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Abstract

Many “combinatorial” problems in economics arise from the static or discrete timing

assumption that condenses a series of simple binary choices scattered randomly over time

into a single instance. Leaning on this insight, we transform combinatorial choices into a

sequence of binary choices in continuous time. The complexity of combinatorial choices turns

into the dimensionality problem of dynamic optimization, which is overcome by applying a

deep learning-based probabilistic approach. Two examples are provided for demonstration:

1) an exporting firm sporadically selects destinations among 100 potential interdependent

markets; 2) a dynamic input-output network formation model involving 37 sectors.
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Introduction

“Combinatorial” problems are widely encountered in economics, particularly within the liter-

ature on international trade, industrial organization, and network formation. For example, an

exporting firm needs to evaluate all possible combinations of destination markets to maximize

its profit; a smartphone company needs to select the optimal combinations of its differentiated

products; and there exists an inordinately large number of potential input-output networks be-

tween multiple sectors. The numerical resolution of these “combinatorial” problems is extremely

challenging to derive, if not outright unattainable, using conventional methods.

In this paper, we aim to emphasize two points: one conceptual and the other methodolog-

ical. Conceptually, we argue that numerous “combinatorial” problems in economic models are

artificial or by-products of the timing assumption. If we construct a static or discrete-time

model, various decisions dispersed over time in reality would be compressed to the onset of a

period. By diffusing a “combinatorial” decision over time, more specifically over a continuous

timeline, an agent faces a series of simple decisions (e.g., binary choices). Nonetheless, solving

the dynamic optimization problem remains non-trivial due to the curse of dimensionality. This

leads us to our second point, which suggests the application of a deep learning-based probabilis-

tic approach to resolve dynamic optimization problems with high-dimensional state variables.

We will expound further on our first point and subsequently illustrate the applications of our

numerical method.

Let’s consider a real-life scenario where an exporting firm decides which foreign markets to

enter. It’s hard to believe that the firm would make up its mind about the best combination of

destination markets at the beginning of a year or its life cycle. The more plausible scenario is,

as the company and its products grow, it considers branching out overseas and begins exploring

a list of foreign markets. Over time, certain opportunities arise, and the firm actually enters

some of these markets. Likewise, when college students start their freshman year, they do not

decide who their friends will be for the rest of their four years. More likely, they meet others in

various circumstances during college and form friendships over time. It’s intuitive to see that

many discrete choices, which are compressed into one instance in economic models, are actually

spread out over time in real life.

Assuming that discrete choices are spread out over (continuous) time is not only closer

to reality but also computationally more straightforward. Within a short time interval, an

economic agent will have, at most, one binary choice to make, which is trivial to compute. This

idea is inspired by Doraszelski and Judd (2012), who explores stochastic games with discrete

states. Their primary point is that in the continuous-time setting, it is sufficient to consider

only one player’s state change within a short time interval. Computationally challenging cases,

where states of multiple players jointly change, occur with negligible probabilities when the time

interval is short enough. Similarly, in our case, it becomes extremely unlikely that an agent

makes multiple discrete decisions simultaneously in the continuous-time setting.

When discrete choices are spread over time, the economic mechanism driving their interde-

pendence remains intact. For instance, when a Chinese company begins selling electric vehicles

to Chile, it understands that shipping costs will be more economical should it later enter other
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South American markets. The interdependence (e.g., complementarity) between discrete choices

spread out over time is captured by the value function of dynamic programming. If the present

discrete choice contributes more significantly to potential future choices, it will increase the

value function by a larger margin.

Solving dynamic optimization with a large state space may not necessarily be much easier

than resolving combinatorial problems. The second contribution of this paper is to apply a deep

learning-based probabilistic approach to the high-dimensional dynamic discrete choice problems

outlined above (Huang, 2023b,a). In fact, the numerical approach we propose is applicable to

both continuous states driven by diffusion shocks and discrete states driven by jump risks.

As an illustration, we consider a simple dynamic discrete choice problem. Suppose an agent’s

utility flow depends on uncontrolled continuous state xt and two binary states y1
t and y2

t , i.e.,

u(xt, y
1
t , y

2
t ). And xt follows

xt+∆ = xt + µ (xt) ∆ + σ (xt)
(
Wt+∆ −Wt

)
, (1)

where ∆ represents the length of time period, and Wt+∆ −Wt follows a normal distribution

with a mean of zero and variance of ∆. If y1
t = 1, it changes to y1

t = 0 exogenously with a

probability of λ∆ within [t, t+ ∆]; if y1
t = 0, the agent is granted an option to switch to y1

t = 1

with a probability of λ∆ within [t, t+ ∆]. The same type of jump risks apply to y2
t . But y1

t and

y2
t are two independent processes. Given the setting, the agent’s value function satisfies

V
(
xt, y

1
t , y

2
t

)
= u

(
xt, y

1
t , y

2
t

)
∆ + max

{
E
[
V
(
xt+∆, y

1
t+∆, y

2
t+∆

)∣∣xt, y1
t , y

2
t

] }
(2)

Since the jump risks driving y1
t and y2

t are independent over [t, t+ ∆], we can disregard the

joint movement of the two as it will occur with a probability of order ∆2, becoming negligible

when ∆ is sufficiently small. Hence, we approximate the conditional expectation in equation

(2) with

2e−λ∆E
[
V
(
xt+∆, y

1
t+∆, y

2
t+∆

)∣∣xt, y1
t+∆ = y1

t , y
2
t+∆ = y2

t

]
(3)

+ (1− e−λ∆)(1− y1
t ) max

{
V
(
xt, y

1
t + 1, y2

t

)
, V
(
xt, y

1
t , y

2
t

) }
+ (1− e−λ∆)(1− y2

t ) max
{
V
(
xt, y

1
t , y

2
t + 1

)
, V
(
xt, y

1
t , y

2
t

) }
+ (1− e−λ∆)y1

t V
(
xt, y

1
t − 1, y2

t

)
+ (1− e−λ∆)y2

t V
(
xt, y

1
t , y

2
t − 1

)
The first line above is the conditional expectation along the paths where no jump risks are

realized, the second and third lines capture the expected long-run impacts of the agent’s simple

binary choices, and the last line represents the expected impacts of exogenous state changes.

It is straightforward to observe that the complex combinatorial problems do not appear in our

continuous-time setting because the probability that these combinatorial choices emerge goes

to zero when the time interval we consider is short enough. Nevertheless, the interdependence

between binary choices is still preserved by the value function, the present value of future utility

flows.

Next, we consider the conditional expectation along the paths where there are no realizations
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of jump risks. The probabilistic formulation of the recursive equation (2) is

V (xt+∆, y
1
t , y

2
t ) = V

(
xt, y

1
t , y

2
t

)
− u

(
xt, y

1
t , y

2
t

)
∆ + z(xt, y

1
t , y

2
t )(Wt+∆ −Wt), (4)

where z(·), is an unknown function of the current state (xt, y
1
t , y

2
t ) that we solve for along with

V (·). In mathematics, equation (4) is referred to as a Backward Stochastic Differential Equations

(BSDE), which effectively transforms an equation (2) at state (xt, y
1
t , y

2
t ) into infinitely many

equations because it holds for any realization of Wt+∆ −Wt and that of jump risks.

