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Abstract

This paper investigates the estimation of average treatment effects on the treated (ATT) from

the panel data in the presence of latent group structures, where potential outcome distributions

depend on latent types. We examine a scenario where the parallel trends assumption holds when

conditioned on latent types, but may not be maintained in aggregate, resulting in an inconsistent

standard difference-in-difference estimator. We demonstrate that the latent group-specific ATT

(LGATT) can be identified if parallel trend assumptions and other regularity conditions are met

for latent types. We present the conditions under which latent group structures are identified

from the pre-treatment period data. We propose an estimator for the LGATT that minimizes

a weighted least squares criterion function, using weights derived from the estimated posterior

probabilities of each latent type using pre-treatment data.

1 Introduction

The Difference-in-Differences (DiD) method is among the most widely used techniques for evalu-

ating the causal effect of policy changes in non-experimental settings within empirical economics

(Currie et al., 2020). As reviewed by Roth et al. (2023), numerous recent methodological papers

have been written on DiD methods, relaxing some of the assumptions inherent in the canonical

DiD model with two time periods (e.g., Sun and Abraham, 2021; Callaway and Sant’Anna, 2021;

Goodman-Bacon, 2021).

A key requirement for the DiD method is the parallel trends assumption. If this assumption is

violated, the estimates derived from the DiD method may be biased, leading to incorrect inferences

about the causal effect of the treatment. Although the parallel trends assumption cannot be

directly tested—it involves the counterfactual outcome of the treatment group in the absence of

treatment—its validity is often assessed indirectly through pre-treatment trends.

∗We thank Wenhui Bao and Jiayun Xu for excellent research assistance. All mistakes are our own.
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A prevalent issue with current methods for conducting pre-trend analysis is the lack of guidance

on how to proceed in the presence of a significant pre-trend. Even when statistical tests on pre-

trends suggest that parallel trends may not hold, researchers may still be interested in understanding

the treatment effect, especially when the deviation from parallel trends is minimal. However, there

is currently no consensus on how to proceed with this type of analysis, and the conventional

approach offers little guidance in such circumstances.

This paper proposes a new DiD method with latent group structures, which is applicable in situ-

ations where the parallel trends assumption is violated in aggregate. Our proposed method weakens

the conventional parallel trends assumption by classifying units into a set of latent groups—such

that within a group, the first differenced outcomes for the treated and control units follow the same

distribution in the pre-treatment period. This ensures that the pre-trend holds conditional on a

latent type.

By considering the multi-period setting with staggered treatment adoption (e.g., Callaway and

Sant’Anna, 2021), the causal parameter of our interest in this paper is the Latent group average

treatment effects on the treated (LGATT) for latent type j and the treatment timing cohort

g defined by

µjg,t = E

Yit(g)− Yit(0)

∣∣∣∣∣∣∣ Gi = g︸ ︷︷ ︸
treated at g

, Zi = j︸ ︷︷ ︸
latent type

 for t = g, g + 1, ..., T ,

where {Yit(g) : g ∈ G} is a potential outcome across different treatment timings, where g = 0

indicates that the unit is “never treated,” Dit ∈ {0, 1} is the binary treatment variable, Gi ∈
{0,

¯
g,
¯
g + 1, ..., ḡ} is the treatment timing, and Zi ∈ {1, 2, ..., J} is latent type. Once the LGATT

is estimated, we may aggregate them across latent types and treatment timing cohorts using user-

specified weights to estimate a target parameter of economic interest.

We derive the conditions under which latent structures and the LGATT are identified from the

short panel data. The key identification condition for latent structures is that the observed outcome

follows a Markov process, where we analyze a sufficient condition for the Markov assumption in

the potential outcome framework. Based on our identification analysis, we propose an estimator

that minimizes a weighted least squares criterion function as

(γ̂j(g),∆δ̂j) = arg min
∆δj ,γj(g)

∑
i∈Ig

T∑
t=g

(∆Yit −∆δjt − γjg,tDit)
2τ̂ ji , (1)

where Ig := {i : Gi ∈ {0, g}} is a set of indices for the units with Gi = 0 or g in the sample, τ̂ ji is an

estimated posterior type probability of being the j-th latent type obtained from the pre-treatment
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period’s data. Then, the LGATT for latent type j and timing cohort g is estimated as

µ̂jg,t =
t∑

s=g

γ̂jg,s for t ≥ g.

