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Abstract. We propose confidence regions for the parameters of incomplete models

with exact coverage of the true parameter in finite samples. Our confidence region

inverts a test, which generalizes Monte Carlo tests to incomplete models. The test

statistic is a discrete analogue of a new optimal transport characterization of the

sharp identified region. Both test statistic and critical values rely on simulation

drawn from the distribution of latent variables and are computed using solutions

to discrete optimal transport, hence linear programming problems. We also pro-

pose a fast preliminary search in the parameter space with an alternative, more

conservative yet consistent test, based on a parameter free critical value.
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Introduction

In this paper, we study a class of incomplete econometric models that combines (i) a

restriction on the support of the random variables involved in the model specification,

and (ii) a restriction on the distribution of those variables in the model, that the

analyst cannot observe. The support restriction is implied by economic theory, and

usually involves the implications of behavioral assumptions, equilibrium concepts and

structural features of the economic environment. A game of perfect information with
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a pure strategy equilibrium concept, as in Jovanovic [1989] and Tamer [2003] is a

prime example. Other examples include models of choice with limited attention, as in

Barseghyan et al. [2021], discrete choice with endogeneity, as in Chesher et al. [2013],

auction models, as in Haile and Tamer [2003], network formation, as in de Paula et al.

[2018], and structural vector autoregressions, as in Giacomini and Kitagawa [2021]

and Giacomini et al. [2021]. Molinari [2020] and Chesher and Rosen [2020] provide

comprehensive surveys of the literature on incomplete structural models.

Incomplete structural models are called incomplete because the model structure

does not predict a single data generating process for the observed variables for all

values of the model parameter. Incompleteness arises because of multiple equilib-

ria in games, unobserved heterogeneity in choice sets in limited attention models,

interval predictions in auctions, and unknown sample selection mechanisms. Model

incompleteness generally leads to partial identification, where more than one value

of the model parameter could have given rise to the true data generating process for

the observed variables. However, model incompleteness and partial identification are

distinct concepts.

The current state of the art in deriving confidence regions for the parameters of in-

complete structural models involves the Beresteanu et al. [2011]-Galichon and Henry

[2011] characterization of the sharp identified region as a collection of conditional

moment inequality restrictions, and the application of one of the existing inference

methods with conditional moment inequality models, surveyed in Canay and Shaikh

[2018] and Molinari [2020]. This method, however, results in a very large, possibly

infinite, number of conditional moment inequalities. Even in cases, where the en-

dogenous variable is discrete, such as discrete games, the cardinality of the number

of moment inequalities increases exponentially in the number of strategy profiles.

The challenge is both computational and statistical, as the number of inequalities

may be much larger than the sample size, requiring new methods, such as Cher-

nozhukov et al. [2019]. Basing inference on a non sharp reduced collection of inequal-

ities leads to low power and loss of robustness to misspecification. See Kédagni et al.

[2020] for a discussion. Methods to reduce the number of conditional moment in-

equalities without losing sharpness exist. They are based on core determining classes,

as proposed in Galichon and Henry [2011] and further developed in Chesher et al.
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[2013], Chesher and Rosen [2017], Luo and Wang [2017], Molchanov and Molinari

[2018] and Ponomarev [2022]. However, these methods are complex, model specific,

and only partially alleviate the problem. In addition, when the conditional moment

inequalities are transformed into unconditional ones, as in Andrews and Shi [2013],

sharpness is preserved only when the number of moment inequalities increases with

sample size, which induces an extra layer of computational burden.1 Moreover, infer-

ence methods in moment inequalities rely on asymptotic arguments and some user

chosen tuning parameter to preselect inequalities that are close to binding in the

sample and thereby avoid overly conservative inference.

We propose an alternative method to construct confidence regions for the parame-

ters of incomplete structural models that circumvents the many moments and condi-

tioning issues, allows for continuous outcome variables, and avoids tuning parameters

and asymptotic arguments. As is customary with moment inequality models, we con-

struct our confidence region by inverting a test. However, the test statistic is based on

a different characterization of the sharp identified region, and we show that it controls

size in finite samples. Our testing procedure relies on two key ingredients. First, the

test statistic is based on an optimal transport characterization of the sharp identified

region, inspired by formulations in Galichon and Henry [2006] and Ekeland et al.

[2010]. As a result, the test statistic is the solution of a discrete optimal transport

problem, which is a special kind of linear programming problem, the computation of

which has a long history. Second, the test generalizes Monte Carlo tests of Dwass

[1957] and Barnard [1963]2 to incomplete models to control size in finite samples. The

test statistic and critical values are based on simulation draws from the conditional

distribution of latent variables.

Our test controls size, hence coverage probability of the confidence region for any

finite sample size. Finite sample validity has several advantages, beyond the obvious

benefit of avoiding reliance on often questionable asymptotic approximations. First,

the support constraint and the dimension of the vector of unobservables may change

with sample size, as would arise in applications to games on networks and network

1The dimensionality of the conditioning set in such models generally precludes the alternative ap-
proach to conditional moment inequalities, which involves estimating them, as in Chernozhukov
et al. [2013].
2See also Dufour [2006] and Dufour and Khalaf [2001].
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formation games3. Second, our finite sample validity result requires no restriction on

the dependence between observations in the sample. This property is particularly

desirable with incomplete models. As discussed in Epstein et al. [2016], it is hard

to reconcile the customary independence or mixing assumptions across units of ob-

servation with total ignorance of the mechanism that selected each realization from

the model prediction set. The degree of dependence between observations does not

affect size control, but it does affect the power of the test, hence informativeness of

the confidence region. However, a simple ergodicity condition is sufficient to ensure

that parameter sequences that violate the optimal transport characterization of the

sharp identified region ultimately lie outside the confidence region.

Our method requires a search in the space of parameters. At each value of the

parameter in the search, we must compute a test statistic and a critical value. This

computational burden is shared by inference methods in partially identified models,

where the objective is coverage of the true value of the parameter. In order to acceler-

ate the search, we also propose a conservative superset of our confidence region. The

conservative superset is based on a parameter free critical value, and hence covers

the sharp identified region. Once this conservative confidence region is computed, all

values of the parameter that lie outside of it can be excluded a priori from the exact

confidence region in our main proposal.

Additional recent related literature. Two recent Handbook chapters, by Molinari [2020]

and Chesher and Rosen [2020], give an excellent account of the theory and applica-

tions of incomplete models. In the rest of this section, we only discuss a few more

recent or directly relevant contributions, that were not mentioned in the body of the

introduction. Cox and Shi [2022] provide an inference method for a class of partially

identified models that requires no tuning parameter, and achieves exact finite sample

size in normal models. Chernozhukov et al. [2013] and Chernozhukov et al. [2019]

derive non asymptotic bounds on the rejection probabilities of their confidence re-

gions. These bounds are useful to derive asymptotic rates of convergence, not for

finite sample inference. Chen et al. [2018] provide asymptotically exact inference for

identified sets (for full or subvector of parameters) based on Monte Carlo simulations

3See Example 1.2.3.
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from quasi-posteriors. Gu et al. [2022] characterize identified set in incomplete mod-

els using minimal relevant partitions, as an alternative to core determining classes.

Kaido and Zhang [2019] derive a Neyman-Pearson lemma for incomplete models, and

Chen and Kaido [2022] apply it to test model incompleteness, thereby leveraging the

completeness of the model under the null hypothesis.

Notation and preliminaries. All random vectors are defined on the same complete

probability space (Ω,F ,P). All vectors are written as row vectors throughout. Through-

out the paper, (Y,X, U) will denote a random vector on Y × X × U , and θ ∈ Θ a

fixed parameter vector, where Y ⊆ RdY , X ⊆ RdX , U ⊆ RdU , and Θ ⊆ Rdθ . We will

denote Q and P the collections of Borel probability measures on U × X and Y × X
respectively. M(Q,P ) is the set of probability measures on (U ×X )× (Y ×X ) with

marginals Q on U × X and P on Y × X . We denote by d a lower semi-continuous

metric on U ×X , and the distance d(a,A) between a point a and a set A is be defined

as d(a,A) = inf
a′∈A

d(a, a′). The convex hull of a set A is denoted coA. We denoteM+
n

the set of n × n non negative matrices, and Πn the subset of M+
n containing matri-

ces π such that nπ is doubly stochastic, i.e., such that Σiπij = Σjπij = 1/n, for all

i, j ≤ n. Finally, Sn is the set of permulations σ on {1, . . . , n}, and δx denotes the

Dirac mass concentrated at x. Let bac denote the component-wise integer part of a

vector a and {a} := a− bac the non integer part.

Overview. Section 1 defines the model and characterizes the sharp identified region.

We present the finite sample inference procedure in Section 2. Section 3 proposes a

procedure to reduce the computational burden of the search in the parameter space.