If we follow the conventional analytic approach, we use equation (2) in a specific state to

guide our search for the fixed point. This approach requires multiple evaluations of the value

function to calculate the conditional expectation. However, with the probabilistic formulation,

each realization of Wt+∆ −Wt, as well as the corresponding evaluation of the value function,

would independently discipline the search process via equation (4). This efficiency of each

evaluation represents the advantage of the probabilistic approach.

To take advantage of modern Machine Learning technique, we approximate the valuation

function V (·) and its volatility term z(·) with a feed-forward neural network, denoted as Ṽ (·; Θ)

and z̃(·; Θ), respectively. Equation (2) and (4) suggest that the parameters Θ should solve the

following optimization problem

min
Θ

:
1

NM

N∑
i=1

M∑
j=1

(
Ṽ (x̂i,j , y1,i, y2,i; Θ)− V̂ (xi, y1,i, y2,i; Θ)

)2
(5)

+
1

N

N∑
i=1

(
max

{
E
[
Ṽ
(
x̂i,j , ŷ1,i, ŷ2,i; Θ

)∣∣∣xi, y1,i, y2,i
]}

+ u(xi)∆− Ṽ (xi; Θ)
)2

s.t. V̂ (xi, y1,i, y2,i; Θ) ≡ u(xi, y1,i, y2,i)∆− Ṽ (xi, y1,i, y2,i; Θ)− z̃(xi, y1,i, y2,i; Θ)wi,j

x̂i,j = xi + µ(xi)∆ + σ(xi)wi,j

wi,j is sampled independently from N(0,∆)

(xi, y1,i, y2,i) are from a given set,

where the conditional expectation operation follows the approximation (3) and ŷ1,i and ŷ2,i are

random variables following state (xi, y1,i, y2,i) and optimal binary choices. Note that this formu-

lation can make use of parallel computing, as the evaluation of each sample path (xi, y1,i, y2,i)

is independent of others. More importantly, the task of coding is straightforward as we only

need to generate sample paths, simulate the dynamics, and calculate the loss specified by the

objective function (5) for a given set of parameter Θ. We fully outsource the search for the

optimal Θ to industrial-level machine learning packages, such as TensorFlow and PyTorch.

As a demonstration, we solve a single firm’s export destination selection problem and an

input-output network formation problem. In Section 2, we construct a continuous-time version

of the discrete-time firm export model by Alfaro-Urena, Castro-Vincenzi, Fanelli and Morales

(2023). In this model, an exporting firm decides among 100 possible foreign markets for entry,

with each destination featuring a state variable driving its demand. Therefore, there are 200

state variables in total. We demonstrate that the value function of the exporting firm preserves

the cross-destination complementarities in its profit function.
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Section 3 constructs a continuous-time network formation model based on the static produc-

tion network setting by Kopytov, Mishra, Nimark and Taschereau-Dumouchel (2021). In this

model, a social planner obtains opportunities stochastically over time to form an input-output

link. There are 37 sectors in the economy, and each sector has a time-varying TFP driven by

aggregate shocks. The dimensionality of the state variable is approximately 37 × 37 for the

social planner’s dynamic optimization problem. Our numerical exercise indicates that the so-

cially optimal input-output linkages might not align with the ideal linkages from an individual

sector’s perspective.

Literature. Our paper contributes to the international trade and industrial organization liter-

ature, which often involves combinatorial discrete choice problems, typically in a static setting.

For example, Jia (2008) study supermarkets’ store location decisions and develop a global so-

lution to the combinatorial problem when objective functions have the property of positive

complementarities. Fan and Yang (2020) investigate the composition of differentiated product

offerings in the U.S. smartphone market. Following Jia (2008), Antras, Fort and Tintelnot

(2017) and Arkolakis, Eckert and Shi (2023) exploit positive and/or negative complementarities

to solve sourcing or production location problems in trade literature. Other examples of com-

binatorial problems in the IO and trade literature include studies by Hendel (1999), Tintelnot

(2017), Houde, Newberry and Seim (2023), and Oberfield, Rossi-Hansberg, Sarte and Trachter

(2024).

Our paper is also related to the rapidly expanding body of literature on production networks

(see reviews like Carvalho (2014); Carvalho and Tahbaz-Salehi (2019)). Our approach signif-

icantly contributes to the specific topic of input-output network formation, including studies

by Oberfield (2018), Acemoglu and Azar (2020), Taschereau-Dumouchel (2020), and Dhyne,

Kikkawa, Kong, Mogstad and Tintelnot (2023). All these network formation models are static.

Our approach enables researchers in the field to explore dynamic network formation under

idiosyncratic and aggregate shocks, and to characterize an input-output network’s transition

paths. The continuous-time setting is, in fact, more tractable for studying production net-

works. For example, Liu and Tsyvinski (2024) apply a continuous-time model to investigate

the transmission of temporary shocks through a fixed input-output network.

Our approach to transforming static combinatorial problems into a sequence of binary

choices aligns with strategic network formation models (Jackson, 2010). Similar to Currarini,

Jackson and Pin (2009, 2010), agents in our setting randomly obtain opportunities over time to

decide whether to form links. In a longer time, we observe the evolution of the overall network.

In the econometric studies of network data, authors also follow this sequential move setting of

network formation (for example, Mele (2017) and Christakis, Fowler, Imbens and Kalyanaraman

(2020)).

The mathematical foundation of our numerical approach lies in nonlinear Backward Stochas-

tic Differential Equations (BSDEs), beginning with the seminal work of Pardoux and Peng

(1990). Following the advancement of Machine Learning in the past decade, applied mathe-

maticians discover the numerical superiority of BSDEs when combined with deep learning, for

solving high-dimensional Partial Differential Equations (Han, Jentzen and E, 2018). Inspired by
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these works, Huang (2023b,a) introduce the deep learning-based probabilistic approach to the

economics literature, recognizing that all forward-looking stochastic processes, like asset prices

and continuation values, can be cast by BSDEs.

The organization of the paper is as follows. Section 1 illustrates the probabilistic formulation

and the deep learning-based numerical method. Section 2 and 3 consider two examples: a single

firm’s dynamic discrete choice and a dynamic network formation model. In Section 4, we make

a few remarks on wider applications of our numerical approach.

1 Deep Learning-Based Probabilistic Approach

In this section, we present the detailed probabilistic and analytic formulation of a single agent’s

dynamic discrete choice problem, and illustrate the deep learning-based numerical method based

on these two formulations.

