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1. Introduction

Players’ payoffs in a game depend on their 
actions and also on the realization of a pay-

off-relevant state. An “information designer” 
can commit how to provide information about 
the states to the players. “Information design” 

studies how the information designer, through 
the choice of the information provided, can 
influence the individually optimal behavior 
of the players to achieve her objective. She 
can achieve this objective even though she 
has no  ability to change outcomes or force the 
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 players to choose particular actions that deter-
mine outcomes.1

The past decade has seen a rapidly growing 
body of literature in information design. An 
influential paper by Kamenica and Gentzkow 
(2011) phrased the optimal design of infor-
mation as a “Bayesian persuasion” problem 
between a sender and single receiver. A 
large body of work fits this rubric, includ-
ing important contributions of Brocas and 
Carrillo (2007) and Rayo and Segal (2010). 
The economic applications of information 
design have been investigated in areas as far 
apart as grade disclosure and matching mar-
kets (Ostrovsky and Schwarz 2010), voter 
mobilization (Alonso and Câmara 2016), 
traffic routing (Das, Kamenica, and Mirka 
2017), rating systems (Duffie, Dworczak, 
and Zhu 2017), and transparency regula-
tion (Asquith, Covert, and Pathak 2013) 
in financial markets, price discrimination 
(Bergemann, Brooks, and Morris 2015), and 
stress tests in banking regulation (Inostroza 
and Pavan 2017).

One purpose of the paper is to provide an 
overview of information design that unifies 
this recent work with a number of litera-
tures sometimes treated as distinct. If we 
assume that there are many players, but the 
information designer (or “mediator”) has no 
informational advantage over the players, 
this problem reduces to the analysis of com-
munication in games (Myerson 1991, section 
6.3) and, more generally, the literature on 
correlated equilibrium in incomplete infor-
mation games (Forges 1993). If there is only 
one player (or “receiver”) but the informa-
tion designer (or “sender”) has an informa-
tional advantage over the player, the problem 
reduces to the “Bayesian persuasion” prob-
lem of Kamenica and Gentzkow (2011). 
Information design concerns the general 
case where there are both many players and 

1 We follow Taneva (2015) in our use of the term “infor-
mation design” in this context. 

the information designer has an informa-
tional advantage over the players. This case 
has been the focus of some our own work 
(Bergemann and Morris 2013b, 2016a), 
where we show that the set of outcomes that 
can arise in this setting corresponds to a ver-
sion of incomplete information equilibrium 
(Bayes-correlated equilibrium, or BCE) that 
allows outcomes to be conditioned on states 
that the players do not know.

A second purpose of the paper is to high-
light a distinction between literal informa-
tion design and metaphorical information 
design. The information design problem has 
a literal interpretation (given above): there 
really is an information designer (or media-
tor, or sender) who can commit to provide 
extra information to players to serve her own 
interests. While the commitment assump-
tion may be problematic in many settings, it 
provides a useful benchmark. But the infor-
mation design formulation might also be a 
metaphor that the analyst uses as a tool. For 
example, we might be interested in finding an 
upper bound (across information structures) 
on the aggregate variance of output in a given 
economy with idiosyncratic and common 
shocks to agents’ productivity (Bergemann, 
Heumann, and Morris 2015). We can under-
stand this as an information design problem, 
where the information designer is interested 
in choosing an information structure to max-
imize aggregate variance in output. But in 
this case, we do not have in mind that there 
is an actual information designer maximiz-
ing aggregate variance. We will discuss this 
application, and other applications where 
information design is metaphorical, below.

This survey reviews the pure information 
design problem where a designer can commit 
to a certain information structure for the play-
ers but has no control over outcomes. This 
problem is a special case of the more general 
mechanism design problem where a mech-
anism designer can control outcomes but 
may also be able to manipulate  information 
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in the course of doing so.2 We study the case 
where all information structures are available 
to the designer. It is thus possible to appeal 
to the revelation principle from the general 
mechanism design problem, and without 
loss of generality restrict attention to infor-
mation structures where the signals that the 
information designer sends to a player can 
be identified with action recommendations. 
This revelation principle/mechanism design 
approach to information design thus contrasts 
with work where there is no commitment 
to the information structure or attention is 
restricted to a parameterized class of infor-
mation structures.

We use a family of two-player, two-action, 
and two-state examples to survey the litera-
ture, and to provide some graphical illustra-
tions. We start with the leading example of 
Bayesian persuasion (with a single player/
receiver with no prior information) from the 
work of Kamenica and Gentzkow (2011). We 
can use extensions of this example—with 
many players and prior information—to 
illustrate many of the key ideas in the survey. 
Three key substantive general insights are 
illustrated in these examples.

First, it is often optimal for the informa-
tion designer to selectively obfuscate infor-
mation. This insight is familiar from the case 
of one player without prior information.

Second, the information designer has less 
ability to manipulate outcomes in his favor if 
players have more prior information: if the 
players are endowed with their own informa-
tion, the designer has less influence over the 
information structure that they end up with. 
This insight can already be illustrated in the 

2 Myerson (1982, 1991) describes the problem of “com-
munication in games” where the designer cannot control 
outcomes but can elicit information from players and pass 
it to other players. Thus, what we are defining as the “infor-
mation design” problem can be viewed as Myerson’s “com-
munication in games” problem with the important new 
feature that the designer may have access to information 
that is not available to the players. 

one-player case. But we will also describe 
a general partial order on information 
 structures—generalizing the Blackwell order 
for the one-player case—which characterizes 
the right definition of “more information” in 
this context (Bergemann and Morris 2016a).

Third, we can ask whether the information 
designer prefers to give the information to 
players in a public or in a private message. 
Of course, this last question only arises once 
we have multiple players. Public information 
is optimal if the information designer wants 
perfect correlation between players’ actions; 
otherwise private information will be optimal. 
While the information designer may have 
intrinsic preferences over whether players’ 
actions are correlated (or not), the designer 
may care about correlation for purely instru-
mental reasons: if there are strategic com-
plementarities between the players’ actions, 
she may want to correlate players’ actions to 
relax the obedience constraints on her abil-
ity to attain specific outcomes. The converse 
holds for strategic substitutability. We will 
illustrate the case when there are only instru-
mental preferences over correlation.

The examples also illustrate a methodolog-
ical point. The information design problem 
can be solved in two steps. First, we can iden-
tify the set of outcomes that could be induced 
by the information designer. Second, we can 
identify which of these outcomes would be 
preferred by the information designer. This, 
too, parallels the mechanism design litera-
ture: we can first identify which outcomes 
are implementable and then identify the one 
most preferred by the designer. As noted 
above, in the information design problem, 
the set of implementable outcomes corre-
sponds to the set of Bayes-correlated equi-
libria. This approach reduces the problem to 
a linear program.

The information designer is assumed to 
be able to commit to an information struc-
ture that maps  payoff-relevant states of the 
world and prior information of the agents 
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(types) into possibly stochastic signals to the 
players.3 As the mapping essentially recom-
mends actions to the players, we refer to it 
as a decision rule. We initially focus on what 
we  sometimes call the omniscient case: here, 
the information designer faces no constraints 
on her ability to condition the signals on the 
 payoff-relevant states of the world and all the 
players’ prior information (i.e., their types). 
But we also consider information design con-
strained by private information, where the 
prior information of the players is not accessi-
ble to the information designer, even though 
she can condition on the  payoff-relevant 
states. There are two cases to consider here: 
an information designer may be able to con-
dition on the reported realizations of the 
players’ signals even if she does not observe 
them (information design with elicitation) 
or she may be unable to do so (information 
design without elicitation). If the informa-
tion designer cannot condition on the payoff 
state at all, and has to rely entirely on the pri-
vate information of the players, then these 
three scenarios (omniscient, private informa-
tion with elicitation, and private information 
without elicitation) correspond to versions of 
incomplete information correlated equilib-
rium: in the terminology of Forges (1993), 
the Bayesian solution, communication equi-
librium, and strategic form correlated equi-
librium, respectively.

Once the information designer has picked 
the information structure, the players decide 
how to play the resulting game of incomplete 

3 Whether or not the information designer will observe 
the payoff relevant state is irrelevant—what is important 
is whether she can condition the signals she sends on the 
realization of the state and the players’ prior signals. For 
example, a prosecutor might never know whether the 
defendant is guilty or innocent, but can nevertheless set 
up an investigation process that would provide different 
evidence depending on the actual guilt or innocence of 
the subject and the information of the judge. We thank an 
anonymous referee who stressed the distinction between 
conditioning on a state, and actually knowing the realiza-
tion of the state. 

information. There may be multiple Bayes–
Nash equilibria of the resulting game. In our 
treatment of the information design prob-
lem, we have been implicitly assuming that 
the designer can pick which equilibrium is 
played. Under this maintained assumption, 
we can appeal to the revelation principle 
and focus attention on information struc-
tures where the signal space is set equal to 
the action space, and the signals have the 
interpretation that they are action recom-
mendations. In the single-player case, this 
maintained equilibrium selection assump-
tion is without loss of generality. But just 
as the revelation principle breaks down in 
mechanism design if the designer does not 
get to pick the best equilibrium (as in Maskin 
1999), it similarly breaks down for informa-
tion design.4 We follow Mathevet, Perego, 
and Taneva (2017) in formally describing a 
notion of maxmin information design, where 
an information designer gets to pick an infor-
mation structure but the selected equilib-
rium is the worst one for the designer. We 
note how some existing work can be seen 
as an application of maxmin information 
design, in particular, an extensive literature 
on “robustness to incomplete information” 
(Kajii and Morris 1997).

Other assumptions underlying the revela-
tion principle—and maintained throughout 
this paper—are that (i) all information struc-
tures are feasible, (ii) there is zero (marginal) 
cost of using information, (iii) there is a sin-
gle information designer, and (iv) the setting 
is static. Of course, there are many (static) 
settings where the impact of different infor-
mation structures has been studied, without 
allowing all information structures. Two clas-
sic examples would be information sharing in 
oligopoly (a literature beginning with Novshek 
and Sonnenschein 1982) and the revenue 
comparison across different auction formats 

4 This point has been highlighted by Carroll (2016) and 
Mathevet, Perego, and Taneva (2017). 
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in auction theory (Milgrom and Weber 1982). 
In the former, there is a restriction to normally 
distributed signals, and in the latter there is 
the restriction to affiliated signals.

Optimal information design in dynamic 
settings has been studied recently in Ely, 
Frankel, and Kamenica (2015); Passadore 
and Xandri (2014); Doval and Ely (2016); 
Ely (2017); Ely and Szydlowski (2017); Ball 
(2018); and Makris and Renou (2018). A new 
aspect to information design that appears in 
these dynamic settings is that information 
can be used as an incentive device to reward 
behavior over time. Horner and Skrzypacz 
(2016) survey work on information design in 
dynamic settings. Gentzkow and Kamenica 
(2014) consider the case of costly informa-
tion and Gentzkow and Kamenica (2017) 
allow for multiple information designers. 

This paper provides a conceptual syn-
thesized guide to the literature; we discuss 
applications when they are relevant for this 
purpose, but make no attempt to provide a 
comprehensive survey of the many applica-
tions of information design. A recent survey 
by Kamenica (forthcoming) reviews the lit-
erature of Bayesian persuasion and discusses 
some leading economic applications.

We describe the basic information design 
problem in section 2. We illustrate the 
main notions and ideas with an investment 
example in section 3. We discuss key ideas 
from information design in the investment 
example in section 4. Here, we discuss pri-
vate versus public signals, intrinsic versus 
instrumental preferences over correlation, 
the two-step procedure for solving infor-
mation design problems, ordering infor-
mation, and the use of concavification in 
information design (instead of pure linear 
programming methods). Section 5 describes, 
in more detail, two applications of infor-
mation design with a microeconomic and 
macroeconomic perspective, respectively: 
limits of price discrimination, and the link 
between  information and volatility. These 

two applications emphasize the relevance of 
the metaphorical interpretation of informa-
tion design. In section 6, we describe what 
happens when players’ prior information is 
not known by the information designer; this 
discussion allows us to locate the information 
design problem within mechanism design 
and within a larger literature on incomplete 
information correlated equilibrium reviewed 
by Forges (1993). In section 7, we discuss 
the role of equilibrium selection.

Given the synthetic treatment of the lit-
erature, there is much terminology that has 
been introduced and used in different con-
texts (including by us in prior work), and 
which is at times inconsistent or redundant. 
To give one example, what we are calling an 
“information designer” has in previous work 
been called a sender, mediator, principal, 
or mechanism designer. We are attempt-
ing throughout to use a unified and consis-
tent language, but compromising at times 
between the use of a consistent terminology 
and precedents set by earlier  work.

2. The Information Design Problem

We begin by describing the general setting 
and notation that we maintain throughout 
the paper. We will fix a finite set of players 
and a finite set of payoff states of the world. 
There are  I  players,  1, 2, …, I , and we write  i  
for a typical player. We write  Θ  for the set of 
payoff states of the world and  θ  for a typical 
element of set  Θ .

A “basic game”  G  consists of (1) for each 
player  i , a finite set of actions   A i   , and an 
( ex post) utility function 

   u i   : A × Θ → ℝ, 

where we write  A =  A 1   × ⋯ ×  A I   , and  
a =  ( a 1   , …,  a I  )   for a typical element of  A ; 
and (2) a full support prior  ψ ∈ Δ (Θ)   that 
is shared by all players and the information 
designer. Thus  G =  (  ( A i  ,  u i  )   i=1  I   , Θ, ψ)  . We 
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define the ex post objective of the informa-
tion designer by: 

  v : A × Θ → ℝ. 

An “information structure”  S  consists of (i) 
for each player  i , a finite set of types   t i   ∈  T i   ; 
and (ii) a type distribution  π : Θ → Δ (T)  , 
where we write  T =  T 1   × ⋯ ×  T I   . Thus  
S =  (  ( T i  )   i=1  I   , π)  .

Together, the “payoff environment” or 
“basic game”  G  and the “belief environment” 
or “information structure”  S  define a stan-
dard “incomplete information game”   (G, S)  . 
While we use different notation, this division 
of an incomplete information game into the 
“basic game” and the “information structure” 
is a common one in the literature, see, for 
example, Gossner (2000).

We are interested in the problem of an 
information designer who has the ability to 
commit to provide the players with addi-
tional information, in order to induce them 
to make particular action choices. In this 
section, we will consider the leading case 
where the designer can condition on the 
state and on all the players’ types—their 
prior  information—if they have any. We will 
sometimes refer to this setting as omniscient 
information design. In section 6, we will con-
sider the case where prior information of the 
players is truly private to them, and hence 
the information designer cannot condition 
on their prior information unless she is able 
to induce them to reveal it.5

If viewed as an extensive form game 
between the information designer and the 
players, the timing is as follows:

 (i) the information designer picks and 
commits to a rule for providing the 
players with extra messages;

5 For this reason, we refer to the types of a player as his 
prior information, and only in section 6 does this informa-
tion become truly private.

 (ii) the true state  θ  is realized;

 (iii) each agent’s type   t i    is privately realized;

 (iv) the players receive extra messages 
according to the information designer’s 
rule;

 (v) the players pick their actions based on 
their prior information and the mes-
sages provided by the information 
designer;

 (vi) payoffs are realized.

We emphasize that the information 
designer commits to a decision rule before the 
realization of the state and type profile. This 
structure in the timing sets the information 
design problem apart from informed prin-
cipal, cheap talk, or signaling environments 
where the informed party chooses a message 
only after the state has been revealed.

In general, the information designer 
could follow any rule for generating mes-
sages. However, a “revelation principle” 
argument implies that it is without loss of 
generality to assume that the information 
designer sends only “action recommen-
dations” that are obeyed. The argument is 
that any message will give rise to an action 
in equilibrium and we might as well label 
messages by the actions to which they give 
rise. We discuss the revelation principle in 
more detail below. Given this restriction, 
the information designer is choosing among 
decision rules 

(1)  σ : T × Θ → Δ (A)  . 

The information designer can condition 
the recommended action profile on the true 
state  θ ∈ Θ  and the type vector  t ∈ T . We 
stress that the designer does not need to 
know the true realization of the state or the 
type profile—it is sufficient that the decision 
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rule can condition on these. For example, in 
a medical test, the information designer, the 
doctor, may not know the true condition of 
the patient, but can choose a diagnostic test 
that reveals the condition of the patient with 
the desired precision and accuracy.

The decision rule encodes the information 
that the players receive about the realized 
state of the world, the types and actions of 
the other players. The conditional depen-
dence of the recommended action  a  on state 
of the world  θ  and type profile  t  represents 
the information conveyed to the players.

The key restriction on the decision rule is 
a notion of obedience that we now define. 
Obedience is the requirement that the infor-
mation privately communicated to player  
i  in the form of an action recommendation   
a i    according to  σ  is such that each player  i  
would want to follow his recommended 
action   a i    rather than choose any other avail-
able action   a  i  ′   .

DEFINITION 1 (Obedience): Decision rule  
σ : T × Θ → Δ(A)  is obedient for ( G, S)  if, 
for each  i ,   t i   ∈  T i    and   a i   ∈  A i   , we have 

(2) 

    ∑ 
 a i  , t i  ,θ

    u i   ( ( a i  ,  a −i  ) , θ)  σ ( ( a i  ,  a −i  ) | ( t i  ,  t −i  ) , θ) π ( ( t i  ,  t −i  ) |θ) ψ (θ)  

≥   ∑ 
 a i  , t i  ,θ

    u i   ( ( a  i  ′ ,  a −i  ) , θ) σ ( ( a i  ,  a −i  ) | ( t i  ,  t −i  ) , θ) π ( ( t i  ,  t −i  ) |θ) ψ (θ) , 

for all   a  i  ′   ∈  A i   .

