonstrate a higher tendency to postpone 

subsequent childbirths when compared to their older counterparts. Consequently, there is a 

decreased likelihood of giving birth over their lifetime, as compared to the older generation. 

Adding a cubic polynomial of age at time zero in column (4) does not alter the coefficients for 

the number of children and education interacted with the year of birth, as observed in column 

(3). 

In column (5), we present the results from the full specification, which additionally includes a 

dummy variable indicating whether the woman has not experienced childbirth by time zero, 

along with a variable that interacts this dummy variable with the year of birth. The findings 

suggest that the duration to first childbirth is shorter than the duration to subsequent childbirths. 

However, the duration to first childbirth is increasing for younger cohorts. For example, when 

comparing two females born in 1970 and 1980, the duration to first childbirth for the younger 

cohort woman expected to be approximately 47% (=4.7% * 10) longer than that of the older 

cohort woman. We utilize the results from column (5) to predict future fertility rates in the next 

section. 



19 

 

 

Table 4. Duration Model Estimates      
  (1) (2) (3) (4) (5) 

VARIABLES 𝑙𝑜𝑔(𝑡) 𝑙𝑜𝑔(𝑡) 𝑙𝑜𝑔(𝑡) 𝑙𝑜𝑔(𝑡) 𝑙𝑜𝑔(𝑡) 

          

Age at 𝑡0 -0.133*** -0.134*** -0.059*** -4.148*** -4.255*** 

 (0.000) (0.000) (0.001) (0.048) (0.107) 

Age2 at 𝑡0    0.167*** 0.163*** 

    (0.002) (0.004) 

Age3 at 𝑡0    -0.002*** -0.002*** 

    (0.000) (0.000) 

No Children by 𝑡0     -1.074*** 

     (0.077) 

Num of Children by 𝑡0 0.753*** 0.798*** 0.719*** -0.058*** -0.124*** 

 (0.002) (0.002) (0.011) (0.013) (0.013) 

Education 0.097*** 0.060*** -0.067*** -0.046*** -0.047*** 

 (0.000) (0.000) (0.002) (0.001) (0.001) 

Year of Birth (YoB)  0.019*** 0.012*** -0.079*** -0.444*** 

  (0.000) (0.000) (0.006) (0.014) 

Age at 𝑡0 * YoB   -0.001*** 0.016*** 0.051*** 

   (0.000) (0.001) (0.002) 

Age2 at 𝑡0 * YoB    -0.001*** -0.002*** 

    (0.000) (0.000) 

Age3 at 𝑡0 * YoB    0.000*** 0.000*** 

    (0.000) (0.000) 

No Children * YoB     0.047*** 

     (0.001) 

Num Children * YoB   0.000** 0.020*** 0.022*** 

   (0.000) (0.000) (0.000) 

Education * YoB   0.002*** 0.001*** 0.001*** 

   (0.000) (0.000) (0.000) 

Constant 3.302*** 2.486*** 2.706*** 33.606*** 36.720*** 

 (0.004) (0.005) (0.029) (0.366) (0.943) 

Log(gamma) -0.651*** -0.653*** -0.653*** -0.853*** -0.863*** 

 (0.001) (0.001) (0.001) (0.001) (0.001) 

      

Observations 2,228,990 2,228,990 2,228,990 2,228,990 2,228,990 

The dependent variable is the natural logarithm of the survival time.   
The error term follows a logistic distribution.   
𝑡0 is either 15 or the age at the most recent childbirth.   
Standard errors in parentheses     
*** p<0.01, ** p<0.05, * p<0.1      
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5.3. Predicted Fertility 

As our duration model assumes loglogistic distribution, the survivor function is given by 

(2)  𝑆(𝑡𝑖) = 𝑃(𝑇 > 𝑡𝑖) = 1/(1 + (𝜆𝑖𝑡𝑖)
1/𝛾

) where 𝜆𝑖 = exp (−𝑥𝑖𝛽). 

Consequently, the chance that individual 𝑖 who has not given birth for 𝑠 years will give birth 

of a child that year is given by 

(3)  ℎ(𝑠𝑖) =
𝑃(𝑇≤𝑠𝑖+1)−𝑃(𝑇≤𝑠𝑖)

1−𝑃(𝑇≤𝑠𝑖)
=

 𝑆(𝑠𝑖)−𝑆(𝑠𝑖+1)

𝑆(𝑠𝑖)
. 

The hazard in (3) is used to make prediction. For example, consider the 1990 cohort. 