1.1 Basic Model

We consider the dynamic optimization of an agent whose flow utility u (xt, yt) depends on the

continuous state variable xt ∈ RN driven by Brownian motion

dxt = µ (xt, yt) dt+
M∑
m=1

σm (xt, yt) dWm
t (6)

and discrete state variable yt =
[
y1
t , y

2
t , · · · , yJt

]
. Without loss of generality, we assume that

all yjt are 0 − 1 binary variables. The stochastic process xt is assumed to be uncontrolled

for simplicity. We refer readers interested in the probabilistic formulation of controlled state

variables driven by diffusion processes to Huang (2023b,a).

The discrete state variable is partially controlled by the agent in the following sense. First,

if yjt = 0 the agent will receive an opportunity of state switching with a probability λjdt over

the interval [t, t+ dt]. To switch from yjt = 0 to yjt = 1 when she has the opportunity, the

agent must pay a fixed utility cost sj . The arrival of these opportunities, where all yjt = 0, is

independent. Secondly, if yjt = 1, the state could switch back to yjt = 0 with a probability of

λjdt over the interval [t, t+ dt].

In the corresponding static or discrete-time settings, the agent faces a standard combina-

torial problem: selecting a blend of
[
y1
t , y

2
t , · · · , yJt

]
from 2J possibilities by exerting certain

efforts. In our continuous-time scenario, the probability of the agent being able to change two

or more of her states concurrently is negligible, since it is of the order (dt)2 or higher. Hence,

no challenging combinatorial problem needs solving at any point in time. Nevertheless, when

faced with a binary choice, the agent fully considers the long-term impact of the current deci-

sion, which in turn is captured by the value function. The difficulty then lies in managing the

high-dimensional state variables (xt, yt). However, using the deep learning-based probabilistic

approach, dimensionality ceases to be an obstacle. To demonstrate the power of this approach,

it is worth mentioning that the second example we will present has 37× 38 dimensions.
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The agent’s value function is

V (xt, yt) = max
yt

∫ +∞

0
e−ρs (u (xs, ys)− sj1 {ys,j − ys−,j > 0}) ds,

where ρ is the discount rate and ys− is the left limit of the process {yt}. ys,j − ys−,j > 0 implies

that the agent is granted an opportunity to switch state j at time s, and she decides to do so

at the cost of sj . Note that xt is a continuous state variable driven by diffusion processes, and

yt is a discrete state variable driven by jump processes. Next, we will combine the strengths

of both probabilistic and analytic approaches to fully exploit the features of both diffusion and

jump processes.

1.2 Probabilistic Formulation

The probabilistic formulation defines the value function along all realized paths of exogenous

shocks. For the current problem, given the agent’s optimal decision, the stochastic process of her

continuation value Vt = V (xt, yt) follows a backward stochastic differential equation (BSDE).

dVt = − (u (xt, yt)− ρVt) dt+
M∑
m=1

σV,mt dWm
t

+
J∑
j=1

(
1− yjt

)
max

{
V
(
xt, yt + 1j

)
− V (xt, yt)− sj , 0

}
dΛ0,j

t

+

J∑
j=1

yjt
(
V
(
xt, yt − 1j

)
− V (xt, yt)

)
dΛ1,j

t

Vs+t = V (xs+t, ys+t) for any t and any initial date s, (7)

where σV,mt ,m = 1, · · · ,M, are the endogenous volatility terms of Vt, and dΛ0,j
t and dΛ1,j

t , j =

1, · · · ,J, capture the realizations of jump risks affecting the state transitions. Condition (7)

states that the forward-looking stochastic process Vt and the backward-looking processes xt

and yt must consistently satisfy the mapping V (·, ·). Concerning the deterministic terms, the

agent’s continuation value decreases by the realized utility flow u (xt, yt) dt, and increases due

to the discounting effect ρVtdt that no longer applies from a perspective at time t + dt. Note

that the condition holds trivially along paths driven by jump risks due to the construction of

the BSDE. Within this subsection, we will not consider paths with realizations of jump risks,

i.e., we will only consider the BSDE

dVt = − (u (xt, yt)− ρVt) dt+

M∑
m=1

σV,mt dWm
t (8)

Vs+t = V (xs+t, ys+t) for any path ys+t = ys, any t and any initial date s, (9)

The core of the probabilistic formulation is that the endogenous volatility terms of Vt must

ensure that Condition (7) or (9) always holds. The design of the probabilistic numerical scheme

derives from this insight into BSDEs, which not only defines the fixed point V (·, ·) but also its
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volatility terms. Given any initial date t and state (xt, yt), the fixed-point mapping V (·, ·) first

results in Vt = V (xt, yt). The volatility terms σV,mt ,m = 1, · · · ,M , are endogenous because

they ensure that for any realizations of
(
Wm
t+∆ −Wm

t , i = 1, · · · ,M
)

and a sufficiently small

positive constant ∆, the updated Vt+∆

Vt+∆ = Vt − (u (xt, yt)− ρVt) ∆ +
M∑
m=1

σV,mt
(
Wm
t+∆ −Wm

t

)
and updated xt+∆

xt+∆ = xt + µ (xt, yt) ∆ +

M∑
m=1

σm (xt, yt)
(
Wm
t+∆ −Wm

t

)
satisfy the fixed-point mapping

Vt+∆ = V (xt+∆, yt) .

From the numerical perspective, one advantage of the probabilistic approach is that Condi-

tion (7) or (9) must hold along any simulated path. As a result, we can utilize any single path

and use Condition (7) or (9) to discern the fixed-point mapping. However, when considering

jump risks, this benefit is not as evident because we need to simulate a significant number of

paths to cover a sizable portion of paths with realized jump risks. Due to this concern, we

revert to the analytic formulation to efficiently capture the impacts of jump risks on the value

function.

1.3 Analytic Formulation

The analytic formulation defines the value function as

V (xt, yt) = u (xt, yt) ∆ + e−ρ∆E [V (xt+∆, yt+∆)|xt, yt] (10)

= u (xt, yt) ∆− ρ∆V (xt, yt) + E [V (xt+∆, yt+∆)|xt, yt] .

The computation of the conditional expectation is composed of two components: diffusion and

jump risks. For diffusion risks:

E [V (xt+∆, yt+∆)|xt, yt+∆ = yt] =

∫
w1

· · ·
∫
wM

V (xt+∆, yt)
M∏
m=1

f (wm) dwM · · · dw1, where

xt+∆ = xt + µ (xt, yt) ∆ +
M∑
m=1

σm (xt, yt)w
m,

f (x) =
1√

2π∆
exp

(
− x

2

2∆

)
.

In order to numerically evaluate the integration, we will apply the Gauss-Hermite quadrature.

Note that during the derivation of numerical integration, each node at which we choose to

evaluate V (·, yt) is, in essence, a realization of Brownian shocks. Therefore, we can utilize these

evaluations twice to enhance computational efficiency: once for the analytic approach and once
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for the probabilistic approach.