Section 4 shows consistency of the specification test, and Section 5 is a simulation

analysis of the informativeness and computational intensiveness of the proposed pro-

cedure. Proofs are collected in the appendix, together with an extended simulation

exercise based on Ciliberto et al. [2021].

1. Incomplete models

1.1. Theoretical structural model. We restrict attention to the class of para-

metric incomplete structural models introduced in Jovanovic [1989]. The vector of

variables of interest (Y,X, U) ∈ Y × X × U satisfies support constraint (Y,X, U) ∈
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Γ(θ1) ⊆ Y ×X ×U , and the probability distribution of U conditional on possible re-

alizations x of X is given by QU |x;θ2 . The object of inference is the finite dimensional

parameter θ := (θ1, θ2) ∈ Θ. Both vectors or variables Y and X are observed, in the

sense that available data consists in a sample ((Y1, X1), . . . , (Yn, Xn))). Variables in

vector U are unobserved. Variables in vector X are exogenous, in the sense that the

conditional distribution QU |x;θ2 is fixed a priori. This includes U ⊥⊥ X as special case.

All endogenous (i.e., non-exogenous) variables are subsumed in vector Y .

The incompleteness of the model is reflected in two ways. First, multiple values of

the endogenous variables may be consistent with a single value of the exogenous and

unobserved variables. This can be seen in the fact that the set {y ∈ Y : (y, x, u) ∈
Γ(θ1)} may not be a singleton for all (u, x) ∈ U × X . This corresponds to the fact

that the model fails to produce a unique prediction. Second, multiple values of the

unobservable variable may be consistent with a single value of the observable variables.

This can similarly be seen in the fact that the set {u ∈ U : (y, x, u) ∈ Γ(θ1)} may not

be a singleton for all (y, x) ∈ Y ×X . Multiple unobservables could have given rise to

the same observations.

1.2. Examples. Incomplete models as described above encompass examples as di-

verse as static simultaneous move games with complete information and pure strategy

equilibrium concepts, choice models with limited attention or partially observed con-

sideration sets, auctions with independent private values. Section 3 in Molinari [2020]

gives a detailed account of such incomplete structural models with extensive refer-

ences. In what follows, we concentrate on three recent examples to illustrate precisely

how they fit within the framework.

1.2.1. Discrete choice with unobserved heterogeneity in consideration sets. We set

out the structural model in Barseghyan et al. [2021] in their notation, before trans-

lating it into our framework. Consider a finite set of alternatives D for a decision

maker to choose from. A decision maker is characterized by observed covariates X

on X and unobserved random vector ν ∈ V with distribution Pν;δ2 , where δ2 is a

fixed unknown parameter vector (see Assumption 2.1 page 4 of Barseghyan et al.

[2021]). The decision maker makes observed decision d based on the maximization
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of utility d∗(G,X, ν; δ1) := arg max
c∈G

W (c,X, ν; δ1), over a subset G of the full set D
of alternatives, where δ1 is a fixed unknown parameter vector. Unovserved hetero-

geneity in choice sets is the driver of incompleteness in this model. It is disciplined

by the assumption that the realized choice set C ⊆ D under consideration satis-

fies P(|C| ≥ κ) = 1, for some κ ≥ 2, fixed and known. The model therefore stipulates

that the observed choice d must be in

D∗κ :=
⋃

G⊆D:|G|≥κ

{d∗(G,X, ν; δ1)} =
⋃

G⊆D:|G|=κ

{d∗(G,X, ν; δ1)} ,

where the equality follows from Sen’s property α, as shown in Barseghyan et al.

[2021].4

This example fits into the current framework, with Y := d, U := ν, θ = (θ1, θ2) :=

(δ1, δ2), Γ(θ1) := {(y, x, u) : y ∈ D∗κ}, and QU |X;θ2 := Pν;δ2 .

1.2.2. Market Structure and Competition in Airline Markets. Once again, we set out

the structural model in the notation of Ciliberto et al. [2021], before translating it

into our framework. Two firms, indexed j ∈ {1, 2} decide whether to enter a market

based on the profit they expect under optimal pricing. If Firm 1 enters, it faces

demand s̃j(p,X, y, ξ; β), which is a function of the vector of endogenous prices p =

(p1, p2), the vector of exogenous demand relevant firm characteristics X = (X1, X2),

the binary entry decisions y = (y1, y2) of both firms, unobservable demand shocks ξ

and parameter vector β. Fixed costs of entry for Firm j ∈ {1, 2}, is F (Zj, νj; γ), and

marginal unit cost of production is c(Wj, ηj; δ), whereW = (W1,W2) and Z = (Z1, Z2)

are exogenous observed cost shifters, ν = (ν1, ν2), η = (η1, η2) are unobserved cost

shifters, and γ, δ, are parameters.

Structural model constraints include for each firm j ∈ {1, 2}: equality of predicted

and realized demand share

Sj = s̃j(p,X, y, ξ; β), (1.1)

an entry condition, namely yj = 1 if and only if

πj := (pj − c(Wj, ηj; δ))Ms̃j(p,X, y, ξ; β)− F (Zj, νj; γ) ≥ 0, (1.2)

4Sen’s property α is the independence of irrelevant alternatives of individual choice theory.
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and zero otherwise, where M is observed market size, and an equilibrium pricing

condition in case of entry

(pj − c(Wj, ηj; δ))
∂s̃j
∂pj

(p,X, y, ξ; β) + s̃j(p,X, y, ξ; β) = 0. (1.3)

This example fits into the current framework with the following notation correspon-

dence: (yp, yS, y) is the endogenous vector Y , (M,W, Z,X) is the vector of covari-

ates X, and (ν, ξ, η) is the vector U of latent variables with distribution QU |X;θ2 :=

N(0,Σ). The parameter vectors are θ1 = (β, γ, δ), and θ2 := Σ. The structural model

correspondence is Γ((β, γ, δ)) := {(Y,X, U) : Y = (p, S, y), X = (M,W, Z,X), U =

(ν, ξ, η) and (1.1)− (1.3) hold for j = 1, 2}.

1.2.3. Network formation. Observe a single network with adjacency matrix G, a vec-

tor of individual characteristics X, a matrix of player-pair unobservable shocks ε (εij

enters utility of player i is linked to j). The utility of individual i is u(G,X, εi),

where εi = (εij)j. See (1) in de Paula et al. [2018] for an example. Assume all

links are mutually beneficial. This is weaker than pairwise stability since some mutu-

ally beneficial links may be missing (which can be rationalized with search frictions).

Call Ai the local adjacency matrix that is utility relevant to player i. This may be the

whole network adjacency matrix, of it may be a restriction. For instance, in de Paula

et al. [2018], players cannot form more than L links and cannot link at a distance

larger than D. Call Ai,−l the local adjacency matrix after link l was removed. Then,

for each i and each l ∈ N(i) (set of direct neighbors of i),

u(Ai, X, εi) ≥ u(Ai,−l, X, εi). (1.4)

This fits into our framework, with Y = A, U = ε distributed according to QU |X;θ2 , θ1

the parameters of the utility function, and (A,X, ε) ∈ Γ(θ) if and only if (1.4) holds.

1.3. Sharp identified region. The sample ((y1, x1), . . . , (yn, xn))) of observed data

is assumed to be a realization from the random vector ((Y1, X1), . . . , (Yn, Xn))) with

true distribution P
(n)
0 . The model stipulates that the latter is an element of a sub-

set P(n)
θ of the set of distributions on (Y × X )n. The set P(n)

θ is defined as follows.
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Definition 1 (Structural model). For each θ = (θ1, θ2) ∈ Θ, P(n)
θ is the set of distri-

butions P (n) on (Y × X )n, such that for any random vector ((Y1, X1), . . . , (Yn, Xn)))

distributed according to P (n), there exists a random vector (U1, . . . , Un) with sup-

port Un that satisfies the following constraints:

(1) Support restriction: (Yi, Xi, Ui) ∈ Γ(θ1) ⊆ Y × X × U for all i ≤ n, almost

surely.

(2) Latent variables generating process restriction: Ui has distribution QU |Xi;θ2

conditionally on Xi for all i ≤ n, and the (U1, . . . , Un) are independently

distributed5 conditionally on X(n) := (X1, . . . , Xn).

Compatibility between the structural model of Definition 1 and the true data gen-

erating process is defined as the fact that P
(n)
0 is an element of P(n)

θ . Because of

the incompleteness of the model, for any given θ, the structure model may generate

multiple predictions for the process generating the observed data, i.e., P(n)
θ may not

be a singleton. Conversely, any given true data generating process P
(n)
0 may be com-

patible with the structural model, i.e., P
(n)
0 ∈ P(n)

θ , for more than one value of the

parameter θ ∈ Θ. Hence the parameter vector θ is partially identified. The sharp

identified region Θ
(n)
I is defined as the set of values of the parameter θ such that our

model is compatible with the true data generating process.

