
Detecting Spurious Factor Models

Yi He1 and Bo Zhang2

1Amsterdam School of Economics, University of Amsterdam
2School of Management, University of Science and Technology of China

November 1, 2023

Abstract

Spurious factor behaviors arise in large random matrices with high-rank signal components

and heavy-tailed spectral distributions. This paper establishes analytical probabilistic limits and

distribution theory of these spurious behaviors for high-dimensional non-stationary integrated

systems, and stationary systems with near-unit-root spatial processes across cross sections. We

transform scree plots into Hill plots to detect spectral patterns in these spurious factor models and

develop multiple t-tests to distinguish between spurious and genuine factor models. Numerical

analysis indicates that the existing spurious factor models fit some, but not all, economic datasets.

In particular, the term structure of interest rates adheres to genuine factor models rather than

the local correlation model.

Preliminary Version. Comments Welcome.

1 Introduction

Factor models provide the theoretical foundation for econometric studies of aggregate information

from economic variables. Extensive literature in econometrics and statistics has developed for latent

factor estimation and inference (Stock and Watson, 2002a,b, Bai, 2003, 2004, Forni et al., 2000, 2004,

Hallin and Lǐska, 2011, Doz, Giannone, and Reichlin, 2011, Fan, Liao and Mincheva, 2013, Bai and Ng,

2023, among others). See also Bai and Wang (2016) for an excellent survey. For simplicity, we focus

on the static factor models that decompose a large N , large T panel data matrix, say, X ∈ RN×T ,

into a low rank plus noise form, namely,

X = A+ e, rank(A) = r, (1)

where A represents a signal matrix of small rank r, and e is a high-rank noise matrix of measurement

errors. A number of formal methods have been proposed to select or test the rank of factors r by, for
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instance, Bai and Ng (2002), Onatski (2009, 2010), and Ahn and Horenstein (2013). When the signal

is sufficiently stronger than the noise and r is known, one may consistently recover the signal A by

using principal component analysis (PCA) under mild conditions. We rule out the difficult cases in

Johnstone and Lu (2009) and Onatski (2012) where the signal is too weak to be distinguished from

the noise, but we do allow the factor models to have weaker loadings as in Bai and Ng (2023).
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Figure 1: Scree plots for sectoral employment and difference returns on bonds

The scree plots (Cattell, 1966) in Figure 1, showing the large fraction of variations explained by a

few principal components, often motivate factor analysis for two running data examples: (1) the US

employment data, on log scale, across 58 sectors extracted from the online supplement of Onatski and

Wang (2021), hereafter cited as OW; (2) the difference returns across 20 US bonds with maturities

up to 20 quarters studied in Crump and Gospodinov (2022), hereafter cited as CG. The sectoral

employment data has similar contents of Bai (2004), who suggested choosing 2 ≤ r ≤ 4 factors. We

downloaded the new vintage of the nominal yield curve data from Fed’s website that contains minor

modifications to the data in Gürkaynak, Sack and Wright (2007). Tracing back at least to Litterman

and Scheinkman (1991), the affine term structure literature often considers r = 3 factors for bond

returns referred to as level, slope, and curvature; see, e.g., the monograph Piazzesi (2010).

However, recently OW and CG warned the empirical researchers that scree plots could be illusive

by theoretically showing that large matrices can generate similar spectral behaviors even in the absence

of a low-rank signal plus noise form (1). OW formalized the comments by Uhlig (2009) and derived

the analytical limits of “explained” variance ratios for the leading principal components of a factorless

large-dimensional unit-root system displayed by the dotted line on the left of Figure 1. In a similar

perspective, CG derived the analytical limits for local correlation models with a spatial autoregressive

coefficient, say, ρ near unity across the maturity rather than the true time axis. The dashed line on

the right of Figure 1 shows these limits for ρ = 0.99.

Our first contribution is to generalize OW’s findings and derive the analytical limits for the ex-

plained variance ratios and spurious factors from a large system of non-stationary integrated I(d) time

2



series of any order d ≥ 1, where d is not necessarily an integer. This extension is essential because the

I(1) model cannot explain all the spurious behaviors: the first PC in I(1) can only explain about 60%

of the total variation rather than about 90% in our observations. A better fit is I(1.6) as shown by

the dashed line on the left of Figure 1, which can also generate similar principal component estimates

as of I(1) that are very close to the observations in our empirical analysis.

Our second contribution is to establish the probabilistic convergence of the sample explained

variance ratios and the sample principal component loadings towards their analytical limits according

to the local correlation models in CG. We relax their Gaussian assumptions on bond returns and allow

for weak temporal dependence. These new limit theorems justify our statistical analysis of the fitness

of local correlation models to the actual data by comparing the eigenvalues and eigenvectors.

Like the network aggregating mechanisms in Acemoglu et al. (2012), spurious aggregation variance

on principal components emerges through the underlying high-rank dependence structure rather than

by low rank random signals. The variance concentration resembles a heavy tail in the spectral distri-

bution such that the largest eigenvalues dominate the aggregate. This novel perspective highlights a

close relationship between the spurious factor models and power law models. To visualize the power

law exponent of the spectral distribution, we transform the scree plot (k, λ̂k) into the so-called Hill

(1975) plot (k, γ̂k) via a simple mapping

γ̂k =
1

k

k∑
i=1

log λ̂i − log λ̂k+1, (2)

that is, the average exceedance of the eigenvalues {λk} of the sample covariance matrix on the log

scale. Note that γ̂k remain unchanged if we substitute the eigenvalues λ̂k with their corresponding

explained variance ratios.

Figure 2 shows the Hill plots for the same datasets in Figure 1. We can better distinguish their

spectral behaviors: the sectoral employment data shows a relatively stable pattern like the integrated

systems (again I(1.6) is a better fit than I(1)), while the bond data shows an explosive behavior that

does not come from the local correlation models.

This remarkable discovery leads to our third and most important contribution: a multiple t-test

against these spurious factor models using the Hill plot. Our tests directly apply to the level data that

do not require differencing procedures. The asymptotic theory behind our tests builds on a substantial

extension of the matrix distribution theory in the earlier work Zhang, Pan and Gao (2018), hereafter

abbreviated as ZPG. In particular, we scan over the class of spurious factor models under the null

hypothesis so that rejecting their peculiar behaviors may restore our confidence in factor analysis.

What makes the Hill plot unique for our goal is that transformation (2) on the scree plot turns

out to be the only solution (up to transformations yielding the same tests) satisfying the following

axiomatic properties in our asymptotic theory.

1. Linearity: For each 1 ≤ k ≤ K, the statistic γ̂k is a linear combination of {log λ̂i}k+1
i=1 .

3



1 2 3 4 5 6 7 8 9

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
H

il
l 
E

s
ti
m

a
to

r
Sectoral Employment

1 2 3 4 5 6 7 8 9

0

5

10

15

H
il
l 
E

s
ti
m

a
to

r

Difference Return on Bonds

Figure 2: Hill plots for sectoral employment and difference returns on bonds

2. Scale Invariance: {γk} are invariant to the scale of eigenvalues {λk}.

3. Independence: γ̂k is asymptotically independent of γ̂k′ for any k ̸= k′.

The first property allows for testing power by detecting the separation between signal and noise under

the genuine factor models (1) over different choices of k. The second property is crucial for removing

the nuisance scale parameter for our tests. The last property means that drawing the Hill plots for

more eigenvalues brings new information to recognize factor models.

Combining Hill estimators’ asymptotically independence and normality, we construct a sequence

of t statistics and use their maximum magnitude to detect if the data is generated from a particular

class of spurious factor models. To mitigate potential power loss resulting from self-normalization in

t statistics, we employ a variance shrinkage approach inspired by Fan, Liao and Yao (2015). This

approach ensures that the shrinkage effect remains negligible under the null (spurious factor models),

but the test statistic explodes under the alternative (weaker factor models). Our central limit theorems

are for eigenvalues rather than eigenvectors. The center of our discussion is the rank of signals defined

based on eigenvalues. As pointed out by OW, comparing eigenvectors is a ‘simple’ but ‘inexact’

method because the genuine latent factors can still look similar to spurious ones in eigenvector plots,

as in the last part of our simulation study. However, comparing eigenvectors may still be helpful if

one is interested in distinguishing genuine and spurious factors, but we leave these to future works.

Our random-matrix-theory-based limit theorems for the Hill estimator using a small number of

extreme eigenvalues (or their corresponding explained variance ratios) is novel, being very different

from that in extreme value statistics requiring an infinite number of observations from the tail (see,

e.g., Drees, Resnick, and de Haan, 2000). The only exception is the fixed-k inference by Müller

and Wang (2017) among follow-up works, but our extreme eigenvalues do not obey their generalized

Pareto models. In contrast, we show that extreme eigenvalues are asymptotically Gaussian under the

spurious factor models thanks to our large dimensions across individuals and time.
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The rest of the paper is organized as follows. Section 2 develops our asymptotic theory for the

spurious factor models through large-dimensional integrated time series. Section 3 develops a parallel

approach for the local correlation models with a near-unit-root process across the cross sections.

Section 4 presents a simulation study to investigate our tests’ size and power performance in small

samples. Our empirical analysis in Section 5 does not reject a spurious factor analysis of the sectoral

employment data but provides strong evidence against the local correlation models for the bond

data. We point out that rejecting the local correlation model can have important implications for

mean-variance portfolio optimization because the economic costs of the type-II error, namely, wrongly

classifying a genuine factor model as a local correlation model, could be as substantial as the cost of

the type-I error. Section 6 offers more remarks and discusses some possible extensions based on more

economic examples. All the mathematical proofs are in the appendices.

2 Spurious Factor Models Through Time Structure

In this section, we offer a general mechanism to generate spurious factor models through large-

dimensional integrated time series Xt ∈ RN , t = 1, . . . , T , with N comparable to T :

Assumption 2.1. N = N(T ) → ∞ and N/T → c ∈ (0,∞) as T → ∞.

This framework is often called the random matrices regime, with non-trivial large dimensional effects

across individuals and time. We allow for a high dimension N > T yielding singular sample covariance

matrices. For presentation convenience, we shall suppress T in the subscript whenever possible: the

matrices are all indexed by the sample size T , and the asymptotic results hold as T → ∞. Let L

denote the lag operator and suppose Xt are generated by the model

(1− L)d(Xt −X0) = ut, (3)

where the exponent d ≥ 0 denotes the order of integration, and the innovations ut ∈ RN are stationary

linear time series given by

ut = Ψ(L)εt =

( ∞∑
ℓ=0

ΨℓL
ℓ

)
εt =

∞∑
ℓ=0

Ψℓεt−ℓ (4)

with ut = 0 for t ≤ 0 for simplicity.

Assumption 2.2. The entries of εt = (εt,1, . . . , εt,N )′ are independent and identically distributed

(i.i.d.) variables from a double array with zero mean Eεt,i = 0, unit variance Eε2t,i = 1, and bounded

kurtosis Eε4t,i <∞.

Our interest is in the non-stationary system that demonstrate spurious factor model behaviors.

Assumption 2.3. The following conditions hold.

1. The integrated process (3) is non-stationary of some order d ≥ 1.
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2. There exists a summable sequence of constants φℓ ≥ 0 such that
∑∞

ℓ=0 φℓ < ∞ and ∥Ψℓ∥ ≤
φℓ ∥Ψ∥ for all ℓ ∈ N0, where ∥·∥ denotes the Frobenius norm and Ψ = Ψ(1) =

∑∞
ℓ=0 Ψℓ.

When d > 1 in condition 1, the local Whittle estimator of d, which converges to 1 under mild

conditions, is inconsistent using marginal time series (Phillips and Shimotsu, 2004). Examining many

time series simultaneously to identify the order d is crucial in our analysis. We exclude the fractional

integration cases d ∈ (1/2, 1) for technical reasons; otherwise, a workaround is to apply our approach

to the cumulative sums Yt =
∑t

s=0(Xs − X0) with an integrated order of d + 1 ≥ 1 for any d ≥ 0.

Still, we do not pursue more details as the fractionally integrated models do not generate as obvious

concentration behaviors as observed in our economic application on sectoral employment. Condition 2

is similar to that in Liu, Aue and Paul (2015) for large-dimensional linear time series, but we relax the

simultaneous diagonalizability of Ψℓ and relax the spectral norms to be Frobenius norms. It ensures

the effects of contemporary covariances in (4) vanishes in the long-run covariances through a sequence

of local coefficients φℓ invariant with respect to the data scale.

One can invert the autoregressive model (3) into an alternative representation given by

Xt = X0 + (1− L)−dut = X0 +

t−1∑
ℓ=0

aℓut−ℓ, aℓ =
Γ(d+ ℓ)

ℓ! Γ(d)
, (5)

where Γ denotes the gamma function and ℓ! = s · (s − 1) · . . . · 1 denotes the factorial of ℓ. Let

X = [X1, . . . , XT ] ∈ RN×T and X̃ = XC ∈ RN×T denote the raw and demeaned observations

respectively, where C denotes the T × T centering matrix. Denote by ε = [ε1, . . . , εT ] ∈ RN×T the

random matrix of latent noises from (4). We can rewrite Xt further into an Beveridge and Nelson

(BN) decomposition form in terms of the random noises εt given by

X̃ = ΨεΦ+ ΞC, Φ = (I − LT )
−dC (6)

where Ψ = Ψ(1) as in Assumption 2.3, I denotes the T × T identity matrix, and LT denotes the

T × T upper shift matrix with ones on the superdiagonal and zero elsewhere, and the error matrix

Ξ = [Ξ1, . . . ,ΞT ] with

Ξt =

t−2∑
s=0

(as − as+1)

s∑
j=0

(ut−j −Ψεt−j) + at−1

t−1∑
j=0

(ut−j −Ψεt−j).

It is instructive to compare (6) with (1), where the leading term A = ΨεΦ takes a so-called separable

form in random matrix theory (see, e.g., Ding and Yang, 2021), and the remainder e = ΞC shall be

negligible under mild conditions.

What we need for the BN decomposition (6) is the separability on top eigenvalues to identify the

spurious factors, where K ≥ 1 is some user-specified parameter of the maximum number of spurious

factors.

