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Abstract

When actions by one agent force another to deviate from their agreements with a third, “victim” turns

into “injurer” in the chain’s subsequent steps. Should the chain’s initiator be responsible only for the direct

harm they cause or also bear some of the indirect losses they trigger? Through an axiomatic approach, we

characterize the class of fixed-fraction rules, which strike a balance between incentives for accident prevention

on the one hand and fairness in terms of how liabilities are assigned on the other. Their simple design make

the rules ideal for practical implementation through smart contracts, enabling automated conflict resolution.

Keywords: Sequential losses, fair allocation, smart contracts, cost allocation

JEL: K12, C7, D6

1. Introduction

Frequently, agents’ actions initiate sequences of unanticipated events that affect other agents. For instance,

suppose a construction company made mistakes when building a housing complex which the current owner

now, years later, requires to be fixed. One of the tenants is a coffee shop. It seems intuitively appealing

that the construction company should cover the costs of its mistake, but what about the losses incurred

by the coffee shop due to reduced sales during the renovations? The construction company reckons that

its obligations are towards the owners of the housing complex only, while the owners, facing compensation

demands from the coffee shop, argue that there would be no losses whatsoever had the construction company
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(Chiu Yu Ko)



been thorough to begin with. In this paper, we take an axiomatic approach to identify solutions to this and

many other related disputes. We then show how the recent developments in blockchain technology provide

the tools necessary for automated conflict resolution without interference by a third party.

Model. We study a stylized model in which agents have made decentralized bilateral agreements on actions to

be taken. “Actions” are here interpreted quite broadly: in the example above, it could mean the construction

quality or the tenants’ renting conditions; in a supply chain, it could mean the delivery of an input at a

particular point in time. By “decentralized” we mean that agents only are aware of the agreements that they

themselves partake in. Hence, with a chain of agents 1, 2, . . . , agent 1 is only aware of the agreement with

agent 2; agent 2, on the other hand, knows also of the agreement with agent 3, and so on.

A problem now arises when the “initiator”, agent 1, fails their agreement with agent 2. This is a breach

of contract without which events would perhaps otherwise have transpired as planned. Once agent 1 fails to

meet 2’s requirements—say there is a flaw in the building construction or a delay in the supply chain—agent

2 no longer can satisfy the agreement with agent 3. In this way, agent 1’s deviation from their intended

action forces a deviation also by agent 2 (and later 3, 4, . . . ). These deviations lead to monetary losses. In

this way, the initially incurred loss `1, caused by agent 1 on agent 2, is further reinforced by externalities

triggered sequentially to other agents in a finite chain. Hence, it further causes a loss `2 to agent 3, `3 to

agent 4, and so forth. In what follows, we abstract away the specific reasons for the losses as well as any

efforts taken to prevent them. Indeed, in our interpretation, only the initiator is in position to prevent the

cascade of losses: once the first harm is caused, the others follow. Hence, it is less a question of “Who is to

blame?” but rather “How much liability should be assigned the initiator due to externalities unknown to

them from the outset?” While our point of entry is after a disruption has occurred, the solution we propose

is well-justified both in terms of how it fairly assigns liabilities and in terms of the incentives it induces for

accident prevention.

We seek a systematic way to resolve these disputes (a “rule”) that builds on normative foundations which

account for the sequential nature of the losses. Our main contribution singles out a parametric class of rules

in which each agent i pays a fixed fraction λ of the loss associated to her failed agreement with agent i+ 1

while the initiator, agent 1, covers the residual. Again, the unique role of agent 1 is due to 1’s actions being

the root cause for the loss chain. Every fraction λ corresponds to a different rule and the class of rules spans

from agent 1 being liable for all losses (λ = 0) to each agent being liable for the loss directly associated with

her (λ = 1). For the midpoint, λ = 1/2, the harm due to agent i’s breach of contract with agent i + 1 is

shared equally between the initiator and i. This compromise takes into account agent 1’s responsibility as
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the initiator as well as agent 1’s ignorance of the externalities/relations between the agents further down the

chain. It stresses that the loss inflicted by agent 1 is different from the other ones while the losses inflicted by

agent 2 through n all are of “the same type”: the initiator could have done something about the loss chain

(though this is not modelled); the others could not. In this sense, fixed-fraction rules balance fairness and

incentives: the initiator is incentivized to avoid starting the cascade by carrying the share 1−λ ≥ 0 of every

subsequent loss, but it is also acknowledged that the initiator does not control interdependencies further

down the chain by having the share λ ≥ 0 fall on the others. This type of rule has been studied extensively

in the particular case where a supplier and a manufacturer together produce a good sold to a consumer.

A “fixed share rate contract” then specifies that costs due to an “external failure”, say a defective product

requiring a costly recall (in our case, a loss experienced by the consumer), is shared between the supplier

and the manufacturer. These contracts have been shown to incentivize improved product quality (see, e.g.,

Chao et al., 2009, and references therein).

Results. The first main result, Theorem 1, shows that the fixed-fraction rules have a solid normative foun-

dation. Our point of departure is the well-known additivity axiom and an innocuous axiom dubbed zero

truncation, which states that trailing zeros can be truncated without impacting the liability assigned to the

remaining agents. Jointly, these two axioms allow us to restrict attention to so-called elementary problems,

which have a simple structure and clear interpretation. Specifically, Proposition 1 states that, for additive

rules that satisfy zero truncation, the solution to general loss problems can be found as the loss-weighted sum

of solutions to elementary problems. We therefore formulate our next two axioms on elementary problems.

The first of these is a version of the well-known population monotonicity axiom, stating that if more agents

(causing zero losses) are added to the elementary loss chain, then no original agent should be worse off

(as there now are more agents to shoulder the same loss). The final axiom, merging proofness, focuses on

incentives. It asserts that, in a three-agent elementary chain, neither the first and the second agent, nor the

second and third, should gain by internalizing their losses. Proposition 2 states that a population-monotonic

and merging-proof rule must coincide with a fixed-fraction rule on elementary problems. Theorem 1 is now

a direct consequence of Propositions 1 and 2 and thus characterizes fixed-fraction rules on general loss

problems.

