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1 Introduction

Ordered response models are a primary tool for empirical researchers, with applications in many

disciplines. In economics, applications range from levels of risk aversion (Malmendier and Nagel,

2011) to political violence (Besley and Persson, 2011), with numerous in between. An important

contribution to this literature, Cunha, Heckman, and Navarro (2007) describes several economic

applications and provides an extensive coverage of univariate ordered response models as mod-

els of rational choice. Some empirical practice considers multiple univariate ordered responses

together but implicitly assumes that the decision thresholds (equivalently, decision rules) across

separate dimensions are independent.1 We refer to such designs as lattice models, since the nodes

formed by intersections of decision thresholds across all dimensions form a lattice structure in the

multidimensional space. The left panel of Figure 1 illustrates a lattice model in two dimensions.

When responses across several dimensions are determined by a single economic agent, from the

perspective of behavioral economics lattice models correspond to a narrowly bracketing decision

maker. In lattice models, the agent’s decision rules in different dimensions are independent.

Bracketing effects are central to understanding elements of human choice. However, until recently,

the distinction between broad and narrow bracketing has been overlooked in both theoretical and

applied economics (Read, Loewenstein, and Rabin, 1999). Traditional economic theory assumes

that individuals bracket broadly by maximizing well-defined global utility functions, yet many

phenomena are difficult to rationalize if agents bracket decisions this way. For example, the levels

of risk aversion required to explain the prices of various forms of insurance seem implausible in

magnitude if agents broadly bracket all risks they face (Cicchetti and Dubin, 1994).2 Furthermore,

analysts have turned to models of narrow bracketing to ex-post rationalize otherwise hard-to-

explain empirical findings.

While individuals may lack the cognitive capacity to analyze multiple relevant choices jointly,

it would seem equally unappealing to assume on the other extreme that all decisions are made

independently. Resultantly, it is important to have available econometric tools flexible enough

to allow for all possibilities of bracketing, letting the data identify the degree of bracketing in

different choice dimensions. This is especially true as the more general model of broadly bracketed

1Section 2 describes some empirical examples.
2In another example, Camerer, Babcock, Loewenstein, and Thaler (1997) finds clear empirical evidence that

New York City cab drivers have a negative elasticity of hours worked with respect to the daily wage. This
phenomenon is hard to rationalize with broadly bracketing, wage maximizing agents. They explain their findings
through daily earnings targets, arguing that these workers narrowly bracket work decisions each day at a time.
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Figure 1: Models with a lattice (left) and a non-lattice (right) structure
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decision making underlies the bedrock assumption of maximization of a global utility function.

Yet, no general econometric tools exist in ordered response settings to allow for broad bracketing.

Our central and novel contribution is to introduce and analyze multivariate ordered response

models corresponding to broad bracketing decision makers, whose decision rules in different di-

mensions are interdependent. When moving from a single dimension to multiple, researchers often

face modeling choices that generate different frameworks of varying complexity.3 In the context

of ordered response, we construct multivariate models that fulfil two desiderata: they should

(i) include narrow bracketing designs as a special case, and (ii) preserve prominent features of

univariate ordered response models such as threshold-based decisions. In the broad bracketing

models we focus on, the nodes formed by intersections of decision thresholds across all the di-

mensions no longer create a lattice structure. Thus, we refer to these models as non-lattice. The

right panel of Figure 1 displays an example of a non-lattice design.

In between lattice and general non-lattice are intermediate designs of interest.4 We focus on

the appealing case of hierarchical models. These models are generated by a hierarchical decision

process where decisions are made sequentially, rather than concurrently. We also show how to

describe these models with binary decision trees.

We start our formal analysis by defining non-lattice, lattice, and hierarchical models. In addition

to being of stand-alone interest to researchers, hierarchical ordered response models help to

3For instance, there are many alternative definitions of a multivariate median, even though the notion of a
median in a single dimension is unique.

4To continue our analogy, behavioral economics considers partial narrow bracketing, which is an intermediate
case between broad bracketing and narrow bracketing.
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formulate sufficient conditions that guarantee coherency of the more general non-lattice ordered

response model.

Following this, we introduce semiparametric specifications of our three models. We model the dth

continuous latent process as a sum of an unobservable term εd and the index xdβd, which combines

observed covariates xd and an unknown parameter vector βd. Examples of non-lattice models

arising from simultaneous equations follow, with lattice and hierarchical models corresponding

to special cases of simultaneity. At this point, we also present a microfoundation of non-lattice

models from the perspective of utility maximization.

Our econometric content begins in section 5. We provide formal results on the identification of

semiparametric versions of lattice and non-lattice models under the independence of the vector

of unobservables (ε1, . . . , εD), collected across all latent processes, from the vector of observables

(x1, . . . , xD). Next, we discuss the identification of parametric models when the distribution of

joint distribution of errors belongs to a known parametric family. We focus on probit specifica-

tions because of their popularity and convenience in modeling dependence across unobservables.

Our theoretical content ends with a discussion of estimation in semiparametric and paramet-

ric models. A rigorous estimation technique for a general semiparametric non-lattice model is

beyond the scope of this particular paper, but we discuss natural directions and explain their

relationship to literature on univariate semiparametric ordered response models. On parametric

estimation, we provide more detail, including an asymptotic distribution.

Finally, we put our newly-developed parametric estimators to use in simulations and empirical

examples. We present Monte Carlo experiments illustrating the deleterious consequences of es-

timating a misspecified lattice (narrow bracketing) on data generated from non-lattice (broad

bracketing) models. The experiments show that when a non-lattice model generates the data,

misspecified lattice models estimate significant biases in most parameters. Finally, we give em-

pirical applications that estimate broad bracketing decision making in the context of financial

payment choice.

2 Literature review

This paper chiefly contributes to the literature on the economic content of ordered choice mod-

els. A leading example is Cunha, Heckman, and Navarro (2007), which examines the economic
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foundations of ordered discrete choice models. The paper develops a “generalized ordered choice

model” to allow for thresholds dependent on observables and unobservables. In doing this, they

jointly analyze discrete choices and associated choice outcomes and accommodate uncertainty

at the individual level. The model generalizes the standard ordered choice model, which typi-

cally has fixed thresholds. The authors develop conditions for nonparametric identification and

provide examples of economic models that the generalized ordered choice model can represent.

The work also shows that in dynamic contexts, there are restrictions on the arrival of new infor-

mation and information processing that enables applications of the generalized ordered choice

model to dynamic discrete choice such as the choice of schooling years. An earlier example of

an ordered choice model with varying thresholds generated from dynamic, sequential choice is

Cameron and Heckman (1998). Other papers on ordered choice models with random thresholds

include Heckman, Lalonde, and Smith (1999); Carneiro, Hansen, and Heckman (2003); Lewbel

(2003). Small (1987) and Bhat and Pulugurta (1998) present alternative microfoundations of or-

dered choice as random utility maximization and range-based utility maximization, respectively.

Finally, Boes and Winkelmann (2006) provides other noteworthy extensions of the traditional

univariate ordered response models.

We contribute to this literature by studying the identification and economic content of ordered

response models in which thresholds depend on the realization of other endogenous variables, as

opposed to regressors and unobservables. This case requires a model of the joint determination

of all endogenous variables that influence the thresholds and implies a more flexible structure

on thresholds than the one implied by fixed thresholds and univariate stochastic thresholds de-

termined by regressors and errors. Regarding dynamic discrete choice, our model is similarly an

ex-post representation of a dynamic choice, such as years of schooling. However, it allows for

the interaction of multiple interdependent dynamic discrete choices. For an example, consider

individuals’ choices on part-time work and education, with interdependence entering not only

through correlation of unobservables in latent processes but also through decision rules. In par-

ticular, hierarchical models can be microfounded by a dynamic sequence of alternate decisions

between outcomes.5

A related literature on discrete choice considers strategic interactions, in which outcomes for one

player depend on the actions by other players (Tamer, 2003; Berry and Reiss, 2007; Ciliberto

and Tamer, 2009; Honore and De Paula, 2010; Chesher and Rosen, 2017, 2020; Aradillas-López

5The literature on dynamic discrete choice models is closely related to the literature on dynamic treatment
effects; see, for example, Heckman and Navarro (2007); Abbring and Heckman (2007).

5



and Rosen, 2022). Every agent in this framework corresponds to a separate dimension, and best

responses often result in incoherency. The current paper does not address or model strategic

interaction of several agents. Instead, we consider a single economic agent deciding along several

dimensions. By construction, for a logically consistent agent this decision problem is coherent,

and as a result, the non-lattice ordered response models we propose are coherent.6

We also contribute to the literature on choice bracketing.7 This literature is mainly theoret-

ical and experimental (Tversky and Kahneman, 1981; Read, Loewenstein, and Rabin, 1999;

Thaler, 1999; Rabin and Weizsäcker, 2009; Ellis and Freeman, 2020; Lian, 2020; Camara, 2021;

Zhang, 2021), with some descriptive and few structural empirical applications (Camerer, Bab-

cock, Loewenstein, and Thaler, 1997; Thakral and Tô, 2021).8 We provide an econometric frame-

work in which researchers can estimate the extent of broad versus narrow bracketing and test for

broad bracketing in decision-making by jointly testing if the thresholds in the latent space form

a lattice model. We apply this test in our empirical example on online payment instruments and

can strongly reject the null of narrow bracketing.

Finally, we add to the empirical literature estimating multivariate ordered response models.

This literature contains numerous applications and we refer the reader to Greene and Hensher

(2010) for a detailed summary, including a review of recent applications of the bivariate ordered

probit model.9 We estimate bivariate ordered choice models with non-lattice structures. Existing

applications assume a lattice structure on the threshold space. To give a specific example, Filer

and Honig (2005) studies the joint determination of pension characteristics (age at which eligible)

and retirement age, with both dependent variables taking one of five discrete values (less than

62, 63, 64, 65, and greater than 65). Their econometric specification implies narrow bracketing

of choices on pension characteristics and retirement age, despite the broad bracketing of this

decision being a theme of their work.

6Coherency was first considered in Heckman (1978). Tamer (2003) was first to distinguish between incoherency
and incompleteness in the context of games and simultaneous strategic actions. We do no make such a distinction
in our model.

7Several different names have been given to this concept, including sequential and simultaneous choice (Si-
monson and Winer, 1992); narrow and broad decision frames (Kahneman and Lovallo, 1993), local and overall
value functions (Heyman, 1996) and isolated and distributed choice (Herrnstein and Prelec, 1991).

8Tversky and Kahneman (1981) describe a classic example of an experiment in which participants display
narrow bracketing.

9Applications of trivariate ordered probit models include Buliung and Kanaroglou (2007); Genius, Pantzios,
and Tzouvelekas (2006); Scott and Kanaroglou (2002)
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3 Model

Now, we present a formal description of our three main classes of multivariate ordered response

models.

3.1 Definition of non-lattice, lattice, and hierarchical models

We consider a multivariate ordered discrete response model, which describes a decision process

for a single agent joint along D ≥ 2 dimensions. This decision process maps an underlying D-

variate latent continuous metric (Y ∗c1 , . . . , Y ∗cD) into a D-variate discrete metric (Y c1 , . . . , Y cD).

Discrete responses in dimension cd are denoted as y
(d)
j , j = 1, . . . ,Md, with

y
(d)
1 < . . . < y

(d)
Md
.

The decision rules mapping the continuous metric into the discrete metric have a general rectan-

gular structure in the latent space. This leads to the definition of the non-lattice model, which

is the most general of the three models we present:

Definition 1 (Non-lattice model) A multivariate ordered discrete response model is a non-

lattice model if

(Y c1 , . . . , Y cD) =
(
y

(1)
j1
, . . . , y

(D)
jD

)
⇐⇒ (Y ∗c1 , . . . , Y ∗cD) ∈ Rj1,...,jD ,

where the D-dimensional rectangle Rj1,...,jD is

Rj1,...,jD ≡
D×
d=1

(
α

(d)
j1,...,jd−1,jd − 1,jd+1,...,jD

, α
(d)
j1,...,jd−1,jd,jd+1,...,jD

]
, (1)

with natural normalization conditions on the thresholds α
(d)
j1,...,jd−1,jd,jd+1,...,jD

:

∀d = 1, . . . , D, α
(d)
j1...jd...jD

= +∞ when jd = Md, (2)

α
(d)
j1...jd...jD

= −∞ when jd = 0. (3)

We call this a non-lattice model since the nodes (α
(1)
j1,...,jd−1,jd,jd+1,...,jD

, . . . , α
(D)
j1,...,jd−1,jd,jd+1,...,jD

) at

the intersection of decision thresholds across all D dimensions do not form a lattice in RD, unlike
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a special class of these models (fittingly, lattice models) that we discuss later. The right panel of

Figure 1 depicts a non-lattice structure when D = 2.

The vector latent process is subject to randomness, making the issue of coherency relevant. By

coherency in terms of observables, we mean the condition that the probabilities of all discrete

responses sum to one. By coherency in the latent space we mean the condition that, for a

given set of decision thresholds, the non-overlapping rectangles Rj1,...,jD partition the latent D-

dimensional space. These two ways at looking at coherency are equivalent if one can take an

generic distribution of observables and unobservables. Since we describe a decision process by a

logically consistent single agent, it shall always satisfy the coherency condition. Our description

thus far, however, has not indicated conditions on α
(d)
j1,...,jd−1,jd,jd+1,...,jD

across different indices

that guarantee coherency. We will come back to this after we introduce hierarchical models.

Since the non-lattice model represents a decision maker whose decision rule is interdependent

across different dimensions, we can think of them as a decision maker who, in the terminology

of the behavioral economics, broadly brackets (Read, Loewenstein, and Rabin, 1999; Rabin and

Weizsäcker, 2009).

In traditional models, each threshold α
(d)
j1,...,jd−1,jd,jd+1,...,jD

is taken to be independent of index jh,

for h 6= d. In this case, the decision rule in each dimension d is independent of decision rules in

other dimensions. Thus, the joint decision rule can be characterized in individual dimensions,

which motivates our definition of lattice models that follows.

Definition 2 (Lattice model) A multivariate ordered discrete response model is a lattice

model if

(Y c1 , . . . , Y cD) =
(
y

(1)
j1
, . . . , y

(D)
jD

)
⇐⇒ Y ∗cd ∈ I(d)

jd
≡ (α

(d)
jd−1, α

(d)
jd

] ∀d = 1, . . . , D (4)

with natural normalization conditions on the thresholds α
(d)
jd

, jd = 0, . . . ,Md:

∀d = 1, . . . , D, α
(d)
jd

= +∞ when jd = Md,

α
(d)
jd

= −∞ when jd = 0.

Lattice models correspond to a decision maker who narrowly brackets, since decisions are made

dimension-by-dimension, as opposed to jointly. We refer to such models as lattice models since
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the nodes (α
(1)
j1
, . . . , α

(D)
jD

) form a lattice in RD. These models are automatically coherent without

any further restrictions on thresholds and are nested in the class of non-lattice models. Figure

1 gives an example of a lattice structure for D = 2. Lattice models are easier to estimate than

non-lattice models, but will misspecify a decision maker who broadly brackets.

Importantly, when we talk about decision makers who broadly or narrowly bracket, we refer to,

respectively, interdependence or independence of decision rules, fully captured by the thresholds.

Decisions themselves can be correlated in both lattice and non-lattice models because of the

correlation in underlying latent processes Y ∗cd , d = 1, . . . , D, even after conditioning on observ-

ables. Thus, one of the main identification challenges in non-lattice models is to separate the

correlation in unobservables from the interdependence of decision rules.

There are several intermediate cases between lattice and non-lattice decision models, and one

of particular appeal is the class of hierarchical models. One can think of a hierarchical decision

process as a process where decisions are made sequentially. The sequential nature of decision

making may be due to the agent’s preference of doing so or because of the sequential arrival of

information. We formally define hierarchical models recursively.

Definition 3 (Recursive definition of a hierarchical model) A multivariate ordered dis-

crete response model is hierarchical if Md = 1 for all d = 1, . . . , D, or there exists d1 ∈ {1, . . . , D}
and j1(d1) such that

1. Y cd1 > y
(d1)
j1(d1) ⇐⇒ Y ∗cd1 > αd1j1(d1)

2. The sub-model defined conditional on Y cd1 > y
(d1)
j1(d1) (equivalently, conditional on Y ∗cd1 >

αd1j1(d1)) is hierarchical.

3. the sub-model defined conditional on Y cd1 ≤ y
(d1)
j1(d1)) (equivalently, conditional on Y ∗cd1 ≤

αd1j1(d1)), is hierarchical.

Hierarchical models are represented as a binary decision tree. Figure 2 depicts a bivariate hi-

erarchical decision process and the binary decision tree in Figure 3 represents the hierarchical

process in Figure 2.10

Hierarchical models are coherent by definition, since we have a partition of the latent space at

each level of the decision tree. These models aid in formulating the coherency condition in the

10Such a binary decision tree representation need not be unique.
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Figure 2: Model with a hierarchical decision structure
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Figure 3: Binary decision tree for the hierarchical model in Figure 2
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general non-lattice model. To explain this, first we introduce local decision models and local

hierarchical models.

Definition 4 (Local decision model) A local decision model is a model of discrete response

conditional on discrete responses being among one of 2D adjacent responses

(y
(1)
j1+`1

, y
(2)
j2+`2

, . . . , y
(D)
jD+`D

), `d ∈ {0, 1}, d = 1, . . . , D.
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Figure 4: Intuition for a non-lattice model being locally hierarchical when D = 2

In this model, the decision maker chooses (y
(1)
j1+`1

, y
(2)
j2+`2

, . . . , y
(D)
jD+`D

) if the underlying vector latent

process falls into rectangle Rj1+`1,j2+`2,...,jD+`D conditional on this vector latent process being in

the region
D⋃
d=1

⋃
`d∈{0,1}

Rj1+`1,j2+`2,...,jD+`D .

Definition 5 (Locally hierarchical model) A model is locally hierarchical if each of its local

decision models are hierarchical.

We can establish that being locally hierarchical with the given set of thresholds is sufficient to

guarantee that a non-lattice model is coherent. In the bivariate case, it is also necessary for

coherency. We show these results in Appendix A along with a detailed analysis of the trivariate

case D = 3. Here we note that in the bivariate case, coherency (E locally hierarchical) means

that (
α

(1)
j1+1,j2

− α(1)
j1,j2

)
·
(
α

(2)
j1,j2+1 − α

(2)
j1,j2

)
= 0 (5)

for any pair of indices (j1, j2), so that α
(1)
j1+1,j2

= α
(1)
j1,j2

or α
(2)
j1,j2+1 = α

(2)
j1,j2

. In Figure 4, the dashed

region
⋃2
d=1

⋃
`d∈{0,1}Rj1+`1,j2+`2 , formed by four joined rectangles where each rectangle borders

with the other three rectangles, represents a local decision model. In that region, the decision

model is hierarchical.
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3.2 Semiparametric specification

We write each dth continuous latent process as an index in terms of observable covariates xd (row

vector), unknown parameter βd (column vector) and an additive unobservable error term εd:

Y ∗cd = xdβd + εd, d = 1, . . . , D. (6)

Notably, the terms in (ε1, . . . , εD) can be dependent, which allows for the latent processes Y ∗cd

to be correlated with each other, even conditional on observable covariates.

4 Examples

Our preferred interpretation of non-lattice and lattice models is broad and narrow bracketing

respectively. However, other environments also give rise to non-lattice and lattice structures. We

discuss some examples in sections 4.1 and 4.2, and provide additional examples including (i)

selection in insurance markets, (ii) advertisement spillover effects, and (iii) financial transfers

and distress in appendix D.

4.1 Preferences

Univariate model. To relate our interpretation of a general non-lattice model to the existing

tradition in economics and econometrics, we first review the univariate case and note that uni-

variate ordered response models are generated by agents with single-peaked preferences. Indeed,

consider a model with discrete responses y1 < y2 < . . . < yM and an agent with the realization

(x, ε). They have the ordinal preferences given by

ym∗ � ym∗−1 � . . . � y1, ym∗ � ym∗+1 � . . . � yM ,

wherem∗ is such that αm∗−1 < xβ+ε ≤ αm∗ for a given sequence α0 = −∞ < α1 < . . . < αM−1 <

αM = +∞. Given the interval nature of the responses, the starting point for a utility function

corresponding to such ordinal preferences over ym would be min{−(αm−1−xβ−ε), αm−xβ−ε}.
Using the “min” functional form on its own however creates indifference (which violates single-

peakedness) when xβ + ε coincides with one of the thresholds. To resolve such ties, we can take
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the cardinal utility from choosing ym as

Um = min{−(αm−1 − xβ − ε), αm − xβ − ε} · 1(xβ + ε 6= αm) + ∆ · 1(xβ + ε = αm),

where ∆ > 0 can be arbitrarily small and serves as nothing more than a tie-breaking device.

Towards showing the single-peakedness property, consider m∗ such that αm∗−1 < xβ + ε < αm∗ .

Then Um∗ > 0 and Um′ < 0 for all m′ 6= m∗. Moreover, Um1 > Um2 for any m∗ ≤ m1 < m2 and

Um1 < Um2 for any m1 < m2 ≤ m∗. Finally, in the case of a tie, wherein xβ + ε = αm∗ ,

Um∗ = ∆ > Um∗−1 > Um∗−2 > . . . > U1︸ ︷︷ ︸
<0

, and Um∗ = ∆ > Um∗+1 = 0 > Um∗+2 > . . . > UM︸ ︷︷ ︸
<0

thereby proving the single-peakedness property.11

Multivariate model For illustrative simplicity, consider the bivariate case. We construct

a utility function that is maximized uniquely when (x1β1 + ε1, x2β2 + ε2) ∈ Rj∗1 ,j
∗
2

=(
α

(1)
j∗1−1,j∗2

, α
(1)
j∗1 ,j
∗
2

]
×
(
α

(2)
j∗1 ,j
∗
2−1, α

(2)
j∗1 ,j
∗
2

]
, corresponding to the choice of

(
y

(1)
j∗1
, y

(2)
j∗2

)
. We understand

single-peakedness in multiple dimensions as single-peakedness patterns in each direction. To ex-

plain this, denote the utility from choosing
(
y

(1)
j1
, y

(2)
j2

)
as Uj1,j2 . Single-peakedness implies the

following two conditions:

1. There is (j∗1 , j
∗
2) such that Uj∗1 ,j∗2 > Uj1,j2 when j1 6= j∗1 or j2 6= j∗2 .

2. For any (j1, j2) 6= (j∗1 , j
∗
2), let (`1, `2) be a direction that moves (j1, j2) further away from

(j∗1 , j
∗
2).12 Then Uj1,j2 ≥ Uj1+`1,j2+`2 .

Consider the functional form given by

Uj1,j2 = min{−(α
(1)
j1−1,j2 − x1β1 − ε1),−(α

(2)
j1,j2−1 − x2β2 − ε2), α

(1)
j1,j2
− x1β1 − ε1, α(2)

j1,j2
− x2β2 − ε2}×

1
[
(x1β1 + ε1, x2β2 + ε2) ∈ Roj1,j2

]
+ ∆ · 1

(
x1β1 + ε1 = α

(1)
j1,j2

)
+ ∆ · 1

(
x2β2 + ε2 = α

(2)
j1,j2

)
+ ∆ · 1

(
x1β1 + ε1 = α

(1)
j1,j2

)
· 1
(
x2β2 + ε2 = α

(2)
j1,j2

)
,

where Ro
j1,j2

denotes the interior of Rj1,j2 . The role of an arbitrarily small ∆ > 0 is to provide a

11We can make the definition of Um more general by adding, for example, the same function of covariates to
each Um.

12This means either `1, `2 ∈ {0, 1} or `1, `2 ∈ {−1, 0}, and |j1 + `1 − j∗1 |+ |j2 + `2 − j∗2 | ≥ |j1 − j∗1 |+ |j2 − j∗2 |.
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tie-breaking rule for certain parts of the border of Rj1,j2 . Towards showing that this functional

form delivers uniquely maximized preferences over discrete choice pairs (y
(1)
j1
, y

(2)
j2

), first consider

(x1β1 + ε1, x2β2 + ε2) ∈ Ro
j∗1 ,j
∗
2
. In this case Uj∗1 ,j∗2 > 0 and Uj′1,j

′
2
< 0 for j

′
1 6= j∗1 or j

′
2 6= j∗2 .

Second, if (x1β1 + ε1, x2β2 + ε2) ∈ Rj∗1 ,j
∗
2

and x1β1 + ε1 = α
(1)
j1,j2

or x2β2 + ε2 = α
(2)
j1,j2

or both,

then Uj∗1 ,j∗2 > 0 and Uj′1,j
′
2
≤ 0. For a lattice structure, such preferences are guaranteed to be

single-peaked. For a non-lattice structure they are not necessarily single-peaked even though

they are still uniquely maximized.

4.2 Simultaneous equations

Throughout this paper we consider a single decision maker selecting responses across several

dimensions. Nevertheless, in some special cases coherent non-lattice models may even arise as a

result of strategic interactions. An illustration of that is the simultaneous entry game in Tamer

(2003).

Example 1 (Simultaneous entry game in Tamer (2003)) A small (A) and a large (B)

firm can take actions 0/1 (don’t enter/enter) and their payoffs are parametrised

YA \ YB 0 1

0 αA , αB αA , xβB + wBγB + uB

1 xβA + wAγA + uA , αB xβA + wAγA + uA + ∆BA , xβB + wBγB + uB + ∆AB,

where the presence of the large firm reduces the profit (∆BA < 0) of the small firm (perhaps the

large firm has a large brand advantage), but the presence of the small firm does not affect the

profit of the large firm (∆AB = 0). The discrete responses are then

YB = 1(

Y ∗B︷ ︸︸ ︷
xβB + wBγB + uB > αB),

YA = 1(xβA + wBγB + ∆BA · yB + uB︸ ︷︷ ︸
Y ∗A

> αA).

Since ∆AB = 0, we have coherency and completeness (Heckman, 1978; Tamer, 2003) in this

model. In the equilibrium, the non-lattice structure shown in Figure 5 represents the decision

structure.
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Figure 5: Latent payoff space for two equations and the non-lattice structure in example 1

(0, 0) (1, 0)

(0, 1) (1, 1)

Y ∗A

Y ∗B

αA

αBαA −∆BA

Because of the 2 × 2 nature (two players and two actions) and its triangular structure, the

strategic interaction problem in Tamer (2003) represents a hierarchical model with the large firm

determining the first decision rule and the small firm determining the subsequent decision rules.

We can give more general examples of strategic interaction models expressed as simultaneous

equations models, resulting in non-lattice models. Based on the univariate model for the choice

of differentiated goods in Cunha, Heckman, and Navarro (2007), we provide an example of

advertisement spillover effects in Appendix D. Appendix D also has an example (Example 4) of

a simultaneous equations model that results in a coherent non-lattice structure.

5 Identification in semiparametric multivariate ordered

discrete response models

This section covers the identification of D-variate lattice and non-lattice models from observa-

tions on discrete responses and covariates when the latent process in each dimension has the

index structure as in (6). We derive identification under either Assumption 1 or the more re-

strictive Assumption 2, both of which relate to the lack of the statistical relationship between

unobservables and covariates.

Assumption 1 For all d = 1, . . . , D, εd is independent of xd and has a convex support.

Assumption 2 The vector of unobservables (ε1, . . . , εD) is independent of (x1, . . . , xD). The

support of (ε1, . . . , εD) is a convex set in RD with a non-empty interior.
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We employ Assumption 1 in lattice models and Assumption 2 in non-lattice models. In uni-

variate ordered response models, the assumption of independence between the unobservable and

covariates is common, being used in Klein and Sherman (2002), Coppejans (2007), and Agresti

(2010) among many others.13

At this point, we introduce some notation.

Notation 1 Let x = (x1, . . . , xD) and ε = (ε1, . . . , εD). Denote the joint c.d.f. of ε as F and

the marginal c.d.f. of εd as Fd, d = 1, . . . , D. The length of vector xd is kd, d = 1, . . . , D. Let Xd
denote the support of xd and for each d, d = 1, . . . , D, define

S(d) =
{
xd ∈ Xd | ∃ jd = 1, . . . ,Md such that P

(
Y (d) ≤ y

(d)
jd
|xd
)
∈ (0, 1)

}
and

S(d;j) =
{
xd ∈ Xd | such that P

(
Y (d) ≤ y

(d)
j |xd

)
∈ (0, 1)

}
.

Let xd,m denote the mth component of xd. The subvector of xd including all the components of xd

with the exception of the mth component is denoted xd,−m. The term xd,`:` denotes the subvector

of xd that includes all the components from ` to ` inclusively, where ` > `. We use analogous

notations for β.

Finally, S
(d)
m denotes the projection of S(d) on xd,m and S

(d)
−m denotes the projection of S(d) on

xd,−m. We use analogous notations for S(d;j).

5.1 Models with lattice structures

We start with identification results for a model with a lattice structure, which is the specific

class of non-lattice models satisfying

α(d)
j1,...,jd−1,jd,jd+1,...,jD = α

(d)
jd
∀ j1, . . . , jd−1, jd+1, . . . , jD. (7)

13Some papers (see e.g. Chen and Khan (2003)) on univariate ordered response allow for heteroskedasticity. In
our framework, this would correspond to σd(xd, θ0)εd with independent εd. Some other papers further deviate from
the setting of independence. Lee (1992) considers ordered response under the median independence assumption
from Manski (1975, 1985). In a recent paper, Wang and Chen (2022) take a partial identification approach and
consider a generalized maximum score estimator when regressors are interval measured. All of these settings are
beyond the score of this paper and provide interesting avenues for extensions of our work.
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We formulate an analogue of a rank condition in the form of Assumption 3.

Assumption 3 S(d) is not contained in any proper linear subspace of Rkd and P
(
S(d)

)
> 0.

This assumption is traditional in the semiparametric literature of discrete response (Manski

(1985, 1988) and Horowitz (2010), among many others) and is implied by more stringent condi-

tions on covariates. Intuitively, it guarantees some minimum desirable variation in the covariates.

We are now in a position to provide sufficient conditions that ensure the identification of index

parameters βd, our first result. The proof of this result and all others in text are in Appendix B.

Theorem 1 Consider a D-variate discrete response model with the index structure in (6). Sup-

pose Assumptions 1 and 3 hold and the model has a lattice structure in the sense of condition

(7). For d = 1, . . . , D, the parameter βd is identified if there is a covariate xd,m(d) in xd such that

for xd,−m(d) ∈ S
(d)
−m(d) the support of xd,m(d)|xd,−m(d) intersected with S

(d)
m(d) contains an interval

(xd,m(d), xd,m(d)) with xd,m(d) < xd,m(d), and it holds that βd,m(d) = 1.

Theorem 1 states that in the latent process d, we need at least one covariate with some contin-

uous variation and a non-zero impact in the dth latent process to identify parameter βd up to

normalization. Of course, βd,m(d) can be normalized to −1 instead of 1 if the impact of xd,m(d) is

negative rather than positive.

In Theorem 1, we provide identification conditions in terms of individual dimensions and indi-

vidual latent processes. This is because the lattice structure allows us to look at each individual

dimension without having any interference from or interactions with other dimensions. Resul-

tantly, covariates need not be exclusive to a certain latent process and, in particular, covariates

with some continuous variation in latent processes, as required by Theorem 1, can be common

to several (potentially all) processes.