Assumption 2.4. Let σ2
k denote the k-th largest eigenvalue of the population matrix Φ′Φ. For all

large T , σ2
k/σ

2
k+1 are bounded away from 1 over 1 ≤ k ≤ K + 1 for some given K.
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This condition is comparable to the identification condition for latent factors in, for example, An-

derson (1963), Stock and Watson (2002a), Bai (2003), and many follow-up works mentioned in the

introduction. If these population eigenvalues are not separable, we cannot identify all individual spu-

rious factors, but we may generalize our theory at the cost of complexity using the notions of subspace

convergence in PCA literature; see, for example, Jung and Marron (2009), Shen, Shen and Marron

(2016) and supplement of He (2023).
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Figure 3: The consecutive eigenvalue ratio σ2
k/σ

2
k+1 as functions of d for k = 1, 2, . . . , 10 (from top to

bottom) with sample sizes T = 50 (left) and T = 500 (right).

Indeed, numerical methods immediately suggest that the gaps between top eigenvalues of Φ′Φ are

large enough to identify their corresponding principal components. Figure 3 shows the ratio σ2
k/σ

2
k+1

as a function of d ∈ [1, 2] for k = 1, . . . , 10. The ratios are smaller for larger k, increase with the

order of integration d, and are all strictly larger than 1 (the lower limit of the y-axis). A rigorous

proof of this separability condition is given in ZPG and OW for the unit root process with d = 1.

Since the separability even improves as the order of integration d increases according to Figure 3, we

consider the assumption trivial and do not observe any violations in numerical analysis. However, a

mathematical proof is difficult, and we leave it as an open question.

Following OW, we consider the spurious factor analysis on the level data Xt under the following

factorless condition.

Assumption 2.5. The long-run covariance matrix Ω = ΨΨ′ is positive definite and factorless in the

sense that the population explained variance ratios of the principal components approach zero in such

a way that: λmax(Ω)/ tr Ω → 0 as N,T → ∞, where λmax(Ω) denotes the largest eigenvalue of Ω and

the sum of eigenvalues of Ω equals to its trace trΩ.

We shall show that the spurious phenomenon generalizes towards non-stationary integrated time

series beyond unit-root processes. Specifically, let X̃ = [X1 − X̄, . . . , XT − X̄] ∈ RN×T and X̄ =

1
T

∑T
t=1Xt, then the principal eigenvalues λ̂1 ≥ . . . ≥ λ̂N (i.e. “explained variance” of the principal
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components) of the sample covariance matrix

Σ̂ =
1

T

T∑
t=1

(
Xt − X̄

) (
Xt − X̄

)′
=

1

T
X̃X̃ ′ ∈ RN×N

demonstrates a concentration behavior that is similar to a genuine factor model. The proportion of

explained variance

ξ̂k = λ̂k/

(
N∑
i=1

λ̂i

)
(7)

is large for any k ≥ 1, via its consistency towards that of the population matrix Φ defined in (6). This

limit is not related to the cross-sectional covariance matrix Ψ, and it is spurious in the sense that it

determined by the temporal dependence structure Φ rather than common latent variables. Let ‘
P−→’

denote convergence in probability.

Theorem 1. For all large-dimensional non-stationary integrated time series generated by (3) and (4)

under Assumptions 2.1–2.5, a spurious factor model emerges in such a way that the followings hold

for every k ≥ 1:

(i) ξ̂k − ξk
P−→ 0 where ξk := σ2

k/
(∑T

i=1 σ
2
i

)
are the explained variance ratios for the eigenvalues σ2

i

of the T × T covariance matrix Φ′Φ.

(ii) The population ratio ξk is bounded away from 0.

(iii) |Û ′
kUk|

P−→ 1, where Ûk is the k-th principal eigenvector of X̃ ′X̃ ∈ RT×T and Uk denotes the k-th

principal eigenvector of Φ′Φ ∈ RT×T .
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Figure 4: Cumulative explained variance proportions
∑r

k=1 ξk by top r principal components as a

function of d for r = 1, 2, . . . , 10 (from bottom to top) with sample sizes T = 50 (left) and T = 500

(right).

For any given sample size T , the asymptotic explained variance proportions ξk of spurious factors in

this theorem only depends on d and can be computed numerically. Figure 4 shows the cumulative
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explained variance proportions
∑r

k=1 ξk for 1 ≤ r ≤ 10 and d ∈ [1, 2] with two sample sizes T = 50

and T = 500. For every fixed number r of principal components, the cumulative explained variance

proportions grows with d. The top 3 components explain about 83% of the total variation for d = 1

while 1 component alone suffices to explain 96% of the total variation for d = 2. All spurious factors

are, however, due to the commonality of time structure.

While the explained variance ratios are sensitive to d, Figure 5 shows that the spurious factors for

unit-root d = 1 and a higher order d = 1.6 look rather similar.
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Figure 5: The first three spurious factors F̂k =
√
T Ûk, 1 ≤ k ≤ 3, for d = 1 and d = 1.6.

Theorem 1 generalizes the first-order asymptotics for spurious factor analysis of an arbitrary order

d ≥ 1. The extreme eigenvalues, properly standardized, can be approximated as quadratic forms in

random vectors with a common weight matrix Ω = Ψ′Ψ. Since Ω share the same eigenvalues as the

long-run covariance matrix Ω in Assumption 2.5, we can immediately impose the spectral condition

on Ω for second-order results.

Assumption 2.6. λmax(Ω)/ ∥Ω∥ → 0, where ∥·∥ denotes the Frobenius norm.

This condition is stronger than Assumption 2.5 as ∥Ω∥ ≤ tr Ω. It is possible to weaken it by controlling

the structure of Ω directly rather than that of Ω; see Remark 1. Let ‘⇒’ denote convergence in

distribution. The following theorem gives the asymptotic normality of extreme eigenvalues.

Theorem 2. Under the conditions of Theorem 1 and Assumption 2.6 with any fixed K ≥ 1,√
ν

2

(
log

λ̂1
σ2
1

− µ, . . . , log
λ̂K+1

σ2
K+1

− µ

)
⇒ (Z1, . . . , ZK+1)

with independent standard Gaussian variables Z1, . . . , ZK+1 provided that
∑∞

ℓ=1 ℓ
1/2φℓ <∞, where

ν =
(trΩ)2

tr Ω2
, µ = log

(
tr Ω

T

)
.
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The theorem remains true by replacing the condition
∑∞

ℓ=1 ℓ
1/2φℓ < ∞ with a weaker version:∑∞

ℓ=1 ℓ
ι/2φℓ < ∞ for some ι > 0 such that ν = O(N ι). Note that we always have ν ≤ N by

Cauchy-Schwarz inequality.

Remark 1. The theorem remains true by replacing Assumption 2.6 with a weaker version:∥∥∥Ω̃′
Ω̃
∥∥∥ = o(∥Ω∥2),

where Ω̃ denotes the triangular projection of Ω sharing the same lower triangular part but having

zeros elsewhere (including the diagonal).

Theorem 2 shows that extreme sample eigenvalues are asymptotically independent due to the

orthogonality between eigenvectors. Including more extreme eigenvalues gives more information about

the data generating process. There are two nuisance parameters µ = µ(Ω) and ν = ν(Ω) depending

on the long-run covariance matrix Ω. Using the equality between trace and sum of eigenvalues, the

parameter ν measures the sparseness of the spectrum of Ω via the identity

√
ν = ∥λ(Ω)∥1 / ∥λ(Ω)∥2 ,

where ∥λ(Ω)∥1 and ∥λ(Ω)∥2 denote L1 and L2 norms of the vector λ(Ω) collecting all the eigenvalues

of Ω respectively.

Whereas the location parameter µ depends only on the long-run marginal variances on the diagonal

of Ω, the scale parameter ν depends on the entire cross-sectional structure. When Ω is unknown, these

parameters are difficult to estimate. We shall explain how to profile these nuisance parameters, one

by one, via self-normalizations using multiple eigenvalues. First, we apply the invariance principal

and consider the Hill estimators γ̂k given by

γ̂k =
1

k

k∑
i=1

log λ̂i − log λ̂k+1 =
1

k

k∑
i=1

log ξ̂i − log ξ̂k+1. (8)

As discussed in the introduction, these Hill estimators are the only invariant statistics with respect

to µ that satisfy all the axiomatic properties, up to sign or scale changes. The second representation

in terms of ξ̂k allows us to compute statistics γ̂(k) directly from the scree plots without knowing the

scale of the underlying eigenvalues. Their joint asymptotic distribution follows immediately by the

continuous mapping theorem.

Corollary 1. Under the conditions of Theorem 2 and for any fixed K ≥ 1,√
ν

2
(γ̂1 − γ1, . . . , γ̂K − γK) ⇒ (Γ1, . . . ,ΓK)

where Γk are independent mean-zero Gaussian variables with var(Γk) = 1 + k−1, and the oracle

parameters γk are given by

γk =
1

k

k∑
i=1

log σ2
i − log σ2

k+1 =
1

k

k∑
i=1

log ξi − log ξk+1, k ≥ 1, (9)

with the explained variance ratios ξk from Theorem 1.
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This theorem characterizes the asymptotic behavior of the Hill plot using K Hill estimators based

on K + 1 leading eigenvalues. As discussed in the introduction, our asymptotic theory of the Hill

estimator with a finite k is novel and very different from that in existing extreme value statistics

literature.

Next, we profile out the nuisance parameter ν. Suppose d is unspecified, and imagine if we could

introduce the oracle z-score statistic for each individual Hill estimator in terms of d given by

ẑk(d) =

√
ν

2
·
√

k

1 + k
(γ̂k − γk(d)) ,

where the benchmark parameter γk = γk(d) is defined by (9) via σ2
k = σ2

k(d), all as functions of d.

Under a null hypothesis d = d0 in Theorem 2,

(ẑ1(d0), . . . , ẑK(d0)) ⇒ (Z1, . . . , ZK), Zk
iid∼ N (0, 1).

Based on these z-scores we can construct t-statistics sequentially given by

t̃k−1(d) =
ẑk(d)√

(ẑ21(d) + . . .+ ẑ2k−1(d))/(i− 1)
=

√
k

k + 1

γ̂k − γk(d)

s̃k−1(d)
, k ≥ 2, (10)

where the variance statistic

s̃2j (d) =
1

j

j∑
i=1

i

i+ 1
(γ̂i − γi(d))

2
,

are computed from the preceding z-scores. Note that ratio statistics t̃k−1(d0) are now all feasible,

whose distribution converges to the student t distribution with degrees of freedom k − 1 under the

null d = d0.

However, standard t-tests based on the naive self-normalized statistics (10) may be lack of power.

The t-statistics can remain small by canceling out the numerator and denominator even under the

alternatives where the oracle z-scores are all very large. To enhance testing power in the spirit of Fan,

Liao and Yao (2015), we propose to shrink the scale parameter s̃2k−1(d) by exploiting the fact it must

vanish under the null, and replace it with the following shrinkage estimator:

ŝ2k−1(d) =
1

k − 1

k−1∑
i=1

δh

(
i

i+ 1
(γ̂i − γi(d))

2

)
(11)

with some shrinkage δh function and bandwidth h > 0 in the form of

δh(x) = xG
(x
h

)
/G(0), x > 0 (12)

for some continuous positive kernel function G = G(z) such that supz≥0 zG(z) <∞. The bandwidth

h controls the magnitude of shrinkage: the smaller h, more sensitive of our test statistic to the bias

of the Hill estimators. Finally, define the power-enhanced t-statistics by

tk−1(d) =

√
k

k + 1

γ̂k − γk(d)

ŝk−1(d)
, (13)

then we have their joint asymptotic distribution directly via the continuous mapping theorem.
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Corollary 2. Under the conditions of Theorem 1 and the null hypothesis d = d0 ≥ 1, for any fixed

K ≥ 2 and bandwidth sequence h such that hν → ∞,

(t1(d0), . . . , tK−1(d0)) ⇒ (T1,T2, . . . ,TK−1) ,

where Tj are student variables of degrees of freedom j, but they are dependent via a common sequence

of independent standard normal variables Z1, . . . , ZK in such a way that

Tj =
Zj+1√

(Z2
1 + . . .+ Z2

j )/j
, j = 1, . . . ,K − 1.

Remark 2. The bandwidth condition hν → ∞ is weak and holds for all fixed bandwidth h ∈ (0,∞)

as ν → ∞ under Assumption 2.5. In particular, if the eigenvalues of Ω are bounded away from zero

and infinity, the nuisance parameter ν diverges at the exact order of N . Then the condition holds for

h = 2χ2
1(1− β)/N with any choice of vanishing β ↓ 0 where χ2

1(·) denotes the quantile function of the

chi-square distribution with unit degree of freedom.

To detect whether the true model is an integrated system with an unspecified d, we propose to

scan over a sufficiently large but compact parameter space and use the following minimax statistic

Hk = min
d

max
1≤i≤k−1

|ti(d)| .

Obtaining the non-degenerate limit distribution ofHk is challenging but a conservative test is available

using the fact that Hk ≤ max1≤i≤k−1 |Ti(d0)|, where d0 denotes the true value of d and the upper

bound has a simple asymptotic distribution from Corollary 2:

max
1≤i≤k−1

|ti(d0)| ⇒ max
1≤i≤k−1

|Ti|. (14)

While it is possible to calculate the critical values from the limit in equation (14) using Monte Carlo

methods, the Bonferroni method generates almost identical critical values as demonstrated by the

left plot in Figure 6 for small size α. Specifically, we control the sum of tail probabilities over all t

variables Ti based on Boole’s inequality:

P
(

max
1≤i≤k−1

|Ti| > t

)
≤

k−1∑
i=1

P(|Ti| > t) = 2

k−1∑
i=1

P(Ti > t) = 2
∑

1≤i≤k−1

Si(t),

where Si denotes the student survival function with degrees of freedom i. To summarize, our minimax

test rejects the integrated system if

Hk > S−1
1:k(α/2), S1:k =

∑
1≤i≤k−1

Si, (15)

where the critical value S−1
1:k(α/2) can be easily computed for any α ∈ (0, 1).

Corollary 3. Under the conditions of Corollary 2, the minimax test (15) is asymptotically conserva-

tive for all 2 ≤ k ≤ K, such that for all fixed α ∈ (0, 1)

lim sup
T→∞

P(Hk > S−1
1:k(α/2)) ≤ α.

12
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Figure 6: The critical value S−1
1:k(α/2) as a function of 1− α for different choices of k.

Furthermore, the type-I error approaches zero with any vanishing level, that is,

P(Hk > S−1
1:k(α/2)) → 0, if α = α(N,T ) ↓ 0.