Our second main result, Theorem 2, presents a fairness argument in favor of a specific member of the

class of fixed-fraction rules, namely the intermediate member ϕ1/2. This is done through a novel take on the

well-known principles of equal sacrifice and ideal points. For group decision problems, Yu (1973) identifies

the highest utility u∗i that an agent i can possibly obtain and then constructs the “utopia”/ideal point
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u∗ = (u∗1, . . . , u
∗
n). Typically u∗ is not in the feasible set, so a compromise has to be identified. In particular,

Yu suggests the point at minimum distance to the ideal point. For bargaining problems, Chun (1988) suggests

the solution that equalizes losses/sacrifices compared to the corresponding ideal point. In this way, this

approach entails finding one ideal point (outside the feasible set) with each coordinate representing one

agent’s ideal allocation, which then is used as a point of reference to “come close to”. The novelty in

Theorem 2 is to instead identify n ideal points (inside the feasible set), one for each agent, and then selecting

the compromise that is at equal (Euclidean) distance to them. In general, such a compromise need not

exist. However, Theorem 2 shows that, when losses are equal, `1 = · · · = `n, there is an allocation that is

equidistant to all ideal points, namely ϕ1/2(`).

Finally, our third main result, Theorem 3, presents a further argument in favor of ϕ1/2 as well as a way

to contrast it with the well-known serial rule. The serial rule holds agent 1 responsible for `1, shares the

responsibility of `2 between agents 1 and 2, and, in general, holds agents 1 through i equally responsible

for the loss `i that agent i causes.1 In many linear network structures, the serial rule coincides with the

Shapley value of an associated cooperative game (e.g. Littlechild and Owen, 1973; Gilles et al., 1992; Ni

and Wang, 2007). We find a corresponding result in Theorem 3: the intermediate fixed-fraction rule assigns

responsibility in a way that coincides with the Shapley value and the nucleolus of an associated liability

game. In particular, this game is an instance of a “big boss” game (Muto et al., 1988).

Contribution. We offer the following interpretation of our contribution. Given that real-life loss chains may be

very complex, it is arguably unlikely that one solution will be ideal in every circumstance. Indeed, high-valued

problems will presumably be settled, case by case, in court. Still, this resembles the extensive literature on

adjudicating conflicting claims (e.g. O’Neill, 1982; Thomson, 2019): even if there are unique aspects to every

bankruptcy case, there has arguably been significant value in a systematic search for universally appealing

properties. In this regard, our contribution then is to give a solid foundation for settling conflicts using

fixed-fraction rules.

It should also be noted that not all cases warrant lengthy negotiations and costly adjudications. Especially

in smaller-scale problems and situations that are always resolved in the same way (leaving no room for

negotiations), there is value in automated conflict resolution. For this purpose, in Section 5, we show how

to implement the fixed-fraction rules in practice through a smart contract running on a blockchain. Besides

1
In contrast, fixed-fraction rules center responsibility for `i on the agent causing the loss chain and the agent causing the

particular loss, namely agents 1 and i. In terms of Theorem 1, the serial rule fails merging proofness.
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their appealing fairness guarantees and the induced incentives to protect against contract breach, the rules

have a very simple structure. In smart contracts, every computation comes with a cost; the simple design of

the rules therefore help to further reduce transaction costs.

Literature review. Our study relates to several strands of literature. Economically optimal assignment of

liability has been analyzed within the law and economics literature at least since Coase (1960). This literature

studies agents’ (here injurers’ and victims’) incentives to prevent losses from occurring (e.g., Brown, 1973;

Marchand and Russell, 1973; Diamond and Mirrlees, 1975; Green, 1976; Emons and Sobel, 1991). A typical

aim of these studies is to analyze how different types of liability rules, in different economic environments,

affect socially optimal resource allocation in terms of accident avoidance. In particular, the main concerns

of liability rules are whether the injurer or the victim should be held responsible as well as whether, and

how, negligence on both sides should be taken into account (see e.g., Shavell, 1980; Landes and Posner, 1987;

Shavell, 2007).

In the context of incentives, our paper is also related to the literature on supply chain liability. Potentially

questionable behavior by an upstream producer in the supply chain can seriously affect downstream firms. It

is often observed that product liability is shared among supply chain members (Fan et al., 2020). For example,

in 2007, Sanyo and Lenovo shared the cost of recalling laptop batteries because of a faculty design by Sanyo.

As shown by Chao et al. (2009), product recall cost sharing can lead to improved product quality and

increased supply chain profits (see also, e.g., Balachandran and Radhakrishnan, 2005; Lim, 2001; Reyniers

and Tapiero, 1995a,b).

But our focus is broader than just incentives. We want to balance incentives with distributional fairness,

which places our contribution squarely into the literature on fair division (see e.g., Moulin, 1988, 2004;

Thomson, 2016). There is a large literature on cost allocation in networks (surveyed in Hougaard, 2018),

a considerable share focused on chain structures. This includes the airport problem (Littlechild and Owen,

1973), river sharing (Ambec and Sprumont, 2002; Ni and Wang, 2007), games with permission structures

(Gilles et al., 1992), peer-group games (Brânzei et al., 2002), and revenue sharing in hierarchies (Hougaard

et al., 2017). While similar in terms of mathematical structure, there are important conceptual differences

between our framework and this literature. This is nicely illustrated by comparing with the model of Dehez

and Ferey (2013), as we will do next.

Dehez and Ferey (2013) also analyze liability sharing using cooperative game theory, but with a different

interpretation. In Dehez and Ferey (2013), a sequence of agents cause injury to a lone victim; in our model,

each intermediate agent takes on both the role as injurer and victim. This leads to a difference in the
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cooperative games that best capture the problems: while we in Subsection 4.2 derive an instance of a “big

boss” game, Dehez and Ferey (2013) study a dual airport problem. When applying the Shapley value, this

difference leads them to a variation on the serial rule and us to the intermediate fixed-fraction rule. However,

the serial rule is less appealing in our case due to the special role of intermediate agents. Oishi et al. (2022)

generalize the linear structure of Dehez and Ferey (2013) to “rooted trees” in which an agent can harm

multiple agents. They consider a different cooperative game (akin to a game with conjunctive permission

structure, see Gilles et al., 1992) and axiomatically characterize the nucleolus on this class of games. Recently,

Juarez et al. (2018) also analyze a model of sharing sequentially generated values but their focus is on how to

select a value-generating path within a network as well as how to share value along the path. Hougaard et al.

(2022) consider optimal reallocation of generated values in an evolving chain structure where agents, contrary

to our case, exert individual efforts in sequentially extending a value-generating process with random success.

Moreover, our axiomatic approach, that involves conditioning the liabilities on the different characteristics

the agents have (distinguishing the initiator from the others), resembles that taken by Gimènez-Gòmez

and Osòrio (2015) in the context of bankruptcy problems. In addition, Proposition 1, which shows that

the solution to general loss problems can be found as the loss-weighted sum of solutions to elementary

problems, provides an alternative interpretation along the lines of recent sequential approaches taken in the

claims literature (see e.g. Estévez-Fernández et al., 2021; Sanchez-Soriano, 2021). However, it is important to

emphasize that despite a certain structural resemblance at first glance, our problem is qualitatively different

from a standard bankruptcy problem, and sequential versions of it, due to the intricate externalities between

the agents.

