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Abstract

A model of differentiated public goods helps resolve all three empirical puzzles

regarding charity donations documented in Andreoni’s (1988) “The Limits of Altru-

ism”. Government contributions to charitable activities can even crowd in, instead of

crowd out, private giving. A diverse society is conceptually different from a polar-

ized one, with more (less) charity donations in the former (latter) than in a homoge-

neous society. Like any profit-seeking entrepreneurs, activist entrepreneurs also face
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1 Introduction

It has long been a puzzle in economics why people donate so much to charity. The

fact that people donate, in itself, is not a puzzle—a simple model of altruism can explain

that. Donating to charity is like contributing to a public good. When people are altruistic

and care about animal rights, they will willingly contribute to the public good of animal

rights protection. Yet altruism has it limits. When there are many citizens who are all

altruistic and care about animal rights, they will start free-riding each other and scale

down their individual contributions. Economic theory predicts that this free-riding effect

is very pervasive, so much so that it is puzzling why people, albeit being altruistic, donate

so much.

In a seminal paper aptly titled “The Limits of Altruism”, Andreoni (1988) enumerates

three empirical facts that classical models of altruism cannot explain:

1. “First, there is vast participation. According to two national surveys, over 85% of

all households make donations to charities.” Classical models, instead, predict very

narrow participation—in a large economy, only the very rich will make donations.

2. “Second, both aggregate and individual gifts are large. [. . . ] In total, the charitable

sector of the American economy accounts for about 20% of GNP. Average giving was

over $200 per household in 1971, ranging from $70 for the lowest income quartile to

$350 for the highest quartile.” Classical models, instead, predicts that most people

will donate $0, except for the very rich.

3. Third, “[e]conometric studies indicate that a one dollar increase in government

contributions to ‘charitable activities’ is associated with a decrease in private giving

of only 5 to 28 cents.” Classical models, instead, predicts that a one dollar increase in

government contributions will decrease private giving by (almost, if not exactly) one

dollar (Warr, 1982; Roberts, 1984). Intuitively, altruistic people care about outcomes:

Are animal rights adequately protected? Are the poor and sick adequately tended?

If the government has already delivered the outcomes they want, they have no

further reason to contribute.

Since Andreoni (1988), economists have suggested different theories to resolve the

puzzle. For example, people may donate simply because of warm glow (Andreoni, 1989,
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1990); and people sometimes do good deeds to assure themselves that they are indeed

good people (Bénabou and Tirole, 2002, 2006).

While we do not deny the validity and importance of these complementary theories, we

also believe the importance of altruism has been under-appreciated, due to a simplifying

assumption in classical models. Specifically, classical models typically lump all charitable

activities into a single public good. When citizens make charity donations, they all

donate to this single public good, and hence everyone is free-riding each other. In reality,

there is a garden variety of charitable activities, and different citizens may care more

about different ones—some citizens care more about quality journalism, some care more

about animal rights, some care more about cultural preservation, and yet some care more

about environmental conservation. If different citizens specialize in donating to different

charities, the free-rider problem will be much weaker than previously predicted. Yes, my

donation to the protection of animal rights benefits you too, because you care about that

too, albeit not as much as I do. But since you do not donate to the protection of animal

rights (because you care more about and hence specialize in donating to environmental

conservation), I cannot free-ride you when it comes to protecting animal rights, which I

care more about.

This paper will demonstrate how a simple model of differentiated public goods can

help resolve all three empirical puzzles regarding charity donations as documented by

Andreoni (1988). In Section 2, we start with an illustrative example with two citizens and

two differentiated public goods. The illustrative example features an equilibrium that

achieves the first best notwithstanding the presence of public goods.

In Section 3, we extend the example into a model of large economy, and show how

(1) the society as a whole contributes a non-vanishing share of its total wealth to public

goods, and (2) a non-vanishing share of citizens make strictly positive contributions to

public goods, even as we go to the large-economy limit. Both predictions differ from what

classical models predict, but are in line with what we observe in the real world.

In Section 4, we show how government contributions to public goods do not neces-

sarily crowd out, and may even crowd in, private giving. Econometricians who observe

a mixture of these crowding-in and crowding-out instances will document an average

crowding-out effect far weaker than what classical models predict.

Section 5 explores how the government should allocate its budget among different

3



public goods. It can be better to eschew allocating the budget to a public good that is

more plagued by the free-rider problem, but instead to a public good that is less plagued

but is considered by many as complementary to another public good that is plagued by

the free-rider problem.

Section 6 compares a homogeneous, a diverse, and a polarized societies. A diverse

society has the most private giving, and can have a higher welfare than a homogeneous

society. A polarized society has less private giving than a diverse society, and has the

lowest welfare.

Section 7 studies an entrepreneurial activist trying to solicit donations for a public

good. Like any profit-seeking entrepreneurs, she faces a product-design problem of how

to package different components into bundles to maximize donations.

Section 8 concludes.

2 An Illustrative Example

Consider an economy with two citizens, 1 and 2, and two differentiated public goods, X

and Y. Each citizen i has a total budget of 1 that can be divided into his private consumption

ci, his contribution xi to public good X, and his contribution yi to public good Y; i.e., his

budget constraint is ci + xi + yi ≤ 1. Let x be the total contribution to public good X (i.e.,

x = x1 + x2), and likewise for y. By the non-rivalrous nature of public goods, x is also the

amount of public good X that every citizen manages to enjoy, and likewise for y.

Citizens 1 and 2, however, have different tastes regarding these two different public

goods, with citizen 1 caring more about X and citizen 2 caring more about Y. For exam-

ple, suppose citizen 1 aggregates these two public goods using the Leontief aggregation

function of G1 = min{x, 2y}, meaning that every unit of public good Y is best consumed

with 2 units of public good X. Meanwhile, citizen 2 uses a different Leontief aggregation

function: G2 = min{2x, y}. Note that implicit in the Leontief aggregation function is the

assumption that citizens regard different public goods as complements. We shall return

to this assumption later.

Each citizen i then aggregate ci and Gi with the same utility function, say, ui = ci + f (Gi)

with some concave function f (·) that satisfies f ′(0) > 1.5 and f ′(1) < 1.

Suppose the citizens make their public-good contributions simultaneously. This is

4



then a perfect-information simultaneous-move game. It is easy to guess the (unique)

equilibrium of this game. Since the two citizens are symmetric (albeit different), it is easy

to guess that the equilibrium is also symmetric in the sense that x = y. But citizen 1

cares more about public good x, and hence when x = y, he would rather scale back his

contribution y1 to public good Y and move the money to public good X, unless y1 has

already hit the lower bound of 0. Therefore, in equilibrium, it must be the case that citizen

1 contributes only to public good X, and citizen 2 only to Y; i.e., x1 = x = y = y2 and

y1 = 0 = x2.

With x = y, citizen 1’s utility is u1 = c1 + f (G1) = c1 + f (min{x, 2y}) = c1 + f (x). He

willingly contributes x1 to public good X up to the level x1 = x only if f ′(x) = 1. A

symmetric argument, with citizen 2 and public good Y replacing citizen 1 and public

good X, respectively, suggests that f ′(y) = 1 as well. We hence obtain the equilibrium

level of public good provision: x = ( f ′)−1(1) = y.1

In contrast to almost all other games of public good provision, there is no suboptimal

provision in the above equilibrium. Indeed, the equilibrium levels of public goods imple-

ment the first best. A social planner who can dictate
{
(xi, yi)

}
i=1,2 and maximizes u1 + u2

will choose x and y to maximize f (min{x, 2y}) + f (min{2x, y})− x− y. This would lead her

to choose x = ( f ′)−1 = y as well.

The result that the equilibrium level of public good provision is as high as the first best

level is of course very extreme. We have pulled many strings in this illustrative example

to cook up this extreme result in order to make our point as sharp as possible. There are

many ways to kill this extreme result. For example, if there are multiple clones of citizen 1

(and likewise multiple clones of citizen 2), then, while all clones of citizen 1 (2) continue to

contribute only to public good X (Y), and hence there is sill no free-riding across groups,

there will be free-riding within groups—each clone of citizen 1 will free-ride other clones

of citizen 1, and likewise for clones of citizen 2. Such within-group free-riding will drive

a wedge between the equilibrium level of public good provision and the first best level.