For the jump risk, we evalute V
(
xt, yt + 1j

)
if yjt = 0 and V

(
xt, yt − 1j

)
if yjt = 1. Then,

equation (10) is approximated by

(1 + ρ∆)V (xt, yt) = u (xt, yt) ∆ +
1

Pt
E [V (xt+∆, yt+∆)|xt, yt+∆ = yt]

+
1

Pt

J∑
j=1

(
1− e−λj∆

)
yjtV

(
xt, yt − 1j

)
+

1

Pt

J∑
j=1

(
1− e−λj∆

)(
1− yjt

)
max

{
V
(
xt, yt + 1j

)
− sj , V (xt, yt)

}
, where

Pt ≡ 1 +
J∑
j=1

(
1− e−λj∆

)
yjt +

J∑
j=1

(
1− e−λj∆

)(
1− yjt

)
.

The analytic approach’s distinctive feature is its ability to evaluate the value function V (xt, yt)

along multiple paths and incorporate their weighted sum into a single equation of conditional

expectation. It has a comparative advantage over the probabilistic approach in dealing with

jump risks, which requires numerous simulated paths in order to capture the impacts of such

risks.

1.4 Deep Learning-Based Numerical Method

The first feature of our numerical method is the approximation of the value function using a

deep neural network, denoted as V (x, y; Θ), where Θ stands for the set of parameters of the

neural network. For audiences without prior knowledge of neural network approximation, it can

be considered an alternative to Chebyshev polynomials. Chapter 6 of Goodfellow, Bengio and

Courville (2016) serves as a standard reference for the basic architecture of neural networks,

and Chapter 5 of Zhang, Lipton, Li and Smola (2023) is also recommended.

Secondly, our scheme is simulation-based. Given a set of conjectured parameters Θ and

the initial state (xt, yt) of an agent, we can determine the initial continuation value Vt =

V (xt, yt; Θ) and the volatility terms σV,mt = σV,m(xt, yt; Θ),m = 1, · · · ,M . Following the

probabilistic approach, we simulate the backward-looking process xt according to equation (6)

and the forward-looking process Vt according to BSDE (8). To assess the accuracy of guessed

parameter Θ, the terminal condition of BSDEs yields a loss

LossP = ‖Vt+∆ − V (xt+∆, yt; Θ)‖2.

To account for the effects of jump risks, we resort to the analytic formulation and compute the

loss:

LossA = ‖(1 + ρ∆)V (xt, yt; Θ)− u(xt, yt)∆− E [V (xt+ ∆, yt+∆; Θ)|xt, yt] ‖2.

The calculation of E [V (xt+∆, yt+∆; Θ)|xt, yt] has been detailed in Section 1.3. For each sample

path starting from (xt, yt), we compute two types of losses, and we can simulate as many paths as
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our computing hardware permits. Importantly, the computation of a single path is independent

of other paths’ computations. Hence, the construction of the losses can be fully parallelized.

Given the mapping from parameters Θ to the loss, i.e., LossP + LossA, the remaining

task is to optimize Θ in order to minimize the loss. This task can be entirely outsourced to

Machine Learning packages such as TensorFlow or PyTorch in Python. The coding aspect of our

numerical method is primarily concerned with constructing the two losses: LossP and LossA.

More detailed steps of constructing loss functions for specific models will be presented in the

following two sections.

2 Exporting Dynamics

In this section, we translate a single firm’s exporting dynamics problem, as presented in Alfaro-

Urena, Castro-Vincenzi, Fanelli and Morales (2023), into the continuous-time setting. Due

to the interdependence between different destinations, an exporting firm faces a combinato-

rial choice in each period while considering the dynamic effects in the discrete-time setting

considered by Alfaro-Urena et al. (2023).

In our continuous-time setting, the likelihood of a firm making a decision to export to

multiple destinations simultaneously is minimal. However, market interdependence or comple-

mentarity is still preserved, as the long-term impacts of binary choices at any time are fully

encapsulated in the firm’s continuation value. Consequently, we transform the combinatorial

problem in Alfaro-Urena et al. (2023) into a sequential binary choice problem, which is straight-

forward to solve in the static phase.

2.1 Basic Setting

Consider a firm that could potentially export to J destinations, with its exporting status rep-

resented by the vector:

yt ≡ [yt,1, yt,2, · · · , yt,J]T ,

where yt,j is a dummy variable indicating whether the firm exports to destination j at time t.

If the firm is exporting to country j, its profit flow is:

π (yt, νjt; j) = ζj − νt,j +
∑
m6=j

yt,mcjm,

where ζj represents time-invariant export revenue, and νt,j is the export cost defined as:

dνt,j = −θ (νt,j − ν̄j) dt+ σν,0j dW 0
t + σν,1j dW 1

t ,

with cjm encapsulating the complementarities between export destinations.
{
W 0
t ,W

1
t

}
are two

independent standard Brownian motions, acting as common shocks that drive the export costs

across different destinations. Importantly, the algorithm can easily accommodate settings with

time-varying stochastic export revenues, destination-specific shocks, and multiple macro shocks.

If a firm does not have an exporting channel to destination j by time t, over a time interval

10



[t, t+ dt], it is granted a chance to establish such a channel by paying a one-time fixed cost

sj with a probability of λ0dt. Once such a channel exists, it will persist until the arrival of

a Poisson shock with an intensity of λ1. It is assumed that the chance of establishing an

exporting channel or the vanishing of a channel is independent across different destinations.

As a result, we can disregard the scenario in which the firm decides on multiple exporting

destinations simultaneously within a short time interval [t, t+ dt] as its probability is of the

order (dt)N , N ≥ 2. The combinatorial choice represents the main challenge faced by Alfaro-

Urena et al. (2023).

The dynamic optimization problem of a firm involves deciding whether to establish an

exporting channel whenever it gets a chance in order to maximize:

V (y0, ν0) = max
yt

∫ +∞

0
e−ρt

( J∑
j=1

yt,jπ (yt, νt,j ; j)− sj1 {yt,j − yt−,j > 0}
)

dt,

where the state variables of the firm are yt and νt ≡ [νt,1, νt,2, · · · , νt,J]. Note that the firm’s pol-

icy function is straightforward given the value function V (yt, νt): It will establish an exporting

channel to destination j if the firm is granted the opportunity and

V
(
yt− + 1j , νt

)
≥ V (yt−, νt) + sj ,

where 1j is a J-dimensional vector with one as the j’th element and zeroes as other elements.

Although the continuous-time setting avoids the complex combinatorial decisions encountered

in discrete-time settings, the model still preserves the interdependence between destinations.

We will later demonstrate that the increase in the value function will be higher if forming an

exporting channel to a new destination contributes more to the profits of other destinations.

The current setting can accommodate active searching by assuming a certain cost function

of the search effort that increases λ0, the chance of establishing an exporting channel. The

marginal benefit of searching is

max
{
V
(
yt− + 1j , νt

)
− V (yt−, νt)− sj , 0

}
.

Notably, allowing for active searching does not increase the dimensionality of the firm’s dynamic

optimization problem.

