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Abstract

To study the distributional effects of group level treatments, Angrist and Lang

(2004) applied quantile regression with group level regressors, and Chetverikov et al.

(2016) proposed a grouped instrumental variables quantile regression estimator, a quan-

tile extension of the Hausman and Taylor’s (1981) instrumental variables estimator for

panel data. However, the analyses of distributional effects of group level treatments

in Angrist and Lang (2004) and Chetverikov et al. (2016) are incomplete and their

models are quite restrictive, and they only allow for heterogenous distributional effects

of group-level treatments that corresponds to individual-level unobserved characteris-

tics, but not group-level unobserved characteristics. In other words, Angrist and Lang

(2004) and Chetverikov et al. (2016) allow for within group hetergeneous distribu-

tional treatment effects, but not between group heterogeneous distributional treatment

effects. In this article, we provide a comprehensive analysis by proposing a quantile

regression model that allows for heterogenous distributional effects of group level treat-

ments associated with both individual level and group level unobserved characteristics,

corresponding to within-group and between-group distributional effects. We propose

two step quantile regression and instrumental variables quantile regression estimators,

depending on whether the group level treatments are correlated with the group level

unobserved characteristics. Large sample properties are presented and simulation re-

sults indicate our estimators perform well in finite samples.
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1 Introduction

Fixed effects panel data models have played an important role in controlling for time-

invariant unobservables. However, the commonly used fixed effect regression estimator fails

∗I would like to thank participants at econometric seminar to Georgetown Univerity and econometrics
conferences at SHUFE, Xiamen University, and Zhongshan University for helpful comments.
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to identify the effects of time-invariant variables that are correlated with time-invariant

unobservables. In an influential article, Hausman and Taylor (1981) proposed an instru-

mental variable method in the context of mean regression to estimate the average effects

of the time-invariant variables even in cases without external instruments. To investigate

the distributional effects of group level treatments that are potentially correlated with group

level unobservables, Angrist and Lang (2004) applied quantile regression with group level

regressors in an empirical setting, and Chetverikov et al. (2016) proposed an instrumental

variables quantile regression estimator with group level treatments, a quantile extension of

the Hausman and Taylor’s (1981) instrumental variables estimator for panel data.

However, the analyses of distributional effects of group level treatments in Angrist and

Lang (2004) and Chetverikov et al. (2016) are incomplete and their models are quite restric-

tive, and they only allow for heterogenous distributional effects of group-level treatments that

corresponds to individual-level unobserved characteristics, but not group-level unobserved

characteristics. In other words, Angrist and Lang (2004) and Chetverikov et al. (2016) only

allow for within group heterogenous distributional treatment effects, but not between group

heterogeneous distributional treatment effects. In this article, we provide a comprehensive

analysis by proposing a quantile regression model that allows for heterogenous distribu-

tional effects of group level treatments associated with both individual level and group level

unobserved characteristics, allowing for both within group and between heterogenous dis-

tributional treatment effects. We propose two step quantile regression and instrumental

variables quantile regression estimators, depending on whether the group level treatments

are correlated with the group level unobserved characteristics.

Following Chetverikov et al. (2016), we adopt the terminology in the context of group-

level treatments, referring panel units as groups and within-group observations as micro-

level observations. To highlight the restrictive nature of the framework in Angrist and Lang

(2004) and Chetverikov et al. (2016) and to motivate our model and our estimators, we use

the example of Boston’s Metco program of school integration, which studied how suburban

student test scores were affected by the reassignment of participating urban students to

suburban schools. Angrist and Lang (2004) and Chetverikov et al. (2016) analyzed the

relationship between the presence of urban students in the classroom and the second decile1

of student test scores by estimating the equation

|(02) = (02) + (02) + (02) + (02) + (02) + (02) (1.1)

where the left-hand side represents the second decile of student test scores within a group,

 = (  ), and a group is a grade ×school ×year  cell. Here  and 

1As Metco students’ scores mostly concentrated in the lower tail of the score distribution, increasing the
fraction of the Metco students shifts the overall score distribution more sharply in the lower tail.
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denote the class size and the fraction of Metco students within each ××  cell, and , ,

and  represent grade, school, and year effects, respectively. The component  represents

the unobserved group-level characteristics, which enters the model with an additive separable

structure. It is clear that the framework of Angrist and Lang (2004) and Chetverikov et al.

(2016) is highly restrictive in the way the group-level unobserved characteristics are allowed

to affect the micro-level outcomes. Specifically, for a particular student whose ability placed

him at th percentile within a group based on her individual-level unobserved characteristics,

while her affiliated group is placed at th percentile across all groups based on unobserved

group-level unobserved characteristics, their framework (1.1) implies

|= ( ) = () + () + () + () + () + ( ) (1.2)

which states that the effects of the group-level variables  and  are homogenous across

different groups, ruling out general heterogenous distributional effects of group-level pol-

icy variables across different groups. In particular, the model of Angrist and Lang (2004)

and Chetverikov et al. (2016) can only accommodate general within group heterogeneous

distributional effects, but not between heterogeneous distributional effects.

In Section 2, we develop a new quantile regression framework that overcomes the highly

restrictive nature of the framework of Angrist and Lang (2004) and Chetverikov et al. (2016).

In particular, we allow for general within group and between group heterogeneous distribu-

tional effects of group-level treatments, which can vary at different regions of the conditional

distribution of the micro-level outcome variable, depending on individual-level and group-

level unobserved characteristics; specifically, compared with quantile regression model (1.2)

of Angrist and Lang (2004) and Chetverikov et al. (2016), our proposed model corresponds

to the following conditional quantile specification:

|=( ) = () + () + () + ( ) + ( ) + ( ) (1.3)

where, for any individual within group ranking  according to her unobserved individual

characteristics, the effects of group variables and  on the micro-level outcome, ( )

and ( ), can also vary with  , which measures the individual’s associated group ranking

across all groups according to the group-level unobserved characteristics. In particular,

( ) measures the impact of the school integration program on the individual whose is

ranked at  within her group and her affiliated group is ranked at  among all groups,

according to unobserved individual-level and group-level characteristics. We do not impose

any parametric structure on ( ) and ( ). In contrast, Angrist and Lang (2004) and

Chetverikov et al. (2016) impose the highly restrictive homogeneity condition that ( ) =

() and ( ) = () for all  ∈ (0 1), which implies, for example, that the median
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(or any other quantiles) student within each group would respond uniformly to group-level

treatments, regardless of her group affiliation.

In practice, as the group-level treatments can either be exogenous or endogenous, depend-

ing on whether they are correlated with group level unobserved characteristics. Exogenous

group treatments are not uncommon, especially in the context of randomized controlled ex-

periments; see, for example, Krueger, 1999, Angrist and Lavy (2009), Angrist and Guryan

(2008) and Larsen (2015). On the other hand, endogenous group-level treatments are a com-

mon concern in many empirical studies; see Chetverikov et al. for some detailed discussions.