For another example, if we replace the Leontief aggregation function with something

smoother, then, at the equilibrium level of public good provision, an extra dollar citizen

1 contributes to public good X will generate positive marginal utility for citizen 2, an

externality that citizen 1 does not internalize. Once again, there will be a wedge between
1The assumption of f ′(1) < 1 guarantees an interior solution; i.e., x = y < 1. The assumption of f ′(0) > 1.5

guarantees that it is not an equilibrium for both citizens not to make any contribution.
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the equilibrium level of public good provision and the first best level.

But the main insight of our illustrative example remains: the facts that public goods

are differentiated, and that different citizens care more about different ones, go a long way

in explaining why the free-rider problem is much weaker than classical models predict.

3 Large Economy

Our illustrative example above has only two citizens. Since empirical puzzles regard-

ing charity donations are all expressed in the context of a large economy (Andreoni, 1988),

it is hence important to extent our illustrative example to a large economy.

If we increase the number of citizens while keeping the number of differentiated

public goods at two, apparently within-group (that is, within the group of citizens who

contribute only to, say, public good X) free-riding effect will kick in very fast, rendering

both the proportion of contributing citizens and average contributions converging to zero,

replicating the empirical failures of classical models.

However, in a large economy it can only be natural to have a large variety of public

goods as well—some citizens care more about quality journalism, some care more about

animal rights, some care more about cultural preservation, and yet some care more about

environmental conservation. In a large economy where both the number of citizens and

the number of differentiated public goods increase to infinity, the insight of our illustrative

example will be reserved. In particular, free-riding is not going to be so pervasive as to

drive the proportion of donating citizens to zero.

To illustrate this, let’s consider a sequence of societies, k = 1, 2, . . ., each characterized

by a vector (nk,mk), where nk is the number of citizens in the society, and mk is the number of

different types (to be explained below) these citizens are evenly divided into. Specifically,

tk := nk/mk is an integer, and there are exactly tk citizens belonging to each type θ ∈ Θk,

where Θk is the set of possible types, with |Θk| = mk.

We assume that both nk and mk increase in k without bound, and that t∞ := limk→∞ tk

exists but is possibly infinite. We are interested in two cases. The first is that mk = o (nk),

which will behave similarly to classical models.2 The second is that mk = O (nk) but not

2Our model, however, does not nest the classical models. Classical models feature mk ≡ 1, whereas our
model features mk increasing in k without bound.
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mk = o (nk), which will behave similarly to the illustrative example in Section 2. These two

cases correspond to two possible ways in which New York City grows. The first is that it

grows by admitting immigrants from more or less the same origins of its existing residents.

The second is that it grows by admitting immigrants from origins vastly different from

those of its existing residents. The former results in a homogeneous megacity. The latter

results in a pluralistic society.

There is a countably infinite set, Ω, of differentiated public goods, with ω being a

generic element. For any k, the type set Θk is a subset of Ω. Each citizen i ∈ {1, 2, . . . ,nk}

has a total budget of 1 that can be divided into his private consumption, ci, and his

contribution xi(ω) to each public good ω; i.e., his budget constraint is ci +
∑
ω xi(ω) ≤ 1.

The total contribution to (same as the provision of) public good ω is then x(ω) =
∑

i xi(ω).

A citizen with type θ ∈ Θk ⊂ Ω aggregates the differentiated public goods using the

following aggregation function:

Gθ = A · g(x(θ)) +
∑
ω,θ

a · g(x(ω)),

where x(ω) is the provision of (same as the total contribution to) public good ω, A and a

are two constants satisfying A > a > 0, and g(·) is strictly increasing and strictly concave

function satisfying g′(0) < ∞ and limx→∞ g′(x) = 0. In other words, a type-θ citizen cares

more about public good θ, and cares equally little about every other public good.

A type-θ citizen i then aggregates ci and Gθ using a common utility function:

U = u (ci) + H (Gθ) ,

where u(·) is strictly increasing and concave, and H(·) is strictly increasing. We also assume

that u(·) is strictly concave in the current section, but find it more convenient to work with

a linear u(·) in many examples in later sections. In later sections, we will also study the

implications of the extra assumption that H(·) is strictly convex. In the current section,

however, we do not make this extra assumption, and allow for H(·) to have any shape

except for being asymptotically linear. Specifically, we assume that h := limG→∞H′(G)

exists and is strictly positive but finite, and limG→∞H′′(G) = 0. Finally, we assume the

following:

h · A · g′(0) > u′(1) > h · a · g′(0). (1)
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Variants of condition (1) will appear repeatedly in later sections. Their exact meanings

differ slightly, but all are meant to guarantee that a citizen only contributes to his favorite

public good but not to any others.

For any k, there is a complete-information simultaneous-move public-good provision

game, where citizens choose how to allocate their budgets simultaneously. Our solution

concept is pure-strategy Nash equilibrium. We further focus on Nash equilibria that

are symmetric, where different citizens with different types play the same strategy up

to relabelling. We refer to a pure-strategy symmetric Nash equilibrium simply as an

equilibrium.

We first establish the existence of a specific kind of equilibrium in a large economy.

Lemma 1 There exist constants x > 0 and M such that, for any society (n,m) with m > M, there

exists an equilibrium where, for every θ ∈ Θ, the total contribution x(θ) to public good θ is at least

x. Moreover, every type-θ citizen contributes only to public good θ and not to any other public

goods.

The proof of Lemma 1 is relegated to Appendix A. Since we do not want to impose

the assumption that H(·) is concave (in later sections, we will actually assume that it is

strictly convex), we cannot guarantee the convexity (in the space of pure strategies) of a

generic citizen’s best-response correspondence. We hence cannot apply Kakutani’s Fixed

Point Theorem to establish the existence of a pure strategy equilibrium. However, the

asymptotic linearity of H(·) guarantees that the composite function H(A ·g(·)+z) is concave

for large enough z, which is what we need to prove the existence of an equilibrium in a

large economy.

Without further restrictions on the shape of H(·) as a function of G in the range where

G is small, we do not know whether or not there also exist other equilibria where the

total contribution to any public good is vanishingly small in a large economy. What

Lemma 1 establishes is the existence of a specific kind of equilibrium, namely one where

the total contribution to any public good is at least some minimal amount. When every

other public good θ′ , θ receives at least a minimal amount of total contribution, type-θ

citizens will perceive a large aggregate public good Gθ in a large economy. This allows

us to take advantage of the asymptotic property of H(·) and argue that these citizens as a

group will also have incentives to contribute a minimal amount to public good θ as well.
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Finally, that every type-θ citizen contributes only to public good θ but not to any other

public goods is a direct consequence of condition (1).

3.1 Homogeneous Megacity

A homogeneous megacity refers to the large-k limit of a sequence of societies, k =

1, 2, . . ., where mk = o (nk). In this case, t∞ := limk→∞ tk = ∞.

Proposition 1 Suppose mk = o (nk). For any ε > 0, for any society with large enough k, in any

equilibrium, every citizen contributes to public goods a share of his budget smaller than ε.

Part of the Proof: The full proof is relegated to Appendix A. Here we provide only part

of the proof. Suppose there exists an ε > 0 (which is independent of k) such that, for every

K, there exists a society k > K such that there exists an equilibrium where every citizen

contributes to public goods a share of his budget larger than ε.3 Suppose, furthermore,

the equilibrium takes the form as the one in Lemma 1; i.e., every type-θ contributes only

to public good θ and not to any other public good. As K and hence the corresponding k

go to infinity, Gθ > (mk − 1) · a · g (tkε) (for any type θ ∈ Θk) will also go to infinity, and

hence H′ (Gθ) will go to h. Meanwhile, x(θ) > (tk − 1) εwill also goes to infinity, and hence

g′(x(θ)) will go to 0. Therefore, in any such society with large enough k, we must have

u′(1) > H′ (Gθ) · A · g′(x(θ)) and hence no type-θ citizen will have incentives to contribute

to public good θ, a contradiction. �

Since citizens are symmetric, if every citizen contributes a vanishingly small share of

his budget to public goods, the society as a whole contributes a vanishingly small share

of its total wealth to all public goods combined. This is the same as one of the three

predictions of the classical models that were, as Andreoni (1988) pointed out, at odds with

empirical facts.

3.2 Pluralistic Society

A pluralistic society refers to the large-k limit of a sequence of societies, k = 1, 2, . . .,

where mk = O (nk) but not mk = o (nk). In this case, t∞ := limk→∞ tk < ∞.
3Recall that we are focusing on symmetric equilibria. Therefore, if one citizen contributes to public goods

a share of his budget larger than ε in an equilibrium, every citizen does in that equilibrium.
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Proposition 2 Suppose mk = O (nk) but not mk = o (nk). There exists s > 0 (which is independent

of k) such that, for any society with large enough k, there exists an equilibrium where every citizen

contributes at least an s share of his budget to public goods.