2.2 Probabilistic and Analytic Formulations

As the above discussion indicates, the value function plays a critical role in characterizing a

firm’s optimal dynamic choices. In this section, we will present both probabilistic and analytic

formulations that define the value function. Both play a crucial role in the numerical schemes

that solve for V (yt, νt).
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The BSDE that gives rise to V (y, ν) is as follows

dVt = −

 J∑
j=1

yt,jπ (yt, νt,j ; j)− ρVt

dt+ σV,0t dW 0
t + σV,1t dW 1

t

+

J∑
j=1

(1− yt−,j) max
{
V
(
yt− + 1j , νt

)
− V (yt−, νt)− sj , 0

}
dΛ0,j

t

+
J∑
j=1

yt−,j
(
V
(
yt− − 1j , νt

)
− V (yt−, νt)

)
dΛ1,j

t

where dΛ0,j
t indicates the shock that enables a firm to start exporting to destination j, and

dΛ1,j
t is the shock causing the firm’s exporting channel to destination j to vanish. Over time

[t, t+ dt], the continuation value decreases by the realized utility flow
∑J

j=1 yjtπ (yt, νjt; j) dt and

increases due to the discounting effect ρVtdt that only applies to Vt but not Vt+dt. σ
V,0
t and σV,1t

represent the impacts of the two Brownian shocks on the continuation value. The coefficient of

dΛ0,j
t indicates the increase in the firm’s continuation value if it has the opportunity to establish

an exporting channel to destination j. On the other hand, the coefficient of dΛ1,j
t represents

the change in the continuation value if the existing channel to destination j disappears.

The analytic formulation is well-known in the economics profession. Given that ∆ is a small

positive number,

V (yt, νt) '
J∑
j=1

yt,jπt (yt, νjt; j) ∆ + e−ρ∆Et [V (yt+∆, νt+∆)]

'
J∑
j=1

yt,jπt (yt, νjt; j) ∆ + e−ρ∆Et [V (yt+∆, νt+∆)]− Et [V (yt+∆, νt+∆)] + Et [V (yt+∆, νt+∆)]

'
J∑
j=1

yt,jπt (yt, νjt; j) ∆− ρV (yt, νt) ∆ + Et [V (yt+∆, νt+∆) .]

The computation of V (yt, νt) reduces, after several steps of derivation, to the term Et [V (yt+∆, νt+∆)],

which can be approximated by

Et [V (yt+∆, νt+∆)] ' 1

Pt
Et [V (yt+∆, νt+∆) | yt+∆ = yt] +

1− e−λ1∆

Pt

J∑
j=1

yt,jV
(
yt − 1j , νt

)
+

1− e−λ0∆

Pt

J∑
j=1

(1− yt,j) max
{
V
(
yt + 1j , νt

)
− sj , V (yt, νt)

}
(11)

where

Pt ≡ 1 +
(

1− e−λ1∆
) J∑
j=1

yt,j +
(

1− e−λ0∆
) J∑
j=1

(1− yt,j)

In this approximation, we drop terms of order higher than ∆. The term Et [V (yt+∆, νt+∆) | yt+∆ = yt]
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is further approximated by

1

4
V
(
yt, νt − ρ (νt − ν̄) ∆ + σν,0

√
∆ + σν,1

√
∆
)

+
1

4
V
(
yt, νt − ρ (νt − ν̄) ∆ + σν,0

√
∆− σν,1

√
∆
)

+
1

4
V
(
yt, νt − ρ (νt − ν̄) ∆− σν,0

√
∆ + σν,1

√
∆
)

+
1

4
V
(
yt, νt − ρ (νt − ν̄) ∆− σν,0

√
∆− σν,1

√
∆
)
,

which considers four pairs of
(
dW 0

t , dW
1
t

)
’s realizations.1 We will subsequently employ these

four realizations and construct the probabilistic formulation’s loss along each realization.

2.3 Numerical Schemes

The value function V (y, ν) and its volatility terms σV,0 (y, ν) and σV,1 (y, ν) are approximated

using a feedforward neural network. This network comprises three shared layers which are

followed by one subnet allocated for V (·) and another for σV,0(·) and σV,1(·). Each subnet

contains two independent layers, with each layer comprising 256 nodes.2

Our numerical scheme is simulation-based. The majority of the code focuses on constructing

the loss function based on simulated sample paths. A deep learning package such as Tensor-

Flow or PyTorch in Python is employed to optimize the parameters of the neural network and

minimize the loss function.

We select an arbitrary terminal date T and discretize the interval [0, T ] into multiple subin-

tervals of length ∆. At the initial date t = 0, we randomly generate N firms with initial states

(yn0 , ν
n
0 , n = 1, · · · , N), where the sample index n will be omitted from this point forward since

numerical operations are identical across different firms, except that different sample paths

experience different realizations of shocks. For each sample path, two independent Brownian

processes
{
W 0
t ,W

1
t

}
are generated, i.e.,

W i
t+∆ −W i

t ∼ N (0,∆) , i = 0, 1.

There is no realization of Poisson shocks along each path since the analytic formulation has

incorporated their impacts on the continuation value function. Hence, we can drop the time

subscript of yt.

The numerical operation is the same for each interval [t, t+ ∆]. Given the state [y, νt] at

the start of the interval and the continuation value Vt, the construction of the loss function is

as follows:

1The selection of the four realizations is guided by the Gauss-Hermite quadrature.
2We refer readers to Chapter 6 of Goodfellow et al. (2016) and Chapter 5 of Zhang et al. (2023) for terminologies

related to deep learning.
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1. Calculate the firm’s profit πt

πt = yT (ζ − νt) + yTCy, where

C =



0 c0,1 · · · c0,J−2 c0,J−1

c1,0 0 · · · c1,J−2 c1,J−1

c2,0 c2,1 · · · c2,J−2 c2,J−1

...
...

...
...

...

cJ−1,0 cJ−1,1 · · · cJ−1,J−2 0


2. Calculate Et [V (yt+∆, νt+∆)]. To calculate Et [V (y, νt+∆) | yt+∆ = y], first update νt,j , j =

1, · · · , J

νuut+∆,j = νt − θ (νt − ν̄j) ∆ + σν,0j
√

∆ + σν,1j
√

∆

νudt+∆,j = νt − θ (νt − ν̄j) ∆ + σν,0j
√

∆− σν,1j
√

∆

νdut+∆,j = νt − θ (νt − ν̄j) ∆− σν,0j
√

∆ + σν,1j
√

∆

νddt+∆,j = νt − θ (νt − ν̄j) ∆− σν,0j
√

∆− σν,1j
√

∆.