The estimator γ̂j(g) in equation (1) is a version of two-way fixed effects estimator based on the

first-differenced transformation to eliminate individual unit’s fixed effect while using the latent

type-specific posterior-probabilities as weights. We establish consistency and asymptotic normality

of our estimator when the data in the pre-treatment periods is generated follows a Gaussian finite

mixture model.

A standard two-way fixed effects estimator for the DiD is formulated as

(µ̂did, α̂, δ̂t) = argmin
µ,α,δ

N∑
i=1

T∑
t=1

(Yit − αi − δt − µtDit)
2.

When the number of latent type is one (i.e., J = 1), our estimator in (1) implements a version of

two-way fixed effects estimator for the DiD based on the first differenced transformation by solving

argmin
γ,δ

∑N
i=1

∑T
t=1(∆Yit −∆δt − γtDit)

2.

Our proposed estimator is also closely related to but distinct from the Synthetic DiD by

Arkhangelsky et al. (2021):

(µ̂sdid, α̂, δ̂t) = argmin
µ,α,δ

N∑
i=1

T∑
t=1

(Yit − αi − δt − µtDit)
2ω̂sdid

i λ̂sdidt .

Here, ω̂sdid
i is chosen such that the average outcome of control units aligns with those of the treated

units in the pre-treatment periods, i.e.,
∑Nco

i=1 ωitYit ≈
∑N

i=Nco+1 Yit for the pre-treatment period,

where Nco is the number of control units. This is achieved by assigning higher weights to control

units that exhibit similar pre-trends to treated units on average.1 Instead of constructing synthetic

control units that average similar pre-trends to the treated units for the entire sample, our method

categorizes treated and control units into a finite number of latent classes. Within a latent class,

both treated and control units share similar pre-trends.

Our method offers advantages over the Synthetic DiD. Firstly, the consistency and asymptotic

normality of the Synthetic DiD require long panel data, where the length of pre-treatment periods

needs to grow to infinity for the asymptotic approximation to be valid. This is a significant

disadvantage of the Synthetic DiD in practice, as the length of pre-treatment periods is often short

in many empirical applications. In contrast, we demonstrate that, under regularity conditions,

the LGATT is identified from short panel data—as short as six pre-treatment periods—and our

inference procedure is valid even when the length of panel data is short. Secondly, our method allows

1In the Synthetic DiD, λ̂sdid
t balances pre-treatment time periods with post-treatment periods. See Section 2 of

Arkhangelsky et al. (2021).
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us to estimate the average treatment effects on the treated separately for each latent group, aiding

our understanding of the extent to which the treatment effects are heterogeneous across different

units. However, our method also has disadvantages over the Synthetic DiD method in that we

require the first-differenced observed outcome to follow a Markov process, which in turn implies

that potential outcomes need to have limited dependence over time. Furthermore, for practical

implementation, we estimate the posterior probabilities of being each of latent types based on

parametric models.

While our DiD estimator relaxes the parallel trends assumption by assuming that it holds

conditional on an unobserved latent group, some papers propose DiD estimators that are valid

when the parallel trends assumption holds conditional on observed covariates (Heckman et al.,

1997, 1998; Abadie, 2005; Sant’Anna and Zhao, 2020). These methods are extended to staggered

DiD setups by Callaway and Sant’Anna (2021) and Wooldridge (2021).