Proof: Proposition 2 follows immediately from Lemma 1. Let s = x/t∞ > 0, and consider

any k large enough so that mk > M, where x and M are as stated in Lemma 1. By Lemma 1,

there exists an equilibrium where every public good θ ∈ Θk receives a total contribution

of at least x, and from type-θ citizens only. Therefore, every type-θ citizen contributes at

least an s share of his budget to public goods. �

In a pluralistic society, in contrast to a homogeneous megacity, the society as a whole

contributes a non-vanishing share of its total wealth to all public goods combined. This is

in line with what we observe in the real world.

3.3 Heterogeneous Wealth

So far we have only considered symmetric citizens. It is easy to extend our model to

allow for citizens with heterogeneous wealth.

Suppose, for any society with vector (nk,mk), there is a common empirical distribution

Fk of wealth in every sub-population of citizens with the same type, with the maximum

wealth equal to 1. Adapt the definition of a symmetric equilibrium to this setting by

requiring only that citizens with the same wealth play the same strategy up to relabelling.

Lemma 1 continues to hold in this setting, with a slightly modified proof (see Appendex

A). In any equilibrium satisfying the description in Lemma 1, for any θ ∈ Θk, some

type-θ citizens, at least the richest one among them, must be contributing to public good

θ. Therefore, the proportion of citizens making strictly positive contributions to public

goods is at least 1/tk. In a pluralistic society, that minimal share converges to 1/t∞ > 0 as

k goes to infinity.

Proposition 3 Suppose mk = O (nk) but not mk = o (nk). There exists s > 0 (which is independent

of k) such that, for any society with large enough k, there exists an equilibrium where at least an s

share of citizens make strictly positive contributions to public goods.

In a pluralistic society, in contrast to what classical models predicted, a non-vanishing
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share of citizens make strictly positive contributions to public goods. This is in line with

what we observe in the real world.

4 Crowding In vs Crowding Out

A model of differentiated public goods can also help address the puzzle of why a

one dollar increase in government contributions to charitable activities does not decrease

private giving by (almost, if not exactly) one dollar. To understand how, let’s first review

why the classic theory (with only one public good) predicts a dollar-by-dollar crowding

out effect.

Example 1: Consider a one-citizen economy where, in the absence of the government,

the citizen optimally splits his budget of $1 by spending $1/2 on private consumption

and contributing $1/2 to the single public good.4 Suppose the government levies a tax of

$1/2 on this citizen and contributes the tax revenue to the public good. The citizen will

reason that his optimal split is still achieved, albeit indirectly through the government. So

he will spend the remaining $1/2 on private consumption, and consume the $1/2 public

good provided by the government. In other words, his original private contribution is

crowded out dollar-by-dollar. �

It is true that the classical theory does not predict that the crowding-out effect is always

dollar-by-dollar. If the government instead levies a tax of $2/3 on the citizen and contribute

the tax revenue to the public good, this will crowd out the citizen’s private contribution

by at most $1/2, and hence the crowding-out effect is not dollar-by-dollar. However, for

small government contributions the crowding-out effect remains dollar-by-dollar.

Example 2: To illustrate how introducing differentiated public goods can help destroy

the prediction of dollar-by-dollar crowding-out effect, it suffices to continue with the

example of a one-citizen economy. Suppose there are two differentiated public goods: θ

and ω. Suppose the citizen is of type θ, and has the utility function

U = c + A · g(x(θ)) + a · g(x(ω));

4One may complain that there cannot be any meaningful “public” good in a one-citizen economy. But
this (silly) example helps bring home the fact that the “public-ness” of a good plays no role in the reasoning.
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i.e., both u(·) and H(·) are identity functions. Suppose

A · g′(0) > 1 > A · g′(1) (2)

and

1 ≥ a · g′(0). (3)

Then, in the absence of the government, the citizen contributes χ∗ ∈ (0, 1) to public good

θ, contributes nothing to public good ω, and spends the remaining 1 − χ∗ on private

conumption, where χ∗ solves the first order condition

A · g′(χ) = 1. (4)

Suppose the government levies an arbitrarily small tax of ε > 0 on the citizen and con-

tributes the tax revenue to public goodω. The citizen, after re-optimization, will continues

to contribute χ∗ to public good θ and reduces his private consumption to 1 − χ∗ − ε. �

The result of no crowding-out effect is admittedly extreme, and relies on the linearity

of u(·). If u(·) is instead strictly concave, as assumed in Section 3, there will again be some

crowding-out effect, but still less than dollar-by-dollar.

More interestingly, it takes only a tiny little step to go from an example with no

crowding-out effect to one with a crowding-in effect. Modify the above example slightly

so that H(·) is no longer the identity function but a strictly increasing and strictly convex

function instead. This in effect makes the public goods θ andω complements. An increase

in government contributions to public good ω will then increase the citizen’s marginal

gain in contributing to public good θ and crowd-in his private contribution to public

goods. Econometricians who observe a mixture of these crowding-in and crowding-out

instances will document an average crowding-out effect far weaker than what classical

models predict.

Example 3: Specifically, suppose H(·) is only “slightly” convex in the sense that H′(0) and

H′(A · g(1)) remains close enough to 1 so that the following modified version of condition

(2) remains true:

H′(0) · A · g′(0) > 1 > H′(A · g(1)) · A · g′(1). (5)
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Suppose a remain sufficiently small so that the following modified version of condition

(3) holds:

1 ≥ H′(A · g(1)) · a · g′(0), (6)

which guarantees that it never pays for the citizen to contribute to public good ω.

Then, in the absence of the government, the citizen will contribute an interior amount

χ∗ ∈ (0, 1) to public good θ and spend the remaining 1 − χ∗ on private consumption. Sup-

pose the government levies an arbitrarily small tax of ε > 0 on the citizen and contributes

the tax revenue to public good ω. Any contribution χ < χ∗ to public good θ remains

suboptimal for the citizen because

[(1 − ε) − χ] + H(A · g(χ) + a · g(ε)) = (1 − χ) + H(A · g(χ)) − ε + [H(A · g(χ) + a · g(ε)) −H(A · g(χ))]

< (1 − χ∗) + H(A · g(χ∗)) − ε + [H(A · g(χ∗) + a · g(ε)) −H(A · g(χ∗))]

= [(1 − ε) − χ∗] + H(A · g(χ∗) + a · g(ε)),

where the inequality follows from the suboptimality of χ in the absence of the govern-

ment and from the strict convexity of H(·). Meanwhile, the citizen’s marginal gain from

contributing to public good θ at χ = χ∗ becomes

H′(A · g(χ∗) + a · g(ε)) · A · g′(χ∗) > 1

due to the strict convexity of H(·). As a result, he increases his contribution χ to public

good θ beyond χ∗, and we witness a strictly positive crowding-in effect.

Note that, since H(·) is strictly convex, the composite function H(A · g(·)) needs not be

concave even though g(·) is strictly concave. As a result, the first order condition

H′ (Gθ) · A · g′(χ) = 1

is necessary but not sufficient for optimality. Nevertheless, the crowding-in effect still

follows from the standard argument in monotone comparative statics. �

Do citizens regard different charitable activities as substitutes or as complements? Our

own introspection suggests that we, as examples of citizens, do regard many different
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charitable activities as complements. Many of us, to the extent affordable, would like to

move into a “beautiful community”, where air is clean, fellow citizens are caring, and

civic culture is vibrant. When some of these components are missing, even if we cannot

afford to move out, we would start to feel detached, so much so that we decrease our civic

engagement and our contributions to charitable activities. To the extent that this is more

than our own personal experiences but rather a general phenomenon, the crowding-in

effect is real, and can go a long way in explaining the empirical puzzle of why crowding

out is not complete.

Incidentally, prominent economists making plans for the reconstruction of Ukraine’s

war-torn economy also seem to believe that the crowding-in effect is real. Lawrence H.

Summers and colleagues, for example, suggested on Foreign Affairs that “[a]lthough much

assistance could eventually come from private investors, private money will follow or be

secured only by very large grants of public funds.”5

Ultimately, whether they are correct is an empirical question that we may have to leave

for future empirical studies. This paper can be viewed as laying down the ground work for

these empirical studies by deriving the testable implications of a model of differentiated

public goods.