In Section 2, aside from presenting our model, we also discuss its connection to panel

data quantile regression in the existing literature. In Section 3, we introduce our quantile

regression estimators. Similar to Angrist and Lang (2004) and Chetverikov et al. (2016),

our estimators consist of two-steps: (i) in the first step we conduct quantile regression for

each group; and (ii) in the second step, we use the estimated group-specific effects as the

dependent variable to perform quantile regression for exogenous group-level covariates and

instrumental variables quantile regression for endogenous group-level covariates. For the

endogenous case, similar to Hausman and Taylor (1981) and Chetverikov et al. (2016), we

can also exploit internal instruments when external instruments are difficult to find. In

Section 3 we present large sample properties of our estimators. Section 4 contains some

Monte Carlo simulation results, which indicate that our estimators perform well in finite

samples. Section 5 concludes. Proofs of the main theorems are in the Appendix.

2 The Model

In this section we propose a quantile regression model that focuses on micro-level response

to group-level treatments. Our model allows for flexible distributional effects arising from

both unobserved individual-level characteristics and unobserved group-level characteristics.

To motivate our model, we first describe the set-up of Chetverikov et al. (2016)

(|̃  ) = ̃0() + ̃0̃ () + () = 0(),  ∈ U (2.1)

where  is the micro-level response variable of individual  in group , (|̃ ̃ )
is the th conditional quantile of  given ̃ ̃ , ̃ is a ( − 1)-vector of observable
individual-level covariates, ̃ is a ( − 1)-vector of observable group-level covariates2, ()
and ̃ () are the respectively conformable vectors of th quantile regression coefficients,

 = {(),  ∈ U} is a set of unobservable group-level random scalar shifters, and U is a

set of quantile indices of interest. The main parameter of interest is ̃().

2Here ̃ does not contain a constant term since no location normalization is imposed on  (). In
Chetverikov et al. (2016),  contains a constant term and a location normalization is imposed by assuming
 () = 0 for the exogenous case and () = 0 for the endogenous case with instruments .
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To better understand their framework, we restate model (2.1) in terms of the correspond-

ing data generating mechanism:

 = ̃0() + ̃0̃ () + ( ) = 0( ) (2.2)

where   describe the individual-level and group-level unobserved characteristics. As in

a typical quantile regression set-up  is interpreted as the ranking of individual  within

group  associated with unobserved individual characteristics, whereas  describes the

ranking of group  based on its group-level unobserved characteristics across all groups,

thus both  and  have uniform marginals on (0 1), assumed to be independent of each

other. In the context of Angrist and Lang (2004), among the observables, ̃ could include

the class size and the fraction of the Metco students, and ̃ represents the individual and

family characteristics; among the unobservables,  is a measure of the general learning

environment including teacher quality, whereas  could represent the student’s ability.

Model (2.2) allows for general interaction between (̃ ̃) and , but not between (̃ ̃)

and . Based on (2.2), (2.1) can be equivalently expressed as

(|̃  ) = ̃0() + ̃0̃ () + () = 0(),  ∈ U  (2.3)

Notice that (2.3) imposes a highly restrictive homogeneity feature that the quantile co-

efficients ̃() is uniform across different groups; in particular, the group-level unobserved

characteristics  only affects the micro-level outcome variable  through a location shift,

and thus the policy effect of the group-level variable ̃ is uniform across different groups, re-

gardless of the group-level unobserved heterogeneity. Consequently, while Angrist and Lang

(2004) and Chetverikov et al. (2016) allow for within group heterogeneous distributional

treatment effects, but not between group heterogeneous distributional treatment effects.

To overcome the above-mentioned drawback associated with the framework in Chetverikov

et al. (2016), we propose the following quantile regression model with group-level treatments

 = ̃0() + ̃0̃ ( ) + ( ) (2.4)

= ̃0() + 0 ( ) 

Define

1( ) = 0 ( ) = ̃0̃ ( ) + ( ) (2.5)

Then equations (2.4) and (2.5) imply the following individual level and group level conditional

quantile regression restrictions:

(|̃  ) = ̃0() + ̃0̃ () + ( ) (2.6)
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and

1()( |) = 0 ( ) = ̃0̃ ( ) + ( ) (2.7)

or equivalently

| (̃   =  = ) = ̃0() + ̃0̃ ( ) + ( )

if  is exogenous. When  is endogenous and we have appropriate instrument , then

(2.4) and (2.5) imply that


h
1
n
1()  ̃0̃ ( ) + ( )

o
|

i
=  . (2.8)

Consequently, in contrast to the model proposed by Chetverikov et al. (2016) in which the

group-level unobserved characteristics only affect the micro-level outcome variable through a

location shift, our model offers much more flexible interaction between observed group level

treatments and unobserved micro-level and group-level characteristics. As we do not impose

any parametric structure on  ( ), therefore our model allows for very general heteroge-

neous distributional effects of the group-level treatments ̃ on the conditional distribution

of the micro-level outcomes3.

In the discussion of their quantile regression model, Chetverikov et al. (2016, page 813)

considered the example of modeling the effects of a group level (state-year cohort) policy

̃ on the conditional wage distribution; in their setting, while the policy ̃ is allowed to

have differential effects on lower wage quantiles (with less unobserved skills) from upper

wage quantiles, however, such differential policy effects are only confined to the within group

variation, whereas homogeneity is maintained across different groups; for example, for the

individuals from different groups who are ranked at th quantile within their respective

groups based on their individual unobserved skills, the policy effects on these individuals

are uniform, regardless of their respective between group rankings according to their unob-

served group level characteristics. In contrast, our model allows for completely unrestricted

differential quantile wage effects that can vary with unobserved individual skills () as

well as unobserved group-level heterogeneity (). In the case of Boston school integration

program, let  represent the rankings of a student within her group and  the ranking of

the her group among all groups based on the individual and group level unobserved charac-

teristics, then ( ) in (1.3), the coefficient of , the fraction of Metco students for that

group, would represent the effect of policy change for this particular student; in particular,

we allow the school integration program to have different impacts on students with the same

3In a different context, Chesher (2003) and Jun (2009) studied identification and estimation of a parameter
(1 2) which measures the return to education for the individual who is ranked at 1 and 2 in terms of
unobserved ability, and unobserved market fortune respectively.
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within between group ranking but different group rankings, which is ruled out in the setting

of Chetverikov et al. (2016).

In this article we consider both the exogenous and endogenous policy variables ̃. As in

Chetverikov et al. (2016), we have observations on groups and individuals within group

 = 1  . Thus the data set consists of {( ) ,  = 1  } and ̃ for  = 1  ;

when ̃ is considered to be endogenous, we also observe some appropriate instruments .

As in Hausman and Taylor (1981) and Chetverikov et al. (2016), internal instruments made

up by components of  are potentially applicable. This feature is sometimes particularly

appealing since external instruments can often be difficult to find.