Remark 3. The corollary remains true for α ↓ 0 if one replaces the critical value S−1
1:k(α/2) with

S−1
1 (α/2) = tan[π(1/2 − α/2)], as the critical values are asymptotically the same at the log-scale as

α ↓ 0 for all k ≥ 2 in Figure 6. However, we use the critical value S−1
1:k(α/2) adaptive to k to maintain

better finite-sample performance.

The type-II error of our minimax test against genuine factor models tends to zero with an appro-

priate choice of α. To fix ideas, consider the factor models according to (1) as follows:

Xt = Λft + et, (16)

where ft ∈ Rr are latent factors of a finite dimension r, Λ ∈ RN×r is a matrix of factor loading

coefficients, and et ∈ RN are measurement errors. Note that the factors ft and measurement errors

et could be either stationary or non-stationary. Recall that the demeaned data matrix X̃ = [X1 −
X̄, . . . , XT − X̄], and define F̃ = [f1 − f̄ , . . . , fT − f̄ ] ∈ Rr×n and Ẽ = [e1 − ē, . . . , eT − ē] ∈ RN×T .

Then we can rewrite (16) into a matrix form given by

X̃ = ΛF̃ + Ẽ. (17)

Let σ2
i (A) denote the i-th largest eigenvalue, counting multiplicities, of the matrix A′A.

Theorem 3. Suppose the data is generated from the genuine factor model (17) with σ2
1(Ẽ)/σ2

r(ΛF̃ ) =

OP(N
−θ) for some θ > 0, rather than the integrated system (6). For any sequence of level α with

α−1 = o(logN/h), our rejection rule (15) achieves asymptotically full power for any k ≥ r, that is,

P(Hk > S−1
1:k(α/2)) → 1.

Specifically, the result holds for all fixed α ∈ (0, 1) with any bounded bandwidth h.
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For genuine factor models, our test based on Hill estimators works like a smoothed, cumulative

adaptation of the eigenvalue ratio test introduced by Ahn and Horenstein (2013) that exploits the gap

between λ̂r and λ̂r+1. The Hill estimator γ̂r
P−→ ∞ diverge at a rate of log(N), while the benchmark

parameters γr(d) remain uniformly bounded for all d > 0 within any compact set. Therefore, any

vanishing bandwidth ensures the t-statistics tr(d) to explode at the rate of at least log(N)/h, uniformly

for d > 0 within any compact set. However, for any sequence α ∈ (0, 1), from Remark 3 we know that

the critical value S−1
1:k(α/2) is bounded by smaller order of O(S−1

1 (α/2)) = O(α−1) = o(logN/h).

3 Spurious Factor Models Through Cross-Sectional Structure

Spurious factor analysis can be directly generated by a spatial near-unity-root process embedded in a

cross-sectional structure rather than a time structure. The basic local correlation model from CG is

a high-dimensional random Gaussian vector Xt ∼ N (0, σ2Σ) with the population covariance matrix

Σ = {Σ(i, j) : 1 ≤ i, j ≤ N} given by

Σ(i, j) =
ρ|i−j| − ρi+j

1− ρ2
(18)

for some local correlation coefficient ρ ≈ 1 and unknown scale parameter σ2 > 0. As CG points out,

the actual dimension of local correlation models is the same as that for covariates, and approximating

Σ by a factor-model-based estimator may lead to substantial inefficiency in economic analysis.

We generalize CG’s local correlation models to allow for non-Gaussian shocks in the linear time

series. Following their setup, we let observations Xt,i in Xt = (Xt,1, . . . , Xt,N )′ obey a spatial moving

average form, up to a permutation of coordinates, with some correlation coefficient ρ ∈ (0, 1) given by

Xt,i =

i∑
s=1

ρi−set,s, et = (et,1, . . . , et,N )′, (19)

and the margins in et are N independent copies of linear time series given by

et − e0 =

∞∑
ℓ=0

ψℓεt−ℓ, εt = (εt,1, . . . , εt,N )′, (20)

where {ψℓ ∈ R : ℓ = 0, 1, 2, . . .} are unknown parameters common for all individuals to maintain

the structure of the correlation matrix, and {εt,s} are i.i.d. standardized random variables satisfying

Assumption 2.2. Observe that the cross-sectional covariance matrix still obeys the local correlation

model with

cov(Xt) = σ2Σ, σ2 =

∞∑
ℓ=0

ψ2
ℓ ,

where Σ is the same population covariance matrix defined in (18). Throughout we assume that σ2 is

bounded away from 0.
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Let Φ ∈ RN×N be an upper triangular Toeplitz matrix with first row (1, ρ, ρ2, . . . , ρN−1) satisfying

the expansion

Φ =

∞∑
i=0

ρiLi
N =

N−1∑
i=0

ρiLi
N , (21)

where LN ∈ RN×N denotes the upper shift matrix like in (6) but of a different dimension. Let

Ψ′ =
(∑∞

ℓ=0 ψℓL
ℓ
T

)
C ∈ RT×T be the product of a upper triangular Toeplitz matrix with first row

(ψ0, . . . , ψT−1) and the T ×T centering matrix C. Then we can decompose the demeaned data matrix

X̃ = [X1 − X̄, . . . , XT − X̄] ∈ RN×T by

X̃ = Φ′εΨ′ + ΞC, or X̃ ′ = Ψε′Φ+ CΞ′ (22)

where the reminder matrix Ξ = [Ξ1, . . .ΞT ] has columns given by

Ξt =
∑
s≤0

ψt−sΦ
′εs.

It is instructive to compare the representation of X̃ ′ in (22) with the decomposition (6): the leading

component Ψε′Φ is again a separable random matrix, and the reminder shall be negligible under the

following assumption.

Assumption 3.1. The following conditions hold.

1. The local correlation ρ ↑ 1 such that N(1− ρ) → ω ∈ [0,∞).

2. There exists a summable sequence of constants φℓ ≥ 0, ℓ ∈ N0, such that
∑∞

ℓ=0 φℓ < ∞ and

ψ2
ℓ ≤ φℓ

∑T−1
ℓ=0 ψ

2
ℓ .

Condition 1 encompasses both scenarios of spatial unit root (ω = 0) and spatial near unit root (ω > 0).

Our choice of the convergence rate allows for non-degenerate asymptotic analysis and aligns well with

empirical investigations in the near-unit-root literature. When 0 < ρ < 1 deviates significantly from 1,

the spurious phenomenon caused by local correlation diminishes, falling outside the scope of interest

for this paper. One may interpret condition 2 as a simple notion of the mixing property, which remains

scale-free with respect to {ψℓ} inflated by an arbitrary scale being divergent or not.

Recall the proportion of explained variance ξ̂k defined by (7) via the eigenvalues λ̂k of the sam-

ple covariance matrix. The following theorem gives their spurious probabilistic limits due to local

correlations.

Theorem 4. In large-dimensional locally correlated systems generated by (19) and (20) under As-

sumptions 2.1, 2.2, and 3.1, a spurious factor model emerges in such a way that the followings hold

for every k ≥ 1:

(i) ξ̂k − ξk
P−→ 0 where ξk := σ2

k/
(∑N

i=1 σ
2
i

)
are the explained variance ratios for the eigenvalues σ2

k

of the population covariance matrix Σ = Φ′Φ defined by (18).
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(ii) The population ratio ξk is bounded away from 0.

(iii) |V̂ ′
kVk|

P−→ 1, where V̂k ∈ RN denotes the k-th principal eigenvector of X̃X̃ ′ ∈ RN×N and Vk

denotes the k-th principal eigenvector of Σ = Φ′Φ defined by (18).

Figure 7 displays the finite-sample oracle cumulative explained variance ratio
∑r

k=1 ξk, 1 ≤ r ≤ 10,

for N = 20 and N = 200 as functions of ω = N(1 − ρ). The variance concentrates heavier on the

leading PCs as ω approaches 0. We refer the plots of eigenvectors to Figure 3 of CG.
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Figure 7: Cumulative oracle explained variance ratio
∑r

k=1 ξk for r = 1, . . . , 10 as functions of ω with

N = 20 (left) and N = 200 (right).

Recall the eigenvalues λ̂1 ≥ . . . ≥ λ̂N of the sample covariance matrix Σ̂ = T−1X̃ ′X̃ ∈ RN×N .

The following is an analogy of Theorem 2 and Corollary 1.

Theorem 5. Under the conditions of Theorem 4, for any fixed K ≥ 1,√
ν

2

(
log

λ̂1
σ2
1

− µ, . . . , log
λ̂K+1

σ2
K+1

− µ

)
⇒ (Z1, . . . , ZK+1)

with independent standard Gaussian variables Z1, . . . , ZK+1 provided that
∑∞

ℓ=0 φ
2/3
ℓ <∞ and

∑∞
ℓ=1 ℓ

1/2φℓ <

∞, where σ2
k denotes the k-th largest eigenvalue of the covariance matrix Σ = Φ′Φ defined by (18)

and

ν =
(trΩ)2

tr Ω2
, µ = log

(
tr Ω

T

)
, Ω = ΨΨ′.

The theorem remains true by replacing the condition
∑∞

ℓ=1 ℓ
1/2φℓ < ∞ with a weaker version:∑∞

ℓ=1 ℓ
ι/2φℓ < ∞ for some ι > 0 such that ν = O(T ι). Note that we always have ν ≤ T by

Cauchy-Schwarz inequality.

Corollary 1 remains true with the eigenvalues σ2
k and ratios ξk from Theorem 4.

The parameters ν = ν(Ω) and µ = µ(Ω) are the same functions of Ω as in Theorem 2, except

now we substitute a different expression of Ω taking into the demeaning effect. Following the same
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arguments in the previous section, we can profile out the nuisance parameters µ and ν by considering

the feasible t-statistics given by

tk−1(ρ) =

√
k

k + 1

γ̂k − γk(ρ)

ŝk−1(ρ)
, k ≥ 2,

by substituting the oracle parameters γk(ρ) via the same formula (9) but with new eigenvalues

σ2
i = σ2

i (ρ) here in Theorem 4 as functions of ρ, and ŝk−1(ρ) are the corresponding shrunk vari-

ance estimators like in (11). Similarly, we then scan over a sufficiently large parameter space to

obtain the minimax statistic

Hk = min
ρ:N(1−ρ)≤ω̄

max
1≤i≤k−1

|ti(ρ)|, ω̄ ∈ (ω,∞). (23)

Now we can apply the same minimax test (15) that rejects the local correlation models if Hk >

S−1
1:k(α/2) for any appropriate choice of level α.

Theorem 6. Corollary 3 remains true under the conditions of Theorem 5. Theorem 3 for genuine

factor models still holds for the minimax statistics (23).

In what follows, however, we focus on the case ω = 0 that is ρ = 1 − o(N−1) in the vicinity of 1

to let the first PC explain more than 80% of the total variation. This setting is most relevant to our

bond data; see the calibrations in Figure 1 in the introduction.

Corollary 4. Under the conditions of Theorem 5 with N(1 − ρ) → 0, uniformly for any finite

collections of k ≥ 2

max
1≤i≤k−1

|ti(1)| ⇒ max
1≤i≤k−1

|Ti|,

where Ti are student variables of degrees of freedom i as defined in Corollary 2.

Hence, an asymptotically conservative test at any given level α ∈ (0, 1) is to reject the local

correlation models when

max
1≤i≤k−1

|ti(1)| > S−1
1:k(α/2). (24)

We will explore this test of cross-sectional unit root in simulation studies and empirical applications.

4 Simulation Study

We are considering three sets of Monte Carlo experiments for the integrated time series systems,

locally correlated spatial systems, and genuine factor models, respectively. For simplicity, we choose

a common level of α = 5%. We use the standard normal density function as the kernel G and set

the bandwidth to be h = 2χ2
1(1 − (logN · log T )−1)/max{N,T} where χ2

1 denotes quantile function

of chi-squared distribution with unit degrees of freedom. We report the empirical rejection rates over

50000 replications.
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4.1 Factorless Integrated System

We generate the data from the integrated system (3) for a range of order d ∈ {1, 1.1, . . . , 1.9}. We

calibrate the dimensions (N,T ) = (58, 53) and an autoregressive model for the errors

ut = 0.304ut−1 + 0.057ut−2 + 0.086ut−3 + 0.126ut−4 + vt, vt
iid∼ N (0,Ω)

from the sectoral employment data in the introduction. The autoregressive coefficients are the pooled

least-squares estimates for the log growth in sectoral employment. The dense covariance matrix Ω of

the Gaussian vectors vt is fitted to the idiosyncratic errors without the first three components in the

level data of sectoral employment, using the nonlinear shrinkage estimator of Ledoit and Wolf (2012)

in the QuEST package from the University of Zurich faculty website of Michael Wolf.

Table 1: Size for integrated systems at the level α = 5% with (N,T ) = (58, 53)

d = 1 d = 1.1 d = 1.2 d = 1.3 d = 1.4 d = 1.5 d = 1.6 d = 1.7 d = 1.8 d = 1.9

k = 2 0.011 0.007 0.004 0.003 0.001 0.000 0.000 0.000 0.000 0.000

k = 3 0.013 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001 0.002

k = 4 0.014 0.010 0.007 0.005 0.004 0.003 0.004 0.005 0.007 0.008

k = 5 0.017 0.013 0.010 0.009 0.009 0.011 0.013 0.016 0.019 0.022

k = 6 0.020 0.019 0.018 0.020 0.023 0.025 0.029 0.032 0.037 0.041

k = 7 0.025 0.026 0.028 0.033 0.037 0.041 0.045 0.049 0.053 0.058

k = 8 0.032 0.036 0.041 0.048 0.053 0.057 0.062 0.065 0.069 0.074

k = 9 0.040 0.047 0.055 0.061 0.066 0.072 0.077 0.080 0.084 0.088

Table 1 shows the empirical size of our minimax test (15) in nominal values, which tends to increase

with our choice of k and the population order of integration d. Our tests are conservative in general,

according to our asymptotic theory. The exceptions are the most challenging cases for large k and d,

where we observe a minor oversized issue.

4.2 Locally Correlated System

We calibrate the dimensions (N,T ) = (19, 112) and generate the data from the local correlation model

in Section 3 for a correlation ρ ∈ {0.98, 0.985, 0.99, 0.995, 0.999, 1} close to 1. We generate the shocks

from an autoregressive model

et = −0.017et−1 − 0.079et−2 + 0.100et−3 + 0.041et−4 + vt, vt
iid∼ N (0, IN )

fitted to the standardized difference bond returns using the pooled least-squares estimator across all

maturities.