5 Government Policies

One may observe that, in all three examples in Section 4, government contributions

to public goods are either irrelevant or counterproductive—had they been good for the

citizen, he would have already done it by himself in the absence of the government.

This dismal result is of course an artefact of a one-citizen economy, where no meaningful

“public” good exists. When there are two or more citizens, public good provision is

typically suboptimal due to the free-rider problem. Government contributions to public

goods, especially if they crowd in instead of crowd out private giving, can easily improve

welfare.

In classical models, where there is only one public good, there is not much room

for government policies, except for different ways to tax citizens in order to finance the

5Lawrence H. Summers, Philip Zelikow, and Robert B. Zoellick, “The Other Counteroffensive to Save
Ukraine”, Foreign Affairs, June 15, 2023.
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government’s contribution to that single public good. Bergstrom, Blume, and Varian

(1986) argued that, if the government wants to boost the total public good contribution,

it may need to tax the poor instead of the rich. The reason is that the rich are making

positive contributions to the public good, and hence taxing them would only reduce these

citizens’ contributions dollar-by-dollar. Taxing the poor would not have this drawback,

because their contributions to the public good is already at the lower bound of zero.

Andreoni (1989), after introducing “impure altruism” and “warm glow”, argued instead

that the government should tax those who enjoy more from donating. These are exactly

the citizens who would not scale back their donations by too much after being taxed.

A model of differentiated public goods allows us to study many more government

policies. In particular, instead of merely choosing who to tax, the government can also

choose how to allocate a given budget to the many differentiated public goods. One

obvious principle is that the government should allocate the budget to those public goods

that (1) few citizens care the most about, and (2) many citizens consider as complementary

to what they care the most about. This helps avoid running into the crowding-out effect

and helps unleash the crowding-in effect. But there is also a less obvious tradeoff between

allocating the budget to a public good that is more plagued by the free-rider problem,

and allocating it to a public good that is less plagued but is considered by many as

complementary to another public good that is plagued by the free-rider problem. We

illustrate this tradeoff in an example in Appendix B. We, however, are not able to obtain

general principles regarding how to balance this tradeoff. The optimal policy seems to be

sensitive to model parameters, and we leave its exploration to future research.

6 Diversity and Polarization

While there is a common understanding of what it means by a homogeneous commu-

nity, the notion of a heterogeneous community often invokes two mutually contradictory

connotations. Some think of it as a diverse society, while others think of it as a polarized

one. The former is often associated with a vibrant and harmonious society, while the latter

not. A model of differentiated public goods can help reconcile this seeming contradiction

by associating a diverse and a polarized communities with two different kinds of hetero-

geneous communities. A diverse community is a heterogeneous community of the kind
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we have been describing so far. Here, heterogeneity helps alleviate the free-rider problem,

and move the equilibrium level of public good provision closer to the first best.

A polarized community can be thought of as a heterogeneous community of a different

kind. Imagine that there are two groups of differentiated public goods. The first group,

Ω, is regarded by Democrats as public goods, but regarded by Republicans as public

bads. One possible example is the protection of abortion right. Symmetrically, the second

group, Ω̂, is regarded by Republicans as public goods, but regarded by Democrats as

public bads. One possible example is the protection of the right to bear arms. Suppose

higher total contributions to public goods in Ω̂ reduces Democrats’ marginal utilities of

public goods in Ω, and likewise higher total contributions to public goods in Ω reduces

Republicans’ marginal utilities of public goods in Ω̂. Then, in a polarized community

roughly equally divided into Democrats and Republicans, each group’s contributions to

their favorite public goods will depress the other group’s enthusiasm in contributing to

theirs, and vice versa. This explains why communities with more polarized citizens tend

to donate less to charity (Sullivan, 2018).

To illustrate, consider a society with two citizens and two groups of differentiated

public goods: Ω = {θ1, θ2} and Ω̂ =
{
θ̂1, θ̂2

}
. The utility function of a type-θ1 citizen is

U = c + H
(
Gθ1

)
with

Gθ1 = A · g (x (θ1)) + a · g (x (θ2)) − b ·
∑
θ̂∈Ω̂

g
(
x
(
θ̂
))
,

where H(·) is strictly increasing and strictly convex, and A > a, b > 0. For this citizen, any

θ̂ ∈ Ω̂ is more a public bad than a public good. Likewise for the utility function of a citizen

with type θ2, θ̂1, or θ̂2.

In this setting, a homogeneous society can be thought of a society where both citizens

are of the same type, say θ1. A diverse society is one where one citizen is of type θ1 and

the other is of type θ2. A polarized society is one where one citizen is of type θ1 and the

other is of type θ̂1. We shall study each of these societies in turn.

Note that, anticipating what may happen in a polarized society, Gθ1 can be as negative

as −b · g(1). Therefore, H(·) needs to be a function defined over [−b · g(1),∞).
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Let’s continue to assume condition (5), which we replicate here as for easy reference:

H′(0) · A · g′(0) > 1 > H′(A · g(1)) · A · g′(1). (7)

It says that, in a (fictitious) one-citizen economy, the single citizen would have contributed

an interior amount χ∗ ∈ (0, 1) to his favorite public good. Let’s also assume that the

following modified version of condition (6) holds:

1 ≥ H′(A · g(2)) · a · g′(0), (8)

which guarantees that it never pays for a type-θ1 citizen to contribute to public good θ2.

Assume also that the convexity of H(·) is mild relative to the concavity of g(·) so that

the composite function H(A · g(x) + z) remains strictly concave in x for any z ≥ −b · g(1). In

Appendix C, we provide an example with H(·) and g(·) that jointly satisfy this condition,

as well as conditions (7) and (8) above and condition (12) below.

Consider the homogeneous society first. In equilibrium, neither citizen will contribute

to any public good other than θ1. With a quasi-linear utility function, there are multiple

equilibria, each with a different way the total contribution to public good θ1 is split

between the two citizens. But the total contribution x (θ1) must be uniquely pinned down

by the first order condition

H′(A · g(x)) · A · g′(x) = 1 (9)

(“≤” if x = 0, and “≥” if x = 2), thanks to the strict convexity of the composite function

H(A · g(x)+z) (with z = 0). By condition (7), the unique solution of the first order condition

is some xh ∈ (0, 1). In a symmetric equilibrium, each citizen contributes xh/2 to public

good θ1, nothing to any other public good, and spends the remaining 1 − xh/2 on private

consumption.

In the diverse society, each citizen contributes xd to his favorite public good, where xd

is uniquely pinned down by the first order condition

H′((A + a) · g(x)) · A · g′(x) = 1 (10)

(“≤ if x = 0, and “≥” if x = 1), again thanks to the strict convexity of the composite function

H(A · g(x) + z) (with z = a · g(xd)). Comparing (10) against (9), we have xd > xh.
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In the polarized society, each citizen contributes xp to his favorite public good, where

xp is uniquely pinned down by the first order condition

H′((A − b) · g(x)) · A · g′(x) = 1 (11)

(“≤ if x = 0, and “≥” if x = 1), again thanks to the strict convexity of the composite function

H(A · g(x) + z) (with z = −b · g(xp)). Comparing (11) against (9), we have xp < xh.

The three societies are hence unambiguously ordered in terms of total contribution to

public good θ1: the diverse society has the most at xd, the homogeneous society has the

middle at xh, and the polarized society has the least at xp.

The same ordering holds in terms of the aggregate public good Gθ1 from the perspective

of a type-θ1 citizen: the diverse society has the most at Gθ1 = (A+a)·g(xd), the homogeneous

society has the middle at Gθ1 = A · g(xh), and the polarized society has the least at

Gθ1 = (A − b) · g(xp).

In terms of a type-θ1 citizen’s contribution to all public goods combined, which may

be what econometricians observe, the diverse society still has the most at xd, while the

comparison between the homogeneous society (with xh/2) and the polarized society (with

xp) is now ambiguous.

In terms of the welfare of a type-θ1 citizen, the polarized society is unambiguously the

worst. He fares worse than in a (fictitious) one-citizen economy, where he would have

contributed xh to public good θ1 as well, as the first order condition is the same as that in

the homogeneous society. In a polarized society, it is as if he is given a worse production

function of public good θ1.

The welfare comparison between the homogeneous society and the diverse society is

ambiguous. From the perspective of a type-θ1 citizen, the advantage of the homogeneous

society is that he gets to have his fellow citizen paying xh/2 to his favorite public good θ1.