In a related context, Kato et al. (2012), Galvao and Kato (2016), and Gu and Volgushev

(2019), among others, considered the quantile regression model

 = ̃0̃() + ()

The focus of these papers is the estimation of the quantile coefficients () that corresponds

to the micro-level variables. Arellano and Bonhomme (2016) considered a fixed  panel

quantile regression that imposes a conditional quantile structure on the relationship between

the latent group level unobserved heterogeneity and exogenous covariates. These papers

do not consider the estimation of effects of the group-level policy variables ̃. Hahn and

Meinecke (2005) extended Hausman and Taylor (1981) to a nonlinear setting, but their

analysis assumes homogeneous effects of individual level and group-level variables.

3 Estimators

In this section, we develop our estimators for  ( ) in (2.7) and (2.8) for   ∈ U × T ,
where U and T are sets of quantile indices. We consider cases of exogenous and endogenous
group-level variables . In each case, our estimator consists of two steps.

In the first step, we run group-by-group smoothed th quantile regression of  on ̃

and on a constant to obtain ̂1(), an estimate of 1(). In the second step, we run th

smoothed quantile regression or instrumental variables quantile regression of ̂1() on 

for the estimation of  ( ). Due to the computational and theoretical advantages4, we

adopt smoothed quantile regression in both steps.

We now describe the details of the first step estimator. Base on the data {( ) ,  = 1  },
for each group  and a given quantile index , first note the objective function of the standard

4He et al. (2020) demonstrates that smoothed quantile regression possesses significant computational
advantage for very large samples and/or a large number of regressors, together with slightly superior per-
formance. Fernandes et al. (2019) shows that the smoothed quantile regression estimator dominates the
standard quantile regression in the AMSE sense. Smoothed quantile regression has also been considered by
Horowitz (1998), Galvao and Kato (2016), and Kaplan and Sun (2017), among others.
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quantile regression takes the form

̂∗ (;) =
Z

()̂
∗
 (;) =

1



X
=1

 ( − 0)

where () = 1 {  0} − 1 { ≤ 0} (1 − ) and ̂ ∗ (;) =
1


P

=1 1
©
 − 0 ≤ 

ª
.

Following Fernandes et al. (2019), we define the smoothed quantile regression estimator for

() by replacing ̂
∗
 (;) with a smoothed version, ̂(;); specifically, we define

̂() = arg min
∈

̂( )

where

̂( ) =

Z
()̂(;)

=
1



X
=1

Z
( − 0+ 1)1(),

= (1− )

Z 0

−∞
̂(;)+ 

Z ∞

0

³
1− ̂(;)

´


with

̂(;) =

Z 

−∞
̂(;)

and

̂(;) =
1

1

X
=1

1

µ
 − 0− 

1

¶
.

Here 1 (·) and 1 are the kernel function and bandwidth parameter respectively. Let

̂1() = 01̂(), which serves as the dependent variable for the second stage estimation,

and 1 is the unit vector with the first element equal to 1.

For the second step estimation, we first consider the case with exogenous . For  ∈ T ,
we perform smoothed quantile regression of ̂1() on  to obtain ̂

∗
( ) as our estimator

for ( ) for the exogenous case:

̂
∗
( ) = arg min

∈

̂(  )

8



where

̂(  ) =

Z
()̂ (;  )

= (1− )

Z 0

−∞
̂ (;  )+ 

Z ∞

0

³
1− ̂ (;  )

´


with

̂ (;  ) =

Z 

−∞
̂(;  )

and

̂(;  ) =
1

2

X
=1

2

µ
̂1()− 0− 

2

¶
.

Here 2 (·) and 2 are the kernel function and bandwidth parameter for the second stage,

respectively.

For the case with endogenous , we propose to estimate ( ) by ̂( ), which solves

1



X
=1

µ
2

µ
̂1()− 0

2

¶
− 

¶
 = 0 (4.1)

where 2() =
R 
−∞ 2() and  is the vector of appropriate instruments.

Remark: Note that solving (4.1) could be potentially demanding when  contains mul-

tiple variables. If ̃ contains both endogenous and exogenous group variables, then we

could adopt a computationally more attractive a procedure. Let ̃ = (̃1 ̃2) where

̃1 and ̃2 represent endogenous and exogenous group variables, respectively. Suppose

0 = ̃011 + 022, where 2 = (1 ̃
0
2)

0. Then, given ̂1(), we propose a two-step pro-

cedure for the estimation of  ( ), in the spirit of Chernozhukov and Hansen (2006, 2008)

and Chen (2018). Specifically, for any 1, ̂2(1) minimizes ̂(1 2  ) with respect to 2,

where ̂(  ) is defined above. In the second step, define ̂1 as a solution to the equation

1



X
=1

Ã
2

Ã
̂1()− ̃011 − 02̂2 (1)

2

!
− 

!
 = 0

and we further define ̂ = (̂
0
1  ̂

0
2(̂1))

0 as our estimator for ( ). For the case with exact

identification when dim() = dim(), the limiting distributions of the two alternative

estimators are the same.
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4 Large Sample Properties

In this section we present the large sample properties of our estimators. We consider both the

exogenous and endogenous cases. As the endogenous case contains more general results, we

first present the large sample results for the group instrumental variables quantile regression

estimator.

Let  [·] =  [·| ] and 1() = 01() = ̃01() + 1(). Let  (·) and
 (·) denote the conditional distribution and density functions of 1 given (1  ) and

( ·) and ( ·) denote the conditional density functions of 1() and 1() given

(1  ) respectively. Note that the conditional density of 1() at 
0
1( ) given

(1  ) is the same as that of 1( ) at 1( ) = 0( ). The terms such as

, ,  ,  ,  , and  etc. are generic constants, which can take on different values in

different places. U and T denote two compact quantile index subsets of (0 1). We make the
following assumptions.

Assumption 1: (i) Observations are independent across groups. (ii) For all  = 1  , the

pairs ( ) are i.i.d across  = 1  , conditional on the group-level variables ( ).

Assumption 2: (i) For all  = 1  , and  = 1  , random vectors  and ( )

satisfy kk ≤  , kk ≤  and kk ≤  . (ii) For all  = 1  , all eigenvalues of



£
1

0
1

¤
are bounded from below by  .

Assumption 3: (i) For all  ∈ U and  = 1  ,  (·) and ( ·) are strictly positive
everywhere and 1th and 2th order continuously differentiable respectively. In addition, all

derivatives are uniformly bounded by  , 
¡
01( )

¢
  and ( 

0
1( ))  

for  ∈ U and  ∈ T . (ii) For each   0,

 = inf
∈U

inf
k−()k=



"Z 0

0

{()− } 
#
 0

Assumption 4: The kernel function 1 is continuously differentiable up to 1th order with

a bounded support; in addition, it is an 1th order kernel such that
R
1() = 0 for

 = 1  1 − 1, and
R
11() 6= 0.

Assumption 5: For all  ∈ U and  ∈ T , ( ) is an interior point of B, and B is a
compact set.

Assumption 6: As →∞, for each  ∈ U , 1


P

=1
£¡
1
©
1()  0

ª− 
¢


¤→
(   ) uniformly over (  ) ∈ T × B; (   ) is continuous in  and ( ) is the unique
solution to (   ) = 0 for all  ∈ U and  ∈ T .
Assumption 7: As  → ∞, 1



P

=1
£


0


¤ → ,
1


P

=1
£


0


¤ →  and
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1


P

=1
£
( 

0
)

0


¤→  () uniformly over (   ) for all  ∈ U ,  ∈ T and  ∈ B,
where ,  and  =  ( ( )) are matrices with singular values in absolute value

bounded below by  and from above by  .