Table 2 shows the empirical size of our cross-sectional unit root test (24) at the level α = 5%. The

sizes are almost correct, especially for ρ closer to 1, even though the test is only conservative. For each
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Table 2: Size for locally correlated systems at the level α = 5% with (N,T ) = (19, 112)

ρ = 0.98 ρ = 0.985 ρ = 0.99 ρ = 0.995 ρ = 0.999 ρ = 1

k = 2 0.047 0.043 0.047 0.050 0.050 0.049

k = 3 0.045 0.042 0.046 0.050 0.049 0.048

k = 4 0.045 0.042 0.046 0.050 0.049 0.048

k = 5 0.045 0.042 0.046 0.050 0.049 0.048

k = 6 0.045 0.042 0.046 0.050 0.049 0.048

k = 7 0.045 0.042 0.046 0.050 0.049 0.048

k = 8 0.045 0.042 0.046 0.050 0.049 0.048

k = 9 0.045 0.042 0.046 0.050 0.049 0.048

given ρ, the rejection rates are similar over large k because the maximum of t statistics is most likely

to be obtained at smaller k due to the ascending degrees of freedom of the limiting t distributions.

4.3 Genuine Factor Models

We consider the following genuine factor models that resemble the eigenvector plots of the spurious

limits in Onatski and Wang (2021) and Crump and Gospodinov (2022).

1. We calibrate the dimensions (N,T ) = (58, 53) from the employment data, and let the r = 3

genuine factors F =
√
T [U1, U2, U3]

′ ∈ R3×53 equal to the spurious factors, with the principal

eigenvectors Uk of the matrix Φ′Φ in Theorem 1 for d = 1.6. We generate independent entries

in the loading matrix Λ ∈ R58×3 from the standard normal distribution and then permute the

columns of Λ to ensure a descending order of total factor loadings.

2. We calibrate the dimensions (N,T ) = (19, 112) and the factor strengths {σk} from the bond

data. We set the genuine factor loadings Λ = [σ1V1, σ2V2, σ3V3] ∈ R19×3 on r = 3 latent

factors equal to the spurious limits, with the principal eigenvectors Vk of Σ in Theorem 4 for

ρ = 0.99. We generate independent entries in the factor matrix F = [f1, . . . , fT ] ∈ R3×112 from

the standard normal distribution.

In both cases, we generate the measurement errors et ∈ RN in (16) from an ARMA system:

et = 0.5et−1 + vt + 0.5vt−1

with the entries of vt as independent mean-zero Gaussian variables with a proper scale parameter

yielding a (weaker) separation between factor and noise parts such that σ2
r(ΛF̃ ) = Nθσ2

1(Ẽ) in (17)

with θ ∈ {0.5, 0.6, . . . , 1}.
Tables 3 and 4 show that the empirical power of our tests increases with the separation rate θ

between the signal and noise components, with a lift up for k ≥ 3 according to our asymptotic theory.
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Table 3: Power against integrated systems at the level α = 5% with (N,T, r) = (58, 53, 3)

θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 1

k = 2 0.637 0.635 0.634 0.634 0.633 0.633

k = 3 0.772 0.834 0.887 0.929 0.965 0.993

k = 4 0.768 0.831 0.883 0.926 0.962 0.991

k = 5 0.768 0.831 0.883 0.925 0.961 0.991

k = 6 0.768 0.830 0.883 0.925 0.961 0.991

k = 7 0.768 0.830 0.883 0.925 0.961 0.991

k = 8 0.768 0.830 0.883 0.925 0.961 0.991

k = 9 0.768 0.830 0.883 0.925 0.961 0.991

Table 4: Power against locally correlated systems at the level α = 5% with (N,T, r) = (19, 112, 3)

θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9 θ = 1

k = 2 0.208 0.211 0.212 0.214 0.216 0.217

k = 3 0.564 0.720 0.936 0.998 1.000 1.000

k = 4 0.554 0.703 0.918 0.998 1.000 1.000

k = 5 0.552 0.700 0.914 0.998 0.999 1.000

k = 6 0.552 0.699 0.914 0.998 0.999 1.000

k = 7 0.552 0.699 0.913 0.998 0.999 1.000

k = 8 0.552 0.699 0.913 0.998 0.999 1.000

k = 9 0.552 0.699 0.913 0.998 0.999 1.000

The powers of our tests are almost full for the standard linear separate rate with θ close to unity while

remaining arguably satisfactory even for the weaker factor models with smaller θ.

5 Empirical Analysis

Table 5 compares the inner products, in absolute value, of the sample eigenvectors and their spurious

limits for the sectoral employment and bond datasets, respectively. Subject to sign change, the

products on the left equal the unadjusted sample correlations between the sample and spurious factors

(plotted in Figure 5) from integrated systems of order d = 1.6. Similar to OW, we observe correlations

close to unity, in absolute value, for all three leading components, suggesting a resemblance of spurious

factor models. The inner products on the right are for the sample and spurious principal component

loadings for the locally correlated systems of ρ = 0.99. The first sample component (often called

the level) is similar to the spurious limit, but the second and third sample components (often called

the slope and curvature) are different. The angle between subspaces spanned by {V̂1, V̂2, V̂3} and
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{V1, V2, V3} is more than 60 degrees, suggesting the sample space of these leading principal component

loadings are different from that generated by the local correlation model.

Table 5: The absolute value of inner products between sample estimates and spurious limits

Sectoral Employment

U1 U2 U3

Û1 0.986 0.080 0.021

Û2 0.083 0.939 0.096

Û3 0.023 0.073 0.941

Difference Return on Bonds

V1 V2 V3

V̂1 0.937 0.326 0.099

V̂2 0.332 0.726 0.404

V̂3 0.107 0.551 0.289

Table 6 shows the test statistics for different choices of k based on the Hill plots in Figure 2. For

the sectoral employment data, the null models are the collection of integrated systems with d ≥ 1 in

Corollary 2, and we report the minimax statistics Hk from (15). For the bond data, the null models

are local correlation models with ρ very close to 1 in Corollary 4, and we report the cross-sectional

unit root test statistics max1≤i≤k−1 |ti(1)| from (24). The last row shows the conservative critical

values at the level α = 5% that are the same for both tests. Like the Hill plot, the test statistics

stabilize for large k the sectoral employment data, and we cannot reject the integrated system. It is

essential to regard integrated systems, nevertheless, solely as tools for providing the foundation for

the ‘problem of distribution’, rather than as the actual data-generating processes. Further discussions

will be deferred to the next section.

Table 6: Test statistics and critical values for spurious factor models

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

Employment 1.891 1.891 2.673 3.762 3.762 3.762 3.762 3.762

Bond 5.102 8.883 19.835 44.523 69.128 121.352 160.160 219.150

Critical Value 12.706 14.117 14.311 14.346 14.353 14.355 14.356 14.356

On the contrary, the difference return on bonds rejects the local correlation models for all k ≥ 4,

whereas the statistics show a similar explosive behavior as the Hill plot. To illustrate the economic

implications, we revisit the mean-variance optimization example in CG. On the left of Figure 8 is a

replicate of that in Figure 5 of CG showing the Sharpe ratios of our portfolio relative to the optimal

value when suffering the type I errors in our test procedures, that is, using the incorrectly specified

variance matrix based on a factor model rather than correctly specified variance matrix from the local

correlation models.

We also examine the relative Sharpe ratios in cases of type II errors, wherein managers use in-

correctly specified local correlation models instead of the correct variance matrix based on the factor

model. We find that both types of errors incur substantial and comparable reduction of economic

efficiency. This pattern holds across the range of values for ρ we considered in our simulation studies
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Figure 8: Sharpe ratios from the optimal portfolio allocation using the factor model based variance

matrix (alternative hypothesis) versus that based on the local correlation models (null hypothesis)

with ρ = 0.99.
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(i.e., ρ ∈ [0.98, 1)), with nearly identical results to what we are showing for ρ = 0.99. These findings

highlight the importance for portfolio managers to rigorously test the hypothesis of local correlations

to mitigate efficiency losses. Alternatively, at a possible cost of statistical efficiency, portfolio managers

may consider employing a model-free procedure robust to an unknown factor structure, as suggested

by CG.

6 Discussions and Extensions

6.1 Why You Should Avoid Accepting Spurious Factor Models

Empirical researchers ought to be concerned when they are unable to reject spurious factor models.

However, this does not necessarily mean one should accept these models as accurate representations

of the data-generating processes. Our analysis of eigenvectors and tests on eigenvalues for the sectoral

employment data solely indicate that the spectral characteristics of the data matrix cannot be distin-

guished with statistical significance from those generated by a high-dimensional integrated system of

order around d ≈ 1.6.

On the left of Figure 9 compares the scree plots for the differenced data simulated from the

error duration model of Parke (1999) and a fitted integrated model, averaged over 500 sample paths,

with that from observations. We calibrate the survival probabilities from total private establishments

opened in 1994 provided by the Bureau of Labor Statistics (https://www.bls.gov/bdm/bdmage.htm),

assuming the durations are the same over sectors, and fit an integrated order as in Parke (1999) given
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Figure 9: Scree Plots for Differenced and Level Data of Sectoral Employment
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by

d̂ED =
1

2
+

1

2

log(p5/p10)

log(5/10)
≈ 0.7,

where pk denotes the probability of the event that the shocks εs survives until period s + k. We

obtain the corresponding scree plots on the right when we aggregate the growth data into level data.

These scree plots incorporate a fitted integrated system of order 1 + d̂ED ≈ 1.7, which our test does

not reject. The resemblance observed between the models with and without factors, encompassing

the error duration model and the integrated system, serves as a cautionary signal to economists for

potential spurious factor analysis, even after differencing.

6.2 Controlling for Time Trends

Let {Zt} be a high dimensional latent time series from one of our spurious factor models, but our

observations {Xt} contain time trends such as

Xt = X0 + β(1)t+ β(2)t2 + Zt, β(j) = (β
(j)
1 , . . . , β

(j)
N )′, (25)

or, more generally, with a fixed r number of non-stochastic observable trends

Xt =

r∑
j=0

β(j)Wj,t + Zt, Wt = (1,W1,t, . . . ,Wr,t)
′ ∈ R1+r, β(0) = X0.

Note that we consider r = 0 in previous sections, and (25) is a special case with Wt = (1, t, t2)′. All

our results remain true in Section 2 by substituting the demeaned matrix X̃ everywhere with the

demeaned and detrended matrix

X̃ = X(I − PW ) = ΨεΦ+ Ξ(I − PW ), Φ = (I − LT )
−d(I − PW ) (26)

where the projection matrix PW on the trends is given by

PW =W ′(WW ′)−1W, W = [W1, . . . ,WT ].
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Figure 10: Estimated and Spurious Factors Controlling for Time Trends
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Note that (26) generalizes the special form (6) where r = 0 and I − PW = C, the centering matrix.

In Figure 10, we compare the top three estimated factors for U.S. divorce rates across N = 48

states and T = 32 years, controlling for trends and fixed effects in (25), as studied by Wolfers (2006),

Kim and Oka (2014), and Moon and Weidner (2015), with spurious factors generated by an integrated

system of the best fitted order according to our eigenvalue test. The residuals are from the linear

regression on lagged observations and biannual dummy matrices in the aforementioned papers. For

both level and residual data, two estimated factors correlate highly with the leading spurious factors,

leaving only one that seems genuine and almost identical (the second estimated factor for level and

the first for residual).

Our eigenvalue test aligns with the challenge Moon and Weidner (2015) highlighted in distinguish-

ing between factor and nonfactor eigenvalues. While both the ED (edge distribution) criterion by

Onatski (2010) and the ER (eigenvalue ratio) criterion by Ahn and Horenstein (2013) select one fac-

tor for the residual data, as reported by Moon and Weidner (2015), this genuine factor still exhibits

a mild correlation of 46% in absolute value with the third spurious factor (not shown in the figure).

This correlation calls for further investigation in future studies that should consider both genuine and

spurious factors for the inference of linear regression coefficients.

6.3 When to Employ the Local Correlation Model

While the local correlation model may not be a perfect fit for the bond data discussed in Section

5, it can still serve a valuable purpose in explaining spurious factor analysis. For instance, consider

the inflation forecast errors by the Survey of Professional Forecasters in the United States, currently

maintained by the Federal Reserve Bank of Philadelphia. We directly obtained the forecast error

data spanning N = 8 horizons (0.5,1.5,. . .,7.5 quarters) and T = 40 years (1982–2021) from Fabian

Krüger’s GitHub page (https://github.com/FK83/gdp_intervals). Table 7 shows that the top
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three sample principal component loadings correlate highly with the spurious limits derived from the

local correlation model with ρ = 1. The right panel of the table indicates that the first principal com-

ponent alone explains more than 90% of the variance. While these forecast errors display significant

persistence across horizons (the pooled OLS estimate of the spatial AR1 coefficient is close to 1), we

argue that there are no underlying factors. Otherwise, forecasters would have already extracted such

factors.

Table 7: Inner Products Between Sample Loadings and Spurious Limits In Absolute-Value (Left) and

Explained Variance Ratios (Right) for Professional Forecast Errors of Inflation.

V1 V2 V3

V̂1 0.987 0.139 0.078

V̂2 0.090 0.884 0.398

V̂3 0.130 0.420 0.879

PC Explained Variance (%)

1 90.909

2 4.305

3 2.357

7 Conclusion

Misidentifying factor and principal component analyses can lead to incorrect economic interpretations

and substantial consequences. As concerns grow regarding the impact of non-stationarity and local

correlations in generating spurious limits within high-dimensional data, our contribution is establish-

ing a distribution theory that enables the formal testing of such spurious factor models. We introduce

a self-normalized multiple t-test, using a finite sequence of Hill estimators to assess the tail heaviness

of the spectral distribution. We show that the existing spurious factor models fit some but not all

economic datasets. Our highly adaptive test procedure requires only sequences of sample statistics

and benchmarks derived from the spurious limits. This adaptability suggests the potential for ex-

tending our methodology to broader categories of spurious factor models in future research, provided

that corresponding spurious limits can be determined for data matrices that approximate a so-called

separable form in random matrix theory.

A Proofs from Section 2

Let us first present some necessary lemmas but postpone their proofs to the supplement. The first

lemma provides the order of the population eigenvalues σ2
k in Theorem 1 that generate the spurious

concentrations ξk.