For notational compactness, we only list 
the elements, but not the sets, over which 
we sum under the summation operator, 
thus, e.g.,   ∑ a        rather than   ∑ a∈A       . The obedi-
ence inequality requires that each player  i ,  
after receiving his recommendation   a i   , finds 
that no other action   a  i  ′    could yield him a 
strictly higher utility. We emphasize that 
each player, when computing his expected 
utility, is indeed using the information con-
tained in the action recommendation   a i   , and 

thus the above inequality is written from 
an interim perspective (conditioning on   
t i    and   a i   ). We can state the above inequal-
ity explicitly in terms of the interim beliefs 
that agent  i  holds, given his type   t i    and 
his action recommendation   a i   , thus using  
Bayes’s rule:

     ∑ 
 a i  , t i  ,θ

     u i   ( ( a i  ,  a −i  ) , θ) 

×   
σ ( ( a i  ,  a −i  ) | ( t i  ,  t −i  ) , θ)  π ( ( t i  ,  t −i  ) |θ)  ψ (θ) 

   _______________________________   
 ∑  a  i  ″ , t  i  ″ ,θ′′     σ ( ( a i  ,  a  −i  ′′  ) | ( t i  ,  t  −i  ′′  ) ,  θ ″  )  π ( ( t i  ,  t  −i  ′′  ) | θ ″  )  ψ ( θ ″  ) 

  

≥    ∑ 
 a i  , t i  ,θ

     u i   ( ( a  i  ′ ,  a −i  ) , θ) 

×   
σ ( ( a i  ,  a −i  ) | ( t i  ,  t −i  ) , θ)  π ( ( t i  ,  t −i  ) |θ)  ψ (θ) 

   _______________________________________   
 ∑  a  i  ″ , t  i  ″ ,θ′′     σ ( ( a i  ,  a  −i  ′′  ) | ( t i  ,  t  −i  ′′  ) ,  θ ″  )  π ( ( t i  ,  t  −i  ′′  ) | θ ″  )  ψ ( θ ″  ) 

   . 

We observe that the belief of agent  i  updates 
independently of whether he is following the 
recommendation   a i    or deviating from it to 
  a  i  ′   . Moreover, the denominator in Bayes’s rule 
sums up over all possible profiles   a  −i  ′′   ∈  A −i  , 
 t  −i  ′′   ∈  T −i  ,  θ ″   ∈ Θ , and hence is constant 
across all possible realizations of   a −i   ∈  A −i  , 
 t −i   ∈  T −i  , θ ∈ Θ . Hence, we can multiply 
through to obtain the earlier inequality (2), 
provided that the denominator is strictly 
positive.

Bergemann and Morris (2016a) define a 
Bayes-correlated equilibrium (BCE) to be 
any decision rule  σ  satisfying obedience. An 
important aspect of this solution concept is 
that the decision rule  σ  enters the obedience 
constraints, as stated above in (2), in a linear 
manner as a probability. Thus, an obedient 
decision rule can be computed as the solu-
tion to a linear program.

PROPOSITION 1 (Revelation Principle): 
An omniscient information designer can 
attain decision rule  σ  if and only if it is a 
BCE, i.e., if it satisfies obedience.

By “can attain decision rule” we mean 
that there exists a (perhaps indirect) 
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 communication rule that gives rise to this 
decision rule in Bayes–Nash equilibrium.6 
We refer to the resulting (ex ante) joint dis-
tribution of payoff state  θ  and action profile  
a  as the outcome of the information design, 
thus integrating out the prior information  t : 

    ∑ 
t∈T

    σ (a | t, θ)  π (t | θ)  ψ (θ) . 

In this (and later) propositions, we omit for-
mal statements and proofs that correspond to 
revelation principle arguments. Bergemann 
and Morris (2016a) give a formal statement7 
and proof of this proposition as theorem 1. 
The argument is a straightforward adapta-
tion of standard characterizations of com-
plete and incomplete information correlated 
equilibrium.

If there is no payoff uncertainty—the set  
Θ  is a singleton—then the notion of BCE 
exactly coincides with the complete informa-
tion correlated equilibrium as introduced in 
the seminal contributions of Aumann (1974, 
1987). In the absence of payoff uncertainty, 
we can simply suppress the dependence of 
the payoff function on the state of the world  
θ . Thus, the decision rule  σ  does not vary 
with  θ,  nor is there any private information  
t  about the state of the world  θ . A decision 
rule  σ  is then simply a joint distribution over 
actions, or  σ ∈ Δ(A) . Now, a distribution  
σ ∈ Δ(A)  is defined to be a correlated equi-
librium if for each  i  and   a i   ∈  A i   , we have: 

(3)    ∑ 
 a −i  ∈ A −i  

     u i   ( a i  ,  a −i  )  σ ( a i  ,  a −i  )  

≥   ∑ 
 a −i  ∈ A −i  

     u i   ( a  i  ′  ,  a −i  )  σ ( a i  ,  a −i  ) ,  ∀  a  i  ′   ∈  A i  . 

6 We do not discuss information design under solution 
concepts other than Bayes–Nash equilibrium in this paper. 
Mathevet, Perego, and Taneva (2017) study information 
design under bounded level rationalizability and Inostroza 
and Pavan (2017) under full rationalizability. 

7 A formal statement also appears in section 7. 

The obedience condition (2) thus col-
lapses to the best response property (3) in 
the absence of payoff uncertainty. Aumann 
(1987) argued that correlated equilibrium 
captured the implications of common knowl-
edge of rationality in a complete information 
game (under the common prior assumption). 
An alternative interpretation is that the set of 
correlated equilibria is the set of outcomes 
attainable by an information designer in the 
absence of payoff uncertainty. We discuss 
these interpretational issues and the litera-
ture on incomplete information correlated 
equilibrium more broadly in section 6.4.

The proof of proposition 1 in Bergemann 
and Morris (2016a), like the proof of Aumann 
(1987), is a “revelation principle” argument, 
establishing that it is without loss of general-
ity to focus on a set of signals that equals the 
set of actions to be taken by the agents—so 
that there is “direct communication”—and 
to recommend actions in such way that they 
will be obeyed—so that “incentive compati-
bility” gives rise to “obedience” conditions. In 
the case of complete information, Myerson 
(1991, section 6.2) describes this as the “rev-
elation principle for strategic form games.” 
Note that while the expression “revelation 
principle” is sometimes limited to the case 
where agents are sending messages rather 
than receiving them (e.g., Fudenberg and 
Tirole 1991 and  Mas-Collel, Whinston, and 
Green 1995), we follow Myerson in using 
the broader meaning throughout the paper. 
In the basic information design described in 
this section, the only incentive constraints 
are obedience conditions, but we discuss 
the extension to the case where the infor-
mation designer must elicit players’ private 
information in section 6, where  truth-telling 
incentive constraints also arise. We postpone 
a discussion of how to place information 
design in the broader context of the mecha-
nism design literature until then.

Proposition 1 characterizes the set of out-
comes that an information designer could 
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attain, i.e., a feasible set. To complete the 
description of the basic information design 
problem, we need an objective. Given the 
information designer’s ex post utility  v (a, θ)  ,  
her ex ante utility from the decision rule  σ  
for a given game of incomplete information   
(G, S)   is:

(4)  V(σ) =   ∑ 
a,t,θ

   v (a, θ)  σ (a | t, θ)  π (t | θ)  ψ (θ) . 

The (omniscient) information design prob-
lem is then to pick a BCE  σ  to maximize 
 V (σ)  . When there is a single player with no 
prior information, the information design 
problem reduces to the benchmark Bayesian 
persuasion problem described by Kamenica 
and Gentzkow (2011). In this case, the single 
player is called the “receiver” and the infor-
mation designer is called the “sender.”

3. An Investment Example

We now apply this framework to an invest-
ment game and discuss the main themes of 
information design through the lens of this 
example.

We first consider the following benchmark 
setting. There is a bad state   (B)   and a good 
state   (G)  . The two states are equally likely:

  ψ (G)  = ψ (B)  =   1 _ 
2
   . 

There is one player (the “firm”). The firm 
can decide to invest or not invest. The payoff 
from not investing is normalized to  0 . The 
payoff to investing is  − 1  in the bad state and  
x  in the good state, with  0 < x < 1 . These 
payoffs,  u (a, θ)  , are summarized in the fol-
lowing matrix: 

(5)

u(a, θ) bad state B good state G

invest −1 x .

not invest 0 0

3.1 Single Player without Prior Information

We begin the analysis when the firm has 
no prior information about the state (beyond 
the uniform prior). Together with the above 
assumptions about the payoff matrix, the 
firm would therefore choose to not invest if 
it had no additional information.

We will assume that an information 
designer (the “government”) is interested 
in maximizing the probability of investment 
independent of the state, or

 1 = v(invest, θ) > v(not invest, θ) = 0,

θ = B, G. 

This example is (modulo some changes in 
labelling) the leading example in Kamenica 
and Gentzkow (2011). We will describe this 
example first, but then use variations to illus-
trate more general points. The decision rule 
is now simply: 

  σ : Θ → Δ (A) , 

where we can omit the type space  T  due 
to the absence of prior information. In this 
binary decision environment, the decision 
rule  σ (θ)   specifies the probability of invest-
ment, denoted by   p θ   , conditional on the true 
state  θ ∈  {B, G}  . Thus, a decision rule is a 
pair   ( p B  ,  p G  )   of investment probabilities. We 
can think of a decision rule as a (stochastic) 
action recommendation from the govern-
ment. If the recommendations are obeyed, 
the outcome—the ex ante distribution over 
states and actions—is given by: 

σ(a | θ)ψ(θ) bad state B good state G

invest    1 _ 2      p B      1 _ 2      p G   .

not invest    1 _ 2    (1 −   p B   )    1 _ 2    (1 −   p G   )
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If the firm receives a recommendation to 
invest, it will update its beliefs about the state 
by Bayes’s rule. The firm’s interim expected 
utility from following the recommendation 
represents the left-hand side of the inequal-
ity below. If the firm were to disobey the rec-
ommendation and chose not to invest, then 
its payoff would be zero. This gives rise to 
the following obedience constraint: 

(6)    
  1 _ 2    p B  
 __________ 

  1 _ 2    p B   +   1 _ 2    p G  
   (−1)  +   

  1 _ 2    p G  
 __________ 

  1 _ 2    p B   +   1 _ 2    p G  
   x ≥ 0.  

As we discussed following definition 1, we 
can simplify the inequality by multiplying 
through with the conditioning probability 
   1 _ 2    p B   +   1 _ 2    p G   , and thus write the obedience 
condition equivalently in terms of the interim 
probabilities: 

(7)    1 _ 
2
    p B   (−1)  +   1 _ 

2
    p G   x ≥ 0 ⇔  p G   ≥   

 p B  
 _ x   . 

There is an analogous obedience constraint 
corresponding to the recommendation not to 
invest, namely: 

  0 ≥   1 _ 
2
   (1 −  p B  )  (−1)  +   1 _ 

2
   (1 −  p G  )  x. 

Because the firm would not invest absent 
information from the designer—by our 
maintained assumption that  x < 1 —the 
binding obedience constraint will be the one 
corresponding to investment, i.e., inequality 
(7). We see that the highest probability of 
investment corresponds to the decision rule 
with   p G   = 1  and   p B   = x .

We illustrate the set of BCE decision rules 
for the case where  x = 55/100  in figure 1. 
Any decision rule (  p B   ,  p G  )  in the blue shaded 
area can arise as some BCE. We observe that 
the feasible set of BCE does not depend on 
the government’s preference  v (a, θ)  .

Now every BCE decision rule corresponds 
to optimal behavior under some information 
structure  S . By the revelation principle for 

the BCE, it suffices to give the firm a binary 
information structure  S  to implement any 
BCE decision rule in the binary action envi-
ronment. For the outcome that maximizes 
the probability of investment, it suffices to 
generate a  no-investment recommendation 
with probability  1 − x  if the state is bad, and 
otherwise give the firm an investment rec-
ommendation. The resulting outcome—the 
ex ante distribution over states and actions—
is given by: 

(8)

σ(a | θ)ψ(θ) bad state B good state G

invest    1 _ 2     x    1 _ 2      .

not invest    1 _ 2    (1 −  x ) 0

Thus, a government trying to encourage 
investment will obfuscate the states of the 
world in order to maximize investment. By 
pooling realizations of the bad and good 
states in the recommendation to invest, the 
firm is made exactly indifferent between 
investing or not when recommended to 
invest. The bad state is completely iso-
lated in the recommendation not to invest. 
Finally, we observe that under complete 
information the firm would always invest 
in the good state and never invest in the 
bad state. We thus have described three 
different information structures—zero 
information, partial information, and com-
plete information—that support the three 
 vertices of the above investment triangle. 
Thus, the set of all investment probabilities 
that satisfy the obedience constraints can be 
described by a set of linear inequalities that 
jointly form a polyhedron of implementable 
outcomes.

3.2 Single Player with Prior Information

We remain with the investment example 
where there is still only one firm, but now 
the firm has some prior information about 
the true state that it receives independently 
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of the government.8 In particular, the firm 
has a type (or receives a signal) that is “cor-
rect” with probability  q > 1 / 2 . Formally, 
the firm observes its type  t ∈  {b, g}   with 
probability  q  conditional on the true state 
being  B  or  G,  respectively: 

π(t | θ) bad state B good state G

bad signal b q 1 − q .

good signal g 1 − q q

8 Some detailed calculations for this example appear in 
the appendix. 

Here, signals refer to the prior information 
that firms are endowed with. Conditional on 
the type of the firm, the analysis of the obedi-
ence constraints reduces immediately to the 
analysis of the previous section, but where 
the firm has an updated belief,  q  or  1 − q , 
depending on the type. We nonetheless ana-
lyze this problem because we want to trace 
the ex ante implications of a player’s prior 
information for information design. A deci-
sion rule  σ  now specifies the probability of 
investment   p θt    conditional on the true state  
θ ∈  {B, G}   and the type  t ∈  {b, g}  . Thus a 
decision rule is now a quadruple: 

(9)  p =  ( p Bb  ,  p Bg  ,  p Gb  ,  p Gg  ) . 

Figure 1. Investment Probability with Uninformed Player: x = 55/100
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We can solve the problem—conditional on 
state and type—as before. For example, the 
obedience constraint for the recommenda-
tion to invest after receiving a good type  g  
now becomes:

(10)   (1 − q)   p Bg   (−1)  + q  p Gg   x ≥ 0. 

However, we are interested in what we can 
say about the joint distribution of states and 
actions ex ante, integrating out the types, say 

   p G   = q p Gg   +  (1 − q)  p Gb  . 

One can show that there is a lower bound on 
investment in the good state given by: 

(11)   p G   ≥ q −   
1 − q

 _ x   ,  

which approaches  1  as  q  approaches  1 . As 
before, the bound for   p G    depends on   p B    
and the lowest bound is obtained by taking   
p B   = 0  in that expression.

The set of BCE is illustrated in figure 2. 
More prior information shrinks the set 
of BCE, since the obedience constraints 
become tighter. Once  q  reaches  1 , the firm 
knows the state and the information designer 
has no ability to influence the outcome. The 
firm is simply pursuing the complete infor-
mation optimal decision, which is to invest in 
the good state,   p G   = 1 , and not to invest in 
the bad state,   p B   = 0 .

The set of BCE across different  q  has two 
notable features. First, we notice that the 
set of BCE happens to be constant across 
some information structures near precision 
 q = 0.5 , for example at  q = 0.5  and  q = 0.6 .  
With low precision in the signals, such as  
q = 0.6 , the firm would pursue the same 
action for either type realization, absent 
any additional recommendation by the gov-
ernment. Thus, the weak prior information 
by the agent does not constrain the gov-
ernment in its recommendation policy. In 

 consequence, prior information of the player 
only affects the set of BCE if the prior infor-
mation by itself already generates a differen-
tial response by the player. Second, the slope 
of the boundary is constant across different 
levels of precision  q . This occurs because 
the rate at which the optimal decision of the 
player can be reversed by additional informa-
tion of the designer (and hence indifference 
is attained) is constant across  q  by Bayes’s law.

3.3 Many Players without Prior 
Information

We can now generalize the analysis to two 
firms and return to the assumption that the 
firms have no prior information.9 We assume, 
for now, that the government wants to max-
imize the sum over each individual firm’s 
probability of investment. If there is no stra-
tegic interaction between firms, the previous 
analysis can be carried out firm by firm and 
will thus be unchanged.