Our next step is to analyze the identification of thresholds. Based on the convex support require-

ment in Assumption 1, we attain the point identification of differences of thresholds (equivalently,

the identification of thresholds up to normalization of one thresholds) if for any j and j + 1, we

can find xd ∈ S(d;j) and x̃d ∈ S(d;j+1) such that

0 < Fd

(
α

(d)
j − xdβd

)
= Fd

(
α

(d)
j+1 − x̃dβd

)
< 1.
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These conditions are effectively in terms of observable probabilities P (Y (d) ≤ y
(d)
j |xd) and

P (Y (d) ≤ y
(d)
j+1 | x̃d) and are equivalent to finding xd ∈ S(d;j) and x̃d ∈ S(d;j+1) such that

α
(d)
j+1−α

(d)
j = x̃dβd−xdβd. Since the differences between consecutive thresholds in each dimension

are not known a priori, the most straightforward sufficient conditions demand—in addition to

the conditions of Theorem 1—a large support from a regressor with continuous variation in each

latent process. We state this formally in Theorem 2.

Theorem 2 Suppose all the conditions of Theorem 1 hold for a particular dimension d. In addi-

tion suppose that for covariate xd,−m(d) from Theorem 1, the support of xd,m(d)|xd,−m(d) intersected

with S
(d;j)
m(d) is

(i) R if the support of εd is unbounded, or

(ii) a sufficiently large interval if the support of εd is bounded.

Then in addition to βd being identified, the differences α
(d)
j+1−α

(d)
j , j = 1, . . . ,Md−1 are identified.

To summarize, in lattice structures, the identification of index parameters βd and thresholds α
(d)
j

is separate across different dimensions. This means that we may be able to identify βd (resp.

α
(d)
j ) without other β` (resp. α

(d)
` ), ` 6= d, being identified. This will not be the case in general

non-lattice models.

Figure 6, which shows a bivariate lattice model, presents an intuitive summary of the identifi-

cation strategy in the models with lattice structures. We consider each dimension individually

and, within that dimension, express probabilities of discrete values up to certain points in terms

of the marginal c.d.f. of the unobservable in that dimension and the index in that dimension.

The result of Theorem 2 immediately implies conditions for identification of marginal distribu-

tions of εd, d = 1, . . . , D.

Corollary 1 Suppose conditions of Theorem 2 hold for some d. Then Fd is identified if either

one threshold among α
(d)
jd

, jd = 1, . . . ,Md, is normalized to a known value, or if there is a

normalization of one of the values of c.d.f. Fd, say Fd(e0d) = c0d, for some known e0d in the

support of εd and some known c0d ∈ (0, 1).

The proof of Corollary 1 is straightforward and is therefore omitted.
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Figure 6: Intuition for lattice model identification
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Notes: Left region in the latent space corresponds to P
(
Y (1) ≤ y

(1)
1 |x1

)
. Right region corresponds

to P
(
Y (1) ≤ y

(1)
2 |x1

)
.

Remark 1 (Identification of joint c.d.f. F ) The result of Corollary 1 does not guarantee

identification of the joint distribution of unobservables, even if the conditions of that Corollary

hold for every d = 1, . . . , D. The reason is two-fold. First, Assumption 1 does not give any

information about how the vector ε relates to the vector x. Second, if the components in ε are not

mutually independent conditional on x, then for the identification of F one would need to consider

joint outcomes
(
Y (1) ≤ y

(1)
j1
, . . . , Y (D) ≤ y

(D)
jD

)
that result in the vector (α

(1)
j1
− x1β1, . . . , α

(D)
jD
−

xDβD). The issue is that some (or even all) xd may not have exclusive covariates in them which

potentially makes the vector (α
(1)
j1
− x1β1, . . . , α

(D)
jD
− xDβD) take values only in a proper subset

of the support of (ε1, ε2, . . . , εD).

However, the identification of the joint c.d.f. F is possible if Assumption 2 holds and each xd

contains a large-support exclusive covariate with a non-zero impact. Essentially, these are the

conditions under which we establish full identification in semiparametric non-lattice models in

section 5.2 (see Theorem 5 below).

5.2 Models with non-lattice structures

Next, we establish identification in models with non-lattice structures. Now the decision rules in

different dimensions may interact in complicated ways and, therefore, analyzing one dimension

at a time will not be fruitful. In Figure 7, we illustrate a region in the latent space of a bivariate

non-lattice model that corresponds to the probability P
(
Y (1) ≤ y

(1)
1 |x

)
. The probability of that

region cannot be expressed in terms of values of the marginal c.d.f. F1 alone. Non-lattice cases
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therefore require a different approach to identification. Intuitively, the identification of param-

eters βd and the threshold structure in these models should be more demanding on the data,

especially given an unknown dependence structure of unobservables. This is indeed the case:

in this section, we give sufficient conditions for identification in non-lattice models and these

conditions are more stringent than those for lattice models.

Identification proceeds in several steps as follows:

1st step: identification of parameters corresponding to exclusive covariates in each process

(Theorem 3).

2nd step: identification of parameters corresponding to non-exclusive covariates (Theorem 4).

3rd step: identification of the joint c.d.f. (Theorem 5).

4th step: identification of the thresholds (Theorem 6).

For what remains, we need some additional notation.

Notation 2 Let X ⊂ R
∑d
i=1 ki denote the support of x. For jd = 1, . . . ,Md, define

S
(d)
all (jd) ≡

{
x ∈ X : P

(
Y (d) ≤ y

(d)
jd
|x
)
∈ (0, 1)

}
.

For a subvector z of x, let S
(d)
all;−z(jd) denote the projection of S

(d)
all (jd) on the subvector obtained

by removing z from vector x, and let S
(d)
all;z(jd) denote the projection of S

(d)
all (jd) on z.

Notation 3 For each d = 1, . . . , D, let xd,1:Ld denote the subvector of xd that consists of

all the covariates in xd that are exclusive to the process Y ∗cd. Being exclusive means that

the conditional distribution xd,i |x−d has a non-degenerate distribution almost everywhere for

x−d = (x1, . . . , xd−1, xd+1, . . . , xD).

Our final assumption gives an analogue of the rank condition that used in Theorems 3 - 6 below.

Assumption 4 For any d = 1, . . . , D, there is jd = 1, . . . ,Md − 1, such that the set S
(d)
all (jd) is

not contained in any proper linear subspace of R
∑d
i=1 ki and P

(
S

(d)
all (jd)

)
> 0.
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Figure 7: Region in the latent space for a non-lattice model

Notes: Illustration of region in the latent space corresponding to P
(
Y (1) ≤ y

(1)
1 |x

)
in a bivariate

non-lattice model

Theorem 3 gives sufficient conditions for the identification of βd;1;Ld , d = 1, . . . , D, which are

the parameters corresponding to the exclusive covariates in each process. It considers, for each

d, the marginal probabilities P
(
Y (d) ≤ y

(d)
jd
|x
)

for some (or all) jd and the region in the D-

dimensional space for the continuous latent metric that corresponds to this probability (such

as displayed in Figure 7). Even though this region has a complicated structure, we can use the

rectangular nature of decision rule cells to express this probability in terms of the joint c.d.f.

F of unobservables and indices x`β`, ` = 1, . . . , D. This probability generally depends on all

the indices x`β` and is non-increasing with respect to the own index xdβd. Hence, we can map

ordinal relations among probabilities P
(
Y (d) ≤ y

(d)
jd
|x
)

to ordinal relations among indices xdβd

provided we keep the values of all the other indices x`β`, ` 6= d, fixed. From this, identification

of parameters corresponding to exclusive covariates are obtained subject to some normalization

restrictions and to some continuous variation among at least one exclusive covariate in each

index.

Theorem 3 Consider a D-variate discrete response model with the index structure (6). Suppose

Assumptions 2 and 4 hold for each d = 1, . . . , D, and the model has a coherent (potentially non-

lattice) structure.

Suppose that the following conditions are satisfied:

(a) Ld ≥ 1 for each d = 1, . . . , D – that is, each process has at least one exclusive covariate.

(b) The coefficient βd,1 corresponding to xd,1 in xdβd is 1, d = 1, . . . , D.
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(c) For each d = 1, . . . , D, there exists jd that satisfies conditions in Assumption 4 and is

such that S
(d)
all;xd

(jd) contains a Cartesian product (xd,1, xd,1) × S̃(d), where xd,1 > xd,1 and

S̃(d) ⊆ S
(d)
all;−xd,1(jd) such that P (S̃(d)) > 0 (the order of covariates in this Cartesian product

coincides with the order of covariates in x).

Then parameters βd,1:Ld, d = 1, . . . , D, corresponding to the exclusive covariates in each process

are identified.

Condition (b) is a normalization restriction, since in such models parameter vectors can only

be identified up to scale and the coefficients βd,1, d = 1, . . . , can be normalized to any non-zero

values. These normalizations can be different across d. Condition (c), intuitively, requires that

for d = 1, . . . , D, there is some some continuous variation in at least one exclusive covariate in

xd, conditional on other covariates, when the other covariates take values from a set of positive

measure. We require this condition in the set of x that deliver probabilities P
(
Y (d) ≤ y

(d)
jd
|x
)

strictly between 0 and 1 for some jd.

Because of the presence of exclusive covariates, we obtain the analogous feature to lattice models,

namely that under conditions on Theorem 3, we can identify βd,1:Ld , the parameters on exclusive

covariates, regardless of whether β`,1:L` , ` 6= d, are identified.

Our next result in Theorem 4 strengthens conditions on covariates to obtain the identification

of full parameter vectors βd, d = 1, . . . , D. The identification of parameters corresponding to

covariates that are common to at least two indices relies on at least one exclusive covariate

in the respective process to have a large support. Large support assumptions are common in

the semiparametric literature and , in particular, in semiparametric univariate ordered response

models (see e.g. Manski (1985, 1988); Horowitz (2010); Lewbel (2000, 2003)).

Theorem 4 Suppose all the conditions of Theorem 3 hold. In addition, suppose that if Ld < kd

(that is, there are non-exclusive covariates in xd), then in condition (c) in Theorem 3:

(i) xd,1 is sufficiently small if the support of εd is bounded from above, and14

(ii)

xd,1 = −∞ (8)

14If βd,1 was normalized to a negative value, we would require xd,1 to be sufficiently large if the support of εd
was bounded from below.
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if the support of εd is unbounded from above.15

Then βd, d = 1, . . . , D, are identified.

Our penultimate result concerns the identification of the c.d.f. F .

Theorem 5 Suppose all the conditions of Theorem 3 hold and in condition (c) in Theorem 3,

condition (8) holds for any d = 1, . . . , D, and, moreover,16

xd,1 = +∞. (9)

Then under the following normalization for each marginal c.d.f. Fd:

Fd(e0d) = c0d, d = 1, . . . , D,

for some known e0d in the support of εd and some known c0d ∈ (0, 1), d = 1, . . . , D, the joint

c.d.f. F is identified.

Note that conditions in Theorems 3 - 5 are increasingly more restrictive. For example, in Theorem

5 we require condition (8) for any d = 1, . . . , D, whereas in Theorem 4 we require condition (8)

only for d with Ld < kd. Resultantly, coefficients corresponding to exclusive covariates are easier

to identify than those corresponding to non-exclusive ones, and that the joint c.d.f. F is harder

to identify than index coefficients βd.

Our final result is on the identification of threshold parameters. This result allows us to find

out whether decision-making is consistent with broad bracketing or narrow bracketing. The

identification comes from variation in covariates and consideration of probabilities of various

rectangular regions such as

P
(

(Y c1 , . . . , Y cD) =
(
y

(1)
j1
, . . . , y

(D)
jD

)
|x
)

= P ((Y ∗c1 , . . . , Y ∗cD) ∈ Rj1,...,jD |x)

=
∑

m1∈{0,1}...
mD∈{0,1}

(−1)m1+...+mDP

(
D⋂
d=1

(
εd < α

(d)
j1−m1,...,jd−1−md−1,jd−md,jd+1−md+1,...,jD−mD − xdβd

))

15If βd,1 was normalized to a negative value, we would require xd,1 = +∞ instead of (8) if the support of εd
was unbounded from below.

16If the support of εd is bounded from above, then condition (8) can be replaced with the condition of xd,1
taking small enough values, and if the support of of εd is bounded from below, then condition (9) can be replaced
with the condition of xd,1 taking large enough values.
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Theorem 6 gives a formal identification result for the thresholds.

Theorem 6 Suppose all the conditions of Theorem 5 (including the normalizations for marginal

c.d.f.s) hold. Then all the thresholds α
(d)
j1,...,jd−1,jd,jd+1,...,jD

are identified.

We prove the identification of thresholds in Theorem 6 sequentially. Let us give intuition for

the case D = 2. First, we identify those thresholds that define regions Rj1,j2 with both indices

jd taking an extreme value in that sense that jd ∈ {0,Md}, d = 1, 2. Second, we build on this

result to identify thresholds that define regions Rj1,j2 with only one index among j1, j2 taking an

extreme value. At each step in the second stage we proceed sequentially in a way to only having

to identify two unknown threshold parameters at a time (rather than three thresholds). We then

proceed in an analogous sequential way to cases of rectangular regions “in the middle” having,

once again, only two unknown thresholds at a time (rather than three of four). With two known

and two unknown thresholds defining a rectangular region Rj1,j2 , the idea behind identification

is to hypothetically suppose that there are two pairs of unknown thresholds consistent with

observables. We can then think about from which “corner” (corresponds to four combinations of

extreme value indices) we want to start the sequential identification process. This would imply

that in one of the four situations depicted in Figure 8 the probability masses of the red and

green rectangles are exactly the same for any corner point z0 in the two-dimensional space. The

identification comes from the fact that no matter what the support of unobservable (ε1, ε2) is,

at least one of these four depicted situation will be inconsistent with observable probabilities of

choice. Thus, there is always a “corner” from which we can start to establish the identification

of thresholds. We fill in the details of this identification idea in Appendix B.

6 Parametric assumptions on the distribution of errors

In discrete response models, practitioners often make parametric assumptions on the distribution

of unobservables and maintain independence between unobservables and covariates. Once the

distributional family of unobservables is specified, sufficient identification conditions are less

stringent than those in the semiparametric case. The exact identification conditions usually

depend on the parametric family under consideration, and may require some normalizations to

eliminate obvious non-identifiability issues.
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Figure 8: Illustration of the identification idea.

z0 z0

z0 z0

Notes: in each picture, the red and green rectangles have the same probability mass when conjec-
turing that two different sets of thresholds can generate observables and when proceeding from
one of the four “corners”.

A popular choice for the distribution of unobservables is the Gaussian, particularly due to ease

of modeling correlation among εd for d = 1, . . . , D. We formulate this parametric choice in

Assumption 5, which combines the normality of unobservables with their independence from the

covariates:

Assumption 5 (ε1, . . . , εD) is independent of (x1, . . . , xD) and has a joint normal distribution

N (0,Σ) with

Σ =


1 ρ12 . . . ρ1D

ρ12 1 . . . ρ2D

...
...

. . .
...

ρ1D ρ2D . . . 1

 .

Assumption 5 already normalizes the means and standard deviations of all εd to µd = 0

and σD = 1 respectively. This is because identification must use decision probabilities

P
(
Y (1) = y

(1)
j1
, . . . , Y (D) = y

(D)
jD
| x
)

, and if we write down the form of these probabilities us-

ing the normality assumption, it follows that

(µ1, . . . , µD, {α(d)
j1,j2,...,jD

}, β1, . . . , βD, σ1, . . . , σD, {ρk1,k2}k1<k2)

and

(µ1 + C1, . . . , µD + CD, {C̃dα(d)
j1,j2,...,jD

+ Cd}, C̃1β1, . . . , C̃DβD, C̃1σ1, . . . , C̃DσD, {ρk1,k2}k1<k2),
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for any Cd 6= 0 and C̃d > 0, d = 1, . . . , D, are observationally equivalent.

In a general non-lattice model satisfying Assumption 5, given sufficient variation in covariates,

all parameters of the model (thresholds, index parameters, and correlations) are identified. In

a univariate ordered probit model, the index parameter and the thresholds are identified even

from sufficient discrete variation in covariates. Undoubtedly, identifying a multivariate non-lattice

ordered probit model is more demanding. Appendix C illustrates how to obtain identification

in some non-lattice bivariate models. The results rely on an exclusive covariate in at least one

latent process. Still, we expect many cases where all parameters are identified even without any

exclusive covariates, and we provide an example of that in simulation design 1 in section 8. In

that design, the two latent equations contain just one common regressor. Theoretically, clear-cut

identification conditions for multivariate non-lattice ordered probit model are difficult to derive.

For similar reasons, in multinomial probit models, which consider many latent processes with

correlated unobservables, formal identification conditions are not available in the discrete choice

literature.

7 Estimation

In this section, we discuss estimation of lattice and non-lattice multivariate ordered response

models.

7.1 Estimation in semiparametric models

In what follows, we briefly outline some possibilities for estimating parameters in semiparametric

models. A theme of this section is that while existing univariate ordered response estimation

methods generalize to lattice models, there are immediate complications in their extension to

non-lattice models.

7.1.1 Extending Coppejans (2007)

Coppejans (2007) offers one of the many estimation methods for univariate ordered response mod-

els under independence of the error and covariates. In what follows, we extend it to multivariate

ordered response models, describing the bivariate case for illustrational simplicity. Suppose we

26



have a random sample
{

(y(1)(i), y(2)(i), x
(i)
1 , x

(i)
2 )
}N
i=1

. The idea is to maximize the log-likelihood

function

L(θ) =
1

N

N∑
i=1

M1∑
j1=1

M2∑
j2=1

1
[
(y(1)(i), y(2)(i)) = (y

(1)
j1
, y

(2)
j2

)
]

log(`
(i)
j1,j2

), where

`
(i)
j1,j2

= F
(
a

(1)
j1,j2
− x(i)

1 b1, a
(2)
j1j2
− x(i)

2 b2

)
− F

(
a

(1)
j1−1,j2

− x(i)
1 b1, a

(2)
j1,j2
− x(i)

2 b2

)
− F

(
a

(1)
j1,j2
− x(i)

1 b1, a
(2)
j1,j2−1 − x

(i)
2 b2

)
+ F

(
a

(1)
j1−1,j2

− x(i)
1 b1, a

(2)
j1,j2−1 − x

(i)
2 b2

)
,

for joint c.d.f. of unobservables F . Coppejans (2007) uses a quadratic B-spline to estimate the

c.d.f of unobservables. The multivariate analogy is tensor-product B-splines. For instance, in the

bivariate case the tensor-product basis consists of S1 ·S2 products of polynomials R in the form

R1;s1,S1(e1; q1)R2;s2,S2(e2; q2), s1 = 1, . . . , S1, s2 = 1, . . . , S2,

here calculated for specific values of e1 and e2, with qd denoting the degree of B-spline in di-

mension d = 1, 2. A general tensor-product B-spline, which approximates F (e1, e2), is a linear

combination of these base tensor-product polynomials with coefficients {hs1s2}, sd = 1, . . . , Sd,

d = 1, 2:
S1∑
s1=1

S2∑
s2=1

hs1s2R1;s1,S1(e1; q1)R2;s2,S2(e2; q2).

The linear constraints

hs1s2 ≤ hs1+1,s2 , ∀ s1 = 1, . . . , S1 − 1, s2 = 1, . . . , S2

hs1s2 ≤ hs1,s2+1, ∀ s2 = 1, . . . , S2 − 1, s1 = 1, . . . , S1

guarantee monotonicity of the tensor-product B-spline in each dimension. Additionally, the linear

constraints

0 ≤ hs1,s2 ≤ 1, ∀ s1, s2

guarantee natural c.d.f. bounds of 0 and 1.17 And linear equality constraints on hs1s2 can impose

normalization restrictions on Fd. Coherency requires additional constraints on thresholds. As

indicated previously, in the bivariate case these constraints have the form given in equation (5)

17For more details on shape constraints in tensor-product B-splines, see Bhattacharya and Komarova (2022).
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and these can be included as a penalty in the objective through

− λN(α
(1)
j1+1,j2

− α(1)
j1,j2

)2 · (α(2)
j1,j2+1 − α

(2)
j1,j2

)2 (10)

for a large λN > 0.

7.1.2 Extending alternative approaches

The approach in Klein and Sherman (2002), which analyzes the univariate model, estimates the

index parameter in the first stage using kernel density estimates of the conditional probability of

choosing below a certain level. In the second stage, the approach estimates threshold parameters

using shift restrictions. The estimation method extends to multivariate lattice models. The first

stage is potentially implementable in the non-lattice context, but difficulty will arise in extending

the shift restrictions. The same is true for the more recent approach in Liu and Yu (2019).

The Lewbel (2000) methodology, which in particular applies to univariate ordered response

models, can be extended to multivariate lattice models but is difficult, if not impossible, to extend

to non-lattice models. The same applies to Lewbel (2003), which focuses on the estimation of

thresholds only.

The approach in Chen and Khan (2003) for univariate ordered response models estimates the

index parameter subject to a normalization restriction.18 This approach extends to multivariate

lattice models by considering each dimension individually. However, their approach does not

immediately generalize to all parameters of non-lattice models without additional assumptions.

This is because the equality

P
(
Y (1) = y

(1)
j1
, Y (2) = y

(2)
j2
| x1, x2

)
= P

(
Y (1) = y

(1)
1 , Y (2) = y

(2)
1 | x̃1, x̃2

)
only implies that x̃dβd = xdβd if and only if x−d remains fixed, for d = 1, 2. Hence, with reference

to the discussion in 5.2, the method in Chen and Khan (2003) only estimates parameters on

exclusive regressors.

Combining the ideas of pairwise differences (Honoré and Powell, 2005) and maximum rank

correlation (MRC) estimation (Han, 1987) will deliver estimates of the parameters βd,1:Ld corre-

18Their exposition covers the more general case of heteroskedastic errors and therefore applies to homoskedastic
models as well.
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sponding to exclusive covariates. Pairwise differencing ensures that when we analyze dimension

d, we only look at the cases when non-exclusive covariates xd,Ld+1:kd in dimension d and all

other covariates x`, ` 6= d are close. The use of maximum rank correlation follows the result and

proof of Theorem 3. The proof of that theorem shows that the distribution of Y (d) conditional

on (x1, . . . , xd,1:Ld , xd,Ld+1:kd , . . . , xD) first order stochastically dominates the distribution of of

Y (d) conditional on (x1, . . . , x̃d,1:Ld , xd,Ld+1:kd , . . . , xD) if and only if xd,1:Ldβd,1:Ld > x̃d,1:Ldβd,1:Ld .

Resultantly, the estimation method maximizes the objective function given by

Qd(bd,1:Ld) =
N∑
i=1

∑
j>i

1
(
Y (d)(i) > Y (d)(j)

)
1
(
x

(i)
d,1:Ld

bd,1:Ld > x
(j)
d,1:Ld

bd,1:Ld

)
Kd;Hd

(
∆(i),(j)

)
∆(i),(j) =

(
x

(i)
1 − x

(j)
1 , . . . , x

(i)
d−1 − x

(j)
d−1, x

(i)
d,Ld+1:kd

− x(j)
d,Ld+1:kd

, x
(i)
d+1 − x

(j)
d+1, . . . , x

(i)
D − x

(j)
D

)
.

The term Kd;Hd extracts with a reasonable weight only those i and j whose observa-

tions (x
(i)
1 , . . . , x

(i)
d,Ld+1:kd

, . . . , x
(i)
D ) and (x

(j)
1 , . . . , x

(j)
d,Ld+1:kd

, . . . , x
(j)
D ) are sufficiently close to each

other.19 More formally,Kd;Hd(z) = |Hd|−1/2Kd(Hd
−1/2z), withKd being a

∑
` 6=d k`+kd−Ld-variate

kernel, and Hd being the symmetric and positive definite bandwidth (
∑

` 6=d k`)× (
∑

` 6=d k`) ma-

trix. The maximization of Qd(bd,1:Ld) with respect to bd,1:Ld consistently estimates all βd,1:Ld .
20

Instead of the MRC estimator, we could incorporate other estimators used in single-index models.

7.2 Parametric estimation

To fix ideas, we discuss parametric probit estimation in the bivariate case (D = 2), noting

that extensions to other parametric distributions are straightforward.21 Thus, we suppose that

Assumption 5 holds for D = 2 so that (ε1, ε2) are independent of (x1, x2) and ε1

ε2

 ∼ N
 0

0

 ,

 1 ρ

ρ 1

 . (11)

To start, we introduce some notation. Let α stack α
(d)
j1,j2

for jd = 1, . . . ,Md − 1 and d = 1, 2.

Define the full set of parameters to estimate as θ = (β′1, β
′
2, α

′, ρ)′. Finally, set the extreme values

19This is the idea of Honoré and Powell (2005)
20The consistency property of the MRC estimator follows from the first-order stochastic dominance relationship

mentioned above.
21The choice of other parametric distributions may require different normalization restrictions.
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of the thresholds: α
(1)
M1,j2

= α
(2)
j1,M2

= +∞ and α
(1)
0,j2

= α
(2)
j1,0

= −∞.

Then, given a random sample
{

(y(1)(i), y(2)(i), x
(i)
1 , x

(i)
2 )
}N
i=1

the unconstrained log-likelihood func-

tion is

L(θ) =
1

N

N∑
i=1

M1∑
j1=1

M2∑
j2=1
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]

log(`
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`(i) is equal to `
(i)
j1,j2

if and only if (y(1)(i), y(2)(i)) = (y
(1)
j1
, y

(2)
j2

), and Φ2(·, ·; ρ) denotes the standard

bivariate normal c.d.f. with correlation parameter ρ.

The constrained maximum likelihood estimator (MLE) θ̂ solves the optimisation problem

max
θ
L(θ) subject to r(θ) = 0

where r(θ) stacks the local hierarchical constraints in (5). These constraints are differentiable

and so under the typical MLE regularity conditions (Newey and McFadden, 1994), θ̂ is consistent

and satisfies
√
N(θ̂ − θ0)

d−→ N (0, V ),

where V = BJB′,

J = E
[
∂ log(`(i))

∂θ

∂ log(`(i))

∂θ′

]
,

B = J−1 − J−1R′(RJ−1R′)−1RJ−1,

and R =
∂r(θ0)

∂θ′
. The natural plug-in sample-analogue estimators of J and R provide consistent

estimators for the variance-covariance matrix.

Computationally, we found advantages in incorporating the constraints through the penalty term

as given in (10). Further, iterative estimation procedures which alternate between estimating

thresholds α and separately (β, ρ) via concentrated likelihood may aid in cases with a particularly

complex non-lattice structure.
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8 Monte Carlo experiments

Now we turn to Monte Carlo simulations. We focus on the parametric case with normal errors

as described in section 6 and compare the performance of the newly proposed estimator in 7.2

to the standard bivariate ordered probit estimator (that is, the estimator of the lattice model

under normal errors). The baseline model across all simulations is

Y ∗c1 = xβ1 + w1γ1 + ε1

Y ∗c2 = xβ2 + w2γ2 + ε2,

and the unobservables are independent of regressors and jointly normal, as given in (11). This

form of a baseline model allows us to differentiate between exclusive and non-exclusive covariates

explicitly. We aim to illustrate estimation in different scenarios, such as those with no exclusive

covariates (γ1 = γ2 = 0) and those with an exclusive covariate in just one latent process. There

are two main takeaways from this section. First, in the given parametric model, parameters

of a non-lattice model may be identified even without exclusive covariates. Second, estimating

lattice models instead of non-lattice ones may ignore the broad bracketing nature of the deci-

sion process and result in inconsistent estimators of all model parameters. Our simulations and

empirical applications show settings in which, for example, we expect a positive correlation be-

tween unobservables but estimating a lattice structure delivers a statistically significant negative

correlation. The degree of inconsistency in β parameters depends on how well a lattice model

approximates the true non-lattice one. In some situations, therefore, the degree of inconsistency

of such parameters is mild, whereas in other cases, it is more severe.

For each simulation design, we estimate the parameters on 250 independent random samples.

The sample size is 5000 and the penalty term in (10) is set equal to N . Unreported results from

alternative choices of N and λ are quantitatively similar. We discuss two designs in text and

include a third in appendix D.

Design 1: 2×2 structure, no excluded regressors

We start with a simulation investigating whether we can identify parameters in non-lattice probit

models even without exclusion restrictions. To explore this, we set γ1 = γ2 = 0 thus effectively

removing w1 and w2 from the latent equations. We draw the only common regressor x from
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Figure 9: Latent variable space in design 1

(0, 0) (1, 0)

(0, 1) (1, 1)

Y ∗1

Y ∗2

−2

1.5 1

a uniform [−5, 5] distribution. We set β1 = β2 = 1, ρ = 0.33, and create a 2 × 2 non-lattice

structure with thresholds α
(2)
01 = α

(2)
11 = 1 along with α

(1)
10 = −2 and α

(1)
11 = 1.5. We show the

structure in Figure 9.

Table 1 lists the across-simulation means and standard deviations of all parameter estimates.

Table 1 shows that the new non-lattice estimation method estimates all parameters with minimal

bias. In this case, as we intuitively expect, the bivariate lattice ordered probit method is able

to estimate β1 and the threshold in the first dimension reasonably well, but performs poorly in

estimating β2, ρ, and the threshold in the second dimension. The estimates for ρ are less precise

relative to designs 2 and 3 because of the lack of excluded regressors.
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Table 1: Simulation results design 1

Parameter Truth Non-lattice model Lattice model

β1 1 1.00 (0.03) 0.77 (0.019)

β2 0.5 0.50 (0.02) 0.00 (0.01)

ρ 0.33 0.33 (0.12) -0.93 (0.02)

α
(2)
11 1

1.00 (0.04)
0.72 (0.04)

1.00 (0.04)

α
(1)
10 -2 -1.99 (0.07)

-0.42 (0.02)
α

(1)
11 1.5 1.50 (0.08)

Notes: Table 1 reports the sample mean and sample standard deviations (in parentheses)

of the estimates of the design 1 parameters, over 250 repeated samples. The “Nonlattice

model” column provide estimates from using the newly proposed nonlattice bivariate ordered

probit model. The “Lattice model” column assumes a lattice structure, but estimates the two

equations jointly.

Design 2: 4×3 with one excluded covariate

In the second simulation design, we extend the number of discrete values Md in both dimensions.

The discrete dependent variable Y c1 can take four values and Y c2 can take three values. This

generates a 4×3 non-lattice structure, illustrated in Figure 25. The common covariate x follows

a uniform [−3, 3] distribution. The covariate w1 is a discrete random variable taking values -2.5,

-1.5, -0.5 and 0.5 with equal probability 0.25. We set γ2 = 0 thus effectively removing w2 in the

second equation.

The parameter values are β1 = 1.5, γ1 = −4, β2 = 3 and ρ = 0.5. Table 2 lists the across-

simulation means and standard deviations of the index parameters and the correlation coefficient.

Table 3 in appendix D provides the values of the thresholds, together with their estimated means

and standard deviations. The newly proposed method estimates all the parameters with almost

no bias. On the contrary, the bivariate lattice ordered probit method estimates the parameters

with relatively large bias. The mean squared error of the newly proposed method is far lower than

the lattice bivariate probit method for all of the parameters. Assuming a lattice structure makes

estimating the correlation parameter ρ decidedly difficult, with the method failing to estimate

the correct sign for ρ, let alone an approximately close value.
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Table 2: Simulation results design 2

Parameter Truth Non-lattice model Lattice model

β1 1.5 1.50 (0.04) 0.61 (0.01)

γ1 -4 -4.01 (0.09) -2.51 (0.04)

β2 3 2.99 (0.10) 1.64 (0.03)

ρ 0.5 0.50 (0.06) -0.60 (0.03)

Notes: Table 2 reports the sample mean and sample standard deviations (in parentheses) of

the estimates of the model parameters, over 250 repeated samples. See the notes in table 1

for further details about the columns.