In a diverse society, he will have to foot the whole bill himself. On the other hand, the

advantage of the diverse society is that he gets to have his fellow citizen paying more than

double of xh/2 (as xd > xh), albeit to a public good that is not his favorite. Which society is

better for him depends on how much he cares about public good θ2; that is, it depends on

the size of a.

Apparently, if a is arbitrarily small, he cares very little about public good θ2, and hence

the homogeneous society will bring him higher welfare. On the other hand, a sufficient
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condition for the diverse society to have a higher welfare than the homogeneous society

is

a ≥ A/2, (12)

which we prove in the following proposition.

Proposition 4 In the two-citizen model in this section, the diverse society has the highest total

contribution to a single public good, the highest aggregate public good from the perspective of a

single citizen, and the highest public good contribution from a single citizen. The polarized society

has the lowest total contribution to a single public good, the lowest aggregate public good from

the perspective of a single citizen, and the lowest welfare. The homogeneous society has a higher

welfare than the diverse society when a is small enough. The diverse society has a higher welfare

than the homogeneous society when a ≥ A/2.

Proof: We shall prove only the last sentence of the proposition. The proof has two steps.

We first prove that, starting from the equilibrium in the homogeneous society, a type-θ1

citizen is better off when he doubles his contribution to public good θ1 from xh/2 to xh,

while his fellow citizen also doubles his contribution from xh/2 to xh but switches it from

public good θ1 to θ2. Formally, we prove that the indirect utility function

U(∆) = [1 − xh/2 − ∆] + H(A · g(xh) + a · g(2∆))

is increasing in ∆ for any ∆ ∈ (0, xh/2). This is true because

U′(∆) = H′
(
A · g (xh) + a · g(2∆)

)
· 2a · g′(2∆) − 1

> H′
(
A · g (xh)

)
· A · g′ (xh) − 1

= 0,

where the inequality follows from the strict convexity of H(·), from a ≥ A/2, and from the

strict concavity of g(·), and the last equality follows from the first order condition (9).

We next prove that the type-θ1 citizen is better off when both his and his fellow citizen’s

contributions to public goods θ1 and θ2, respectively, further increase from xh to xd. This
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is true because

[1 − xd] + H
(
A · g (xd) + a · g (xd)

)
> [1 − xh] + H

(
A · g (xh) + a · g (xd)

)
> [1 − xh] + H

(
A · g (xh) + a · g (xh)

)
,

where the first inequality follows from the fact that xd is the citizen’s unique best response,

and the second inequality follows from xd > xh. �

7 Designing a Public Good

Our usual concept of public goods has been heavily shaped by classical models. In

classical models, where there is only one public good, it is implicitly assumed that the

single public good comes exogenously instead of being invented by any entrepreneur. This

stands in sharp contrast to models of differentiated private goods such as Dixit and Stiglitz

(1977), where new varieties are invented by new entrepreneurs entering the market. In

reality, differentiated public goods are not unlike differentiated private goods, and are

often inventions of entrepreneurial activists. Entrepreneurial activists—we may call them

activist entrepreneurs—invent new varieties of public goods, market them to the public,

and solicit donations so that they can scale up and reach more beneficiaries. A new variety

can be a new product whose target users are too poor to pay for it (such as a purification

straw, targeting users who have no access to treated water and have to drink directly from

the river), or a new service whose provision was previously thought impossible (such as

humanitarian medical care in conflict zones, as professionally provided by Médecins Sans

Frontières).

Just like a new variety of private good, a new variety of public good often comes with

several different components. Its inventor needs to make a non-trivial product-design

decision on whether to bundle these components and market the composite good as a

whole, or to market each component separately. The former gives the inventor more

control on the composition within the bundle, whereas the latter allows the inventor to

tap into the public’s heterogeneous preferences over separate components and collect

more donations. We provide a preliminary exploration of this tradeoff in this section.

Consider a society with two citizens, an activist entrepreneur, and N ≥ 2 public goods:
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Ω = {θ1, θ2, . . . , θN}. We may alternatively interpret these θ’s as N different components

of a single public good. For example, we can think of them as N different conflict zones

where Médecins Sans Frontières operates. Among them, θ1 and θ2 are conflict zones that

potential donors are more familiar with (say Gaza and Ukraine), and hence each is the

favorite public good of one of the citizens. All other θ’s are conflict zones that rarely

appear in the news, and hence none is the favorite public good of any citizen.

Specifically, each citizen i, i = 1, 2, has a budget of 1, is of type θi, and has a utility

function of

Ui = ci + A · g (x (θi)) + a ·
∑
θ,θi

g(x(θ)),

where A, a and g(·) satisfy conditions (2) and (3).

The activist entrepreneur has a budget of 0, but is uniquely capable of transforming

citizens’ donations into the N public goods. Unlike the citizens, she cares about each

conflict zone equally. Her favorite allocation of resources among different conflict zones,

however, depends on where humanitarian crises arise, which cannot be known ex ante

at the time when donations are solicited. Specifically, for each i = 1, 2, . . . ,N, her utility

function will be

Ue = x (θi)

with probability 1/N.

We first consider the case where the activist entrepreneur markets and solicits dona-

tions for the N public goods separately. Under condition (3), citizen i will not contribute

to any public good θ , θi, and will contribute to public good θi up to χ∗, where χ∗ solves

the first order condition of

A · g′(χ) = 1.

The activist entrepreneur’s expected utility is hence Us
e = 2χ∗/N (with the superscript s

denoting “separating”).

Next consider the alternative case where the activist entrepreneur bundles the N public

goods and market Ω as a whole. Let X be the total donations she collects. For simplicity,

let’s also assume that the activist entrepreneur does not commit to any specific allocation

of X among the N pubic goods, and preserves the discretion to allocate the whole of X to

whichever public good that needs resources the most ex post. The two citizens hence play

the public-good contribution game anticipating this subsequent behavior of the activist
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entrepreneur.

If X > 0, one of the citizens must be contributing a strictly positive amount. The

marginal gain of his last dollar of contribution is [(A + (N − 1)a)/N] · g′(X), while the

marginal cost is 1. Therefore, he is willing to contribute that last dollar only if

A + (N − 1)a
N

· g′(X) ≥ 1, (13)

with “=” if his contribution is strictly less than 1. By condition (2),

A + (N − 1)a
N

· g′(1) < A · g′(1) < 1,

and hence we have X < 1 and (13) holds with equality. On the other hand, if X = 0, then

neither citizen is willing to contribute the first dollar, and hence we must have

A + (N − 1)a
N

· g′(0) ≤ 1.

In summary, the activist entrepreneur’s expected utility is Ub
e = X∗ (with the superscript b

denoting “bundling”), where X∗ solves the first order condition of

A + (N − 1)a
N

· g′(X) ≤ 1, (14)

with “=” if X∗ > 0.

We can now readily see that, when every public good is the favorite of some citizens

(i.e., when N = 2), separating is always better than bundling, because

Us
e = χ∗ = (g′)−1

( 1
A

)
> (g′)−1

( 2
A + a

)
= X∗ = Ub

e ,

where the strict inequality follows from
(
g′
)−1 (1/A) > 0 by condition (2).6 Although

bundling allows the activist entrepreneur to move the total donations X∗ to whichever

public good that needs resources the most ex post, this flexibility lowers the citizens’

incentive to donate. If the activist entrepreneur markets the two public goods separately,

not only that the elimination of ex post flexibility makes citizens more eager to donate

6We adopt the convention that
(
g′

)−1 (z) = 0 if z ≥ g′(0).

22



(resulting in χ∗ > X∗), citizens’ heterogeneity also leads them to channel this higher

eagerness towards different public goods. When every public good is the favorite of some

citizens, all public goods are adequately “covered” in this way, with none being left in the

cold, and hence ex post flexibility is not valuable.

This is no longer true when some public goods are not the favorite of any citizen (i.e.,

when N > 2). In this case, separating will leave only θ1 and θ2 “covered”, and leave all

other public goods in the cold. This in itself does not imply the superiority of bundling.

As before, bundling comes with ex post flexibility, which depresses citizens’ incentives to

donate, and if anything even more so when N increases.

Mathematically, as N increases beyond 2, both Us
e and Ub

e decrease. Us
e decreases

because it becomes more and more likely that the public good that needs resources the

most ex post does not get funded. Ub
e decreases because citizens gets more and more

discouraged to contribute, as it is less and less likely that the total donations will be

allocated to their favorite public goods. Without further assumptions on A, a, and g(·),

we do not know which of these two will decrease faster. As Example 4 below shows, it is

possible that bundling is strictly better than separating (i.e., Ub
e > Us

e) for some N > 2.