As already indicated, our model has potential applications in many fields. For instance, this includes

contagion in financial networks (e.g., Elliott et al., 2014; Acemoglu et al., 2015; Demange, 2018; Csoka and

Herings, 2018). Typically, these papers study how network topology influences cascades of failures among

interdependent financial organizations based on a general liability matrix. We also study cascades through

interdependency but in the simple linear structure of a chain of inflicted losses. Like Csoka and Herings (2018),

we focus on the outcome of cascades in terms of payments and agents claims on each other. A somewhat

similar type of application concerns rare events and their contagion effect among countries in dynamic global

game model as in Chen and Suen (2016). Another application relates to environmental, social and corporate

governance (ESG) in supply chains. As consumers and investors become more socially conscious, they hold

more favorable views for companies with good ESG (Servaes and Tamayo, 2013; Albuquerque et al., 2019).

One notable example is the boycott of Nestlé in 2010. One of their suppliers, Sinar Mas, cut down the
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rainforest to increase farmland for palm oil. While Nestlé is not directly responsible for the unsustainable

conduct, consumers still hold the focal firm accountable (Hartmann and Moeller, 2014). Beyond economic

consequences directly from the market, recent court cases suggest that there are also legal consequences

for a downstream firm from an upstream firm’s behavior, sometimes referred to as “supply chain liability”

(Terwindt et al., 2017; Ulfbeck and Ehlers, 2019).

Outline. The paper is structured as follows. In Section 2, we introduce the model. The axiomatic analysis

and the characterization of the fixed-fraction rules are in Section 3. In Section 4, we provide two further

arguments in favor of the midpoint among the fixed-fraction rules. In Section 5, we show how to implement

our suggested rules through smart contracts. We close with a discussion of model extensions in Section 6.

Proofs and technical details are postponed to the Appendix.

2. Model

In this section, we introduce our model of sequentially triggered losses with interdependencies following a

chain structure. Let N = {1, . . . , n} be the set of agents, representing a loss chain in which agent 1 initiates

the chain and agents 2 through n − 1 are “intermediate” agents. Agent n is the final agent: the loss she

causes to agent n + 1 triggers no further losses. An n-loss problem is a vector ` = (`1, . . . , `n) in which

agent i causes loss `i ≥ 0 to agent i+ 1. Let Ln ≡ Rn≥0 denote the set of loss vectors of length n.

An allocation x = (x1, . . . , xn) specifies each agent i’s liability xi ≥ 0 and is such that x1 ≥ `1,

x1 + x2 ≥ `1 + `2, . . . , x1 + · · · + xn−1 ≥ `1 + · · · + `n−1, and x1 + · · · + xn = `1 + · · · + `n ≡ L. That

is, agents “later in the chain” bear no responsibility for losses caused by “earlier” agents and there is a

balance between liabilities
∑
xi and losses

∑
`i. Let X(`) denote the set of allocations. A rule ϕ maps to

each problem ` ∈ Ln an allocation ϕ(`) = (ϕ1(`), . . . , ϕn(`)) ∈ X(`).2 Throughout, we restrict attention to

continuous rules.3

We will devise rules that build on the notion of strict liability—that an injurer is responsible for the

losses she causes—from the literature on law and economics (Shavell, 2007). Here, in particular, agent n+ 1

incurs a loss but causes none. Therefore, we take as given that she is free of liability and leave her out of

the analysis. For the other agents, however, strict liability leaves open many interpretations: is for instance

2
As will become apparent, the number of agents may vary. Strictly speaking, we therefore assume that there is an infinite

set of potential agents out of which N is a generic finite subset.
3
In particular, we invoke a minimal version of continuity that applies only to proportional loss changes. A rule ϕ is assumed

to be such that, for each n ∈ N and ` ∈ Ln
, lima→1 ϕ(a`) = lima→1 ϕ(a`1, . . . , a`n) = ϕ(`).
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the initiator liable only for the direct loss she causes or also for parts of the indirect losses triggered further

down the chain? Taken to their respective extremes, these interpretations lead us in two opposite directions.

On the one hand, the direct liability rule ϕ1 assigns full liability to each agent for the loss associated to

her, ϕ1(`) = `. On the other, if an agent can shift blame for the loss on those who appear before her in the

loss chain, then responsibility ultimately falls squarely on the initiator. This is the indirect liability rule

ϕ0 for which ϕ0(`) = (L, 0, . . . , 0).4

3. Fixed-fraction rules

In this section, we characterize the class of fixed-fraction rules, which can be viewed as compromises

between ϕ0 and ϕ1. Each member of the class is associated with a parameter λ. In particular, every agent

i is held accountable for the fraction λ of the loss experienced by agent i + 1. Agent 1, whose actions are

the root cause as they initiated the loss chain, holds a special position and is held liable for the residual

(1−λ)L. To ensure non-negative liabilities, the solutions are defined only for λ ∈ [0, 1]. For λ = 1, we obtain

the direct liability rule; for λ = 0, we obtain the indirect liability rule.5 Formally,

Definition 1 (The fixed-fraction rule parameterized by λ). For each ` ∈ Ln,

ϕλ1 (`) = λ`1 + (1− λ)L

ϕλ2 (`) = λ`2

...

ϕλn(`) = λ`n.

To single out the fixed-fraction rules on normative grounds, we first introduce the axioms additivity and

zero truncation. The former is a staple in the axiomatic literature relating the joint solution of separate

problems to the solution of a joint problem; the latter is an innocuous axiom asserting that trailing zeros

can be truncated from the loss chain without impact on the liability assignment. Proposition 1 shows that

additivity and zero truncation together extend solutions on so called elementary problems to all problems.

4
These extreme cases have been used in related contexts as well. See for instance “local responsibility sharing” (Ni and

Wang, 2007), the “full transfer rule” (Hougaard et al., 2017), and “top value” (van den Brink et al., 2017).
5
These solutions have been examined extensively in the particular case of n = 2. This arises for instance when a supplier,

agent 1, and a buyer, agent 2, produce and sell a good to a consumer. When the sold good turns out to be defective, the
fixed-fraction rules entail that the buyer passes on some of the customer dissatisfaction cost `2 to the supplier on top of the
replacement cost `1 of the supplier’s part (compare, e.g., Balachandran and Radhakrishnan, 2005, page 1270).
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That is, we can focus attention on identifying desirable solutions to elementary problems, and then use

additivity and zero truncation to generalize these principles to all problems.