Assumption 8: The kernel function 2 is continuously differentiable up to 2th order with

a bounded support; in addition, it is an 2th order kernel such that
R
2() = 0 for

 = 1  2 − 1, and
R
22() 6= 0.

Let  = −1
 

−12
1 ln2 + 11 , where  = min .

Assumption 9: As  → ∞ and  → ∞, 1 → 0, 2 → 0, 3
−3
2 = 

¡
−12

¢
, 22 =


¡
−12

¢
, and −1

 ×((
3
2)
−12 ln2+−12 ) = 

¡
−12

¢
; in addition, 1 ≤ max 

min 
≤ 2

holds for some positive constants 1 and 2.

Assumption 1 describes the data generating mechanism, and as in Chetverikov et al.

(2016) we assume independence within and across groups. Assumption 2 contains some

boundedness condition as well as the full rank condition needed for the first step estimator.

Assumption 3(i) contains some boundedness and smoothness conditions, which, together

with the conditions on the first stage kernel function and bandwidth parameter in Assump-

tion 4, ensures good asymptotic properties and Bahadur representation of the first step

estimator. Assumption 3(ii) is a form of uniform global identification, which is used in the

proof of uniform consistency of ̂() over  and . Assumptions 1-4 largely follow Fernan-

des et al. (2019). Assumptions 5 and 6 are needed for global identification and consistency,

which is common for moment based estimators. Assumption 7 contains the full rank con-

ditions needed for the second stage group level quantile regression. Assumption 8 imposes

some common conditions on the second stage kernel function. Assumption 9 imposes some

rather weak conditions on the bandwidth parameters, and the relative growth rates of 

and . For example, if we choose 1 = 2 = 2 and 1 = 
−13
 ln and 2 = −13 ln,

then Assumption 9 is satisfied when
¡
34 ln

¢
 → 0, which allows the number of

observations for each group grows at a slower rate than the number of groups.

The following lemma describes the large sample properties of the first stage quantile

regression estimator. The results and their proof largely follow Fernandes et al. (2019).

Lemma 1: Under Assumptions 1-4, ̂1() is consistent for 1() and satisfies

̂1()− 1()) =
1p


X
=1

() + ()

with

() = 

³
−1

 
−12
1 ln + 211

´
11



uniformly over  ∈ U and  ∈ {1 2  }, where

() = 01
−1
 ()

£
1
©
 − 0()  0

ª− 
¤


with () = 

£
(

0
1 ())1

0
1

¤
.

The next theorem contains the results on the second stage instrumental variables quantile

regression estimator.

Theorem 2: Under Assumptions 1-9, for a given  ∈ U

√

³
̂( )−  ( )

´
=

1√


X
=1

¡
0



¢−1
0


¡
1
©
1()  0 ( )

ª− 
¢
 +  (1)

=
1√


X
=1

¡
0



¢−1
0


¡
1
©
1()  01 ( )

ª− 
¢
 +  (1)

uniformly over  ∈ T , and
√

³
̂( )−  ( )

´
=⇒ G (·) , in l∞ (T )

where G (·) is a zero-mean Gaussian process with uniformly continuous sample paths and
covariance function

C( 1  2) =
¡
0



¢−1
0
Σ 0

¡
0


¢−1


where Σ(   0) = [min (   0)−  0].

In order to conduct statistical inferences, we need an estimator for the asymptotic co-

variance function. Define

bC( 1  2) = ³̂0
̂

´−1
̂0

 Σ̂ 0̂

³
̂0

 ̂

´−1
where

̂ =
1

2

X
=1

2

Ã
̂1()− 0̂( )

2

!


0


and Σ̂(   0) = [min (   0)−  0] ̂ with ̂ =
1


P

=1
0
.
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Theorem 3: Under Assumptions 1-9,
°°°bC( 1  2)− C( 1  2)°°° =  (1) uniformly in  1  2 ∈

T .
Finally, we present the large sample results for the exogenous case.

Assumption 7’: As→∞, 1


P

=1
£


0


¤→  and
1


P

=1
£
( 

0
1( ))

0


¤→
 , where  and  are matrices with singular values in absolute value bounded

below by  and from above by  , uniformly over ( ) for all  ∈ U and  ∈ T .

Theorem 4: Assume Assumptions 1-4, 8-9 and Assumption 7’ hold, then for a given  ∈ U ,

√

³
̂
∗
( )−  ( )

´
=

1√


X
=1

−1
¡
1
©
1()  0 ( )

ª− 
¢
 +  (1)

=
1√


X
=1

−1
¡
1
©
1()  01 ( )

ª− 
¢
 +  (1)

uniformly over  ∈ T , and
√

³
̂
∗
( )−  ( )

´
=⇒ G (·) , in l∞ (T )

where G (·) is a zero-mean Gaussian process with uniformly continuous sample paths and
covariance function

C( 1  2) = −1Σ 0
−1
 

where Σ( 
0) = [min (   0)−  0].

As the proof Theorem 4 is essentially a special case of that of Theorem 2, the details are

omitted. Also note that in the exogenous case, the second stage is also a convex minimization

problem; as a result, the parameter space for the group-level coefficients does not need to be

compact. In addition, the above results are for a given , and can be easily extended to a

finite number of quantile indices.

5 Simulation Studies

In this section, we examine the finite sample properties of our estimators. In our Monte

Carlo experiments, data is generated from the following model

 = 11() + 22() + (05 + )( )

 =  +  × 

13



where

1() = 2() = ©
−1()

and

( ) = ©
−1() + ©

−1()

 1 2 are each distributed (0 4);  and  are both distributed (0 1) and thus

©−1() and ©
−1 () are standard normal; the random variables  1 2,  and 

are mutually independent; we set  to 0 for the exogenous case and 05 for the endogenous

case.

We estimate the quantile regression coefficients for  using the two-step quantile regres-

sion estimator and the two-step instrumental variable quantile regression estimator proposed

in this article for the exogenous case and the endogenous case respectively. We consider the

quantile combinations ( ) = (03 05 07)×(03 05 07). For the sample sizes, we consider
the combinations of the number of groups () and group size given by () = (25 50),

(50 50), (50 100), (100 50), (100 100), (100 200), (200 100) and (200 200). One thousand

Monte Carlo replications are used. The results are reported in Tables 1-4.

Table I reports the results for exogenous case, including the biases (Bias), standard errors

(SD) and root mean squared errors (RMSE). We follow the implementation of the smoothed

quantile regression of Fernandes et al. (2019) as in He et al. (2021) for both the first stage

and second stage of the estimation. We adopt their default choice of the bandwidth in the

implementation by He et al. (2021), which is quite robust across different designs.