Additional simulation designs are in Appendix D.

9 Applications

We finish the paper with empirical examples of non-lattice models. We use data from the Survey

of Consumer Payment Choice (SCPC) (Foster, Greene, and Stavins, 2021).22 The Federal Re-

serve Banks of Atlanta, Boston and San Francisco run the SCPC every October. It is designed

primarily to elicit information on American citizens’ adoption of various payment instruments.

For example, it has recently focused on the vast increase in online and mobile payment methods

relative to cash and check payments resulting from the COVID-19 pandemic.

We collect a sample of just over 4,600 surveyed individuals between 2015 and 2020. For these

individuals, the survey contains information on their demographics (income, age, gender, and

education) and their adoption of various payment choice methods such as credit cards, cryptocur-

rency and online/mobile payment devices such as Google Pay and PayPal. Individuals report

their opinions on the safety, convenience, and cost of various payment methods such as cash,

checks, credit and debit cards, and prepaid cards. Finally, individuals report their exposure to

fraud, their FICO score bucket, and their role in organizing finances for their household. Foster,

Greene, and Stavins (2021) provide further details on the most recent wave of the survey.

We focus on two models: the first investigates the relationship between exposure to identity theft

22Other research has used the survey, including Benetton and Compiani (2022) and Kahn and Linares Zegarra
(2016)
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Figure 10: Estimates from the identity theft example, assuming a lattice model

Y ∗Fraud

Y ∗Cash

0.42(0.07)

−0.15(0.06)

0.29(0.06)

0.64(0.06)

1.04(0.06)

and opinions on the security of various payment instruments; the second studies the joint decision

structures of familiarity with cryptocurrencies and opinion on the value of bitcoin. Appendix D

contains another empirical application which studies broad versus narrow bracketing in online

payment instrument choice.

We adopt parametric approaches for all three models, assuming that error terms are jointly

standard normal with unknown correlation to be estimated.

9.1 Identity theft and opinions on cash

First, we illustrate the use of non-lattice models without reference to bracketing. For Y 1, we

use a dummy variable equal to one if the respondent knows anyone—themselves included—who

was a victim of identity theft. For Y 2, we use an ordered variable representing the individual’s

opinion on the security of using cash as a payment method.23 This variable can take five values

ranging from 1 to 5. The answer 1 corresponds to the opinion that cash is a very risky payment

instrument, and 5 to the belief that cash is very secure. The covariate vectors x1 and x2 in both

processes are identical, containing demographics including dummies for low household income,

low education status, (non)male gender and a continuous variable representing age.24

23See Kahn and Linares Zegarra (2016) for a detailed analysis of the relationship between identity theft and
payment methods assuming lattice models.

24More specifically, low income is 1 if annual household income falls below $50,000, and low education is
1 if the individual did not attend college.
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Figure 11: Estimates from the identity theft example, assuming a non-lattice model

Y ∗Fraud

Y ∗Cash

0.19(0.23)

1.01(0.53)

−0.30(0.19)

0.08(0.30)
0.17(0.15)

0.43(0.23)

0.66(0.28)

1.00(0.43)
1.19(0.40)

Table 6 in Appendix D presents estimates of β and ρ. The lattice model implies that lower-

income and lower-education individuals are more likely to witness identity theft than the non-

lattice model. Otherwise, the β coefficients are similar across lattice and non-lattice models. The

thresholds in the non-lattice model, as shown in Figure 11, imply that individuals who have

been a victim of identity theft have higher thresholds for low values of the cash security variable.

This means that victims of identity theft are more likely to think that cash is a safe payment

instrument relative to other options such as credit or debit cards. The thresholds also imply

that individuals who have a strong opinion in favor of cash have a higher threshold to be a

victim of identity theft. Lattice models impose that the thresholds that shape beliefs on cash as

a payment method do not have any relationship with individuals’ previous exposure to identity

theft. In the absence of this relationship, it is unsurprising that the lattice model estimates a

negative correlation coefficient (-0.04) compared to the positive coefficient (0.48) estimated in

the non-lattice model.

9.2 Cryptocurrency Familiarity and Optimism

In the second application we consider whether the decision structure for opinions on the future

value of bitcoin is interdependent with the decision structure on the level of familiarity with

cryptocurrencies. In particular, we run the same style of models as above, except with Y 1 as

an ordered variable representing familiarity with bitcoin. This variable can take four values: -1

if the individual is not at all familiar with bitcoin, 0 if the individual is slightly familiar, 1 if
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the individual is somewhat familiar and 2 if the individual is either moderately or extremely

familiar.25 For Y 2, we use an ordered variable that reflects opinion on the value of bitcoin in one

year. The variable takes the values -1 if the individual believes bitcoin will decrease in value, 0 if

the individual believes it will stay the same and 1 if the individual believes its value will increase.

Table 7 in Appendix D presents the estimates of β and ρ. The value of ρ ranges from 0.03 in

the lattice model to 0.84 in the non-lattice model. The coefficients are also markedly different,

with most coefficients differing more than 20% in relative magnitude and the coefficient on

male differing in sign. The lattice model estimates a negative coefficient on male in the opinion

equation. A negative coefficient means that, conditional on other covariates, males are more likely

to believe that the value of bitcoin will decrease relative to non-males, implying pessimism.26

The non-lattice model reverses this, finding what many expect to be more likely: that males are

more bullish than non-males on the future value of bitcoin.

Figure 12: Estimates from cryptocurrency example, assuming a lattice model

Y ∗Familiarity

Y ∗Opinion

−0.60(0.11)0.36(0.11) 0.94(0.11)

−0.90(0.11)

0.26(0.10)

Finally, our interest turns to the estimation of the thresholds, in particular in the non-lattice

model. Figures 12 and 13 illustrate the estimated thresholds in lattice and non-lattice models

respectively. The lattice model forces that the thresholds—which determine opinion on the future

25We combine moderate and extremely familiar because only a few individuals reported that they were ex-
tremely familiar with bitcoin.

26This coefficient is, admittedly, rather imprecisely estimated.
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value of bitcoin—do not change with the individual’s familiarity with bitcoin. The non-lattice

model, not forced to employ this rigid structure, finds a wide range (blue dots) in the lattice

space representing “no change in value” for individuals with little familiarity with bitcoin. This

result seems reasonable, and in fact, one would expect the default position of someone with little

understanding of bitcoin to be that its value would remain roughly the same. On the other hand,

for those with particular familiarity with bitcoin, there is a small region (red crosshatch) in the

lattice space representing “no change in value”. Individuals with a familiarity of bitcoin are more

likely to take a stance on the future value of bitcoin, be it a positive or a negative one.

Figure 13: Estimates from cryptocurrency example when assuming a non-lattice model.

Y ∗Familiarity

Y ∗Opinion

−0.92(0.11)

0.11(0.14)

−0.35(0.13)

−0.10(0.13)

0.84(0.11)

0.18(0.16)

1.29(0.12)

−1.59 (0.11)

−0.41 (0.11)

−0.14 (0.11)
0.06 (0.10)

10 Conclusion

This paper introduces a general model of multivariate ordered discrete response, with a focus

on lattice, non-lattice, and hierarchical classes. We give formal identification results in the semi-

parametric case and offer estimation approaches for semiparametric and parametric formulations.

Several extensions warrant investigation. For example, future work can relax the homoskedas-

ticity assumption or consider median independence of unobservables, which may suit a partial

identification approach. We also encourage an extensive analysis of the generalizability of existing

38



univariate lattice semiparamteric methods to non-lattice models. Finally, there are opportunities

for empirical applications of non-lattice models in cases where lattice models are inappropriate

and, perhaps more interestingly, in other settings where the degree of broad/narrow bracketing

is not obvious prima facie.
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Thakral, N. and L. T. Tô (2021): “Daily Labor Supply and Adaptive Reference Points,”

American Economic Review, 111, 2417–43.

Thaler, R. H. (1999): “Mental accounting matters,” Journal of Behavioral Decision Making,

12, 183–206.

Tversky, A. and D. Kahneman (1981): “The Framing of Decisions and the Psychology of

Choice,” Science, 211, 453–458.

43



Wang, X. and S. Chen (2022): “Partial Identification and Estimation of Semiparametric

Ordered Response Models with Interval Regressor Data,” Oxford Bulletin of Economics and

Statistics, 84, 830–849.

Zhang, M. (2021): “A Theory of Choice Bracketing under Risk,” Working Paper.

A Coherency

Even though coherency is usually only a concern in strategic interaction settings, which we do not

consider, we discuss it because coherency is employs in our identification strategy and, for a more

practical perspective, coherency constraints need to be imposed in estimation. Throughout this

discussion, we consider a general non-lattice model with discrete responses {(y(1)
j1
, . . . , y

(D)
jD

)}, jd =

1, . . . ,Md, d = 1, . . . , D, a set of thresholds α
(d)
j1,...,jd−1,jd,jd+1,...,jD

, jd = 1, . . . ,Md, d = 1, . . . , D,

and normalization constraints (2) and (3).

By coherency of the model with the given set of thresholds in the latent space we mean that

rectangles Rj1,...,jD defined in (1) form a partition of RD – that is, they are mutually exclusive

and give the whole RD in the union. By coherency of the model in the observable probabilities

we means that the sum of probabilities of all discrete responses (y
(1)
j1
, . . . , y

(D)
jD

) conditional on

observables is equal to one.

The question is under what conditions the coherency of the model in observable probabilities

translates into the coherency in the latent space. We are interested in generic coherency in

the latent space. If O denotes observables in the model, then by the model being generically

coherent in the latent space we mean that the coherency has to hold for any set of
∏D

d=1 Md

observable choice probabilities P
(
∩Dd=1(Y cd = y

(d)
jd

) | O
)

, jd = 1, . . . ,Md, d = 1, . . . , D, which are

non-negative and sum up to one.

We consider the cases of D = 2 and D = 3 in turn.

A.1 Bivariate case

Theorem 7 If D = 2, a non-lattice model with given discrete responses and a given set of

thresholds is generically coherent in the latent space if and only if it is locally hierarchical.
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Figure 14: Potential violations of coherency.

Panel 1 Panel 2 Panel 3

Notes: Violation of coherency in Panel 1 is ruled out by the thresholds structure in (1). Violations
of coherency in Panels 2 and 3 are not immediately ruled out by (1).

Proof of Theorem 7. Before we proceed to proving sufficiency and necessity directions, we note

that the structure of our model captured in the definition of rectangles Rj1,j2 already imposes

certain restrictions on the ways coherency in the latent space may be violated. For example, the

coherency violation in Panel 1 in Figure 14 is eliminated by the definition of the rectangles Rj1,j2

in (1) but the coherency violations in Panels 2 and 3 are not.

Sufficiency. Suppose the model is locally hierarchical. This means that each local decision model

is hierarchical. The recursive definition of hierarchical models implies that in the local decision

model, conditional on a subset in R2, we are dealing with a partitioning of that subset into 22

regions. The local model given in Definition 4 and which only looks at 22 adjacent responses

(y
(1)
j1+`1

, y
(2)
j2+`2

), `d ∈ {0, 1}, d = 1, 2, is the only local model that involves thresholds α
(d)
j1,j2

for

both d = 1, 2, for this particular j1, j2. Considering all local models, at every step we will find

coherency associated with rectangles surrounding each node
(
α

(1)
j1,j2

, α
(2)
j1,j2

)
. From this we are

able to make a conclusion about the coherency of the whole model.

Necessity. Now consider a coherent model. Suppose it is not locally hierarchical. This means

that there is a local decision model which is not hierarchical, and this holds for any realization

of observed choice probabilities P
(
∩2
d=1(Y cd = y

(d)
jd

) | O
)

, jd = 1, . . . ,Md, d = 1, 2, which are

non-negative and sum up to 1.

We can focus on the 2 × 2 local decision model of choosing among responses (y
(1)
j1+`1

, y
(2)
j2+`2

),

`d ∈ {0, 1}, d = 1, 2, and the coherency condition for this local problem can be written explicitly

in the form

(α
(1)
j1,j2
− α(1)

j1,j2+1)(α
(2)
j1,j2
− α(2)

j1+1,j2
) = 0.

45



Suppose this condition is violated. Suppose, for example, that α
(1)
j1,j2

< α
(1)
j1,j2+1, α

(2)
j1,j2

< α
(2)
j1+1,j2

.

Then the rectangles for regions (j1, j2 + 1) and (j1 + 1, j2) have an intersection with a non-empty

interior (α
(1)
j1,j2+1 − α

(1)
j1,j2

) × (α
(2)
j1+1,j2

− α(2)
j1,j2

) ⊂ R2, which violates coherency when all observed

conditional decision probabilities are strictly positive. If α
(1)
j1,j2

> α
(1)
j1,j2+1, α

(2)
j1,j2

> α
(2)
j1+1,j2

, then

the rectangles for regions (j1, j2) and (j1+1, j2+1) have an intersection with a non-empty interior

(α
(1)
j1,j2
− α

(1)
j1,j2+1) × (α

(2)
j1,j2
− α

(2)
j1+1,j2

) ⊂ R2, which once again violates coherency when all ob-

served conditional decision probabilities are strictly positive. If α
(1)
j1,j2

< α
(1)
j1,j2+1, α

(2)
j1,j2

> α
(2)
j1+1,j2

,

then the region (α
(1)
j1,j2+1 − α

(1)
j1,j2

)× (α
(2)
j1,j2
− α(2)

j1+1,j2
) does not belong to any decision rectangles

Rj1+`1,j2+`2 , `1, `2 ∈ {0, 1}. This contradicts coherency when the distribution of (Y ∗c1 , Y ∗c2) | O
has R2 as the support, implying that the sum of all conditional probabilities of choice has to be

strictly less than 1. The case of α
(1)
j1,j2

> α
(1)
j1,j2+1, α

(2)
j1,j2

< α
(2)
j1+1,j2

is analogous to the last case

just described. �

The sufficiency proof in Theorem 7 can be easily suitably extended to any D ≥ 2 thus giving

the result that a model being locally hierarchical implies coherency.

A.2 Trivariate case

Next, we consider the case D = 3. In this case the property of being locally hierarchical is

a sufficient condition but not a necessary one, as will be evident from the discussion below.

Resultantly, coherent decision making has a more complicated characterization to that in case

D = 2.

To see what other situations beyond being locally hierarchical are possible in D = 3, consider

a local model deciding among responses (y
(1)
j1+`1

, y
(2)
j2+`2

, y
(3)
j3+`3

), `d ∈ {0, 1}, d = 1, 2, 3. Suppose

this local model is not hierarchical. If the first stage in the definition of the hierarchical model

for this local model goes through but the second or a later stage breaks down it means we are

in effectively the situation when local hierarchical is violated for D = 2 and we have already

obtained a contradiction for that case. Thus, it makes sense to consider only cases when the

definition of hierarchical breaks down at the first step. In other words, for dimension d = 3

thresholds α
(3)
j1+`1,j2+`2,j3

are not invariant to `1, `2 ∈ {0, 1}, and analogous conclusions can be

made for d = 1, 2. Continue to take d = 3. Among four thresholds α
(3)
j1+`1,j2+`2,j3

, `d ∈ {0, 1},
there is a highest one.

Situation 1. Consider a situation when there are exactly two highest among these four thresholds.
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Let these two highest thresholds correspond to two adjacent orthants – without a loss of

generality Rj1+1,j2,j3+1 and Rj1+1,j2+1,j3+1 (corresponding to decisions (y
(1)
j1+1, y

(2)
j2
, y

(3)
j3+1) and

(y
(1)
j1+1, y

(2)
j2+1, y

(3)
j3+1), respectively).

a) If in dimension 1 thresholds α
(1)
j1,j2,j3+1 and α

(1)
j1,j2+1,j3+1 are the same, then to ensure co-

herency of the local model thresholds in dimension 1 have to remain the same when we

“move down” in dimension 3 and consider orthants Rj1+1,j2,j3 and Rj1+1,j2+1,j3 correspond-

ing to decisions (y
(1)
j1+1, y

(2)
j2
, y

(3)
j3

) and (y
(1)
j1+1, y

(2)
j2+1, y

(3)
j3

), respectively (easy to indicate a

contradiction otherwise). This gives the independence of the threshold α
(1)
j1,j2+`2,j3+`3

from

(`2, `3) implying that for our local model the first step in the definition of the hierarchical

model goes through. This contradicts our supposition.

b) If α
(1)
j1,j2,j3+1 and α

(1)
j1,j2+1,j3+1 are different, then to ensure coherency in dimensions 1 and

2 when the response in the third dimension remains fixed as y
(3)
j3+1, it has to hold that

α
(2)
j1,j2,j3+1 = α

(2)
j1+1,j2,j3+1. But then the fact that there are two highest thresholds implies

that α
(2)
j1,j2,j3

= α
(2)
j1+1,j2,j3

= α
(2)
j1,j2,j3+1 = α

(2)
j1+1,j2,j3+1 – that is, the thresholds in dimension

2 remain the same when we “move down” in dimension 3 and consider orthants Rj1+1,j2,j3

and Rj1+1,j2+1,j3 . This gives the independence of the threshold α
(2)
j1+`1,j2,j3+`3

from j1 and j3

implying that for our local model the first step in the definition of the hierarchical model

goes through. This contradicts our supposition.

If these two highest thresholds correspond to two non-adjacent orthants, then (analogously to a)

and b) above) the condition that ensures coherency in dimensions 1 and 2 when the response in

dimension 3 is fixed as y
(3)
j3+1 has to continue to hold when the response in dimension 3 is fixed as

y
(3)
j3

. This will lead to us showing that the first step in the recursive definition of the hierarchical

model for our local model goes through.

Situation 2. Next, consider a situation when the highest threshold among α
(3)
j1+`1,j2+`2,j3

, `d ∈
{0, 1}, is strictly greater than the other three. Without a loss of generality suppose it is associated

with `1 = 0, `2 = 0 (in other words, it is associated with responses y
(1)
j1

and y
(2)
j2

in the first two

dimensions). Then the coherency of the model (when we “move up” from the orthant Rj1,j2,j3 to

Rj1,j2,j3+1) implies that

α
(1)
j1,j2,j3

= α
(1)
j1,j2,j3+1, α

(2)
j1,j2,j3

= α
(2)
j1,j2,j3+1. (12)

47



Fixing response y
(3)
j3

in the third dimension, from the case D = 2 we conclude that due to

coherency in the projection on that case,

(α
(1)
j1,j2+1,j3

− α(1)
j1,j2,j3

)(α
(2)
j1+1,j2,j3

− α(2)
j1,j2,j3

) = 0. (13)

Fixing response y
(3)
j3+1 in the third dimension, from the case D = 2 we conclude that due to

coherency in the projection on that case,

(α
(1)
j1,j2+1,j3+1 − α

(1)
j1,j2,j3+1)(α

(2)
j1+1,j2,j3+1 − α

(2)
j1,j2,j3+1) = 0. (14)

First, consider a subcase when (13) and (14) are guaranteed by equalities of thresholds in the

same dimensions – for concreteness, suppose that

α
(1)
j1,j2+1,j3

− α(1)
j1,j2,j3

= 0, α
(1)
j1,j2+1,j3+1 − α

(1)
j1,j2,j3+1 = 0,

then also taking into account (12), one can easily conclude that

α
(1)
j1,j2+1,j3+1 = α

(1)
j1,j2+1,j3

= α
(1)
j1,j2,j3+1 = α

(1)
j1,j2,j3

,

which means that the first step in the recursive definition of the hierarchical model can indeed be

applied to our local model by considering dimension 1. This contradicts our earlier supposition

about the recursive definition breaking down at the first step.

Second, consider a subcase when (13) and (14) are guaranteed by equalities of thresholds in

different dimensions – for concreteness, suppose that

α
(1)
j1,j2+1,j3

− α(1)
j1,j2,j3

= 0, α
(1)
j1,j2+1,j3+1 − α

(1)
j1,j2,j3+1 6= 0,

α
(2)
j1+1,j2,j3

− α(2)
j1,j2,j3

6= 0, α
(2)
j1+1,j2,j3+1 − α

(2)
j1,j2,j3+1 = 0.

Also taking into account (12) we have

α
(1)
j1,j2,j3

= α
(1)
j1,j2+1,j3

= α
(1)
j1,j2,j3+1 6= α

(1)
j1,j2+1,j3+1, α

(2)
j1,j2,j3

= α
(2)
j1+1,j2,j3+1 = α

(2)
j1,j2,j3+1 6= α

(2)
j1+1,j2,j3

.

Thus, the characterizations we obtain here describe coherent decision structures which are not

locally hierarchical. There are several potential ways to interpret them. One interpretation is that

when taking a local problem and any two dimensions our of three, say dimensions d1 and d2,
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there is a response (y
(d1)
jd1+`d1

, y
(d2)
jd2+`d2

) such that the binary decision of choosing that response in

dimensions d1 and d2 is independent of the realization of the latent utility in the third dimension

d3. Another, perhaps more technical interpretation is that when taking a local problem and

focusing on any dimensions (d1, d2) there are only two different two-dimensional non-lattice

structures whenever we take the latent utility value in the third dimension as given – this is

something violated in the local hierarchical models.

Situation 3. A situation when there are three highest thresholds among α
(3)
j1+`1,j2+`2,j3

, `d ∈ {0, 1},
is isomorphic to Situation 2 and we can consider it analogously by considering one lowest thresh-

old among those.

Thus, as we can see, coherent structures in dimensions D ≥ 3 strictly nest local hierarchical struc-

tures, thus, permitting richer decision making structures. A more practical question is how to

characterize them through mathematical relations involving thresholds that can be directly taken

to an estimation procedure. To characterize coherency, we once again focus on each local prob-

lem of choosing among 23 discrete responses (y
(1)
j1+`1

, y
(2)
j2+`2

, y
(3)
j3+`3

), `d ∈ {0, 1}, d = 1, 2, 3. Each

choice corresponds to a 3-dimensional rectangle which has three non-infinite sides and three infi-

nite ones (due to locality, we disregard other choices). Naturally, we can refer to such rectangles

as orthants. Among these 23 orthants we consider 22 pairs of “opposite” orthants. By “opposite”

orthants we understand orthants corresponding to discrete response (y
(1)
j1+`1

, y
(2)
j2+`2

, y
(3)
j3+`3

) and

(y
(1)
j1+1−`1 , y

(2)
j2+1−`2 , y

(3)
j3+1−`3) for given (`1, `2, `3) ∈ {0, 1}3. For concreteness, take “opposite” or-

thants corresponding to (y
(1)
j1
, y

(2)
j2
, y

(3)
j3

) and (y
(1)
j1+1, y

(2)
j2+1, y

(3)
j3+1). There orthants are, respectively,

×3
d=1(−∞, α(d)

j1,j2,j3
] and (α

(1)
j1,j2+1,j3+1,+∞) × (α

(2)
j1+1,j2,j3+1,+∞) × (α

(3)
j1+1,j2+1,j3

,+∞). A part of

coherency requirement is that in at least one dimension the non-infinite thresholds for these two

orthants have to be the same – that is,

(
α

(1)
j1,j2,j3

− α(1)
j1,j2+1,j3+1

)
·
(
α

(2)
j1,j2,j3

− α(2)
j1+1,j2,j3+1

)
·
(
α

(3)
j1,j2,j3

− α(3)
j1+1,j2+1,j3

)
= 0. (15)

An analogous requirement would apply to the other three pairs of “opposite” orthants. Thus,

additionally we will require

(
α

(1)
j1,j2,j3+1 − α

(1)
j1,j2+1,j3

)
·
(
α

(2)
j1,j2,j3+1 − α

(2)
j1+1,j2,j3

)
·
(
α

(3)
j1,j2,j3

− α(3)
j1+1,j2+1,j3

)
= 0 (16)
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(when considering orthants for (y
(1)
j1
, y

(2)
j2
, y

(3)
j3+1) and (y

(1)
j1+1, y

(2)
j2+1, y

(3)
j3

));

(
α

(1)
j1,j2+1,j3

− α(1)
j1,j2,j3+1

)
·
(
α

(2)
j1,j2,j3

− α(2)
j1+1,j2,j3+1

)
·
(
α

(3)
j1,j2+1,j3

− α(3)
j1+1,j2,j3

)
= 0 (17)

(when considering orthants for (y
(1)
j1
, y

(2)
j2+1, y

(3)
j3

) and (y
(1)
j1+1, y

(2)
j2
, y

(3)
j3+1)); and

(
α

(1)
j1,j2,j3

− α(1)
j1,j2+1,j3+1

)
·
(
α

(2)
j1+1,j2,j3

− α(2)
j1,j2,j3+1

)
·
(
α

(3)
j1+1,j2,j3

− α(3)
j1,j2+1,j3

)
= 0 (18)

(when considering orthants for (y
(1)
j1+1, y

(2)
j2
, y

(3)
j3

) and (y
(1)
j1
, y

(2)
j2+1, y

(3)
j3+1)). In addition to constraints

(15)-(18), we also impose analogous constraints for two-dimensional rectangles in each of the two

dimensions when the discrete response in the third dimension is fixed. These are, of course, well

familiar coherency constraints from the case D = 2:

(
α

(1)
j1,j2,j3

− α(1)
j1,j2+1,j3

)
·
(
α

(2)
j1+1,j2,j3

− α(2)
j1,j2,j3

)
= 0,(

α
(1)
j1,j2,j3+1 − α

(1)
j1,j2+1,j3+1

)
·
(
α

(2)
j1+1,j2,j3+1 − α

(2)
j1,j2,j3+1

)
= 0 (19)

(in dimensions 1 and 2);

(
α

(3)
j1,j2,j3

− α(3)
j1,j2,j3+1

)
·
(
α

(1)
j1+1,j2,j3

− α(1)
j1,j2,j3

)
= 0,(

α
(3)
j1,j2+1,j3

− α(3)
j1,j2+1,j3+1

)
·
(
α

(1)
j1+1,j2+1,j3

− α(1)
j1,j2+1,j3

)
= 0 (20)

(in dimensions 1 and 3); and

(
α

(3)
j1,j2,j3

− α(3)
j1,j2,j3+1

)
·
(
α

(2)
j1,j2,j3

− α(2)
j1,j2+1,j3

)
= 0,(

α
(3)
j1+1,j2,j3

− α(3)
j1+1,j2,j3+1

)
·
(
α

(2)
j1+1,j2,j3

− α(2)
j1+1,j2+1,j3

)
= 0 (21)

(in dimensions 2 and 3). Thus, for each local problem we have to impose constraints (15)-(21).

Since these constraints when implemented for each local problem are necessary and sufficient

for coherency, they of course incorporate the local hierarchical case as well as the other coherent

cases discussed above.

Cases D > 3 are considered analogously to D = 3.
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B Proofs

We start by introducing some additional notations we will use in some of the proofs.

Additional notations. The survival function of ε is denoted as F :

F (z1, . . . , zD) = P
(
∩Dd=1(εd > zd)

)
.

For the two components of ε – say, εd and εh, notations Fd,h, Fd,h and Fd,h are defined as follows:

Fd,h(zd, zh) = P (εd > zd, εh ≤ zh) ,

Fd,h(zd, zh) = P (εd ≤ zd, εh > zh) ,

Fd,h(zd, zh) = P (εd > zd, εh > zh) .

Analogously, for any subvector (εd1 , . . . , εdS), Fd1,...,dS will dente the c.d.f. of this subvector. When

some indices among subscripts appear with the bar (as ds), this will mean that the event for the

respective εds is the “survival” event {εds > zds}. Thus, for instance,

F1,2,3(z1, z2, z3) = P (ε1 > z1, ε2 ≤ z2, ε3 ≤ z3) ,

F1,2,3(z1, z2, z3) = P (ε1 > z1, ε2 > z2, ε3 ≤ z3) , etc.

B.1 Proof of Theorem 1

Fix a dimension d, d = 1, . . . , D, for which the condition of this theorem holds. Because of the lattice

structure and Assumption 1 we have for any xd ∈ Xd,

P (Y cd ≤ y(d)
j |xd) = Fd

(
α

(d)
j − xdβd

)
, j = 1, . . . ,Md. (22)

Assumption 3 guarantees that P (Y cd ≤ y
(d)
j |xd) will not be degenerate for xd ∈ Sd (in the sense that

it will not take values 0 or 1 only). Relation (22) is the basis of the identification strategy. Strict

monotonicity of c.d.f. Fd automatically gives us that for two xd.x̃d ∈ S(d),

P (Y cd ≤ y(d)
j | x̃d) > P (Y cd ≤ y(d)

j |xd) for some j ⇐⇒ x̃dβd < xdβd.

Thus, the identification is similar to the one in single-index models with a monotone link function (e.g.
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see Manski (1988) for the statistical independence case or Manski (1985) (Lemma 2) for the proof under

large support). Notice that we do not need a large support condition for this result.

Take bd 6= βd (both are normalized in the same way so bd,m(d) = 1 and βd,m(d) = 1). The condition of the

theorem implies that there exists a positive measure of x0
d,−m(d) ∈ S

(d)
−m(d) such that x0

d,−m(d)β−m(d) 6=

x0
d,−m(d)b−m(d). Without a loss of generality suppose that x0

d,−m(d)β−m(d) > x0
d,−m(d)b−m(d). For any

x0
d,m(d) that complements x0

d,−m(d) to a point in S(d) we clearly have x0
d,m(d) +x0

d,−m(d)β−m(d) > x0
d,m(d) +

x0
d,−m(d)b−m(d). We can take x0

d,m(d) ∈ (xd,m(d), xd,m(d)).

Due to the continuity of the regressor xd,m(d) on (xd,m(d), xd,m(d)), one can find x̃0
d,m(d) slightly different

from x0
d,m(d) such that (x̃0

d,m(d), x
0
d,−m(d)) ∈ S

(d) and

x0
d,m(d) + x0

d,−m(d)βd,−m(d)

(∗)
> x̃0

d,m(d) + x0
d,−m(d)βd,−m(d)

(∗∗)
> x0

d,m(d) + x0
d,−m(d)bd,−m(d)

If b and β were both consistent with the observables, we would have from the inequality (*) that

P
(
Y cd ≤ y(d)

j | (x
0
d,m(d), x

0
d,−m(d))

)
< P

(
Y cd ≤ y(d)

j | (x̃
0
d,m(d), x

0
d,−m(d))

)
, (23)

and from inequality (**) that

P
(
Y cd ≤ y(d)

j | (x̃
0
d,m(d), x

0
d,−m(d))

)
< P

(
Y cd ≤ y(d)

j | (x
0
d,m(d), x

0
d,−m(d))

)
. (24)

Inequalities (23) and (24) give a contradiction for the probability on the left-hand side of (23). This

contradiction is obtained for a positive measure of (x0
d,m(d), x

0
d,−m(d))). This implies that βd is identified

relative to bd. �

B.2 Proof of Theorem 2

Fix a dimension d, d = 1, . . . , D, for which the condition of this theorem holds. Also fix j = 1, . . . ,Md−1.

Then because of the large support conditions in the theorem one can find two different values x ∈ S(d;j)

and x̃ ∈ S(d;j+1) such that

Fd

(
α

(d)
j − xdβd

)
= Fd

(
α

(d)
j+1 − x̃dβd

)
.

In terms of observables this can described as finding x ∈ S(d;j) and x̃ ∈ S(d;j+1) such that P (Y cd ≤

y
(d)
j |xd) and P (Y cd ≤ y

(d)
j+1 | x̃d) are strictly between 0 and 1. Using the convexity of the support of εd
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in Assumption 1 and, thus, strict monotonicity of Fd in the interior, we conclude right away that

α
(d)
j+1 − α

(d)
j = x̃dβd − xdβd.