For this reason, we thereafter hone in on elementary problems. The third axiom, population monotonicity,

is a very compelling solidarity property. It asserts that, when there are more agents to shoulder the same

losses, no agent should be worse off. Our final axiom, merging proofness, pertains to the strategic incentives

for consecutive agents to internalize their losses. However, we recognize that a merger requires coordinated

efforts by multiple parties, having to account for potential mergers by other agents as well. For this reason,

merging proofness disincentivizes only mergers in the most basic setting, namely for two-loss elementary

problems. Proposition 2 shows that population monotonicity and merging proofness together imply that

the rule has to coincide with a fixed-fraction rule on elementary problems. Theorem 1 then follows from

Propositions 1 and 2, characterizing the class of fixed-fraction rules for general loss problems.

3.1. Additivity and zero truncation

When an agent inflicts a loss on another, the loss can sometimes be decomposed into different types of

losses. In the case of a polluted river, where upstream pollution negatively affects downstream water quality,

a factory may leak multiple pollutants; one may consider it as several different cases, each pertaining to a spe-

cific pollutant, or one may combine them into a single case of multiple pollutants. To avoid unnecessary legal

complications, it is desirable that the determined liability is independent of the method of decomposition.

This is captured by additivity, tracing back to Shapley (1953), which equates the joint solutions of separate

problems to the solution of the joint problem (see also e.g. Moulin, 2002; Bergantiños and Moreno-Ternero,

2020).

Axiom 1 (Additivity). For each n ∈ N and {`, `′} ⊆ Ln,

ϕ(`) + ϕ(`′) = (ϕ1(`) + ϕ1(`′), . . . , ϕn(`) + ϕn(`′)) = ϕ(`1 + `′1, . . . , `n + `′n) = ϕ(`+ `′).

Next, zero truncation asserts that trailing zeroes in the loss chain can be truncated without affecting

how the losses are assigned. If instead such trailing zeros were to influence liabilities, it would create an

immediate way for agents to manipulate the outcome.6

6
A stronger form of this principle is used for instance in O’Neill (1982, Theorem C.1, condition A.4).
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Axiom 2 (Zero truncation). For each n ∈ N, ` ∈ Ln, and i ∈ {1, . . . , n},

ϕi(`) = ϕi(`, 0) = ϕi(`1, . . . , `n, 0).

Proposition 1 shows that the two axioms imply that the solution to any ` ∈ Ln can be obtained by

decomposing ` into “elementary” problems. The elementary n-loss problem is given by en ≡ (0, . . . , 0, 1) ∈

Ln. The simplest non-trivial elementary problem is e2 = (0, 1) ∈ L2, in which agent 1’s breach of contract

has no immediate effect on agent 2, but triggers 2’s breach of contract that is harmful to agent 3. These

problems approximate, for instance, supply chain disruptions. In the iterated refinement of the good, each

step adds a small, incremental value to the final product, which eventually should reach the consumers. A

disruption at the start therefore leads to several small losses, incurred throughout the supply chain, followed

by a relatively large loss experienced by the consumers.

Proposition 1. A rule ϕ satisfies additivity and zero truncation if and only if, for each n ∈ N, ` ∈ Ln, and

i ∈ {1, . . . , n},

ϕi(`) =
∑
j≥i

`j · ϕi(ej).

Still, additivity and zero truncation are silent on how to actually solve the elementary problems. Additive

rules that satisfy zero truncation can share the unit loss in en = (0, . . . , 0, 1) in any way, be it mainly assigned

the initiating agent, shared between everyone, or perhaps solely assigned the last agent. The purpose of our

two remaining axioms is therefore to pin down desirable solutions to elementary problems.

3.2. Population monotonicity

Next, we impose a notion of population monotonicity to capture that the addition of “new” agents should

affect all “old” agents in the same direction (see e.g. Thomson, 2016, 2019). Here, as agents are ordered, this

has to be done with care. Take for instance ` = (1, 1) ∈ L2 as the starting point and contrast it with the

situation in which there is an additional middleman, `′ = (1, 1, 1) ∈ L3. One can argue that the initiator and

the last agent should be affected differently here: the initiator may pay more by taking on some of the new

loss, while there are more predecessors to share the last agent’s loss.

However, this is a non-issue when the new loss is zero: then there simply are more agents among whom to

share the same losses. Whether the “new” agent should carry some of the burden is not immediately clear,

but we hold as desirable that at least no “old” agent should be worse off. Formally, this is expressed as follows.
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Take a problem ` ∈ Ln and augment it after agent 1 < j < n to define `′ = (`1, . . . , `j , 0, `j+1, . . . , `n) ∈ Ln+1.

For each agent i ≤ j and k > j,

ϕi(`) ≥ ϕi(`
′) and ϕk(`) ≥ ϕk+1(`′).

Again, we focus here on elementary problems only; the condition then reduces to population monotonicity

as defined next.

Axiom 3 (Population monotonicity). For each n ∈ N, 1 < j < n, and 1 ≤ i ≤ j < k ≤ n,

ϕi(en) ≥ ϕi(en+1) and ϕk(en) ≥ ϕk+1(en+1).

By applying the axiom twice, for j = 2 and j = n− 1, we arrive at the following alternative conditions:

ϕ1(en) ≥ ϕ1(en+1)

ϕi(en) ≥ ϕi(en+1) and ϕi(en) ≥ ϕi+1(en+1) for each 1 < i < n

ϕn(en) ≥ ϕn+1(en+1).

An immediate example of a population-monotonic rule is the serial rule. Indeed, this is also additive

and satisfies zero truncation. For elementary problems, the serial rule shares the unit loss equally among the

agents, ϕi(en) = 1/n; in this way, the more agents there are, the lower each agent’s liability. Other population-

monotonic rules include the geometric rules with parameter λ ∈ [0, 1], which set ϕi(en) = λ(1 − λ)n−i

(Hougaard et al., 2017).7 Further examples include, say, “staircase” rules with |ϕi+1(en)− ϕi(en)| = λ. In

contrast to the fixed-fraction rules, the rules above intuitively depend on the size of the problem (number of

agents/losses). We will argue next that this can be a significant drawback if agents are, say, companies that

can file claims on various aggregation levels to thereby manipulate the problem size.

3.3. Merging proofness

In general, if a group of agents choose to internalize their losses, it is beneficial if this does not affect

agents outside the group. This allows the group to settle their liabilities in private without changing the

remaining agents’ liabilities; the group can come to an agreement without having to cross-check with the

7
This if for i = 2, . . . , n; we then set ϕ1(en) such that the liabilities add to 1.
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“outsiders” whether they, also, agree to it. At the very least, it is important from a strategic point of view

that groups should not be able to collude to reduce their (joint) liability. While it is arguably difficult for

agents who appear in very distant “positions” in the loss chain to orchestrate this, the situation is different

for consecutive agents, and especially so if only few agents are involved. For this reason, merging proofness

requires only that, in the setting most favorable to a merger manipulation, it should not be beneficial.