For the combination of ( = 25 and  = 50) with relatively modest  , our estima-

tor performs reasonably well with small biases. For  = 50, when  increases from 50 to

100, the performance of our estimator overall improves slightly, which indicates that when

 is large enough relative to ,  is the main factor in determining the properties of our

estimator, as suggested in our theoretical results. Indeed, compared with the combination

of ( = 50  = 100), the combinations ( = 100  = 50) and ( = 100  = 100) pro-

duce significantly smaller SDs. This pattern continues when  or  or both increases to

200 from 100.

Tables II-IV report the results for the endogenous case. In the first stage, we use the

same smoothed quantile regression as in the exogenous case. In the second stage of the

instrumental quantile regression, we adopt the standard normal kernel and the bandwidth

2 is set 0 ∗  ∗ −13 where  denotes the sample standard error of ̂1() − 0; we

experimented 0 = 05, 1 and 15, and the results are not sensitive. Our estimator still

performs reasonably well, even for the case with ( = 25  = 50), and a similar pattern

persists for different combinations of  and , as in the exogenous case. On the other

hand, compared with the performance our estimator for the exogenous case, our two-step

instrumental variables estimator produces larger biases and standard errors. Both biases
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and standard errors decrease as the sample size increases.

6 Conclusion

In this article, we have proposed a quantile regression model that allows for heterogenous dis-

tributional effects of group level treatments associated with both individual level and group

level unobserved characteristics. We propose two step quantile regression and instrumental

variables quantile regression estimators, depending on whether the group level treatments

are correlated with the group level unobserved characteristics. In this paper we allow for

general interactions between group level treatment  and the unobservable characteristics

( ) at both at the micro and group levels. A more general setup takes the form

 = ̃0( ) + ̃0̃ ( ) + ( )

which also allows for general interactions between the observed individual level character-

istics  and the unobservable characteristics ( ). We will consider this more general

framework in future research.
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Appendix

Proof of Lemma 1: First we establish the uniform consistency of ̂() across  = 1  

and over  ∈ U . Let
∗ (;) = 

£
 ( − 0)

¤
and

( ) =

Z

£
( − 0+ 1)

¤
1().

Note that

̂( )− ̂( ()  ) =
h
(̂( )− ̂( ()  ))− (( )−( ()  ))

i
+
£
(( )−( ()  ))−

¡
∗( )−∗( ()  )

¢¤
+
£¡
∗( )−∗( ()  )

¢¤
. (A1)

For any given , let ( ) = {: k− ()k ≤ }, namely, ( ) is the ball of radius

of  centered at  (). Then the Knight’s identity (Knight, 1998) and Assumption 3(ii)

imply that ¯̄
∗( )−∗( ()  )

¯̄
≥  (A2)

if  ∈ ( ). In addition, by Lemma 1 of Fernandes et al. (2019) we have

sup


¯̄
(( )−( ()  ))−

¡
∗( )−∗( ()  )

¢¯̄
=  (11 )  2 (A3)

for a large . As ̂ () is a minimizer of ̂( ), thus

̂(̂ ()  )− ̂( ()  ) ≤ 0 (A4)

Then from (A1)-(A4) we can deduce

Pr(max


k̂ ()− ()k ≥ )

≤ Pr

Ã
∪=1 sup

∈()

¯̄̄
(̂( )− ̂( ()  ))− (( )−( ()  ))

¯̄̄
≥ 2

!

≤ max

Pr

Ã
sup

∈()

¯̄̄
(̂( )− ̂( ()  ))− (( )−( ()  ))

¯̄̄
≥ 2

!
.
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Consider the function

( ) =

Z
( − 0− )1()

indexed by (  ), and define the class of functions

F = ©( ): 1 ∈  ∈ 
ª


To show that F is Euclidean (Pakes and Pollard, 1989) with an integrable envelop, define

the class of functions

F =
©
( − 0− ):  ∈ ,  ∈ 

ª
.

Lemma 6 in Chetverikov et al (2016) shows that F is VC subgraph, and thus Euclidean with

an integrable envelop (Lemma 2.12, Pakes and Pollard, 1989), and then from Corollary 21

in Nolan and Pollard (1987), we can deduce that F is Euclidean with an integrable envelop.
By applying the Talagrand’s inequality (Bousquet 2002) as in Kato et al. (2012), we obtain

Pr

Ã
sup

∈()

¯̄̄
(̂( )−( )

¯̄̄
 4

!
≤ 1 exp

¡−2
2


¢
, (A5)

and

Pr
³¯̄̄
(̂( ()  )−( ()  )

¯̄̄
 4

´
≤ 1 exp

¡−2
2


¢
(A6)

for some positive constant terms 1 and 2. Let

Ω0 =

½
max

sup


|̂ ()− ()|  

¾
.

From the above result, we obtain

Pr (Ω0)  1− 21 exp
¡−2

2


¢
 1− −3

 (A.7)

when  and  are large enough, where the second inequality follows from Assumption 9.

This establishes the uniform consistency of ̂() over  = 1   and  ∈ U .
We now derive the uniform asymptotic representation. Define the events

Ω1 =

½p
 sup



°°°̂(1) ( )−(1) ( )
°°° ≥ ln

¾
and

Ω2 =

½p
1 sup



°°°̂(2) ( )−(2) ( )
°°° ≥ ln

¾
.
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where

̂(1) ( ) =
1



X
=1

µ
1

µ
 − 0

1

¶
− 

¶


(1) ( ) = 

∙µ
1

µ
 − 0

1

¶
− 

¶


¸

̂(2) ( ) =
1



X
=1

1

2
1

µ
0− 

1

¶


0


and

(2) ( ) = 

∙
1

1
1

µ
 − 0

1

¶


0


¸


Similar to (A5) and (A6), we can show

Pr (Ω1) ≤ 1 exp(−2 ln2) (A8)

and

Pr (Ω2) ≤ 1 exp(−2 ln2) (A9)

From Assumptions 2-4 and 9, we can deduce that 
(2)
 ( ) is uniformly positive definite

with its eigenvalues bounded away from zero for a large enough , and thus ̂
(2)
 ( ) is

nonsingular on Ω2 for large enough . Define Ω = Ω0 ∩ Ω1 ∩ Ω2, then by (A7)-(A9) we

have Pr(Ω)  1− −2
 for large enough  and . Therefore, on the event Ω, a Taylor

expansion yields

̂(1) (̂ ()) =
1



X
=1

½
1

µ
0̂ ()− 

1

¶
− 

¾
 = 0,

and

̂()−  () = −
∙Z 1

0

̂(2) ( () +  [̂()−  ()] ;) 

¸−1
̂(2) ( () ;) .

Now with arguments similar to those following equation (28) in the proof of Proposition 3

in Fernandes et al (2019), we obtain

̂1()− 1()) =
1p


X
=1

() + ()
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with

max

|()| = 

³
−1

 
−12
1 ln + 211

´
uniformly over  ∈ U , which establish Lemma 1.

Here we first present some preliminary lemmas, which are used in the proof the main

theorems. For Lemmas A1-A5, we implicitly assume that Assumptions 1-9 hold.

Lemma A1: As  and  go to infinity,

1



X
=1

∙
2

µ
̂1()− 0

2

¶
− 

¸
 = (   ) +  (1)

uniformly over (  ) for a given .