Several recent studies have explored alternative approaches for situations where the parallel

trends assumption might be violated. Rambachan and Roth (2023) discuss the extent to which

outcomes are affected by the violation of parallel trends and suggest a sensitivity analysis tode-

termine the magnitude of post-treatment parallel trends violation that would nullify a specific

conclusion. Roth and Sant’Anna (2023) investigate the conditions under which parallel trends can

be maintained for all monotonic transformations of the outcome. Roth (2022) has also developed

tools for conducting power analyses and estimating potential distortions from pre-testing under

hypothesized violation of parallel trends.

Bonhomme and Manresa (2015) introduced a flexible yet parsimonious approach for modeling

unobserved heterogeneity in linear panel data models, known as Grouped Fixed-Effects (GFE). In

their conclusion, they suggested potential applications of GFE in difference-in-difference designs as

a means to relax parallel trend assumptions in the conclusion section. However, to the best of our

knowledge, no existing studies have formally applied the GFE approach in a difference-in-difference

context. Expanding on this idea, our study addresses the identification issue that arises when the

time dimension of panel data is limited and proposes an estimator based on soft classifications, with

posterior probabilities of each latent type constructed from pre-treatment data. It is important

to note that the GFE method necessitates conditions where both the cross-sectional and time

dimensions of the panel tend towards infinity. In contrast, our study considers a setup where the

time-dimension is fixed.

To illustrate our method in an empirical context, we revisit Biasi and Moser (2021) that studies

the impact of copyrights on science by exploiting an exogenous change toward weaker copyrights

during the World War II. We also reevaluate the impact of the Chinese Wikipedia blockade in

mainland China on the contributions of Chinese-speaking users in regions including Taiwan, Hong

Kong, Singapore, and beyond, as examined by Zhang and Zhu (2011).

We have developed an R package for LGATT estimation, which is available at the following

GitHub repository: https://github.com/bayesiahn/groupdid/. For replication purposes, the codes

for both the numerical simulations and the empirical example presented in this paper are provided
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as R markdown files.2

The remainder of this paper is structured as follows: Section 2 introduces a potential outcome

model with latent group structures. Section 3 provides identification analysis. In Section 4, we

develop an estimator. Section 5 presents simulation results, and Section 6 follows with empirical

applications.

Example

Suppose that an econometrician would like to estimate the impact of a public policy. For illus-

tration, let us consider a three-period model such that outcomes of individual i, Yit, represent

pre-treatment observations in the first two periods t = 1, 2 and post-treatment observation for

t = 3. With the potential outcome notation, let Yit(1) denote the potential outcome of unit i in

t period when the unit is exposed to the treatment in period 3. Likewise, let Yit(0) denote the

potential outcome when unit i remains untreated for all periods.

Consider a public policy that is introduced just after the t = 2 period to unit i, leading to

treatment effects Yi3(1) − Yi3(0). Suppose that the outcome Yit in period t is determined by the

following model:

Yit(0)− Yit−1(0) = Dit [Yit(1)− Yit(0)]︸ ︷︷ ︸
treatment effects

+ηit,

where Dit is one if ith unit is treated in period t and zero otherwise, and ηit is an idiosyncratic

shock. We assume that ηit is independent of Dit and Yit−1 for all t and i. For the rest of the

example, let Di denote the treatment status of the ith unit, i.e., Di = Di3.

Throughout the example, we assume that there are two types of individuals indexed by Zi ∈
{1, 2} such that E[ηit | Zi = j] = ∆δjt all j = 1, 2. The type Zi here captures differences in the

trends in outcomes, with ∆δ1t < ∆δ2t for all t. We also allow for heterogenous treatment effects

across groups, with µj = E [Yi3(1)− Yi3(0) | Zi = j,Di = 1]. Note that the aggregate treatment

effects on the treated (ATT) µ can be written as:

µ = E [Yi3(1)− Yi3(0) | Di = 1]

=

2∑
j=1

E [Yi3(1)− Yi3(0) | Di = 1, Zi = j] Pr(Zi = j | Di = 1)

=

2∑
j=1

µj Pr(Zi = j | Di = 1),

which is the weighted average of the treatment effects across groups, where the weights are the

probabilities of belonging to each group as treated units.