Definition 2. The sharp identification region is defined for each n ≥ 1 as

Θ
(n)
I := {θ ∈ Θ : P

(n)
0 ∈ P(n)

θ }.

We assume the structural model specification is non trivial in the sense that for

all n ≥ 1, there exists θ ∈ Θ such that P(n)
θ 6= ∅. In other words, the sharp identifica-

tion region is non empty for at least one true data generating process. However, the

sharp identification region may be empty for some true data generating process P
(n)
0 ,

in which case the structural model is incompatible with the data, and should be

rejected.

5The assumption of independence of the latent variable across observation units does not imply
independence of outcomes. In particular, the outcome selection process may be arbitrarily correlated
across observation units.
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1.4. Characterization of the sharp identified region. We discuss a characteri-

zation of the sharp identified region that motivates our test statistic. The character-

ization is derived in case the true data generating process P
(n)
0 has n identical and

independent marginals P0n := PY |X,0n × PX,0n on Y × X . However, inference results

that follow are valid under arbitrary dependence structure.

The existing characterization of the sharp identified region, derived in Beresteanu

et al. [2011] and Galichon and Henry [2011], takes the form of a collection of condi-

tional moment inequalities of typically very large cardinality. Our inference strategy

is based on a different characterization of the sharp identified region as the solution of

an optimal transport problem, and as such, is related to characterization in Galichon

and Henry [2006] and Ekeland et al. [2010].

The fundamental idea applied here also underlies characterizations in Galichon

and Henry [2006] and Ekeland et al. [2010]: the existence of a joint distribution π̃ for

(Y,X, U) that satisfies the model is equivalent to the minimum of π̃((Y,X, U) /∈ Γ(θ1))

among joint distributions π̃ satisfying the marginal constraints being equal to 0.

The way we treat dependence on exogenous variables X is crucially different from

those previous proposals. It relies on a reformulation of the support constraint in the

model. Define the correspondences Γu and Γy between Y × X and U × X by:

Γu(y, x; θ) = {(u, x′) ∈ U × X : x′ = x and (y, x, u) ∈ Γ(θ1)},
Γy(u, x; θ) = {(y, x′) ∈ Y × X : x′ = x and (y, x, u) ∈ Γ(θ1)}.

(1.5)

Correspondence Γy defines the set of model predictions for the endogenous vari-

ables, whereas correspondence Γu defines the set of latent variables that can rational-

ize the data. We define the correspondences between Y × X and U × X instead of

simply U in order to avoid conditioning on X.

With the notation of (1.5), and writing V := (U,X) and W := (Y,X), the distribu-

tional constraint (Constraint (2) in Definition 1) can be written V ∼ Q := QU |X;θ2 ×
PX,0n. Moreover, for this model to be consistent with the true data generating pro-

cess, we need W ∼ P := P0n. LetM(Q,P ) be defined as the set of joint distributions

with marginals Q and P (see notations and preliminaries). Then, the above two re-

strictions imply that the joint distribution π of (V,W ) must satisfy π ∈ M(Q,P ).

Finally, the support constraint in the definition of the structural model (Definition 1)
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is π(V ∈ Γu(W ; θ)) = 1, or, equivalently,

∫
d(v,Γu(w; θ))dπ(v, w) = 0 for any met-

ric d on U × X , if Γu(w; θ) is closed.

Therefore, if the model and parameter θ are compatible with the true data gener-

ating process, the following must hold:

D(Q,P ; θ) := min
π∈M(Q,P )

∫
d (v,Γu(w; θ)) dπ(v, w) = 0. (1.6)

Here D(Q,P ; θ) can be viewed as an optimal transport problem (see Villani [2003])

with cost function (v, w) 7→ d(v,Γu(w; θ)). The following theorem shows that condi-

tion (1.6) is not only necessary, but also sufficient.

Theorem 1 (Characterization of the sharp identified region). Assume the true data

generating process P
(n)
0 has n identical and independent marginals P0n := PY |X,0n ×

PX,0n on Y × X , and Γu is closed-valued (i.e., Γu(y, x; θ) is closed for all (y, x) and

all θ). Then

Θ
(n)
I =

{
θ ∈ Θ : D(QU |X;θ2 × PX,0n, P0n; θ1) = 0

}
.

An immediate benefit of characterizing the sharp identified region in Theorem 1

with the optimal transport formulation (1.6) is that a sample analogue, where P
(n)
0

is replaced with the sample empirical distribution, readily provides a test statistic.

Although Theorem 1 is shown to hold for independent observations, our inference

procedure, detailed in the next section, allows for a general pattern of dependence.

This avoids the need for statistical restrictions on the data generating process, such

as independence or mixing, whose suitability is difficult to assess in an incomplete

model framework (see Epstein et al. [2016] for a discussion).

2. Finite sample inference

The objective of this section is to provide a confidence region for the parameters of

interest θ. The confidence region CRn is obtained by test inversion, as in Anderson

and Rubin [1949]. For each value of θ, we test the null hypothesis

H
(n)
0 (θ) : P

(n)
0 ∈ P(n)

θ .
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The hypothesis is rejected and θ deemed outside the confidence region if and only

if the test statistic Tn(θ), a function of the sample ((Y1, X1), . . . , (Yn, Xn)), is larger

than a corresponding critical value cn,1−α(θ). Hence

CRn := {θ ∈ Θ : Tn(θ) ≤ cn,1−α(θ)}. (2.1)

The rest of this section is devoted to constructing the test statistic Tn(θ) and the

critical value cn,1−α(θ) to ensure exact coverage of the true parameter value in finite

samples. Finite sample inference is achieved with an extension to incomplete models

of traditional Monte Carlo tests of Dwass [1957] and Barnard [1963].

2.1. Test statistic. Our test statistic is based on a sample analogue of the optimal

transport problem D(QU |X;θ2×PX,0n, P0n; θ1), which characterizes the sharp identified

region in Theorem 1. The sample analogue is D(QU |X;θ2 × P̂X,0n, P̂0n; θ1), where

the estimated distributions P̂X,0n and P̂0n are empirical distributions based on the

data sample ((Y1, X1), . . . , (Yn, Xn)). For computational tractability, we replace the

resulting semi-discrete optimal transport problem with an approximation, based on

a discretization of the latent variable distribution QU |X;θ2 . In this approximation, the

latent variable distribution is replaced with the empirical distribution based on a low

discrepancy sequence ũ(n) (see Section 2.3 for details). Our chosen test statistic Tn(θ),

therefore, is the discrete optimal transport solution

Tn(θ) = Dn(C(θ)),

where:

(1) For any n× n cost matrix C ∈M+
n , the program D is defined by

Dn(C) := min
π∈Πn

n∑
i,j=1

πijCij; (2.2)

where Πn is the set of n×n non negative matrices π such that Σiπij = Σjπij =

1/n, for all i, j ≤ n, as defined in the notations and preliminaries section.

(2) The cost matrix C(θ) has entries

Cij(θ) := d((ũi, X̃i),Γu(Yj, Xj; θ1)), for each i, j ≤ n, (2.3)

where ũ(n) := (ũ1, . . . , ũn) is the low discrepancy sequence.
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Computation of the test statistic is discussed in Section 2.3 below. For now, note

that (2.2) solves a discrete optimal transport problem, which is a special kind of

linear programming problem. The computation of the cost function can be costly in

the case of finite games of complete information with Nash equilibrium solutions, such

as Example 1.2.2. We show in Appendix A that in such cases, the cost function (2.3)

can be replaced with a measure of deviation from optimality, which is very easy to

compute.

2.2. Critical values. To achieve valid coverage of the true parameter with Con-

fidence region CRn, we choose as critical value cn,1−α(θ), the 1 − α quantile of a

distribution that first order stochastically dominates Tn(θ) for each n ≥ 1. We then

show exact coverage by exhibiting a data generating process in P(n)
θ such that Tn(θ)

has 1− α quantile cn,1−α(θ).

Our critical values rely on simulated samples of unobservables.

Definition 3 (Monte Carlo latent samples). A Monte Carlo latent sample Ũ ′(n) is

a collection (Ũ ′1, . . . , Ũ
′
n) of independent vectors conditional on X(n) := (X1, . . . , Xn)

such that for each i ≤ n, Ũ ′i is drawn from the conditional distribution QU |Xi;θ2 .

A Monte Carlo latent sample Ũ ′(n) is designed to mimic the true sample U (n) of

realizations of the latent variable in the sense that Ũ ′(n) has the same distribution

as U (n) conditionally on the sample of covariates X(n).