Starting from e3 = (0, 0, 1), agents 1 and 2 (and 2 and 3) can coordinate to e2 = (0 + 0, 1) = (0, 0 + 1).

Merging-proof rules are resilient to such manipulations—the joint liability from acting independently should

be no greater than that when colluding. The axiom has appeared frequently in the literature in the stronger

form of an invariance axiom (with equality rather than inequality; see e.g. Ju et al., 2007; de Frutos, 1999;

Chun, 1988).

Axiom 4 (Merging proofness). For each i ∈ {1, 2},

ϕi(e3) + ϕi+1(e3) ≤ ϕi(e2).

Analogous to Proposition 1, we next examine the implication of the two axioms on elementary problems.

Proposition 2 shows that a population-monotonic and merging-proof rule must coincide with a fixed-fraction

rule for elementary problems. Theorem 1 thereafter follows immediately from Propositions 1 and 2. Inde-

pendence of the axioms is shown in the Appendix.

Proposition 2. A rule ϕ satisfies population monotonicity and merging proofness if and only if there is

λ ∈ [0, 1] such that, for each n ∈ N,

ϕ(en) = ϕλ(en).

Theorem 1. A rule ϕ satisfies additivity, zero truncation, merging proofness, and population monotonicity

if and only if there is λ ∈ [0, 1] such that ϕ = ϕλ.

Beyond protecting against opportunistic mergers, fixed-fraction rules also provide incentives against cre-

ating artificial losses. If agent i adds an artificial zero loss, say to go from ` to (`1, . . . , `i, 0, `i+1, . . . , `n),

this has no impact on the liability assignment of a fixed-fraction rule. In the context of Section 5, where

potentially anonymous parties interact through a smart contract, it is arguably very easy to artificially inflate

the loss chain (known as a “Sybil attack” in the computer science literature, e.g. Douceur, 2002); ensuring

that such manipulations are not beneficial is thus a highly desirable feature of the fixed-fraction rules.
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4. The midpoint of the fixed-fraction rules

The class of fixed-fraction rules still provides many possible rules to choose from. For that purpose, in

this section, we will argue for a particular one among these, namely the midpoint of the class, ϕ1/2. The

first argument is inspired by the principles of equal sacrifice and ideal points that has been suggested in the

literature on bankruptcy, taxation, and bargaining problems (Yu, 1973; Aumann and Maschler, 1985; Young,

1987; Chun, 1988; Ju and Moreno-Ternero, 2017). The conventional approach is to identify an “ideal point”,

with each coordinate representing one agent’s ideal outcome, and then selecting an allocation “close to” the

ideal point. Our take is novel: rather than one ideal point, we instead identify n ideal allocations, one for

each agent. Thereafter, Theorem 2 shows that the selection of ϕ1/2 is at equal (Euclidean) distance to all

ideal allocations when losses are equal. Such problems capture, for instance, how a one-week delay at the

start of the supply chain may shift each subsequent step by one week. Thereafter, we highlight a connection

to well-known solution concepts from cooperative game theory by showing that ϕ1/2 selects the allocation

that corresponds to the Shapley value of the convex “liability game” associated to the problem (Theorem 3).

4.1. Equidistance to ideal liability assignments

To build up to Theorem 2, we consider first a problem ` ∈ L2 with `1 = `2. For every rule ϕ, we

have ϕ1(`) ≥ ϕ2(`). We suggest to capture the difference between the agents—that agent 2’s harm is a

consequence of agent 1’s actions—in this inequality. Subject to this inequality, we identify each agent’s

“ideal” assignment of liability. Here, agent 1’s ideal allocation is ` = (`1, `2) = (L/2, L/2); for agent 2, it is

instead (`1+`2, 0) = (L, 0). We argue then that the difference between the agents already has been accounted

for (through the inequality, leading to different ideal allocations), and that we therefore now should treat

them equally. We thus recommend to select the midpoint, (3L/4, L/4).

It is immediate that this corresponds to the selection of ϕ1/2. However, it is less clear whether this principle

extends to larger instances. For that purpose, consider now ` ∈ Ln with `1 = · · · = `n and capture the

difference between the agents by the constraints ϕ1(`) ≥ · · · ≥ ϕn(`); let X̄(`) = {x ∈ X(`) | x1 ≥ · · · ≥ xn}

denote the associated allocations. Intuitively, for each pair of agents i and j, it is desirable if i cannot argue

that j receives “better” treatment. A way to make this concrete is to say that, for any allocation x ∈ X̄(`)

that i can suggest, we can point to an allocation y ∈ X̄(`) that we can argue is ideal for j (either yj = 0 or,

for j = 1, y1 = `1) for which ϕ(`) is no closer to y than it is to x. In particular, for k ∈ N, define

ck =

(
L

k
, . . . ,

L

k
, 0, . . . , 0

)
.
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As argued before, c1 = (L, 0, . . . , 0) is agent 2’s ideal allocation and cn = ` = (L/n, . . . , L/n) is agent 1’s.

For agent k, the allocation ck−1 is ideal for k as it minimizes k’s liability (while maximizing (k − 1)’s).

From a technical standpoint, the points c1 through cn form the extreme points of X̄(`), that is, X̄(`) is the

convex hull of {c1, . . . , cn}. With this generalized notion of ideal allocations, the question is whether it is

still possible to apply the principle of equalizing distances to ideal allocations. Theorem 2 answers this in

the affirmative: for ` ∈ Ln with `1 = · · · = `n, there is a unique allocation at equal (Euclidean) distance to

every ideal allocation ck, and that is ϕ1/2(`). Figure 1 provides a graphical illustration for n = 3.

1, 0, 0

1/2, 1/2, 0

1/3, 1/3, 1/3

ϕ(`)

Figure 1: Illustration of Theorem 2 for n = 3 and ` = (1/3, 1/3, 1/3). The gray area in the simplex is the set of ordered allocations

X̄(`), the convex hull of c1 = (1, 0, 0), c2 = (1/2, 1/2, 0), and c3 = (1/3, 1/3, 1/3). The allocation ϕ
1/2

(`) = (4/6, 1/6, 1/6) is
equidistant to c1, c2, and c3.

Theorem 2. For each n ∈ N and ` ∈ Ln with `1 = · · · = `n, the allocation ϕ1/2(`) is at equal (Euclidean)

distance from the ideal allocations c1, . . . , cn.

If we apply this reasoning on the basis of the elementary problems en = (0, . . . , 0, 1) rather than the

constant-loss problems, the corresponding ideal allocations instead take the form ck = (0, . . . , 0, 1, 0, . . . , 0).