Proof of Lemma A1: Let

̂(   ) =
1



X
=1

∙
2

µ
̂1()− 0

2

¶
− 

¸
.

A Taylor expansion yields

̂(  ) = (   ) + (   ) (A10)

where

(   ) =
1



X
=1

∙
2

µ
1()− 0

2

¶
− 

¸


and

(   ) =
1



X
=1

∙
2

µ
̄1()− 0

2

¶
− 

¸


µ
̂1()− 1()

2

¶
where ̄1() lies between 1() and ̂1(). Lemma 1 and Assumptions 8 and 9 imply

that

k(   )k = 

³
−1

 
−12
1 −12 ln + 11 

−1
2

´
=  (1) (A11)

uniformly over (   ).

Now consider (   ). Define the class of functions

F =

½µ
2

µ
1()− 0

2

¶
− 

¶
:  ∈ T   ∈ 

¾

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By Lemma 22 in Nolan and Pollard (1987), F is Euclidean with an integrable envelop for

a fixed , and thus manageable (Pollard, 1990). Consequently, by the uniform law of large

numbers (Pollard, 1990), we obtain

(   ) = (   ) +  (1) (A12)

uniformly in (  ). Combining (A10)-(A12) establishes Lemma A1.

Lemma A2: As  and  go to infinity,

̂ () =
1

2

X
=1

2

µ
̂1()− 0

2

¶


0
 →  ()

uniformly over  ∈ B.
Proof of Lemma A2: A Taylor expansion yields

̂() = () +1 () +2 () (A13)

where

( ) =
1

2

X
=1

2

µ
1()− 0

2

¶


0


1 () =
1

2

X
=1

02

µ
1()− 0

2

¶


0


µ
̂1()− 1()

2

¶
and

2 () =
1

2

X
=1

002

µ
̄1()− 0

2

¶


0


µ
̂1()− 1()

2

¶2


where ̄1() lies between ̂1() and 1().

Let


( ) =

1

2

X
=1

2

µ
1()− 0

2

¶


Define the class of functions F1 =
n
2

³
1()−0

2

´
: 2 ∈   ∈ 

o
. By Example

2.10 and Lemma 2.14 of Pakes and Pollard (1989), F1 is Euclidean with an integrable envelop,
thus by Lemma 8.3.1 of Jin and Ying (2004),


() = 

 ( ) + (2)
12
ln = 

 () + (1) (A14)
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uniformly over  ∈ B, where the second equality follows from Assumptions 2, 3 and 9.

Similarly, we can show

1

2

X
=1

¯̄̄̄
02

µ
1()− 0

2

¶¯̄̄̄
= (1)

and

1

2

X
=1

¯̄̄̄
002

µ
1()− 0

2

¶¯̄̄̄
= (1)

uniformly over  ∈ B, which, together with Assumptions 2, 9 and Lemma 1, imply

1 () = 

¡


−1
2

¢
=  (1) (A15)

and

2 () = 

¡
2

−3
2

¢
=  (1) (A16)

uniformly in . Combining (A13)-(A16) establishes Lemma A2.

Lemma A3: As  and  go to infinity,

(   ( ))

=
1



X
=1

∙
2

µ
1()− 0( )

2

¶
− 

¸


=
1



X
=1

£
1
©
1()  0( )

ª− 
¤
 + 

¡
−12

¢
uniformly over  ∈ T .
Proof of Lemma A3: Define

( ) = 2

µ
1()− 0

2

¶
= 

Z
1
©
1()− 0  2

ª
2 () 

and

̃( ) = 1
©
1()  0

ª
.

Let

∆
 ( ) =

1



X
=1

(( )− ̃( )) .
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Define the class of functions

F2 =
©
( )− ̃( ):  ∈ 

ª
.

Let 2 = sup  [( )− ̃( )]
2
. With some calculus, it is easy to see that 2 =  (2).

As in Lemmas A1 and A2, we can show that F2 is Euclidean with the constants ( ) (Pakes
and Pollard, 1989), then by Corollary 5.1 of Chernozhukov et al. (2014), we obtain



∙
sup


¯̄¡
∆
 ( )− ∆( )

¢−
¡
∆
 ( )− ∆( )

¢¯̄¸
≤

p
2 log(2) = 

¡
−12

¢
.

In addition, by Assumption 9, we can show that 
¡
∆
 ( )− ∆( )

¢
=  (22 ) =

(−12) uniformly in . By collecting the above results, we establish Lemma A3.

Lemma A4: As  and  go to infinity,
√
̂1( ) =  (1) uniformly over  ∈ T .

Proof of Lemma A4: Recall

̂1( ) =
1



X
=1

1

2
2

µ
1()− 0( )

2

¶
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By Lemma 1, write ̂1( ) as
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=1, () denotes the reminder term in Lemma 1, and
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First, note that

k1( )k ≤ max
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As in the proof of Lemma A3, we can show
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where we have made use of Assumption 9 and the result sup |()| = 

³
−1

 
−12
1 ln

´
in Lemma 1.

Now we consider ̂∗1( ). Define

(     ) =
1√


1p
̄

̄



2

µ
1()− 0( )

2

¶
 ()

where  = (  ). Thus, we can write

̂∗1( ) =
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(     ).

Note that (     ) and (     ) for  6=  are not independent as both

depend on . We make use of the symmetrization technique commonly used in empirical

process literature to show ̂∗1( ) = 
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uniformly in  . Let
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 0
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ª
be independent

copies of
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  

ª
on the same probability space, independent of {}. Also on the same

probability space let {} denote i.i.d. Rademacher random variables that are independent
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ª
. Next, Let 0 and  denote expectations taken with respect to
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and {} respectively. Following the arguments in the proof of Theorem 2.11.1 (van der
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Vaart and Wellner, 1996), we can show that
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
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¯̄
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¯̄
,  denotes the subset of 

 as the

set of all vectors
©
(   ()  ()   ())

ª
for all  ∈ Ω, and the last inequality

follows since the class of functions F =
©
(     ):  ∈ T

ª
is Euclidean with a

bounded envelop function. Consequently, we obtain ̂∗1( ) = 

¡
−12̄−1

 −12
¢
, and

thus ̂1( ) = 
¡
−12

¢
uniformly over  ∈ T .

Lemma A5: As  and  go to infinity, ̂2( ) =  (1).