Let Ũ ′(n) be a Monte Carlo latent sample. The critical value we propose is the 1−α
quantile cn,1−α(θ) of the distribution of

T̃n(θ) = sup
C∈Cθ(Ũ ′(n))

Dn(C), (2.4)

where the supremum is taken over the class Cθ(Ũ ′(n)) of n × n cost matrices with

elements Cij satisfying

Cij = d((ũi, Xi),Γu(y,Xj; θ1)), where (y,Xj) ∈ Γy(Ũ
′
j, Xj; θ1), (2.5)

for some y ∈ Y . The next theorem shows that T̃n(θ) satisfies the desired requirements:

it first order stochastically dominates the test statistic Tn(θ), and we can construct a

data generating process under which both Tn(θ) and T̃n(θ) have the same distribution.
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Hence, our proposed confidence region has the correct coverage probability in finite

samples.

Theorem 2. For all θ ∈ Θ, all α ∈ (0, 1) and all n ∈ N such that P(n)
θ is non empty,

Confidence region CRn defined in (2.1) has correct coverage probability,

inf
P (n)∈P(n)

θ

P (n) ( Tn(θ) ≤ cn,1−α(θ) ) ≥ 1− α, (2.6)

with equality if the cumulative distribution function of T̃n(θ) is continuous and in-

creasing in a neighborhood of cn,1−α(θ).

The formal proof of Theorem 2 is given in the appendix. Proof heuristics are as

follows. By construction, under the null hypothesis, the Monte Carlo latent sam-

ple Ũ ′(n) has the same distribution as the true latent sample U (n) := (U1, . . . , Un)

conditional on the sample of covariates X(n) = (X1, . . . , Xn). Now, if the true

data generating process P
(n)
0 is in P(n)

θ , then each realization (Yj, Xj), j ≤ n, falls

in Γy(Uj, Xj; θ1) almost surely (according to the support restriction in the model).

Hence, the cost matrix C(θ) in (2.3) belongs to Cθ(U (n)). Hence the test statistic Tn(θ)

is smaller than sup
{
Dn(C) : C ∈ Cθ(U (n))

}
. Since the latter is identically distributed

to sup
{
Dn(C) : C ∈ Cθ(Ũ ′(n))

}
= T̃n(θ), size control follows. To see that the inequal-

ity in (2.6) is an equality, we find (Y (n), X(n)) that achieves the maximum of Tn(θ)

under the constraint (Yi, Xi) ∈ Γy(Ũ
′
i , Xi; θ1).

2.3. Numerical implementation.

Test statistic. Computation of the test statistic requires computing low discrepancy

sequence ũ(n), computing cost matrix (2.3), and solving optimization problem (2.2).

The sequence ũ(n) = (ũ1, . . . , ũn) is constructed for each i = 1, . . . , n, as follows. A

deterministic sequence ξ(n) := (ξ1, . . . , ξn) of points in [0, 1]dU is derived in such a way

that its empirical distribution approximates the distribution of the uniform on [0, 1]dU

well. Such a sequence is called low discrepancy. We propose to choose a Kronecker

sequence with generic term ξn :=
{
n
(
φ−1
d , φ−2

d , . . . , φ−dd
)}

, where φd be the unique

positive root of xd+1 = x + 1 (see Roberts [2018]). Each element of that sequence is

then transformed using a map that pushes the uniform U [0, 1]dU to QU |Xi;θ2 . In many
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cases, this map can be very simple. For instance, if U has independent marginals,

the componentwise quantile function is suitable. If QU |Xi;θ2 is a multivariate normal,

we can use the composition of quantiles of the standard normal distribution with the

linear transformation from the multivariate standard normal to QU |Xi;θ2 , as we do

in the simulations. Generally, we can set ũi := ∇ψU |Xi;θ2(ξi), where ∇ψU |Xi;θ2 is the

unique gradient of a convex function that pushes the uniform U [0, 1]dU to QU |Xi;θ2

(see McCann [1995] and Chernozhukov et al. [2017]).

The cost matrix requires computing the distance between vector (ũi, Xi) and re-

gion Γu(Yi, Xi; θ1). We propose the following choice of metric for the cost matrix, i.e.,

the Hausdorff distance based on the Euclidean norm:

d((ũ, x̃),Γu(y, x; θ1)) := inf
(u,x)∈Γu(y,x;θ1)

‖(ũ, x̃)− (u, x)‖.

An attractive alternative to the Euclidean norm is the data driven norm

v 7→ ‖v‖Σ̂ :=
√
vΣ̂−1v′, (2.7)

where Σ̂ is the empirical variance covariance matrix of ((ũ1, X1), . . . (ũn, Xn)). In

Appendix B, we show size control conditional on X(n), in order to accommodate

this alternative choice of norm. The computational complexity of the cost matrix

computation is model specific, and common to all inference methods in incomplete

models based on sharp characterizations.

Optimization problem (2.2) is a discrete optimal transport problem, which is a

special kind of linear programming problem. There is a large literature on its imple-

mentation, reviewed in part in Peyré and Cuturi [2019]. Discrete optimal transport

problems are equivalent to assignment problems, for which many efficient algorithms

exist in the literature, most notably the auction algorithm (Bertsekas [1988]) and the

Hungarian algorithm (see for instance Section 11.2 of Papadimitriou and Steiglitz

[1998]), with O(n3) computational complexity. It can also be viewed as a network

flow problem, for which efficient algorithms are available (see for instance Chapter 6 of

Papadimitriou and Steiglitz [1998]). Efficient ready-to-use implementations abound.

For example, The R implementation of the Hungarian algorithm from the package

“transport” by Schuhmacher et al. [2020] performs optimal matching of two sam-

ples with size 1,000 (resp. 10,000) each in 0.1 (resp. 28) seconds on a standard 2020
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MacBookAir. The method is not recommended for sample sizes in the hundreds of

thousands.

Critical values. The generic simulation procedure to compute Critical value cn,1−α is

the following.

(1) Generate S independent Monte Carlo latent samples Ũ (s) := (Ũ s
j )j≤n.

(2) For each s ∈ {1, . . . , S}, compute

T̃ sn(θ) = sup
C∈Cθ(Ũ(s))

Dn(C),

and let T̃ (s)
n (θ), s = 1, . . . , n, be the order statistics.

(3) The critical value cn,1−α(θ) is approximated with

ĉn,1−α(θ) := T̃ (dS(1−α)e)
n (θ).

In practice, test statistic T̃n(θ) may be costly to compute. We propose an alterna-

tive T̃ ′n(θ) with critical value c′n,1−α(θ) that satisfies three desiderata. (1) It can be

computed efficiently, (2) It is equal to T̃n(θ) under suitable assumptions, (3) it still

provides valid coverage (but may be conservative) if the latter assumptions fail.

On Step (2), we replace T̃ sn(θ) with

T̃ ′sn (θ) = min
π∈Πn

max
C∈Cθ(Ũ(s))

∑
i,j

πijCij

= sup
C∈co Cθ(Ũ(s))

Dn(C), (2.8)

which is obtained from T̃ sn(θ) by exchanging the order of the min and the max.

Desideratum (3) follows immediately, since min max ≥ max min. Desideratum (2)

is fulfilled since T̃ ′sn (θ) and T̃ sn(θ) are identical when the set Cθ(Ũ ′(n)) is convex. Fi-

nally, Desideratum (1) is fulfilled since T̃ ′sn (θ) is the maximizer of a concave function,

namely Dn(C), on a convex set, namely co Cθ(Ũ (s)).

We therefore propose the following algorithm to check if a parameter value θ is in

the 1− α level confidence region CRn.

(1) Generate S independent Monte Carlo latent samples Ũ (s) := (Ũ s
j )j≤n.

(2) For each s ∈ {1, . . . , S}, compute τs := 1{Tn(θ) ≤ T̃ ′sn (θ)}.
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(3) Add θ to CRn if and only if Σsτs/S ≥ 1− α.

We perform Step (2) with a variation on Algorithm 1 in Dhouib et al. [2020]. This

algorithm consists in a sequence of linear programing problems and converges from

below in a finite number of steps. Since it converges from below, Step (2) does

not require computation of T̃ ′sn (θ), because τs is known to be equal to 1 as soon as

Algorithm 1 in Dhouib et al. [2020] returns a value larger than the test statistic Tn(θ).

3. Fast preliminary search in the parameter space

When the dimension of the parameter is large and there is no information about the

geometry of the sharp identified region, a major computational hurdle is the search in

the parameter space. This computational hurdle is common to all existing inference

procedures for incomplete structural models, where the confidence region is based

on inverting a test. To reduce the computational burden, we propose a conservative

modification of our test, which relies on parameter free critical values. This allows

a fast initial search in the parameter space and and what amounts to a dramatic

reduction of the search area in our Monte Carlo simulations.