But we now perturb the problem to make 
it strategic, assuming that each firm gets an 
extra payoff  ε  if both invest, where  ε  may 
be positive or negative. If  ε  is positive, we 
have a game of strategic complementarities; 
if  ε < 0 , we have a game of strategic substi-
tutes. We can write firm  1 ’s state dependent 
payoffs for the game as follows (and symmet-
rically for firm  2 ):

firm 2

(12) firm 1

θ = B invest not invest

invest −1 + ε −1 ,

not invest 0 0

9 Other two player, two action, and two state examples 
appear in Bergemann and Morris (2013a, 2016a) and 
Taneva (2015). 
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firm 2

firm 1

θ = G invest not invest

invest x + ε x .

not invest 0 0

We can focus on symmetric decision rules, 
given the symmetry of the basic game, for 
any symmetric objective of the information 
designer. To see why, note that if we found 
an asymmetric maximizing decision rule, 
the decision rule changing the names of the 
firms would also be optimal, and so would 
the (symmetric) average of the two decision 
rules. Therefore, we will continue to write 
  p θ    for the probability that each firm will 

invest in state  θ ∈  {G, B}  ; but we will 
now write   r θ    for the probability that both 
invest. Thus a decision rule is a vector 
  ( p B  ,  r B  ,  p G   ,  r G  )  . A decision rule can now be 
represented in a table as

(13)

θ = B invest not invest

invest   r B     p B    −   r B   ,

not invest   p B    −   r B   1 +   r B    −   2p B   

θ = G invest not invest

invest   r G     p G    −   r G   .

not invest   p G    −   r G   1 +   r G    −   2p G   
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Figure 2. Investment Probability with Informed Player: x = 55/100
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To ensure that all probabilities are 
 nonnegative, we require that for all 
 θ ∈  {B, G} :  

  max {0, 2  p θ   − 1}  ≤  r θ   ≤  p θ   . 

The firm has an incentive to invest when told 
to do so if 

(14)  −   1 _ 
2
    p B   +   1 _ 

2
    p G   x +   1 _ 

2
   ( r B   +  r G  )  ε ≥ 0,  

and an incentive to not invest when told to 
not do so if

   −   1 _ 
2
   (1 −  p B  )  +   1 _ 

2
   (1 −  p G  )  x 

    +   1 _ 
2
   ( p B   −  r B   +  p G   −  r G  )  ε ≤ 0. 

Since  x < 1 , (14) is always the binding 
constraint and—for   | ε |   sufficiently close to 
 0 —we can rewrite it by the same reasoning 
as in section 3.1 as 

(15)   p G   ≥   
 p B  

 _ x   −  ( r B   +  r G  )    ε _ x   . 

Now maximizing the sum of the probabili-
ties of each firm investing corresponds to 
maximizing   p B   , (or   p B   +  p G   , but we will have   
p G   = 1  always) subject to (15). For fixed  
x < 1  and   | ε |  ≈ 0 , it is clearly optimal to 
have firms always invest when the state is 
good (so   p G   = 1  and   r G   = 1 ) and it is not 
possible to get both firms to always invest 
when the signal is bad.

If  ε > 0 , (15) implies that it is optimal to 
choose   r B    as large as possible given   p B   . Thus 
we will set   r B   =  p B   . Substituting these vari-
ables into expression (15), we have

  1 ≥   
 p B  

 _ x   −  ( p B   + 1)    ε _ x   , 

and so it is optimal to set 

   p B   =  r B   =   x + ε _ 
1 − ε   , 

and we can summarize the optimal decision 
rule in the following table: 

θ = B invest not invest

invest    x + ε ____ 1 − ε   0 ,

not invest 0    1 − x − 2ε ____ 1 − ε   

θ = G invest not invest

invest 1 0 .

not invest 0 0

This decision rule entails a public sig-
nal: there is common certainty among the 
firms that they always observe the same  
signal.

If  ε < 0 , it remains optimal to have both 
firms always invest when the state is good 
(  p G   =  r G   = 1 ). But now we want to mini-
mize   r B    given   ( p B  ,  p G  ,  r G  )  . To reduce cases, 
let us assume that  x > 1/2  and restrict 
attention to   | ε |  ≤ x − 1/2 . In this case, it 
will be optimal to set   r B   = 0 . Substituting 
these expressions into (15), we have

  1 ≥   
 p B  

 _ x   −   ε _ x   . 

Thus we will now have   p B   = x + ε,  and we 
can summarize the optimal decision rule in 
the following table: 

θ = B invest not invest

invest 0 x + ε ,

not invest x + ε 1 − 2x − 2ε

θ = G invest not invest

invest 1 0 .

not invest 0 0
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Under this decision rule, firms told to invest 
know neither whether the state is good or 
bad, nor if the other firm is investing or not. 
Thus, signals are private to each firm. Given 
that, in the bad state, each firm will invest 
with (roughly) probability  x  and will not with 
(roughly) probability  1 − x , the above infor-
mation structure minimizes the uncondi-
tional correlation of the signals across firms 
(or equivalently minimizes the negative cor-
relation conditional on the bad state.)

Strategic complementarities increase the 
private return from investing if the other 
player invests as well. Below, we display 
the set of investment probabilities that can 
be attained by the government while vary-
ing the size of the strategic effect  ε . As the 
strategic effect  ε  increases, the boundaries 
of the investment probabilities attainable by 
the government shift outwards as illustrated 
in figure 3. As the strategic complementar-
ity increases (or strategic substitutability 
decreases), the government can support a 
larger probability of investment in both states. 
The intermediate case of  ε = 0  reduces to 
the case of a single player, and hence reduces 
to the area depicted earlier in figure 1.

3.4 Many Players with Prior Information

We analyzed the case of two players and 
prior information in Bergemann and Morris 
(2016a). Here, we illustrate this case without 
formally describing it. As in the single-player 
case, an increase in players’ prior informa-
tion limits the ability of the designer to influ-
ence the players’ choices. Consequently, 
the impact of prior information on the set 
of attainable investment probabilities with 
many players is similar to the one-player case. 
In figure 4 we illustrate the set of attainable 
investment probabilities under increasing 
prior information with strategic complemen-
tarities. The strategic complementarities give 
rise to a kink in the set of attainable probabil-
ities   ( p B  ,  p G  )  , unlike in the single-player case 
depicted earlier in figure 2.

4. Issues in Information Design Illustrated 
by the Examples

Let us draw out the significance of these 
examples. One basic point that has been 
extensively highlighted (e.g., by Kamenica 
and Gentzkow 2011 and the following 
Bayesian persuasion literature) is that when 
there is a conflict between the designer 
and the player(s), it will, in general, be 
optimal for the designer to obfuscate, that 
is, hide information from the player(s) in 
order to induce him to make choices that 
are in the designer’s interests. And con-
ditional on obfuscation being optimal, it 
may not be optimal to hide all information, 
but will, in general, be optimal to partially 
reveal information. This issue already arises 
in the case of one player with no prior 
information.

In this section, we draw out a number of 
additional insights about information design 
that emerged from the examples. First, we 
observe that information will be supplied to 
players publicly or privately depending on 
whether the designer would like to induce 
positive or negative correlation in players’ 
actions; we also discuss designers’ possible 
intrinsic or instrumental reasons for want-
ing positive or negative correlation. Second, 
we note that in the case of one player with 
prior information, more prior information 
constrains the ability of the designer to 
control outcomes; we discuss the many-
player generalization of this observation. 
Third, we discuss the elegant “concavifi-
cation” approach as an alternative to the 
linear programming representation used 
above to characterize and provide insights 
into the information designer’s problem. 
We also discuss an extension of the con-
cavification approach to the many-player 
case but note limitations of the concavi-
fication approach, both in the one-player 
case and (even more) in the many-player  
case.
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4.1 Public versus Private Signals  
and Instrumental versus Intrinsic 
Motivation for Preferences over 
Correlation

An information designer will often have 
preferences over whether players’ actions 
are correlated with each other or not. The 
case of many players without prior informa-
tion illustrates the point that if the designer 
wants players’ actions to be correlated, it will 
be optimal to give them public signals, and if 
he wants players’ actions to be uncorrelated 
he will give them private signals. However, 
there are different reasons why the designer 
might want to induce positive or negative 
correlation in actions.

In our analysis of the case of two players 
without prior information, we made the 
assumption that the information designer 
wanted to maximize the sum of the prob-
abilities that each player invests. Thus, we 
assumed that the information designer 
did not care whether players’ actions 
were correlated or not. Put differently, we 
assumed that the information designer had 
no intrinsic preferences over correlation. 
Yet, despite this assumption, we observed 
that the information designer wants—for 
instrumental reasons—to induce correlated 
behavior when players’ actions are strate-
gic complements, and to induce negative 
correlation when there were strategic sub-
stitutes among the players. This in turn gen-
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Figure 3. Investment Probability with Negative or Positive Strategic Term ε
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erated the insight that the designer would 
like to generate public signals when there 
are strategic complementarities and private 
signals when there are strategic substitutes. 
The reason for this instrumental objective 
is that under strategic complements, the 
designer can slacken obedience constraints 
by correlating play, with the opposite mech-
anism holding under strategic substitutes.

We now describe three environments 
where there will be only instrumental con-
cerns about correlation. First, Mathevet, 
Perego, and Taneva (2017) consider an 
environment with  one-sided strategic com-
plementarities. The designer cares about 
the action of a first player who cares about 

the action of a second player who has no 
strategic concerns, i.e., does not care about 
the first player’s action. In this case, the 
information designer does not have intrin-
sic preferences over correlation (because 
she only cares about the first player’s 
action), but has an instrumental incentive 
to correlate actions because she can use 
information design to influence the action 
of the second player and correlate behav-
ior in order to slacken the first player’s obe-
dience constraint. In the formulation of 
Mathevet, Perego, and Taneva (2017), the 
information designer is a manager, the first 
player is a worker, and the second player is 
a supervisor.
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Figure 4. Investment Probability with Two Players with Prior Information, with Strategic Term ε = 3 /10
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Second, Bergemann and Morris (2016a) 
consider an environment with two-sided 
strategic complementarities but where a 
 nonstrategic payoff externality removes 
intrinsic preferences over correlation. To 
illustrate this, suppose that we take our many 
player with no prior information example 
from section 3.3, but now suppose that—in 
addition to the existing payoffs—each firm 
would like the other firm to invest, and thus 
there are spillovers. In the following payoff 
table, we are assuming that each firm gets an 
extra payoff of  z > 0  if the other firm invests:

θ = B invest not invest

invest −1 + ε + z −1 ,

not invest z 0

θ = G invest not invest

invest x + ε + z x .

not invest z 0

Observe that this change in payoffs has no 
impact on the firms’ best responses: neither 
firm can influence whether the other firm 
invests. But now suppose that the govern-
ment is interested in maximizing the sum of 
the firms’ payoffs. Consider the case that  z  is 
very large. As  z  becomes larger and larger, 
the government’s objective will approach 
maximizing the sum of the probabilities 
that each firm invests. In this sense, the 
government’s instrumental preference for 
correlation is  micro-founded in the benevo-
lent government’s desire to make each firm 
invest in the interests of the other firm. This 
example illustrates a distinctive point about 
strategic information design. Recall that 
in the one-player case where the designer 
and the player have common interests, it 
is always optimal for the designer to fully 
reveal all information in order to allow the 

player to take an action that is optimal given 
their shared preferences. In the many-player 
case, however, the players themselves may 
not act in their joint interest for the usual 
( noncooperative strategic) reasons. In this 
case—as in the above example—a benev-
olent information designer might want to 
obfuscate information.

For a last case with only instrumen-
tal concerns over correlation, Bergemann 
and Morris (2013b) considered quantity 
(Cournot) competition in a market, where 
the information designer wants to maximize 
the sum of the firms’ payoffs, i.e., the indus-
try profits.10 A continuum of firms choose 
output where there is uncertainty about the 
intercept of the demand curve, i.e., the level 
of demand. In this case, the information 
designer would like the firms’ total output to 
be correlated with the level of demand, but 
total profits do not depend on the correla-
tion of firms’ output conditional on the level 
of aggregate output. However, firms would 
like their actions to be negatively correlated 
(because the game is one of strategic substi-
tutes); but they would also like output to be 
correlated with the state. The information 
designer can induce players to make total 
output choices that are closer to the opti-
mal level, but allow them to negatively cor-
relate their output. In the optimal outcome 
(for some parameters), firms observe con-
ditionally independent private signals about 
the state of demand, trading off these two 
objectives.11

Having considered the case where the 
information designer cares about correlation 
for instrumental but not intrinsic reasons, we 
can also consider the opposite case where the 
information designer cares about correlation 

10 This corresponds to a large literature on information 
sharing in oligopoly following Novshek and Sonnenschein 
(1982). 

11 In this setting, the information designer would like to 
induce firms to lower output on average, but cannot do so. 
The designer can only influence correlation. 
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for intrinsic but not instrumental reasons. 
We can illustrate this case with the example 
of section 3.3, also. Suppose that the payoffs 
remain the same, but now the government 
would like to maximize the probability that 
at least one firm invests, so that the govern-
ment has intrinsic preferences over correla-
tion. But in this case—under our maintained 
assumption that  x > 1/2 —it is possible to 
ensure that one firm always invests. Consider 
the following decision rule:

θ = B invest not invest

invest 0    1 _ 2   ,

not invest    1 _ 2   0

θ = G invest not invest

invest 1 0 .

not invest 0 0

If  ε  were equal to  0 , this decision rule would 
be obedient, with all constraints holding 
strictly: a firm told to not invest would have a 
strict incentive to obey, since it would know 
that the state was bad; a firm told to invest 
would have a strict incentive to obey, since 
its expected payoff will be    2 _ 3   (x −   1 _ 2  )  > 0 .  
Because the obedience constraints hold 
strictly, this decision rule will continue to be 
obedient, for positive or negative  ε , as long as   
| ε |   is sufficiently small. Note that the govern-
ment’s objective of maximizing the probabil-
ity that at least one firm invests necessitates 
private signals.

In a dynamic setting, Ely (2017) shows 
how an information designer with intrin-
sic preferences for negative correlation will 
optimally use private signals to induce it (he 
also shows that this is consistent with players’ 
strategic objectives). Arieli and Babichenko 
(2016) and Meyer (2017) provide a general 
analysis of optimal information design when 

players have binary actions and the infor-
mation designer has an intrinsic motive for 
correlation, but there is no strategic interac-
tion—and thus no instrumental motive for 
caring about correlation. With supermodular 
payoffs, public signals are optimal, whereas 
with submodular payoffs, private signals 
are optimal and it is optimal to minimize 
correlation.12

4.2 Tightening Obedience Constraints and 
BCE Outcomes

There is never any reason for an informa-
tion and/or mechanism designer to provide 
players with more information than they will 
use in making their choices. Giving more 
information will impose more incentive con-
straints on players’ choices, and thus reduce 
the ability of an information designer to 
attain outcomes that are desirable for him. In 
dynamic mechanism design, giving players 
information about others’ past reports will 
tighten  truth-telling constraints. Myerson 
(1986) emphasizes that a similar observation 
is true in dynamic problems of communica-
tion in games; in these games the extra infor-
mation imposes more obedience constraints 
as well. Recall that in our language, commu-
nication in games corresponds to informa-
tion design when the information designer 
has no information of her own.

Our examples have illustrated this general 
observation: giving players more informa-
tion will impose more obedience constraints 
and thus reduce the set of (BCE) outcomes 
that can occur. However, the examples illus-
trate a more subtle point that is the focus of 
Bergemann and Morris (2016a): it is not only 
true that sending additional signals reduces 
the set of outcomes that can occur; it is 

12 In a recent survey on the algorithmic aspects of infor-
mation design, Dughmi (2017) emphasizes how the struc-
ture of the payoff environment impacts the algorithms to 
compute the optimal information structure and their com-
putational complexity. 
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also possible to construct a partial order on 
 arbitrary information structures that exactly 
characterizes the notion of “more informa-
tive,” and one that corresponds exactly to 
adding more obedience constraints.

This was illustrated in our one-player 
example with prior information. In that 
example, the set of implementable BCE out-
comes shrunk in size as the accuracy  q  of the 
prior information increased (as illustrated in 
figure 2). As  q  increases, we are intuitively 
giving the player more information. The 
additional information is given to the player 
not in the form of more signals, but rather 
more precise signals.

We will now informally describe how this 
observation can be generalized in many 
directions. In the one-player case, an infor-
mation structure reduces to an experiment 
in the sense of Blackwell (1951, 1953). He 
defines the “more informative” ordering in 
terms of a feasibility ordering. An experiment 
is said to be more informative than another 
experiment if the set of outcomes (joint dis-
tributions over actions and states) that can be 
induced by decision rules mapping signals 
into actions is larger—in any decision prob-
lem—under the first experiment.13

Blackwell (1951, 1953) offered an alter-
native, entirely statistical ordering on 
experiments, without reference to actions 
or payoffs: one experiment is sufficient for 
another if the latter can be attained by add-
ing noise to the former.

We have described an incentive ordering 
on experiments: one experiment is more 

13 Blackwell (1951, 1953) defines “more informative” 
in terms of “risk vectors” rather than joint distributions 
between states and action. These two feasibility conditions 
are equivalent. Blackwell defines as risk vector the vector 
of expected payoffs that can be sustained by a decision 
rule measurable with respect to the information structure 
alone. The resulting payoff vector is, however, computed 
conditional (on the vector) of the true state. It then follows 
easily that a larger set of risk vectors is sustained if and only 
if a larger set of joint distribution of actions and states is 
sustained. 

incentive constrained than another if the set 
of BCE outcomes under the former experi-
ment is smaller (reflecting the tighter obedi-
ence constraints) in every decision problem 
(or one-player basic game).

Taken together, there is now an elegant set 
of connections between Blackwell’s theorem 
and the information design problem. One 
can show that there is a three-way equiva-
lence between (i) the “more informative” 
ordering; (ii) the “sufficiency” ordering; and 
(iii) the “incentive-constrained” ordering. 
Blackwell’s theorem shows an equivalence 
between (i) and (ii). Thus, if an experiment is 
“more informative” in the sense of Blackwell, 
then—in any decision problem—the set of 
BCE outcomes for a given experiment is 
smaller under the more informative experi-
ment. There is naturally also a converse. If 
an experiment is not more informative than 
another, then one can find a decision prob-
lem and an outcome that is a BCE for the 
first experiment but not for the second.