Then, to plug in the value function approximated by the neural network V (·, ·), we have

Et [V (y, νt+∆) | yt+∆ = y] =
V
(
y, νuut+∆,j

)
+ V

(
y, νudt+∆,j

)
+ V

(
y, νdut+∆,j

)
+ V

(
y, νddt+∆,j

)
4

Evaluate V
(
y + 1j , νt

)
if yj = 0; evaluate V

(
y − 1j , νt

)
if yj = 1. Then, we calculate

Et [V (yt+∆, νt+∆)] according to (11) and the loss of the analytic formulation is

LossA ⇐ LossA +
∆

T
((1 + ρ∆)Vt − πt∆− Et [V (yt+∆, νt+∆)])2

3. Given the realized Brownian shocks W i
t+∆ −W i

t , i = 0, 1, update forward SDE of νt and

BSDE of Vt

νt+∆,j = νt,j − θ (νt,j − ν̄j) ∆ + σν,0j
(
W 0
t+∆ −W 0

t

)
+ σν,1j

(
W 1
t+∆ −W 1

t

)
, j = 1, · · · , J

Vt+∆ = Vt − (πt − ρVt) ∆ + σV,0t

(
W 0
t+∆ −W 0

t

)
+ σV,1t

(
W 1
t+∆ −W 1

t

)
,

where σV,0t,j , σ
V,1
t,j are given by the network with the state input (y, νt). To take advantage

of four realizations used for calculating LossA, compute

V uu
t+∆ = Vt − (πt − ρVt) ∆ + σV,0t

√
∆ + σV,1t

√
∆

V ud
t+∆ = Vt − (πt − ρVt) ∆ + σV,0t

√
∆− σV,1t

√
∆

V du
t+∆ = Vt − (πt − ρVt) ∆− σV,0t

√
∆ + σV,1t

√
∆

V dd
t+∆ = Vt − (πt − ρVt) ∆− σV,0t

√
∆− σV,1t

√
∆.
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Table 1: Loss of Untrained Sample

analytic loss probabilistic loss

average 1.89× 10−7 1.06× 10−7

st.d. 3.37× 10−7 2.07× 10−7

85th percentile 3.28× 10−7 1.83× 10−7

90th percentile 4.46× 10−7 2.56× 10−7

95th percentile 7.06× 10−7 4.08× 10−7

The loss of the probabilistic formulation is

LossP ⇐ LossP +
∆

T
(Vt+∆ − V (y, vt+∆))2

+
∆

T

(
V uu
t+∆ − V

(
y, vuut+∆

))2
+

∆

T

(
V ud
t+∆ − V

(
y, vudt+∆

))2

+
∆

T

(
V du
t+∆ − V

(
y, vdut+∆

))2
+

∆

T

(
V dd
t+∆ − V

(
y, vddt+∆

))2

The calculation for the subsequent sub-interval will use (y, νt+∆) as the initial state along with

the continuation value Vt+∆. This process continues up to the terminal date T . The deep

learning package will be used to minimize the total loss denoted as:

LossA + LossP .

2.4 Numerical Exercises

For numerical exercises, we aim to reimplement the parameters used or estimated in Alfaro-

Urena et al. (2023). If these parameters are not available, we resort to using the closest al-

ternative values. The inherent challenge of combinatorial problems lies in the vast number of

possible combinations to consider. Our numerical example includes 100 destinations, resulting

in 2100 combinations, a count exceeding what a standard 64-bit system can represent.

Accuracy. A critical aspect of our numerical scheme is our ability to derive the value function

with a sufficient degree of accuracy using a limited number of sampled paths, which, for the

current exercise, is 400, 000. To assess our numerical scheme’s performance, we generate a

separate set of 20, 000 sample paths that are not used for training or for solving the value

function and incorporate these untrained samples into the above loss function. Table 1 presents

the losses normalized by the value function, i.e.,

1

V 2

(
LossA + LossP

)
.

Considering our neural network’s relative size, the ”out of sample” performance of our numerical

scheme is rather good.

Complementarity. The key feature of the model by Alfaro-Urena et al. (2023) is the com-

plementarity between exporting destinations. We next investigate the contribution of a specific

destination to the continuation value, unattributable to the destination’s revenue itself. For a

15



−1 −0.5 0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

ζ

∆V

0 1 2 3 4 5 6
−40

−20

0

20

40

60

80

100

csum

V
re

si
d

u
a
l

Figure 1: Complementarity

given state (yt, νt), we can calculate the increase in continuation value by adding destination j,

as illustrated by

∆V (y−jt , νt) = V (1, y−jt , νt)− V (0, y−jt , νt),

where y−jt denotes a vector composed of all yt elements except the j’th one. We simulate 50, 000

sample paths for 1000 years to determine the “long-run” distribution of (yt, νt), with which we

calculate the average of ∆V (y−jt , νt) denoted as ∆V j . The left panel of Figure 1 displays a

scatter plot of (∆V j , ζj) for all destinations with positive ∆V j . This indicates that the revenue

from a destination doesn’t significantly account for the overall value function. Based on this

observation, we execute a linear regression of ∆V j against ζj , obtaining a residual term marked

as V j
residual. To encapsulate the complementary effect of adding a destination, we measure the

contribution of destination j to other destinations’ profits, as

cjsum =
J∑

i=1,i 6=j
cij .

The right panel of Figure 1 clearly demonstrates that when a destination contributes more to

other markets’ profits, including this destination would increase the firm’s continuation value

by a larger margin.

3 Dynamic Network Formation

We expand the static production network formation model of Kopytov, Mishra, Nimark and

Taschereau-Dumouchel (2021) by transitioning it into a continuous-time model. The key de-

viation of our continuous-time setting is that we could disregard situations where multiple

input-output links form simultaneously within an exceedingly short time interval. Thus, the

massive combinatorial problem is transformed into a sequence of binary choice sub-problems.

However, the state space still exceeds the capacity of traditional numerical methods. Given the

16



37 sectors in Kopytov et al. (2021) and each sector’s productivity, the dimension of the state

variable is 37× 38.

3.1 Basic Setting

The economy comprises N sectors, each producing a differentiated product, and a representative

consumer, whose utility function over N types of products is

1

1− γ
exp

(
(1− γ) log

(
N∏
i=1

(
Ci
βi

)βi))
.

The consumer supplies a unit of labor inelastically, with the labor wage serving as the numeraire.

Let β denote as [β1, β2, · · · , βN ].

Every sector has a representative firm that hires labor and uses the outputs of other sectors

as intermediate inputs. Firms across all sectors operate competitively, yielding zero profits in

every period. Firm i or sector i is equipped with a fully-fledged production function

F
(
εit, α

i1, · · · , αiN , Xi1, · · · , XiN
)

= eε
i
t
(
Li
)1−∑N

j=1 α
ij

N∏
j=1

(
Xij
)αij

,

provided it has full connections with all other sectors. Here, εit represents the Total Factor

Productivity (TFP),
[
αi1, αi2, · · · , αiN

]
(denoted as αi) is the intermediate input shares vector,

and
[
Xi1, Xi2, · · · , XiN

]
(denoted as Xi) is the input vector. The law of motion for εit is

dεit = −φ
(
εit − ε̄i

)
dt+

M∑
m=1

σimdBm
t ,

where
(
B1
t , · · · , BM

t

)
are independent Brownian motions.

Over time, an existing link between sectors may dissolve, and new links could be established.