Since βd is already identified by Theorem 1, we immediately conclude that α
(d)
j+1 − α

(d)
j is identified for

any j = 1, . . . ,Md − 1. �

B.3 Proof of Theorem 3.

We start by fixing d = 1, . . . , D, and analyzing the marginal probability P (Y cd ≤ y
(d)
j |x) for some

j = 1, . . . ,Md. For instance, for d = 1 we have

P (Y c1 ≤ y(1)
j |x) =

j∑
j̃=1

M2∑
j2=1

. . .

MD∑
jD=1

P
(

(Y ∗c1 , . . . , Y ∗cD) ∈ Rj̃,j2,...,jD |x
)

=

j∑
j̃=1

M2∑
j2=1

. . .

MD∑
jD=1

P
(

(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃,j2,...,jD |x
)

We first prove the following lemma.

Lemma 1 P (Y c1 ≤ y
(1)
j |x) is non-increasing in x1β1 when other indices x`β`, ` 6= 1, remain fixed,

j = 1, . . . ,M1.

Proof of Lemma 1. To gain some intuition for this, consider first the case of D = 2. In this case,

P (Y c1 ≤ y(1)
1 |x1, x2) =

M2∑
j2=1

P ((x1β1 + ε1, x2β2 + ε2) ∈ R1,j2 |x1.x2)

=

M2∑
j2=1

P (ε1 ≤ α(1)
1,j2
− x1β1, α

(2)
1,j2−1 − x2β2 < ε2 ≤ α(2)

1,j2
− x2β2).

Since α
(2)
1,j2

> α
(2)
1,j2−1 and x2β2 is fixed, then each P (ε1 ≤ α(1)

1,j2
−x1β1, α

(2)
1,j2−1−x2β2 < ε2 ≤ α(2)

1,j2
−x2β2)

is non-increasing in x1β1. Thus, P (Y c1 ≤ y(1)
1 |x1, x2) is non-increasing in x1β1 as well.

The next probability we want to consider is P (Y c1 ≤ y
(1)
2 |x1, x2). Due to the coherency of our model

(and, hence, the partitioning structure in the decision rule) and normalization restrictions (3), we have

that
2⋃
j̃=1

M2⋃
j2=1

Rj̃,j2 =

M2⋃
j2=1

R∗2,j2 ,
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where R∗2,j2 =
(
−∞, α(1)

2,j2

]
×
(
α

(2)
2,j2−1, α

(2)
2,j2

]
. This implies that

P (Y c1 ≤ y(1)
2 |x1, x2) = P

(
(x1β1 + ε1, x2β2 + ε2) ∈ ∪2

j̃=1
∪M2
j2=1 Rj̃,j2 |x1.x2

)
=

M2∑
j2=1

P (ε1 ≤ α(1)
2,j2
− x1β1, α

(2)
2,j2−1 − x2β2 < ε2 ≤ α(2)

2,j2
− x2β2).

Since α
(2)
2,j2

> α
(2)
2,j2−1 for each j2 ≥ 1 and x2β2 is fixed, then each P (ε1 ≤ α(1)

2,j2
− x1β1, α

(2)
2,j2−1 − x2β2 <

ε2 ≤ α(2)
2,j2
− x2β2) is non-increasing in x1β1.

Analogously, we can show that P (Y c1 ≤ y(1)
j |x1, x2) is non-increasing in x1β1 for any j = 1, . . . ,M1.

Let us now consider the case of any D. Once again, let us start with P (Y c1 ≤ y(1)
1 |x):

P (Y c1 ≤ y(1)
1 |x) =

M2∑
j2=1

. . .

MD∑
jD=1

P ((x1β1 + ε1, x2β2 + ε2, . . . , xDβD + εD) ∈ R1,j2,...,jD) =

=

M2∑
j2=1

. . .

MD∑
jD=1

(
F
(
α

(1)
1,j2,...,jD

− x1β1, α
(2)
1,j2,...,jD

− x2β2, . . . , α
(D)
1,j2,...,jD

− xDβD
)

+

+ F
(
−∞, α(2)

1,j2−1,...,jD
− x2β2, . . . , α

(D)
1,j2,...,jD−1 − xDβD

)
− 1
)

(we we remind the readers that F is the joint survival function of (ε1, . . . , εD)), which is clearly non-

increasing in x1β1 when other indices x`β` remain fixed. For any j = 1, . . . ,M1, the partitioning

structure in the decision rule guarantees that

j⋃
j̃=1

M2⋃
j2=1

. . .

MD⋃
jD=1

Rj̃,j2,...,jD =

M2⋃
j2=1

R∗j,j2,...,jD ,

where

R∗j,j2,...,jD =
(
−∞, α(1)

j,j2,...,jD

] D×
d=2

(
α

(d)
j,j2,...,jd−1,jd−1,jd+1,...,jD

, α
(d)
j,j2,...,jd−1,jd,jd+1,...,jD

]
.

In turn, this gives

P (Y c1 ≤ y(1)
j |x) =

M2∑
j2=1

. . .

MD∑
jD=1

P
(
(x1β1 + ε1, x2β2 + ε2, . . . , xDβD + εD) ∈ R∗j,j2,...,jD

)
=

=

M2∑
j2=1

. . .

MD∑
jD=1

(
F
(
α

(1)
j,j2,...,jD

− x1β1, α
(2)
j,j2,...,jD

− x2β2, . . . , α
(D)
j,j2,...,jD

− xDβD
)

+

+ F
(
−∞, α(2)

1,j2−1,...,jD
− x2β2, . . . , α

(D)
1,j2,...,jD−1 − xDβD

)
− 1
)
,
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which is obviously non-increasing in x1β1 when other indices x`β`, ` ≥ 2, remain fixed. �

Now we can rely on the results of Lemma 1 to prove Theorem 3.

For simplicity consider d = 1 and choose j1 such that S
(1)
all (j1) satisfies Assumption 4. Let’s take b ∈ Rk1

such that b1 = 1 (normalization given in the Theorem). If L1 = 1, then the result of the theorem is

already established. Suppose L1 > 1 and b1,2:L1 6= β1,2:L1 . Then

x1,2:L1β1,2:L1 6= x1,2:L1b1,2:L1

for a positive measure of x1,2:L1 that belong to the projection of S
(1)
all (j1) on the last first 2 : L1 covariates

in vector x1 (note that here we do not employ x1,1). Without a loss of generality, suppose that for this

positive measure of x1,2:L1 we have

x1,2:L1β1,2:L1 > x1,2:L1b1,2:L1 . (25)

Now fix any x1,2:L1 that satisfies (25). Then for any x̃1,1 ∈ (x1,1.x1,1), we have

x̃1,1 + x1,2:L1β1,2:L1 > x̃1,1 + x1,2:L1b1,2:L1 .

Because of some continuous variation in x1,1 on (x1,1.x1,1) we can find ˜̃x1,1 ∈ (x1,1.x1,1) such that

x̃1,1 + x1,2:L1β1,2:L1

(a)
> ˜̃x1,1 + x1,2:L1β1,2:L1

(b)
> x̃1,1 + x1,2:L1b1,2:k1 . (26)

Now fix other components in (x1,L1+1:k1 , x2, . . . , xD) such that

(x̃1,1, x1,2:L1 , x1,L1+1:k1 , x2, . . . , xD) ∈ S(1)
all (j1)

for the overall collection of covariates.

Notice that because of x1,1 being exclusive for Y ∗(c1), when we vary x1,1, the values of x2, . . . , xD

remain exactly the same. This means that in the expression for P (Y c1 ≤ y(1)
j |x1, . . . , xD) (see Lemma

1), the values of α
(2)
1,1,...,1 − x2β2, . . . , α

(D)
1,1,...,1 − xDβD remain exactly the same. This means that by

varying x1,1, we can equivalently express the ordering of P (Y c1 ≤ y(1)
j |x1, . . . , xD) with the ordering of

the first argument in x1β1, as established in Lemma 1. Therefore, (a) in (26) implies that

P
(
Y c1 ≤ y(1)

j | (x̃1,1, x1,2:L1 , x2, . . . , xD)
)
< P

(
Y c1 ≤ y(1)

j | (˜̃x1,1, x1,2:L1 , x2, . . . , xD)
)
.
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If we assume that both β and b can generate observable choice probabilities of choice, then (b) in (26)

implies that

P
(
Y c1 ≤ y(1)

j | (˜̃x1,1, x1,2:L1 , x2, . . . , xD)
)
< P

(
Y c1 ≤ y(1)

j | (x̃1,1, x1,2:k1 , x2, . . . , xD)
)
.

Combining the last two inequalities results in an obvious contradiction

P
(
Y c1 ≤ y(1)

j | (x̃1,1, x1,2:L1 , x2, . . . , xD)
)
< P

(
Y c1 ≤ y(1)

j | (x̃1,1, x1,2:L1 , x2, . . . , xD)
)
,

and from our discussion it is clear that this contradiction is obtained for a positive measure of

(x̃1,1, x1,2:L1 , x2, . . . , xD). Therefore, β1,2:L1 is identified relative to any b1,2:L1 6= β1,2:L1 .

The identification of βd,1:Ld (up to normalization βd,1 = 1) for d = 2, . . . , D, is proven analogously. �

B.4 Proof of Theorem 4.

For example, consider d = 1 and analyze the marginal probability P (Y c1 ≤ y
(1)
j1
|x1, . . . , xD) for some

j1 that satisfies Assumption 4. As indicated in the proof of Theorem 3,

P (Y c1 ≤ y(1)
j1
|x) =

j1∑
j̃=1

M2∑
j2=1

. . .

MD∑
jD=1

P
(

(Y ∗c1 , . . . , Y ∗cD) ∈ Rj̃,j2,...,jD |x
)

=

j∑
j̃=1

M2∑
j2=1

. . .

MD∑
jD=1

P
(

(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃,j2,...,jD |x
)

Suppose, for simplicity, that Lp < kp for each p = 2, . . . , D. Then, by the condition of the theorem,

we can take xp,1 → −∞ for p = 2, . . . , D. Since variable xp,1 is exclusive to process p, the value of the

index x1β1 remains the same. If j2 = 1, . . . , jD = 1, then

P
(

(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃,j2,...,jD |x
)
→ F1

(
α

(1)

j̃,1,...,1
− x1β1

)
.

If jp > 1 for some p = 2, . . . , D, then

P
(

(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃,j2,...,jD |x
)
→ 0.

Thus,

P (Y c1 ≤ y(1)
j1
|x)→ F1

(
α

(1)
j1,1,...,1

− x1β1

)
as x2,1 → −∞, . . . , xD,1 → −∞.
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Now, in the limit, we can compare the values of P (Y c1 ≤ y(1)
j1
|x) for different x1:

lim
x2,1→−∞,...
xD,1→−∞

P (Y c1 ≤ y(1)
j1
| (x̃1, x2, . . . , xD)) > lim

x2,1→−∞,...
xD,1→−∞

P (Y c1 ≤ y(1)
j1
| (˜̃x1, x2, . . . , xD))

⇐⇒ x̃1β1 < ˜̃x1β1. (27)

Using the continuity of the first covariate in x1 and the fact that the coefficient β1,1 is normalized, we

can use the same techniques as in Theorem 3 to show that the system of linear inequalities constructed

as in (27) identifies β1.

If for some d 6= 1, the support of εd is bounded from above, then the condition “xd,1 → −∞” can

be replaced with “xd,1 take small enough values”, as at small enough values of xd,1 we will have that

α
(d)
j1,...,jd,...,jD

− xdβd is above the upper support point of εd.

Now consider the case when for some p = 2, . . . , D, we have Lp = kp and, thus, for such p all the

covariates in xp are exclusive to the pth latent process. For convenience, suppose that L2 = k2 and

Lp < kp, p = 3, . . . , D. Then if j3 = 1, . . . , jD = 1, then

P
(

(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃1 ,̃j2,1,...,jD |x
)
→

F1,2

(
α

(1)

j̃1 ,̃j2,1,...,1
− x1β1, α

(2)

j̃1 ,̃j2,1,...,1
− x2β2

)
−

F1,2

(
α

(1)

j̃1−1,̃j2,1,...,1
− x1β1, α

(2)

j̃1 ,̃j2,1,...,1
− x2β2

)
−

F1,2

(
α

(1)

j̃1 ,̃j2,1,...,1
− x1β1, α

(2)

j̃1 ,̃j2−1,1,...,1
− x2β2

)
+

F1,2

(
α

(1)

j̃1−1,̃j2,1,...,1
− x1β1, α

(2)

j̃1 ,̃j2−1,1,...,1
− x2β2

)
.

If jp > 1 for some p = 3, . . . , D, then

P
(

(x1β1 + ε1, . . . , xDβD + εD) ∈ Rj̃ ,̃j2,j3,...,jD |x
)
→ 0.
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Thus,

P (Y c1 ≤ y(1)
j1
|x)→

j1∑
j̃1=1

M2∑
j2=1

(
F1,2

(
α

(1)

j̃1,j2,1...,1
− x1β1, α

(2)

j̃1,j2,1...,1
− x2β2

)
−

F1,2

(
α

(1)

j̃1−1,j2,1,...,1
− x1β1, α

(2)

j̃1,j2,1,...,1
− x2β2

)
−

F1,2

(
α

(1)

j̃1,j2,1,...,1
− x1β1, α

(2)

j̃1,j2−1,1,...,1
− x2β2

)
F1,2

(
α

(1)

j̃1−1,j2,1,...,1
− x1β1, α

(2)

j̃1,j2−1,1,...,1
− x2β2

))
as x3,1 → −∞, . . . , xD,1 → −∞.

Since all the covariates in x2 are exclusive, we can vary covariates in x1 keeping x2 fixed. Therefore,

lim
x3,1→−∞,...
xD,1→−∞

P (Y c1 ≤ y(1)
j1
| (x̃1, x2, . . . , xD)) > lim

x3,1→−∞,...
xD,1→−∞

P (Y c1 ≤ y(1)
j1
| (˜̃x1, x2, . . . , xD))

⇐⇒ x̃1β1 < ˜̃x1β1. (28)

The only difference from what we had above is that instead of taking x2,1 → −∞, we keep the the whole

covariate vector x2 unchanged when analyzing P (Y c1 ≤ y(1)
j1
| (x1, x2, . . . , xD)). As discussed above, using

the continuity of the first covariate in x1 and the fact that the coefficient β1,1 is normalized, we can use

the same techniques as in Theorem 4 to show that the system of linear inequalities constructed as in

(28) identifies β1.

Coefficients βd, d ≥ 2, are identified using an analogous identification strategy. �

B.5 Proof of Theorem 5.

We start by noting that all α
(d)
1,1,...,1 are identified for any d = 1, . . . , D. Indeed, consider observed

probabilities

P
(
∩Dh=1

(
Y ch = y

(h)
1

)
|x
)

= P
(
∩h
(
xhβh + εh ≤ α

(h)
1,1,...,1

)
|x
)

and take xh,1 → −∞ for all h 6= d. By doing this, we identify Fd

(
α

(d)
1,1,...,1 − xdβd

)
. Now, using the large

support condition on xd,1, we obtain that α
(d)
1,1,...,1 − xdβd goes through the whole support of εd. Then

using the normalization stated in the theorem we find x0d such that

Fd

(
α

(d)
1,1,...,1 − x0dβd

)
= c0d

and, therefore, we can identify α
(d)
1,1,...,1 as α

(d)
1,1,...,1 = e0d + x0dβd (e0d and βd are known).
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Figure 15: Threshold system we aim to identify (left) and what we identify after Step 1 (right).

Y ∗c1

Y ∗c2

Y ∗c1

Y ∗c2

Combining the knowledge of α
(d)
1,1,...,1 for any d = 1, . . . , D, with the exclusiveness of some covariates in

each index and large support conditions on xd,1, d+ 1, . . . , D, (it can take any value on the real line),

we can identify the joint c.d.f F (·, . . . , ·) from the observed probabilities

P

(
D⋂
h=1

(
Y ch = y

(h)
1

)
|x

)
= F

(
α

(1)
1,1,...,1 − x1β1, . . . , α

(D)
1,1,...,1 − xDβD

)
.

notice that we could have obtained identification of F from any “corner” outcome (j1, . . . , jD), where

jh ∈ {1,Mh} for any h = 1, . . . , D. �

B.6 Proof of Theorem 6.

The proof proceeds to identify all the thresholds sequentially.

Step 1.(identification of “corner” thresholds) In the proof of Theorem 5 we already established

that α
(d)
1,1,...,1 are identified for any d = 1, . . . , D. In an analogous way we can establish the identification

of all the “corner” thresholds α
(d)
j1,j2,...,jD

, where jd ∈ {1,Md−1} and for h 6= d each jh ∈ {1,Mh} (recall

that α
(d)
j1,...,jd,...,jD

= +∞ when jd = Md). The state of what thresholds are identified after this step is

illustrated in Figure 15.

Step 2. We now want to show that thresholds α
(d)
1,1,...,1,jd,1,...,1

, jd = 1, . . . ,Md, where in the own

dimension d the discrete response can be any whereas in all the other dimensions the responses are

fixed at their lowest values, are identified. These thresholds will be identified from the exclusivity of at
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Figure 16: Threshold system we aim to identify (left) and what we identify after Step 2 (right).

Y ∗c1

Y ∗c2

Y ∗c1

Y ∗c2

least one covariate in xd and large support conditions for that covariate. Indeed, consider

P
(
Y cd = y

(d)
jd
, ∩h6=d

(
Y ch = y

(h)
1

)
|x
)

= P

(
α

(d)
1,1,...,1,jd−1,1,...,1 < xdβd + εd ≤ α

(d)
1,1,...,1,jd,1,...,1

,⋂
h6=d

(
xhβh + εh ≤ α

(h)
1,1,...,1,jd,1,...,1

))
.

By taking xh,1 → −∞ for all h 6= d, we identify

lim
xh,1→−∞,h6=d

P

Y cd = y
(d)
jd

⋂
h6=d

(
Y ch = y

(h)
1

)
|x

 =

Fd
(
α

(d)
1,1,...,1,jd,1,...,1

− xdβd
)
− Fd

(
α

(d)
1,1,...,1,jd−1,1,...,1 − xdβd

)
When jd = 1, we identify Fd

(
α

(d)
1,1,...,1,jd,1,...,1

− xdβd
)

(this can be seen either from the normal-

ization α
(d)
1,1,...,1,0,1,...,1 = −∞). When considering jd ≥ 2 we can therefore conclude that any

Fd
(
α

(d)
1,1,...,1,jd,1,...,1

− xdβd
)

is identified. Since Fd is known from Theorem 5, then by choosing any

xd such that Fd
(
α

(d)
1,1,...,1,jd,1,...,1

− xdβd
)
∈ (0, 1), we immediately identify α

(d)
1,1,...,1,jd,1,...,1

.

Here we started with the “corner” of all first responses and allowed responses in one dimension vary.

Analogously, we could start with other “corners” and identify all the thresholds α
(d)
j1,j2,...,jd−1,jd,jd+1,...,jD

,

where jd = 1, . . . ,Md and jh ∈ {1,Mh}, h 6= d. The identification after this step is illustrated in Figure

16. The thresholds we identify at this step are in short dot line because we actually don’t know the

actual respective rectangles yet so we don’t know how far these thresholds extend.

Step 3. Now let us show that for any d, any jd = 1, . . . ,Md, and any h0 6= d, the threshold

α
(h0)

1,1,...,1, jd︸︷︷︸
d−th position

,1,...,1
is identified. Thus, we consider a threshold in dimension h0 but allow the response
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Figure 17: Threshold system we aim to identify (left) and what we identify after Step 3 (right).

Y ∗c1

Y ∗c2

Y ∗c1

Y ∗c2

in some other dimension to be any. To show this, consider

P

Y cd = y
(d)
jd
,
⋂
h6=d

(
Y ch = y

(h)
1

)
|x

 = P

(
α

(d)
1,1,...,1,jd−1,1,...,1 < xdβd + εd ≤ α

(d)
1,1,...,1,jd,1,...,1

,

xh0βh0 + εh0 ≤ α
(h0)
1,1,...,1,jd,1,...,1

,
⋂

h6=d,h6=h0

(
xhβh + εh ≤ α

(h)
1,1,...,1,jd,1,...,1

))

and take xh,1 → −∞ for all h 6= d, h 6= h0. Then in this limit we identify

P

(
α

(d)
1,1,...,1,jd−1,1,...,1 < xdβd + εd ≤ α

(d)
1,1,...,1,jd,1,...,1

, xh0βh0 + εh0 ≤ α
(h0)
1,1,...,1,jd,1,...,1

)
=

= Fd,h0

(
α

(d)
1,1,...,1,jd,1,...,1

− xdβd, α
(h0)
1,1,...,1,jd,1,...,1

− xh0βh0
)

− Fd,h0
(
α

(d)
1,1,...,1,jd−1,1,...,1 − xdβd, α

(h0)
1,1,...,1,jd,1,...,1

− xh0βh0
)
, (29)

where Fd,h0 is the joint c.d.f. of (εd, εh0). This c.d.f. is already identified from Theorem 5, and

α
(d)
1,1,...,1,jd,1,...,1

− xdβd and α
(d)
1,1,...,1,jd−1,1,...,1 − xdβd are already identified too.

Note that for known e1, ∆e1 > 0, the function

Fd,h0 (e1 + ∆e1, e2)− Fd,h0 (e1, e2)

is known as a function of e2 and is strictly increasing in e2 (if, of course, both e1 +∆e1 and e1 are in the

support of εd). Therefore, from the known probability on the left-hand side of 29, we can immediately

identify α
(h0)
1,1,...,1,jd,1,...,1

.

Of course, an analogous proof would apply when instead of some of the 1’s in α
(h0)
1,1,...,1,jd,1,...,1

we have

the highest values Md’s, thus effectively considering different “corners”. The identification after this

step is illustrated in Figure 17.
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Step 4. Now let us show that for any d, any jd = 1, . . . ,Md, and any h0 6= d, the threshold

α
(h0)

1,1,...,1, jh0︸︷︷︸
h0−th position

,1,...,1, jd︸︷︷︸
d−th position

,1,...,1
is identified. In step 3 we already established it for jh0 = 1.

Thus, for a given dimension, we allow the discrete responses in that dimension and some other dimen-

sion to be arbitrary.

To make notations a bit simpler, we will suppose that d = 2 and h0 = 1 and, thus, prove that any

threshold α
(1)
j1,j2,1,...,1

as well as α
(2)
j1,j2,1,...,1

is identified. We can identify these thresholds sequentially

starting from one of the “corners” in the first two dimensions.

If, for example, we start from the bottom left “corner” we will first take j1 = 2 and j2 = 2 and consider

the following observed probability:

P

Y c1 = y
(1)
2 , Y cd = y

(2)
2 ,

⋂
h6=2,h 6=1

(
Y ch = y

(h)
1

)
|x

 = P

(
α

(1)
1,1,...,1,1,1,...,1 < x1β1 + ε1 ≤ α(1)

2,2,1,...,1,

α
(2)
2,1,1,...,1 < x2β2 + ε2 ≤ α(2)

2,2,1,...,1,
⋂

h6=d,h 6=1

(
xhβh + εh ≤ α

(h)
2,2,1,...,1

)
|x
)
.

Taking xh,1 → −∞ for all h 6= 2, h 6= 1, in the limit we known

P

(
α

(1)
1,2,1,...,1 < x1β1 + ε1 ≤ α(1)

2,2,1,...,1, α
(2)
2,1,1,...,1 < x2β2 + ε2 ≤ α(2)

2,2,1,...,1|x
)

=

= F1,2

(
α

(1)
2,2,1,...,1 − x1β1, α

(2)
2,2,1,...,1 − x2β2

)
− F1,2

(
α

(1)
2,2,1,...,1 − x1β1, α

(2)
2,1,1,...,1 − x2β2

)
−

F1,2

(
α

(1)
1,2,1,...,1 − x1β1, α

(2)
2,2,1,...,1 − x2β2

)
+ F1,2

(
α

(1)
1,2,1,...,1 − x1β1, α

(2)
2,1,1,...,1 − x2β2

)
. (30)

On the right-hand side in (30) we have a known function F1,2 and known α
(1)
1,2,1,...,1 and α

(2)
2,1,1,...,1 (they

were identified in previous steps). In some situations one of the parameters α
(1)
2,2,1,...,1 or α

(2)
2,2,1,...,1 may

be known. E.g., in the situation described in the right-hand side of Figure 17 when trying to identify

the rectangle corresponding to the response (y
(1)
2 , y

(2)
2 ), the threshold α

(2)
2,2,1,...,1 is known as well, thus,

giving three known sides of the respective rectangle. In this case, the identification can proceed in the

same way way as in Step 3 as the right-hand side in (30) has only one unknown parameter α
(1)
2,2,1,...,1

and is strictly monotone in that parameter when we choose x such that the probability on the left-

hand side of (30) is strictly between 0 and 1. However, we also need a strategy for the case when both

α
(1)
2,2,1,...,1 or α

(2)
2,2,1,...,1 may be unknown at this stage. Indeed, this would be analogous to the situation

described in the right-hand side of Figure 17 when trying to identify the rectangle corresponding to the

response (y
(1)
3 , y

(2)
2 ) – in that case only two sides of the rectangle are already identified. The problem

of identifying both α
(1)
2,2,1,...,1 or α

(2)
2,2,1,...,1 can be reformulated as showing that there is only one set of
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parameters (∆1A,∆2A), ∆iA > 0, i = 1, 2, such that for all (z1, z2)

Q1,2 (z1, z2) = F1,2 (∆1A + z1,∆2A + z2)− F1,2 (∆1A + z1, z2)− F1,2 (z1,∆2A + z2) + F1,2 (z1, z2) ,

(31)

where Q1,2 (z1, z2) is known and denotes, of course, the probability of choice. Clearly, z1 = α
(1)
1,2,1,...,1 −

x1β1 and z2 = α
(2)
2,1,1,...,1 − x2β2, whereas by ∆1A and ∆2A we mean ∆1A = α

(1)
2,2,1,...,1 − α

(1)
1,2,1,...,1 > 0,

∆2A = α
(2)
2,2,1,...,1 − α

(2)
2,1,1,...,1 > 0.

If, for example, we start from the upper left “corner” we will first take j1 = 2 and j2 = M2 − 2 and

consider the following observed probability:

P

Y c1 = y
(1)
2 , Y cd = y

(2)
M2−1,

⋂
h6=2,h 6=1

(
Y ch = y

(h)
1

)
|x

 = P

(
α
(1)
1,M2−1,...,1,1,1,...,1 < x1β1 + ε1 ≤ α(1)

2,M2−1,1,...,1,

α
(2)
2,M2−2,1,...,1 < x2β2 + ε2 ≤ α(2)

2,M2−1,1,...,1,
⋂

h 6=d,h6=1

(
xhβh + εh ≤ α(h)

2,M2−1,1,...,1

)
|x
)
.

Taking xh,1 → −∞ for all h 6= 2, h 6= 1, in the limit we known

P

(
α

(1)
1,M2−1,1,...,1 < x1β1 + ε1 ≤ α(1)

2,M2−1,1,...,1, α
(2)
2,M2−2,1,...,1 < x2β2 + ε2 ≤ α(2)

2,M2−1,1,...,1|x
)

=

= F1,2

(
α

(1)
2,M2−1,1,...,1 − x1β1, α

(2)
2,M2−2,1,...,1 − x2β2

)
−F1,2

(
α

(1)
2,M2−1,1,...,1 − x1β1, α

(2)
2,M2−1,1,...,1 − x2β2

)
−

F1,2

(
α

(1)
1,M2−1,1,...,1 − x1β1, α

(2)
2,M2−2,1,...,1 − x2β2

)
+ F1,2

(
α

(1)
1,M2−1,1,...,1 − x1β1, α

(2)
2,M2−1,1,...,1 − x2β2

)
.

(32)

On the right-hand side in (32) we have a known function F1,2 and known α
(1)
1,M2−1,1,...,1 and α

(2)
2,M2−1,1,...,1

(they were identified in previous steps). In some situations one of the parameters α
(1)
2,M2−1,1,...,1 or

α
(2)
2,M2−2,1,...,1 may be known and then the other parameter would be easy t identify from the monotonicity

properties of F1,2. However, we need a strategy for cases when both these parameters may be unknown

at this stage. The problem of identifying both these parameters can be reformulated as showing that

there is only one set of parameters (∆1B,∆2B), ∆1B > 0, ∆2B < 0, such that for all (z1, z2)

Q1,2 (z1, z2) = F1,2 (∆1B + z1,∆2B + z2)− F1,2 (∆1B + z1, z2)− F1,2 (z1,∆2B + z2) + F1,2 (z1, z2) ,

(33)

whereQ1,2 (z1, z2) is known and denotes, of course, the probability of choice. Clearly, z1 = α
(1)
1,M2−1,1,...,1−

x1β1 and z2 = α
(2)
2,M2−1,1,...,1 − x2β2, whereas by ∆1B and ∆2B we mean ∆1B = α

(1)
2,M2−1,1,...,1 −

α
(1)
1,M2−1,1,...,1 > 0 and ∆2B = α

(2)
2,M2−2,1,...,1 − α

(2)
2,M2−1,1,...,1 < 0.
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If, for example, we start from the bottom right “corner” we will first take j1 = M1 − 2 and j2 = 2 and

consider the following observed probability:

P

Y c1 = y
(1)
M1−1, Y

cd = y
(2)
2 ,

⋂
h6=2,h6=1

(
Y ch = y

(h)
1

)
|x

 = P

(
α
(1)
M1−2,2,...,1,1,1,...,1 < x1β1 + ε1 ≤ α(1)

M1−1,2,1,...,1,

α
(2)
M1−1,1,1,...,1 < x2β2 + ε2 ≤ α(2)

M1−1,2,1,...,1,
⋂

h6=d,h 6=1

(
xhβh + εh ≤ α(h)

M1−1,2,1,...,1

)
|x
)
.

Taking xh,1 → −∞ for all h 6= 2, h 6= 1, in the limit we known

P

(
α

(1)
M1−2,2,...,1,1,1,...,1 < x1β1 + ε1 ≤ α(1)

M1−1,2,1,...,1, α
(2)
M1−1,1,1,...,1 < x2β2 + ε2 ≤ α(2)

M1−1,2,1,...,1|x
)

=

= F1,2

(
α

(1)
M1−2,2,1,...,1 − x1β1, α

(2)
M1−1,2,1,...,1 − x2β2

)
−F1,2

(
α

(1)
M1−1,2,1,...,1 − x1β1, α

(2)
M1−1,2,1,...,1 − x2β2

)
−

F1,2

(
α

(1)
M1−2,2,1,...,1 − x1β1, α

(2)
M1−1,1,1,...,1 − x2β2

)
+ F1,2

(
α

(1)
M1−1,2,1,...,1 − x1β1, α

(2)
M1−1,1,1,...,1 − x2β2

)
.