This equivalence result holds in the one-
player case for general games, i.e., deci-
sion problems with finitely many states and 
actions. This result is the one-player special 
case of the main result (for many-player 
information structures) from Bergemann 
and Morris (2016a).

The definition of the incentive ordering, as 
well as the definition of the feasibility order-
ing, generalizes naturally to the many-player 
case. Bergemann and Morris (2016a) offer a 
new statistical ordering, termed individual 
sufficiency, for many players, and show that 
is equivalent to the incentive ordering in the 
many-player case. Individual sufficiency is 
defined as follows. Fix two information struc-
tures. A combined information structure is 
one where players observe a pair of signals, 
corresponding to the two information struc-
tures, with the marginal on signal profiles of 
each information structure corresponding 
to the original information structures. Thus, 
there are many combinations of any two 
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information structures corresponding to dif-
ferent ways of correlating signals across the 
two information structures. One information 
structure is now individually sufficient for 
another if there is a combined information 
structure such that each player’s signal in the 
former information structure is a sufficient 
statistic for his beliefs about the state of the 
world and others’ signals in the latter infor-
mation structure. A subtle feature of this 
ordering is that one information structure 
being individually sufficient for another nei-
ther implies nor is implied by the property 
that players’ joint information in the former 
case is sufficient (in the statistical sense) for 
their joint information in the latter case. We 
should add that in the special case of a single 
player individual sufficiency and sufficiency 
naturally coincide. The ordering of indi-
vidual sufficiency has a number of natural 
properties. Two information structures are 
individually sufficient for each other if and 
only if they correspond to the same beliefs 
and higher-order beliefs about states, and 
differ only in the redundancies of the type 
identified in Mertens and Zamir (1985). One 
information structure is individually suffi-
cient for another only if we can get from the 
latter to the former by providing additional 
information and removing redundancies.

In the one-player setting, there is an alter-
native but equivalent ordering to the fea-
sibility ordering. It is phrased in terms of 
optimality and appears more frequently in 
the economics, rather than statistic, litera-
ture. For example, Laffont (1989) defines 
one experiment to be “more valuable” than 
another if it leads to (weakly) higher maximal 
expected utility for every decision problem. 
In a single-player problem, a larger set of 
feasible joint distributions clearly implies a 
larger maximal expected utility. Less obvious 
perhaps, the converse also holds, as the rank-
ing has to hold across all decision problems.

A common observation is that in strategic 
situations, there is no many-player analogue 

to the “more valuable” ordering: see, for 
example, Hirshleifer (1971); Neyman (1991); 
Gossner (2000); and Bassan et al. (2003). 
The above discussion provides a novel per-
spective. Intuitively, there are two effects of 
giving players more information in a strategic 
setting. First, it allows players to condition 
on more informative signals, and thus—in 
the absence of incentive constraints—attain 
more outcomes. Second, more information 
can reduce the set of attainable outcomes by 
imposing more incentive constraints on play-
ers’ behavior. The value of information in 
strategic situations is ambiguous in general 
because both effects are at work. Following 
Lehrer, Rosenberg, and Shmaya (2010), 
we can abstract from the second (incen-
tive) effect by focusing on common-interest 
games. Here, more information in the sense 
of individual sufficiency translates into more 
attainable outcomes. But looking at BCE 
abstracts from the first (feasibility) effect by 
allowing the information designer to sup-
ply any information to the players. Now, 
more information in the sense of individ-
ual sufficiency translates into less attainable 
outcomes.

4.3 BCE Outcomes and Information Design 
without Concavification

We have described a “two-step” approach 
to solving information design problems. 
First, provide a linear algebraic characteri-
zation of implementable outcomes, meaning 
the set of joint distributions over actions 
and states that can be induced by some 
 information structure that the information 
designer might choose to give the play-
ers. The set of implementable outcomes is 
exactly the set of BCE. Second, we select 
among the BCE the one that is optimal for 
the information designer. This second step 
implicitly identifies the optimal information 
structure. The first problem is solved by find-
ing the set of outcomes that satisfy a set of 
linear (obedience) constraints. The second 
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problem corresponds to maximizing a lin-
ear objective subject to linear constraints. 
Both steps of this problem are well behaved. 
There is a separate reason why we might 
pursue this two-step procedure: for many 
questions of interest, it is critical to first 
understand the set of BCE outcomes. The 
next two  subsections describe two contexts 
where the structure of the BCE outcomes is 
the focus of the analysis.

However, there is a different approach 
to information design: concavification. The 
“concavification” approach is based on a 
geometric analysis of the function mapping 
receiver posterior beliefs to sender payoffs. 
Concavification focuses more on the “exper-
iments” or the distribution of posteriors that 
are induced for the receivers, rather than 
on the joint distribution between actions 
and states. In the one-person problem, we 
can identify the payoff that the information 
designer receives for any given probabil-
ity distribution over states, subject to the 
fact that the player will make an optimal 
choice. But the information designer has 
the ability to split the player’s beliefs about 
the state, i.e., supply the player with infor-
mation that will induce any distribution 
over posteriors with the constraint that the 
prior equals the expected posterior. This 
implies that the set of attainable payoffs for 
the information designer, as a function of 
prior distributions of states, is the concavi-
fication of the set of payoffs of the designer 
in the absence of information design. This 
 concavification argument (building on 
Aumann and Maschler 1995) is the focus of 
both Kamenica and Gentzkow (2011) and 
the large and important literature inspired 
by their work. The many-players case is 
significantly harder than the single-player 
case, as it is no longer the set of probabil-
ity distributions over states that matters, but 
rather the set of (common prior) subsets 
of the universal type space of Mertens and 
Zamir (1985) that are relevant for  strategic 

 analysis. Mathevet, Perego, and Taneva 
(2017) describe this generalization of con-
cavification for the many-player case.

Concavification and its many-player 
analogue are important for two reasons. 
First, they offer structural insights into the 
information design problem. Second, they 
provide a method for solving information 
design problems. As a solution method, the 
concavification approach and its generaliza-
tion do not always help without some spe-
cial structure. Our own work (Bergemann, 
Brooks, and Morris 2015) on (one player) 
price discrimination, discussed in the next 
section, relies heavily on linear program-
ming; but while the solution must corre-
spond to the concavification of an objective 
function, it is very difficult to visualize the 
concavification or provide a proof using 
it. However, linear programming meth-
ods do not always help, either: in our work 
on (many player) auctions (Bergemann, 
Brooks, and Morris 2017a), neither gener-
alized concavification nor linear program-
ming methods are used in stating or proving 
our results (although linear programming 
played an important role in supplying con-
jectures for the results).

5. Metaphorical Information Design and 
Applications

Mechanism design sometimes has a lit-
eral interpretation. For example—in some 
settings—a seller may be able to commit 
to an auction for selling an object. In other 
settings, the mechanism design problem is 
studied even though there does not exist a 
mechanism designer able to commit. For 
example, suppose that we are interested in 
a buyer and seller bargaining over an object. 
There may be no rules for how the play-
ers bargain and no one who could enforce 
such rules. Nonetheless, Myerson and 
Satterthwaite (1983) studied what would be 
the optimal mechanism for realizing gains 
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from trade because it bounds what could 
happen under any bargaining protocol that 
ends up being used. In this sense, there is 
not a literal mechanism designer, but we 
are rather using the language of mechanism 
design for another purpose.

Similarly for information design, the most 
literal interpretation of the information 
design problem is that there is an actual 
information designer who can commit to 
choosing the players’ information structure 
in order to achieve a particular objective. In 
many contexts, this commitment assumption 
may not be plausible.14 Yet, the information 
design perspective can be used to address 
many important questions even where there 
is not a literal information designer. In par-
ticular, understanding the set of outcomes 
that an information designer can induce 
corresponds to identifying the set of all out-
comes that could arise from some informa-
tion structure.

In our own applications of information 
design, we have mostly been interested in 
metaphorical interpretations. The set of 
BCE is precisely the set of outcomes that can 
arise with additional information for a given 
basic game and prior information struc-
ture. If there are properties that hold for all 
BCE, we have identified predictions that are 
robust to the exact information structure. 
Identifying the best or worst outcome that 
can arise under some information structure 
according to some objective function as cri-
terion is the same as solving an information 
design problem where the designer is maxi-
mizing or minimizing that criterion. In this 
section, we will review two such economic 
applications of information design. We will 
highlight the implications of this approach in 
the context of third-degree price discrimina-
tion (Bergemann, Brooks, and Morris 2015) 

14 Forges and Koessler (2005) observe that conditioning 
on players’ exogenous information makes sense if players’ 
types are ex post verifiable. 

and a linear interaction game with a focus 
on aggregate variance, and macroeconomic 
implications (Bergemann, Heumann, and 
Morris 2015).

Caplin and Martin (2015) adopt a simi-
lar, metaphorical, approach to the recovery 
of preference orderings and utility from 
choice data. They allow for the possibility 
that the decision maker has imperfect infor-
mation while satisfying Bayes’s law and iter-
ated expectation. They ask what they can 
learn from the observed choice data about 
the underlying preference profile without 
making strong assumptions on the informa-
tion available to the  decision maker at the 
moment of choice. In related work, Caplin 
and Dean (2015) develop a revealed pref-
erence test giving conditions under which 
apparent choice “mistakes” can be explained 
in terms of optimal costly information acqui-
sition by the player in the presence of imper-
fect information.

5.1 The Limits of Price Discrimination

A classic issue in the economic analysis 
of monopoly is the impact of discriminatory 
pricing on consumer and producer surplus. 
A monopolist engages in third-degree price 
discrimination if he uses additional informa-
tion about consumer characteristics to offer 
different prices to different segments of the 
aggregate market. Bergemann, Brooks, and 
Morris (2015) characterize what could hap-
pen to consumer and producer surplus for all 
possible segmentations of the market.

One can provide some elementary bounds 
on consumer and producer surplus in any 
market segmentation. First, consumer sur-
plus must be  nonnegative as a consequence 
of the participation constraint: a consumer 
will not buy the good at a price above his 
valuation. Second, the producer must get at 
least the surplus that he could get if there 
was no segmentation and he had no addi-
tional information beyond the prior distri-
bution. In this case, an optimal policy is 
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always to offer the product with probabil-
ity one at a given price to all buyers. We 
therefore refer to it as the uniform monop-
oly price, and correspondingly, uniform 
monopoly profit. Third, the sum of con-
sumer and producer surplus cannot exceed 
the total social value that is generated 
by the good, which is  willingness-to-pay 
minus unit cost of production. The shaded 
right-angled triangle in figure 5 illustrates 
these three bounds.

The main result in Bergemann, Brooks, 
and Morris (2015) is that every welfare out-
come satisfying these constraints is attain-
able by some market segmentation. This is 
the entire shaded triangle in figure 5. If the 
monopolist has no information beyond the 
prior distribution of valuations, there will 
be no segmentation. The producer charges 
the optimal monopoly price and gets the 
associated monopoly profit, and consumers 
receive a positive surplus; this is marked by 
point A in figure 5. If the monopolist has 
complete information, then he can charge 
each buyer his true valuation, i.e., engage in 
perfect or first-degree price discrimination; 
this is marked by point B. The point marked 
C is where consumer surplus is maximized; 
the outcome is efficient and the consumer 
gets all the surplus gains over the uniform 
monopoly profit. At the point marked D, 
social surplus is minimized by holding pro-
ducer surplus down to uniform monopoly 
profits and holding consumer surplus down 
to zero.

The main result states that we can make 
only very weak predictions about producer 
and consumer surplus. It can be understood 
as the outcome of a set of metaphorical 
information design problems. If an infor-
mation designer wanted to maximize con-
sumer surplus, she would choose point C. If 
she wanted to minimize consumer surplus, 
or  producer surplus, or any weighted com-
bination of the two, she could choose point 
D. Any other point on the boundary of the 

triangle is the solution to some maximization 
problem of the information designer defined 
by some preferences over producer and con-
sumer surplus.

The information design problem has a 
very clear literal interpretation in the case 
where the monopolist knows the consumer’s 
valuation. She can then achieve perfect price 
discrimination at point B. However, giving a 
literal information design interpretation of 
point C is more subtle. We would need to 
identify an information designer who knew 
consumers’ valuations and committed to 
give partial information to the monopolist 
in order to maximize the sum of consum-
ers’ welfare. Importantly, even though the 
disclosure rule is optimal for consumers as 
a group, individual consumers would not 
have an incentive to truthfully report their 
valuations to the information designer, given 
the designer’s disclosure rule, since they 
would want to report themselves to have low 
values.

As discussed in the previous section, it 
seems hard to explain the main result using 
concavification, but there is an elemen-
tary geometric argument. One can show 
that any point where the monopolist is 
held down to his uniform monopoly prof-
its with no information beyond the prior 
distribution—including outcomes A, C, 
and D in figure 5—can be achieved with 
the same segmentation. In this segmenta-
tion, consumer surplus varies because the 
monopolist is indifferent between charging 
different prices.

We can use a simple example to illus-
trate these results. There are three valu-
ations,  v ∈ V =  {1, 2, 3}  , which arise in 
equal proportions, and there is zero mar-
ginal cost of production. The feasible social 
surplus is   w   ∗  = (1 / 3) (1 + 2 + 3)  = 2 .  
The uniform monopoly price is   v   ∗  = 2 .  
Under the uniform monopoly price, profit is   
π   ∗  = (2/3) × 2 = 4/3  and consumer surplus 
is   u   ∗  = (1 / 3) (3 − 2)  + (1 / 3) (2 − 2)  = 1 / 3 . 
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A segment  x  is a vector of probabilities of 
each valuation, thus  x =  ( x 1  ,  x 2  ,  x 3  )  , and by 
 σ (x)   we denote the total mass of a segment 
 x . A segmentation of the market is therefore 
a collection of segments  x ∈ X  and and a 
probability distribution  σ ( ⋅ )   over the seg-
ments. We give an example of a segmenta-
tion below. In the example, there are three 
segments and each segment is identified by 
its support on the valuations indicated by the 
set   { · }   in the superscript. The frequency of 
each segment  x  is given by  σ (x)  : 

(16)

Segment   x 1     x 2     x 3   σ(x)

.

  x   {1, 2, 3}     1 _ 2      1 _ 6      1 _ 3      2 _ 3   

  x   {2, 3}  0    1 _ 3      2 _ 3      1 _ 6   

  x   {1}  0 1 0    1 _ 6   

  x   ⁎     1 _ 3      1 _ 3      1 _ 3   1

The particular segmentation has a num-
ber of interesting properties. First, in each 
segment, the seller is indifferent between 
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Figure 5. The Bounds on Profits and Consumer Surplus in Third-Degree Price Discrimination
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charging as price any valuation that is in the 
support of the segment. Second, the uniform 
monopoly price,   p   ∗  = 2 , is in the support 
of every segment. Thus, this particular seg-
mentation preserves the uniform monopoly 
profit. If the monopolist charges the uni-
form monopoly price on each segment, we 
get point A. If he charges the lowest value in 
the support of each segment (which is also an 
optimal price, by construction), we get point 
C; and if he charges the highest value in the 
support, we get point D.

Roesler and Szentes (2017) consider a 
related information design problem in which 
a single buyer can design her own informa-
tion about her value before she is facing a 
monopolist seller. While the analysis of the 
 third-degree price discrimination proceeds 
as a one-player application, the arguments 
extend to many-player settings. Bergemann, 
Brooks, and Morris (2017a) pursue the ques-
tion of how private information may impact 
the pricing behavior in a many-buyer envi-
ronment. There, we derive results about 
equilibrium behavior in the  first-price auc-
tion that hold across all  common-prior infor-
mation structures. The results that we obtain 
can be used for a variety of applications, e.g., 
to partially identify the value distribution in 
settings where the information structure is 
unknown and to make informationally robust 
comparisons of mechanisms.

5.2 Information and Volatility

Bergemann, Heumann, and Morris 
(2015) revisit a classic issue in macroeco-
nomics. Consider an economy of interacting 
agents—each of whom picks an action—
where the agents are subject to idiosyncratic 
and aggregate shocks. A fundamental eco-
nomic question in this environment is to ask 
how aggregate and idiosyncratic shocks map 
into “aggregate volatility”—the variance of 
the average action. Versions of this question 
arise in many different economic contexts. 
In particular, a central question in macro-

economics is how aggregate and individual 
productivity shocks translate into variation in 
GDP. Another classical question is when and 
how asymmetric information can influence 
this mapping, and in particular exacerbate 
aggregate volatility.

These questions are studied in a set-
ting with a continuum of agents whose best 
responses are linear in the (expectation of 
the) average action of others and in the idio-
syncratic as well as aggregate shocks. Shocks, 
actions, and signals are symmetrically nor-
mally distributed across agents, maintaining 
symmetry and normality of the information 
structure. The maximal aggregate volatility is 
attained in an information structure in which 
the agents confound idiosyncratic and aggre-
gate shocks, and display excess response to 
the aggregate shocks, as in Lucas (1972) and 
more recently in Hellwig and Venkateswaran 
(2009), Venkateswaran (2013), and Angeletos 
and La’O (2013). Our contribution is to high-
light that, in this setting with idiosyncratic and 
aggregate shocks, a class of  noise-free con-
founding information structures are extremal 
and provide global bounds on how much vola-
tility can arise. In particular, for any given vari-
ance of aggregate shocks, the upper bound on 
aggregate volatility is linearly increasing in the 
variance of the idiosyncratic shocks.