Even when bundling beats separating, it is strictly dominated by yet another strategy,

which we may call “separate bundles” (SB). Let M = N/2 if N is even, and M = (N−1)/2 if N

is odd. Suppose the activist entrepreneur partition Ω into bundles Ω1 = {θ1, θ3, . . . , θ2M−1}

and Ω2 = {θ2, θ4, . . . , θ2M, θN}.7 Suppose she markets each bundle separately, promising

that the total donations Xi to bundle Ωi will stay within the bundle. Assume that, if

humanitarian crises arise in any conflict zone θ < Ωi, the activist entrepreneur will break

her indifference and allocate the total donations Xi to θi (to the delight of citizen i).

By almost the same argument as above, citizen i will contribute only to bundle Ωi, and

his contribution χi to Ωi solves the first order conditions of

[N − (|Ωi| − 1)]A + (|Ωi| − 1)a
N

· g′ (χ) ≤ 1, (15)

with “=” if χi > 0. Comparing (14) and (15), we have χi ≥ X∗, with “>” if χi > 0. The

7If N is even, we have |Ω1| = M = |Ω2|. If N is odd, we have |Ω1| = M < M + 1 = |Ω2|.
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activist entrepreneur’s expected utility is hence

Usb
e =
|Ω1|

N
χ1 +

|Ω2|

N
χ2 ≥ X∗ = Ub

e ,

with “>” if χ1 > 0.8 Note that bundling beats separating only if X∗ is strictly positive, and

hence whenever that happens we must have Usb
e strictly higher than Ub

e .

Proposition 5 Consider the model in this section. Marketing all public goods in a single bundle

is never optimal for the activist entrepreneur, and is dominated by marketing separate bundles,

with each bundle containing at most one public good that is the favorite of some citizens.

Can the activist entrepreneur do better than both separating and SB? There are at least

three possible ways to improve upon them. The first is to consider a bundle Ω̂i that is

in between (in set-inclusion sense) {θi} and Ωi. Intuitively, the smaller is Ω̂i, the stronger

is citizen i’s incentives to contribute, but there will also be more conflict zones being left

in the cold. The second is to restrict the activist entrepreneur’s discretion and impose a

lower bound on how much the total contributions χi to Ωi must be allocated to conflict

zone θi. This will increase citizen i’s incentives to contribute to bundle Ωi, but will also

reduce the activist entrepreneur’s ex post utility if humanitarian crises arise in a different

conflict zone within Ωi. The third is to include both θ1 and θ2 into a single bundle that

is strictly small than Ω (i.e., {θ1, θ2} ⊂ Ω̂ ( Ω), together with some rule to allocate the

total donations X̂ within Ω̂ in case humanitarian crises arise elsewhere. We have not yet

explored these and other possible improvements, and shall leave the characterization of

the activist entrepreneur’s optimal strategy for future research.

Example 4: Assume A > 1 = a, and

g(x) =

x − x2/2 if 0 ≤ x ≤ 1

1/2 if x > 1
. (16)

It can be readily check that both (2) and (3) are satisfied.

8Note that χ1 ≥ χ2, and hence χ2 > 0 implies χ1 > 0 as well.
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Given assumption (16), it can be readily calculated that

χ∗ =
A − 1

A
,

X∗ =
A − 1

A + (N − 1)
,

Us
e =

2(A − 1)
NA

, and

Ub
e =

A − 1
A + (N − 1)

.

Therefore, we have Us
e < Ub

e iff N(A − 2) > 2(A − 1). This is apparently impossible if

A ≤ 2. On the other hand, if A > 2, then we have Us
e < Ub

e iff

N >
2(A − 1)

A − 2
> 2.

If the activist entrepreneur markets separate bundles, then

χ1 = χ2 =
A − 1

A + M−1
M+1

,

assuming for simplicity that N is even (and hence M = N/2). Therefore,

Usb
e =

M
N
χ1 +

M
N
χ2 =

A − 1
A + M−1

M+1

>
A − 1

A + (N − 1)
= Ub

e ,

and hence SB is always strictly better than bundling. �

8 Concluding Remarks

This paper has presented a model of differentiated public goods, which can help resolve

all three empirical puzzles documented in Andreoni’s (1988) “The Limits of Altruism”.

Government contributions to charitable activities can even crowd in, instead of crowd out,

private giving. A diverse society is conceptually different from a polarized one, with more

(less) charity donations in the former (latter) than in a homogeneous society. Like any

profit-seeking entrepreneurs, activist entrepreneurs also face a product-design problem

of how to package differentiated public goods into bundles to maximize donations.

So far we have treated as exogenous how diverse/polarized a community is. This is
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perhaps acceptable when we have in mind the “textbook examples” of public goods such

as national defence and public health. The provision of these public goods directly affects

our wellbeing regardless of whether we are aware of them. However, we have already

alluded to some examples of public goods whose values are predicated on our awareness.

For example, one cannot care about cultural preservation unless he is aware of the beauty

of his cultural heritage. Likewise, he cannot be upset by the protection of gay rights unless

he is aware that some men can be gay. In the terminology of this paper, whether x(ω)

increases/decreases or has no effect on a type-θ citizen’s perceived Gθ depends on whether

he is aware of public good ω in the first place.

To the extent that the increasing polarization of our society (which many believe is

true) is partly due to our increasing awareness of our fellow citizens’ peculiar behavior

that some may find disagreeable, and to the extent that the expansion of our awareness is

irreversible, the increased polarization of our society may never be reversed completely.

The damage may be mitigated, however, if we can invest in uncovering more social causes

that many, once becoming aware of them, will care about. We leave the exploration of

endogenous diversity/polarization to future research.
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Appendix A: Omitted Proofs in Section 3

Proof of Lemma 1:

According to condition (1), there exists ε > 0 small enough such that

(h − ε) · A · g′(0) > u′(1) > (h + ε) · a · g′(0).

Let x be the solution of the equality

u′(1 − x) = (h − ε) · A · g′(x).

Note that the LHS is strictly increasing, and the RHS is strictly decreasing, in x. Therefore,

x, if exists, is unique. By our choice of ε, we have x > 0. If the LHS is strictly small than

the RHS for all x ∈ [0, 1], let x = 1.

Let x be the solution of the equality

u′(1) = (h + ε) · A · g′(x).

Note that the RHS is strictly decreasing, is strictly larger than u′(1) when x = 0, and goes

to 0 when x goes to infinity, Therefore, x exists, is unique, and is strictly bigger than x

because

(h + ε) · A · g′
(
x
)
≥ u′

(
1 − x

)
> u′(1),

where the last inequality follows from x > 0.

Pick G large enough such that, ∀G > G,

|H′(G) − h| < ε and |H′′(G)| <
h − ε

A ·
[
g′ (1 + x)

]2 · min
x∈[0,1+x]

|g′′(x)|. (17)

Pick M large enough such that (M − 1) · a · g
(
x
)
> G. Fix any society with (nk,mk) such

that mk > M. Let’s drop the subscript k from now on to ease notations.

Let i be a type-θ citizen. Suppose, for every θ′ ∈ Θ with θ′ , θ,

1. public good θ′ receives a common total contribution x (θ′) ≡ x ∈
[
x, x

]
, and

2. every type-θ′ citizen contributes only to public good θ′ but not to any other public
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good.

Suppose every other type-θ citizen contributes a common amount of z ∈
[
0, x/(t − 1)

]
to

public good θ. Then i’s optimization problem is

max
χ∈[0,1]

U = u(1 − χ) + H (Gθ) ,

where

Gθ = A · g(χ + (t − 1)z) + (m − 1) · a · g(x) ≥ (m − 1) · a · g
(
x
)
> G

and hence |H′ (Gθ) − h| < ε by (17).

The first derivative wrt χ is U′ = −u′ + H′ · A · g′. Note that u′ is strictly increasing in

χ. Meanwhile, H′ · A · g′ is strictly decreasing in χ because its derivative is

H′′ · [A · g′]2
−H′ · A · |g′′| = [A · g′]2

·

H′′ −
H′ · |g′′|

A ·
[
g′
]2


< [A · g′]2

·

H′′ −
h − ε

A ·
[
g′ (1 + x)

]2 · min
x∈[0,1+x]

|g′′(x)|


< 0,

where the first inequality follows from χ+ (t−1)z ≤ 1 + x and (17). Therefore, U′ is strictly

decreasing in χ, and hence a unique best response χ(z) to z exists. We note for future

reference that this unique best response χ(z) is continuous in x by the Maximum Theorem.