(34)

On the right-hand side in (34) we have a known function F1,2 and known α
(1)
M1−1,2,1,...,1 and α

(2)
M1−1,1,1,...,1

(they were identified in previous steps). In some situations one of the parameters α
(1)
M1−2,2,1,...,1 or

α
(2)
M1−1,2,1,...,1 may be known and then the other parameter would be easy to identify from the mono-

tonicity properties of F1,2. However, we need a strategy for cases when both these parameters may

be unknown at this stage. The problem of identifying both these parameters can be reformulated as

showing that there is only one set of parameters (∆1C ,∆2C), ∆1C < 0, ∆2C > 0, such that for all

(z1, z2)

Q1,2 (z1, z2) = F1,2 (∆1C + z1,∆2C + z2)− F1,2 (∆1C + z1, z2)− F1,2 (z1,∆2C + z2) + F1,2 (z1, z2) ,

(35)

whereQ1,2 (z1, z2) is known and denotes, of course, the probability of choice. Clearly, z1 = α
(1)
M1−1,2,1,...,1−

x1β1 and z2 = α
(2)
M1−1,1,1,...,1 − x2β2, whereas by ∆1C and ∆2C we mean ∆1C = α

(1)
M1−2,2,1,...,1 −

α
(1)
M1−1,2,1,...,1 < 0 and ∆2C = α

(2)
M1−1,2,1,...,1 − α

(2)
M1−1,1,1,...,1 > 0.

Analogously, we can consider the remaining upper right “corner”.

For now, suppose we started identification with the bottom left “corner”. Suppose that there is another

set of parameters (δ1A, δ2A), δiA > 0, i = 1, 2, such that for all (z1, z2)

Q1,2 (z1, z2) = F1,2 (δ1A + z1, δ2A + z2)− F1,2 (δ1A + z1, z2)− F1,2 (z1, δ2A + z2) + F1,2 (z1, z2) .

64



Figure 18: First illustration of identification in Step 4.

Panel 1

A

B

Panel 2

Panel 3

A

B

Panel 4

Notes: Panel 1: two overlapping rectangles have the same probability mass when identification
proceeds from the bottom left “corner”. Panel 2: two non-overlapping rectangles have the same
probability mass when identification proceeds from the bottom left “corner”. Panel 3: two over-
lapping rectangles have the same probability mass when identification proceeds from the upper
left “corner”. Panel 4: two non-overlapping rectangles have the same probability mass when
identification proceeds from the upper left “corner”.

This necessarily implies that (∆1A − δ1A)(∆2A − δ2A) < 0. The condition that both these sets of

parameters give the same observed probabilities Q1,2 (z1, z2) corresponds to the picture in Panel 1 in

Figure 18, where the red rectangle and the green rectangle have to contain equal probability mass. By

removing the shared rectangle, we conclude that the two rectangles in Panel 2 in Figure 18, which are

modified versions of the two rectangles on the left-hand side, have to contain equal probability mass.

We will call the point that joins two rectangles on the right-hand side diagram in Figure 18 as the join.

It is depicted on the right panel of Figure 18 as a thick dot.

If we suppose that we started identification with the upper left “corner”. Suppose that there is another

set of parameters (δ1B, δ2B), δ1B > 0, δ2B < 0, such that for all (z1, z2)

Q1,2 (z1, z2) = F1,2 (δ1B + z1, δ2B + z2)− F1,2 (δ1B + z1, z2)− F1,2 (z1, δ2B + z2) + F1,2 (z1, z2) .

Of course, this necessarily implies that (∆1B − δ1B)(|∆2B| − |δ2B|) < 0. The condition that both these

sets of parameters give the same observed probabilities Q1,2 (z1, z2) corresponds to the picture in Panel

3 in Figure 18, where the red rectangle and the green rectangle have to contain equal probability mass.

By removing the shared rectangle, we conclude that the two rectangles in Panel 4 in Figure 18, which

are modified versions of the two rectangles on the left-hand side, have to contain equal probability mass.
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Let is denote the support of (ε1, ε2) as E12.

(i) Consider first the case when E12 has an extreme point which is also a global optimum in some

dimension. Suppose, e.g., that there is an extreme point whose first coordinate is aa global maximum in

the first dimension. Take such an extreme point as the join point. Then by construction, the probability

mass of rectangular region analogous to B in Figure 18 is zero. If the rectangular region analogous to A

in Figure 18 has an overlap with E12 and this overlap has a non-empty interior, we obtain a contradiction

as the probability mass of region A is strictly positive, whereas the probability mass of B is zero. This

situation is illustrated in Panel 1 of Figure 19, where the gray area is a part of E12 around the node point

of interest (we want to note here that the boundary depicted as straight line in the graph is only drawn

in this way for illustrational simplicity; in general, of course, the boundary curve will not necessarily

be straight but will be that of a general convex set – however, the same argument will apply to such

a general case). One can see that this corresponds to the situation when the join point corresponds to

the global maximum value of E12 in the first dimension but in the second dimension it is not a global

maximum.

It is possible that the probability mass of A is zero but this means that we are in the situation when the

join point corresponds to the global maximum value of E12 in both the first and the second dimensions.

These situations are illustrated in Panel 2, Panel 4 and Panel 6 of Figure 19. In all these situation we

can move the join along the boundary in the clockwise direction (see Panel 3, Panel 5 and Panel 7 in

Figure 19) and obtain a situation with different A and B but now A has a strictly positive probability

mass whereas B has a zero mass.

Our discussion so far obtains a contradiction for one point (z1, z2) = (α
(1)
1,2,1,...,1−x1β1, α

(2)
2,1,1,...,1−x2β2)

on the boundary of the support E12. It implies though that the contradiction can also be obtained also

for a strictly positive mass of (z1, z2) in E12 (hence, a strictly positive mass of (x1, x2)) in the neighbor-

hood of this boundary point. Indeed, the important implication of the above constructions (under the

supposition of (∆1,∆2) and (δ1, δ2) being both observationally equivalent) is the discontinuity in the

probability masses of the described regions A and B. This discontinuity and, hence, the contradiction

will remain if instead of (z1, z2) we consider points in E12 that are in a neighborhood of (z1, z2).

Cases when an extreme point attains a global minimum in the first dimension or attains a global

optimum in the second dimension are considered analogously.

(ii) Let us now consider case when the interior of E12 contains points that in each coordinate are

unbounded either from above or from below.

First, consider the case when for some (z10, z20) the interior of E12 contains all the points in the quadrant
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Figure 19: Second illustration of identification in Step 4
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(z10, z20) +O++, where

Os1 s2 = {(s1λ1, s2λ2) : λi ≥ 0, i = 1, 2}.

In this case we will use the identification strategy for thresholds that starts with the bottom left “corner”.

As mentioned above, we should have either ∆1A > δ1A or ∆2A > δ2A. Suppose that ∆1A > δ1A (then,

necessarily, ∆2A < δ2A).

Note that for the fixed point (z10,λ1 , z20,λ2), where zi0,λi = zi0 + λi, i = 1, 2, the relation

Q1,2 (z10,λ1 , z20,λ2) = F1,2

(
∆̃1 + z10,λ1 , ∆̃2 + z20,λ2

)
− F1,2

(
∆̃1 + z10,λ1 , z20,λ2

)
− F12

(
z10,λ1 , ∆̃2 + z20,λ2

)
+ F12 (z10,λ1 , z20,λ2) (36)

describes a decreasing function ψz10,λ1 ,z20,λ(·) such that

Q1,2 (z10,λ1 , z20,λ2) = F1,2

(
∆̃1 + z10,λ1 , ψz10,λ1 ,z20,λ2 (∆̃1) + z20,λ2

)
− F1,2

(
∆̃1 + z10,λ1 , z20,λ2

)
− F1,2

(
z10,λ1 , ψz10,λ1 ,z20,λ2 (∆̃1) + z20,λ2

)
+ F1,2 (z10,λ1 , z20,λ2) .

Of course, we have that ∆2A = ψz10,λ1 ,z20,λ2 (∆1A) and by our supposition that (δ1A, δ2A) can rationalize

the data as well, we have that δ2A = ψz10,λ1 ,z20,λ2 (δ1A). We note that ψz10,λ1 ,z20,λ2 is strictly decreasing is

obvious as the right-hand side of (36) is strictly increasing in ∆̃1 and is strictly increasing in ∆̃2. Note,

however, that ψz10,λ1 ,z20,λ2 (·) is defined on (∆̃1(z10,λ1 , z20,λ2),+∞), where the infimum point corresponds

to the case when ψz10,λ1 ,z20,λ2 (∆̃1) = +∞, and, thus, can be defined as the solution to the following

correspondence:

Q1,2 (z10,λ1 , z20,λ2) = F1

(
∆̃1(z10,λ1 , z20,λ2) + z10,λ1

)
− F1 (z10,λ1)

− F1,2

(
∆̃1(z10,λ1 , z20,λ2) + z10,λ1 , z20,λ2

)
+ F1,2 (z10,λ1 , z20,λ2) ,

which, of course, describes an unbounded orange region illustrated in Figure 20. By construction, the

probability mass of the orange and the blue regions in Figure 20 coincide. We note however, that

through the choice of (λ1, λ2) we can always make ∆̃1(z10,λ1 , z20,λ2) to get arbitrarily closely to ∆1A.

Indeed, for any δ1A < ∆1A, we can find λ1, λ2 ≥ 0 such that

F12 (∆1A + z10,λ1
,∆2A + z20,λ2

)− F12 (z10,λ1
,∆2A + z20,λ2

)− F12 (∆1A + z10,λ1
, z20,λ2

) + F12 (z10,λ1
, z20,λ2

)

F1 (δ1A + z10,λ1
)− F1 (z10,λ1

)− F12 (δ1A + z10,λ1
, z20,λ2

) + F12 (z10,λ1
, z20,λ2

)
> 1,

(37)

which immediately implies that we should have ∆̃1(z10,λ1 , z20,λ2) > δ1A (and as λ2 can be chosen

very large, we can make ∆̃1(z10,λ1 , z20,λ2) arbitrarily close to ∆1A). This gives us a contradiction that

parameter δ1A together with δ2A is observationally equivalent to ∆1A and ∆2A, where ∆1A > δ1A.
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Let us now discuss in more detail the claim of being able to choose λ1, λ2 ≥ 0 such that such that (37)

holds. This fact follows from the properties of the bivariate c.d.f. and can be especially easily seen when

ε1 and ε2 are independent as then (37) can be rewritten as

(F1 (∆1A + z10,λ1)− F1 (z10,λ1)) · (F2 (∆2A + z20,λ2)− F2 (z20,λ2))

(F1 (δ1A + z10,λ1)− F1 (z10,λ1)) · (1− F2 (z20,λ2))
,

as it is obvious that we can fix λ1 and take λ2 →∞, in which case we have
F1(∆1A+z10,λ1)−F1(z10,λ1)
F1(δ1A+z10,λ1)−F1(z10,λ1)

> 1

and
F2(∆2A+z20,λ2)−F2(z20,λ2)

1−F2(z20,λ2)
→ 1. For a general bivariate c.d.f., in order to show (37) one has to note

that a bivariate copula C(·, ·) satisfies max{0, u + v − 1}C(u, v) ≤ min{u, v}, which implies that for a

fixed u, |C(uv)− uv| → 0 as v → 1, and, hence, for u2 > u1, one has that

C(u2, v)− C(u1, v) = (u2 − u1)v + (u2 − u1) · o(1− v) as v → 1.

This observation allows us to rewrite (37) as A1/A2, where

A1 = (F1 (∆1 + z10,λ1)− F1 (z10,λ1)) · (F2 (∆2 + z20,λ2)− F2 (z20,λ2))

+ (F1 (∆1 + z10,λ1)− F1 (z10,λ1)) · o(1−F2 (∆2 + z20,λ2)) + (F1 (∆1 + z10,λ1)− F1 (z10,λ1)) · o(1−F2 (z20,λ2)),

A2 = (F1 (δ1 + z10,λ1
)− F1 (z10,λ1

)) · (1− F2 (z20,λ2
)) + (F1 (δ1 + z10,λ1

)− F1 (z10,λ1
)) · o(1− F2 (z20,λ2

)),

as λ2 → +∞. The terms that have the slowest rate of converging to zero as λ2 → +∞ in the numerator

A1 and the denominator A2 are the terms

(F1 (∆1 + z10,λ1)− F1 (z10,λ1)) · (F2 (∆2 + z20,λ2)− F2 (z20,λ2))

and

(F1 (δ1 + z10,λ1)− F1 (z10,λ1)) · (1− F2 (z20,λ2)) ,

respectively. Therefore, the limit of A1/A2 as λ2 → +∞ coincides with the limit of (37) as λ2 → +∞.

This limit is
F1(∆1+z10,λ1)−F1(z10,λ1)
F1(δ1+z10,λ1)−F1(z10,λ1)

> 1.

To summarize this subcase, by properties of E12 (convexity and non-empty interior) there will be a

positive measure of (z10, z20) ∈ E12 such that (z10, z20) + O++ is contained in E12. Therefore, for a

positive measure of (z10,λ1 , z20,λ2) we obtain that ∆̃1(z10,λ1 , z20,λ2) > δ1A giving us the contradiction

that parameter δ1A together with δ2A is observationally equivalent to ∆1A and ∆2A, where ∆1A > δ1A.

This contradiction allows us to conclude that (∆1A,∆2A) is identified from (31). Note that we can

modify the proof of this subcase by instead considering a fixed λ2 and taking λ1 → +∞.

If for some (z10, z20) the interior of E12 contains all the points in the quadrant (z10, z20) +O+−, then we
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Figure 20: Third illustration of identification in Step 4.

(z10, z20)

(z10 + ∆1, z20 + ∆2)

(z10 + ∆̃1, z20)

would use the identification strategy for thresholds that starts with the upper left “corner”. We would

use the function Q1,2(·, ·) and the points (z10,λ1 , z20,λ2), where z10,λ1 = zi0 +λ1 and z20,λ2 = z20−λ2, to

obtain a contradiction that there are two different sets of parameters (∆1B,∆2B) and (δ1B, δ2B) that

would give the same function Q1,2(·, ·).

If for some (z10, z20) the interior of E12 contains all the points in the quadrant (z10, z20) +O−+, then we

would use the identification strategy for thresholds that starts with the bottom right “corner”. We would

use the function Q1,2(·, ·) and the points (z10,λ1 , z20,λ2), where z10,λ1 = zi0−λ1 and z20,λ2 = z20 +λ2, to

obtain a contradiction that there are two different sets of parameters (∆1C ,∆2C) and (δ1C , δ2C) that

would give the same function Q1,2(·, ·).

If for some (z10, z20) the interior of E12 contains all the points in the quadrant (z10, z20) +O−−, then in

analogous way we would use the identification strategy for thresholds that starts with the upper right

“corner”.

(iii) Finally, we consider the intermediate case when (a) E12 does not have an extreme point whose

coordinate in some dimension is a global extremum of E12 in that dimension, and at the same time (b)

E12 does not contain any quadrants in the form (z10, z20) +Os1 s2 .

We can establish that in this case E12 is a region between two parallel lines. In other words, E12 can be

represented as

E12 = {(z10, z20)︸ ︷︷ ︸
z0

+λ · (g1, g2) |λ ∈ R, z0 ∈ E12}, g1, g2 6= 0, (38)

and ∃z∗0 , z∗∗0 ∈ E12 such that

∀λ ∈ R {z∗0 + λ · (g1, g2) + µ(g2,−g1) : µ > 0} ∩ E12 = ∅, (39)

70



and also

∀λ ∈ R {z∗∗0 + λ · (g1, g2) + µ(−g2, g1) : µ > 0} ∩ E12 = ∅. (40)

(38)-(40) is a complete characterization of E12 as a closed region between two parallel lines with (g1, g2)

describing the direction of the line.

Let us first show (38). Because E12 does not have an extreme point whose coordinate in some dimension

is a global extremum of E12 in that dimension, for any point z0 ∈ E12 there are three unit length

directions – for now let us denote them as (e
(i)
1 (z0), e

(i)
2 (z0)), i = 1, 2, 3, – such that e

(1)
1 (z0)e

(2)
1 (z0) < 0

and e
(1)
2 (z0)e

(3)
2 (z0) < 0 and z0 + λ(e

(i)
1 (z0), e

(i)
2 (z0)) ∈ E12, i = 1, 2, 3 for any λ ≥ 0.

It has to hold that two of these vectors are facing in the direction of opposite quadrants meaning their

first coordinates have different signs and their second coordinates have different signs. Without a loss

of generality, suppose these are vectors (e
(1)
1 (z0), e

(1)
2 (z0)) and (e

(2)
1 (z0), e

(2)
2 (z0)). If (e

(1)
1 (z0), e

(1)
2 (z0)) 6=

−(e
(2)
1 (z0), e

(2)
2 (z0)), then by using the convexity of E12 we will be able to find convex combinations

of z0 + λ(e
(1)
1 (z0), e

(1)
2 (z0)) and z0 + λ̃(e

(2)
1 (z0), e

(2)
2 (z0)), λ, λ̃ ≥ 0 that will belong to E12 and will

form a quadrant z0 + Os1 s2 for some s1, s2 ∈ {+,−}, which will contradict the supposition that E12

does not contain any quadrants. Indeed, s1 will be the sign of e
(1)
1 (z0) if |e(1)

1 (z0)| > |e(2)
1 (z0)| or

the sign of e
(2)
1 (z0) if |e(2)

1 (z0)| > |e(1)
1 (z0)| (note that due to the suppositions in this case we cannot

have |e(1)
1 (z0)| = |e(2)

1 (z0)|). Analogously, s2 will be the sign of e
(1)
2 (z0) if |e(1)

2 (z0)| > |e(2)
2 (z0)| or the

sign of e
(2)
2 (z0) if |e(2)

2 (z0)| > |e(1)
2 (z0)| (note that due to the suppositions in this case we cannot have

|e(1)
2 (z0)| = |e(2)

2 (z0)|). Thus, it has to be that (e
(1)
1 (z0), e

(1)
2 (z0)) = −(e

(2)
1 (z0), e

(2)
2 (z0)). We also conclude

that (e
(3)
1 (z0), e

(3)
2 (z0)) coincides with one of (e

(i)
1 (z0), e

(i)
2 (z0)), i = 1, 2, because if does not, then by

using the convexity of E12 we will be able to show that E12 contains the quadrant z0+Os1 s2 with s1 being

the sign of e
(3)
1 (z0) and s2 being the sign of e

(3)
2 (z0), which is a contradiction. Thus, (e

(3)
1 (z0), e

(3)
2 (z0))

coincides with one of (e
(i)
1 (z0), e

(i)
2 (z0)), i = 1, 2. Without a loss of generality, we will take e

(1)
1 (z0) > 0

(we can swap (e
(1)
1 (z0), e

(1)
2 (z0)) and (e

(2)
1 (z0), e

(2)
2 (z0)) to achieve that if necessary).

Let us now show that for any z0 ∈ E12 the direction (e1(z0), e2(z0)) is the same. Suppose that for two

z0, z̃0 ∈ E12, z0 6= z̃0, we have two different unit length vectors (e1(z0), e2(z0)) and (e1(z̃0), e2(z̃0)).

Without a loss of generality, e1(z0) 6= e1(z̃0). By convexity, E12 will contain all convex combina-

tions of z0 + λ(e1(z0), e2(z0)) and z̃0 + λ̃(e1(z̃0), e2(z̃0)) for any λ, λ̃ ∈ R. Because (e1(z0), e2(z0)) 6=

(e1(z̃0), e2(z̃0)), these convex combinations will give the whole R2, which contradicts the supposition

that E12 does not contain any quadrants. Thus, all (e1(z0), e2(z0)) are the same and we can denote this

direction as (g1, g2).

Now that we have established (38), we note that (39) and (40) just say that there are two straight lines

in E12 (of course, with the direction of (g1, g2)) that form the boundary of E12. If, for example, (39)
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were violated, then E12 would have contained some quadrant z0 +Os1 s2 , where s1 is the sign of g2 and

s2 is the sign of −g1, which would be a contradiction. Analogously with (40).

We can continue to suppose without a loss of generality that g1 > 0. We now consider two situations.

The first situation is when g2 > 0 (more generally can be described as g1 and g2 having the same

sign). This situation is illustrated in in Panel 1 in Figure 21. Panel 2 in Figure 21 illustrates how in

this case one can use the identification approach from the bottom left “corner” to show that there

cannot be two different sets of parameters (∆1A,∆2A) and (δ1A, δ2A) that give the same function

Q1,2(·, ·) (defined earlier) everywhere. Indeed, suppose that there are such two sets of parameters and,

without a loss of generality, ∆1A > δ1A (then, necessarily, ∆2A < δ2A). Choose a point (z̃1, z̃2) on

the border of E12 such that the region [z̃1 − δ1A, z̃1) × [z̃2,+∞] is fully outside of E12 while the region

(z̃1, z̃1 + ∆1A − δ1A) × (z̃2 − ∆2A, z̃2A) has a non-empty intersection with the interior of E12. Taking

z∗1 = z̃1 − δ1A and z∗2 = z̃2 − ∆2A, we have that in this case the value of Q1,2(z∗1 , z
∗
2) calculate when

(∆1A,∆2A) is used is different from the value of Q1,2(z∗1 , z
∗
2) calculate when (δ1A, δ2A) is used, thus

giving us a contradiction. Note that the contradiction will be obtained with a positive probability since

the difference in Q1,2(z1, z2) remains when using two different sets of parameters and using similar

constructions can be made for (z1, z2) which are in E12 and in the neighborhood of such boundary point

(z̃1, z̃2).

The second situation is when g2 < 0 (more generally can be described as g1 and g2 having different

signs). This situation is illustrated in Panel 3 in Figure 21. Panel 4 in Figure 21 illustrates how in this

case one can use the identification approach from the bottom left “corner” to show that there cannot

be two different sets of parameters (∆1B,∆2B) and (δ1B, δ2B) that give the same function Q1,2(·, ·)

(defined earlier) everywhere. Recall from earlier that ∆1B, δ1B > 0 and ∆2B, δ2B < 0. Without a los

sf generality, we can take δ1B < ∆1B (then, necessarily, we must have δ2B > ∆2B). We can choose a

point (z̃1, z̃2) on the border of E12 such that the region [z̃1 − δ1B, z̃1)× (−∞, z̃2] is fully outside of E12

while the region (z̃1, z̃1 + ∆1B − δ1B) × (z̃2, z̃2 − ∆2B) has a non-empty intersection with the interior

of E12. Taking z∗1 = z̃1 − δ1B and z∗2 = z̃2 − ∆2B, we have that in this case the value of Q1,2(z∗1 , z
∗
2)

calculate when (∆1B,∆2B) is used is different from the value of Q1,2(z∗1 , z
∗
2) calculate when (δ1B, δ2B)

is used, thus giving us a contradiction. Note that the contradiction will be obtained with a positive

probability since the difference in Q1,2(z1, z2) remains when using two different sets of parameters and

using similar constructions can be made for (z1, z2) which are in E12 and in the neighborhood of such

boundary point (z̃1, z̃2).

Thus, we showed that in every scenario the pair (∆1,∆2) is identified from the observed choice proba-

bilities as in (31).
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Figure 21: Fourth illustration of identification in Step 4.

Panel 1

(z̃1, z̃2)

(z̃1 − δ1A, z̃2 −∆2A) (z̃1 + ∆1A − δ1A, z̃2 −∆2A)

Panel 2

Panel 3

(z̃1, z̃2)

(z̃1 − δ1B, z̃2 −∆2B) (z̃1 − δ1B + ∆1B, z̃2 −∆2B)

Panel 4
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Having established that (∆1,∆2) is identified from (31), we can go back to our thresholds problem and

notations and conclude that thresholds α
(1)
2,2,1,...,1 or α

(2)
2,2,1,...,1 are identified. What we showed is that

once we know α
(1)
j1,j2+1,1,...,1 and α

(2)
j1+1,j2,1,...,1

, then we can identify α
(1)
j1+1,j2+1,1,...,1 and α

(2)
j1+1,j2+1,1,...,1.

Applying this sequentially, we can show that any α
(1)
j1,2,1,...,1

and α
(2)
j1,2,1,...,1

as well as any α
(1)
2,j2,1,...,1

and

α
(2)
2,j2,1,...,1

are identified. Then we will apply the same result to show that any α
(1)
3,j2,1,...,1

and α
(2)
3,j2,1,...,1

are identified, and so on. In this way, we will show that any α
(1)
j1,j2,1,...,1

and α
(2)
j1,j2,1,...,1

are identified.

In our example on the left panel in Figures 15-17, we can now identify all the thresholds. Since we

in general we will have more than 2 dimensions for the response variable, then we need to discuss

identification of thresholds when we vary indices in other dimensions as well. This is done in Step 5.

Step 5. It is enough for us to describe how to identify all the thresholds when we vary indices in three

dimensions – without a loss of generality, we can take α
(1)
j1,j2,j3,1,...,1

, α
(2)
j1,j2,j3,1,...,1

and α
(3)
j1,j2,j3,1,...,1

, – as

the extension to other dimensions will be analogous.

Just like in Step 4, it is enough for us to establish the identification of thresholds α
(h)
j1,j2,j3,1,...,1

, h = 1, 2, 3,

where j` ∈ {2,M` − 1}, ` = 1, 2, 3, as from Step 4 we know already that the thresholds

• α
(1)
j1,j2,j3,1,...,1

, where j1 ∈ {1,M1}, j2 ∈ {2,M2 − 1}, j3 ∈ {2,M3 − 1},

• α
(2)
j1,j2,j3,1,...,1

, where j2 ∈ {1,M2}, j1 ∈ {2,M1 − 1}, j3 ∈ {2,M3 − 1},

• α
(3)
j1,j2,j3,1,...,1

, where j3 ∈ {1,M3}, j1 ∈ {2,M1 − 1}, j2 ∈ {2,M2 − 1},

are identified. Just like in Step 4, we may have situations when for fixed (j1, j2, j3), where j` ∈ {2,M`−1},

` = 1, 2, 3, one of two of the three thresholds parameters α
(h)
j1,j2,j3,1,...,1

, h = 1, 2, 3, are known. However,

we need an identification strategy when all three threshold parameters α
(h)
2,2,2,1,...,1, h = 1, 2, 3, are

unknown.

Just like in Step 4, we can start identification from different “corners”. These “corners” are now in

three dimensions and are harder to label with words like we did before when used “bottom left corner”

or “top left corner”. However, we can now describe identification stemming from these different three-

dimensional “corners” as identification happening in the direction of the orthant Os1 s2 s3 , where sd ∈

{+,−}, d = 1, 2, 3, where

Os1 s2 s3 = {(s1λ1, s2λ2, s3λ3) : λd ≥ 0, d = 1, 2, 3}.

If the identification proceeds in the direction of O+ + +, we first try to establish the identification of

thresholds α
(h)
2,2,2,1,...,1, h = 1, 2, 3, and from Step 4 we know already that the thresholds α

(1)
1,2,2,1,...,1,
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α
(2)
2,1,2,1,...,1 and α

(3)
2,2,1,1,...,1 are identified. For that we consider the following observed probability

P
(⋂3

h=1

(
Y ch = y

(h)
2

)
,
⋂
d>3

(
Y cd = y

(d)
1

)
|x
)

. Taking xd,1 → −∞ for all d > 3, in the limit we identify

P

(
3⋂

h=1

(
Y ch = y

(h)
2

)
| x

)
=

1∑
`1=0

1∑
`2=0

1∑
`3=0

(−1)`1+`2+`3+1 ·

F1,2,3

(
`1α

(1)
2,2,2,1,...,1 + (1− `1)α

(1)
1,2,2,1,...,1 − x1β1,

`2α
(2)
2,2,2,1,...,1 + (1− `2)α

(1)
2,1,2,1,...,1 − x2β2, `3α

(3)
2,2,2,1,...,1 + (1− `3)α

(3)
2,2,1,1,...,1 − x3β3

)
(41)

where F1,2,3 denotes the joint c.d.f. of (ε1, ε2, ε3), which is known by Theorem 5. The question is whether

it is possible to recover α
(h)
2,2,2,1,...,1, h = 1, 2, 3 from the observed probabilities P

(
∩3
h=1

(
Y ch = y

(h)
2

)
|x
)

.

Analogously to Step 4 and (31), we can be reformulate this problem as the problem of showing that

there is only one set of parameters (∆1A,∆2A,∆3A), ∆iA > 0, i = 1, 2, 3, such that for any (z1, z2, z3)

Q1,2,3 (z1, z2, z3) =

1∑
`1=0

1∑
`2=0

1∑
`d=0

(−1)`1+`2+`3+1 F123

(
`1∆1 + z1, `2∆2 + z2, `3∆3 + z3

)
, (42)

where Q1,2,3 (z1, z2, z3) is known and, of course, denotes the probability of choice. Vector (z1, z2, z3) can

take any value in R3.

If the identification proceeds, for instance, in the direction of the orthant O+−+, then analogously

the identification problem can be reformulated as the problem of showing that there is only one set of

parameters (∆1B,∆2B,∆3B), ∆1B,∆3B > 0, ∆2B < 0, such that for any (z1, z2, z3)

Q1,2,3 (z1, z2, z3) =

1∑
`1=0

1∑
`2=0

1∑
`d=0

(−1)`1+`2+`3+1 F1,2,3

(
`1∆1B + z1, `2∆2B + z2, `3∆3B + z3

)
, (43)

where Q1,2,3 (z1, z2, z3) is known and, of course, denotes the probability of choice. Vector (z1, z2, z3) can

take any value in R3.

If the identification proceeds, for instance, in the direction of the orthant O−+ +, the analogously the

identification problem can be reformulated as the problem of showing that there is only one set of

parameters (∆1C ,∆2C ,∆3C), ∆1C < 0 and ∆2C ,∆3C > 0, such that for any (z1, z2, z3)

Q1,2,3 (z1, z2, z3) =
1∑

`1=0

1∑
`2=0

1∑
`d=0

(−1)`1+`2+`3+1 F1,2,3

(
`1∆1C + z1, `2∆2C + z2, `3∆3C + z3

)
, (44)

where Q1,2,3 (z1, z2, z3) is known and, of course, denotes the probability of choice. Vector (z1, z2, z3) can

take any value in R3.
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Denote the support of (ε1, ε2, ε3) as E123.

(i) The first situation we consider is when E123 has an extreme point and at least one of the coordinates

of this extreme point is the global maximum or minimum of E123 in that dimension. In this case, the

uniqueness of thresholds can be proven using identification in the direction of any orthant Os1 s2 s3 . We

will use identification in the direction of the orthant O+ + +. In this case, the proof of uniqueness should

be based n the properties of the function Q1,2,3.

Suppose that there is another set of parameters (δ1A, δ2A, δ3A) with δiA > 0 for i = 1, 2, 3, such that for

any (z1, z2, z3)

Q1,2,3 (z1, z2, z3) =
1∑

`1=0

1∑
`2=0

1∑
`d=0

(−1)`1+`2+`3+1 F123

(
`1δ1A + z1, `2δ2A + z2, `3δ3A + z3

)
. (45)

The component-wise monotonicity in each δ1A, i = 1, 2, 3, of the right-hand side of (45) implies that for

these two different sets of parameters to give the same choice probabilities, one should have δhA < ∆hA

for at least one (and at most two) h = 1, 2, 3. We can suppose, without a loss of generality, that

δ1A < ∆1A and δ2A > ∆2A (the relation between δ3A and ∆3A does not matter).27

Denote

R∆A
(z1, z2, z3) =

3×
h=1

[zh, zh + ∆hA], RδA(z1, z2, z3) =
3×

h=1

[zh, zh + δhA].

The technicalities of establishing that the vectors (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A) coincide, are

analogous to Step 4. We establish that we can always choose (z1, z2, z3) such that one of the re-

gions R∆A
(z1, z2, z3)\RδA(z1, z2, z3) and RδA(z1, z2, z3)\R∆A

(z1, z2, z3) is outside of the interior of E123,

whereas the other one has an intersection with the interior of E123. If we establish this fact, then we

obtain a contradiction with the fact that R∆A
(z1, z2, z3) and RδA(z1, z2, z3) have the same probability

mass.