In this application, we do not think there is 
any economic agent who is able to or wants to 
maximize aggregate volatility. But because we 
are interested in bounds on aggregate volatil-
ity across equilibria of different information 
structures, the problem is naturally repre-
sented as an information design problem.

The basic setting is that the payoff shock   
θ i    of individual  i  is given by the sum of an 
aggregate shock  θ  and an idiosyncratic shock   
ε i  :  

   θ i   ≜ θ +  ε i   . 

The aggregate shock  θ  is common to all agents 
and the idiosyncratic shock   ε i    is  independent 
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and identically distributed across agents, as 
well as independent of the aggregate shock. 
Each component of the payoff shock   θ i    is 
normally distributed:

(17)   (  θ   ε i   )  ∼  ( ( 
 μ θ    
0
  ) ,  ( 

 σ  θ  2 
  

0
  

0
  

 σ  ε  2 
 ) ) . 

The variance of the individual payoff shock 
  θ i    can be expressed in terms of the variance 
of the sum of the idiosyncratic and the aggre-
gate shock:   σ  θ  2  +  σ  ε  2  . The correlation (coeffi-
cient)   ρ θ     between the payoff shocks   θ i    and   θ j    
of any two agents  i  and  j  is: 

(18)   ρ θ   ≜    σ  θ  2  _ 
 σ  θ  2  +  σ  ε  2 

   . 

The best response of agent  i  is given by a 
linear function 

   a i   =  (1 − r)   피 i   [ θ i  ]  + r  피 i   [A] , 

where  A  is the average action. Now, the 
results described above regarding the struc-
ture of the extremal information structure 
hold independently of whether the weight 
on the average action,  r , is negative (the stra-
tegic substitutes case), zero (the purely deci-
sion theoretic case), or positive (the strategic 
complements case). A striking property is 
that the set of feasible correlations between 
individual and average actions and individual 
and aggregate shocks is independent of  r  and 
determined only by statistical constraints. 
Here we will thus convey the flavor of the 
result in a setting where the decision of the 
agent is independent of any strategic consid-
erations, thus the  decision-theoretic case.

It suffices to consider the following 
 one-dimensional class of signals: 

(19)   s i   ≜ λ  ε i   + (1 − λ)θ,  

where the linear composition of the signal 
  s i    is determined by the parameter  λ ∈  [0, 1]  .  

The information structure  λ  is noise free in 
the sense that every signal   s i    is a linear com-
bination of the idiosyncratic and the aggre-
gate shock,   ε i    and  θ , and no extraneous noise 
or error term enters the signal of each agent. 
Nonetheless, since the signal   s i    combines the 
idiosyncratic and the aggregate shock with 
weights  λ  and  1 − λ , each signal   s i    leaves 
agent  i  with residual uncertainty about 
his true individual payoff shock   θ i   , unless  
λ = 1 − λ = 1/2 .

In the  decision-theoretic case,  r = 0 , the 
best response of each agent simply reflects 
a statistical prediction problem, namely to 
predict the payoff shock   θ i    given the signal   s i   : 

(20)    a i   = 피 [ θ i   |  s i  ]  =   (1 − λ)  ρ θ   + λ(1 −  ρ θ  )  ___________________  
 (1 − λ)   2   ρ θ   +  λ   2  (1 −  ρ θ   )

    s i   . 

The individual prediction problem is more 
responsive to the signal   s i   , that is, assigns a 
larger weight to   s i    if and only if the signal 
contains more information about the individ-
ual payoff shock   θ i   . The noise-free informa-
tion structure  λ = 1/ 2  allows each agent to 
perfectly infer the individual payoff shock   θ i   . 
It follows that the responsiveness, and hence 
the variance of the individual action   σ  a  2  , is 
maximized at  λ = 1 / 2 : 

   σ  a  2  =  σ  θ  2  +  σ  ε  2  . 

Now, to the extent that the individual payoff 
shocks,   θ i    and   θ j   , are correlated, we find that 
even though each agent  i  only solves an indi-
vidual prediction problem, his actions are 
correlated by means of the underlying cor-
relation of the individual payoff shocks, and 
the resulting aggregate volatility is: 

   σ  A  2   =  ρ a    σ  a  2  =  σ  θ  2  . 

We can ask whether the aggregate volatility 
can reach higher levels under information 
structures different from  λ = 1 / 2 . As the 
information structure departs from  λ = 1 / 2 ,  
we necessarily introduce a bias in the signal   
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s i    toward one of the two components of the 
payoff shock   θ i   . Clearly, the signal   s i    is losing 
its informational quality with respect to the 
individual payoff shock   θ i    as  λ  moves away 
from  1 / 2  in either direction. Thus, the indi-
vidual prediction problem (20) is becoming 
noisier and in consequence, the response of 
the individual agent to the signal   s i    is atten-
uated. But a larger weight,  1 − λ , on the 
aggregate shock  θ , may support correlation 
in the actions across agents, and thus support 
larger aggregate volatility. As the response 
of the agent is likely to be attenuated, a 
 trade-off appears between bias and loss of 
information. We show that the maximal 
aggregate volatility:

(21)   max  
λ
    {var (A) }  =   

  ( σ θ   +  √ 
_

  σ  θ  2  +  σ  ε  2   )    
2
 
  ______________ 

4
     

is achieved by the information structure   λ   ∗ :  

(22)   λ   ∗  ≜   arg max  
λ
    {var (A) }  

 =    σ θ   _____________  
2  σ θ   +  √ 
_

  σ  θ  2  +  σ  ε  2   
   <   1 _ 

2
   , 

which biases the signal toward the aggregate 
shock. We can express the information struc-
ture that maximizes the aggregate volatility 
in terms of the correlation coefficient   ρ θ   : 

   arg max  
λ
    {var (A) }  =   

 √ 
_

  ρ θ     _ 
1 + 2  √ 

_
  ρ θ    
   , 

and the maximal volatility can be expressed 
as: 

   max  
λ
    {var (A) }  =   1 _ 

4
     (1 +  √ 

_
  ρ θ    )    2  ( σ  θ  2  +  σ  ε  2 ) . 

Surprisingly, as we approach an environment 
with purely idiosyncratic shocks, the maxi-
mal aggregate volatility does not converge to 
zero; rather, it is bounded away from zero  , 
and given by   σ  ε  2 /4 . Thus, the economy can 

maintain a large aggregate volatility even in 
the presence of vanishing aggregate payoff 
shocks by confounding the payoff-relevant 
information about the idiosyncratic shock 
with the (in the limit) payoff-irrelevant infor-
mation about the aggregate shock.

6. Information Design with Private 
Information

We have thus far considered the scenario 
where the designer knows not only the true 
state  θ , but also the players’ prior informa-
tion about the state. We now consider what 
happens when the information designer does 
not have access to players’ prior information 
(but still can condition on the state). Here, 
we consider two alternative assumptions 
about the designer’s ability to condition rec-
ommendations on players’ prior information. 
If the designer can elicit the private infor-
mation, then we have information design 
with elicitation. If the designer cannot elicit 
the private information, we have informa-
tion design without elicitation. We present 
a  self-contained discussion of these exten-
sions and then discuss how—with these 
extensions—information design fits into the 
mechanism design and incomplete-informa-
tion-correlated equilibrium literatures more 
broadly in sections 6.3 and 6.4.

6.1 Players’ Prior Information is not Known 
to the Designer

When the information designer cannot 
observe the players’ prior information, she 
may or may not be able to ask the players 
about it. In the case of information design 
with elicitation, she will be able to condition 
her recommendations on the reported types. 
In the case of information design without 
elicitation, she can only send a list of recom-
mendations, namely one recommendation 
for each possible type of the player.

In the case of information design with elic-
itation, the revelation principle still implies 
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that we can restrict attention to the case 
where the information sent by the informa-
tion designer consists of action recommen-
dations. However, we will now require an 
incentive compatibility condition that entails 
 truth telling as well as obedience, so that the 
information designer can only condition on 
a player’s signal if the player can be given an 
incentive to report it truthfully. Following 
Myerson (1991, section 6.3), we can think 
of the information designer choosing a 
decision rule  σ : T × Θ → Δ(A) , but each 
type of each player can choose a deviation 
  δ i   :  A i   →  A i    with the interpretation that 
  δ i   ( a i  )   is the action chosen by player  i  if the 
information designer recommended action 
  a i   . The decision rule  σ  is incentive compati-
ble if each player does not have an incentive 
to deviate.

DEFINITION 2 (Incentive Compatible): A 
decision rule  σ : T × Θ → Δ(A)  is incentive 
compatible for  (G, S)  if for each  i = 1, …, I  
and   t i   ∈  T i   ,

    ∑ 
a, t i  ,θ

    u i  (( a i  ,  a −i  ), θ)σ(( a i  ,  a −i  ) | ( t i  ,  t −i  ), θ)π(( t i  ,  t −i  ) | θ) ψ(θ)

≥  ∑ 
a, t i  ,θ

    u i  (( δ i  ( a i  ),  a −i  ), θ)σ(( a i  ,  a −i  ) | ( t  i  ′  ,  t −i  ),θ)π(( t i  ,  t −i   ) | θ)ψ(θ) 

for all   t  i  ′   ∈  T i    and   δ i   :  A i   →  A i   .

The displayed inequality will be referred 
to as player  i ’s type-  t i    incentive constraint. It 
ensures that player  i , after observing signal   
t i   , finds it optimal to report his signal truth-
fully and then, after observing and updating 
on the information contained in the resulting 
action recommendation   a i   , finds it optimal to 
follow this recommendation. Thus it builds 
in both  truth telling and obedience. In addi-
tion, the notion of incentive compatibility 
requires that the decision rule is immune 
to “double deviations” in which the player 
misreports his type to be   t  i  ′    (rather than 
  t i   ) and disobeys the recommendation of the 

designer by choosing   δ i   ( a i  )   rather than   a i   . 
Thus, incentive compatibility implies, but is 
not implied by, separately requiring truth 
telling and obedience.

PROPOSITION 2: An information designer 
with elicitation can attain a decision rule if 
and only if it is incentive compatible.

In the case of information design without 
elicitation, the designer cannot condition 
the action recommendation on the reported 
type, but has to offer a contingent recom-
mendation, a vector of action recommen-
dations, where each individual entry is an 
action recommendation for a specific type of 
the player, hence contingent on the realized 
type. The set of feasible recommendations to 
player  i  is therefore given by   B i   =   A i      T i    . The 
set of player  i ’s contingent recommendations 
therefore has a typical element 

   b i   :  T i   →  A i   . 

We define  B =  ∏ i=1  I     B i    and let a generic 
 element be given by  b = ( b 1   , …,  b I  ) ∈ B ,  
and so b(t) = (  b 1   (  t 1   ), …,   b I   (  t I   )),

We are now interested in contingent 
action recommendations  ϕ :  Θ → Δ(B)  
rather than action recommendations.

DEFINITION 3 (Public Feasibility): A 
decision rule  σ : T × Θ → Δ(A)  is publicly 
feasible if there exists a contingent recom-
mendation  ϕ : Θ → Δ(B)  such that for each  
a ∈ A ,  t ∈ T , and  θ ∈ Θ  with  π(t | θ) > 0 , 

  σ(a | t, θ) =   ∑ 
 {b∈B:b(t)=a} 

   ϕ(b | θ). 

In this case, we say that  σ  is induced by ϕ.

Public feasibility is the restriction that a 
given player’s contingent recommendation 
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cannot depend on the type of the player 
himself nor on the types of the other  players. 
We refer to the above requirement as public 
feasibility, since the recommendation vector 
cannot be tailored to the private informa-
tion of the players and it has to be feasible in 
the sense that it induces the decision rule  σ .  
We emphasize that each contingent recom-
mendation   b i    is still communicated to each 
agent  i  separately and privately, and thus is 
not public in the sense of a public announce-
ment to all players.

When  I = 1 , public feasibility is a vac-
uous restriction. Every decision rule  σ  is 
induced by the contingent recommendation 
ϕ given by 

  ϕ(b | θ) =   ∏ 
t∈T

    σ(b(t) | t, θ). 

Under this choice of ϕ, the components of 
the contingent recommendation vector b(t)
are drawn independently. When  I > 1 , how-
ever, public feasibility is a substantive restric-
tion. By recommending to a particular player 
a strategy rather than an action, the designer 
can condition that player’s action on his type. 
By judiciously choosing a distribution over  B ,  
the designer can even correlate the players’ 
strategies. But she cannot correlate one play-
er’s strategy on another player’s type.

We are not interested in all contingent 
recommendations, but rather those that are 
obedient in the sense defined earlier, in defi-
nition 1. Below, we adapt the definition to 
account for the larger space of contingent 
recommendations,  b , rather than action rec-
ommendations,  a .

DEFINITION 4 (Publicly Feasible Obe-
dience): A decision rule  σ : T × Θ → Δ(A)  
is publicly feasible obedient if there exists a 
contingent recommendation  ϕ : Θ → Δ(B)  
such that ( i )  ϕ  induces  σ  ,  and ( ii )  ϕ  satisfies 
obedience in the sense that for each  i  ,    t i   ∈  T i    ,   
and   b i   ∈  B i    ,  

    ∑ 
 b i  , t i  ,θ

     u i  (( b i  ( t i  ),  b −i  ( t −i  )), θ) ϕ(( b i  ,  b −i  ) | θ)π(( t i  ,  t −i  ) | θ)ψ(θ)

 ≥    ∑ 
 b i  , t i  ,θ

     u i  (( a  i  ′ ,  b −i  ( t −i  )), θ) ϕ(( b i  ,  b −i  ) | θ) π(( t i  ,  t −i  ) | θ) ψ(θ) 

for all   a  i  ′   ∈  A i   .

The displayed inequality will be referred 
to as player  i ’s  ( t i  ,  b i  ) -publicly feasible obedi-
ence constraint. It ensures that player  i , after 
observing signal   t i    and receiving and updating 
on the recommendation   b i   , finds it optimal to 
take the action   b i   ( t i  )  prescribed by the vec-
tor   b i    for his type   t i   . Note that in so far as a 
contingent recommendation   b i     reveals more 
information about the state  θ  and thus possi-
bly and indirectly about the type profile   t −i    
than just an action recommendation, publicly 
feasible obedience will be a more demanding 
concept than mere obedience as it allows the 
agents to contemplate deviations based on 
more accurate information. After all, type   t i    is 
able to observe the recommendation tailored 
toward him as well as the recommendation 
offered to all other types   t  i  ′   ≠  t i   . To the 
extent that the recommendation across types 
is not perfectly correlated, it then follows that 
the type   t i    will receive additional information 
through the contingent recommendation 
rather than the action recommendation.

PROPOSITION 3: An information designer 
without elicitation can attain a decision rule 
if and only if it is publicly feasible obedient.

6.2 The Investment Example  Revisited

We now illustrate information design with 
private information using the investment 
example introduced earlier in section 3. The 
issues that arise in the one-player case with 
private information are already interesting and 
subtle. Here we do not present any examples 
of elicitation with many players. We thus do 
not consider any additional issues of public fea-
sibility that only arise in the many-player case. 
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We therefore now allow the information of 
the firm to be private. The government does 
not know the realization of the signal that the 
firm observes but can or cannot elicit it.

6.2.1 Information Design with Elicitation

In the case of elicitation, we have a screen-
ing problem where the designer offers a rec-
ommendation that induces a probability of 
investing as a function of the reported sig-
nal and the true state. As noted above, we 
have three sets of constraints that need to 
be satisfied. First, each type has to truth-
fully report his signal; second, each type has 
to be willing to follow the recommendation, 
the obedience constraints; and third, double 
deviations, by means of misreporting and 
disobeying at the same time, must not be 
profitable. Kolotilin et al. (2017) refer to this 
informational environment as “private per-
suasion.”15 Kolotilin (2018) pursues a linear 
programming approach to identify the opti-
mal information disclosure policy under a 
 single-crossing assumption.

A decision rule now specifies the proba-
bility of investment   p θt    conditional on the 
true state  θ ∈  {B, G}   and the reported type 
 t ∈  {b, g}  . Thus, as before in sec-
tion 3.2, a decision rule is now a vector 
 p =  ( p Bb  ,  p Bg  ,  p Gb  ,  p Gg  )  . The information 
designer offers a recommendation (stochas-
tically) as a function of the true state and the 
reported type. The obedience conditions are 
as in section 3.2, where information was not 
private. A truthful reporting constraint is 

15 Bergemann, Bonatti, and Smolin (2018) consider a 
model of private persuasion with quasilinear utility. Their 
main objective is to analyze the revenue maximizing solu-
tion to the information design problem subject to the elic-
itation constraints. Daskalakis, Papadimitriou, and Tzamos 
(2016) also consider an information design with quasilinear 
utility. The novel aspect of their analysis is that the object 
for sale has many attributes, and the seller chooses opti-
mally how much to disclose about each individual attri-
bute. Their analysis reveals a close relationship to the 
classic bundling problem of a multi-item monopolist. 

described below for a good type  t = g . The 
truth-telling constraint for the good type  
t = g  is: 

(23)  q p Gg   x −  (1 − q)   p Bg   ≥ q p Gb   x −  (1 − q)   p Bb   ,

and correspondingly for the bad type  t = b:  

(24)   (1 − q)   p Gb   x − q p Bb   ≥  (1 − q)   p Gg   x − q p Bg   . 