In this case, it is instead the serial rule that is equidistant to the ideal allocations.

4.2. Core and Shapley value of liability game

We continue our analysis of the fixed-fraction rules by highlighting a connection between well-known

solution concepts from cooperative game theory (see e.g., Peleg and Sudhölter, 2007) and ϕ1/2. Fix a problem

` ∈ Ln. A way to capture the special role played by the initiator is by defining the associated liability game

v` as follows. For every coalition S ⊆ N , let

v`(S) =


∑
i∈S `i if 1 ∈ S

0 otherwise.
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That is, only coalitions that include the initiator are considered as liable, and their liability equals the total

(direct) losses caused by its members. Coalitions that do not include the initiator are not considered liable

for any losses: none of its members would have caused any losses had it not been for the actions of the

initiator. In particular, N is liable for the total loss, v`(N) = L. As such, the liability game v` is an instance

of a so-called “big boss” game (Muto et al., 1988). We prove that the liability game is convex, so its core is

non-empty and contains the game’s Shapley value (Shapley, 1953). In addition, the core is the unique stable

set (Muto et al., 1988, Theorem 3.5). In particular, Theorem 3 shows that ϕ1/2(`) coincides with the Shapley

value and the nucleolus (Schmeidler, 1969) of the associated liability game v`.
8

Theorem 3. For each ` ∈ Ln, ϕ1/2(`) coincides with the Shapley value and the nucleolus of v`.

Armed with a characterization of the class of fixed-fraction rules and a suggestion for a particular member

of the class, we next turn to the problem of practically implementing the solutions.

5. Automated conflict resolution through smart contracts

To argue that the fixed-fraction rules are well suited for practical implementation, we first provide a

simplified introduction to the relevant technology, namely blockchains and smart contracts.9 Smart contracts

pose an ideal decentralized replacement for the social planners, auctioneers, and centralized clearinghouses

prevalent in economic theory. In the present context, tasks one otherwise might assign a trusted third party,

such as receiving deposits and transferring funds from injurer to victim, can be automated through the

contract.

5.1. Introduction to smart contracts

A smart contract is a piece of code that governs a set of variables and provides functions to modify these

variables. The code is publicly available and can be inspected by all parties before use to ensure that it works

as intended. Interactions with the contract occur through transactions, which may specify functions (in the

contract) to run as well as inputs to run them on. An elementary feature is that a transaction may transfer

value between accounts through an associated cryptocurrency. This can for instance be from the user to the

contract (say as a deposit) or the other way around (say by calling a “refund” function within the contract

8
Chun and Hokari (2007) also show coincidence between the Shapley value and the nucleolus but in the context of queuing

problems.
9
Many excellent sources cover these topics in greater detail; we refer the interested reader to Nakamoto (2008), Ferguson

et al. (2010), Katz and Lindell (2014), Damg̊ard et al. (2020), and http://ethereum.org.
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that returns the deposit from the contract’s account).10 For efficiency purposes, transactions are grouped

together and ran sequentially in blocks. The blocks are cryptographically chained in the sense that each block

contains a pointer to the block it extends on. This permits a consistent, global view of the current state

of the contract: anyone can rerun all transactions from the contract’s inception to the most recent block

and thereby determine the current values of the contract’s variables. Once the contract is deployed on the

blockchain, it obtains a unique address and its code cannot be altered. In this way, users are safe in knowing

that no one can “override” the contract and make it do something beyond its intended functionalities—no

one can for instance empty the contract’s balance unless there is a function specifically for this purpose.

5.2. Practical implementation of the fixed-fraction rules

A simple implementation of automated conflict resolution can be designed with a few basic functions in

a smart contract. Below, we will illustrate the case of a supply chain and the immediate generalization of

the fixed-fraction rules from a linear to a tree structure (that is, one firm may supply many others).11 We

take the interpretation that the supply chain emerges dynamically: agent i decides to supply another agent

i + 1, who, at a later point in time, strikes a deal with a third agent i + 2, and so on. We acknowledge

that high-value disruptions in supply chains likely will be settled in court rather than through an automated

smart contract; for that reason, our proposal is intended first and foremost for small-scale agreements.

Figure 2 illustrates a 7-agent loss tree. Losses are indicated in the left part, where agent j experiences

loss `ji from a failed agreement with agent i. In the right part, liabilities are given for the case that agent 2

fails their agreement with agent 5 for λ = 1/2; out of the total loss `52 + `65 + `75 = 9 + 6 + 4 = 19, agent 2

pays 9 + 3 + 2 = 14 and agent 5 pays the remaining 3 + 2 = 5. Agents 1, 3, and 4 are unaffected, so their

transactions go through as intended. Note that disruptions can occur at any point in the tree. In this way,

any agent can become the initiator of their respective “loss tree”.

Each bilateral negotiation addresses several factors such as the terms of the deal (quality requirements,

deadlines) and the assessed harm caused if the agreement fails. The agents themselves register these details

in the smart contract. To enable fully automated conflict resolution, each agent also makes a large-enough

deposit to cover her potential liability in case she fails her agreement and is found liable for the triggered

losses as per the fixed-fraction rule in place. (Given that we have small-scale problems in mind, also deposits

10
This provides a simple way to incentivize users: all may be required to make a deposit at the outset, but only those who

act as intended get refunded in the end (compare, e.g., the mechanism suggested by Gerber and Wichardt, 2009).
11

A tree structure also emerges when agents i and i+ 1 make several agreements. In the context of a supply chain, the agents
could make one deal that covers a potential one-week delay and another for a two-week delay.
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`21 = 9 `31 = 3

`42 = 3 `52 = 9

`65 = 6 `75 = 4

1

2 3

4 5

6 7

1

2 3

4 5

6 7

93
2

3 2

Figure 2: Left: Seven-agent loss tree in which connected agents have bilateral agreements. Agent i causes loss `
j
i to agent j if

unsuccessful. Right: Agent 2 fails their agreement with agent 5. Compensations from agents 2 and 5 to agents 5, 6, and 7 as
computed by the fixed-fraction rule with λ = 1/2 are indicated along the respective arcs.

will be small.) The deposits are returned once the agent fulfills their requirements. As a final component of

the agreement, the agents may also name the price paid by the buyer to the seller in case the requirements

are fulfilled.

Next, we detail three basic functions to be used in the smart contract. (In practice, it is likely desirable

to add functionalities to the contract to offer a better user experience, say the option for two agents, if both

agree, to cancel a registered agreement between themselves.) The contract will keep track of two variables.

The first stores each agent’s balance (deposits made). The second stores the information of the evolving loss

tree, such as on the agents involved, the terms of the bilateral agreements, and so on. The parameter λ for

the fixed-fraction rule is set when the smart contract is initially deployed on the blockchain.