To construct an outer confidence region based on parameter free critical values, we

need to reformulate the model in such a way that the unobserved variable U∗ in the

reformulation has fixed distribution Q∗U with support U∗. The basic ingredient in the

reformulation is a transformation of the vector of unobservable variables U . We fix

the distribution Q∗U on U∗ and make the following assumption.

Assumption 1. There is a function h on U∗ × X × Θ such that for any U∗ with

distribution Q∗U on U∗, the random vector U := h(U∗, X; θ2) has distribution QU |X;θ2.

Although we state it as an assumption, the function h in Assumption 1 always

exists. When U is scalar, the conditional quantile transform is an example of such a

function h. More generally, the vector quantile of U conditional on X, as defined in

Chernozhukov et al. [2017] is an example of such a function h. It can also be computed

as the solution of an optimal transport problem. However, simpler transformations

often satisfy Assumption 1. For instance, in Example 1.2.2, QU |X;θ2 is a multivariate
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normal with mean zero and variance covariance matrix Σ. In that case, we can simply

let Q∗U be the standard multivariate normal and h be defined by U = Σ
1
2U∗.

Under Assumption 1, the incomplete model can be reformulated as the combination

of the support constraint (Y,X, U∗) ∈ Γ∗(θ), where

Γ∗(θ) := {(y, x, u∗) : (y, x, h(u∗, x; θ2)) ∈ Γ(θ1)} ,

and the marginal constraint U∗ ∼ Q∗U and U∗ ⊥⊥ X. The metric d is replaced with a

metric d∗ on (U∗×X )×(U∗×X ). Statistics T ∗n(θ) and T̃ ∗n(θ) and critical value c∗n,1−α(θ)

are obtained with the same procedure as Tn(θ), T̃n(θ), and cn,1−α(θ) respectively,

with Γ∗(θ) replacing Γ(θ1) and Q∗U replacing QU |X;θ2 . Correspondences Γ∗u and Γ∗y are

obtained from Γ∗ in the same way Γu and Γy are obtained from Γ in (1.5). The low

discrepancy sequence and the Monte Carlo latent samples are generated in the same

way, except that QU |X;θ2 is replaced with Q∗U . Finally CR∗n is the set of parameters θ

such that T ∗n(θ) is smaller than or equal to c∗n,1−α(θ).

The outer confidence region

CR0
n := {θ ∈ Θ : T ∗n(θ) ≤ c0

n,1−α}

is defined with test statistic T ∗n(θ) and parameter free critical value c0
n,1−α. Our

conservative parameter free critical value c0
n,1−α is chosen to be the 1− α quantile of

the distribution of

T̃ 0
n = Dn(C̃0), with C̃0

ij = d((ũ∗i , Xi), (U
∗
j , Xj)),

where (ũ∗i )i≤n is a low discrepancy sequence, whose empirical distribution approxi-

mates Q∗U , and (U∗j )j≤n is a Monte Carlo latent sample, simulated according to Q∗U .

By construction, for any y such that (y,Xj) ∈ Γ∗y(U
∗
j , Xj; θ), we have (U∗j , Xj) ∈

Γ∗u(y,Xi; θ). Hence d((ũ∗i , Xi),Γ
∗
u(y,Xj; θ)) ≤ d((ũ∗i , Xi), (U

∗
j , Xj)). It follows that by

construction, for all θ ∈ Θ, T̃ ∗n(θ) ≤ T̃ 0
n , and, therefore:

sup
θ∈Θ

c∗n,1−α(θ) ≤ c0
n,1−α and CR∗n ⊆ CR0

n . (3.1)

From Statement (3.1), we deduce three advantages of the outer confidence re-

gion CR0
n. First, the critical value is independent of the parameter value. Hence, it
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needs to be computed only once, and only the test statistic T ∗n(θ) needs to be com-

puted for each value of the parameter θ. Second, the outer confidence region CR0
n

covers the whole identified set as opposed to each value in the identified set6. Third,

given that CR∗n ⊆ CR0
n, the computation of Confidence region CR∗n can be performed

with a search limited to CR0
n as opposed to the whole parameter space Θ.

4. Consistency

In this section, we theoretically assess informativeness of the confidence region,

as sample size increases. We characterize sequences of data generating processes

and parameters that violate the model, and show that such parameter sequences are

outside the confidence region, eventually. We prove this consistency result for the

conservative outer region CR0
n. Since the latter includes our proposed confidence

region CR∗n, the result also holds for CR∗n.

Let (P
(n)
0 )n≥1 be a sequence of data generating processes. Let (Yi,n, Xi,n)i≤n be

a triangular array where, for any n ≥ 1, the size n sample (Yi,n, Xi,n)i≤n follows

distribution P
(n)
0 . For each n, P

(n)
0 has identical marginals P0n := PY |X,0n × PX,0n.

We consider parameters θ that violate the condition that characterizes the sharp

identified region in Theorem 1. Formally, the alternative is defined as follows, where D
is defined as in (1.6).

Assumption 2 (Sequence of alternatives). Parameter θ satisfies

lim inf
n→∞

D(Q∗U × PX,0n, P0n; θ) > 0. (4.1)

In order to detect violations defined in Assumption 2, or equivalently, to make

sure such a parameter ultimately falls outside the confidence region, the data se-

quence must be sufficiently informative to identify the marginal distributions P0n.

Independence across observations or strong mixing assumptions are sufficient, but

not necessary, as any dependence structure that allows estimation of P0n from the

sequence of empirical distributions P̂n := Σi≤nδ(Yi,Xi)/n is suitable.

6See Section 4.3.1 of Molinari [2020] for a discussion of the distinction between coverage of the
identified set and coverage of each of its elements.
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Assumption 3 (Data generating process). The sequence of data generating pro-

cesses P
(n)
0 with marginals P0n := PY |X,0n × PX,0n is such that {P0n : n ≥ 1} is tight,

and d(P̂n, P0n)→ 0 almost surely for any distance d that metrizes weak convergence.

Detection of violations of the type (4.1) also requires continuity of the cost function

in the optimal transport problem.

Assumption 4 (Regularity of the structure). Metric d∗ is continuous on (U∗ ×
X )× (U∗×X ), and Function ((u∗, x), (y, x′)) 7→ d((u∗, x),Γ∗u((y, x

′); θ)) is continuous

on (U∗ ×X )× (Y × X ).

The condition is stated in its most general form. However, sufficient conditions

on the model structure can be derived. For instance, by Lemma 16.30 page 538 of

Aliprantis and Border [1999], Assumption 4 holds if Γ∗u is a continuous correspondence

(i.e., both upper- and lower-hemicontinuous) with non empty and compact values.

Theorem 3 (Consistency). Under Assumptions 1, 2, 3, and 4, for all α ∈ (0, 1),

lim inf
n→∞

P
(n)
0

(
T ∗n(θ) > c0

n,1−α
)

= 1.

Given that, by (3.1), the exact critical value c∗n,1−α is uniformly smaller than the

conservative critical value c0
n,1−α, Theorem 3 also implies that Parameter θ defined in

Assumption 2 eventually falls outside the confidence region CR∗n.

5. Simulation evidence

We derive confidence regions and coverage probabilities in a simple entry game

example. Consider the classic entry game model of Bresnahan and Reiss [1991] and

Tamer [2003] with S players. Each player s can choose a binary action Ys ∈ {0, 1}.
The payoff us of player s is

us = 1(Ys = 1)

(
X ′sβ −

∑
s′ 6=s

δYs′ + εs

)
,

where Xs is a vector of player specific covariates and εs is a random shock that

is known to the players but unknown to the researcher. If δ ≥ 0, then the game

always has at least one pure-strategy Nash equilibrium. Assume the observed decision
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profile Y = (Ys)s≤S is a pure strategy Nash equilibrium. The vector of random

shocks U = (ε1, . . . , εS) follows a standard multivariate normal distribution. The

parameter vector is θ = (β, δ), and the support restriction is (Y,X, U) ∈ Γ(θ), almost

surely, where (y, x, u) ∈ Γ(θ) if and only if

∀s ∈ {1, ..., S}, (−1)ys

(
x′sβ −

∑
s′ 6=s

δys′ + εs

)
≤ 0.

In our simulations, the number of players is S = 6, Xs = (1 X1s), with X1s ∼ N(0, 1)

for each s, and β = (β0 β1), with β0 = 0.6, β1 = 0.6. Finally, δ = 0.3.