By misreporting and then following the 
resulting recommendation afterwards, each 
type can change the probability of investing. 
We can write the above two truth-telling con-
straints in terms of a bracketing inequality: 

(25)    
1 − q

 _ q   x ( p Gg   −  p Gb  )  ≤  p Bg   −  p Bb   

≤   
q
 _ 

1 − q
   x ( p Gg   −  p Gb  ) . 

These inequalities highlight how the dif-
ferential between type  t = b  and  t = g  in 
the recommendation   p Bt    in the bad state are 
bounded, below and above, by the differen-
tial in the recommendation   p Gt    in the good 
state. Notice also that since 

    
1 − q

 _ q     1 _ x   <   
q
 _ 

1 − q
   x, 

the above bracketing inequality requires that 

   p Gg   −  p Gb   ≥ 0,  p Bg   −  p Bb   ≥ 0, 

thus, the conditional probability of investing 
has to be larger for the good type than the 
bad type in either state. An implication spe-
cific to the binary action, binary state envi-
ronment is the fact that double deviations do 
not impose any additional restriction on the 
behavior of the player. We state and prove 
this result formally in the appendix as prop-
osition 6. In particular, this means that the 
obedience and truth-telling constraints dis-
cussed above imply the incentive compatibil-
ity condition of definition 2.
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With these additional constraints, the set of 
outcomes that can arise in equilibrium under 
information design with elicitation is weakly, 
and typically strictly, smaller than under an 
omniscient designer, i.e., the case in the 
 previous section where the designer can con-
dition his recommendation directly on the 
players’ prior information. The truth-telling 
constraints impose restrictions on how the 
differences in the conditional probabilities 
across types can vary across states. These 
impose additional restrictions on the ability 
of the government to attain either very low 
or very high investment probabilities in both 
states, as highlighted by equation (25).

Figure 6 illustrates the case where  x = 0.9  
and  q = 0.7 ; the dark red region corresponds 

to the outcomes that can arise under infor-
mation design with elicitation; adding in 
the pink region, we get back to the triangle 
that corresponds to omniscient information 
design where the designer knows players’ 
prior information.

6.2.2 Information Design without 
 Elicitation

We could also consider a government, 
who does not know the signal of the firm and 
cannot even elicit it. Kolotilin et al. (2017) 
call this scenario “public persuasion.” Such 
 information design without elicitation has 
been the focus of the recent literature.

Clearly, the designer can replicate any 
decision rule without elicitation with a 
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Figure 6. Investment Probability with Private Information
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 decision rule with elicitation. This  inclusion 
holds without any restrictions on the state 
space, the number of players, or the players’ 
actions. In the specific investment example 
above, with a single player, two states, and 
two actions, the converse happens to be true 
as well. That is, any decision rule attainable 
with elicitation can also be attained with-
out elicitation. In other words, in the binary 
setting and with a single player, there is no 
need for elicitation. The designer can induce 
any incentive-compatible decision rule 
by recommendations alone. We state and 
prove these two results in the appendix as  
propositions 5 and 6.16

The equivalence breaks down immediately 
if either of the binary assumptions regarding 
action and state are relaxed or we consider 
more than one player. We illustrate this fail-
ure of the equivalence result with a minor 
generalization of the investment example. In 
particular, in a single-player environment, 
we allow the player to either consider a small 
or a large investment. For completeness, we 
present, in the appendix, examples where 
one of the other two hypotheses fails. This 
modified example allows us to find a strict 
nesting of the set of outcomes without prior 
information, with prior information and an 
omniscient designer, with elicitation, and 
finally without elicitation. For the purpose of 
this example, it will be sufficient to focus on 
the case of a single player.

6.2.3 Beyond the Binary Setting 

Consider the basic investment example 
with  I = 1 ,  Θ = {B, G} , uniform prior, and 
symmetric types that are correct with prob-
ability  q > 1/2 . We now add an  additional 
investment decision, to invest small, to the 

16 Kolotilin et al. (2017) showed such an equivalence 
under a different set of assumptions. In their model, the 
designer and the player are privately informed about dis-
tinct payoff states rather than having distinct information 
about the same state as in the present setting. 

set of feasible actions of the player. The 
decision to invest small comes with a higher 
rate of return but smaller total return than 
the (regular) investment decision. The 
payoff from a small investment is  −1/2  in 
the bad state and  y ∈ (x/2, x)  in the good  
state:

bad state B good state G

invest −1 x

.invest small −   1 _ 2   y

not invest 0 0

For simplicity we restrict attention to decision 
rules that put zero probability on the small 
investment in equilibrium. We note that the 
small investment decision still plays a role in 
the characterization of incentive compatible 
decision rules as it is a feasible action to the 
player. It will hence generate additional obe-
dience constraints that the designer has to 
respect as the player has now two possible 
deviations from the recommended action, 
one of which is to invest at a small scale. The 
decision rules—restricted to invest and not 
invest—can still be represented by a vector  
p = (  p Bb  ,  p Bg  ,  p Gb  ,  p Gg  )  that records the 
probability of investing.

As a benchmark, first suppose the player 
has no prior information. Then a deci-
sion rule that never recommends the small 
investment can be represented as a pair 
 (  p B  ,  p G  ) ∈  [0, 1]   2   that specifies the proba-
bility of the large investment in each state. 
When the firm has no prior information, 
there are two binding obedience constraints, 
one for the big investment against the small 
investment:

(26)   p G   x −  p B   ≥  p G   y −   1 _ 
2
    p B   ,  
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and one for no investment against the small 
investment:17 

  0 ≥ (1 −  p G  ) y −   1 _ 
2
   (1 −  p B  ) . 

The equilibrium regions are depicted in fig-
ure 7. If the firm has no prior information, 
the government faces only the above two 
constraints. The set of attainable decision 
rules is described by the light red area. In 
contrast to the setting with two investment 

17 The other two possible incentive constraints, namely 
for the big investment against no investment and for no 
investment against the big investment, are supplanted by 
the above two. 

levels analyzed earlier, there is now a kink 
in the area of attainable decision rules that 
reflects a change in the binding obedience 
constraint, from zero investment to small 
investment.

If we consider the case in which the firm 
has prior information, then we have three 
different communication protocols for the 
government. An omniscient designer faces 
the obedience constraints that we analyzed 
earlier in section 3.2. By contrast, if the firm 
holds private information, then the informa-
tion designer is no longer omniscient. Now 
the firm has two possible ways to disobey. 
If the government does not observe the sig-
nal but can elicit the information from the 
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firm, then we have truth-telling constraints 
as described by (23) and (24) in addition to 
the obedience constraints. Importantly, in this 
setting with more than two actions, the possi-
bility of double deviations—misreporting and 
disobeying—generates additional constraints 
on the incentive compatible decision rules.

Finally, a designer without elicitation faces 
additional obedience constraints that rule 
out deviations conditional on a particular 
vector recommendation. The corresponding 
areas in figure 7 illustrate that the sequence 
of additional constraints from omniscient to 
elicitation to no elicitation impose increas-
ingly more restrictions on the government 
and hence generate a sequence of strictly 
nested sets.

We already discussed how these three 
regimes offer an increasing number of con-
straints. It remains to discuss the specific 
impact of being able to elicit (or not) the 
private information. With elicitation, the 
player only learns the designer’s recommen-
dation for one type, namely the type that 
he reports. But a designer who cannot elicit 
must reveal her action recommendations for 
all types, hence the contingent recommen-
dation. This enables a player to contemplate 
additional contingencies and hence devia-
tions. With three possible actions, as in this 
example, there are two additional deviations 
that take advantage of this finer informa-
tion. In particular, the high type can disobey 
the recommendation to invest by deviating 
to invest small only when the designer also 
recommends not to invest to the low type. 
Likewise, the low type can disobey the rec-
ommendation not to invest by deviating to 
invest small only when the designer also 
recommends investing to the high type. The 
additional options for the player induce fur-
ther constraints on the information designer. 
Naturally, these additional deviations were 
not available in the binary action environ-
ment. And in fact, the absence of this large 
set of deviations accounts for the  equivalence 

between elicitation and no elicitation in the 
binary action and state environment.18

We conclude with a few observations 
about the comparative statics with respect to 
the information structure. As the precision 
of the information  q  decreases toward  1/2 , 
the inner three regions expand outward and 
converge to the no-prior-information equi-
librium set. By contrast, as the precision  q  
increases towards  1 , the three inner regions 
contract and converge to the single coordi-
nate vector   (0, 1)  .
6.3 Information Design within Mechanism 

Design

In the information design problem, the 
“information designer” can commit to pro-
viding information to the players to serve 
his ends, but has no ability to choose out-
comes (or force the players to take particu-
lar actions). The set of available actions and 
a mapping from action profiles to outcomes 
and thus payoffs is fixed. How does this relate 
to “mechanism design”? 

Myerson (1982) describes a class of Bayes 
incentive problems, which constitutes a 
leading definition of mechanism design 
(see also Myerson 1987, 1994). In this set-
ting, players may have control over some 
actions affecting outcomes but the mecha-
nism designer may be able to commit to pick 
other outcomes as a function of the play-
ers’ reports. For example, in many classical 
mechanism design problems with individual 
rationality constraints, players do have con-
trol over some actions: participation versus 
 nonparticipation. And even if the mecha-
nism designer may not have any information 
that is unavailable to the players, he can—
via the mechanism—implicitly control the 

18 We mentioned earlier that double deviations were 
not relevant in the binary environment in the sense that 
they do not add additional restrictions. This changes in 
the richer environment here, where the communicating 
designer indeed faces additional restrictions coming from 
the possibility of double deviations. 
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 information that players have about each 
other. Myerson (1991) then labels the case 
where the mechanism designer has no direct 
control over outcomes “Bayesian games with 
communication” (section 6.3) and the setting 
where the designer has complete control 
over outcomes “Bayesian collective choice 
problems” (section 6.4). Thus, what we are 
calling information design corresponds to 
Myerson’s Bayesian games with communica-
tion with the proviso that the mediator brings 
his own information to the table, rather than 
merely  redistributing others’ information.

There is also an important literature on an 
informed player (referred to as informed prin-
cipal) who can commit to choose outcomes as 
a function of messages (see Myerson 1983). 
But in this setting, the information designer 
(principal) is typically assumed to be able to 
commit to a mechanism only after receiving 
his private information and the principal is 
not choosing action herself; see Mylovanov 
and Troeger (2012, 2014) and  Perez-Richet 
(2014) for recent contributions. By contrast, 
in the information design setting there is a 
principal who cannot pick a contract/mech-
anism but can commit to a disclosure rule 
prior to observing her information.

6.4 Correlated Equilibrium and Incomplete 
Information

Aumann (1974, 1987) introduced cor-
related equilibrium as a solution concept 
for games with complete information (about 
the payoff matrix). He showed that the set 
of correlated equilibria equals the set of 
distributions over actions that could arise 
in a Bayes–Nash equilibrium if players 
observed some additional  payoff-irrelevant 
signals (consistent with the common prior). 
Equivalently, the set of correlated equilibria 
corresponds to the set of outcomes that could 
be induced by an (uninformed) information 
designer. What we are calling “information 
design” thus corresponds to an incomplete 
information elaboration of this original 

rationale for thinking about correlated equi-
librium when the information designer has 
information of her own.19 In this section, we 
review the existing literature on incomplete 
information correlated equilibrium to relate 
it to the version of incomplete information 
correlated equilibrium—BCE—that is rele-
vant for information design.

While Aumann (1987) provides an 
information design foundation for com-
plete information correlated equilibrium, 
he offers a broader interpretation of the 
characterization, arguing that correlated 
equilibrium captures the implications of 
common knowledge of rationality in a com-
plete information game, under the common 
prior assumption.20 A large literature on the 
epistemic foundations of game theory has 
developed since then (Dekel and Siniscalchi 
2015), elaborating on the formal language 
and questions suggested by Aumann’s work, 
although focused on the case of complete 
information without the common prior 
assumption. Formal treatment of the impli-
cations of common knowledge of rationality 
and the common prior assumption under 
incomplete information ties in with many of 
the issues discussed in this survey; we will 
discuss one issue that arises in this case in 
the next subsection.

To understand the literature on incom-
plete information correlated equilibrium, it 
is useful to identify two kinds of constraints 
in the literature on incomplete information 
correlated equilibrium: feasibility conditions 

19 Bergemann and Morris (2017) consider foundations 
for other solution concepts based on informational robust-
ness and information design considerations, when the 
common prior assumption is not maintained. 

20 Hillas, Kohlberg, and Pratt (2007) propose a related 
alternative foundation for correlated equilibrium. Consider 
an external observer who observes an infinite sequence of 
plays of a complete information game, has exchangeable 
beliefs about them, but does not believe he can offer ben-
eficial advice to players on how to improve their payoffs. 
This observer must believe that play corresponds to a cor-
related equilibrium. 
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(constraints on what kind of information 
decision rules can condition on) and incen-
tive compatibility conditions (what decision 
rules are consistent with optimal behavior). 
In this paper so far, we have introduced 
one feasibility condition—public feasibil-
ity (definition 3)—and three incentive con-
straints—obedience (definition 1), incentive 
compatibility (definition 2) and publicly fea-
sible obedience (definition 4). Recall that 
BCE—our characterization of outcomes that 
can be induced by an omniscient informa-
tion designer—imposed only obedience. We 
will discuss two further feasibility conditions 
to provide an overview of correlated equilib-
rium with incomplete information.

6.4.1 Belief Invariance

Consider the requirement that the infor-
mation designer can correlate players’ 
actions, but without changing players’ beliefs 
and higher-order beliefs about the state of 
the world. This is formalized as follows.

DEFINITION 5 (Belief Invariant): Decision 
rule  σ : T × Θ → Δ(A)  is belief invariant 
for ( G, S ) if     σ i  ( a i   | ( t i  ,  t −i  ), θ ) is independent of   
t −i      for each i,   a i   ,   t i   , and θ, where 

   σ i   ( a i   | ( t i  ,  t −i  ) , θ)   ≜    ∑ 
 a −i  ∈ A −i  

     σ i   ( ( a i  ,  a −i  ) | ( t i  ,  t −i  ) , θ)  .

We then say that a decision rule is a 
belief-invariant BCE if it satisfies belief 
invariance and obedience. It is not obvious 
how this feasibility condition arises under 
an information design interpretation: if the 
designer can condition his information on  
θ , why not allow him to change beliefs and 
higher-order beliefs?

There are two conceptual reasons why one 
might nonetheless be interested in belief-in-
variant BCE. First, Dekel, Fudenberg, and 
Morris (2007) introduced the solution con-
cept of interim correlated rationalizability. 
They show that it characterizes the implica-

tions of common certainty of rationality and 
players’ beliefs and higher-order beliefs. The 
solution concept by construction imposes 
belief invariance. Liu (2015) observes that 
the set of interim correlated rationalizable 
actions corresponds to the set of actions that 
can be played in a correlated equilibrium 
with incomplete information and subjective 
priors. If, then, the common prior assump-
tion is imposed, this corresponds to the set of 
belief-invariant Bayes-correlated equilibria. 
Thus, the solution concept of belief-invariant 
BCE is the “right” one for understanding the 
implications of common knowledge assump-
tions under the common prior assumption.

Second, Mathevet, Perego, and Taneva 
(2017) consider a situation where the infor-
mation designer can convey information 
only about beliefs and  higher-order beliefs, 
but is not able to send additional information 
about correlation. Now the set of belief-in-
variant BCE, once some  higher-order belief 
information has been sent, is equal to the 
set of BCE. Bergemann and Morris (2016a) 
describe how an arbitrary information struc-
ture can be decomposed into information 
about beliefs and  higher-order beliefs, and 
additional  belief-invariant signals.

6.4.2 Join Feasibility

Twenty five years ago, Forges (1993) 
(see also Forges 2006) gave an overview of 
incomplete information correlated equilib-
rium. A maintained assumption in that liter-
ature was that the information designer (or 
“mediator”) did not bring any information of 
her own to the table, but simply  rearranged 
information, telling players privately about 
others’ information. This can be formalized 
as follows.

DEFINITION 6 (Join Feasibility): Decision 
rule  σ : T × Θ → A  is join feasible for 
( G, S ) if  σ(a | t, θ ) is independent of  θ  ,  i.e. ,  
 σ(a | t, θ) = σ(a | t, θ′)  for each  t ∈ T  ,   a ∈ A  ,  
and  θ,  θ ′   ∈ Θ .
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Thus, join feasibility allows the designer 
to use the join of the private information of 
all the players, the information contained in 
the entire type profile  t . At the same time, 
it requires that the information designer can 
send information only about the type profile 
of the players and thus can only condition on 
the type profile, not on the state of the world  
θ  or   θ ′   . Join feasibility is imposed implicitly 
in some work on incomplete information 
correlated equilibrium—Forges (1993) inte-
grates out uncertainty other than the players’ 
types—but explicitly in others, e.g., Lehrer, 
Rosenberg, and Shmaya (2010).

As noted in the introduction, information 
design adds to the old incomplete informa-
tion correlated literature the twist that the 
designer brings information of her own to 
the table. In turn, this allows the designer to 
choose the optimal design and provision of 
the information to the players.

Forges’s 1993 paper was titled “Five 
Legitimate Definitions of Correlated 
Equilibrium in Games with Incomplete 
Information.” The feasibility and incentive 
conditions described so far allow us to com-
pletely describe the five solution concepts 
she discusses:

 (i) A Bayesian solution is a decision rule 
satisfying join feasibility and obedience.

 (ii) A belief invariant Bayesian solution is a 
decision rule satisfying join feasibility, 
belief invariance, and obedience.