Lemma 1. Denote the singular values of the T × T matrix A = (I − LT )
−1 in descending order by

s1 ≥ . . . ≥ sT ≥ 0 given by

s2k =
1

2(1 + cos θk)
, θk =

2(T + 1− k)

2T + 1
π, k = 1, . . . , T.
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There exists a constantM =M(d) > 0, depending only on true value of d ≥ 1, satisfying the followings

hold for all k ≥ 1:

(i) M−1s2dk+1+(⌈d⌉−1)⌈d⌉
(
sk+1+(⌈d⌉−1)⌈d⌉/T

)⌈2d⌉−2d ≤ σ2
k ≤MT 2d.

(ii) σ2
k ≤Ms2kT

2d−2.

where ⌈·⌉ denotes the ceiling function. Furthermore, part (i) extends to all d > 0.

Part i shows that σ2
k diverge at same order of T 2d for each fixed k, whereas part ii shows the decay

rate of the σ2
k over k is at least as fast as s2k.

The second lemma controls the perturbation from the reminder matrix Ξ in the BN decomposition

(6). It is a high-dimensional analogy of Lemma A.5 in Phillips and Shimotsu (2004) for univariate

non-stationary time series.

Lemma 2. There exists a constant M =M(d) > 0 such that for all t

E ∥Ξt∥2 ≤M ∥Ψ∥2
{
t2d−3

t−2∑
s=0

sΛ̄s + t2d−1Λ̄t

}

where

Λ̄t =
∑

ℓ≥t+1

φℓ +
1

t+ 1

t∑
ℓ=0

ℓφℓ,

and ∥·∥ denotes the Frobenius norm.

Proof of Theorem 1. Our proof is similar to that of Theorem 1 in Onatski and Wang (2021), abbrevi-

ated as OW, and thus we only sketch the differences. Let d ≥ 1 be fixed. Observe that the eigenvalues

s2k defined in Lemma 1 can be bounded by a power law in the sense that s2k ≤Mk−2T 2 for all k and

some constantM > 0. Then Lemma 1 implies the existence of a common constantM and a particular

Mk > 0 for every k such that

MkT
2d ≤ σ2

k ≤
T∑

i=1

σ2
i ≤Mζ(2)T 2d, (27)

where ζ(·) is the Riemann zeta function given by ζ(s) =
∑∞

i=1 i
−s with ζ(2) = π2/6 < ∞. This

immediately gives part (ii) of the theorem because σ2
k and

∑T
i=1 σ

2
i are diverging at the same order

of T 2d for every k. On the other hand, the small eigenvalues are negligible by part ii of Lemma 1 in

the sense that: for any δ > 0, one can find a K(δ) such that for all large N,T∑
i≥K(δ)+1

σ2
i ≤ δT 2d. (28)

Next, compare the T × T sample covariance matrix of the leading term in (6) denoted by Σ̃ :=

Φ′ε′Ψ′ΨεΦ/T = Φ′ε′ΩεΦ/T here with the matrix Σ̃ in equation (12) of OW, where we replace their

matrices Ψ and U = (I − LT )
−1 with a more general definitions of Ψ and (I − LT )

−d here. We also
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renamed their matrix W with Ω here and replaced their N with T without influencing the results.

Let σ̃2
k and Ũk denote the k-th largest eigenvalue and the associated eigenvector of Σ̃, respectively.

The consistency of ξ̃2k := σ̃2
k/
∑n

i=1 σ̃
2
i and Ũk then follows by the same arguments in OW using (27),

(28) and the separability Assumption 2.4. In particular, for all 1 ≤ k ≤ K + 2

σ̃2
k

σ2
k · tr Ω/T

− 1
P−→ 0, (29)

and

(i) ξ̃k = ξk(1 + oP(1)).

(ii)
∣∣∣Ũ ′

kUk

∣∣∣ P−→ 1.

Let ∥·∥sp denote the spectral norm and ∥·∥ denote the Frobenius norm. Moreover, as explained in

OW, extending these results to ξ̂k and Ûk only requires verifying that the perturbation term in (6) is

negligible in the sense that

∥ΞC∥2sp = oP(T
2d ∥Ψ∥2), or ∥Ξ∥2sp = oP(T

2d ∥Ψ∥2),

where the order T 2d comes from (27) for leading eigenvalues σ2
k and ∥Ψ∥2 = tr(Ψ′Ψ) = trΩ. It suffices

to show that

E ∥Ξ∥2 =

T∑
t=1

E ∥Ξt∥2 = o(T 2d ∥Ψ∥2).

The last equality follows by summing up the upper bound on E ∥Ξt∥2 from Lemma 2, using the

summability
∑∞

ℓ=0 φℓ <∞ and the Kronecker’s lemma.

To establish the distribution theory in Theorem 2, we first verify a Lyapunov condition on the

eigenvectors of the matrix ΦΦ′ = (I − LT )
−dC(I − L′

T )
−d ∈ RT×T . From now on we assume all the

conditions of Theorem 2.

Lemma 3. Let wk = (wk,1, . . . , wk,T )
′ denote the k-th principal eigenvector of ΦΦ′. For every k ≥ 1,∑T

j=1 w
4
k,j/(

∑T
j=1 w

2
k,j)

2 =
∑T

j=1 w
4
k,j = O(T−1).

With this Lyapunov condition we then establish the asymptotic approximation of sample eigenval-

ues, similar to that in Proposition 5 of Zhang, Pan and Gao (2018). Our proof is even more involved

and available in the supplement. In particular, the negligibility of the reminder term ΞC in (6) in the

next lemma relies on the extra condition
∑∞

ℓ=1 ℓ
ι/2φℓ < ∞ that allows for a polynomial decay of Λ̄t

as t→ ∞:

Λ̄t ≤
1

(t+ 1)ι/2

∑
ℓ≥t+1

ℓι/2φℓ +
1

(t+ 1)ι/2
· 1

(t+ 1)1−ι/2

t∑
ℓ=0

ℓ1−ι/2 · ℓι/2φℓ = o(t−ι/2), (30)

by the summability of ℓ1/2φℓ and Kronecker’s lemma. This decay rate is fast enough, relative to

ν = O(N ι), to make the reminder term ΞC negligible in probability via the Markov inequality and

Lemma 2.
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Lemma 4. Recall that Ω = Ψ′Ψ and ν = (tr Ω)2

tr Ω2 . For all 1 ≤ k ≤ K + 1,√
ν

2

(
T

tr Ω

λ̂k
σ2
k

− 1

)
= Ẑk + oP (1) , Ẑk =

√
ν

2

(
1

trΩ
w′

kε
′Ωεwk − 1

)
,

where

EẐk = 0, var
(
Ẑk

)
= 1 + o(1). (31)

Note that Ẑk are quadratic forms, subject to normalization, of ε̄k := εwk = (ε̄k,1, . . . , ε̄k,N )′.

For every k, ε̄k has independent entries with zero mean and unit variance. The following corollary of

Lemma 3, particularly part i, shows that our standardization of the quadratic forms are asymptotically

correct in view of (31). The other parts of this corollary are useful for establishing the asymptotic

independence between Ẑk.

Corollary 5. The following holds uniformly for 1 ≤ i ≤ N and all k ≥ 1.

(i) The excess kurtosis of ε̄k,i vanish in such a way that Eε̄4k,i − 3 = O(T−1).

(ii) For all k′ ̸= k, cov(ε̄2k,i, ε̄
2
k′,i) = O(T−1).

(iii) For all k′, cov(ε̄2k,i, ε̄k′,i) = O(T−1/2).

For Theorem 2 it remains to show that (Ẑ1, . . . , ẐK+1) ⇒ (Z1, . . . , ZK+1) with independent stan-

dard normal variables Zk. Represent the standardized quadratic forms Ẑk =
∑N

i=1Dk,i from Lemma

4 in a martingale form with

Dk,i =
1√

2 trΩ2

{
Ωi,i(ε̄

2
k,i − 1) + 2ε̄k,i

i−1∑
s=1

Ωi,sε̄k,s

}
. (32)

Let Fp,i denote the sigma-algebra generated by {ε̄k,s : 1 ≤ k ≤ K + 1, 1 ≤ s ≤ i}. For every

1 ≤ k ≤ K + 1, {Dk,i,Fp,i : i = 1, . . . , N} is an adapted array and Dk,i is a martingale difference

array. Note that the ‘time’ axis of these martingales is the individual index 1 ≤ i ≤ N rather than the

real time axis for our data collection. We shall establish the joint convergence of Ẑk by martingale

central limit theorems and Cramér-Wold device. The following lemma will allow us to verify the

conditions in Corollary 3.1 in Hall and Heyde (1980) for linear combinations of Z1, . . . , ZK+1.

Lemma 5. The following hold for the martingale difference arrays {Dk,i : 1 ≤ i ≤ N} over 1 ≤ k ≤
K + 1.

(i)
∑N

i=1 E [Dk,iDk′,i | Fp,i−1]
P−→ 0 for all k ̸= k′.

(ii)
∑N

i=1 E
[
D2

k,i | Fp,i−1

]
P−→ 1.

(iii) max1≤i≤N E[D2
k,i | Fp,i−1]

P−→ 0.

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. We shall prove the theorem using Cramér-Wold device. Let c = (c1, . . . , cK+1)
′ ∈

RK+1 be any fixed projection vector with unit length ∥c∥ = 1, without loss of generality. We use

Corollary 3.1 in Hall and Heyde (1980) to establish that

K+1∑
k=1

ckẐk =

N∑
i=1

c′Di ⇒ N (0, 1),

where Di = (D1,i, . . . , DK+1,i)
′ and its entries are defined by (32), and N (0, 1) denotes a standard

normal variable. In particular, we verify the following two conditions:

(a)
∑N

i=1 E[c′DiD
′
ic | Fp,i−1]

P−→ 1.

(b) For all δ > 0,
∑N

i=1 E
[
(c′Di)

21[|c′Di| > δ] | Fp,i−1

] P−→ 0,

with the sigma-algebras Fp,i−1 defined in Lemma 5. Combining parts i and ii of Lemma 5 gives that

N∑
i=1

E [DiD
′
i | Fp,i−1]

P−→ IK+1

where the limit is an identity matrix. Then condition a follows from the Slutsky theorem.

Now take any δ > 0. By the law of iterated expectations, almost surely

N∑
i=1

E
[
(c′Di)

21[|c′Di| > δ] | Fp,i−1

]
≤

N∑
i=1

E
[
(c′Di)

2 · 1 | Fp,i−1, |c′Di| > δ
]
P (|c′Di| > δ | Fp,i−1)

≤
N∑
i=1

E
[
(c′Di)

2 · 1 | Fp,i−1, |c′Di| > δ
]
· max
1≤i≤N

P (|c′Di| > δ | Fp,i−1) .

The first term
N∑
i=1

E
[
(c′Di)

2 · 1 | Fp,i−1, |c′Di| > δ
]
= OP(1)

by Markov inequality and the law of iterated expectations

E

[
N∑
i=1

E
[
(c′Di)

2 · 1 | Fp,i−1, |c′Di| > δ
]]

=

N∑
i=1

E
[
(c′Di)

2
]
= O(1).

To bound the probability term max1≤i≤N P(|c′Di| > δ | Fp,i−1), use the Cauchy–Schwarz inequality

and Bonferroni method to get that

P (|c′Di| > δ | Fp,i−1) ≤ P (∥Di∥ > δ | Fp,i−1) ≤
K+1∑
k=1

P
(
|Dk,i| > δ/

√
K + 1 | Fp,i−1

)
.

Exchanging the maximum and summation operations and applying the Markov inequlity,

max
1≤i≤N

P (|c′Di| > δ | Fp,i−1) ≤
K+1∑
k=1

max
1≤i≤N

P
(
|Dk,i| > δ/

√
K + 1 | Fp,i−1

)
≤

K+1∑
k=1

K + 1

δ2
max

1≤i≤N
E
[
D2

k,i | Fp,i−1

] P−→ 0,

using part iii of Lemma 5 in the end. This completes the proof of condition b.
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B Proofs from Section 3

The proofs are completely analogous to that in the last subsection, but we need to establish the

corresponding conditions. We begin with the following lemma from the unpublished manuscript by

Zhang, Gao and Pan (2020) for the population eigenvalues of the covariance matrix Σ from (18).

Lemma 6. The eigenvalues σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
N ≥ 0 of Σ are given by

σ2
k =

1

1 + ρ2 − 2ρ cos(θk)

with θ1 < θ2 < . . . < θN being the solutions of the equation

ρ sin(N(π − θ)) + sin((N + 1)(π − θ)) = 0, θ ∈ (0, π),

such that θk ∈
[

2k−1
2N+1π,

k
N+1π

]
.

Combining this lemma with part 1 of Assumption 3.1, we find the bounds for all extreme population

eigenvalues by expanding the cosine function at the origin. We can also obtain the decay rate of σ2
k

over k for any given N .

Corollary 6. For every k ≥ 1 and any δ > 0, for all large N,T ,

(1− δ)N2
(
ω2 + (k − 1/2)2π2/2

)−1 ≤ σ2
k ≤ (1 + δ)N2

(
ω2 + k2π2/2

)−1
.

Moreover, there exists a constant M > 0 such that uniformly for all 1 ≤ k ≤ N

σ2
k ≤MN2k−2.

The next lemma establishes the necessary bounds of the trace, spectral norm and Frobenius norm

of Ω = Ψ′Ψ for our limit theorems, subject to normalization, via the local coefficients {φℓ} from

Assumption 3.1.

Lemma 7. Let Ω(T ) = Ω/
∑T−1

ℓ=0 ψ
2
ℓ be an adaptive normalization of Ω. The followings hold for all

N,T .

(i) 1
4T ≤ tr Ω(T ) ≤ T

(ii) λmax

(
Ω(T )

)
≤
(∑T−1

ℓ=0

√
φℓ

)2
(iii)

∥∥∥Ω(T )

∥∥∥ ≥ 1
4T

1/2 where ∥·∥ denotes the Frobenius norm.

Combining this lemma with the next one yields the desired orders of the spectral and Frobenius

norms of Ω.