Indeed, denote an extreme point described in the condition of this case as z0 = (z10, z20, z30). Suppose,

for instance, that z30 is the global minimum of E123 in the third dimension. Suppose for now that

neither of other coordinates z10 and z20 is a global minimum of E123 in the respective dimension.

Choose (z̃10, z̃20, z̃30) such that

z̃30 + min{δ3A,∆3A} = z30, z̃20 + ∆2A = z20, z̃10 + δ1A = z10 (46)

(recall that δ1A < ∆1A and δ2A > ∆2A). Our discussion below uses the fact that due to assumptions on

the boundary of the distribution of ε, the singleton {z0} has a zero probability mass in the distribution

27In case of different relations, the subsequent role of dimensions would change.
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of (ε1, ε2, ε3).

• Consider first ∆3A < δ3A. R∆(z̃10, z̃20, z̃30)\Rδ(z̃10, z̃20, z̃30) does not intersect with the in-

terior E123 (touches it at z0) and, thus, has a zero probability mass, whereas the region

RδA(z̃10, z̃20, z̃30)\R∆A
(z̃10, z̃20, z̃30) does have an intersection with the interior of E123 due to

the supposition that neither of other coordinates z10 and z20 is a global minimum of E123 in the

respective dimension, and this intersection has a positive probability mass.

• If δ3A < ∆3A, then the region

RδA(z̃10, z̃20, z̃30)\R∆A
(z̃10, z̃20, z̃30)

does not intersect with the interior of E123 and, thus, has a zero probability mass, whereas the

region R∆A
(z̃10, z̃20, z̃30)\RδA(z̃10, z̃20, z̃30) does have an intersection with the interior of E123 due

to the supposition that neither of other coordinates z10 and z20 is a global minimum of E123 in

the respective dimension, and this intersection has a positive probability mass.

Suppose now that at least one other coordinate – z10 or z20 – is the global minimum of E123 in the

respective dimension. Then it is possible that both regions R∆A
(z̃10, z̃20, z̃30)\RδA(z̃10, z̃20, z̃30) and

RδA(z̃10, z̃20, z̃30)\R∆(z̃10, z̃20, z̃30) lie outside of the interior of E123 and, thus, have zero probability

mass if (z̃10, z̃20, z̃30) is chosen as in (46). In this case instead of the extreme point z0 = (z10, z20, z30)

described above we consider z∗1 = (z11, z21, z31) which is in a small neighborhood of z0 and is in the

interior of E123. We then move z∗1 in the direction (0, 0,−1) until we hit the boundary. We denote

the final point as z∗2 = (z12, z22, z32). Choosing z∗2 in such a way guarantees that in each of the four

orthants z∗2 +Os1s2+, s1, s2 ∈ {+,−}, a rectangle (z12 +s1a1)×(z22 +s2a2)×(z32 +a3) has a non-empty

intersection with the interior of E123 for any a1 > 0, a2 > 0, a3 > 0.

Choose (z̃12, z̃22, z̃32) such that

z̃32 + min{δ3A,∆3A} = z32, z̃22 + ∆2A = z22, z̃12 + δ1A = z12

and end up with the following two situations:

• if ∆3A < δ3, then the region

R∆(z̃12, z̃22, z̃32)\RδA(z̃12, z̃20, z̃30)

does not intersect with the interior of E123 and, thus, has a zero probability mass, whereas the
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region RδA(z̃12, z̃22, z̃32)\R∆A
(z̃12, z̃22, z̃32) does have an intersection with the interior of E123 due

to the property of orthants described above, and this intersection has a positive probability mass;

• If δ3A < ∆3A, then the region

RδA(z̃12, z̃22, z̃32)\R∆A
(z̃12, z̃22, z̃32)

does not intersect with the interior of E123 and, thus, has a zero probability mass, whereas the

region R∆A
(z̃12, z̃22, z̃32)\RδA(z̃12, z̃22, z̃32) has an intersection with the interior of E123 due to

the property of orthants described above, and this intersection has a strictly positive probability

mass.

Thus, in this case we are able to obtain a contradiction that both (44) and (45) can hold simultaneously

if ∆A 6= δA.

Note that contradictions in this case can be obtained with a positive probability since a discontinuity in

the probability of two differenced regions will also be obtained for points z ∈ E12 in the neighborhood

of z0 and also for points z ∈ E12 in the neighborhood of z2∗.

Analogous constructions and contradictions can be obtained in the case when an extreme point is a

global maximum in the third dimension or when it is a global optimum in the first or second dimensions.

(ii) Our second case is when E123 contains a whole orthant z∗ + Os1 s2 s3 for some z∗ ∈ E123 and some

(s1, s2, s3), sd ∈ {+,−}, d = 1, 2, 3. Then the proof of the uniqueness thresholds will proceed in a way

analogous to the similar second case in Step 4. The contradictions will be obtained when employing

identification in the direction of the orthant Os1 s2 s3 .

Suppose, e.g., that sd = + for all d = 1, 2, 3. Then we use the function Q1,2,3 and note that for just

one value of (z∗1 , z
∗
2 , z
∗
3), the relation (44) gives a surface of (∆1,∆2,∆3) that satisfies that relation.

That surface can be expressed by a function ∆1(∆2,∆3) which is strictly decreasing coordinatewise in

∆2 and ∆3. On this surface there is a minimum value that ∆1 can take and that we can denote as

∆̃(z∗1 , z
∗
2 , z
∗
3). This minimum value uniquely solves the following equation:

Q1,2,3 (z∗1 , z
∗
2 , z
∗
3) =

1∑
`1=0

1∑
`2=0

1∑
`d=0

(−1)`1+`2+`3+1 F1,2,3

(
`1∆̃(z∗1 , z

∗
2 , z
∗
3)+z∗1 , `2 ·(+∞)+z∗2 , `3 ·(+∞)+z∗3

)
,

where we take `d ·(+∞) = 0 when `d = 0, d = 1, 2. Analogously to Step 4, we can obtain a contradiction

by showing that because of δ1A < ∆1A, we can fix z∗1,λ1 = z∗1 + λ1, λ1 ≥ 0 and choose λ2, λ3 ≥ 0 large
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enough so that z∗2,λ2 = z∗2 +λ2 and z∗3,λ3 = z∗3 +λ3 to be large enough so that ∆̃(z∗1,λ1 , z
∗
2,λ2

, z∗3,λ3) > δ1A.28

Analogously to Step 4, this would be shown from the fact that by making λ2, λ3 ≥ 0 large enough, we

will have that

∑1
`1=0

∑1
`2=0

∑1
`d=0 (−1)`1+`2+`3+1 F1,2,3

(
`1∆1 + z∗1,λ1 , `2∆2 + z∗2,λ2 , `3∆3 + z∗3,λ3

)
∑1

`1=0

∑1
`2=0

∑1
`d=0 (−1)`1+`2+`3+1 F1,2,3

(
`1δ1A + z∗1,λ1 , `2 · (+∞) + z∗2,λ2 , `3 · (+∞) + z∗3,λ3

) > 1.

(47)

The fact that we can choose (z∗1,λ1 , z
∗
2,λ2

, z∗3,λ3) such that (47) holds follows from the properties of the

multivariate c.d.f. and can be especially easily seen when ε1, ε2 and ε3 are mutually independent as

then (47) can be rewritten as

∏3
h=1

(
Fh

(
∆hA + z∗h,λh

)
− Fh

(
z∗h,λh

))
(
F1

(
δ1 + z∗1,λ1

)
− F1

(
z∗1,λ1

))
·
(

1− F2

(
z∗2,λ2

))
·
(

1− F3

(
z∗3,λ3

)) ,
as it is obvious that we can fix z∗1,λ1 and take λ2, λ3 →∞, in which case we have

F1

(
∆1A + z∗1,λ1

)
− F1

(
z∗1,λ1

)
F1

(
δ1A + z∗1,λ1

)
− F1

(
z∗1,λ1

) > 1

and
F2

(
∆2A + z∗2,λ2

)
− F2

(
z∗2,λ2

)
1− F2

(
z∗2,λ2

) → 1,
F3

(
∆3A + z∗3,λ3

)
− F3

(
z∗3,λ3

)
1− F3

(
z∗3,λ3

) → 1.

For a general c.d.f. F1,2,3, the property (47) can be shown by employing properties of the copula C(·, ·, ·)

that corresponds to F1,2,3 – namely, that |C(u, v, w)− u| → 0 as v → 1 and w → 1.

In summary, by properties of E12 (convexity and non-empty interior) there will be a positive measure of

z∗ ∈ E123 such that z∗+O+++ is contained in E123. Therefore, for a positive measure of (z∗1,λ1 , z
∗
2,λ2

, z∗3,λ3)

we obtain that ∆̃1(z∗1,λ1 , z
∗
2,λ2

, z∗3,λ3) > δ1A giving us the contradiction that parameter δ1A together with

δ2A, δ3A is observationally equivalent to ∆1A and ∆2A,∆3A, where ∆1A > δ1A. This contradiction allows

us to conclude that (∆1A,∆2A,∆3A) is identified from (31). Note that we can modify the proof of this

subcase by instead considering a fixed λ2 or λ3 and taking thhe other two lambdas to +∞.

If, for instance, s1 = + and s2 = s3 = −, then we use Q1,2,3 defined in terms of F1,2,3 to obtain the

uniqueness of thresholds. In an analogous way we would approach the case of any (s1, s2, s3).

28If we had ∆1A < δ1A, we would reverse the role of these two values and instead we would consider the
surface of (δ1, δ2, δ3) defined by relation (45).
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(iii) Finally, we consider the intermediate case when (a) E123 does not have an extreme point whose

coordinate in some dimension is a global extremum of E123 in that dimension, and at the same time (b)

E123 does not contain any orthants in the form z∗ +Os1 s2 s3 .

In this case take some point (z10, z20, z30) in the interior of E123. Then at least one of the three half-lines

(z10 + λ1, z20, z30), λ1 > 0, (z10, z20 + λ2, z30), λ2 > 0, and (z10, z20, z30 + λ3) is not fully contained

in E123. (Indeed, it all three half-lines were fully in E123, then convexity of E123 would imply that the

whole region (z10 +λ1, z20 +λ2, z30 +λ3) is in E123, which contradicts the characterization of this case).

Without a loss of generality, suppose that it is (z10, z20, z30) + λ3 that is not fully contained in E123.

Because of the convexity of E123, there is a point (z10, z20, z30 + λ3) that belongs to E123 but no point

(z10, z20, z30 + λ3), λ3 > λ3, is in E123. Naturally, (z10, z20, z30 + λ3) is on the border of E123. Denote

z̃ = (z̃1, z̃2, z̃3) = (z10, z20, z30 + λ3).

Our next observation is that at least one of the four orthants z̃ + Os1 s2 +, s1, s2 ∈ {+,−}, does not

contain any points from E123. (Indeed, if all of these orthants contained points from E123, we would be

able to find a convex combination of these points which would have the first two coordinates exactly

at z̃1 and z̃2, whereas the third covariate would be strictly greater than z̃3, which would contradict the

choice of z̃3.) Let us call it an “empty orthant”. At the same time, since by the characterization of this

case z̃3 cannot be a global maximum in the third dimension, then at least one of these four orthants

has a non-empty intersection with the interior of E123 – more precisely, due to convexity of E123, a

3-dimensional rectangle conv(z̃1, z̃1 + s1t1)× conv(z̃2, z̃2 + s2t2)× [z̃3, z̃3 + t3] for any td > 0, d = 1, 2, 3,

has a non-empty intersection with the interior of E123. Let us call it an “intersecting orthant”. Here

conv(a1, a2) denotes a univariate interval connecting points a1 and a2. Since we only have four orthants

Os1 s2 +, sd ∈ {+,−}, d = 1, 2, then among them there will always be an “intersecting orthant” that

is adjacent to an empty orthant among them. By adjacent we mean an orthant that has one and only

one change of sign in first two dimension while maintaining the sign in the third dimension to be +.

For instance, z̃ + O+−+ is adjacent to both z̃ + O+++ and z̃ + O−−+ but not to z̃ + O−++. We also

note that by construction of z̃, in any orthant z̃ + Os1 s2−, s1, s2 ∈ {+,−}, a 3-dimensional rectangle

conv(z̃1, z̃1 + s1t1) × conv(z̃2, z̃2 + s2t2) × [z̃3, z̃3 − t3] for any td > 0, d = 1, 2, 3, has a non-empty

intersection with the interior of E123. In other words,

(Situation S1 ) Suppose z̃+O−−+ is an “empty orthant”. Then the uniqueness of the thresholds can be

proven by employing the identification in the direction of the orthant O+ + +. We will, thus, construct

the proof by showing that there cannot be two sets of thresholds (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A)

that can give the same Q1,2,3 everywhere.
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First, suppose that z̃ +O+−+ is an “intersecting orthant”, which is adjacent to z̃ +O−−+. Consider29

the following two 3-dimensional rectangles:

T1 = [z̃1 − δ1A, z̃1]× [z̃2 − δ2A, z̃2]× [z̃3, z̃3 + δ3A]

T2 = [z̃1 − δ1A, z̃1 − δ1A + ∆1A]× [z̃2 − δ2A, z̃2 − δ2A + ∆2A]× [z̃3, z̃3 + ∆3A].

If δ3A < ∆3A, then

T1\T2 = [z̃1 − δ1A, z̃1]× (z̃2 − δ2A + ∆2A, z̃2]× [z̃3, z̃3 + δ3A]

is in the closure of O−−+ and, thus, has zero probability, whereas T2\T1 = T2a ∪ T2b with

T2a = (z̃1, z̃1 − δ1A + ∆1A]××[z̃2 − δ2A, z̃2 − δ2A + ∆2A]× [z̃3, z̃3 + ∆3A]

T2b = [z̃1 − δ1A, z̃1 − δ1A + ∆1A]× [z̃2 − δ2A, z̃2 − δ2A + ∆2A]× (z̃3 + δ3A, z̃3 + ∆3A].

Note that the rectangle T2a is in z̃ + O+−+, and has a strictly positive probability mass. This gives

us a contradiction with the supposition that both (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A) give the same

observable Q(z1, z2, z3) if we take z1 = z̃1 − δ1A, z2 = z̃2 − δ2A and z3 = z̃3. If δ3A > ∆3A, then

T1\T2 = T1a ∪ T1b, where

T1a = [z̃1 − δ1A, z̃1]× (z̃2 − δ2A + ∆2A, z̃2]× [z̃3, z̃3 + δ3A]

T1b = [z̃1 − δ1A, z̃1]× [z̃2 − δ2A, z̃2]× (z̃3 + ∆3A, z̃3 + δ3A].

Both T1a and T1b are in z̃ +O−−+ and, thus, have zero probability, whereas

T2\T1 = (z̃1, z̃1 − δ1A + ∆1A]××[z̃2 − δ2A, z̃2 − δ2A + ∆2A]× [z̃3, z̃3 + ∆3A]

is in z̃ + O+−+ and has a non-zero probability. Once again, this gives us a contradiction with the

supposition that both (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A) give the same observable Q(z1, z2, z3) if we

take z1 = z̃1 − δ1A, z2 = z̃2 − δ2A and z3 = z̃3.

Second, suppose z̃ + O−++ is an “intersecting orthant” with z̃ + O−−+ continuing to be an “empty

orthant”. Consider the following two 3-dimensional rectangles:

T1 = [z̃1 − δ1A, z̃1]× [z̃2 −∆2A, z̃2 −∆2A + δ2A]× [z̃3, z̃3 + δ3A]

T2 = [z̃1 − δ1A, z̃1 − δ1A + ∆1A]× [z̃2 −∆2A, z̃2]× [z̃3, z̃3 + ∆3A].

29Recall that we supposed that δ1A < ∆1A and δ2A > ∆2A.
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If δ3A < ∆3A, then

T1\T2 = [z̃1 − δ1A, z̃1]× (z̃2, z̃2 −∆2A + δ2A]× [z̃3, z̃3 + δ3A]

is in z̃ +O−++, and since the latter is an “intersecting orthant”, then the probability mass of T1\T2 is

strictly positive. At the same time, T2\T1 = T2a ∪ T2b ∪ T2c with

T2a = (z̃1, z̃1 − δ1A + ∆1A]× [z̃2 −∆2A, z̃2]× [z̃3, z̃3 + ∆3A]

T2b = [z̃1 − δ1A, z̃1]× [z̃2 −∆2A, z̃2]× (z̃3 + δ3A, z̃3 + ∆3A]

T2c = (z̃1, z̃1 − δ1A + ∆1A]× [z̃2 −∆2A, z̃2]× (z̃3 + δ3A, z̃3 + ∆3A].

T2b is in z̃+O−−+ and, thus, has the zero probability. If both T2a and T2c have the zero probability mass,

then this gives us a contradiction with the supposition that both (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A)

give the same observable Q1,2,3(z1, z2, z3) if we take z1 = z̃1 − δ1A, z2 = z̃2 −∆2A and z3 = z̃3. If T2a

or T2c has a strictly positive probability mass, then this means that necessarily z̃ + O+−+ is also an

“intersecting orthant” and then we can use constructions from the case we have already considered to

obtain a contradiction. If δ3A ≥ ∆3A, then T1\T2 = T1a ∪ T1b, where

T1a = [z̃1 − δ1A, z̃1]× (z̃2, z̃2 −∆2A + δ2A]× [z̃3, z̃3 + δ3A],

T1b = [z̃1 − δ1A, z̃1]× [z̃2 −∆2A, z̃2 −∆2A + δ2A]× (z̃3 + ∆3A, z̃3 + δ3A].

Rectangle T1a is in z̃ + O−++ and has a strictly positive probability mass, thus implying that the

probability mass of T1\T2 is strictly positive. At the same time,

T2\T1 = (z̃1, z̃1 − δ1A + ∆1A]× [z̃2 −∆2A, z̃2]× [z̃3, z̃3 + ∆3A]

is in z̃+O+−+. If it has the zero probability mass, then this immediately gives us a contradiction with

the supposition that both (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A) give the same observable Q(z1, z2, z3) if

we take z1 = z̃1− δ1A, z2 = z̃2−∆2A and z3 = z̃3. If T2\T1 has a strictly positive probability mass, then

this means that necessarily O+−+ is also an “intersecting orthant” and then we can use constructions

from the case we have already considered to obtain a contradiction.

(Situation S2 ) Suppose O−++ is an “empty orthant”.

First, suppose that O+++ is an “intersecting orthant”, which is adjacent to O−++. Then the uniqueness

of the thresholds can be proven by continuing to employ the identification in the direction of the orthant
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O+ + +. Consider30 the following two 3-dimensional rectangles:

T1 = [z̃1 − δ1A, z̃1]× [z̃2, z̃2 + δ2A]× [z̃3, z̃3 + δ3A]

T2 = [z̃1 − δ1A, z̃1 − δ1A + ∆1A]× [z̃2, z̃2 + ∆2A]× [z̃3, z̃3 + ∆3A].

If δ3A < ∆3A, then

T1\T2 = [z̃1 − δ1A, z̃1]× (z̃2 + ∆2A, z̃2 + δ2A]× [z̃3, z̃3 + δ3A]

is in z̃ +O−++ and, thus, has zero probability, whereas T2\T1 = T2a ∪ T2b with

T2a = (z̃1, z̃1 − δ1A + ∆1A]× [z̃2, z̃2 + ∆2A]× [z̃3, z̃3 + ∆3A]

T2b = [z̃1 − δ1A, z̃1 − δ1A + ∆1A]× [z̃2, z̃2 + ∆2A]× (z̃3 + δ3A, z̃3 + ∆3A].

Note that the probability mass of T2a, which is in z̃+O+−+, is strictly positive, thus implying that the

probability mass of T2\T1 is strictly positive. This gives us a contradiction with the supposition that both

(∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A) give the same observable Q1,2,3(z1, z2, z3) if we take z1 = z̃1 − δ1A,

z2 = z̃2 and z3 = z̃3. If δ3A > ∆3A, then T1\T2 = T1a ∪ T1b, where

T1a = [z̃1 − δ1A, z̃1]× (z̃2 + ∆2A, z̃2 + δ2A]× [z̃3, z̃3 + δ3A]

T1b = [z̃1 − δ1A, z̃1]× [z̃2, z̃2 + δ2A]× (z̃3 + ∆3A, z̃3 + δ3A].

Both T1a and T1b are in z̃ +O−++ and, thus, have zero probability, whereas

T2\T1 = (z̃1, z̃1 − δ1A + ∆1A]× [z̃2, z̃2 + ∆2A]× [z̃3, z̃3 + ∆3A]

is in z̃+O+++, and since the latter is an “intersecting orthant”, T2\T1 has a non-zero probability. Once

again, this gives us a contradiction with the supposition that both (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A)

give the same observable Q1,2,3(z1, z2, z3) if we take z1 = z̃1 − δ1A, z2 = z̃2 and z3 = z̃3.

Second, suppose z̃ + O−−+ is an “intersecting orthant” with z̃ + O−++ continuing to be an “empty

orthant”. In this case we can prove identification in the direction of the orthant O+−+. In this case

we suppose that there are two sets of parameters (∆1B
>0

,∆2B
<0

,∆3B
>0

) and (δ1B
>0
, δ2B
<0
, δ3B
>0

). At least one

inequality among

∆1B > δ1B, |∆2B| > |δ2B|, ∆3B > δ3B

30Recall that we supposed that δ1A < ∆1A and δ2A > ∆2A.
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and at least one inequality among

∆1B < δ1B, |∆2B| < |δ2B|, ∆3B < δ3B

must be satisfied. For concreteness, suppose ∆1B > δ1B and |∆2B| < |δ2B|.

Consider the following two 3-dimensional rectangles:

T1 = [z̃1 − δ1B, z̃1]× [z̃2 + |∆2B| − |δ2B|, z̃2 + |∆2B|]× [z̃3, z̃3 + δ3B]

T2 = [z̃1 − δ1B, z̃1 − δ1B + ∆1B]× [z̃2, z̃2 + |∆2B|]× [z̃3, z̃3 + ∆3B].

If δ3B < ∆3B, then the rectangle

T1\T2 = [z̃1 − δ1B, z̃1]× [z̃2 + |∆2B| − |δ2B|, z̃2)× [z̃3, z̃3 + δ3B]

has a strictly positive probability given that z̃ +O−−+ is an “intersecting” orthant. At the same time,

T2\T1 = T2a ∪ T2b ∪ T2c with

T2a = (z̃1, z̃1 − δ1B + ∆1B]× [z̃2, z̃2 + |∆2B|]× [z̃3, z̃3 + ∆3B]

T2b = [z̃1 − δ1B, z̃1]× [z̃2, z̃2 + |∆2B|]× (z̃3 + δ3B, z̃3 + ∆3B]

T2c = (z̃1, z̃1 − δ1B + ∆1B]× [z̃2, z̃2 + |∆2B|]× (z̃3 + δ3B, z̃3 + ∆3B]

T2b is in z̃+O−++ and, thus, has probability zero. If T2a and T2c have probability zero as well, then this

immediately gives us a contradiction with the supposition that both (∆1B,∆2B,∆3B) and (δ1B, δ2B, δ3B)

give the same observable Q1,2,3(z1, z2, z3) if we take z1 = z̃1 − δ1B, z2 = z̃2 + |∆2B| and z3 = z̃3. If

either T2a and T2c has a strictly positive probability, then by convexity of E123 this would imply that

z̃ +O+++ is necessarily an “intersecting orthant”’ and then we can use constructions from the case we

have already considered to obtain a contradiction. If δ3B ≥ ∆3B, then T1\T2 = T1a ∪ T1b, where

T1a = [z̃1 − δ1B, z̃1]× [z̃2 + |∆2B| − |δ2B|, z̃2)× [z̃3, z̃3 + δ3B]

T1b = [z̃1 − δ1B, z̃1]× [z̃2 + |∆2B| − |δ2B|, z̃2 + |∆2B|]× (z̃3 + ∆3B, z̃3 + δ3B]

T1a has a strictly positive probability because z̃ + O−−+ is an “intersecting” orthant, thus giving an

overall strictly positive probability of the whole T1\T2. At the same time,

T2\T1 = (z̃1, z̃1 − δ1B + ∆1B]× [z̃2, z̃2 + |∆2B|]× [z̃3, z̃3 + ∆3B].
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If T2\T1 has probability zero, then this immediately gives us a contradiction with the supposition

that both (∆1B,∆2B,∆3B) and (δ1B, δ2B, δ3B) give the same observable Q1,2,3(z1, z2, z3) if we take

z1 = z̃1 − δ1B, z2 = z̃2 + |∆2B| and z3 = z̃3. If either T2\T1 has a strictly positive probability, then by

convexity of E123 this would imply that z̃ +O+++ is necessarily an “intersecting orthant” and then we

can use constructions from the case we have already considered to obtain a contradiction.

(Situation S3 ) Suppose O+−+ is an “empty orthant”.

First, suppose that z̃ + O+++ is an “intersecting orthant”, which is adjacent to O+−+. Then the

uniqueness of the thresholds can be proven by continuing to employ the identification in the direction

of the orthant O+ + +. Consider31 the following two 3-dimensional rectangles:

T1 = [z̃1, z̃1 + δ1A]× [z̃2 −∆2A, z̃2 −∆2A + δ2A]× [z̃3, z̃3 + δ3A]

T2 = [z̃1, z̃1 + ∆1A]× [z̃2 −∆2A, z̃2]× [z̃3, z̃3 + ∆3A].

If δ3A < ∆3A, then

T1\T2 = [z̃1, z̃1 + δ1A]× (z̃2, z̃2 −∆2A + δ2A]× [z̃3, z̃3 + δ3A]

has a strictly positive probability mass as z̃+O+++ is an “intersecting orthant”. Also, T2\T1 = T2a∪T2b

with

T2a = (z̃1 + δ1A, z̃1 + ∆1A]× [z̃2 −∆2A, z̃2]× [z̃3, z̃3 + ∆3A]

T2b = [z̃1, z̃1∆1A]× [z̃2 −∆2A, z̃2]× (z̃3 + δ3A, z̃3 + ∆3A].

Both T2a and T2b are in z̃+O+−+, and, thus, have zero probability mass. This gives us a contradiction

with the supposition that both (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A) give the same observableQ(z1, z2, z3)

if we take z1 = z̃1, z2 = z̃2 −∆2A and z3 = z̃3.

If δ3A > ∆3A, then T1\T2 = T1a ∪ T1b, where

T1a = [z̃1, z̃1 + δ1A]× (z̃2, z̃2 −∆2A + δ2A]× [z̃3, z̃3 + δ3A]

T1b = [z̃1, z̃1 + δ1A]× [z̃2 −∆2A, z̃2 −∆2A + δ2A]× (z̃3 + ∆3A, z̃3 + δ3A].

T1\T2 has a strictly positive probability mass as T1a has a strictly positive probability mass because of

31Recall that we supposed that δ1A < ∆1A and δ2A > ∆2A.
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z̃ +O+++ being an “intersecting orthant”.. At the same time,

T2\T1 = (z̃1 + δ1A, z̃1 + ∆1A]× [z̃2 −∆2A, z̃2]× [z̃3, z̃3 + ∆3A]

is in z̃+O+−+ and has the probability mass of zero since z̃+O+−+ is an “empty orthant”. Once again,

this gives us a contradiction with the supposition that both (∆1A,∆2A,∆3A) and (δ1A, δ2A, δ3A) give

the same observable Q1,2,3(z1, z2, z3) if we take z1 = z̃1, z2 = z̃2 −∆2A and z3 = z̃3.

Second, suppose z̃ + O−−+ is an “intersecting orthant” with z̃ + O+−+ continuing to be an “empty

orthant”. In this case we can prove identification in the direction of the orthant O−++. In this case

we suppose that there are two sets of parameters (∆1C
<0

,∆2Cc
>0

,∆3C
>0

) and (δ1C
<0
, δ2Cc
>0

, δ3C
>0

). At least one

inequality among

|∆1C | > |δ1C |, ∆2C > δ2C , ∆3C > δ3C

and at least one inequality among

|∆1C | < |δ1C |, ∆2C < δ2C , ∆3C < δ3C

must be satisfied. For concreteness, suppose |∆1C | > |δ1C | and ∆2C < δ2C .

Consider the following two 3-dimensional rectangles:

T1 = [z̃1, z̃1 + |δ1C |]× [z̃2 −∆2C , z̃2 −∆2C + δ2C ]× [z̃3, z̃3 + δ3C ]

T2 = [z̃1 + |δ1C | − |∆1C |, z̃1 + |δ1C |]× [z̃2 −∆2C , z̃2]× [z̃3, z̃3 + ∆3C ].

If δ3C < ∆3C , then T2\T1 = T2a ∪ T2b with

T2a = [z̃1 + |δ1C | − |∆1C |, z̃1)× [z̃2 −∆2C , z̃2]× [z̃3, z̃3 + ∆3C ],

T2b = [z̃1 + |δ1C | − |∆1C |, z̃1 + |δ1C |]× [z̃2 −∆2C , z̃2]× (z̃3 + δ3C , z̃3 + ∆3C ].

T2a has a strictly positive probability mass since z̃ +O−−+ is an “intersecting orthant”, thus implying

a strictly positive probability mass of the whole T2\T1. At the same time,

T1\T2 = [z̃1, z̃1 + |δ1C |]× (z̃2, z̃2 −∆2C + δ2C ]× [z̃3, z̃3 + δ3C ].

If T1\T2 has the probability mass of zero, then this immediately gives us a contradiction with the

supposition that both (∆1C ,∆2C ,∆3C) and (δ1C , δ2C , δ3C) give the same observable Q1,2,3(z1, z2, z3) if

we take z1 = z̃1 + |δ1C |, z2 = z̃2 + |∆2C | and z3 = z̃3. If T1\T2 has a strictly positive probability, then

by convexity of E123 this would imply that z̃+O+++ is necessarily an “intersecting orthant”’ and then

86



we can use constructions from the case we have already considered to obtain a contradiction.

If δ3C ≥ ∆3C , then the rectangle

T2\T1 = [z̃1 + |δ1C | − |∆1C |, z̃1)× [z̃2 −∆2C , z̃2]× [z̃3, z̃3 + ∆3C ]

has a strictly positive probability mass since z̃ +O−−+ is an “intersecting orthant”. At the same time,

T1\T2 = T1a ∪ T1b ∪ T1c with

T1a = [z̃1, z̃1 + |δ1C |]× (z̃2, z̃2 −∆2C + δ2C ]× [z̃3, z̃3 + δ3C ],

T1b = [z̃1, z̃1 + |δ1C |]× [z̃2 −∆2C , z̃2]× (z̃3 + ∆3C , z̃3 + δ3C ],

T1c = [z̃1, z̃1 + |δ1C |]× (z̃2, z̃2 −∆2C + δ2C ]× (z̃3 + ∆3C , z̃3 + δ3C ].

T1b is in z̃+O+−+ and, thus, has probability zero. If T1a and T1c have probability zero as well, then this

immediately gives us a contradiction with the supposition that both (∆1C ,∆2C ,∆3C) and (δ1C , δ2C , δ3C)

give the same observable Q1,2,3(z1, z2, z3) if we take z1 = z̃1 + |δ1C |, z2 = z̃2 + |∆2C | and z3 = z̃3. If

either T1a and T1c has a strictly positive probability, then by convexity of E123 this would imply that

z̃ +O+++ is necessarily an “intersecting orthant”’ and then we can use constructions from the case we

have already considered to obtain a contradiction.

(Situation S4 ) The final case is when O+++ is an “empty orthant”.