A similar argument also establishes that H′ ·A · g′ is strictly decreasing in z, and hence

χ(z) is weakly decreasing in z (strictly if χ(z) is interior). Moreover, χ(z) is continuous in z

by the Maximum Theorem.

Note that χ(z) ≥ max
{
x − (t − 1)z, 0

}
because

u′
(
1 −max

{
x − (t − 1)z, 0

})
≤ u′

(
1 − x

)
≤ (h − ε) · A · g′

(
x
)

< H′ (Gθ) · A · g′
(
max

{
x − (t − 1)z, 0

}
+ (t − 1)z

)
;

in particular, we have χ(0) > 0.
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Note also that χ(z) < x − (t − 1)z for any z < x/(t − 1) because

u′(1) = (h + ε) · A · g′ (x) > H′ (Gθ) · A · g′ (x) ;

in particular, we have χ (x/(t − 1)) = 0.

There is hence a unique fixed point z∗ ∈ (0, x/(t − 1)) such that χ (z∗) = z∗. It is hence

a symmetric equilibrium within the subgroup of type-θ citizens to each contribute z∗ to

public good θ taking the strategies of citizens in other subgroups as given. Moreover, no type-θ

citizen has any incentives to contribute to any public good ω , θ because

u′(1) > (h + ε) · a · g′(0) > H′ (Gθ) · a · g′(x(ω));

i.e., the marginal utility of private consumption is higher than the marginal gain from

contributing to any public good ω , θ.

Let y = tz∗ be the total contribution to public goodθ. Note that y = χ (z∗)+(t−1)z∗ ∈
[
x, x

]
as we noted earlier.

We have now constructed a continuous mapping from x ∈
[
x, x

]
to y ∈

[
x, x

]
, where

continuity follows from the continuity of χ(z) in x as we noted earlier. The existence of

an equilibrium satisfying the properties stated in Lemma 1 then follows from Brouwer’s

Fixed Point Theorem.

As we noted in Section 3.3, Lemma 1 continues to hold in a model with heterogeneous

wealth. We highlight here only the part of the proof that needs adaptation.

Suppose the t citizens within every subgroup (of citizens with the same type) have

wealths 1 = w1 ≥ w2 ≥ · · · ≥ wt ≥ 0. Fix any x ∈
[
x, x

]
(the common total contribution to

every public good θ′ ∈ Θ with θ′ , θ). For any z ∈
[
x, x

]
, let χi(z) ∈ [0,wi], i ∈ {1, 2, . . . , t},

be the solution of the equality

u′ (wi − χ) = H′ (Gθ) · A · g′(z), (18)

where

Gθ = A · g(z) + (m − 1) · a · g(x) ≥ (m − 1) · a · g
(
x
)
> G

and hence |H′ (Gθ) − h| < ε by (17). If the LHS is strictly bigger (smaller) than the RHS for

all χ ∈ [0,wi], let χi(z) = 0 (χi(z) = wi). Note that χi(z) ≥ χi+1(z) for every i ∈ {1, 2, . . . , t − 1}
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and any z ∈
[
x, x

]
. Note also that χ1(z) ≥ x for any z ∈

[
x, x

]
because

u′
(
1 − x

)
≤ (h − ε) · A · g′

(
x
)

and that χ1 (x) = 0 because

(h − ε) · A · g′(0) > u′(1) > (h + ε) · A · g′ (x) .

By exactly the same argument as the one used earlier, H′ ·A · g′ is strictly decreasing in

z, and hence χi(z) is weakly decreasing in z (strictly if χi(z) is interior). Moreover, χi(z) is

continuous in both z and x because H′ · A · g′ is continuous in both.

Let y(z) =
∑

i χi(z). Then y(z) is continuously decreasing in z as well. Moreover,

y
(
x
)
≥ χ1

(
x
)
≥ x and y (x) =

∑
i 0 = 0. Therefore, there exists a fixed point z∗ such that

y (z∗) = z∗. It is hence an equilibrium within the subgroup of type-θ citizens to each

contribute χi (z∗) to public good θ taking the strategies of citizens in other subgroups as given.

That they will not contribute to any public good ω , θ follows the same argument as

before.

We have now constructed a continuous mapping from x ∈
[
x, x

]
to z∗ ∈

[
x, x

]
, where

continuity follows from the continuity of χ(z) in x as we noted earlier. The existence of

an equilibrium satisfying the properties stated in Lemma 1 then follows from Brouwer’s

Fixed Point Theorem. �

Proof of Proposition 1:

Suppose there exists an ε > 0 (which is independent of k) such that, for every K, there

exists a society k > K such that there exists an equilibrium where every citizen contributes

to public goods a share of his budget larger than ε.9

Fix any such k and any such equilibrium. Let x(ω) be the equilibrium total contribution

to public good ω ∈ Ω. Let Ω̂k = {ω < Θk | x(ω) > 0}. By symmetry, x(θ) = x (θ′) = x1 for

all θ, θ′ ∈ Θk, and x(ω) = x (ω′) = x2 for every ω,ω′ ∈ Ω̂k. Since A · g′ (x1) > a · g′ (x1), no

type-θ citizen will contribute to public good θ′ , θ.

The “Part of the Proof” in the main text has already covered the case of Ω̂k = ∅. So

9Recall that we are focusing on symmetric equilibria. Therefore, if one citizen contributes to public goods
a share of his budget larger than ε in an equilibrium, every citizen does in that equilibrium.
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let’s suppose Ω̂k , ∅. Let m̂k = |Ω̂k|.

If x1 ≤ x2, then A · g′ (x1) > a · g′ (x2) and no citizen will contribute to any ω ∈ Ω̂k,

contradicting Ω̂k , ∅. We hence have x1 > x2 > 0. Therefore, for any θ ∈ Θk,

Gθ = (A + (mk − 1) · a) · g (x1) + m̂k · a · g (x2)

> mk · a · g (x1) + m̂k · a · g (x2)

> mk · a · g
(
x1 +

m̂kx2

mk

)
≥ mk · a · g (tkε) ,

where the second inequality follows from x1 > x2 > 0 and the strict concavity of g(·).

As K and hence the corresponding k go to infinity, Gθ (for any type θ ∈ Θk) will also

go to infinity, and hence H′ (Gθ) will go to h. But then, by condition (1), no type-θ citizen

will contribute to any public good ω , θ, contradicting Ω̂k , ∅. �
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Appendix B: Omitted Details of Section 5

This appendix provides an example illustrating the tradeoff a government may face

between contributing to a public good that is more plagued by the free-rider problem,

and contributing to a public good that is less plagued but is considered by many as

complementary to another public good that is plagued by the free-rider problem.

Consider a society with two citizens, 1 and 2, and three public goods, θ, ω1, and ω2.

The two citizens’ utility functions are

U1 = c1 + H
[
e · g(x(θ)) + a · x (ω1)

]
+ b · x (ω2)

and

U2 = c2 + B · x (θ) + b · x (ω2) ,

respectively, where e is Euler’s number, and

H(G) =
1
r
·

[
G +

e−G
− 1

e + 1

]
and g(x) = (1 − e−rx) ,

with r ∈ (0, 1) being a positive constant to be determined below.

Note that public good ω1 is more a private good of citizen 1, and hence is not plagued

by the free-rider problem at all. Meanwhile, public good ω2 is plagued by the free-rider

problem: if 1 > b > 1/2, neither citizen will contribute to public good ω2, even though it

is socially efficient to do so.

Assume that a = e · g′(1). Then citizen 1 will never contribute to public goodω1 because

e · g′(χ) > e · g′(1) = a

for any χ < 1. Also assume that B < 1, and hence citizen 2 will never contribute to public

good θ either.
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Note that H(·) is strictly increasing and strictly convex, as for any G > 0,

H′(G) =
1
r
·

[
1 −

e−G

e + 1

]
> 0

and H′′(G) =
1
r
·

e−G

e + 1
> 0,

and hence citizen 1 considers public goods θ and ω1 as complements.

Meanwhile, g(·) is strictly increasing and strictly concave, as for any x > 0,

g′(x) = r · e−rx > 0

and g′′(x) = −r2
· e−rx < 0.