Lemma 8.
∑T−1

ℓ=0

√
φℓ = o

(
T

2ι−1
2ι

)
if
∑∞

ℓ=0 φ
ι
ℓ <∞ for any ι ∈ (1/2, 1]
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In particular, for ι = 1, Assumption 2.5 holds with Ω substituting for Ω:

λmax(Ω)

trΩ
=
λmax(Ω(T ))

tr Ω(T )

= o

(
T

T

)
= o(1) → 0. (33)

For ι = 2/3, Assumption 2.6 holds with Ω substituting for Ω:

λmax(Ω)

∥Ω∥
=
λmax(Ω(T ))∥∥∥Ω(T )

∥∥∥ = o

(
T 1/2

T 1/2

)
= o(1) → 0. (34)

Proof of Theorem 4. The proof is completely analogous to that of Theorem 1, even easier, and we only

sketch the differences. Corollary 6 re-establishes the inequalities (27) and (28) by substituting d = 1

therein and the separability condition, Assumption 2.4, for all fixed K. Together with the factorless

condition (33), the stated results hold for the explained ratios ξ̃k and eigenvectors Ṽk of the Gram

matrix Φ′ε′ΩεΦ of the leading term in (22). Extending the results to ξ̂k and V̂k requires the reminder

in (22) to be negligible. Following the arguments in the end of the proof of Theorem 1, a sufficient

condition is that E ∥Ξ∥2 = o(N2 tr Ω), where N2 comes from the order of extreme eigenvalues σ2
k for

all fixed k given in Corollary 6. A direct calculation yields that

E ∥Ξ∥2 =

T∑
t=1

E ∥Ξt∥2 = ∥Φ∥2 ·
T∑

t=1

∞∑
ℓ≥t

ψ2
ℓ = ∥Φ∥2 ·

∞∑
ℓ=1

min{ℓ, T}ψ2
ℓ .

The second part of Corollary 6 gives that ∥Φ∥2 =
∑N

k=1 σ
2
k = O(N2

∑N
k=1 k

−2) = O(N2). Moreover,

recall the definition of Λ̄T−1 from Lemma 2 given by

Λ̄T−1 =

∞∑
ℓ=T

φℓ +
1

T

T−1∑
ℓ=1

ℓφℓ,

such that Λ̄T−1 = o(1) by the summability of {φℓ} and the Kronecker’s lemma. Hence, again using

part 2 of Assumption 3.1,

∞∑
ℓ=1

min{ℓ, T}ψ2
ℓ ≤ Λ̄T−1T

(
T−1∑
ℓ=1

ψ2
ℓ

)
= o

(
T

T−1∑
ℓ=0

ψ2
ℓ

)
= o(tr Ω)

where the last step is due to part i of Lemma 7.

From now on we assume all the conditions of Theorem 5. The following lemma is an analogy of

Lemma 3 for the local correlation models.

Lemma 9. Let wk = (wk,1, . . . , wk,N )′ denote the k-th principal eigenvector of ΦΦ′. For every k ≥ 1,∑N
i=1 w

4
k,i/(

∑N
i=1 w

2
k,i)

2 =
∑N

i=1 w
4
k,i = O(N−1).

Proof of Theorem 5. Since the Gram matrices Σ̂ = T−1X̃ ′X̃ and Σ̂ = T−1X̃X̃ ′ share the same

eigenvalues, we only need to work on the transpose of X̃, denoted by X̃ ′ ∈ RT×N , obeying BN

decomposition (22) given by

X̃ ′ = Ψε′Φ+ CΞ′
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with Ω = Ψ′Ψ. The rest is completely analogous to that of Theorem 2, swapping individual index

1 ≤ i ≤ N with the time index 1 ≤ t ≤ T , with Assumption 2.6 satisfied via (34). Specifically, apply

Lemma 3 instead of Lemma 9 for the Lyapunov condition to re-establish Lemma 4 (swapping the

dimensions T and N). To make the reminder term CΞ′ (or, equivalently, its transpose ΞC) negligible

it suffices to bound its spectral norm via its Frobenius norm as follows:

∥CΞ′∥2sp ≤ ∥Ξ′∥2sp ≤ ∥Ξ′∥2 = ∥Ξ∥2 = N2 tr Ω · oP(ν−1/2),

where the last step follows from the Markov inequality, because from the proof of Theorem 5 we know

that

E ∥Ξ∥2 = N2 tr Ω ·O(Λ̄T−1) = N2 tr Ω · o(ν−1/2)

according to (30) with ν = O(T ι).

C Proofs of Lemmas 1– 5 and Corollary 5

C.1 Proof of Lemma 1

We denote by sk(A) the k-th largest singular values (counting multiplicities) of matrix A and set

sk(A) = 0 if k > rank(A), where rank(A) denotes the rank of matrix A. Note that oracle parameters

σk = sk(Φ) in Theorem 1. The following lemma is due to Fan (1951).

Lemma S1. Let A1 and A2 be two real matrices. Then for any positive integers i, j ≥ 1,

(i) si+j−1(A1A2) ≤ si(A1)sj(A2)

(ii) si+j−1(A2) ≤ si(A1) + sj(A2 −A1)

In particular, for j > rank(A2 −A1), si+j−1(A2) ≤ si(A1).

Lemma S2. Let Γ denote the gamma function. For any α ∈ R, Γ(x + α) ∼ Γ(x)xα as x → ∞. It

follows that, for any d > 0, there exists a constant M = M(d) ≥ 1, such that aℓ ≤ M max{1, ℓ}d−1

for all ℓ ∈ N0, where aℓ are defined in (5).

Proof. The first part is a well-known corollary of Watson’s lemma; see, e.g., Chapter 4 of Bleistein

and Handelsman (1975). The second part follows as for all ℓ ≥ 1

aℓ =
Γ(d+ ℓ)

ℓ!Γ(d)
=

Γ(d+ ℓ)

Γ(ℓ)ℓd
ℓd

ℓΓ(d)
≤Mℓd−1.

The case for k = 0 trivial with a0 = 1 ≤M .

Lemma S3. Let A = (I−LT )
−1 denote the T ×T upper triangular matrix with ones on the diagonal

and upper part. Define the matrix H = 2I − LT − L′
T as the T × T symmetric Toeplitz tridiagonal

matrix with 2 on the diagonal, −1 on the sub and super diagonals, and 0 elsewhere. Then

A′A = H−1 +
1

1 + T
A′AeTe

′
TA

′A
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and, similarly,

AA′ = H−1 +
1

1 + T
AA′e1e

′
1AA

′

where et = (0, . . . , 0, 1, 0, . . . , 0)′ ∈ RT denote the basic vector with 1 on the t-th entry but zeros

elsewhere. It follows that rank(A′A−AA′) ≤ 2.

Proof. Write L in short of LT . Observe that

A′A = (I − L′)
−1

(I − L)−1 = (I − L− L′ + I − eTe
′
T )

−1

and

AA′ = (I − L)
−1

(I − L′)−1 = (I − L− L′ + L′L)
−1

= (I − L− L′ + I − e1e
′
1)

−1
.

The rest follows from the Sherman-Morrison formula and the identities e′TA
′AeT = e′1AA

′e1 = T .

Lemma S4. For all integers T, d ≥ 1,

rank
(
(A′)dAd − (A′A)d

)
≤ 2

d−1∑
i=1

i = (d− 1)d.

Proof. We prove by induction over d. The statement is trivial for d = 1. The statement holds for

d = 2 by Lemma S3. Suppose the statement holds for d = k ≥ 2, and consider the case for d = k+ 1.

We denote by a symmetric matrix M = Orank(r) if rank(M) ≤ r. By the induction hypothesis,

(A′)k+1Ak+1 =A′ [(A′)k(A)k
]
A

=A′(A′A)kA+Orank((k − 1)k)

=A′

[
k∏

i=1

(AA′ +Orank(2))

]
A+Orank((k − 1)k)

=(A′A)(k+1) +Orank(2k) +Orank((k − 1)k)

=(A′A)(k+1) +Orank(k(k + 1)).

This is the statement for d = k + 1.

Lemma S5. For all positive integers d, k ≥ 1,

s
2(d−1)
1 s2k ≥ σ2

k ≥ s2k+1

(
Ad
)
≥ s2dk+1+(d−1)d.

Proof. Applying part i of Lemma S1 yields the upper bound, namely

σk = sk(A
dC) ≤ sk(A

d)s1(C) ≤ sk(A)[s1(A)]
d−1s1(C) = sks

d−1
1 ,

where we used the fact that s1(C) = 1 in the last step. Next, note that I − C = T−11T1T has only

rank 1 where 1T denotes the T -dimensional all-ones vector. Applying part ii of Lemma S1 yields one

lower bound:

σk = sk(A
d −Ad(I − C)) ≥ sk+1

(
Ad
)
.
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Let λk(W ) denote the k-th largest eigenvalue of any symmetric matrix W , and observe that λk(W ) =

sk(W ) if W is positive semi-definite. Combining Lemma S4 with part ii of Lemma S1 then gives the

second lower bound:

s2k+1

(
Ad
)
= sk+1

(
(Ad)′Ad

)
≥sk+1+(d−1)d

(
(A′A)d

)
=
(
sk+1+(d−1)d (A

′A)
)d

= s2dk+1+(d−1)d.

Proof of Lemma 1, Part i. The bounds follows from Lemma S5 for all integers d. Consider any non-

integer d and thus ⌈d⌉ − d > 0. For the upper bound we only need to show s21(A
d) ≤ MT 2d since

σ2
k ≤ λmax(C)λmax((A

d)′Ad) ≤ λmax((A
d)′Ad) = s21(A

d). Observe that Ad is a triangular Toeplitz

matrix with first row equals to a = [a0, a1, . . . , aT−1]
′, where the coefficients aℓ are from (5). Using

part ii of Lemma S1,

s1(A
d) = s1

(
T−1∑
ℓ=0

aℓL
ℓ
T

)
≤

T−1∑
ℓ=0

aℓs1(L
ℓ
T ) ≤

T−1∑
ℓ=0

aℓ.

But by Lemma S2,

T−1∑
ℓ=0

aℓ =(Γ(d))−1
T−1∑
ℓ=0

(ℓ!)−1Γ(d+ ℓ)

≤
√
M(Γ(d))−1

(
1 +

T−1∑
ℓ=1

(
(ℓ− 1)!

ℓ!

)
ℓd

)

=
√
M(Γ(d))−2

(
1 +

T−1∑
ℓ=1

ℓd−1

)
≤MT d.

Next, we show the lower bound in part i of the lemma via

σk = sk(A
dC) ≥ sk+1(A

d) ≥ sk+1(A
⌈d⌉)

s1
(
A⌈d⌉−d

) .
Using the upper bound above (replacing d with ⌈d⌉ − d), s1

(
A⌈d⌉−d

)
≤ MT ⌈d⌉−d. Hence, applying

Lemma S5 to A⌈d⌉ gives that

σk ≥
s
⌈d⌉
k+1+(⌈d⌉−1)⌈d⌉

MT ⌈d⌉−d
=

1

M
sdk+1+(⌈d⌉−1)⌈d⌉

(sk+1+(⌈d⌉−1)⌈d⌉

T

)⌈d⌉−d

.

This completes the proof for part i of the lemma.

Proof of Lemma 1, Part ii. Use part i of Lemma S1 for d ≥ 1 to get that

σ2
k =[sk((I − L)−d+1(I − L)−1)]2

≤[s1((I − L)−d+1) · sk((I − L)−1)]2 ≤M1/2T 2(d−1)s2k.
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But

s2k =

(
2 sin

(
2k − 1

2(2T + 1)π

))−2

≤M1/2

(
k

T

)−2

,

and thus the stated result follows.

C.2 Proof of Lemma 2

By the triangle inequality,

∥Ξt∥ ≤
t−2∑
s=0

|as − as+1|

∥∥∥∥∥∥
s∑

j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥+ at−1

∥∥∥∥∥∥
t−1∑
j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥ ,
and then by the Cauchy-Schwarz inequality,

∥Ξt∥2 ≤ 2

t−2∑
s=0

(as − as+1)
2
t−2∑
s=0

∥∥∥∥∥∥
s∑

j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

+ 2a2t−1

∥∥∥∥∥∥
t−1∑
j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

.

Taking expectations on both sides,

E ∥Ξt∥2

≤2

t−2∑
s=0

(as − as+1)
2
t−2∑
s=0

E

∥∥∥∥∥∥
s∑

j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

+ 2a2t−1E

∥∥∥∥∥∥
t−1∑
j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

≤C
t−2∑
s=0

|s|2d−4
+

t−2∑
s=0

E

∥∥∥∥∥∥
s∑

j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

+ C|t− 1|2d−2
+ E

∥∥∥∥∥∥
t−1∑
j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

, (35)

where |s|+ = max{s, 1}.
For all 0 ≤ s ≤ t− 1, decompose that

E

∥∥∥∥∥∥
s∑

j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

=E

∥∥∥∥∥∥
s∑

j=0

ut−j

∥∥∥∥∥∥
2

+ E

∥∥∥∥∥∥Ψ
s∑

j=0

εt−j

∥∥∥∥∥∥
2

− 2E

 s∑
j=0

ut−j

′

Ψ

s∑
j=0

εt−j


=:Tt,s,1 + Tt,s,2 − 2Tt,s,3.

Define Ψ̄ℓ = E[u′tut−ℓ] =
∑∞

s=0 tr(Ψ
′
sΨs+ℓ), and decompose further that

Tt,s,1 =

s∑
ℓ=−s

(s+ 1− |ℓ|)Ψ̄ℓ = (s+ 1)

s∑
ℓ=−s

Ψ̄ℓ −
s∑

ℓ=−s

|ℓ|Ψ̄ℓ

Tt,s,2 =(s+ 1) trΩ, tr Ω =

∞∑
j=−∞

Ψ̄j =

∞∑
s=0

tr(Ψ′
sΨ)

Tt,s,3 =

s∑
ℓ=0

(s+ 1− ℓ) tr(Ψ′
ℓΨ) = (s+ 1)

s∑
ℓ=0

tr(Ψ′
ℓΨ)−

s∑
ℓ=0

ℓ tr(Ψ′
ℓΨ).
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It follows that

E

∥∥∥∥∥∥
s∑

j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

=− (s+ 1)
∑

|ℓ|≥s+1

Ψ̄ℓ − 2

s∑
ℓ=1

ℓΨ̄ℓ + 2(s+ 1)
∑

ℓ≥s+1

tr(Ψ′
ℓΨ) + 2

s∑
ℓ=0

ℓ tr(Ψ′
ℓΨ)

≤2(s+ 1)
∑

ℓ≥s+1

[
|Ψ̄ℓ|+ ∥Ψℓ∥ ∥Ψ∥

]
+ 2

s∑
ℓ=0

ℓ
[
|Ψ̄ℓ|+ ∥Ψℓ∥ ∥Ψ∥

]
.