If we, first, suppose that z̃ + O+−+ is an “intersecting orthant”, which is adjacent to O+++, then we

can prove identification in the direction of the orthant O+−+ similar to how it was done in situation

S2. In this case we suppose that there are two sets of parameters (∆1B
>0

,∆2B
<0

,∆3B
>0

) and (δ1B
>0
, δ2B
<0
, δ3B
>0

).

For concreteness, we can suppose ∆1B > δ1B and |∆2B| < |δ2B|. Then we can obtain contradictions by

considering the following two 3-dimensional rectangles:

T1 = [z̃1, z̃1 + δ1B]× [z̃2 + |∆2B| − |δ2B|, z̃2 + |∆2B|]× [z̃3, z̃3 + δ3B]

T2 = [z̃1, z̃1 + ∆1B]× [z̃2, z̃2 + |∆2B|]× [z̃3, z̃3 + ∆3B].

Namely, T1\T2 will have a strictly positive probability mass whereas T2\T1 will have the probability

mass of zero.

If we, second, suppose that z̃+O−++ is an “intersecting orthant”, which is adjacent to O+++, then we

can prove identification in the direction of the orthant O−++ similar to how it was done in situation

S3. In this case we suppose that there are two sets of parameters (∆1C
<0

,∆2Cc
>0

,∆3C
>0

) and (δ1C
<0
, δ2Cc
>0

, δ3C
>0

).

For concreteness, we can suppose |∆1C | > |δ1C | and ∆2C < δ2C . Then we can obtain contradictions by
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considering the following two 3-dimensional rectangles:

T1 = [z̃1, z̃1 + |δ1C |]× [z̃2, z̃2 + δ2C ]× [z̃3, z̃3 + δ3C ]

T2 = [z̃1 + |δ1C | − |∆1C |, z̃1 + |δ1C |]× [z̃2, z̃2 + ∆2C ]× [z̃3, z̃3 + ∆3C ].

Namely, T1\T2 will have the probability mass of zero whereas T2\T1 will have a strictly positive proba-

bility mass.

All the contradictions obtained in situations S1-S4 are derived with a strictly positive probability since

the difference in the described regions will continue to hold for points at the intersection of the interior

of E123 and a small neighborhood of the boundary point z̃.

All the subsequent steps of showing uniqueness of thresholds when the indices in four dimensions change

and so n can be shown analogously to Step 6. �

C Identification in parametric models

C.1 Lattice ordered probit

Here we show the identification of an ordered probit model with a lattice structure. Identification is split

into two parts. The first part in Theorem 8 gives identification of the index parameters βd, d = 1, . . . , D.

The second part gives sufficient conditions on the identification of the correlation coefficient ρd1,d2 given

that both βd1 and βd2 are identified.

Theorem 8 (identification of the index parameter) Suppose Assumption 5 holds. If for dimen-

sion d, there are kd + 1 points {x(i)
d }

kd+1
i=1 in Xd such that the matrix

1 x
(1)
d

1 x
(2)
d

...
...

1 x
(kd+1)
d


has rank kd + 1, then βd and {α(d)

j } is identified.

The main condition in Theorem 8 is simply the rank condition or the condition on a sufficient variation in

covariates in dimension d. The identification of correlation coefficients can be conducted in a pairwise
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fashion due to the lattice structure of the model. Theorem 9 gives various sufficient conditions for

identifying the correlation coefficients.

Proof of Theorem 8. Let Φ(·) denote the c.d.f. of the standard normal distribution. Then for any

d = 1, . . . , D and for any j = 1, . . . ,Md − 1, we can use the lattice structure of thresholds to obtain

P
(
Y (d) ≤ y(d)

j |x1, . . . , xD

)
= P

(
Y (d) ≤ y(d)

j |xd
)

= Φ
(
α

(d)
j − xdβd

)
,

and hence,

Φ−1
(
P
(
Y (d) ≤ y(d)

j |xd
))

= α
(d)
j − xdβd,

where the left-hand side is known from the distribution of observables.

The condition in the theorem allows us to construct a system of kd + 1 linear equations with kd + 1

unknowns in (α
(d)
j , βd) whose system of coefficients has full rank, thus implying the identification of

(α
(d)
j , βd). �

Theorem 9 (Identification of correlation coefficients) Suppose Assumption 5 holds and condi-

tions of Theorem 8 hold for dimensions d1 and d2, d1 6= d2. Then the correlation coefficient ρd1,d2 is

identified if at least one of the following conditions hold:

(a) there is a point x∗d1 ∈ Xd1 such that α
(d1)
j − x∗d1βd1 = 0 for some j = 1, . . . ,Md1;

(b) At least three different rectangular regions I(d1)
jd1
× I(d2)

jd2
(see definition in (4)) contain points

(xd1βd1 , xd2βd2) from some (xd1 , xd2) ∈ Xd1d2.

(c) There are variables in xd1 – without a loss of generality suppose they form a subvector xd1,1:Ld1
,

Ld1 ≥ 1, – such that at least of the parameters in βd1,1:Ld1
is not zero and and xd1,1:Ld1

is excluded

from xd2 – that is,

xd1,` |xd2 has a non-degenerate distribution, l = 1, . . . , Ld1 .

There are two different points in Xd1d2 that differ only in the value of covariates in the subvector

xd1,1:Ld1
– denote them as (x

(h)
d1,1:Ld1

, xd1,Ld1+1:kd1
, xd2), h = 1, 2, such that for some index jd1 ≤

Md1 − 1

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(1)

d1,1:Ld1
, xd1,Ld1+1:kd1

, xd2

)
6=

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(2)

d1,1:Ld1
, xd1,Ld1+1:kd1

, xd2

)
.
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Proof of Theorem 9. (a) Take j1 such that α
(d1)
j1
− x∗d1βd1 = 0. Find the whole vector x∗ that has x∗d1

as a vector of covariates in the d1-th process, and extract x∗d2 from x∗. If α
(d2)
j2
− x∗d2βd2 ≤ 0, consider

the known probability

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x∗d1 , x

∗
d2

)
=

∫ α
(d2)
j2
−x∗d2βd2

−∞

1√
2π
e−

η2

2 Φ

− ρd1,d2√
1− ρ2

d1,d2

η

 dη.

Because α
(d2)
j2
−x∗d2βd2 ≤ 0, the right-hand side is strictly increasing in

ρd1,d2√
1−ρ2d1,d2

and everything else on

the right-hand side is known. Therefore,
ρd1,d2√
1−ρ2d1,d2

is identified. Since
ρd1,d2√
1−ρ2d1,d2

in its turn is a strictly

increasing function of ρd1,d2 ∈ (−1, 1), this guarantees that identification of ρd1,d2. If α
(d2)
j2
−x∗d2βd2 < 0,

then instead we would consider the probability P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) > y

(d2)
j2
|x∗d1 , x

∗
d2

)
and conduct an

analogous identification strategy.

(b) The condition implies that there are indices j0
1 and j0

2 such as at least three of the following four

systems (48)-(51) of inequalities have a solution (xd1 , xd2) ∈ Xd1,d2:

α
(d1)

j01
− xd1βd1 ≥ 0, α

(d2)

j02
− xd2βd2 ≥ 0, (48)

α
(d1)

j01
− xd1βd1 ≥ 0, α

(d2)

j02
− xd2βd2 < 0, (49)

α
(d1)

j01
− xd1βd1 < 0, α

(d2)

j02
− xd2βd2 ≥ 0, (50)

α
(d1)

j01
− xd1βd1 < 0, α

(d2)

j02
− xd2βd2 < 0. (51)

Note that which exactly three systems among (48)-(51) have solutions only determines which probabilities

we consider below. For the sake of expositional simplicity, introduce generic notations cd1 = α
(d1)

j01
−

xd1βd1 and cd2 = α
(d2)

j02
− xd2βd2.

Here is the outline of the identification strategy. Among three systems with solutions, we can find two

systems such that in one system both cd1 and cd2 have the same sign and in the other system one of

cd1 and cd2 preserves the same sign as in the first system. Suppose, without a loss of generality it is

cd2 that has the same sign in both systems. If cd2 in both systems is positive, we consider conditional

probabilities of
{
Y (d1) ≤ y(d1)

j01
, Y (d2) > y

(d2)

j02

}
for points that satisfy those two systems. If cd2 in both

systems is negative, we consider conditional probabilities of
{
Y (d1) ≤ y(d1)

j01
, Y (d2) ≤ y(d2)

j02

}
for points

that satisfy those two systems. in either case, we will be able to conclude that among non-negative ρd1,d2

at most one values can generate observables, and similarly, among non-positive ρd1,d2 at most one values

can generate observables. Thus, it is possible to have at most two values of ρd1,d2 of different signs.

Now, in the third system it is guaranteed that cd2 will have a sign opposite to the sign in the first two
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systems. This can be used to establish a strict inequality between the absolute values of two possibly

compatible different ρd1,d2. Then, going back to one of the first two systems where the sign of cd1 is the

same as in the third system, we will be able to establish a strict inequality between the absolute values

of two possibly compatible different ρd1,d2 which will contradict the inequality obtained from the previous

step. This contradiction will allow us to conclude that there can be only one ρd1,d2.

To make this discussion more specific, consider e.g. the case when systems (48), (50) and (51) have

solutions. Following the outline of the identification strategy above, we can consider (48) and (50) as

the first two systems. In both these systems cd2 is non-negative. The immediate implication is that cd1

has different signs in these two systems. Let us show how to utilize this.

Take a point
(
x

(1)
d1
, x

(1)
d2

)
that satisfies (48). Then on the right-hand side of

P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) > y

(d2)

j02
|x(1)

d1
, x

(1)
d2

)
=

∫ +∞

α
(d2)

j02

−x(1)d2 βd2

1√
2π
e−

η2

2 Φ

α(d1)

j01
− x(1)

d1
βd1 − ρd1,d2η√

1− ρ2
d1,d2

 dη,

the only unknown component is ρd1,d2 (see Theorem 8) and − ρd1,d2η√
1−ρ2d1,d2

is strictly decreasing in ρd1,d2.

Since α
(d1)

j01
− x(1)

d1
βd1 ≥ 0, then

α
(d1)

j01

−x(1)d1 βd1√
1−ρ2d1,d2

as a function of ρd1,d2 is decreasing on the interval (−1, 0].

Hence, the whole right-hand of this probability expression is strictly decreasing in ρd1,d2 on the interval

(−1, 0]. Thus, among non-positive ρd1,d2, there can be at most one value that can generate observable

left-hand side.

Now take a point
(
x

(2)
d1
, x

(2)
d2

)
that satisfies (50). Since α

(d1)

j01
− x(2)

d1
βd1 < 0, then analogously to above it

can be concluded that the right-hand side of

P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) > y

(d2)

j02
|x(2)

d1
, x

(2)
d2

)
=

∫ +∞

α
(d2)

j02

−x(2)d2 βd2

1√
2π
e−

η2

2 Φ

α(d1)

j01
− x(2)

d1
βd1 − ρd1,d2η√

1− ρ2
d1,d2

 dη

is strictly decreasing in ρd1,d2 on the interval [0, 1). Hence, among non-negative ρd1,d2, there can be at

most one value that can generate observables. By just considering these two points, we can conclude

that there can be at most two values (one non-negative and one non-positive) in the identified set. Let

us denote these two candidate values as ρ∗d1,d2 ≤ 0 and ρ̃d1,d2 > 0.

We want to show that only of these is consistent with the data. Suppose that contrary to this both ρ∗d1,d2

and ρ̃d1,d2 can generate observables. Following the identification strategy outlined as above, we now take
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a point (x
(3)
d1
, x

(3)
d2

) that satisfies (51) and consider32

P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) ≤ y(d2)

j02
|x(3)

d1
, x

(3)
d2

)
=

∫ α
(d2)

j02

−x(3)d2 βd2

−∞

1√
2π
e−

η2

2 Φ

α(d1)

j01
− x(3)

d1
βd1 − ρd1,d2η√

1− ρ2
d1,d2

 dη.

Note that since α
(d2)

j02
− x(3)

d2
βd2 < 0, the equation

P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) ≤ y(d2)

j02
|x(3)

d1
, x

(3)
d2

)
=

∫ α
(d2)

j02

−x(3)d2 βd2

−∞

1√
2π
e−

η2

2 Φ (b− aη) dη

considered for all observationally equivalent (a, b), delivers a strictly decreasing in a function b(a)

that generates the same P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) ≤ y(d2)

j02
|x(3)

d1
, x

(3)
d2

)
. It is easy to see that for both

a∗ =
ρ∗d1,d2√

1−ρ∗d1,d2
2
≤ 0, b∗ =

α
(d1)

j01

−x(3)d1 βd1√
1−ρ∗d1,d2

2
< 0 and ã =

ρ̃d1,d2√
1−ρ̃2d1,d2

> 0, b̃ =
α
(d1)

j01

−x(3)d1 βd1√
1−ρ̃2d1,d2

< 0 to be

compatible with the fact that they belong long to the curve (a, b(a)) with the strictly decreasing b(·), it

has to be satisfied that |ρ̃d1,d2 | > |ρ∗d1,d2 |.

Now go back to
(
x

(2)
d1
, x

(2)
d2

)
that satisfies (50) but this time consider the probability

P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) ≤ y(d2)

j02
|x(2)

d1
, x

(2)
d2

)
=

∫ α
(d1)

j01

−x(2)d1 βd1

−∞

1√
2π
e−

η2

2 Φ

α(d2)

j02
− x(2)

d2
βd2 − ρη√

1− ρ2

 dη

Note that since α
(d1)

j01
− x(2)

d1
βd1 < 0, the equation

P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) ≤ y(d2)

j02
|x(2)

d1
, x

(2)
d2

)
=

∫ α
(d1)

j01

−x(2)d1 βd1

−∞

1√
2π
e−

η2

2 Φ (b− aη) dη

considered for all observationally equivalent (a, b), delivers a strictly decreasing in a function b(a)

that generates the same P
(
Y (d1) ≤ y(d1)

j01
, Y (d2) ≤ y(d2)

j02
|x(2)

d1
, x

(2)
d2

)
. It is easy to see that for both

a∗ =
ρ∗d1,d2√

1−ρ∗d1,d2
2
≤ 0, b∗ =

α
(d1)

j01

−x(2)d1 βd1√
1−ρ∗d1,d2

2
> 0 and ã =

ρ̃d1,d2√
1−ρ̃2d1,d2

> 0, b̃ =
α
(d1)

j01

−x(2)d1 βd1√
1−ρ̃2d1,d2

> 0 to be

compatible with the fact that they belong long to the curve (a, b(a)) with the strictly decreasing b(·), it

has to be satisfied that |ρ̃d1,d2 | < |ρ∗d1,d2 |. This is a contradiction with the previous conclusion. Therefore,

only one of ρ∗d1,d2 and ρ̃d1,d2 can generate observables.

(c) Denote x
(1)
d1

= (x
(1)
d1,1:L1

, xd1,Ld1+1:kd1
) and x

(2)
d1

= (x
(2)
d1,1:L1

, xd1,Ld1+1:kd1
).

We first consider the case when αd1jd1
−x(1)

d1
βd1 and αd1jd1

−x(2)
d1
βd1 take different signs – e.g. suppose that

32Note that now we consider Y (d2) ≤ y(d2)
j02

since now cd2 has the negative sign.
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αd1jd1
− x(1)

d1
βd1 ≥ 0 and αd1jd1

− x(2)
d1
βd1 ≤ 0.

For index jd1 in this condition and for any index jd2, jd2 ≤Md2 − 1, consider the probability

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(2)

d1
, xd2

)
=

∫ α
d1
jd1
−x(2)d1 βd1

−∞

1√
2π
e−

η2

2 Φ (b− aη) dη, (52)

where a =
ρd1,d2√
1−ρ2d1,d2

, b =
α
d2
jd2
−xd2βd2√

1−ρ2d1,d2
. Because αd1jd1

− x(2)
d1
βd1 ≤ 0, the right-hand side of (52) is strictly

increasing in a. It is obviously also strictly increasing in b. This means that for any feasible a ∈ R we

can find b2(a) such that

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(2)

d1
, xd2

)
=

∫ α
d1
jd1
−x(2)d1 βd1

−∞

1√
2π
e−

η2

2 Φ (b2(a)− aη) dη,

and b2(·) is a strictly decreasing function. Now consider the probability

P
(
Y (d1) > y

(d1)
j1

, Y (d2) ≤ y(d2)
j2
|x(1)

d1
, xd2

)
=

∫ +∞

α
d1
jd1
−x(1)d1 βd1

1√
2π
e−

η2

2 Φ (b− aη) dη,

where a and b are the same as in (52). Because αd1jd1
− x

(1)
d1
βd1 ≥ 0, the right-hand side of the last

expression is strictly decreasing in a. It is obviously also strictly increasing in b. This means that for

any feasible a ∈ R we can find b1(a) such that

P
(
Y (d1) > y

(d1)
j1

, Y (d2) ≤ y(d2)
j2
|x(1)

d1
, xd2

)
=

∫ +∞

α
d1
jd1
−x(1)d1 βd1

1√
2π
e−

η2

2 Φ (b1(a)− aη) dη.

Note that since we only vary the first Ld1 covariates in xd1, which are excluded from xd2, then alphad2jd2
−

xd2βd2 does not vary. This implies that ρd1,d2 is identified because the strictly increasing b1(·) and the

strictly decreasing b2(·) can intersect only once and the argument at that intersection is at
ρd1,d2√
1−ρ2d1,d2

,

which can be inverted to give ρd1,d2.

We now consider the case when both αd1jd1
−x(1)

d1
βd1 and αd1jd1

−x(2)
d1
βd1 have the same sign. Suppose that

they are both non-positive33 Without a loss of generality,

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(1)

d1
, xd2

)
> P

(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(2)

d1
, xd2

)
.

33If they are both non-negative, then instead of considering the conditional probabilities of {Y (d1) ≤
y
(d1)
j1

, Y (d2) ≤ y(d2)j2
} we would consider the conditional probabilities of {Y (d1) > y

(d1)
j1

, Y (d2) ≤ y(d2)j2
}.
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Figure 22: Functions b2(·) (solid line) and b1(·) (dotted line)

Then both level functions b2(·) and b1(·) defined by equations

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(2)

d1
, xd2

)
=

∫ α
d1
jd1
−x(2)d1 βd1

−∞

1√
2π
e−

η2

2 Φ (b1(a)− aη) dη

and

P
(
Y (d1) ≤ y(d1)

j1
, Y (d2) ≤ y(d2)

j2
|x(2)

d1
, xd2

)
=

∫ α
d1
jd1
−x(1)d1 βd1

−∞

1√
2π
e−

η2

2 Φ (b2(a)− aη) dη

are strictly decreasing. However, the function b1(a) has a derivative that is strictly greater than the

derivative of b2(a) for all a in the intersection of feasible sets. Moreover, for all low enough common

feasible a the values of b1(a) are lower than the values of b2(a) and for all high enough a the values of

b1(a) are higher than the values of b2(a). This situation is illustrated in Figure 22 which is obtained

for specific realizations of Together with the strict inequality on the derivatives of these functions, these

properties imply that these two functions may intersect only once. Their intersection is at
ρd1,d2√
1−ρ2d1,d2

,

which can be inverted to give ρd1,d2. �

To obtain a the identification of all the correlation coefficients in the multivariate normal distribution,

one would verify that one of the conditions of Theorem 9 hold for each pair of dimensions (d1, d2). The

fact that that correlations can be identified for each pair of dimensions at a time is a property of the

lattice structure of the model. An interesting fact to note in Theorem 9 is that the identification of the

correlation coefficients can be guaranteed even without the presence of exclusive covariates.

C.2 Non-lattice ordered probit

Here we do not present a set of clear-cut sufficient conditions that guarantee identification in a general

non-lattice ordered probit model subject to Assumption 5. As discussed in Section 6, such conditions are

difficult to derive (and even the tangentially related multinomial probit literature have not suggested
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such conditions). However, with the purpose of illustrating what kind of “sufficient variation” may be

required we discuss identification in a bivariate non-lattice probit model. The results presented below

rely on the presence of an exclusive covariate in at least one latent process. However, our simulations

results in Section 8 indicate that this is not necessary.

Consider a special case of two dimensions and two ordered responses in each dimension. We outline the

idea for identification when it is known that ε = (ε1, ε2)′ satisfies Assumption 5. In this 2× 2 case the

thresholds are α
(1)
11 , α

(1)
12 and α

(2)
11 , α

(2)
21 . The fact that we have a coherent decision problem, or, in other

words, our four rectangular regions partition the R2 plane implies that either α
(1)
11 = α

(1)
12 or α

(2)
11 = α

(2)
21

has to be satisfied. This is taken into account in Theorem 10 below. This theorem presents one set of

sufficient conditions that guarantee identification.

Theorem 10 Consider a bivariate ordered response model with two responses in each dimension. Sup-

pose Assumption 5 holds.

(a) (Sufficient variation in covariates in each dimension)

For dimension d, d = 1, 2, there are kd + 1 points {x(i)
d }

kd+1
i=1 in Xd such that the matrix

1 x
(1)
d

1 x
(2)
d

...
...

1 x
(kd+1)
d


has rank kd + 1.

(b) (Variation in x1 or x2; structure with α
(2)
11 = α

(2)
21 )

If α
(1)
11 6= α

(1)
12 , then either

(b1) There is an exclusive covariate in x1 with a non-zero coefficient. Without loss of generality,

this variable is x1,1 and its corresponding coefficient is β1,1 6= 0. Also, there is x2 in X2

that is observed with three different values of x1 that differ only in x1,1 – say, these are

x
(i)
1 ≡ (x

(i)
1,1, x1,2:k1), i = 1, 2, 3,, such that

P
(
Y (1) = y

(1)
1 |Y

(2) = y
(2)
1 ;x

(i)
1 , x2

)
6= P

(
Y (1) = y

(1)
1 |Y

(2) = y
(2)
1 ;x

(j)
1 , x2

)
i 6= j. (53)

or

(b2) There is an exclusive covariate in x2 with a non-zero coefficient. Without loss of generality,

this variable is x2,1 and its corresponding coefficient is β2,1 6= 0. Also, there is x1 ∈ X1
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that is observed with two different values of x2 that differ only in x2,1 – say, these are

x
(i)
2 ≡ (x

(i)
2,1, x2,2:k2), i = 1, 2,, such that

α
(2)
21 − x

(1)
2 β2 ≥ 0, α

(2)
21 − x

(2)
2 β2 ≤ 0.

(c) (Variation in x1 or x2; structure with α
(1)
11 = α

(1)
12 )

This is analogous to (b).

If α
(2)
11 6= α

(2)
21 , then either

(c1) There is an exclusive covariate in x2 with a non-zero coefficient. Without loss of generality,

this variable is x2,1 and its corresponding coefficient is β2,1 6= 0. Also, there is x̃1 in X1

that is observed with three different values of x2 that differ only in x2,1 – say, these are

x̃
(i)
2 ≡ (x̃

(i)
2,1, x2,2:k2), i = 1, 2, 3,, such that

P
(
Y (2) = y

(2)
1 |Y

(1) = y
(1)
1 ; x̃1, x̃

(i)
2

)
6= P

(
Y (2) = y

(2)
1 | Y

(1) = y
(1)
1 ; x̃1, x̃

(j)
2

)
i 6= j. (54)

or

(c2) There is an exclusive covariate in x1 with a non-zero coefficient. Without loss of generality,

this variable is x1,1 and its corresponding coefficient is β1,1 6= 0. Also, there is x̃2 ∈ X2

that is observed with two different values of x1 that differ only in x1,1 – say, these are

x̃
(i)
1 ≡ (x̃

(i)
1,1, x1,2:k1), i = 1, 2,, such that

α
(1)
21 − x̃

(1)
1 β1 ≥ 0, α

(1)
21 − x̃

(2)
1 β1 ≤ 0.

(d) If α
(1)
11 = α

(1)
12 and α

(2)
11 = α

(2)
21 , then at least one of the conditions of Theorem 9 is satisfied.

Then parameters β1, β2, α
(1)
11 , α

(1)
12 , α

(2)
11 , α

(2)
21 and ρ ≡ corr(ε1, ε2) are identified.

Proof of Theorem 10.

Step 1. Let us start by supposing that we know that in our threshold structure α
(2)
11 = α

(2)
21 and denote

this threshold as just α(2), as depicted in Figure 23. We later discuss discuss how we move away from

this supposition.

With a sufficient variation in x2, we can identify parameters α(2), β2 simply because

P
(
Y (c2) = y

(2)
1 |x2

)
= P

(
ε2 ≤ α(2) − x2β2|x2

)
= Φ

(
α(2) − x2β2

)
,
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Figure 23: Step 1 of Figure 9

(y
(1)
1 , y

(2)
1 )

(y
(1)
2 , y

(2)
1 )

(y
(1)
1 , y

(2)
2 ) (y

(1)
2 , y

(2)
2 )

Y ∗c1

Y ∗c2

α
(1)
11

α
(2)
11 = α

(2)
21α

(1)
12

and hence,

Φ−1
(
P
(
Y (c2) = y

(2)
1 |x2

))
= α(2) − x2β2.

A sufficient variation in x2 that ensures the identification of α(2) and β2 is guaranteed by condition (a).

Step 2. Now let us look at the identification of other parameters.

Step 2a. Suppose first that the condition (b1) is satisfied and take the x2 that satisfies the property

stated in that condition. Since α(2) and β2 are already identified, we know q2 ≡ α(2) − x2β2. Suppose

that q2 ≤ 0 and consider P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x

(i)
1 , x2

)
, i = 1, 2, 3, where x

(i)
1 are chosen

according to the condition (b1) as well. (If q2 > 0 then instead we would consider the probabilities

P (Y (c1) = y
(1)
1 , Y (c2) = y

(2)
2 |x

(i)
1 , x2).)

Denote Σ =

 1 ρ

ρ 1

. The Cholesky square root of Σ is Σ
1
2 =

 √
1− ρ2 0

ρ 1

 (so we have(
Σ

1
2

)′
Σ

1
2 = Σ). We have

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x

(i)
1 , x2

)
= P

(
ε1 ≤ α(1)

11 − x
(i)
1 β1, ε2 ≤ q2|x(i)

1 , x2

)
.

This probability can be written as

P

((
Σ

1
2

)′ (
Σ−

1
2

)′
(ε1, ε2)′ ≤ (α

(1)
11 − x

(i)
1 β1, q2)′ |x(i)

1 , x2

)
. (55)

Note that
(

Σ−
1
2

)′
(ε1, ε2)′ has the standard bivariate normal distribution and is independent of (x1, x2).
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Denote such a standard bivariate random vector as (η1, η2)′. Then (55) can once again be rewritten as

P

(
η1 ≤

α
(1)
11 − x

(i)
1 β1√

1− ρ2
− ρ√

1− ρ2
η2, η2 ≤ q2 |x(i)

1 , x2

)
,

and further rewritten as ∫ q2

−∞

1√
2π
e−

η22
2 Φ

(
α

(1)
11 − x

(i)
1 β1 − ρη2√

1− ρ2

)
dη2.

Without loss of generality, we can suppose that in the condition (54)

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x

(3)
1 , x2

)
> P

(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x

(2)
1 , x2

)
>

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x

(1)
1 , x2

)
.

We will be able to obtain the identification of β1,1, ρ and q10 ≡ α(1)
11 − x

(1)
1 β1 if we identify δ0 ≡ ρ√

1−ρ2

(strictly increasing in ρ), θ0 ≡ q10√
1−ρ2

and β1,1. The identification will be obtained from the properties

of the following function of two variables (δ, θ):

ψ(δ, θ) ≡
∫ q2

−∞

1√
2π
e−

η22
2 Φ(θ − δη2)dη2. (56)

Because q2 ≤ 0, the function ψ(·, ·) is strictly increasing in δ. Clearly, it is also strictly increasing in θ.

Thus, the identification of β1,1, δ0 and θ0 will be shown if we establish that the following system of

equations is solved by unique β1,1, δ0 and θ0:

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x

(h)
1 , x2

)
= ψ(θ0 +

√
1 + δ2

0 · β1,1(x
(1)
1,1 − x

(h)
1,1), δ0), h = 1, 2, 3. (57)

Condition (54) ensures that points (θ0, δ0), (θ0 +
√

1 + δ2
0 · β1,1(x

(1)
1,1 − w

(2)
1,1), δ0) and (θ0 +

√
1 + δ2

0 ·

β1,1(w
(1)
1,1 − w

(3)
1,1), δ0) lie on three different level curves of the function ψ(·, ·). Since function ψ(·, ·) is

known and is strictly increasing in each variable, these level curves can be described as collections of

points (υh(δ), δ) with a known and strictly decreasing υh(·) defined on R (region for ρ√
1−ρ2

). The level

curves υh, h = 1, 2, 3, are strictly ordered; their ordering and the sign of β1,1 are immediately identified

from the ordering of P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x

(h)
1 , x2

)
, h = 1, 2, 3, given above.

Then the system (57) implies the following equations:

υ2(δ0)− υ1(δ0) =
√

1 + δ2
0 · β1,1(x

(1)
1,1 − x

(2)
1,1) (58)

υ3(δ0)− υ1(δ0)−
√

1 + δ2
0 · β1,1(x

(2)
1,1 − x

(3)
1,1) =

√
1 + δ2

0 · β1,1(x
(1)
1,1 − x

(2)
1,1). (59)
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Since x
(2)
1,1 6= x

(3)
1,1, these two equations capture different type of information. The uniqueness of

(δ0, θ0, β1,1) that solves this system (and, hence, the uniqueness of ρ, q10) will be guaranteed by the

properties of the level curves of function ψ(·, ·) formulated in Lemma 2 below.

Now, armed with the knowledge of ρ as well as all the parameters in the second dimension, we can go

back to using the expression

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 | x̃1, x̃2

)
=

∫ α(2)−x̃2β2

−∞

1√
2π
e−

η22
2 Φ


α

(1)
11 − x̃1β1︸ ︷︷ ︸

q̃10

−ρη2

√
1− ρ2

 dη2. (60)

for any (x̃1, x̃2) ∈ X . The integration limits in (60) are known. In fact, the only unknown if what

we denoted as q̃10. The right-hand side (60) is strictly increasing in q̃10. Therefore, we can uniquely

determine q̃10 from the strict monotonicity of the right-hand side in q̃10 and the knowledge of the

left-hand side in (60).

Now, if we collect many of such points q̃10 with enough variation in x̃1, then it will be enough to uniquely

determine parameters α
(1)
11 and β1. The condition for a sufficient variation in x̃1 are given in part (a) of

the theorem.

Now, in order to identify α
(1)
12 , consider

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
2 | x̃1, x̃2

)
=

∫ +∞

α(2)−x̃2β2

1√
2π
e−

η22
2 Φ

(
α

(1)
12 − x̃1β1 − ρη2√

1− ρ2

)
dη2

for any (x̃1, x̃2) ∈ X . Since α
(1)
12 is the only unknown parameter on the right-hand side and the right-hand

side is strictly monotone in α
(1)
12 , then α

(1)
12 is identified in a straightforward way.

Step 2b). Suppose first that condition (b2) is satisfied and take the x1 that satisfies the property stated

in that condition. For x
(2)
2 , consider the probability

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
2 |x1, x

(2)
2

)
=

∫ α(2)−x(2)2 β2

−∞

1√
2π
e−

η22
2 Φ (θ0 − δ0η2) dη2, (61)

where δ0 = ρ√
1−ρ2

, θ0 =
α
(1)
11 −x1β1√

1−ρ2
. Because α(2) − x(2)

2 β2 ≤ 0, the right-hand side of (61) is strictly

increasing in δ0. It is obviously also strictly increasing in θ0. This means that for any δ ∈ R we can find

θ2(δ) such that

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
2 |x1, x

(2)
2

)
=

∫ α(2)−x(2)2 β2

−∞

1√
2π
e−

η22
2 Φ (θ2(δ)− δη2) dη2,
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Figure 24: Step 3 of Theorem 9
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and θ2(·) is a strictly decreasing function.