Let Y i
t =

[
Y i1
t , Y

i2
t , · · · , Y iN

t

]
– a vector of dummy variables – capture the linkage status for

sector i. Given Y i
t , the production function is

F
(
εit, α

i, Xi, Y i
t

)
= eε

i
t−ai(Y i

t ) (Li)1−∑N
j=1 α

ijY ij
t

N∏
j=1

(
Xij
)αijY ij

t , where (12)

ai
(
Y i
t

)
= min

{
1,
(
αi � Y i

t − αi
)T
H
(
αi � Y i

t − αi
)}
,

H = W TKW,

� denotes the element-by-element product, W is a (N + 1)×N matrix, and K is a (N + 1)×
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(N + 1) positive definite diagonal matrix

W =



1 1 1 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


,K =



κi0 0 0 · · · 0

0 κi1 0 · · · 0

0 0 κi2 · · · 0
...

...
...

. . .
...

0 0 0 · · · κiN


.

The function ai
(
Y i
t

)
captures the negative impact of a technology’s deviation from the fully-

pledged benchmark. Given an input-output network Yt =
[
Y ij
t

]
, the productivity vector

εt =
[
ε1
t , · · · , εNt

]
, and productivity deviation a (Yt) =

[
a1
(
Y 1
t

)
, · · · , aN

(
Y N
t

)]
, the compet-

itive equilibrium results in the consumer’s utility being

u (Yt, εt) =
exp ((1− γ) ft)

1− γ
, where

ft = βL (Yt) (εt − a (Yt))

L (Yt) = (I −A� Yt)−1 .

Here, L (Yt) is the Leontief inverse, and ft can be interpreted as the logarithm of GDP at time

t.

3.2 Social Planner

We assume that a social planner makes the network formation decisions. To simplify the

computation, we assume that an N -state Markov chain zt administers which sector’s technology

is prone to change over [t, t+ dt]. When zt = i, each existing link where sector j provides its

input to sector i (i.e., Y ij
t− = 1) might disappear with a probability of λdt independently. Also,

when zt = i, the social planner has the chance to create a new link where sector j supplies to

sector i with a probability of λdt. These opportunities emerge independently across all sectors

with Y ij
t− = 0.

The only choice that the social planner makes is the decision to establish an input link for

a sector when presented with the opportunity. The social planner’s objective function is

V (Yt, zt, εt) = max
Yt

∫ +∞

t
e−ρsu (Ys, εs) ds,

with state variables being Yt, zt, and εt. The path to characterizing the network formation of the

economy, namely the social planner’s policy function, depends on solving for the value function.

The BSDE that the continuation value Vt follows is

dVt = − (u (Yt, εt)− ρVt) dt+
M∑
m=1

σV,mt dBm
t

along the path where no jump risks are realized, where σV,mt ,m = 1, · · · ,M reflect the impacts
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of exogenous shocks to productivity. The analytic formulation is

V (Yt, zt, εt) = u (Yt, εt) ∆ + e−ρ∆Et [V (Yt+∆, zt+∆, εt+∆)]

' u (Yt, εt) ∆− ρV (Yt, zt, εt) ∆ + Et [V (Yt+∆, zt+∆, εt+∆)] .

The key of the analytic formulation is to approximate the term Et [V (Yt+∆, zt+∆, εt+∆)]. When

∆ is small enough, and assuming zt = j, we have

Et [V (Yt+∆, zt+∆, εt+∆)] =
1

Pt
Et [V (Yt, zt+∆, εt+∆)|Yt+∆ = Yt, zt+∆ = j] (13)

+
1− eλ∆

Pt

N∑
i=1,i 6=j

V (Yt, i, εt) +
1− eλ∆

Pt

N∑
i=1,i 6=j

Y ji
t V

(
Yt − 1ji, j, εt

)
+

1− eλ∆

Pt

N∑
i=1,i 6=j

(
1− Y ji

t

)
max

{
V
(
Yt + 1ji, j, εt

)
, V (Yt, j, εt)

}
,

where

Pt = 1 +
(

1− eλ∆
)

2 (N − 1)

The evaluation of Et [V (Yt, zt+∆, εt+∆)|Yt+∆ = Yt, zt+∆ = j] follows Gauss-Hermite quadra-

ture, similar to the previous dynamic firm exporting example.

Extensions. The network formation setting above is quite simplistic. However, our numerical

scheme is flexible enough to take on various modeling choices. For instance, we could permit

the social planner to invest costly efforts to maintain existing input-output links or to heighten

the probability of forming a new link. Such an extension does not enlarge the state space of

the problem. Furthermore, we could modify the model so that each sector has a representative

making the input-output link formation decisions. While this adaptation would not raise the

dimensionality of the model, it would necessitate solving more dynamic optimization problems,

due to which solving the model would demand comparatively more computing power. In in-

stances where network formation is decentralized, we could also consider bargaining that occurs

during the network building process, with the characterization of continuation values readily

available.

3.3 Numerical Schemes

As in the previous example, we approximate the value function V (Y, z, ε) and its volatility

terms σV,1t and σV,2t with a feedforward neural network. However, the dimensionality of the

current problem is much higher than in the previous one: 37 × 38 as opposed to 200. Despite

the network maintaining the same number of layers, the number of nodes for each shared layer

is now 512 instead of the earlier 256.

Given an arbitrary terminal date T , the interval [0, T ] is subdivided into smaller ones of

length ∆. At the initial date t = 0, we randomly generate K economies with initial states

(Y0, z0, ε0). For brevity, the sample index is omitted. For each economy, two independent

Brownian shocks,
{
W 1
t ,W

2
t

}
, are produced. As in the previous example, no Poisson shocks
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are realized for each economy, since the analytic formulation has integrated their impacts on

V (Yt, zt, εt). Consequently, the time subscripts of Yt and zt are also omitted. As it is not a

trivial computational task, we calculate and save the Leontief inverse

L (Y ) = I +

10∑
i=1

(A� Y )i ,

and also

ai
(
Y i
t

)
= min

{
1,
(
αi � Y i

t − αi
)T
H
(
αi � Y i

t − αi
)}
, i = 1, · · · , N,

for each Y before the simulation starts.

The numerical steps are identical for each period [t, t+ ∆]. With the entering state [Y, z, εt]

and the continuation value Vt, the construction of the loss function proceeds as follows

1. First calculate the utility

u (Y, εt) =
exp ((1− γ) ft)

1− γ
, where

ft = βL (Y ) (εt − a (Y ))

2. Calculate Et [V (Yt+∆, zt+∆, εt+∆)]. The first term involved is

Et [V (Yt+∆, zt+∆, εt+∆)|Yt+∆ = Y, zt+∆ = z] ,

which requres the updates of εt+∆. For each j,

εuu,jt+∆,j = εjt − φ
(
εjt − ε̄j

)
∆ + σj,1

√
∆ + σj,2

√
∆

εudt+∆,j = εt − φ
(
εjt − ε̄j

)
∆ + σj,1

√
∆− σj,2

√
∆

εdut+∆,j = εt − φ
(
εjt − ε̄j

)
∆− σj,1

√
∆ + σj,2

√
∆

εddt+∆,j = εt − φ
(
εjt − ε̄j

)
∆− σj,1

√
∆− σj,2

√
∆.