The composite function H(e · g(x) + z) is strictly increasing and strictly concave in x for

any z ≥ 0, as for any x > 0,

d
dx

H(e · g(x) + z) = H′(e · g(x) + z) · e · g′(x)

=
1
r
·

[
1 −

e−(e·g(x)+z)

e + 1

]
· e · r · e−rx

= ·

[
1 −

e−(e·g(x)+z)

e + 1

]
· e · e−rx > 0

and
d2

dx2 H(e · g(x) + z) =

[
e−(e·g(x)+z)

e + 1
· e · g′(x)

]
· e · e−rx

−

[
1 −

e−(e·g(x)+z)

e + 1

]
· e · r · e−rx

∝

[
e−(e·g(x)+z)

e + 1
· e · g′(x)

]
−

[
1 −

e−(e·g(x)+z)

e + 1

]
· r

=
e−(e·g(x)+z)

e + 1
·
[
e · g′(x) + r

]
− r

<
1

e + 1
·
[
e · r · e−rx + r

]
− r

<
1

e + 1
· [e · r + r] − r = 0.

Therefore, citizen 1’s contribution χ to public good θ is uniquely pinned down by the first

order condition

H′[e · g(χ)] · e · g′(χ) = 1.
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Note that χ > 0 because

H′(0) · e · g′(0) =
1
r
·

e
e + 1

· e · r =
e2

e + 1
> 1.

On the other hand,

H′(e · g(1)) · e · g′(1) =
1
r
·

[
1 −

e−(e·g(1))

e + 1

]
· e · r · e−r

=

[
1 −

e−e·(1−e−r)

e + 1

]
· e1−r,

which approaches e2/(e + 1) > 1 when r↘ 0, approaches 1− e−(e−1)/(e + 1) < 1 when r↗ 1,

and is strictly decreasing in r because

d
dr

[
1 −

e−e·(1−e−r)

e + 1

]
· e1−r =

[
e−e·(1−e−r)

· e1−r

e + 1

]
· e1−r

−

[
1 −

e−e·(1−e−r)

e + 1

]
· e1−r

∝

[
e−e·(1−e−r)

· e1−r

e + 1

]
−

[
1 −

e−e·(1−e−r)

e + 1

]
= e−e·(1−e−r)

·
e1−r + 1

e + 1
− 1

< 1 · 1 − 1 = 0.

Therefore, there exists r ∈ (0, 1) such that H′(e · g(1)) · e · g′(1) is strictly smaller than 1 for

any r ∈
(
r, 1

)
. For any such r, we have χ ∈ (0, 1). As r↘ r, we have χ↗ 1.

Suppose the government can levy a small tax ∆ > 0 on both citizens, and contribute

the tax revenue 2∆ to one of the three public goods. Contributing to either public good θ

clearly will have no effect on social welfare because of the classical crowding-out effect.

Citizen 1 will simply reduce his contribution to θ by 2∆, maintaining the total contribution

to θ at the original level of χ, because χ1 continues to maximize

[(1 − ∆) − χ] + H[e · g(χ)]

for small enough ∆. In the end, citizen 1’s private consumption increases to 1 − χ1 + ∆,

whereas that of citizen 2 decreases to 1 − χ2 − ∆. What the government achieves is a pure

transfer of ∆ from citizen 2 to citizen 1, and has no effect on social welfare.

Contributing to public good ω2 does increase social welfare. As we noted earlier,
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public good ω2 is plagued by the free-rider problem, with private contributions being

suboptimal at the 0 lower bound. The per-dollar increase in social welfare is 2b − 1 > 0.

As we also noted earlier, public good ω1 is not plagued by the free-rider problem at

all. But contributing to it can also increase social welfare, because it is consider by citizen

1 as complementary to public good θ, which is plagued by the free-rider problem. For a

small ∆ > 0, the per-dollar increase in social welfare is approximately

dW
d∆

∣∣∣∣
∆=0

= H′[e · g(χ)] · a +
{
H′[e · g(χ)] · e · g′(χ) + B

}
·

dχ
d∆

∣∣∣∣
∆=0
− 1, (19)

where χ (as a function of ∆) is uniquely pinned down by the first order condition

H′[e · g(χ) + a · ∆] · e · g′(χ) = 1

thanks to the strict concavity of the composite function H[e · g(x) + z] (with z = a · ∆)

established earlier. Using a = e · g′(1) and the first order condition at ∆ = 0, we can

simplify (19) as
dW
d∆

∣∣∣∣
∆=0

=
e · g′(1)
e · g′(χ)

+ (1 + B) ·
dχ
d∆

∣∣∣∣
∆=0
− 1.

By the Implicit Function Theorem,

dχ
d∆

∣∣∣∣
∆=0

= −
H′′[e · g(χ)] · a · e · g′(χ)

H′′[e · g(χ)] ·
[
e · g′(χ)

]2
+ H′[e · g(χ)] · e · g′′(χ)

, (20)

which we know is strictly positive because the denominator is strictly negative by the

second order condition.

After some algebra, we can simplify (20) as

dχ
d∆

∣∣∣∣
∆=0

= −
a ·

[
1
r · e · g

′(χ) − 1
]

1
r ·

[
e · g′(χ)

]2
− e · g′(χ) − r

.

As r↘ r, we have χ↗ 1, and hence both a (= e · g′(1)) and e · g′(χ) converge to r · e1−r.

Therefore,

lim
h↘r

dχ
d∆

∣∣∣∣
∆=0

= −

[
e1−r

]2
− e1−r[

e1−r]2
− e1−r − 1

=: K

for some constant K ∈ (0, 1).
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Therefore

lim
r↘r

dW
d∆

∣∣∣∣
∆=0

= 1 + (1 + B) · K − 1 = (1 + B) · K > 0.

Proposition 6 In the two-citizen model in this appendix, if r is close enough to r and b close

enough to 1/2, then the government should contribute to public good ω1 instead of ω2, even

though the latter is plagued by the free-rider problem while the former is not.
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Appendix C: Omitted Details of Section 6

In Section 6, we assume that the strictly increasing and strictly convex function H(·)

and the strictly increasing and strictly concave function g(·) jointly satisfy the assumption

that the composite function H(A · g(x) + z) is strictly concave in x for any z ≥ −b · g(1). In

this appendix, we provide an example with such H(·) and g(·).

For any x ≥ 0, let

g(x) := 1 − e−x,

which can be readily verified as a strictly increasing and strictly concave, as

g′(x) = e−x > 0

and g′′(x) = −e−x < 0.

For any G ≥ −b · g(1), let

H(G) := G + e−K
(
e−G
− 1

)
with some K > ln(A + 1) + b · g(1) > 0. It can be readily check that H(·) is strictly increasing

and strictly convex, as

H′(G) = 1 − e−Ke−G > 0

and H′′(G) = e−Ke−G > 0,

where the first inequality follows from K +G > [ln(A+1)+b · g(1)]−b · g(1) = ln(A+1) > 0.
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For any z ≥ −b · g(1), we have

d
dx

H(A · g(x) + z) = H′(A · g(x) + z) · A · g′(x)

=
[
1 − e−Ke−(A·g(x)+z)

]
· A · e−x

and
d2

dx2 H(A · g(x) + z) =
[
e−Ke−(A·g(x)+z)

· A · g′(x)
]
· A · e−x

−

[
1 − e−Ke−(A·g(x)+z)

]
· A · e−x

∝

[
e−Ke−(A·g(x)+z)

· A · g′(x)
]
−

[
1 − e−Ke−(A·g(x)+z)

]
= e−Ke−(A·g(x)+z)

·
[
A · g′(x) + 1

]
− 1

≤ e−Ke−z
·
[
A · g′(0) + 1

]
− 1

< e−(ln(A+1)+b·g(1))eb·g(1)
· [A · 1 + 1] − 1

= e− ln(A+1)
· [A + 1] − 1

= 0,

and hence the composite function H(A · g(x)+z) is strictly concave in x for any z ≥ −b · g(1).

To further satisfy condition (7), let A = 2. Then we have

H′(0) · A · g′(0) =
(
1 − e−K

)
· A · 1

>
(
1 − e− ln(A+1)

)
· A

=
(
1 − (A + 1)−1

)
· A

= 4/3

> 1

and

1 >
[
1 − e−Ke−(A·g(1))

]
·

[
2 · e−1

]
= H′(A · g(1)) · A · g′(1),

and hence condition (7) is satisfied. Finally, condition (8) can be satisfied by picking a = 1,
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as

1 >
[
1 − e−Ke−(A·g(2))

]
· 1 · 1

= H′(A · g(2)) · a · g′(0).

Finally, we note that A = 2 and a = 1 also satisfy condition (12) with equality.
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