For x
(1)
2 , consider the probability

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
2 |x1, x

(1)
2

)
=

∫ +∞

α(2)−x(1)2 β2

1√
2π
e−

η22
2 Φ (θ0 − δ0η2) dη2,

where δ0 and θ0 are the same as in (52). Because α(2) − x(1)
2 β2 ≥ 0, the right-hand side of the last

expression is strictly decreasing in δ0. It is obviously also strictly increasing in θ0. This means that for

any δ ∈ R we can find θ1(δ) such that

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
2 |x1, x

(1)
2

)
=

∫ α(2)−x(1)2 β2

−∞

1√
2π
e−

η22
2 Φ (θ1(δ)− δη2) dη2,

and θ1(·) is a strictly increasing function. Note that since we only vary the exclusive covariate x2,1 and,

thus, α
(1)
11 − x1β1 does not vary, then ρ and α

(1)
11 − x1β1 are identified because the strictly increasing

θ1(·) and the strictly decreasing θ2(·) can intersect only once.

Now, that the parameter ρ is identified, the identification of α
(1)
11 and β1 follows the same logic as in

the case (b1) and obtained from a sufficient variation condition (a). The identification of α
(1)
12 follows

the same logic as in the case (b1).

Step 3.

The next question is whether can we distinguish this case from the case when in the first dimension

the thresholds are the same and in the second dimension they are possibly different. The latter case is

illustrated in Figure 24.
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Suppose we already know that the model considered above (as pictured in Figure 23) is well-specified

(consistent with the data). We want to show that if the alternative model in 24, where the thresholds in

the first dimension are the same, is consistent with the data as well, then necessarily we have a model

with a lattice structure. In other words, we can show that it is not possible for both models (in Figures

23 and 24) to be consistent with the data (distribution of observables) if at least one pair of thresholds

in the same dimension contains distinct thresholds.

Suppose that it is possible for models of both types to rationalize the data with sets of parameters

(β1, β2, α
(1)
11 , α

(1)
12 , α

(2)
11 , α

(2)
21 , ρ) and (β̆1, β̆2, ᾰ

(1)
11 , ᾰ

(1)
12 , ᾰ

(2)
11 , ᾰ

(2)
21 , ρ̆), respectively. Then the following equa-

tions are satisfied:

Φ(α(2) − x2β2) = P
(
Y (c2) = y

(2)
1 |x2

)
= P (x2β̆2 + ε2 ≤ ᾰ(2)

11 , x1β̆1 + ε1 ≤ ᾰ(1)|x1, x2)︸ ︷︷ ︸
P
(
Y (c1)=y

(1)
1 , Y (c2)=y

(2)
1 | x1,x2

)
+ P (x2β̆2 + ε2 ≤ ᾰ(2)

21 , x1β̆1 + ε1 > ᾰ(1)|x1, x2)︸ ︷︷ ︸
P
(
Y (c1)=y

(1)
2 , Y (c2)=y

(2)
1 | x1,x2

)

=

 P (x2β̆2 + ε2 ≤ ᾰ(2)
21 |x1, x2)− P (ᾰ

(2)
11 < x2β̆2 + ε2 ≤ ᾰ(2)

21 , x1β̆1 + ε1 ≤ ᾰ(1)|x1, x2), if ᾰ
(2)
21 > ᾰ

(2)
11 ,

P (x2β̆2 + ε2 ≤ ᾰ(2)
11 |x1, x2)− P (ᾰ

(2)
21 < x2β̆2 + ε2 ≤ ᾰ(2)

11 , x1β̆1 + ε1 ≤ ᾰ(1)|x1, x2), if ᾰ
(2)
11 ≥ ᾰ

(2)
221

For illustration purposes suppose ᾰ
(2)
21 > ᾰ

(2)
11 (the case of ᾰ

(2)
21 ≤ ᾰ

(2)
11 is considered analogously)). Then

Φ(α(2) − x2β2) = Φ(ᾰ
(2)
21 − x2β̆2)

−
∫ ∫

φ (η1, η2) 1

(
(−∞, ᾰ(2)

11 )′ ≤
(

Σ̆
1
2

)′
(η1, η2)′ + (x1β̆1, x2β̆2)′ < (ᾰ(1), ᾰ

(2)
21 )′

)
dη1dη2

= Φ(ᾰ
(2)
21 − x2β̆2)

−
∫ ∫

φ (η1, η2) 1
(√

1− ρ̆2η1 + ρ̆η2 < ᾰ(1) − x1β̆1, ᾰ
(2)
11 < η2 + x2β̆2 ≤ ᾰ(2)

21

)
dη1dη2,

where φ(·, ·) is the density for the bivariate standard normal.

Suppose condition (b1) holds. Note that the fact that both structures are consistent with the observables

and the fact that β1,1 6= 0 will imply that β̆1,1 6= 0. Indeed, it is easy to see if e.g. we write the joint

probability

P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x1, x2

)
=

∫ α(2)−x2β2

−∞

1√
2π
e−

η22
2 Φ

(
α

(1)
11 − x1β1 − ρη2√

1− ρ2

)
dη2 (62)

=

∫ ᾰ
(2)
11 −x2β̆2

−∞

1√
2π
e−

η22
2 Φ

(
ᾰ(1) − x1β̆1 − ρ̆η2√

1− ρ̆2

)
dη2, (63)
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and vary x
(h)
1,1 for instance by taking points (x

(h)
1 , xQ), h = 1, 2, 3, that satisfy condition (54).

If we are in the situation of the lattice structure, then in the alternative model we have ᾰ
(2)
11 = ᾰ

(2)
21 and,

thus,

Φ(ᾰ
(2)
21 − x

′
2β̆2) = Φ(α(2) − x′2β2),

which further imply the equalities

β2 = β̆2, β1 = β̆1, α
(1)
11 = α

(1)
12 = ᾰ(1), α(2) = ᾰ

(2)
11 = ᾰ

(2)
21 (64)

for the parameters in the two models.

Suppose that ᾰ
(2)
11 6= ᾰ

(2)
21 and, thus, we are not dealing with the lattice structure. Then in the equation

Φ(α(2) − x2β2) = Φ(ᾰ
(2)
21 − x2β̆2)

−
∫ ∫

φ (η1, η2) 1
(√

1− ρ̆2η1 + ρ̆η2 < ᾰ(1) − x1β̆1, ᾰ
(2)
11 < η2 + x2β̆2 ≤ ᾰ(2)

21

)
dη1dη2, (65)

the second term on the right-hand side depends on x1.

As discussed above, β̆1,1 6= 0. Suppose for simplicity that β̆1,1 > 0. We can consider (e.g. from condition

(b1)) two points
(
x

(h)
1 , x2

)
, h = 1, 2, which differ only in the value of x1,1. Without loss of generality

suppose that x
(1)
1,1 > x

(2)
1,1. Then under

(
x

(1)
1 , x2

)
the region over which the integral on the right-hand

side of (65) is calculated is strictly smaller than that under
(
x

(2)
1 , x2

)
. Therefore, under (x

(1)
1 , x2) the

right-hand side of (65) is strictly greater than that under (x
(2)
1 , x2). However, the left-hand side remains

the same under both (x
(h)
1 , x2), h = 1, 2. This gives a contradiction meaning that the only situation

in which both these competing models can rationalize the data is the case of the lattice structure and

relations (64) hold.

Suppose condition (b2) holds.

To establish that we necessarily have ᾰ
(2)
11 = ᾰ

(2)
21 , instead of (65) we consider Φ(ᾰ(1) − x1β1). Suppose

for simplicity that α
(1)
12 > α

(1)
11 (the case of α

(1)
12 ≤ α

(1)
11 is considered analogously)

Φ(ᾰ(1) − x1β1) = Φ(α
(1)
12 − x1β1)

−
∫ ∫

φ (η2, η1) 1
(√

1− ρ2η2 + ρη1 < α(2) − x2β2, α
(1)
11 < η1 + x1β1 ≤ α(1)

12

)
dη2dη1, (66)

implied by the fact that both structures are consistent with the observables and note the second term

on the right-hand side depends on x2,1 (since β2,1 6= 0).
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We can consider (e.g. from condition (b2)) two points
(
x1, x

(h)
2

)
, h = 1, 2, which differ only in the value

of x2,1. Without loss of generality suppose that x
(1)
2,1 > x

(2)
2,1 (and thus, β2,1 > 0). Then under (x1, x

(1)
2 )

the region over which the integral on the right-hand side of (66) is calculated is strictly smaller than

that under (x1, x
(2)
2 ). Therefore, under (x1, x

(1)
2 ) the right-hand side of (66) is strictly greater than that

under (x1, x
(2)
2 ). However, the left-hand side remains the same under both (x1, x

(h)
2 ), h = 1, 2. This gives

a contradiction meaning that the only situation in which both these competing models can rationalize

the data is the case of the lattice structure and relations (64) hold.

Step 4. If we have a lattice structure meaning that α
(2)
11 = α

(2)
21 and α

(1)
11 = α

(1)
12 , then all the parameters

of the model, including the correlation ρ will be identified from conditions in Theorem 9. �

Lemma 2 Function ψ(·, ·) defined in (56) has level curves with the following property: For any three

different level curves (υh(r), r), h = 1, 2, 3, any constant shift of the function υ3(δ)−υ1(δ)√
1+δ2

can intersect

the function υ2(δ)−υ1(δ)√
1+δ2

at most once on R.

Remark 2 If at least of the covariates in x2 is exclusive and continuous and has a non-zero coefficient

associated with it, then we can differentiate with respect to that covariate. Suppose it is x2,1:

∂P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x1, x2

)
∂x2,1

= −β2,1
1√
2π
e−

q22
2 Φ

(
q10 − ρq2√

1− ρ2

)
,

where q10 ≡ α
(1)
11 − x1β1. Since β2,1 and q2 are known, we know the left-hand side in the following

expression:

Φ−1

−√2π

β2,1
· e

q22
2 ·

∂P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x1, x2

)
∂x2,1

 =
q10 − ρq2√

1− ρ2
. (67)

Take another value of x
(1)
2,1 and consider x

(1)
2 ≡ (x

(1)
2,1, x2,2:k2) that differs from x2 only in the value of

the first component. Then analogously to above we know the left-hand side in the equation

Φ−1

−√2π

β2,1
· e

q
(1)
2

2

2 ·
∂P
(
Y (c1) = y

(1)
1 , Y (c2) = y

(2)
1 |x1, x2

)
∂x2,1

 =
q10 − ρq(1)

2√
1− ρ2

, (68)

where q
(1)
2 ≡ α(2) − x2β2.

It is easy to see now that ρ and q10 are identified from equations (67) and (68). If there are no continuous

covariates among exclusive covariates in x2, then instead of the partial derivatives we consider the

differences.
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D Additional examples, simulations, and results

D.1 Examples

This subsection contains three economics contexts that generate non-lattice models.

Example 2 (Empirically testing for selection in insurance markets) Since the seminal work

of Chiappori and Salanie (2000), several papers have empirically tested for asymmetric information

in insurance markets by estimating the correlation in lattice bivariate ordered probit models. The two

dependent variables are a dummy equal to one if an individual bought coverage (denoted y1), and y2,

which is a discrete variable representing the number of potentially claimable events the individual is

involved in (such as a crash in the case of autos, an illness with in the case of health etc.).34 Chiappori

and Salanie (2000) consider the correlation coefficient in a bivariate lattice probit using y1 and y2 as

dependent variables, and a set of demographics and other regressors on the right-hand side.35 A positive

coefficient implies that those with private characteristics inducing coverage have private characteristics

that increase the likelihood of a claimable event, implying some combination of adverse selection and

moral hazard.36 Evidence on the sign of the correlation across several papers is mixed. Chiappori and

Salanie (2000) calculates a statistically insignificant coefficient of -0.02. Finkelstein and Poterba (2004)

does not find adverse selection in coverage, but does find it on other dimensions of the contract. Finkel-

stein and McGarry (2006) finds no evidence of positive correlation between risk types and policy choices.

Fang, Keane, and Silverman (2008) calculate a negative correlation coefficient and so find evidence of

advantageous, rather than adverse selection in Medigap coverage. Cohen (2005) finds adverse selection

in auto insurance choices. Taking the validity of the correlation coefficient in the bivariate lattice probit

model as given, the mixed evidence on selection in insurance markets ran contrary to the intuition of

theorists discussing insurance markets prior to the empirical work. However, it is important to consider

that data do not exist on markets that are missing (or have unravelled) because of particularly strong

adverse selection – the data from non-missing markets are a selected set.

Despite this, the mixed evidence may result from the incorrect use of a bivariate probit model in this

context. If moral hazard exists, then the thresholds that determine the number of claimable insurance

events (α2) will depend on the presence or absence of coverage (y1), implying a non-lattice model. Resul-

tantly, researchers interested in empirically testing for asymmetric information through the correlation

34Typically authors use a dummy for y2, equal to one if the individual has any accident or crash etc. .
35Chiappori and Salanie (2000) also suggests to calculate the correlation between the generalized residuals

from two univariate probits, and provides a nonparametric χ2 test.
36Some papers estimated the correlation in a context where one of selection or moral hazard was not possible.

Otherwise, most papers attempting to separate selection from moral hazard either require exogenous variation
in coverage assignment or a structural model.
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of a bivariate model should use non-lattice models.

Example 3 (Advertisement spillover effects) Consider three firms (A, B and C) making choices

about advertisement. Advertisement slots come in discrete packages with quality (or impact) Qh and

price Ph, h = 1, . . . ,H.37 Each company buys at most one advertisement package. Bundles are ordered

so that Qh+1 > Qh and Ph+1 > Ph. The marginal price of quality must be nondecreasing in the level of

quality so that
Qh+1 −Qh
Ph+1 − Ph

is increasing in h. There are positive spillovers from advertisement. These spillovers have a triangu-

lar structure: A’s advertisement affects B’s and C’s profitability, and B’s advertisement affects C’s

profitability

UA(IA, QhA) = IA − PhA + τAQhA ,

UB(IB, QhB , QhA) = IB − PhB + τBQhB (1 + φAB(QhA)),

UC(IC , QhC , QhB , QhA) = IC − PhC + τCQhC (1 + φAC(QhA))(1 + φBC(QhB)),

where I` denotes the profitability of firm ` in the absence of advertisement, known nonnegative functions

φAB(·), φAC(·), φBC(·) capture the spillover effect from rivals’ advertisements and τ` stands for firm

`’s marginal valuation of advertisement. Assume

τ` = xβ` + ε`,

with observed x` and unobserved ε`. In the equilibrium A, B and C choose QhA, QhB and QH , respec-

tively, if and only if
PhA+1 − PhA

QhA+1 −QhA

< τA ≤
PhA+2 − PhA+1

QhA+2 −QhA+1

PhB+1 − PhB

(QhB+1 −QhB
) (1 + φAB(QhA

))
< τB ≤

PhB+2 − PhB+1

(QhB+2 −QhB+1) (1 + φAB(QhA
))

PhC+1 − PhC

(QhC+1 −QhC
) (1 + φAC(QhA

)) (1 + φBC(QhB
))
< τC ≤

PhC+1 − PhC

(QhC+1 −QhC
) (1 + φAC(QhA

)) (1 + φBC(QhB
))
.

Thus, this system leads to a hierarchical ordered response model. We can think of A first determining

all the decisions rules (thresholds) for herself, then B determining all the decisions rules (thresholds)

for herself given the decision rules by A, and finally C determining all the decisions rules (thresholds)

37For example, newspaper adverts are discrete in the sense that there may be a finite set of pages and sizes
available. The nearer the advert is to the front and the larger is the size, the higher is the quality.
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for herself given the decision rules by A and B.

In the absence of spillover effects or if such spillovers were additive rather than multiplicative, we would

end up with a lattice ordered response model.

Examples 1 and 3 are special cases of strategic interactions models that result in coherent non-lattice

frameworks. Example 2 relates to economic decisions made in several dimensions by a single agent

where actions taken by her in one dimension affect the payoff in the the other dimension and, thus,

result in a non-lattice structure. This is exactly our main intended framework. We can give additional

examples with that single decision maker paradigm:

1. A decision maker considers buying good A without knowing how valuable good B will be but

knows good B is more/less enjoyable if they have good A.

2. An academic is deciding whether to work on paper A, with the idea in mind to do paper B. The

success of paper B is unknown but will be more substantial if paper A is a success.

3. An inventor is deciding to patent invention A, knowing that patenting invention A will improve

the success of invention B, but not yet knowing whether invention B will work or not.

4. A political party is deciding whether to spend money at the start of their period of leadership,

knowing that this could help them at the end of their tenure but that they might not need to do

it if their ratings are sufficiently high.

5. A high school graduate is deciding whether to take training / do degree A, knowing that they

will face a choice of doing job B (perhaps taking over the family business). They don’t know the

success of taking job B, but they know that choice A will affect it.

There are other formats of simultaneous equations that result in non-lattice models. We finish this

section with a final example of this.

Example 4 (Financial transfers and distress) In this example, there are two dimensions with

three ordered responses in each dimension. One dimension corresponds to a parent company and the

other to a subsidiary. Let Y ∗p and Y ∗s stand for continuous metrics of financial distress of these com-

panies before any financial transfers between companies. The financial distress of one company (either

parent or subsidiary) when the other company is financially healthy may necessitate financial transfers

from the latter to the former. We can also expect that when both companies are financially distressed,

the extent of mutual help may be more limited. Also, it is possible that a moderately financially dis-

tressed subsidiary may have a better chance of getting financial support from the parent company than a
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severely distressed subsidiary, as in the latter case, the parent company may give up on the subsidiary.

To summarize, various cases of financial distress are possible, and depending on the case, different

mutual transfer scenarios will realize. Let H∗p and H∗s denote the latent financial distress post-transfers

and π > 0 denote weights. Then we model H∗p and H∗s as

H∗p = Y ∗p ·
(∑3

jp=1

∑3
js=1 π

(p)
jp,js

1
(
α

(p)
jp−1,js

< Y ∗p ≤ α
(p)
jp,js

, α
(s)
jp,js−1 < Y ∗s ≤ α

(s)
jp,js

))
,

H∗s = Y ∗s ·
(∑3

jp=1

∑3
js=1 π

(s)
jp,js

1
(
α

(p)
jp−1,js

< Y ∗p ≤ α
(p)
jp,js

, α
(s)
jp,js−1 < Y ∗s ≤ α

(s)
jp,js

))
,

α
(p)
0,js

= −∞, α
(s)
jp,0

= −∞, α
(p)
0,3 =∞, α

(s)
3,0 =∞, and the thresholds α

(p)
jp,js

and α
(s)
jp,js

, jp = 1, 2, js = 1, 2,

split the plane into a non-lattice structure. Moreover, suppose that π
(p)
jp,js
· α(p)

jp,js
does not depend on

s and is monotonic in jp, and also π
(s)
jp,js
· α(s)

jp,js
does not depend on p and is monotonic in js. In

this specification, weights π
(p)
jp,js

> 0 and π
(s)
jp,js

> 0 already incorporate the impact of mutual financial

transfers and α
(p)
jp,js

, α
(s)
jp,js

capture various ranges of pre-transfers financial distress for both companies.

We can take Y ∗p = αp + x′pβp + εp and Y ∗s = αs + x′sβs + εs, where xp and xs include various financial

indicators of the parent and subsidiary, respectively. There are three discrete measures Yp and Ys of

financial distress post-transfers denoted 0, 1 and 2, with 0 representing that a company is healthy,

1 representing moderate financial distress and 2 representing severe financial distress. The discrete

outcomes are determined according to the univariate ordered response models

Yp = jp − 1 ⇐⇒ h
(p)
jp−1 < H∗p ≤ h

(p)
jp
, jp = 1, 2, 3,

Ys = js − 1 ⇐⇒ h
(s)
js−1 < H∗s ≤ h

(s)
js
, js = 1, 2, 3,

where h
(p)
0 = h

(s)
0 = −∞, h

(p)
3 = h

(s)
3 = ∞, h

(p)
jp

= α
(p)
jp,js
· π(p)

jp,js
and h

(s)
js

= c
(s)
jp,js
· π(s)

jp,js
. This results in

the non-lattice model

Yp = jp − 1, Ys = js − 1 ⇐⇒ α
(p)
jp−1,js

< Y ∗p ≤ α
(p)
jp,js

, α
(s)
jp,js−1 < Y ∗s ≤ α

(s)
jp,js

,

which maps continuous processes for financial distress before transfers into discrete measures of financial

distress post-transfers.

D.2 Simulations

Design 2: additional details

First we present a figure of the true latent variable space in the 4 x 3 model and then we provide a

table with the simulation means and standard deviations of thresholds.
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Figure 25: Latent variable space for two equations: design 2
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Table 3: Simulation results design 2: thresholds

Parameter Truth Non-lattice model Lattice model

α
(1)
10 -3.25

-3.27 (0.12)
-1.48 (0.04)α

(1)
11 -3.24 (0.12)

α
(1)
12 -0.5 -0.50 (0.07)

α
(1)
20 0.5 0.51 (0.09)

1.59 (0.04)α
(1)
21 1 0.97 (0.14)

α
(1)
22 5 5.02 (0.13)

α
(1)
30

8
8.03 (0.19)

5.12 (0.09)α
(1)
31 8.03 (0.19)

α
(1)
32 8.03 (0.19)

α
(2)
01 -4 -3.94 (0.32)

-1.10 (0.04)α
(2)
11 -2

-2.04 (0.16)

α
(2)
21 -1.99 (0.09)

α
(2)
31 0 -0.01 (0.09)

α
(2)
02

0.5
0.50 (0.05)

0.90 (0.04)α
(2)
12 0.50 (0.05)

α
(2)
22 0.50 (0.05)

α
(2)
32 4 3.99 (0.17)

Notes: Table 3 reports the sample mean and sample standard deviations (in parenthe-
ses) of the estimates of the design 2 threshold parameters, over 250 repeated samples.
The “Non-lattice model” column provide estimates from using the newly proposed non-
lattice bivariate ordered probit model. The “Lattice model” column assumes a lattice
structure on the latent variable space.
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Table 4: Simulation results design 3

Parameter Truth Non-lattice model Lattice model

β1 1.5 1.50 (0.03) 0.73 ( 0.02)
γ1 -4 -4.01 (0.07) -2.10 ( 0.04)
β2 3 3.03 (0.13) 0.48 (0.02)
γ2 -6 -6.06 (0.25) -1.29 (0.04)
δ2 1 1.01 (0.05) 0.22 (0.01)
ρ 0.5 0.51 (0.07) -0.87 (0.01)

Notes: Table 4 reports the sample mean and sample standard deviations (in parentheses)
of the estimates of the model parameters, over 250 repeated samples. See table 1 notes for
further details about the columns.

Design 3: 7×2

We consider a design that creates a 7×2 non-lattice structure on the latent variable space. Figure 26

illustrates the non-lattice structure in D. We run this simulation to showcase the ability of our method

to arbitrarily extend the number of values taken by the discrete variables.

In this design, the common regressor x is drawn from uniform [−2, 2] and both latent equations have

excluded regressors w1, w2
iid∼ t5. We also include an additional regressor z2 in equation 2, drawn from a

logistic (2,1) distribution. The parameter corresponding to z2 is denoted δ2, so that the latent equations

read

Y ∗c1 = xβ1 + w1γ1 + ε1

Y ∗c2 = xβ2 + w2γ2 + ε2 + z2δ2

The parameter values β1, β2, γ1 and δ are the same as in design 2, and γ2 = −6, δ2 = 1. Table 5,

found in appendix D, provides the values and simulation results for the thresholds. Table 4 presents

the results for the regression parameters and the correlation coefficient. The finite sample bias in the

newly proposed method is far smaller than existing methods, and again the bivariate lattice ordered

probit method cannot estimate ρ with any degree of accuracy.
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Table 5: Simulation results design 3: thresholds

Parameter Truth Non-lattice model Lattice model

α
(1)
10 -8

-8.02 (0.15)
-4.62 (0.08)

α
(1)
11 -8.012 (0.15)

α
(1)
20 -5 -5.00 (0.11)

-0.99 (0.03)
α

(1)
21 0 0.00 (0.04)

α
(1)
30 0.5

0.50 (0.04)
0.13 (0.02)

α
(1)
31 0.50 (0.04)

α
(1)
40 2

2.01 (0.05)
1.18 (0.03)

α
(1)
41 2.001 (0.05)

α
(1)
50 3

3.01 (0.06)
1.89 ( 0.04)

α
(1)
51 3.01 (0.06)

α
(1)
60 3.5 3.51 (0.07)

2.85 (0.05)
α

(1)
61 8 8.03 (0.17)

α
(2)
01 -4 -4.03 (0.25)

0.20 (0.03)

α
(2)
11 -2 -2.01 (0.12)

α
(2)
21 -2 -2.01 (0.12)

α
(2)
31 1 1.01 (0.15)

α
(2)
41 3 3.03 ( 0.21)

α
(2)
51 7 7.08 (0.29)

α
(2)
61 7 7.08 (0.29)

Notes: Table 5 reports the sample mean and sample standard deviations (in paren-
theses) of the estimates of the design 3 parameters, over 250 repeated samples. The
“Non-lattice model” column provide estimates from using the newly proposed nonlat-
tice bivariate ordered probit model. The “Lattice model” column assumes a lattice
structure on the latent variable space.
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Figure 26: Latent variable space for two equations: Design 3
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D.3 Applications

D.3.1 Link back to the first application in Section 9.

Table 6: Estimation coefficients: identity theft and cash opinion

Variable Probit O-probit Non-lattice Lattice

Identity theft

Low Income -0.17 (0.04) -0.12 (0.11) -0.17 (0.04)

Age 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)

Male 0.02 (0.04) 0.05 (0.07) 0.02 (0.04)

Low Education -0.24 (0.05) -0.17 (0.12) -0.24 (0.05)

Opinion on cash

Low Income 0.17 (0.03) 0.14 (0.07) 0.17 (0.03)

Age 0.002 (0.00) 0.002 (0.00) 0.002 (0.00)

Male 0.12 (0.03) 0.12 (0.05) 0.12 (0.03)

Low Education 0.18 (0.04) -0.16 (0.08) 0.18 (0.04)

ρ NA NA 0.48 (0.66) -0.04 (0.02)

N 4633 4633 4633 4633

Notes: Table 6 reports coefficient estimates from the identity theft and cash opinion specification.

Columns labelled “Probit” provides estimates from univariate ordered probit models. The “Non-lattice”

column provide estimates from using the newly proposed non-lattice bivariate ordered probit model.

The “Lattice” column assumes a lattice structure, but estimates the two equations jointly. Standard

errors are reported in parentheses, and are typical standard errors except for the Non-lattice model

where they are bootstrapped.
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D.3.2 Link back to the second application in Section 9.

Table 7: Estimation coefficients: bitcoin familiarity and optimism

Variable O-Probit O-Probit Non-lattice Lattice

Familiarity with Bitcoin

Low Income -0.16 (0.06) -0.11 (0.05) -0.16 (0.06)

Age -0.02 (0.00) -0.02 (0.00) -0.01 (0.00)

Male 0.55 (0.06) 0.42 (0.06) 0.55 (0.06)

Low Education -0.54 (0.09) -0.40 (0.09) -0.54 (0.09)

Bitcoin “optimism”

Low Income 0.07 (0.06) -0.00 (0.06) 0.07 (0.06)

Age -0.01 (0.00) -0.01 (0.00) -0.01 (0.00)

Male -0.13 (0.05) 0.02 (0.06) -0.13 (0.05)

Low Education 0.13 (0.07) -0.00 (0.08) 0.13 (0.07)

ρ NA NA 0.84 (0.23) 0.03 (0.03)

N 1818 1818 1818 1818

Notes: Table 7 reports coefficient estimates from the cryptocurrency specification. See notes in Table 6 for

details on the columns. Standard errors are reported in parentheses.

D.3.3 Additional application: Adoption of online payment instruments

We study the degree of broad bracketing in the adoption of online payment instruments. We entertain

the idea that individuals may decide jointly which online payment instruments to adopt. Two of the

leading modern payment methods are PayPal and Google Pay. The relationship between the adoption

of these two online payment instruments is not immediate. Consider an individual who learns about

the existence of online payment methods. Three possibilities immediately come to mind. First, the

individual may choose between two payment methods, favoring the adoption of a single online payment

device. Choosing between payment methods would imply that the payment methods are substitutes.

Second, since there are some options to synchronize PayPal and Google Pay accounts, there may be

synergies, and as a result, they may be complements. Third, the individual may narrowly bracket

and decide whether to adopt each payment method independently, unaware of any relationship. These
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three cases would each imply a different threshold structure and estimating a non-lattice model will

differentiate among them.

We estimate the following model

PayPal = x1β1 + ε1

GooglePay = x2β2 + ε2

where PayPal and GooglePay are dummies equal to 1 if the individual uses PayPal or Google Pay

to make a purchase or pay another person in the last year, respectively. The covariate vectors x1 and

x2 are identical and are teh same as in the two applications.38

Table 8 displays estimates of β and the correlation parameter ρ across lattice and non-lattice speci-

fications. The β coefficients are broadly similar across estimation methods, but there is a significant

difference between the estimated value of ρ. In the lattice model, the estimate is 0.30, whereas in the

non-lattice model, it is 0.80.

Figures 27 and 28 show the estimated thresholds across estimation methods. In the non-lattice model,

the value of α
(1)
12 is much larger than α

(1)
11 . This difference in thresholds implies that individuals consider

both mobile payment options when deciding which to adopt, suggesting some broad bracketing in this

decision.39 More specifically, individuals’ utility from PayPal needs to pass a much higher threshold

to lead to adoption if the individual already has Google Pay relative to if they don’t. Hence, the two

options are substitutes as opposed to complements. The lattice model has no way of allowing for this

complementarity/substitutability. Instead, it forces that individual decision structures on the adoption

of PayPal and Google Pay to be independent, consistent with narrow bracketing.

38More specifically, low income is 1 if annual household income falls below $50,000, and low education is
1 if the individual did not attend college.

39We can reject the null of equality of thresholds at 5% significance.
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Figure 27: Estimates from the payment instrument example, assuming a lattice model
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Figure 28: Estimates from the payment instrument example, assuming a non-lattice model
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Table 8: Estimation coefficients: online payment instruments

Variable Probit Probit Non-lattice Lattice

PayPal adoption
Low Income -0.31 (0.04) -0.28 (0.04) -0.31 (0.04)
Age -0.01 (0.00) -0.01 (0.00) -0.01 (0.00)
Male -0.04 (0.04) -0.02 (0.04) -0.04 (0.04)
Low Education -0.34 (0.05) -0.34 (0.04) -0.34 (0.05)

Google Pay adoption
Low Income -0.01 (0.06) -0.02 (0.08) -0.01 (0.06)
Age -0.02 (0.00) -0.02 (0.00) -0.02 (0.00)
Male 0.11 (0.06) 0.07 (0.07) 0.10 (0.06)
Low Education -0.17 (0.08) -0.15 (0.09) -0.17 (0.07)
ρ NA NA 0.80 (0.30) 0.30 (0.03)
N 4634 4634 4634 4634

Notes: Table 8 reports coefficient estimates from the PayPal and Google Pay specification.
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