But by the triangle inequality and the Cauchy-Schwarz inequality,

∑
ℓ≥s+1

|Ψ̄ℓ| ≤
∑

ℓ≥s+1

∞∑
s′=0

|tr(Ψ′
s′Ψs′+ℓ)| ≤

∑
ℓ≥s+1

∞∑
s′=0

∥Ψs′∥ ∥Ψs′+ℓ∥

≤
∞∑
ℓ=0

∥Ψℓ∥
∑

ℓ≥s+1

∥Ψℓ∥ ≤ ∥Ψ∥2
∞∑
ℓ=0

φℓ ·
∑

ℓ≥s+1

φℓ.

In particular, ∑
ℓ≥0

|Ψ̄ℓ| ≤ ∥Ψ∥2
( ∞∑

ℓ=0

φℓ

)2

.

Similarly,

s∑
ℓ=0

ℓ|Ψ̄ℓ| ≤
s∑

ℓ=0

∞∑
s′=0

ℓ ∥Ψs′∥ ∥Ψs′+ℓ∥

≤
∞∑
ℓ=0

∥Ψℓ∥
s∑

ℓ=0

ℓ ∥Ψℓ∥ ≤ ∥Ψ∥2
∞∑
ℓ=0

φℓ ·
s∑

ℓ=0

ℓφℓ

To summarize, for all 1 ≤ s ≤ t− 1

E

∥∥∥∥∥∥
s∑

j=0

(ut−j −Ψεt−j)

∥∥∥∥∥∥
2

≤2 ∥Ψ∥2
( ∞∑

ℓ=0

φℓ + 1

)
(s+ 1)

 ∑
ℓ≥s+1

φℓ +
1

s+ 1

s∑
ℓ=0

ℓφℓ


Plugging these bounds back to the upper bound (35) completes the proof.

C.3 Proof of Lemma 3

Let {ej ∈ RT : 1 ≤ j ≤ T} denote the standard basis of RT such that ej has one in the j-th entry

and zeros elsewhere. By the definition of eigenvector,

ΦΦ′wk = σ2
kwk, or e′jΦΦ

′wk = σ2
kwk,j ∀1 ≤ j ≤ T.

Hence,

T∑
j=1

w4
k,j = σ−8

k

T∑
j=1

(e′jΦΦ
′wk)

4 ≤ σ−8
k

T∑
j=1

(e′jΦΦ
′ΦΦ′ej)

2,
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where the last inequality is due to the Cauchy-Schwarz inequality and the construction that w′
kwk = 1.

Using the spectral inequality and the maximum inequality,

T∑
j=1

w4
k,j ≤σ−8

k λ2max(Φ
′Φ)

T∑
j=1

(e′jΦΦ
′ej) · max

1≤j≤T
e′jΦΦ

′ej

=σ−8
k · σ4

1 · tr(ΦΦ′) · max
1≤j≤T

e′jΦΦ
′ej = O(T−2d) · max

1≤j≤T
e′jΦΦ

′ej ,

where the last step follows from part i of Lemma 1.

Finally, using Lemma S2, uniformly for 1 ≤ j ≤ T

e′jΦΦ
′ej =e′j(I − L)−dC(I − L′)−dej

≤e′j(I − L)−d(I − L′)−dej ≤
T−1∑
s=0

a2s ≤M

T∑
s=1

s2d−2 =MT 2d−1.

The lemma follows by combining all bounds.

C.4 Proof of Corollary 5

For all k, k′, {(ε̄k,i, ε̄k′,i) : 1 ≤ i ≤ N} are i.i.d. and the entries have zero mean and unit variance.

Therefore, it suffices to check the results for each individual i. Part i follows from

Eε̄4k,i − 3 = O

 T∑
j=1

w4
k,j

 = O(T−1).

Part ii follows from

E[ε̄2k,iε̄2k′,i] = 1 +O

 T∑
j=1

w2
k,jw

2
k′,j

 = 1 +O(T−1),

where the last step is due to the Cauchy-Schwarz inequality

T∑
j=1

w2
k,jw

2
k′,j ≤

√√√√ T∑
j=1

w4
k,j ·

√√√√ T∑
j=1

w4
k′,j = O(T−1).

Part iii follows from

E
[
ε̄2k,iε̄k′,i

]
= O

 T∑
j=1

w2
k,jwk′,j

 = O

√√√√ T∑
j=1

w4
k,j ·

√√√√ T∑
j=1

w2
k′,j

 = O(T−1/2),

where the penultimate step is due to the Cauchy-Schwarz inequality.

C.5 Proof of Lemma 4

To establish (31), observe
√

2
ν Ẑk + 1 is a quadratic form given by√

2

ν
Ẑk + 1 =

1

trΩ
ε̄′kΩε̄k, ε̄k = εwk
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where ε̄k has i.i.d. entries with zero mean, unit variance and excess kurtosis of O(T−1) according to

Corollary 5. A direct calculation yields that√
2

ν
EẐk + 1 =

trΩ

trΩ
= w′

iwi = 1, or EẐk = 0,

and

var(Ẑk) =
ν

2
var

(√
2

ν
Ẑk + 1

)

=
(trΩ)2

2 trΩ2

1

(trΩ)2
{
O(T−1) · tr(diag(Ω)2) + 2 trΩ2

}
= O(T−1) + 1.

Recall the eigenvalues σ̃2
k of the approximate covariance matrix Σ̃ = Φ′ε′ΩεΦ/T of the leading

term in (6) that are used in the proof of Theorem 1. We first show that the stated results holds for

σ̃2
k before extending them to the perturbed statistics λ̂k. Consider the singular value decomposition

of Φ given by

Φ =WDV ′ =W1D1V
′
1 +W2D2V

′
2 ,

where D = diag(σ1, . . . , σT ), D1 = diag(σ1, . . . , σK+1), D2 = diag(σK+2, . . . , σT ), W = [W1,W2], and

V = [V1, V2]. It suffices to consider the eigenvalues of

V ′Σ̃V =
1

T

[
D1 0

0 D2

][
W ′

1

W ′
2

]
ε′Ωε[W1,W2]

[
D1 0

0 D2

]

=
1

T

[
D1W

′
1ε

′ΩεW1D1 D1W
′
1ε

′ΩεW2D2

D2W
′
2ε

′ΩεW1D1 D2W
′
2ε

′ΩεW2D2

]
=:

[
Q1,1 Q1,2

Q2,1 Q2,2

]
.

Apply the consistency result (29) of the extreme eigenvalues from the proof of Theorem 1 to the

submatrix Q2,2 yields that

λmax (Q2,2) =
trΩ

T
σ2
K+2(1 + oP(1)) = exp(µ)σ2

K+2(1 + oP(1)), µ = log

(
tr Ω

T

)
.

Let ∥·∥sp denote the spectral norm. Combining with the separability Assumption 2.4, for all λ ≥
exp(µ)σK+1σK+2∥∥∥(λIT−K−1 −Q2,2)

−1
∥∥∥
sp

=OP((exp(µ)σK+1σK+2 − exp(µ)σ2
K+2)

−1)

=OP
(
σ−2
1 exp(−µ)

)
, (36)

where the last equality is due to (27). With the consistency result (29) in the proof of Theorem 1, the

K + 1 largest eigenvalues σ̃2
1 ≥ . . . ≥ σ̃2

k+1 are therefore the solutions of the following characteristic

equation with probability approaching 1:

det
(
λIK+1 −Q1,1 −Q1,2(λIT−K−1 −Q2,2)

−1Q2,1

)
= 0,

λ

exp(µ)
∈ [σK+1σK+2, 2σ

2
1 ]. (37)
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We shall show that the reminder Q1,2(λIT−K−1−Q2,2)
−1Q2,1 is asymptotic negligible. From (36) we

already know that uniformly for λ ≥ exp(µ)σK+1σK+2∥∥Q1,2(λIT−K−1 −Q2,2)
−1Q2,1

∥∥
sp

≤
∥∥(λIT−K−1 −Q2,2)

−1
∥∥
sp

· ∥Q1,2Q2,1∥sp

=OP
(
σ−2
1 exp(−µ)

)
· T−2

∥∥D1W
′
1ε

′ΩεW2D
2
2W

′
2ε

′ΩεW1D1

∥∥
sp
.

Since D1 is a diagonal matrix with positive diagonal entries bounded by σ1,∥∥Q1,2(λIT−K−1 −Q2,2)
−1Q2,1

∥∥
sp

= OP
(
exp(−µ)T−2

)
·
∥∥W ′

1ε
′ΩεW2D

2
2W

′
2ε

′ΩεW1

∥∥
sp
. (38)

Note that the matrix W ′
1ε

′ΩεW2D
2
2W

′
2ε

′ΩεW1 is a (K + 1)× (K + 1) positive semidefinite matrix of

finite dimension. We only need to control the stochastic order of all the diagonals (hence the trace and

spectral norm), namely, w′
kε

′ΩεW2D
2
2W

′
2ε

′Ωεwk with the eigenvectors wk of ΦΦ′ defined in Lemma

3. Since every diagonal element is non-negative, it suffices to control its expected value via

E
[
w′

kε
′ΩεW2D

2
2W

′
2ε

′Ωεwk

]
=

T∑
j=K+2

σ2
jE
(
w′

jε
′Ωεwk

)2
=

T∑
j=K+2

σ2
j var

(
w′

jε
′Ωεwk

)
, (39)

where the last step is due to the orthogonality between wj and wk, j ̸= k, such that

E [wjε
′Ωεwk] = trΩ · w′

jwk = 0.

Let {ej ∈ RT : 1 ≤ j ≤ T} denote the standard basis of RT such that ej has one in the j-th entry

and zero elsewhere. Denote by Ωs,r the (s, r)-entry of Ω. Decompose that

var
(
w′

jε
′Ωεwk

)
=var

(
N∑

s,r=1

Ωs,rw
′
jε

′ese
′
rwi

)

=var

 N∑
s=1

Ωs,sw
′
jε

′ese
′
swk +

∑
s̸=r

Ωs,rw
′
jε

′ese
′
rwk


=

N∑
s=1

Ω2
s,s var(w

′
jε

′ese
′
sεwk)

+
∑
s̸=r

Ω2
s,r

{
var(w′

jε
′ese

′
rεwk) + cov

(
w′

jε
′ese

′
rεwi, w

′
jε

′ere
′
sεwk

)}
.
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We shall show that all the (co)variance terms are bounded. First,

var(w′
jε

′ese
′
sεwk)

=E
[
(w′

jε
′es)

2(e′sεwk)
2
]

=Eε4s,l ·
N∑
l=1

w2
j,lw

2
k,l +

∑
l1 ̸=l2

(w2
j,l1w

2
k,l2 + wj,l1wj,l2wk,l1wk,l2 + wj,l1wj,l2wk,l2wk,l1)

=O(1) ·


(

N∑
l=1

w2
j,l

)(
N∑
l=1

w2
k,l

)
+

(
N∑
l=1

wj,lwk,l

)2


=O

((
N∑
l=1

w2
j,l

)(
N∑
l=1

w2
k,l

))
= O(1),

where the last line is due to the Cauchy–Schwarz inequality. Second, for s ̸= r

var(w′
jε

′ese
′
rεwk) = E(w′

jε
′es)

2E(e′rεwk)
2 = w′

jwj · w′
kwk = 1,

and thus, by Cauchy–Schwarz inequality,∣∣cov (w′
jε

′ese
′
rεwk, w

′
jε

′ere
′
sεwk

)∣∣ ≤√var
(
w′

jε
′ese′rεwk

)
· var

(
w′

jε
′ere′sεwk

)
= 1.

Then we can deduce that

var (wjε
′Ωεwk) = O(1) ·

N∑
s,r=1

Ω2
s,r = O(1) · tr Ω2 = O(1) · tr Ω2. (40)

Substituting into (39) and noting that the O(1) term is uniform,

E
[
w′

kε
′ΩεW2D

2
2W

′
2ε

′Ωεwk

]
= O(tr Ω2) ·

T∑
j=K+2

σ2
j = O

(
tr Ω2 · trD2

2

)
.

Hence, using the Markov inequality, for all fixed K∥∥W ′
1ε

′ΩεW2D
2
2W

′
2ε

′ΩεW1

∥∥
sp

≤ tr
(
W ′

1ε
′ΩεW2D

2
2W

′
2ε

′ΩεW1

)
=

K+1∑
k=1

w′
kε

′ΩεW2D
2
2W

′
2ε

′Ωεwk = OP
(
tr Ω2 · trD2

2

)
.

Combining with (38), uniformly for λ ≥ exp(µ)σK+1σK+2∥∥Q1,2(λIT−K−1 −Q2,2)
−1Q2,1

∥∥
sp

= OP
(
exp(−µ)T−2

)
·O(tr Ω2 · trD2

2)

Observe that exp(−µ)T−2 tr Ω2 = ν−1 exp(µ) and recall from (27) that trD2
2 = O(σ2

1). Then,∥∥Q1,2(λIT−K−1 −Q2,2)
−1Q2,1

∥∥
sp

= OP
(
ν−1 exp(µ) · σ2

1

)
. (41)

Denote the matrix function of λ in the characteristic equation (37) by G(λ) = λIK+1 − Q1,1 −
Q1,2(λIT−K−1−Q2,2)

−1Q2,1 with the (i, j)th element Gi,j(λ). Let Q1,1(i, j) = σiσjw
′
iε

′Ωεwj denotes
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the (i, j)th element of Q1,1. We can approximate the off-diagonal elements in G(λ) via (41) as follows:

uniformly for λ ≥ exp(µ)σK+1σK+2 and i ̸= j

Gi,j(λ) =0−Q1,1(i, j) +OP
(
ν−1 exp(µ)σ2

1

)
=0−OP

(
T−1

√
tr Ω2σiσj

)
+OP

(
ν−1 exp(µ)σ2

1

)
= OP

(
ν−1/2 exp(µ)σ2

1

)
where the second step is due to (40) and the construction that

EQ1,1(i, j) =
1

T
E
[
σiσjw

′
jε

′Ωεwi

]
= σiσjw

′
iwj tr Ω = 0, i ̸= j.