Proof of Lemma A5: Recall
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By Lemma 1, for each , we have
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2

= ∗2 + 2
∗


³
−1

 
−12
1 + 211

´
+
³
−1

 
−12
1 + 211

´2
= ∗2 +

¡
−12



¢ ³
−1

 
−12
1 + 211

´
+
³
−1

 
−12
1 + 211

´2
where ∗ =

1


P

=1 (). Hence, by Assumptions 4, 8 and 9,

̂2( ) = ∗2( ) +

¡
−22
¢


¡
−12



¢ ³
−1

 
−12
1 + 211

´
+
³
−1

 
−12
1 + 211

´2
= ∗2( ) + 

¡
−12

¢
uniformly in  , where
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Then similar to (A12), we can show
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∗
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uniformly over  ∈ T , and thus

∗21 =
³√

̄
32

 22

´−1
(∗21 + (1)) = 

¡
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¢
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Now we consider ∗22. Let
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¤ | 
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thus, for a given , () is a degenerate -process for which the kernel function is of the

VC type with an integrable envelope, then by Theorem 3.2 of Arcones and Giné (1994), we

obtain,

Pr

Ã°°°°° 12

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 () ()

°°°°° ≥ −1
 ln2

!
≤ 1 exp(−2 ln2) ≤ −3



for large enough . Therefore, we can deduce that there is a set Ω with Pr (Ω) = 
¡
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

¢
,
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 ln2

¢
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In addition, similar to (A14), we can show that
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Therefore,
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i
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Collecting the above results establishes Lemma A5.
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Proof of Theorem 2: We first establish the uniform consistency of ̂( ) over  ∈ T for
a given  ∈ U . From Lemma A1, we have

̂(   ) =
1


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¸
 = (   ) +  (1)

uniformly over (  ). For a fixed  , Assumptions 5 and 6 and standard argument in Newey

and McFadden (1994) yields the consistency of ̂( ). From Lemma A.1 in Carroll et al.

(1997), we can deduce that ̂( ) − ( ) =  (1) uniformly over T . Next, a Taylor
expansion of the estimating equation yields

̂( ) = ̂

³
̂( )− ( )

´
uniformly over  ∈ T with probability approaching one, where

̂( ) =
1


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∙
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− 

¸
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̄ =
1

2
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Ã
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2

!


0


with ̄( ) being on the line segment between ̂( ) and ( ). The consistency ̂( )

and Lemma A2 yields ̄ =  +  (1) uniformly over  ∈ T , where the singular values
of  are uniformly bounded away from zero in absolute values. Hence³

̂( )− ( )
´
=
¡


0


¢−1
0
 ̂( ) + 

³
̂( )

´
uniformly over  ∈ T with probability approaching one.
Now we consider ̂( ). By a Taylor expansion, we obtain

̂( ) = ( ) + ̂1( ) + ̂2( ) + ̂3( )

where
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̂2( ) =
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002

µ
̄1()− 0( )

2

¶
 (̂1()− 1())

3

where ̄1() is between ̂1() and 1()

By Lemma 1 and Assumption 9, we have

̂3( ) = 

µ
3
32

¶
= 

¡
−32
¢


³

−32
 + 311

´
= 

¡
−12

¢
.

In addition, Lemmas A4 and A5 state that ̂1( ) = 
¡
−12

¢
and ̂2( ) = 

¡
−12

¢
,

and Lemma 3 states

( ) =
1



X
=1

£
1
©
1()  0( )

ª− 
¤
 + 

¡
−12

¢
uniformly over  ∈ T . Consequently, we obtain

√

³
̂( )−  ( )

´
=

¡
0



¢−1
0


1√


X
=1

¡
1
©
1()  0 ( )

ª− 
¢
 +  (1)

uniformly over  ∈ T .
Define

( ) =
1√


¡
1
©
1()  0 ( )

ª− 
¢


=
1√


¡
1
©
1()  01 ( )

ª− 
¢


2( 1  2) =

X
=1

 [(  1)− (  2)]
2

and

2( 1  2) = ( 2 −  1)(1−  2 +  1)
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Then it is straightforward to verify the conditions of Theorem 10.6 in Pollard (1990) and we

obtain

1√


X
=1

¡
1
©
1()  0 ( )

ª− 
¢
 =⇒ G (·) , in l∞ (T )

where G (·) is a zero-mean Gaussian process with uniformly continuous sample paths and
covariance function Σ(   0) = [min (   0)−  0]. Finally, Theorem 2 follows from the

Slustky Theorem.

Proof of Theorem 3: Lemma A2 and the consistency of ̂( ) imply that ̂ converges

in probability uniformly over  . In addition, by Assumption 7 we have ̂ → . Then,

Theorem 3 follows easily.
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Table I: The Exogenous Case

Quantile () (25 50) (50 50) (50 100) (100 50)

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 05) -1.049 -0.0453 0.6700 -0.0367 0.4740 -0.0107 0.4151 -0.0340 0.3249

(03 05) -0.524 -0.0084 0.6358 -0.0008 0.4497 -0.0152 0.4044 0.0132 0.3038

(03 07) 0.000 0.0493 0.6797 0.0490 0.4858 0.0037 0.4228 0.0642 0.3542

(05 03) 0.524 -0.0322 0.6635 -0.0387 0.4819 -0.0192 0.4187 -0.0457 0.3130

(05 05) 0.000 -0.0097 0.6069 -0.0030 0.4361 -0.0112 0.3935 -0.0033 0.3009

(05 07) 0.524 0.0165 0.6479 0.0275 0.4862 -0.0070 0.4222 0.0411 0.3285

(07 03) 0.000 -0.0512 0.6860 -0.0333 1.0857 -0.0270 0.4182 -0.0580 0.3231

(07 05) 0.524 -0.0228 0.6261 -0.0069 0.4464 -0.0175 0.3997 -0.0207 0.3054

(07 07)) 1.049 0.0120 0.6841 0.0362 0.4940 -0.0071 0.4287 0.0310 0.3319

() (100 100) (100 200) (200 100) (200 200)

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 03) -1.049 -0.0202 0.2966 -0.0050 0.2807 -0.0296 0.2143 -0.0039 0.1930

(03 05) -0.524 -0.0046 0.2881 -0.0071 0.2534 -0.0001 0.1998 0.0095 0.1847

(03 07) 0.000 0.0266 0.3380 0.0015 0.2684 0.0297 0.2394 0.0166 0.1942

(05 03) -0.524 -0.0300 0.2931 -0.0084 0.2746 -0.0273 0.2033 -0.0086 0.1942

(05 05) 0.000 -0.0138 0.2874 -0.0041 0.2573 -0.0033 0.1978 0.0074 0.1847

(05 07) 0.524 0.0081 0.3102 -0.0030 0.2680 0.0153 0.2014 0.0122 0.1957

(07 03) 0.000 -0.0342 0.3093 -0.0095 0.2744 -0.0337 0.2060 -0.0104 0.1965

(07 05) 0.524 -0.0180 0.2847 -0.0099 0.2575 -0.0096 0.1997 0.0011 0.1895

(07 07) 1.049 0.0134 0.3062 -0.0083 0.2721 0.0129 0.2150 0.0129 0.1951
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Table II: The Endogenous Case with 0 = 1

Quantile () (25 50) (50 50) (50 100) (100 50)

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 05) -1.049 -0.172 0.855 -0.126 0.592 -0.068 0.491 -0.109 0.409