Table 1 gives coverage probabilities for the test of H0 : (β0, β1, δ) = (0.6, 0.6, 0.3)

with confidence levels 0.9, 0.95 and 0.99, sample sizes n ∈ {50, 100, 150, 200, 500, 1000},
based on 5, 000 replications. For each replication, the true data generating process is

chosen by selecting the equilibrium such that the value of the test statistic is maxi-

mized. Column “ncx” (which stands for “non convexified”) reports coverage proba-

bilities based on quantiles of T̃n(θ) in (2.4) as critical values. This column shows exact

coverage for small samples, which conforms with Theorem 2. For sample size 1, 000,

to reduce computational time, the running time for each replication is capped at 103s,

and the number of iterations to 100, 000, which produces coverage probabilities that

Table 1. Coverage probabilities: Column “ncx” reports coverage proba-
bilities based on quantiles of T̃n(θ) as critical values. Column “cx” re-

ports coverage probabilities based on quantiles of T̃ ′n(θ) as critical values.
Columns “Time” report total testing time in seconds for all 5, 000 replica-
tions.

Confidence level Time

0.90 0.95 0.99
Sample size ncx cx ncx cx ncx cx ncx cx

50 0.898 0.901 0.946 0.949 0.988 0.989 81s 79s

100 0.905 0.912 0.956 0.960 0.992 0.992 78s 77s

150 0.904 0.914 0.952 0.957 0.991 9.992 92s 82s

200 0.904 0.918 0.954 0.963 0.990 0.991 124s 109s

500 0.907 0.931 0.954 0.968 0.991 0.994 104s 548s

1,000 0.948 0.954 0.980 0.982 0.996 0.997 105s 103s
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are higher than nominal confidence level. Given that the algorithm converges from

above, validity is not affected when the running time is capped. Column “cx” (which

stands for “convexified”) reports coverage probabilities based on quantiles of T̃ ′n(θ)

in (2.8) as critical values. This column shows exact coverage for very small samples.

For larger samples, the difference between T̃n(θ) and T̃ ′n(θ) is detected, and coverage

probability exceeds nominal level. Column “time” reports total time for all 5, 000

replications, when running on a server with 2 AMD EPYC 7702 processors with 128

CPU cores in total. Time involved in simulating samples is subtracted from the re-

ported number. In the case of n = 1, 000, the ratio of simulating time to testing time

is approximately 10 to 1.

Figure 1 shows what confidence region CRn looks like with one simulated sample

for each sample sizes n ∈ {100, 500, 1000, 5000}. The orange area is the confidence

region based on the exact test, and the blue area is the outer region CR0
n. In each

case, the true data generating process is chosen by selecting randomly within the set

of multiple equilibrium, when they arise.

Discussion

We have proposed a procedure to compute confidence regions in incomplete mod-

els with exact coverage in finite samples. Compared to existing approaches, our

procedure has many advantages, some straightforward and others more subtle. First,

finite sample validity avoids reliance on asymptotic approximations, which are often

suspect. It also removes the need for user-chosen tuning parameters, that inference

results are often very sensitive to. Second, our procedure removes the need for trans-

forming conditional into unconditional moment inequalities, and for reducing the very

large number of moment inequalities with complex and model-specific core determin-

ing classes. Third, finite sample validity allows us to conduct inference in models,

where the specification depends on the sample size. This is particularly important

in applications to games on networks and network formation games, when a single

network is observed. In such cases, the support constraint in the model specifica-

tion depends on the sample size, and so does the dimension of the latent variable,

which involves an individual’s neighbors in the network. Finally, although we haven’t
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developed it here, our method extends to specifications, where the structural sup-

port constraint is individual-specific, thereby allowing us to conduct inference with

the structural vector autoregressions proposed in Giacomini and Kitagawa [2021] and

Giacomini et al. [2021].

This paper has contributed to a growing literature that shows how optimal trans-

port theory provides a rich set of tools in econometrics in general, and incomplete

models in particular. We expect these tools to underlay an extension to semipara-

metric incomplete models with independence constraints.

Appendix A. Simulation experiment based on Example 1.2.2

Recall the details of the structural model in Ciliberto et al. [2021]. Two firms, in-

dexed j ∈ {1, 2} decide whether to enter a market based on the profit they expect un-

der optimal pricing. If Firm 1 enters, it faces demand s̃j(p,X, y, ξ; β), which is a func-

tion of the vector of endogenous prices p = (p1, p2), the vector of exogenous demand

relevant firm characteristics X = (X1, X2), the binary entry decisions y = (y1, y2)

of both firms, unobservable demand shocks ξ and parameter vector β. Fixed costs

of entry for Firm j ∈ {1, 2}, is F (Zj, νj; γ), and marginal unit cost of production

is c(Wj, ηj; δ), where W = (W1,W2) and Z = (Z1, Z2) are exogenous observed cost

shifters, ν = (ν1, ν2), η = (η1, η2) are unobserved cost shifters, and γ, δ, are parame-

ters.

Recall the structural model constraints (1.1), (1.2) and (1.3) for each firm j ∈ {1, 2}:

(1.1) Sj = s̃j(p,X, y, ξ; β),

(1.2) yj := 1 {(pj − c(Wj, ηj; δ))Ms̃j(p,X, y, ξ; β)− F (Zj, νj; γ) ≥ 0} ,

(1.3) (pj − c(Wj, ηj; δ))
∂s̃j
∂pj

(p,X, y, ξ; β) + s̃j(p,X, y, ξ; β) = 0.

Details of the parameterization. We adopt the parametrization as in Ciliberto

et al. [2021] with only minor modifications. Cost functions take the parametric

form c(Wj, ηj) = exp(δWj)ηj and F (Zj, νj; γ) = exp(γZj)νj for each firm j. Mar-

ket shares are generated from the canonical logisitic discrete choice model. Finally,

(ξ1, ξ2, log(η1), log(η2), log(ν1), log(ν2)) ∼ N(0,Σ),



24 LIXIONG LI AND MARC HENRY

where

Σ =

 σ2
ξ · I σξη · I σξν · I

σξη · I σ2
η · I σην · I

σξν · I σην · I σ2
ν · I

 .
With these parametrizations, (1.1), (1.2) and (1.3) become

Sj =
exp(X ′jβ1 − β2pj + ξj)

1 + exp(X ′jβ1 − β2pj + ξj) +
∑

i 6=j yi exp(X ′iβ1 − β2pi + ξi)
, (A.1)

πj = M Sj
β2(1− Sj)

− νj exp(γZj), (A.2)

yj = 1

{
Sj ≥

β2νj exp(γZj)

M+ β2νj exp(γZj)

}
. (A.3)

Therefore, the structural model correspondence after the parametrization is

Γ(θ) = {((yp, yS, y), (M,W, Z,X), (ν, ξ, η)) : (A.1)− (A.3) hold for j = 1, 2}.

Computation of the transport cost matrix (2.3). The computation of the cost

matrix (2.3) is a key step in the procedure, that needs to be repeated many times.

In what follows, we provide details on an efficient computation method that does not

rely on equilibrium enumeration.

In this example, the cost matrix (2.3) is taken to be

C(θ) := min
(ξ,η,ν)

∑
j=1,2

[(ξ̃j − ξj)2 + (η̃j − ηj)2 + (ν̃j − νj)2] + Ω

s.t. (A.1)− (A.3),

where

Ω :=
∥∥∥(M, X,W,Z)− (M̃, X̃, W̃ , Z̃)

∥∥∥2

.

We give details of the efficient computation of (2.3) in three cases, depending on the

number of firms that enter the market.
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Case when both firms enter the market. In this case, (pj, Sj : j = 1, 2) are observed.

From (A.2), we can recover ηj as

ηj = exp(−δWj)

(
pj −

1

β2(1− Sj)

)
. (A.4)

Moreover, (A.1) implies that

ξj = log(Sj/S0)−X ′jβ1 + β2pj (A.5)

where S0 = 1− S1 − S2. By (A.3), we know

νj ≤ νj := exp(−γZj)M
Sj

β2(1− Sj)
. (A.6)

Therefore, we have

C(θ) =
∑
j=1,2

[(ξ̃j − ξj)2 + (η̃j − ηj)2 + 1(νj < ν̃j)(ν̃j − νj)2] + Ω,

where (ηj, ξj) satisfies (A.4) and (A.5).

Case when neither firm enters the market. In this case, (pj, Sj : j = 1, 2) cannot be

observed from the data. To figure out the set of (ξj, ηj, νj : j = 1, 2) that rationalize

the non-entry decision, we need to look at the profit of firms if they entered the

market. Define (pj, Sj : j = 1, 2) to be the price and market share of firm j if it enters

the market while the other firm does not. Then, (pj, Sj) solves

Sj =
exp(X ′jβ1 − β2pj + ξj)

1 + exp(X ′jβ1 − β2pj + ξj)
, (A.7)

pj = η1 exp(δWj) +
1

β2(1− Sj)
. (A.8)

Pluging (A.8) into (A.7), we obtain

Sj =
exp(X ′jβ1 − 1

1−Sj − β2ηj exp(δWj) + ξj)

1 + exp(X ′jβ1 − 1
1−Sj − β2ηj exp(δWj) + ξj)

,

which implies that

−β2ηj exp(δWj) +X ′jβ1 + ξj =
1

1− Sj
+ log

(
Sj

1− Sj

)
.
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Call g the increasing function s 7→ g(s) :=
1

1− s
+ log

(
s

1− s

)
on R+. Since g is

increasing, by (A.3), for j = 1, 2, yj = 0 implies

−β2ηj exp(δWj) +X ′jβ1 + ξj ≤ g

(
β2νj exp(γZj)

M+ β2νj exp(γZj)

)
, (A.9)

which describes the set of (ξj, ηj, νj : j = 1, 2) that rationalize yj = 0 for j = 1, 2.