 (iii) An agent normal form correlated 
equilibrium is a decision rule satisfy-
ing join feasibility, public feasibility, 
(which implies belief invariance) and 
obedience.

 (iv) A communication equilibrium is a deci-
sion rule satisfying join feasibility and 
incentive compatibility (which implies 
obedience).

 (v) A strategic form correlated equilibrium 
is a decision rule satisfying join feasi-
bility and publicly feasible obedience 
(which implies belief invariance, pub-
lic feasibility, obedience, and incentive 
compatibility).

Thus, the Bayesian solution, communi-
cation equilibrium, and strategic form cor-
related equilibrium correspond to omniscient 
information design, information design with 
elicitation, and information design without 
elicitation, respectively. The belief invariant 
Bayesian solution and the agent normal form 
correlated equilibrium do not have natural 
information design interpretations.

Forges (1993) noted inclusions implied by 
these definitions. In particular, if we write   
(n)   for the set of incomplete information cor-
related equilibria of type  n  above, we have 

  (5) ⊆ (3) ⊆ (2) ⊆ (1) and 

 (5) ⊆ (4) ⊆ (1) .

Forges (1993) reports examples showing 
that these inclusions are the only ones that 
can be shown, i.e., there exist decision rules 
that (i) are Bayesian solutions but not belief 
invariant BCE or communication equilib-
ria; (ii) are belief invariant Bayes solutions 
but not communication equilibria or agent 
normal form correlated equilibria; (iii) are 
communication equilibria but not belief 
invariant Bayesian solutions; (iv) are belief 
invariant Bayesian solutions and commu-
nication equilibria but not agent normal 
form equilibria; (v) are agent normal form 
correlated equilibria but not communica-
tion equilibria; (vi) are agent normal form 
correlated equilibria and communication 
equilibria.

Forges (1993) discusses one more solution 
concept: the universal Bayesian solution. The 
universal Bayesian solution corresponds—in 
our language—to the set of Bayes-correlated 
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equilibria that would arise under join feasi-
bility if players had no information.

7. Information Design with Adversarial 
Equilibrium and Mechanism Selection

We have so far examined settings where 
the revelation principle holds: we can, with-
out loss of generality, assume that the set of 
signals, or types, is equal to the set of actions. 
We now consider two natural extensions of 
information design where the revelation 
principle breaks down.

7.1 Adversarial Equilibrium Selection

In section 2, it was implicitly assumed 
that the information designer could, hav-
ing designed the information structure, also 
select the equilibrium to be played. With one 
player, the equilibrium selection problem 
reduces to breaking ties and is not of sub-
stantive interest. However, Carroll (2016) 
and Mathevet, Perego, and Taneva (2017) 
highlighted that this issue is of first-order 
importance in the many-player case, and that 
the revelation principle argument breaks 
down and alternative arguments must be 
used; Mathevet, Perego, and Taneva (2017) 
formalize and analyze the case where play-
ers with no prior information will choose the 
worst equilibrium for the designer.

For our representation, we define a 
“communication rule” for the information 
designer. Players have the prior informa-
tion encoded in the information structure 
 S =  (  ( T i  )   i=1  I  , π)  . The information designer 
sends each player  i  an extra message 
  m i   ∈  M i   , according to rule  ϕ : T × Θ → Δ (M)  ,  
where  M =  M 1   × ⋯ ×  M I   . A communi-
cation rule is then  C =  (  ( M i  )   i=1  I  , ϕ)  . Now 
the basic game  G , the prior information 
structure  S , and the communication rule  
C  describe a Bayesian game   (G, S, C)  .21 A 

21 Bergemann and Morris (2016a) call the pair ( S, C ) an 
“expanded information structure.” 

 strategy for player  i  in this game is a mapping 
  b i   :  T i   ×  M i   → Δ ( A i  )  . A communication 
rule  C  and strategy profile  b  will now induce 
a decision rule 

  σ (a | t, θ)  =   ∑ 
m∈M

    ϕ (m | t, θ)   ( ∏ 
i
      b i   ( a i   |  t i   ,  m i  ) ) .  

We will write  E (C)   for the set of Bayes–Nash 
equilibria of the game with communication 
rule  C . We can now give a more formal state-
ment of proposition 1.

PROPOSITION 4: Decision rule  σ  is a BCE 
of ( G, S ) if and only if there exists a commu-
nication rule  C  and a Bayes–Nash equilib-
rium  b ∈   E(C)  that induce  σ .

This is a revelation principle argument 
that was formally stated as theorem 1 in 
Bergemann and Morris (2016a).

Recall that in section 2, we defined the 
information designer’s utility from BCE  σ : 

  V(σ) =   ∑ 
a,t,θ

   v (a, θ)  σ (a | t, θ)  π (t | θ)  ψ (θ) . 

We can also define the information design-
er’s utility from communication rule  C  and 
strategy profile  b :

  V   ∗  (C, b)  =   ∑ 
θ, t, a

   v (a, θ)  ( ∏ 
i
      b i   ( a i   |  t i  ,  m i  )   ∑ 

m∈M
    ϕ (m | t, θ) ) π (t | θ)  ψ (θ) . 

Let us consider the problem of an informa-
tion designer who can pick both the commu-
nication rule and the equilibrium and is thus 
solving the problem 

   max  
C
      max  

b∈E (C) 
    V   ∗  (C, b) . 

Proposition 4 established that

   max  
C
      max  

b∈E (C) 
    V   ∗  (C, b)  =   max  

σ∈BCE
   V (σ) . 

But one could also consider the problem of 
an information designer who can pick the 
communication rule, but wants to maximize 
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his utility in the worst equilibrium, and is 
thus solving the problem 

   max  
C
      min  

b∈E (C) 
    V   ∗  (C, b) .22 

We now discuss three applications where 
maxmin information design problems have 
been motivated and studied; in each appli-
cation, players have prior information. First, 
Carroll (2016) considers the problem of 
bilateral trade where he wants to know the 
worst possible gains from trade for a given 
distribution over the known private values 
of a buyer and a seller. If we picked the 
worst equilibrium, we could always support 
no trade with probability one, so instead he 
considers the best equilibrium. This is equiv-
alent to having an information designer pick 
an information structure to minimize the 
efficiency of trade anticipating that the buyer 
and seller will play an equilibrium that max-
imizes efficiency (i.e., maximizes the gains 
from trade).

Second, Inostroza and Pavan (2017) con-
sider global game models of regime change 
and the problem of an information designer 
trying to minimize the probability of regime 
change (they are motivated by the design of 
stress tests to minimize the probability of a 
run on a bank). What information should the 
information designer send—as a function of 
the state and players’ initial information—to 
minimize the probability of a run? They call 
this scenario “discriminatory” because the 
information designer can condition on play-
ers’ prior information. As in Carroll’s bilateral 
trade problem, the problem is not interest-
ing if the designer is able to pick the equi-
librium as well as the information structure: 
in this case, he can prevent the possibility 

22  Of course, the minmax problem  min  
C
      max  

b∈E (C) 
    V   ∗  (C, b)  is 

a reinterpretation of a maxmin problem where the objec-
tive is replaced by −  V   ∗  (C, b) . The minmin problem is sim-
ilarly a reinterpretation of the maxmax problem.   

of inefficient outcomes by creating common 
knowledge of payoffs and picking the good 
equilibrium. To make the problem interest-
ing, they then study the maxmin problem.

Finally, a literature on robustness to 
incomplete information (Kajii and Morris 
1997) can be understood as an information 
design problem with adversarial equilibrium 
selection. We will give an example to illus-
trate this connection.23 We will consider a 
slightly adapted version of the incomplete 
information investment game discussed ear-
lier with payoffs: 

θ = B invest not invest

invest x, x −1, 0 ,

not invest 0, −1 0, 0

θ = G invest not invest

invest x, x x, 0 ,

not invest 0, −1 0, 0

for some  0 < x < 1 , and the probability 
of state  G  is  ε , and  ε  is small. Assume that 
the prior information is that player  1  knows 
the state and player  2  knows nothing. Thus, 
player  1  has a dominant strategy to invest in 
state  G , while there are multiple equilibria 
in the complete information game corre-
sponding to state  B . In this setting, we can 
study the standard information design (with 
prior information) described above. Suppose 
that the information designer wants to max-
imize the probability that at least one player 
invests. Maintaining the assumption that 
the designer can pick the equilibrium, the 
answer is trivial: the information designer 
can simply give the players no additional 

23 See also Hoshino (2017) on this connection. 
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information and there will be an equilibrium 
where players always invest.

But what if the information designer 
anticipated that the worst equilibrium would 
be played? This is information design with 
adversarial equilibrium selection. What 
information structure would the informa-
tion designer choose and what would be the 
induced probability that at least one player 
invests? It is convenient and more transpar-
ent to the describe information structures 
using the language of  partitions .

Consider the information structure defined 
by a set  Ω =  {1, 2, … , ∞}   where player  1  
observes an element of the partition: 

   ( {1} ,  {2, 3} ,  {4, 5} , … ,  {∞} ) , 

and player  2  observes an element of the 
partition: 

   ( {1, 2} ,  {3, 4} , … ,  {∞} ) . 

Thus, an element of the partition now con-
stitutes a signal realization. Let payoffs be 
given as defined by the payoff state  θ = G  
if 1 ∈ σ is realized and by the payoff state  
θ = B  everywhere else. For some  q ∈  (  1 _ 2   , 1)  , 
let the probability of state  ω ≠ ∞  be  

ε   (  
1 − q

 ____ q  )    
ω
   and so the probability of state  

∞  is  1 −   
q
 _____ 2q − 1   ε  (if  ε  is sufficiently small). 

This information structure could arise from 
the prior information described above (only 
player  1  can distinguish between states  
B  and  G ) and communicating additional 
information. Now suppose that  q >   1 ____ 1 + x   
; this condition implies that a player assign-
ing probability  q  to the other player invest-
ing will always have a strict incentive to 
invest. Following the induction argument 
of Rubinstein (1989), invest is the unique 
rationalizable action for both players at all 
states  ω ≠ ∞ . To see this, observe that at 
state  1 , player  1  has a dominant strategy 

to invest. Now player  2 , with information 
set   {1, 2}  , must have a best response to invest, 
since he attaches probability  q  to player  1  
investing. Now suppose that we have estab-
lished that both players are investing at 
information sets of the form   {ω, ω + 1}   if 
 ω ≤ k . Now consider the player with infor-
mation set   {k + 1, k + 2}  . He attaches 
probability  q  to the other player being at 
information set   {k, k + 1}   and therefore 
investing. So the player with information set   
{k + 1, k + 2}   will invest. This argument 
establishes that it is possible to ensure that—
if  ε  is sufficiently small—both players invest 
with probability    

q
 _____ 2q − 1   ε . Since this is true for 

any  q >   1 ____ 1 + x   , it implies that it is possible to 
get both players to invest with probability 
arbitrarily close to 

    
1/ (1 + x)  ___________  

2 / (1 + x)  − 1
   ε =   1 _ 

1 − x
   ε. 

The information structure we used to get 
arbitrarily close to this bound was (count-
ably) infinite, but we can also get arbitrarily 
close using finite information structures 
as shown in Kajii and Morris (1997). Now, 
arguments from Kajii and Morris (1997) 
imply that this information structure is (arbi-
trarily close to) optimal for the information 
designer in this problem. To get a flavor of 
the argument, say that a player  p -believes 
an event if he attaches probability at least  
p  to the event occurring, and that there is 
common  p -belief of that event if each player 
 p -believes it, each player  p -believes that 
both  p -believe it, and so on. One can 
show that not invest is rationalizable only 
if there is common    x ____ 1 + x    - belief that pay-
offs  correspond to state  B . But since  
x < 1 , it follows that    x ____ 1 + x   >   1 _ 2    and one 
can show that if the event that  payoffs 
are given by state  B  has probability at 
least  1 − ε , then—for sufficiently small 
 ε —the ex ante probability that there is 
 common    x ____ 1 + x     -belief that the state is  B  is 
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at least  1 −   1 ____ 1 − x   ε . This establishes that the 

bound is tight. If  x > 1 , similar arguments 
can be used to show that the information 
designer can ensure that both players invest 
with probability  1 .

Arguments from Kajii and Morris (1997) 
and the follow-up literature (Ui 2001 and 
Morris and Ui 2005) can be used to analyze 
maxmin payoffs more generally when—as in 
the above example—the incomplete informa-
tion game has each player either knowing that 
payoffs are given by a fixed complete informa-
tion game or having a dominant strategy.

It is worth emphasizing that the above 
definition of the maxmin problem, and all  
three applications, correspond to the omni-
scient case where the information designer 
can condition on players’ prior information as 
well as on the state. An alternative case that 
has been studied is when the information 
designer can only send public signals and only 
condition on the state (and not players’ prior 
information). Goldstein and Huang (2016) 
and Inostroza and Pavan (2017) have studied 
this problem in global game models of regime 
change. (Inostroza and Pavan 2017 call this 
the  nondiscriminatory case, to contrast with 
the discriminatory case described previously.) 
This case can be illustrated by our example 
above. An information designer interested in 
maximizing the probability of both investing 
would send a public signal to invest always if 
the state was good and with probability    ε ____ 1 − ε   x  
if the state was bad. This would make player 2 
indifferent between investing and not invest-
ing if he got the “invest” signal.

7.2 Adversarial Mechanism Selection

We considered an information designer 
who was choosing additional information 
for the players, holding fixed the basic game 
and players’ prior information. But what 
if the information designer had to pick the 
information structure not knowing what the 

basic game, or mechanism, was going to 
be? In particular, suppose that the choice of 
mechanism was adversarial. Again, we will 
lose the revelation principle. Once the infor-
mation designer has picked the information 
structure (and thus the set of signals), the 
adversarial mechanism designer could pick a 
mechanism with a different set of messages.

Bergemann, Brooks, and Morris (2016) 
consider the problem of an information 
designer picking an information structure 
for a set of players with a common value of 
an object to minimize revenue, anticipat-
ing that an adversarial mechanism designer 
will then pick a mechanism to maximize 
revenue (a minmax problem). This gives an 
upper bound on the revenue of the seller 
of a single object who is picking a mecha-
nism anticipating that the worst information 
structure will be chosen (a maxmin prob-
lem). Du (2018) constructs elegant bounds 
for the latter problem and shows that these 
bounds are sharp in the limit as the number 
of bidders increases. The former establishes 
the equivalence between minmax and max-
min exactly when there are two bidders and 
when the support of the value is binary, and 
the latter solves the auction design problem 
in the limit when the number of bidders goes 
to infinity. In a recent paper, Brooks and Du 
(2018) provide a general solution to the com-
mon value auction problem with a general 
common prior and a finite number of bid-
ders. Both problems are studied without the 
common prior assumption by Chung and Ely 
(2007).

8. Conclusion

We have provided a unified perspec-
tive for a rapidly expanding literature on 
Bayesian persuasion and information design. 
In contrast with the recent literature on 
Bayesian persuasion that is concerned with 
a single player (receiver), we emphasized 
the implications of information design for 
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 many-player strategic environments. We 
presented a two-step approach to informa-
tion design: first identify the set of outcomes 
that are attainable under some information 
structure, then identify the optimal informa-
tion structure. We have described the close 
connection between the information design 
problem and the earlier literature on cor-
related equilibrium with incomplete infor-
mation; but whereas players are receiving 
real payoff-relevant information in the infor-
mation design problem, in the older cor-
related equilibrium literature, the designer 
(mediator) was merely providing correlating 
devices.

We have focused on a pure version of the 
static information design problem where the 
designer has no ability to control outcomes. 
But—as argued in Myerson (1982) and 
Myerson (1987) and discussed in section 6.3—
there are settings where a designer can con-
trol some outcomes (as a function of players’ 
messages), but cannot control others and then 
can only use information to influence the out-
comes outside her control. In other settings, 
the principal may be able to jointly choose the 
mechanism and the information structures. 
For example, Bergemann and Pesendorfer 
(2007) consider the optimal design of infor-
mation structure and auction format in an 
independent private value environment. 
More recently, Daskalakis, Papadimitriou, 
and Tzamos (2016) solve for the optimal 
auction and information structure when the 
seller and the bidders each have some private 
information about the valuation of the object. 
Their analysis is motivated by online advertis-
ing auctions, where the  two-way information 
asymmetry among seller and bidder is a cen-
tral feature of the environment.

As one moves into dynamic settings, 
an overlap between the tools of informa-
tion design and mechanism design more 
 generally become more central. A specific 
setting where the tools of mechanism design 
and information design have recently been 

studied in conjunction is the area of mar-
kets with resale. Here, the information that 
is disclosed in the first stage fundamentally 
affects the interaction in the resale mar-
ket, see for example Calzolari and Pavan 
(2006); Dworczak (2017); Carroll and Segal 
(forthcoming); and Bergemann, Brooks, and 
Morris (2017b).

The information design problem—
whether literal or metaphorical—identifies 
a mapping from the economic environment 
to possible outcomes, allowing for different 
choices of information structures. There is 
a second, reverse use of information design 
for robust identification, identifying a map-
ping from outcomes to possible parameters 
of the economic environment, allowing that 
different information structures might have 
generated the data.24 For example, in an auc-
tion setting, one might consider a sample of 
bids from a sequence (or  cross-section) of 
independent auctions. We can then ask what 
we can infer about the underlying distribu-
tion of valuations under weak assumptions 
on the information structure, that is without 
assuming a specific information structure. 
Syrgkanis, Tamer, and Ziani (2017) pursue 
such an approach for inference and identi-
fication in an auction setting. Magnolfi and 
Roncoroni (2017) adopt a similar perspective 
in the analysis of discrete games, in particu-
lar entry and exit games.