Fallback: The smart contract defaults to this function and it will be used for deposits. When an agent

transfers some amount to the contract’s address, it gets added to the agent’s balance.

Extend (predecessor, successor, conditions, loss, price): This function lets agent i name her

predecessor/supplier i− 1 and add her agreement with her successor i + 1. This gets added to the variable

tracking the emerging loss tree. (To start a new branch, one may set the predecessor to the smart contract’s

own address.) To permit fully automated conflict resolution, the agent provides verifiable conditions regarding

the agreement. For instance, this could specify a location and a deadline; the goods can then be equipped

with an IoT sensor that publishes the package’s location to the blockchain for easy verification (see e.g.

Christidis and Devetsikiotis, 2016). In addition, the agent specifies the loss (to be covered by i) and the

price (to be paid by i + 1), which will be transferred once the Evaluate function is run depending on the

outcome of the agreement.

Evaluate: This function iterates through the entries of the tree, returning deposits when conditions are
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met and executing the fixed-fraction rule where needed. It can be run at any time by any agent.

This completes the description of the contract’s basic functions. In practice, the contract can be deployed

by anyone. Then, over time as agents form bilateral relations, they deposit funds to the contract and add

the terms of their agreements. For small-scale agreements, only small deposits are required, and once an

agent has verifiable proof of having completed their task, they can call the Evaluate function to have the

deposits returned. Alternatively, they can reuse their old deposit to register a new agreement, either by

extending the existing tree or initiating a new one. Analogously, if an agent has proof that an agreement was

not met (causing the agent to fail her agreement with another), the Evaluate function can again be used,

now to execute the fixed-fraction rule to share the losses. In this way, the contract evolves dynamically as

old agreements automatically get resolved and new agreements get added.

6. Concluding remarks

Our analysis of sequentially triggered losses has been centered on allocational fairness and characteri-

zations of normatively desirable allocation rules. The solutions that we derive can be applied also in more

general settings. We conclude with some remarks on possible extensions and avenues for future research.

It is immediate that fixed-fraction rules can be applied in any setting that distinguishes the initiator from

the other agents. For instance, as illustrated in Figure 2, we can extend the model to a tree structure in

which one agent interacts with many (compare e.g., Oishi et al., 2022). The axioms generalize readily and we

obtain an analogue characterization of the fixed-fraction rules.12 On the other hand, more challenging may

be to permit multiple initiators; we then require a tie-breaking rule among the initiators to specify how they

share the residuals. See Hougaard et al. (2017) for a similar extension when sharing revenues in hierarchical

organizations.

An interesting related setting is where the individual losses `i are unknown/unobservable or contested

among the agents. That is to say, one may relax the assumption that there is implicit agreement on the

individual losses and assume instead that there is agreement only on the total loss L. For instance, all may

agree that agents 1 and n are the most and least liable ones—but they disagree on how liable everyone is.

Such an ordering may arise due to a legal responsibility structure or a hierarchical power structure. Thus,

the problem then would be to allocate the loss for the group as a whole while respecting the liability order.

12
More precisely, we conjecture that an additional axiom will be needed. Specifically, for “star networks”, each “branch”

should be solved symmetrically (i.e., with the same parameter λ corresponding to the same fixed-fraction rule).
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Without access to individual losses, the rules developed in Section 3 cannot be applied. Gudmundsson et al.

(2020) examine an alternative approach for this setting.
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Appendix A. Proofs

Proposition 1. A rule ϕ satisfies additivity and zero truncation if and only if, for each n ∈ N, ` ∈ Ln, and

i ∈ {1, . . . , n},

ϕi(`) =
∑
j≥i

`j · ϕi(ej).

Proof. ( ⇐= ) As each such rule ϕ is linear, it is immediate that it satisfies additivity. Moreover, for each

i ∈ {1, . . . , n},

ϕi(`, 0) =

n+1∑
j=i

`j · ϕi(ej) =

n∑
j=i

`j · ϕi(ej) + 0 · ϕi(en+1) = ϕi(`),

so ϕ satisfies zero truncation.

( =⇒ ) Let n ∈ N, ` ∈ Ln, and i ∈ {1, . . . , n}. By repeatedly appealing to additivity,

ϕ(`) = ϕ(`1, 0, . . . , 0) + ϕ(0, `2, 0, . . . , 0) + · · ·+ ϕ(0, . . . , 0, `n),

where each (0, . . . , 0, `j , 0, . . . , 0) ∈ Ln. By zero truncation, agents “after” the loss are not liable; that is,

ϕi(`) =
∑
h<i

ϕi(0, . . . , 0, `h, 0, . . . , 0)︸ ︷︷ ︸
0

+
∑
j≥i

ϕi(0, . . . , 0, `j , 0, . . . , 0).

Take now an arbitrary j ≥ i. By zero truncation,

ϕi(0, . . . , 0, `j , 0, . . . , 0) = ϕi(0, . . . , 0, `j).
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Next, by considering three cases, we will conclude that ϕi(0, . . . , 0, `j) = `j · ϕi(0, . . . , 0, 1) = `j · ϕi(ej).

1. (Integer) If `j ∈ N, then, by repeatedly applying additivity,

ϕ(0, . . . , 0, `j) = ϕ(0, . . . , 0, 1) + · · ·+ ϕ(0, . . . , 0, 1) = `j · ϕ(ej).

2. (Rational) If `j = (p/q) ∈ Q \ N for p, q ∈ N, then, by repeatedly applying additivity,

q · ϕ(0, . . . , 0, `j) = ϕ(0, . . . , 0, p) = p · ϕ(ej),

so

ϕ(0, . . . , 0, `j) =
p

q
· ϕ(ej) = `j · ϕ(ej).

3. (Real) If `j ∈ R \ Q, let (a1, a2, . . . ) ∈ Q∞ be a rational sequence that converges to `j . At each step

k = 1, 2, . . . , by case 2 above, ϕ(0, . . . , 0, ak) = ak · ϕ(ej). As ϕ is continuous,

ϕ(0, . . . , 0, `j) = lim
k→∞

ϕ(0, . . . , 0, ak) = lim
k→∞

ak · ϕ(ej) = `j · ϕ(ej).

The statement of Proposition 1 now follows.

Proposition 2. A rule ϕ satisfies population monotonicity and merging proofness if and only if there is

λ ∈ [0, 1] such that, for each n ∈ N,

ϕ(en) = ϕλ(en).

Proof. ( ⇐= ) It is immediate that each fixed-fraction rule satisfies population monotonicity and merging

proofness.