Individuals in this cohort are 30 in year 2020. For each individual in that cohort, if she does 

not give birth of a child in 2020, her age at time zero remains unchanged. However, if she gives 

birth of a child in 2020, her age at time zero is updated to her current age, 30. In this case, her 

number of children is updated. For each individual in every cohort in the data, her hazard is 

calculated by (3). A larger hazard implies a higher chance of having a child in the following 

year. Using each individual’s hazard, we generate uniform random number to determine 

whether the individual gives birth of a child in 2021. Using the simulated birth outcomes, we 

repeat the prediction process. This simulation process is essential because the birth outcomes 

depend on their past outcomes. We use the results in column (5) of Table 4 to make the 

prediction. 

We obtain the simulated standard deviation and the 95% confidence interval as follows. First, 

we randomly generate estimates from a multivariate normal distribution, with the mean equal 

to the estimates reported in column (5) of Table 4 and the associated covariance matrix. We 

then conduct the simulated prediction until age 40 using these estimates. This process is 

repeated 99 times. Using these simulated fertility values, we obtain the standard deviation and 

the empirical 95% confidence interval for each prediction. 

Figure 2 graphically displays the predicted fertility patterns using the 95% confidence 

intervals.6  These predictions suggest several points. First, the 1985 cohort’s birth profile 

 

6 Table A in the appendix presents the predicted fertility schedules and standard deviations for 
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consistently remains below the 1980 cohort’s birth profile throughout the age range, but by age 

40, the 1985 profile gets close to the 1980 profile. The 1985 cohort is expected to have 1.31 

children by age 40, similar to the 1980 cohort's prediction of 1.36 children. This convergence 

from below implies a delay in childbirth among the 1985 cohort compared to the 1980 cohort, 

rather than a decrease in the number of children over their lifetime. 

Second, the prediction results for the 1990 and 1995 cohorts suggest that these cohorts will 

have a smaller number of children overall. This is evidenced by the fact that the birth schedules 

of these two cohorts remain substantially below that of the 1985 cohort, and the disparities in 

fertility rates do not diminish as they age. Specifically, the 1990 cohort is anticipated to have 

0.96 children, while the 1995 cohort is expected to have 0.90 children. The widening of 

confidence intervals with age, particularly for younger cohorts, reflects increasing uncertainty 

in predictions as individuals age. 

  

 

the 1985, 1990, and 1995 cohorts. 
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Figure 2. Realized Birth Schedules and 95% Confidence Intervals of Predicted Births 

 

 

 

6. Concluding Remarks 

This paper presents a novel approach to forecasting fertility patterns using micro data, focusing 

on individual-level observations to enhance predictions of cohort-level fertility rates. Our 

approach contributes significantly to the literature in several aspects. First, our method 

leverages the advantages of completed fertility rates, which provide more reliable fertility 

measures when birth rates differ by cohorts. Second, it enables the examination of how 

individual-level factors, such as individual attributes and birth history, affect fertility schedules. 

Third, our method is based on individual-level data, resulting in more precise projections with 

tighter confidence intervals. Finally, we predict fertility outcomes, encompassing both the 

timing and total number of childbirths. 

Utilizing the Census Korea 2% data, we construct detailed birth history outcomes to understand 
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behavioral patterns across different cohorts. We find that younger cohorts tend to delay 

childbirth compared to earlier cohorts, with educational attainment playing a significant role in 

this trend. In addition, individuals with a higher number of previous children tend to have 

longer durations between childbirths, indicating a reduced likelihood of having additional 

children. The predicted fertility schedules for the 1985, 1990, and 1995 cohorts provide insights 

into future fertility trends. The 1985 cohort is expected to delay childbirth, but they have a 

similar number of children compared to the preceding cohort. The 1990 and 1995 cohorts, on 

the other hand, are projected to have fewer children overall. 
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Appendix 

 

Table A. Predicted Fertility   

 C1985 C1990 C1995 

Age Cumulative 

Fertility 

Estimates 

SD Cumulative 

Fertility 

Estimates 

SD Cumulative 

Fertility 

Estimates 

SD 

26     0.11 0.0037 

27     0.15 0.0058 

28     0.20 0.0070 

29     0.25 0.0086 

30     0.31 0.0100 

31   0.40 0.0055 0.37 0.0110 

32   0.46 0.0070 0.43 0.0120 

33   0.53 0.0083 0.49 0.0129 

34   0.60 0.0098 0.56 0.0142 

35   0.66 0.0107 0.62 0.0151 

36 1.06 0.0044 0.72 0.0109 0.68 0.0160 

37 1.14 0.0059 0.79 0.0116 0.74 0.0166 

38 1.20 0.0061 0.85 0.0122 0.80 0.0175 

39 1.26 0.0067 0.90 0.0133 0.85 0.0184 

40 1.31 0.0074 0.96 0.0136 0.90 0.0184 

 

 