Many interesting avenues remain open in 
information design. There are many open 
methodological questions. The concavifica-
tion approach has been very influential in the 
single-player (receiver) setting, so it is natural 
to ask if it can be as useful in the many-player 
setting. In both the linear programming and 
the concavification approach, the optimal 
information structure is identified by a global 
optimization problem. It might be insight-
ful to find a more local approach that could 

24 This reverse use is exposited in Bergemann and 
Morris (2013b). 
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identify the direction of valuable information 
provision. We briefly mentioned a number 
of applications of information design in the 
introduction. Digital information is becoming 
widely used in the allocation and distribution 
of services and commodities, as in traffic nav-
igation apps such as Waze or Google Maps, 
recommender systems used by Netflix and 

Appendix

Additional Computation for Section 3.2

We observed in section 3.1 that, absent any additional information beyond the common 
prior, the firm does not invest. For any additional private information of the firm to change the 
“default” behavior, it has to be that the firm is investing after receiving the good signal, or that

(28)  qx +  (1 − q)  (− 1)  ≥ 0 ⇔ x ≥   
1 − q

 _ q   ⇔ q ≥   1 _ 
1 + x

   . 

In other words, the information has to be sufficiently precise—thus  q  sufficiently large—to 
induce a change in the behavior.

Conditional on being type  g,  the firm will have an incentive to invest (when told to invest) 
under  p =  ( p Bb  ,  p Bg  ,  p Gb  ,  p Gg  )   if 

(29)  −   1 _ 
2
   (1 − q)   p Bg   +   1 _ 

2
   q p Gg   x ≥ 0 ⇔  p Gg   ≥   

1 − q
 _ q     
 p Bg   _ x   ,  

and an incentive to not invest (when told to not invest) if 

(30)  0 ≥ −   1 _ 
2
   (1 − q)  (1 −  p Bg  )  +   1 _ 

2
   q (1 −  p Gg  )  x ⇔  p Gg   ≥   

1 − q
 _ q     
 p Bg   _ x   + 1 −   

1 − q
 _ q     1 _ x   . 

A similar pair of incentive constraints apply to the recommendations conditional on being type  
b .

As long as the private information of the firm is sufficiently noisy, or  q ≤ 1/ (1 + x)  , the 
binding constraint is (29) as in the uninformed case; otherwise it is the inequality (30) that 
determines the conditional probabilities. The obedience conditions for the firm observing a 
bad type  b  are derived in an analogous manner. The obedience conditions are defined type 
by type, and we compute the restrictions on the conditional probabilities averaged across 
types. Now the decision rule   ( p Bb   ,  p Bg   ,  p Gb   ,  p Gg  )   will induce behavior   ( p B   ,  p G  )   integrating 
over types  t ∈  {b, g}  .

Amazon, or service platforms such as Uber 
or OpenTable. This suggests that information 
design will naturally be part of the solution 
of a large class of allocation problems. To the 
extent that the relevant information is arriv-
ing sequentially and improving over time, the 
resulting models will likely incorporate and 
address dynamic aspects.
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Additional Results for Section 6.2

For a given Bayesian game  (G, S) , let E (G, S) , respectively, NE (G, S) , denote the set of deci-
sion rules that can be attained with and without elicitation, respectively.

PROPOSITION 5: For each  (G, S) , we have 

  NE(G, S)  ⊆ E(G, S). 

PROOF: 
Let  σ ∈   NE  (G, S) , and let ϕ be an obedient contingent recommendation that induces  σ . To 

show that  σ ∈ E(G, S) , we will verify that  σ  is incentive compatible.
Fix player  i , types   t i  ,  t  i  ′   ∈  T i   , and a function   δ i   :  A i   →  A i   . For each strategy   b i   ∈  B i   , take   

a  i  ′   =  δ i   ( b i   ( t  i  ′   ))  in player  i ’s  ( t i  ,  b i   )  publicly feasible obedience constraint. Then sum the result-
ing inequalities over   b i   ∈  B i   . After regrouping the summation, we have 

      ∑ 
 t −i  ∈ T −i  , θ∈Θ

    (  ∑ 
( b i  ,  b −i  )∈B

     u i   (( b i   ( t i  ),  b −i   ( t −i   )), θ)  ϕ(( b i  ,  b −i  ) | θ))  π( t i  ,  t −i   |θ) ψ(θ)

   ≥   ∑ 
 t −i  ∈ T −i  , θ∈Θ

    (  ∑ 
( b i  ,  b −i  )∈B

     u i   (( δ i   ( b i   ( t  i  ′ )),  b −i   ( t −i  )), θ)  ϕ(( b i  ,  b −i  ) | θ))  π( t i  ,  t −i   |θ) ψ(θ). 

We focus on the term in parentheses on each line. In the first line, group the summation 
according to the value of  ( b i   ( t i   ),  b −i   ( t −i   ))  and use the fact that ϕ induces  σ  to obtain 

    ∑ 
( a i  ,  a −i  )∈A

     u i   (( a i  ,  a −i   ), θ) σ(( a i  ,  a −i  )  | ( t i  ,  t −i  ), θ). 

In the second line, group the summation according to the value of  ( b i   ( t  i  ′   ),  b −i   ( t −i   ))  and use the 
fact that ϕ induces  σ  to obtain 

    ∑ 
( a i  ,  a −i  )∈A

     u i   (( δ i   ( a i  ),  a −i  ), θ) σ(( a i  ,  a −i  ) | ( t  i  ′   ,  t −i   ), θ). 

Substituting these expressions into the inequality gives player  i ’s type-  t i    incentive constraint 
with deviation   t  i  ′   ,  δ i   . Since  i,  t i  ,  t  i  ′   ,  δ i    are all arbitrary, the proof is complete. ∎

PROPOSITION 6: Let  (G, S)  be a Bayesian game with  I = 1 . If  |A |  = 2  and  |Θ |  = 2 , then 

  NE(G, S) = E(G, S). 

PROOF:
By proposition 5, it suffices to prove  NE  (G, S ) ⊇ E(G, S) . First, we simplify the nota-

tion. Label the states and actions so that  Θ = {G, B}  and  A = {0, 1} . If either action is weakly  
dominant, the desired result can be verified by directly computing  NE  (G, S)  and  E(G, S) .  
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Therefore, we assume  u(1, G )  − u(0, G)  and  u(1, B )  − u(0, B)  are each nonzero and 
have  opposite signs. Then without loss, we may assume the payoffs take the form  
u(0, G) = u(0, B) = 0 ,  u(1, B) = − 1 , and  u(1, G) = x > 0 .25 Action  1  can be interpreted 
as investment. We will represent a decision rule  σ  by a vector  p =  (  p θt   ) (θ, t)∈Θ×T   , where   
p θt   = σ(1 | θ, t) . For each signal  t ∈ T , let 

  q(t )  =   
ψ(G ) π(t | G)

 ___________ π(t)
   , 

where  π(t )  = ψ(G ) π(t | G )  + ψ(B ) π(t | B ) > 0  by assumption.
Let  p = (  p θt   )  ∈ E(G, S) . To show that  p ∈   NE  (G, S) , we will explicitly construct an 

obedient contingent recommendation ϕ that induces  p . Let  t,  t ′   ∈ T  and set  q = q(t)  and   
q ′   = q( t ′  ) . Since  p  satisfies the truth-telling constraint, 

  q p Gt   x − (1 − q)  p Bt    ≥ q p G t ′     x − (1 − q)  p B t ′     ,

  q ′    p G t ′     x − (1 −  q ′  )  p B t ′      ≥  q ′    p Gt   x − (1 −  q ′  )  p Bt   . 

Taking  (1 −  q ′  , 1 − q)  and  ( q ′  , q)  linear combinations of these two inequalities respectively 
yields 

  (q −  q ′  ) (  p Gt   −  p G t ′     ) x ≥ 0 and (q −  q ′  ) (  p Bt   −  p B t ′     ) ≥ 0. 

So  q(t ) < q( t ′  )  implies   p θt   ≤  p θ t ′      for  θ ∈ {G, B} . In the case  q =  q ′   , both inequalities must 
hold with equality so 

  q(  p Gt   −  p G t ′     )x = (1 − q ) (  p Bt   −  p B t ′     ), 

and hence   p Gt   ≥  p G t ′      if and only if   p Bt   ≥  p B t ′     . Therefore, we can label the signals   t 1  , …,  t n    
so that 

(31)  q(  t 1   )  ≤ ⋯ ≤ q(  t n   ) and  p θ t 1     ≤ ⋯ ≤  p θ t n     for θ = B, G. 

To simplify notation, define   q l   = q(  t l   )  for each  l = 1, …, n ; set   p θ t 0     = 0  and   p θ t n+1     = 1  for 
all  θ . For each  k = 1, …, n + 1 , define the cutoff strategy   b   k   by 

   b   k  (  t l   )  =  { 1 if l ≥ k  
0 otherwise.

   

25 First, swap the labels  G  and  B  if needed to obtain  u(1, G ) − u(0, G ) > 0 . Then rescale the utility function so that  
u(1, G ) − u(0, G ) = 1 . Finally, translate the functions  u( ⋅ , G)  and  u( ⋅ , B)  separately so that  u(0, G ) = u(0, B ) = 0 . The 
separate translations may change the agent’s preferences over states but not over actions. 
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In particular,   b   1   is unconditional investment and   b   n+1   is unconditional  non-investment. Define 
the stochastic contingent recommendation  ϕ :  Θ → Δ(B)  by 

      ϕ(b | θ )  =  {  p θ t k     −  p θ t k−1       if b =  b   k   for some k = 1, …, n + 1      
0
  

otherwise.
    

By (31),   p θ t k     −  p θ t k−1     ≥ 0 , so  ϕ( ⋅ |θ)  is a probability distribution for each  θ ∈ {G, B} . It is easy 
to check that  ϕ  induces the decision rule  p .

To complete the proof, we verify that  ϕ  is obedient. For each  l = 1, …, n  and 
 k = 1, …, n + 1 , type   t l   ’s expected utility from investing if and only if being recommended   
b   k   is: 

   U l|k   =  q l   (  p G t k     −  p G t k−1     ) x − (1 −  q l   )(  p B t k     −  p B t k−1     ) . 

Since both expressions in parentheses are nonnegative,   U l|k    is weakly increasing in  l . Therefore, 
for types   t l    with  l ≥ k , 

   U l|k   ≥  U k|k   =  ( q k    p G t k     x − (1 −  q k   )  p B t k    )  −  ( q k    p G t k−1     x − (1 −  q k   )  p B t k−1    )  ≥ 0, 

where the last inequality holds by  truth telling for  k > 1  and obedience for  k = 1 . Similarly, 
for types   t l    with  l < k , 

   U l|k   ≤  U k−1|k   =  ( q k−1    p G t k     x − (1 −  q k−1   )  p B t k    )  −  ( q k−1    p G t k−1     x − (1 −  q k−1   )  p B t k−1    )  ≤ 0. 

The last two inequalities establish the obedience of  ϕ , so the proof is complete. ∎

Now we return to the main problem of finding  (  p Bb   ,  p Bg   ,  p Gb   ,  p Gg   ) . To compare these deci-
sion rules to the benchmark, we will ultimately integrate over the signals to compute the prob-
ability of investment in each state. Formally, 

  (  p Bb   ,  p Bg   ,  p Gb   ,  p Gg   ) →  ((1 − q)  p Bg   + q p Bb   , q p Gg   + (1 − q)  p Gb  ) . 

With an informed receiver, the omniscient designer faces four obedience constraints: 

(32a)   Δ  g  1   ≜ q p Gg   x − (1 − q)  p Bg   −  (q  p Gg   y −   
1 − q

 _ 
2
    p Bg  )  ≥ 0, 

(32b)  Δ  b  1    ≜ (1 − q)  p Gb   x − q p Bb   −  ((1 − q)  p Gb   y −   
q

 _ 
2
    p Bb  )  ≥ 0,

(32c)  Δ  g  0   ≜ q(1 −  p Gg   ) y −   
1 − q

 _ 
2
   (1 −  p Bg   )  ≤ 0,

(32d)  Δ  b  0    ≜ (1 − q )(1 −  p Gb   ) y −   
q

 _ 
2
   (1 −  p Bb   )  ≤ 0. 
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More precisely,   Δ  t  
1   denotes the difference in type  t ’s utility between investing large and small 

when told to invest large and   Δ  t  
0   denotes the difference in type  t ’s utility between investing 

small and not investing when told not to invest. We thus have only ruled out profitable truth-
ful deviations to the small investment, but it can be shown that this implies that there are no 
profitable truthful deviations to not invest or to invest large. An information designer with 
elicitation faces four additional constraints ruling out  non-truthful deviations: 

(33a)  q p Gg   x − (1 − q)  p Bg    ≥ q p Gb   x − (1 − q)  p Bb   , 

(33b) q p Gg   x − (1 − q)  p Bg    ≥ q(  p Gb   x + (1 −  p Gb   ) y )  − (1 − q)   
1 +  p Bb  

 _ 
2
   ,

(33c) (1 − q)  p Gb   x − q p Bb    ≥ (1 − q)  p Gg   x − q p Bg   ,

(33d) (1 − q)  p Gb   x − q p Bb    ≥ (1 − q)  p Gg   y −   
q

 _ 
2
    p Bg   . 

Again, it is sufficient to consider a smaller class of deviations because the high type finds 
investment more attractive than the low type does. Formally,  E(G, S)  is the set of  p ∈  [0, 1]   4   
satisfying (32a)–(33d).

Now we determine the additional constraints faced by an information designer without 
elicitation. Since there are only two signals, we may represent each strategy  b :  T → A  as an 
ordered pair  (b(g ) , b(b )) ∈  A   2  . (In the second component, the letter  b  is used in two differ-
ent ways, to denote a strategy and a signal.) The strategy  b = ( not invest ,  invest )  can never 
be obedient for both types, so for any  p ∈     NE  (G, S) , there is only one candidate  ϕ , namely 

  ϕ((0, 0 )  | θ )  = 1 −  p θg   ,

 ϕ((0, 1 )  | θ )  = 0,

 ϕ((1, 0 )  | θ )  =  p θg   −  p θb   ,

 ϕ((1, 1 )  | θ )  =  p θb   , 

for each  θ ∈ {B, G} . A designer without elicitation faces two additional obedience constraints, 
which prevent deviations following the recommendation  ( invest ,  not invest ) : 

(34a)   q(  p Gg   −  p Gb   ) x − (1 − q ) (  p Bg   −  p Bb   )  ≥ q(  p Gg   −  p Gb   ) y −   
1 − q

 _ 
2
   (  p Bg   −  p Bb   ) , 

(34b)  (1 − q ) (  p Gg   −  p Gb   ) y −   
q

 _ 
2
   (  p Bg   −  p Bb   )  ≤ 0. 

Formally,  NE  (G, S)  is the set of decision rules in  E(G, S)  satisfying (34a) and (34b).
After some algebra, we can see that (34a) is equivalent to 

(35)   Δ  g  1  ≥  Δ  b  1   +  p Gb   (2q − 1 )(x − y )  +  p Bb   (2q − 1 )/2. 
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When  p  puts positive probability on investing after a bad signal, (35) eliminates decision rules 
for which (32a) has little slack. Similarly, (34b) is equivalent to 

(36)   Δ  b  0   ≤  Δ  g  0  − (1 −  p Gg   ) (2q − 1 ) y − (1 −  p Bg   )(2q − 1 )/ 2. 

When  p  puts positive probability on not investing after a good signal, (36) eliminates decision 
rules for which (32d) does not have too much slack.

EXAMPLE 1 (Two Agents): Suppose  I = 2  ,   Θ = {B, G}  ,    A 1   =  A 2   =  {invest ,  not invest} ,   
and   u i   ( a i   ,  a −i   , θ )  = u(  a i   , θ)  with  u  as in the opening example given by (5). Each player  i  
receives a conditionally independent signal   t i   ∈ {g, b}  that is correct with probability   q i   > 1 / 2 .  
Suppose   q 1   >  q 2    ,  so that player  1  receives a more accurate signal. Consider the following deci-
sion rule: both players invest if player  1 ’s signal is good and neither agent invests if player  1 ’s  
signal is bad. For  x  sufficiently near one, this decision rule is incentive compatible. However, 
it is not even publicly feasible because following any contingent recommendation, player  2 ’s 
choice of action will depend on her own signal, not on player  1 ’s.

EXAMPLE 2 (Three States): Consider the single player, single investment setting of the open-
ing example given by (5), but now split the bad state into two bad states   B 1    and   B 2    ,  each with 
prior probability  1/4  and the same payoffs as in state  B  of the original example. Suppose the 
agents receive a completely uninformative binary signal  t  taking values   t 1    and   t 2    with equal 
probability. Consider the following decision rule: type   t i    invests precisely in states  G  and   B i   .  
For  x ∈ (1/2, 1) , this decision rule is incentive compatible. It is uniquely induced by recom-
mending  (b(  t 1   ) , b(  t 2   ))  = ( invest ,  invest )  in state  G ;  (b( t 1   ), b( t 2  )) = ( invest ,  not invest )  in 
state   B 1   ; and  (b( t 1  ), b( t 2  )) = ( not invest ,  invest )  in state   B 2   . However, this contingent recom-
mendation perfectly reveals the state of the world, so the agent can profitably deviate to his 
 first-best strategy of investing if and only if the state is  G . Therefore, the decision rule is not 
publicly feasible obedient.
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