Therefore, C(θ) = c1 + c2 + Ω, where

cj = min
ξj ,ηj ,νj

(ξ̃j − ξj)2 + (η̃j − ηj)2 + (ν̃j − νj)2

s.t. (A.9).

The expression cj can be further simplified. Define ν∗j as the value of ν that solves

the following equation

−β2η̃ exp(δWj) +X ′jβ1 + ξ̃j = g

(
β2ν exp(γZj)

M+ β2ν exp(γZj)

)
.

Because the right-hand side of the preceeding display is increasing in ν, one can use

a simple bisection algorithm to solve for ν∗j . Then,

cj =


0 if ν∗j ≤ ν̃j

min
ν∈[ν̃j ,ν∗j ]

(
ξ̃j +X ′jβ1 − g

(
β2ν exp(γZj)

M+β2ν exp(γZj)

)
− β2 exp(δWj)η̃

)2

1 + (β2 exp(δWj))2
+ (ν̃j − ν)2 if ν∗j > ν̃j.

In other words, to compute cj, we need to solve at most a one-dimensional minimiza-

tion problem.

Case when only one firm enters the market. Suppose to fix ideas, that firm 2 enters

the market and firm 1 does not. In this case, (pj, Sj) can be observed for j = 2.

Therefore, (ξ2, η2) can be solved according to (A.4) and (A.5) with j = 2. Moreover,

the inequality in (A.6) also holds for j = 2. To find the set of values of (ξ1, η1, ν1)

which rationalize y1 = 0, we need to compute firm 1’s profit if it entered. Define

(p′j, S
′
j : j = 1, 2) to be the counterfactual price and market share of firms if firm 1



FINITE SAMPLE INFERENCE IN INCOMPLETE MODELS 27

had entered the market. Then, (p′j, S
′
j) solve

S ′j =
exp(X ′jβ1 − β2p

′
j + ξj)

1 +
∑2

i=1 exp(X ′iβ1 − β2p′i + ξi)
, (A.10)

p′j = η1 exp(δW1) +
1

β2(1− Sj)
. (A.11)

Pluging (A.11) into (A.10), we get

Sj =
exp(X ′jβ1 − 1

1−Sj − β2ηj exp(δWj) + ξj)

1 +
∑2

i=1 exp(X ′iβ1 − 1
1−Si − β2ηi exp(δWi) + ξi)

. (A.12)

Therefore,

X ′2β1 − β2η2 exp(δW2) + ξ2 =
1

1− S2

+ log

(
S2

1− S1 − S2

)
.

As (η2, ξ2) have already been solved, the left-hand side of the above equation is

known given the parameters and observed characteristics. This defines S2 as the

function ζ(S1) that solves the following equation:

X ′2β1 − β2η2 exp(δW2) + ξ2 =
1

1− ζ(S1)
+ log

(
ζ(S1)

1− S1 − ζ(S1)

)
.

Next, (A.12) also implies

X ′1β1 − β2η1 exp(δW1) + ξ1 =
1

1− S1

+ log

(
S1

1− S1 − ζ(S1)

)
.

Redefine g as the increasing function s 7→ g(s) :=
1

1− s
+ log

(
s

1− s− ζ(s)

)
on R+.

Since g is increasing, by (A.3), y1 = 0 implies

X ′1β1 − β2η1 exp(δW1) + ξ1 ≤ g

(
β2ν1 exp(γZ1)

M+ β2ν1 exp(γZ1)

)
. (A.13)

Note that h′(ν1, X
′
1β1) is a strictly increasing function of ν1.

Therefore,

C(θ) = c1 + (ξ̃2 − ξ2)2 + (η̃2 − η2)2 + 1(ν2 < ν̃2)(ν̃2 − ν2)2 + Ω,
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where

c1 = min
ξ1,η1,ν1

(ξ̃1 − ξ1)2 + (η̃1 − η1)2 + (ν̃1 − ν1)2

s.t. (A.13).

As in the previous subsection, c1 can be shown to be the solution to a one dimensional

optimization problem.

Appendix B. Conditional size control

In this section, we provide size control results that are analogue to Theorem 2,

except for the conditioning on the sample X(n) of realized covariates. The latter

enables us to use the data driven norm proposed in (2.7). Denote R(n) the set of Borel

probability measures on X n. Define the following set of conditional distributions:

P(n)(X(n)) :=
{
P

(n)

Y (n)|X(n) : ∃P (n)
X ∈ R(n), s.t. P

(n)

Y (n)|X(n) × P
(n)
X ∈ P(n)

θ

}
.

Theorem 4. For all θ ∈ Θ, all α ∈ (0, 1) and all n ∈ N such that P(n)
θ is non empty,

Confidence region CRn defined in (2.1) has correct coverage probability,

inf
P

(n)

Y (n)|X(n)
∈P(n)(X(n))

P
(n)

Y (n)|X(n)

(
Tn(θ) ≤ cn,1−α(θ) |X(n)

)
≥ 1− α, (B.1)

with equality if the cumulative distribution function of T̃n(θ) is continuous and in-

creasing in a neighborhood of cn,1−α(θ).

Proof of Theorem 4. Let X(n) be the sample of observed covariates. We fix an arbi-

trary θ such that P(n)
θ is non empty and an arbitrary α ∈ (0, 1). Take an arbitrary

distribution P
(n)

Y (n)|X(n) in P(n)(X(n)), and let Y (n) be a random vector distributed ac-

cording to P
(n)

Y (n)|X(n) . Let Tn(θ) be the test statistic constructed from (Y (n), X(n)).

The proof then proceeds as in Theorem 2. �

Appendix C. Proofs of results in the main text

Proof of Theorem 1. Let the true data generating process P
(n)
0 have n identical and

independent marginals P0n. Call Θ̃
(n)
I the region defined on the right-hand side
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of (1.6). First show that Θ
(n)
I ⊆ Θ̃

(n)
I . If θ ∈ Θ

(n)
I , then there exists a joint proba-

bility π̃ over Y × X × U with marginals P0n and QU |X;θ2 , such that Eπ̃1{(Y,X, U) /∈
Γ(θ1)} = 0. The latter implies the existence of a probability π on U × X × Y × X ,

which is in M(QU |X;θ2 × PX,0n, P0n), π(X = X ′) = 1, and such that Eπ1{(U,X) /∈
Γu(Y,X

′; θ1)} = 0. This implies Eπd ((U,X),Γu(Y,X
′; θ1)) = 0. Hence, θ ∈ Θ̃

(n)
I .

Now show that Θ̃
(n)
I ⊆ Θ

(n)
I . Since d is a metric and Γu is closed-valued, if θ ∈

Θ̃
(n)
I , then there exists a random vector (U,X, Y,X ′) such that (U,X) has distribu-

tion QU |X;θ2×PX,0n, (Y,X) has distribution P0n, X ′ = X and (Y,X, U) ∈ Γ(θ1) almost

surely. Given any sample (Yi, Xi)i≤n distributed according to P
(n)
0 , construct (Ui)i≤n

as follows: Conditional on (Yi, Xi)i≤n, draw (Ui)i≤n from π∗U |(Y,X)=(Y1,X1) × · · · ×
π∗U |(Y,X)=(Yn,Xn). Then, (Yi, Xi, Ui)i≤n satisfies all the conditions of Definition 1 and θ ∈
Θ

(n)
I .

�

Proof of Theorem 2. We fix an arbitrary θ such that P(n)
θ is non empty and an arbi-

trary α ∈ (0, 1).

Proof of (2.6). Take an arbitrary distribution P (n) in P(n)
θ , and let (Y (n), X(n)) be a

random vector distributed according to P (n). Let Tn(θ) be the resulting test statistic.