To plug in the value function approximated by the neural network V (Y, z, ε), we have

Et [V (Yt+∆, zt+∆, εt+∆)|Yt+∆ = Y, zt+∆ = z]

=
V
(
Y, z, εuut+∆,j

)
+ V

(
Y, z, εudt+∆,j

)
+ V

(
Y, z, εdut+∆,j

)
+ V

(
Y, z, εddt+∆,j

)
4

Evaluate V
(
Y + 1zi, z, εt

)
if Y zi = 0; evaluate V

(
Y − 1zi, z, νt

)
if Y zi = 1. Then, we cal-

culate Et [V (Yt+∆, zt+∆, εt+∆)] according to (13) and the loss of the analytic formulation

is

LossA ⇐ LossA +
∆

T

(
(1 + ρ∆)Vt − u (Y, εt) ∆− Et [V (Yt+∆, zt+∆, εt+∆)]

)2
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3. Use Brownian shocks W i
t+∆ −W i

t , i = 1, 2, to update forward SDE of εt and BSDE of Vt

εjt+∆ = εjt − φ
(
εjt − ε̄j

)
∆ + σj,1

(
W 1
t+∆ −W 1

t

)
+ σj,2

(
W 2
t+∆ −W 2

t

)
, j = 1, · · · , J

Vt+∆ = Vt − (u (Y, εt)− ρVt) ∆ + σV,1t

(
W 1
t+∆ −W 1

t

)
+ σV,2t

(
W 2
t+∆ −W 2

t

)
,

where σV,0t,j , σ
V,1
t,j are given by the network with the state input (Y, z, εt). To fully utilize

the four realizations of
(
dW 1

t ,dW
2
t

)
used for calculating LossA, compute

V uu
t+∆ = Vt − (u (Y, εt)− ρVt) ∆ + σV,1t

√
∆ + σV,2t

√
∆

V ud
t+∆ = Vt − (u (Y, εt)− ρVt) ∆ + σV,1t

√
∆− σV,2t

√
∆

V du
t+∆ = Vt − (u (Y, εt)− ρVt) ∆− σV,1t

√
∆ + σV,2t

√
∆

V dd
t+∆ = Vt − (u (Y, εt)− ρVt) ∆− σV,1t

√
∆− σV,2t

√
∆.

The loss of the probabilistic formulation is

LossP ⇐ LossP +
∆

T
(Vt+∆ − V (Y, z, εt+∆))2

+
∆

T

(
V uu
t+∆ − V

(
Y, z, εuut+∆

))2
+

∆

T

(
V ud
t+∆ − V

(
Y, z, εudt+∆

))2

+
∆

T

(
V du
t+∆ − V

(
Y, z, εdut+∆

))2
+

∆

T

(
V dd
t+∆ − V

(
Y, z, εddt+∆

))2
.

Calculation of the following period will utilize (Y, z, εt+∆) as the entering state along with the

continuation value Vt+∆. This computation continues until the terminal date T . The deep

learning package will be employed to minimize the total loss

LossA + LossP .

3.4 Numerical Exercises

Regarding the parameter values for numerical exercises, we aim to employ values used or esti-

mated in Kopytov et al. (2021). If this is not possible, we resort to our most informed conjectures

based on the relevant literature. The dimensionality of the current problem is approximately

six times larger than the previous problem (37× 38 versus 200). Therefore, we opt for a larger

neural network, although its depth remains identical to the previous example, i.e., the same

number of layers is maintained.

Table 2: Loss of Untrained Sample

analytic loss probabilistic loss

average 7.40× 10−6 9.44× 10−8

st.d. 2.08× 10−6 1.35× 10−7

85th percentile 9.60× 10−6 1.91× 10−7

90th percentile 1.02× 10−5 2.45× 10−7

95th percentile 1.12× 10−5 3.53× 10−7
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Accuracy. The size of simulated sample paths used for training the value function is 220, 000,

which is smaller than in the previous example. This is due to the fact that the current example

is a general equilibrium model, and the calculation of each sample path occupies significantly

more memory than that of the previous partial equilibrium model. We employ 10, 000 untrained

sample paths to test the accuracy, and we normalize the loss according to the scale of the value

function. Table 2 displays summary statistics of the losses based on untrained samples. It

appears that our numerical method approximates the value function to a reasonably accurate

degree.

Network Effects. Is it optimal for a social planner to form an input-output link when it is

optimal from an output producer’s perspective? Our simplified model may provide some insight

into this question. The production technology of a sector, as depicted in equation (12), implies

that any deviation from the benchmark technology would diminish that sector’s TFP. Thus,

from the sector’s standpoint, it is always optimal to form a link if the relevant inputs are part

of its full-fledged technology. However, our numerical results suggest that the social planner

might perceive things differently. We define ∆V ij as

E
[
V (1ij + Y −ijt , zt, ε)− V (Y −ijt , zt, ε)

]
,

where Y −ijt denotes an input-output network matrix with the ijth element being zero, and the

expectation is taken over a simulated sample. The heat map in Figure 2 demonstrates that it

may not be socially optimal to form certain input-output links, even though such links could

benefit sectors looking to expand their intermediate inputs.

4 Final Remarks

The key insight of our paper is that a large class of “combinatorial” problems in economics

essentially approximate the sequential moves made by economic agents in real life. Building

upon this understanding, we transform typical combinatorial problems into sequential binary

choice problems in the continuous-time setting. Although this transformation leads to rather

straightforward calculations in static steps, the enormous dimensions of the state space pose a

formidable challenge for conventional numerical methods. To overcome the curse of dimension-

ality, we apply the recent deep learning-based probabilistic approach.

Our numerical approach exhibits several features that previous examples do not fully reveal.

Firstly, the deep learning-based probabilistic approach provides a global solution for models with

aggregate shocks. As a result, scholars using our method can easily explore transition dynamics

of a network, given idiosyncratic or aggregate shocks. Secondly, the probabilistic framework is

versatile enough to incorporate almost all economic modeling ingredients. We refer readers to

Huang (2023b,a) for applications in international finance, asset pricing, and heterogeneous-agent

macroeconomics. In our view, the deep learning-based probabilistic approach opens a brand

new avenue for scholars in international trade, IO, social networks, and input-output linkages,

enabling tighter connections with international finance, asset pricing, and macroeconomics.

While we only demonstrate how to solve models with a given set of parameters, our numerical
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Figure 2: Marginal Value of a Input Link, ∆V
The heat map presents the average increase in the social planner’s value function if an input-output is
established. The magnitude is of the percentage increase in the value function. The red color indicates
the increase in the continuation value, and the blue color indicates the decrease.

method significantly aids quantitative work as well. Since dimensionality is no longer a primary

concern, we can treat all parameters, which we aim to estimate, as time-invariant state variables

and solve the “large” model encompassing both state and parameter space simultaneously. This

allows us to search for the best parameter estimations within the parameter space without the

need to solve the model again every time we try new parameter estimates.
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