( =⇒ ) Define λ ∈ [0, 1] through ϕ(e2) = ϕλ(e2) = (1− λ, λ). By construction,

ϕ1(e3) + ϕ2(e3) + ϕ3(e3) = ϕ1(e2) + ϕ2(e2).
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By merging proofness,

ϕ1(e2) + ϕ2(e2) ≥ (ϕ1(e3) + ϕ2(e3)) + (ϕ2(e3) + ϕ3(e3)) = ϕ1(e3) + 2ϕ2(e3) + ϕ3(e3),

so ϕ2(e3) = ϕλ2 (e3) = 0. Consider now n ≥ 3 and 1 < i < n. By construction, ϕi(en) ≥ 0. By repeatedly

applying population monotonicity, first extending e2 with zeros “after” agent 2 and thereafter “before”

agent 2,

0 = ϕ2(e3) ≥ ϕ2(e4) ≥ · · · ≥ ϕ2(en−i+2) ≥ ϕ3(en−i+3) ≥ · · · ≥ ϕi(en).

Hence, ϕi(en) = ϕλi (en) = 0. By balance, ϕ1(en) + ϕn(en) = 1 = ϕ1(e2) + ϕ2(e2). By repeatedly applying

population monotonicity, ϕ1(e2) ≥ ϕ1(e3) ≥ · · · ≥ ϕ1(en) and ϕ2(e2) ≥ ϕ3(e3) ≥ · · · ≥ ϕn(en). But then

ϕ1(en) = ϕ1(e2) = ϕλ1 (en) and ϕn(en) = ϕ2(e2) = ϕλn(en), so ϕ = ϕλ for elementary problems.

Theorem 2. For each n ∈ N and ` ∈ Ln with `1 = · · · = `n, the allocation ϕ1/2(`) is at equal (Euclidean)

distance from the ideal allocations c1, . . . , cn.

Proof. The (squared) distance between x ∈ X̄(`) and an arbitrary ideal allocation ck = (L/k, . . . , L/k, 0, . . . , 0)

is as follows:

k∑
i=1

(xi − L/k)2 +

n∑
i=k+1

(xi − 0)2 =

k∑
i=1

x2i −
k∑
i=1

2Lxi
k

+

k∑
i=1

L2

k2
+

n∑
i=k+1

x2i =

n∑
i=1

x2i −
2L

k

k∑
i=1

xi +
L2

k
.

We claim that there is an allocation x equidistant to all ideal allocation ck, that is, an allocation x for which

the above expression is constant in k. This is already satisfied for the first terms (the sum of squares), so we

can ignore these henceforth. Hence, we wish to find α ∈ R such that, for k = 1, . . . , n,

2L

k

k∑
i=1

xi −
L2

k
= 2αL.

The right-hand side is chosen in a way that will be convenient later; the key is that it is constant in k.

Equivalently,

k∑
i=1

xi −
L

2
= αk.
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Rearranging,

xk = αk +
L

2
−
k−1∑
i=1

xi.

For k = 1, this reduces to x1 = α+ L/2. For k = 2, . . . , n, we have xk − xk−1 = α− xk−1, so xk = α. That

is, x2 = · · · = xn = α. We then determine α through x1 + · · ·+ xn = 1:

nα+
L

2
= L ⇐⇒ α =

L

2n
= ϕ

1/2
2 (`) = · · · = ϕ1/2

n (`).

Finally, x1 = L/(2n) + L/2 = ϕ
1/2
1 (`).

Theorem 3. For each ` ∈ Ln, ϕ1/2(`) coincides with the Shapley value and the nucleolus of the associated

liability game v`.

Proof. The result can be derived from Muto et al. (1988) as follows.

For any coalition S such that 1 6∈ S, we have v`(S) = 0 and v`(S ∪ {1}) =
∑
i∈S `i + `1. As each `i ≥ 0,

for each S ⊆ T , we have v`(S ∪ {1})− v`(S) ≤ v`(T ∪ {1})− v`(T ). Moreover, for each agent i 6= 1, we have

v`(S ∪ {i})− v`(S) = v`(T ∪ {i})− v`(T ) if 1 ∈ S or 1 6∈ T , while v`(S ∪ {i})− v`(S) ≤ v`(T ∪ {i})− v`(T )

otherwise. Hence, v` is convex.

The agents’ contributions to the grand coalition are M1(v`) = v`(N) − v`(N \ {1}) = L and, for each

i 6= 1, Mi(v`) = v`(N)− v`(N \ {i}) = `i. By Muto et al. (1988, Theorem 4.2), the nucleolus, ν(v`), is such

that, for each i 6= 1, νi(v`) = Mi(v`)/2 = `i/2 = ϕ
1/2
i (`). By balance, we also have ν1(v`) = ϕ

1/2
1 (`). Finally,

by Muto et al. (1988, Theorem 4.5), as v` is convex, the Shapley value and nucleolus of v` coincide.

Appendix B. Independence of axioms

We show that the axioms imposed in Theorems 1 are independent. For each axiom, we identify a rule

that is not a fixed-fraction rule yet satisfies all other axioms.

Proposition 1 describes all additive rules satisfying zero truncation. A rule that in addition is population

monotonic is the serial rule ϕA. For each n ∈ N, ` ∈ Ln, and i ∈ {1, . . . , n},

ϕAi (`) =
∑
j≥i

`j
j
.
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The rule is not merging proof as ϕA1 (e3) + ϕA2 (e3) = 2/3 > 1/2 = ϕA1 (e2).

With a slight adjustment, the serial rule can be made merging proof. Define the rule ϕB to coincide

with the serial rule on all elementary problems except for ϕB(e3) = (1/2, 0, 1/2) 6= (1/3, 1/3, 1/3) = ϕA(e3).

Using the construction in Proposition 1, we can extend this to define ϕB on every problem. The rule is not

population monotonic as ϕB2 (e3) = 0 < 1/4 = ϕB2 (e4).

Proposition 2 shows that a population monotonic and merging proof rule must coincide with a fixed-

fraction rule for elementary problems. A rule that in addition is additive is ϕC constructed next. For each

n ∈ N and ` ∈ Ln,

ϕC(`) = (`1 + `n, `2, . . . , `n−1, 0).

The rule does not satisfy zero truncation as ϕC1 (0, 1) = 1 6= 0 = ϕC1 (0, 1, 0).

Finally, a rule that satisfies all axioms except additivity is ϕD. It is defined similar to a fixed-fraction rule

but the parameter λ depends on the losses. For each n ∈ N and ` ∈ Ln,

ϕD(`) = (λ`1 + (1− λ)L, λ`2, . . . , λ`n).

where λ = (L− `1)/L. The rule is not additive as ϕD1 (0, 1) + ϕD1 (1, 0) = 0 + 1 6= 3/2 = ϕD1 (0 + 1, 1 + 0).
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