By the definition of P(n)
θ , there exists a random vector U (n) such that (Yi, Xi, Ui) ∈

Γ(θ1) and Ui|Xi ∼ QU |Xi;θ2 almost surely for each i. Because (Yi, Xi) ∈ Γy(Ui, Xi; θ1),

we know that the cost matrix C(θ) defined in (2.3), which enters the test statis-

tic Tn(θ), belongs to the set Cθ(U (n)) of cost matrices defined as in (2.5). Therefore,

Tn(θ) = Dn(C(θ)) ≤ sup
C∈Cθ(U(n))

Dn(C). (C.1)

By Definition 3, (X(n), U (n)) and (X(n), Ũ ′(n)) are identically distributed. Hence,

the 1− α quantile cn,1−α(η) of sup{Dn(C) : C ∈ Cθ(Ũ ′(n))} is also the 1− α quantile

of sup{Dn(C) : C ∈ Cθ(U (n))}, so that (2.6) follows from (C.1).

Proof that (2.6) holds as an equality. Fix ε > 0. We show below that for any β ∈
(0, 1), there exists some P (n) ∈ P(n)

θ such that

P (n) (Tn(θ) ≤ cn,1−β(θ)− ε ) ≤ 1− β. (C.2)
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Suppose the cdf of T̃n(θ) is continuous and increasing in a neighborhood of cn,1−α(θ).

For any small enough ζ > 0, cn,1−α+ζ(θ) − cn,1−α(η) > 0. Let ε = cn,1−α+ζ(θ) −
cn,1−α(θ). Then, (C.2) applied to β = α−ζ implies that there exists some P (n) ∈ P(n)

θ

such that

P (n) (Tn(θ) ≤ cn,1−α(θ) ) = P (n) (Tn(θ) ≤ cn,1−α+ζ(θ)− ε )

≤ 1− α + ζ.

The above inequality holds for arbitrary small ζ > 0, and the result follows.

Proof of (C.2). By assumption, P(n)
θ is nonempty under the null hypothesis. Hence,

there exists a marginal distribution PX,n such that Γy(U,X; θ1) is almost surely non-

empty if X ∼ PX,n and U |X ∼ QU |X;θ2 . Let (X(n), U (n)) be a vector of n i.i.d. draws

from PX,n ×QU |X;θ2 . Write X(n) = (X1, . . . , Xn) and U (n) := (U1, . . . , Un).

We will construct a map ϕ : X n × Un → Yn such that the distribution P (n)

of (ϕ(X(n), U (n)), X(n), U (n)) is in P(n)
θ and satisfies (C.2). Note that restriction (2)

in the definition of P(n)
θ (Definition 1) is satisfied by the construction of (X(n), U (n)).

In addition, the map ϕ we construct must satisfy the following.

(i) It must be measurable. To show this, we will rely on a classical theorem on

the existence of measurable selections of correspondences, namely Proposition 7.50

page 184 of Bertsekas and Shreve [1996].

(ii) It must be a selection from the correspondence

Y(n)(X(n), U (n)) := {(y1, . . . , yn) ∈ Yn : ∀j, (yj, Xj, Uj) ∈ Γ(θ1)} ,

so support restriction (1) in the definition of P(n)
θ (Definition 1) is satisfied. This will

be imposed in the construction.

(iii) The distribution P (n) of (ϕ(X(n), U (n)), X(n)) must satisfy (C.2). By definition

of Tn(θ) and T̃n(θ), (C.2) is satisfied if Y (n) := ϕ(X(n), U (n)) satisfies

Dn(C(Y (n), X(n); θ) ≥ sup
C∈Cθ(U(n))

Dn(C) − ε. (C.3)
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In the display above, Cθ(U (n)) is defined as in (2.5), and C(Y (n), X(n); θ) is the cost

matrix with (i, j)th component d((Ũi, Xi),Γu(Yj, Xj; θ1)).

By the definition of Y(n)(X(n), U (n)), we have:

sup
C∈Cθ(U(n))

Dn(C) = sup
y(n)∈Y(n)(X(n),U(n))

Dn(C(y(n), X(n); θ)) < ∞.

Thus (C.3) is equivalent to

Dn(C(y(n), X(n); θ) ≥ sup
ỹ(n)∈Y(n)(X(n),U(n))

Dn(C(ỹ(n), X(n); θ) − ε. (C.4)

Define the correspondence Φ : X n × Un ⇒ Yn by

Φ
(
X(n), U (n)

)
:=

{
y(n) ∈ Y(n)(X(n), U (n)) : (C.4) holds

}
.

We fulfill requirements (i), (ii), and (iii) by showing that Φ admits a measurable

selection ϕ. This follows directly from Theorem 17.40 page 184 of Bertsekas and

Shreve [1996]: The correspondence Φ admits a universally measurable selection ϕ

on X n × Un. We have therefore proved that the distribution P (n) of (Y (n), X(n)) is

in P(n)
θ and satisfies (C.2) as desired. �

Proof of Theorem 3. Call (ũi)i≥1 the low discrepancy sequence. For each n ∈ N,

call Q∗U,n := Σi≤nδũi/n the empirical distribution associated with the low discrepancy

sample. By construction, Q∗U,n converges in distribution to Q∗U . Fix an arbitrary

realizations of the triangular array (Yi,n, Xi,n)i≤n, n ∈ N. Let {nk, k ∈ N}, be a

subsequence such that lim inf
n→∞

T ∗n(θ) = lim
k→∞

T ∗nk(θ). Since {P0n : n ≥ 1} is tight,

we can extract a further subsequence, still denoted nk, such that P0nk converges

to some distribution P ∗ := P ∗Y × P ∗X as k → ∞. Then, PX,0nk × Q∗U,nk converges to

P ∗X×Q∗U . Because (y, x) 7→ Γu(y, x; θ) is continuous, d((ũ, x̃),Γu(y, x; θ)) is continuous

in (ũ, x̃, y, x). Hence, by Theorem 5.20 in Villani [2009], we have

D(Q∗U × P ∗X , P ∗; θ) = lim
k→∞
D(Q∗U,nk × P

∗
X,0nk

, P ∗0nk ; θ)

≥ lim inf
n→∞

D(Q∗U,n × P ∗X,0n, P ∗0n; θ) > 0.
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On the other hand, Assumption 3 implies that P̂n also converges in distribution to P ∗

with probability 1. Hence, by Theorem 5.20 in Villani [2009], we also have

lim
n→∞

T ∗n(θ) = D(Q∗U × P ∗X , P ∗; θ) > 0.

There remains to show that lim
n→∞

T̃ 0
n = 0. Indeed, by Theorem 5.20 in Villani [2009],

lim
n→∞

T̃ 0
n = min

π∈M(Q∗U×P
∗
X ,Q

∗
U×P

∗
X)

Eπ d((U,X), (U ′, X ′)) = 0.

�

References

C. Aliprantis and K. Border. Infinite Dimensional Analysis. Springer, second edition,

1999.

T. Anderson and H. Rubin. Estimation of the parameters of a single equation in

a complete system of stochastic equations. Annals of Mathematical Statistics, 20:

46–63, 1949.

D. Andrews and X. Shi. Inference based on conditional moment inequalities. Econo-

metrica, 81:609–666, 2013.

I. Andrews, J. Roth, and A. Pakes. Inference for linear conditional moment inequal-

ities. unpublished manuscript, 2019.

G. Barnard. Comment on ‘the spectral analysis of point processes’ by M.S. Bartlett.

Journal of the Royal Statistical Society, Series B, 25:294, 1963.

L. Barseghyan, M. Coughlin, F. Molinari, and J. C. Teitelbaum. Heterogeneous choice

sets and preferences. forthcoming in Econometrica, 2021.

A. Beresteanu, I. Molchanov, and F. Molinari. Sharp identification regions in models

with convex predictions. Econometrica, 79:1785–1821, 2011.

D. Bertsekas. The auction algorithm: a distributed relaxation method for the assign-

ment problem. Annals of Operations Research, 14:105–123, 1988.

D. Bertsekas and S. Shreve. Stochastic Optimal Control: The Discrete Time Case.

Athena Scientific: Belmont, Massachusetts, 1996.

T. Bresnahan and P. Reiss. Entry and competition in concentrated markets. Journal

of Political Economy, 99:977–1009, 1991.



FINITE SAMPLE INFERENCE IN INCOMPLETE MODELS 33

F. A. Bugni, I. A. Canay, and X. Shi. Inference for subvectors and other functions

of partially identified parameters in moment inequality models. Quantitative Eco-

nomics, 8:1–38, 2017.

I. Canay and A. Shaikh. Practical and theoretical advances for inference in partially
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Figure 1. Confidence regions for the pair (β1, δ) in the 6 player entry game,
when the true value of β0 = 1 is known a priori. The true parameter value
is (β1, δ) = (0.3, 0.6) and outcomes are selected uniformly within the pre-
dicted set of equilibrium. Confidence region CRn is pictured in orange/light
grey, while the conservative outer region CR0

n is pictured in blue/dark grey.
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(a) n = 100
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(b) n = 500
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(c) n = 1000

2 1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
conservative
exact-size
true parameter

(d) n = 5000
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