(03 05) -0.524 -0.082 0.819 -0.068 0.563 -0.060 0.482 -0.056 0.396

(03 07) 0.000 0.001 0.846 -0.022 0.590 -0.053 0.527 -0.004 0.412

(05 03) -0.524 -0.161 0.820 -0.138 0.567 -0.067 0.476 -0.108 0.377

(05 05) 0.000 -0.082 0.786 -0.087 0.546 -0.062 0.473 -0.077 0.377

(05 07) 0.524 -0.022 0.835 -0.042 0.572 -0.059 0.512 -0.038 0.405

(07 03) 0.000 -0.201 0.842 -0.150 0.580 -0.084 0.490 -0.138 0.406

(07 05) 0.524 -0.097 0.819 -0.097 0.575 -0.067 0.483 -0.082 0.415

(07 07)) 1.049 -0.034 0.880 -0.055 0.605 -0.057 0.509 -0.043 0.443

() (100 100) (100 200) (200 100) (200 200)

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 03) -1.049 -0.0826 0.3250 -0.0693 0.3011 -0.0776 0.2381 -0.0587 0.2149

(03 05) -0.524 -0.0760 0.3237 -0.0657 0.2985 -0.0604 0.2272 -0.0530 0.2111

(03 07) 0.000 -0.0605 0.3557 -0.0620 0.3203 -0.0420 0.2538 -0.0413 0.2279

(05 03) -0.524 -0.0971 0.3161 -0.0685 0.2932 -0.0818 0.2240 -0.0579 0.2059

(05 05) 0.000 -0.0806 0.3180 -0.0674 0.2925 -0.0700 0.2199 -0.0519 0.2035

(05 07) 0.524 -0.0611 0.3469 -0.0598 0.3208 -0.0580 0.2503 -0.0481 0.2223

(07 03) 0.000 -0.1031 0.3202 -0.0728 0.3001 -0.0885 0.2316 -0.0635 0.2115

(07 05) 0.524 -0.0867 0.3225 -0.0681 0.2962 -0.0748 0.2287 -0.0536 0.2080

(07 07) 1.049 -0.0779 0.3537 -0.0627 0.3336 -0.0599 0.2523 -0.0509 0.2252
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Table III: The Endogenous Case with 0 = 05

Quantile () (25 50) (50 50) (50 100) (100 50)

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 05) -1.049 -0.1097 0.8683 -0.0830 0.6039 -0.0359 0.5064 -0.0885 0.4241

(03 05) -0.524 -0.1155 0.8471 -0.0871 0.5810 -0.0788 0.5001 -0.0673 0.4112

(03 07) 0.000 -0.0897 0.8928 -0.0779 0.6222 -0.1049 0.5558 -0.0397 0.4288

(05 03) -0.524 -0.1157 0.8427 -0.1065 0.5800 -0.0403 0.4925 -0.0837 0.3920

(05 05) 0.000 -0.1119 0.8107 -0.1080 0.5718 -0.0828 0.4966 -0.0906 0.3906

(05 07) 0.524 -0.1086 0.8820 -0.0989 0.5924 -0.1108 0.5378 -0.0702 0.4197

(07 03) 0.000 -0.1414 0.8621 -0.1161 0.6042 -0.0557 0.5060 -0.1157 0.4195

(07 05) 0.524 -0.1285 0.8521 -0.1181 0.6000 -0.0903 0.5098 -0.0964 0.4306

(07 07)) 1.049 -0.1193 0.9194 -0.1157 0.6280 -0.1088 0.5366 -0.0773 0.4618

() 100,100 100,200 200,100 200,200

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 03) -1.049 -0.0641 0.3346 -0.0573 0.3112 -0.0670 0.2453 -0.0517 0.2216

(03 05) -0.524 -0.0892 0.3357 -0.0818 0.3099 -0.0681 0.2337 -0.0614 0.2169

(03 07) 0.000 -0.0914 0.3719 -0.0926 0.3345 -0.0617 0.2618 -0.0593 0.2355

(05 03) -0.524 -0.0835 0.3288 -0.0577 0.3049 -0.0732 0.2317 -0.0500 0.2125

(05 05) 0.000 -0.0956 0.3316 -0.0828 0.3057 -0.0793 0.2268 -0.0614 0.2095

(05 07) 0.524 -0.0925 0.3611 -0.0905 0.3370 -0.0781 0.2600 -0.0670 0.2303

(07 03) 0.000 -0.0878 0.3335 -0.0591 0.3046 -0.0790 0.2388 -0.0562 0.2177

(07 05) 0.524 -0.0997 0.3345 -0.0842 0.3101 -0.0828 0.2350 -0.0618 0.2149

(07 07) 1.049 -0.1108 0.3711 -0.0928 0.3424 -0.0776 0.2624 -0.0711 0.2319
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Table IV: The Endogenous Case with 0 = 15

Quantile () (25 50) (50 50) (50 100) (100 50)

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 05) -1.049 -0.2765 0.8581 -0.1959 0.5900 -0.1183 0.4911 -0.1461 0.4017

(03 05) -0.524 -0.0478 0.8012 -0.0436 0.5467 -0.0348 0.4684 -0.0419 0.3856

(03 07) 0.000 0.1169 0.8221 0.0648 0.5667 0.0210 0.5039 0.0477 0.4003

(05 03) 0.524 -0.2491 0.8286 -0.1963 0.5631 -0.1139 0.4748 -0.1455 0.3711

(05 05) 0.000 -0.0489 0.7694 -0.0628 0.5305 -0.0355 0.4568 -0.0596 0.3667

(05 07) 0.524 0.0994 0.8034 0.0404 0.5549 0.0129 0.4905 0.0141 0.3914

(07 03) 0.000 -0.2906 0.8528 -0.2086 0.5727 -0.1303 0.4855 -0.1754 0.4011

(07 05) 0.524 -0.0605 0.7970 -0.0722 0.5590 -0.0401 0.4642 -0.0640 0.4051

(07 07)) 1.049 0.0904 0.8423 0.0318 0.5866 0.0146 0.4889 0.0128 0.4299

() (100 100) (100 200) (200 100) (200 200)

( )  ( ) Bias SD Bias SD Bias SD Bias SD

(03 03) -1.049 -0.1130 0.3233 -0.0917 0.2975 -0.0951 0.2344 -0.0730 0.2111

(03 05) -0.524 -0.0577 0.3146 -0.0475 0.2900 -0.0499 0.2229 -0.0407 0.2068

(03 07) 0.000 -0.0119 0.3436 -0.0175 0.3092 -0.0110 0.2476 -0.0138 0.2225

(05 03) -0.524 -0.1241 0.3119 -0.0902 0.2887 -0.0980 0.2200 -0.0718 0.2028

(05 05) 0.000 -0.0614 0.3090 -0.0486 0.2833 -0.0582 0.2161 -0.0396 0.1991

(05 07) 0.524 -0.0148 0.3359 -0.0158 0.3094 -0.0274 0.2421 -0.0193 0.2164

(07 03) 0.000 -0.1307 0.3147 -0.0968 0.3016 -0.1052 0.2280 -0.0775 0.2086

(07 05) 0.524 -0.0691 0.3134 -0.0482 0.2865 -0.0631 0.2249 -0.0416 0.2030

(07 07) 1.049 -0.0290 0.3400 -0.0179 0.3254 -0.0298 0.2447 -0.0214 0.2194
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