Similarly, for all i, E[Q1,1(i, i)] = exp(µ)σ2
i and the diagonal elements

Gi,i(λ) = λ−Q1,1(i, i) +OP
(
ν−1 exp(µ)σ2

1

)
= λ− exp(µ)σ2

i +OP

(
ν−1/2 exp(µ)σ2

1

)
. (42)

Denote by PK+1 the collection of all the permutation functions τ on the set {1, 2, · · · ,K + 1},
and let τ0 ∈ ΘK+1 denotes the identity function τ0(i) = i. By (37) and the Laplace formula for a

determinant,

0 = det(G(λ)) =
∑

τ∈PK+1

sgn(τ)

K+1∏
i=1

Gi,τ(i)(λ)

=

K+1∏
i=1

Gi,i(λ) +
∑

τ∈PK+1,τ ̸=τ0

sgn(τ)

K+1∏
i=1

Gi,τ(i)(λ),

where sgn(τ) ∈ {−1,+1} denotes the sign of permutation τ .

We first consider the reminder term. Uniformly for all λ ≤ 2 exp(µ)σ2
1 , all diagonal elements of

G(λ) is OP(exp(µ)σ
2
1) but all off-diagonal elements of G(λ) are OP

(
ν−1/2 exp(µ)σ2

1

)
as known above.

For all τ ̸= τ0, there are at least two different values of i such that τ(i) ̸= i, and therefore

exp(−(K + 1)µ)σ
−2(K+1)
1

K+1∏
i=1

Gi,τ(i)(λ) = OP

(
ν−

1
2 ·2
)
.

Since K is bounded, summing up the stochastic bounds does not change the order:

exp(−(K + 1)µ)σ
−2(K+1)
1

∑
τ∈PK+1,τ ̸=τ0

sgn(τ)

K+1∏
i=1

Gi,τ(i)(λ) = OP(ν
−1). (43)

Now consider the leading term
∏K+1

i=1 Gi,i(λ). For any given λ and i ̸= j, the approximation (42)

gives that

Gj,j(λ)−Gi,i(λ) = exp(µ)(σ2
j − σ2

i ) +OP(ν
−1/2 exp(µ)σ2

1),

where the first term is of order exp(µ)σ2
1 and second term is negligible as, under Assumption 2.5

ν−1 =
trΩ2

(tr Ω)2
≤ λmax(Ω)

trΩ
→ 0.
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On the other hand, using the separation Assumption 2.4 and the fact σ2
j and σ2

i all diverge at the

same order of σ2
1 from (27), there exists some M > 0 such that uniformly for λ∑

1≤i̸=j≤K+1

P
(
|Gi,i(λ)−Gj,j(λ)| < M−1 exp(µ)σ2

1

)
→ 0.

Hence, with probability tending to 1, Gi,i(λ) and Gj,j(λ) maintain a distance of the exact order

exp(µ)σ2
1 for all i ̸= j. Thus, (43) implies that when det(G(λ)) = 0 there exists 1 ≤ k ≤ K + 1 such

that

σ−2
1 exp(−µ)Gk,k(λ) = OP

(
ν−1

)
or σ−2

k exp(−µ)Gk,k(λ) = OP

(
ν−1

)
.

Then invoking (42) gives that

σ−2
k exp(−µ)λ =

1

trΩ
w′

kε
′Ωεwk +OP

(
ν−1

)
.

Since there are K + 1 different solutions for det(G(λ)) = 0 satisfying (29),

σ−2
k exp(−µ)σ̃2

k =
1

trΩ
w′

kε
′Ωεwk +OP

(
ν−1

)
, k = 1, . . . ,K + 1.

To substitute σ̃2
k with λ̂k, we need the reminder in (6) to be negligible. Recall that ∥·∥sp and ∥·∥

denote the spectral and Frobenius norms respectively. It suffices to show that

∥ΞC∥2sp ≤ ∥Ξ∥2sp ≤ ∥Ξ∥2 = oP

(
tr Ωσ2

K+1ν
−1/2

)
, (44)

The last step follows from the Markov inequality, because combining Lemma 2 with the decay rate of

Λ̄t in (30) yields that

E ∥Ξ∥2 =

T∑
t=1

E ∥Ξt∥2 = o(tr Ω · T 2d−ι/2) = o(tr Ωσ2
K+1ν

−1/2).

with ν = O(N ι) = O(T ι) according to Assumption 2.1.

C.6 Proof of Lemma 5

Recall the matrix Ω = Ψ′Ψ and denote its (i, j)th entry by Ωi,j . Our proofs rely on the following

decomposition.

Dk,iDk′,i

=
1

2 trΩ2

{
Ωi,i(ε̄

2
k,i − 1) + 2ε̄k,i

i−1∑
s=1

Ωi,sε̄k,s

}{
Ωi,i(ε̄

2
k′,i − 1) + 2ε̄k′,i

i−1∑
s=1

Ωi,sε̄k′,s

}

=
1

2 trΩ2
Ω2

i,i(ε̄
2
k,i − 1)(ε̄2k′,i − 1) +

1

trΩ2
Ωi,i(ε̄

2
k,i − 1)ε̄k′,i

i−1∑
s=1

Ωi,sε̄k′,s

+
1

trΩ2
Ωi,i(ε̄

2
k′,i − 1)ε̄k,i ·

i−1∑
s=1

Ωi,sε̄k,s +
2

trΩ2
ε̄k,iε̄k′,i

i−1∑
s=1

Ωi,sε̄k,s

i−1∑
s=1

Ωi,sε̄k′,s
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Proof of Part i. Since ε̄k,i and ε̄k′,i are independent of Fp,i−1 and using the orthogonality E[ε̄k,iε̄k′,i] =

w′
kwk′ = 0 for k ̸= k′,

E [Dk,iDk′,i | Fp,i−1]

=
Ω2

i,i

2 trΩ2
E
[
ε̄2k,iε̄

2
k′,i − 1

]
+

Ωi,i

tr Ω2
E
[
ε̄2k,iε̄k′,i

] i−1∑
s=1

Ωi,sε̄k′,s +
Ωi,i

tr Ω2
E
[
ε̄2k′,iε̄k,i

] i−1∑
s=1

Ωi,sε̄k,s

Using parts ii and iii of Corollary 5,

N∑
i=1

E
[
Dk,iD

′
k′,i | Fp,i−1

]
=

∑N
i=1 Ω

2
i,i

tr Ω2
·O(T−1) +O(T−1/2) · 1

trΩ2

N∑
i=1

Ωi,i

i−1∑
s=1

Ωi,sε̄k′,s

+O(T−1/2) · 1

trΩ2

N∑
i=1

Ωi,i

i−1∑
s=1

Ωi,sε̄k,s.

Exchanging the order of summations,

E

(
N∑
i=1

Ωi,i

i−1∑
s=1

Ωk,sε̄k′,s

)2

= E

(
N−1∑
s=1

ε̄k′,s

N∑
i=s+1

Ωi,iΩi,s

)2

=

N−1∑
s=1

(
N∑

i=s+1

Ωi,iΩi,s

)2

By the Cauchy-Schwarz inequality, the last term is bounded by

N−1∑
s=1

N∑
i=s+1

Ω2
i,i

N∑
i=s+1

Ω2
i,s ≤

N∑
i=1

Ω2
i,i · tr Ω2.

Therefore,

N∑
i=1

Ωi,i

i−1∑
s=1

Ωi,sε̄k′,s = OP


√√√√ N∑

i=1

Ω2
i,i

√
tr Ω2

 . (45)

Similarly, replacing the index k′ with k,

N∑
i=1

Ωi,i

i−1∑
s=1

Ωi,sε̄k,s = OP


√√√√ N∑

i=1

Ω2
i,i

√
tr Ω2

 .

Combining all bounds yields that

N∑
i=1

E [Dk,iDk′,i | Fp,i−1] =O(T−1) +OP

T−1/2

√√√√ N∑
i=1

Ω2
i,i/ tr Ω

2


=O(T−1) +OP(T

−1/2).

Proof of Part ii. See the proof of Theorem 2.1, equation (3.4), in Bhansali, Giraitis, and Kokoszka

(2007). We do not repeat the details. Note that the limiting variance 1 coincides with the limiting

variance of Ẑk in (31).
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Proof of Part iii. Invoking the expansion at the beginning with k′ = k,

D2
k,i =

1

2 trΩ2
Ω2

i,i(ε̄
2
k,i − 1)2 +

2

trΩ2
Ωi,i(ε̄

2
k,i − 1)ε̄k,i ·

i−1∑
s=1

Ωi,sε̄k,s

+
2

trΩ2
ε̄2k,i ·

(
i−1∑
s=1

Ωi,sε̄k,s

)2

.

Using parts i and iii of Corollary 5,

E
[
D2

k,i | Fp,i−1

]
=

Ω2
i,i

tr Ω2
· (1 + T−1 ·O(1)) + T−1/2 ·O(1) ·

Ωi,i

tr Ω2

i−1∑
s=1

Ωi,sε̄k,s

+
2

trΩ2
·

(
i−1∑
s=1

Ωi,sε̄k,s

)2

where the O(1) terms are uniform. Now use Assumption 2.6 to get that

max
1≤i≤N

Ω2
i,i

tr Ω2
≤ λ2max(Ω)

trΩ2
→ 0.

Moreover, following the proof of Lemma 4 in He et al. (2023),

max
1≤i≤N

2

trΩ2
·

(
i−1∑
s=1

Ωi,sε̄k,s

)2

P−→ 0.

Then the stated result follows.

D Proofs of Lemmas 7 and 8

D.1 Proof of Lemma 7

Let Γ′ =
∑∞

ℓ=0 ψℓL
ℓ
T such that Ψ′ = Γ′C and Ω = Ψ′Ψ = Γ′CΓ.

Proof of Part i. The upper bound of trΩ is straightforward through

trΩ ≤ ∥Γ∥2 ≤
T−1∑
ℓ=0

(T − ℓ)ψ2
ℓ ≤ T

T−1∑
ℓ=0

ψ2
ℓ

To find its lower bound, first we introduce the the T dimensional all-ones vector 1T . By the Cauchy-

Schwarz inequality

∥Γ′1T ∥
2
=

T∑
t=1

(
T−t∑
ℓ=0

ψℓ

)2

≤
T∑

t=1

T−t∑
ℓ=0

(T − t+ 1)ψ2
ℓ

=

T−1∑
ℓ=0

T−ℓ∑
t=1

(T − t+ 1)ψ2
ℓ =

T−1∑
ℓ=0

(T − ℓ)(T + ℓ+ 1)

2
ψ2
ℓ .
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It follows that

trΩ = ∥Γ∥2 − 1

T
∥Γ1T ∥2

≥
T−1∑
ℓ=0

(T − ℓ)ψ2
ℓ −

T−1∑
ℓ=0

(T − ℓ)(T + ℓ+ 1)

2T
ψ2
ℓ

=

T−1∑
ℓ=0

(T − ℓ)ψ2
ℓ −

T−1∑
ℓ=0

(T − ℓ)(T + ℓ+ 1)

2T
ψ2
ℓ =

1

2

T−1∑
ℓ=0

(T − ℓ)(T − ℓ− 1)

T
ψ2
ℓ .

We shall show that the lower bound is close to 1
2T
∑T−1

ℓ=0 ψ
2
ℓ in large samples, the hence strictly

bounded away from 1
4T
∑T−1

ℓ=0 ψ
2
ℓ . Let δ > 0 be arbitrary. There exists a large K = K(δ) such that

for all large T
K∑
ℓ=0

(T − ℓ)(T − ℓ− 1)

T
ψ2
ℓ ≥ (1− δ)T

K∑
ℓ=0

ψ2
ℓ ≥ (1− δ)2T

T−1∑
ℓ=0

ψ2
ℓ .

The last step is due to the summability of φℓ, which implies that for all large K∑K
ℓ=0 ψ

2
ℓ∑T−1

ℓ=0 ψ
2
ℓ

= 1−
∑T−1

ℓ=K+1 ψ
2
ℓ∑T−1

ℓ=0 ψ
2
ℓ

≥ 1−
T−1∑

ℓ=K+1

φℓ ≥ 1− δ.

Combining all these bounds yields that

trΩ ≥ 1

2

K∑
ℓ=0

(T − ℓ)(T − ℓ− 1)

T
ψ2
ℓ ≥ 1

2
(1− δ)2T

T−1∑
ℓ=0

ψ2
ℓ .

Taking δ small enough gives the desired lower bound.

Proof of Part ii. Recall the upper shift matrix LT and Ω = Ψ′Ψ = Γ′CΓ. Let ∥·∥sp denotes the

spectral norm. By the triangle inequality,

λmax(Ω) ≤ ∥Ψ∥2sp ≤ ∥Γ∥2sp ≤

(
T−1∑
ℓ=0

|ψℓ|
∥∥Lℓ

T

∥∥
sp

)2

≤

(
T−1∑
ℓ=0

|ψℓ|

)2

.

Using part 2 of Assumption 3.1,

λmax(Ω) ≤

(
T−1∑
ℓ=0

√
φℓ

)2(T−1∑
ℓ=0

ψ2
ℓ

)

where the last step used the lower bound of trΩ from above.

Proof of Part iii. By the Cauchy-Schwarz inequality,

T
∥∥∥Ω(T )

∥∥∥2 ≥
(
tr Ω(T )

)2
≥ 1

16
T 2,

where the last lower bound comes from part i.
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D.2 Proof of Lemma 8

Denote the floor function by ⌊·⌋. By the Hölder inequality, for all small δ > 0

⌊δ
2ι

2ι−1 T⌋−1∑
ℓ=0

√
φℓ ≤ δT

2ι−1
2ι

⌊δ
2ι

2ι−1 T⌋−1∑
ℓ=0

φι
ℓ


1/(2ι)

≤ δT
2ι−1
2ι

( ∞∑
ℓ=0

φι
ℓ

)1/ι

where the last bound can be an arbitrarily small proportion of T
2ι−1
2ι . Furthermore, by the Hölder

inequality again, for any fixed δ ∈ (0, 1)

T−1
T−1∑

ℓ=⌊δ
2ι

2ι−1 T⌋

√
φℓ ≤

T−1∑
ℓ=⌊δ

2ι
2ι−1 T⌋

ℓ−1√φℓ

≤

√√√√√ T−1∑
ℓ=⌊δ

2ι
2ι−1 T⌋

ℓ−
2ι

2ι−1 ·

 T−1∑
ℓ=⌊δ

2ι
2ι−1 T⌋

φι
ℓ


1
2ι

= O
(
T− 1

2ι

)
· o(1),

meaning that
∑T−1

ℓ=⌊δ
2ι

2ι−1 T⌋

√
φℓ = o

(
T

2ι−1
2ι

)
.
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