2These can be found in the ’examples/simulation’ and ’examples/wikipedia’ directories, respectively.
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Selection into Treatment. We revisit classic critique of difference-in-differences estimators due

to selection bias (LaLonde, 1986). Suppose that the government introduces a job-training program

for low-income households to enhance their job skills to improve earnings. Let Yit denote the income

level of individual i in period t. The program is targeted to households with income in period 2,

Yi2, below a certain threshold, B > 0. The DiD estimate of the ATT then identifies:

µDiD = E[Yi3 − Yi2 | Di = 1]− E[Yi3 − Yi2 | Di = 0]

= E[Yit(1)− Yit(0) + ηi3 | Di = 1]− E[ηi3 | Di = 0]

= (µ1 +∆δ13) Pr(Zi = 1 | Di = 1) + (µ2 +∆δ23) Pr(Zi = 2 | Di = 1)

−∆δ13 Pr(Zi = 1 | Di = 0)−∆δ23 Pr(Zi = 2 | Di = 0)

= µ︸︷︷︸
ATT

+(∆δ23 −∆δ13) [Pr(Zi = 1 | Di = 0)− Pr(Zi = 1 | Di = 1)]︸ ︷︷ ︸
selection bias

The later term can add negative bias to the DiD estimate if selection into treatment is present.

Since the program is targeted to households with lower income, unit i is more likely to belong to

the first type Zi = 1 if she was given treatment, i.e., Pr(Zi = 1 | Di = 1) > Pr(Zi = 2 | Di = 1),

if income levels are positively correlated with their changes. Likewise, we have Pr(Zi = 1 | Di =

0) < Pr(Zi = 2 | Di = 0), which implies that Pr(Zi = 1 | Di = 0) < Pr(Zi = 1 | Di = 1), i.e., the

latter term is negative. Hence, the DiD estimate of the ATT is biased downward in this case.

In fact, in this example, the parallel trends assumption does not hold. In our context, the parallel

trends assumption can be stated as E [Yi3(0)− Yi2(0) | Di = 1] = E [Yi3(0)− Yi2(0) | Di = 0], i.e.,

the mean trends in untreated potentials are identical between treated and control groups. The

difference in the mean trends can be written as

E [Yi3(0)− Yi2(0) | Di = 1]− E [Yi3(0)− Yi2(0) | Di = 0]

= E [Yi3(0)− Yi2(0) | ∆Yi2 ≤ B]− E [Yi3(0)− Yi2(0) | ∆Yi2 > B]

=
2∑

j=1

∆δj2 [Pr(Zi = j | Di = 1)− Pr(Zi = j | Di = 0)]

= (∆δ22 −∆δ12) [Pr(Zi = 1 | Di = 0)− Pr(Zi = 1 | Di = 1)] ,

which is strictly negative if Pr(Zi = 1 | Di = 0) < Pr(Zi = 1 | Di = 1) as above.

2 The Model

The setup expands on that of Callaway and Sant’Anna (2021). Consider a model with T periods,

where t ∈ T := {1, 2, ..., T} represents a specific time period. Unit i belongs to one of J latent

groups, where the number of latent types J is assumed to be known by the econometrician. Let

Zi ∈ J := {1, ..., J} indicate the latent group to which unit i belongs, referred to as the latent
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type. The population probability of being the j-th latent type is denoted by πj := Pr(Zi = j) for

j = 1, 2, ..., J .

Each unit may receive a binary treatment at different periods or may never be treated within

the T periods. Let Dit be a binary indicator for the i-th unit’s treatment status at t and let Gi be

the period in which unit i receives her treatment for the first time. We assume that treatment is

an absorbing state, i.e., once a unit is treated, then it remains treated for the rest of periods:

Dit =

{
0 if t < Gi or Gi = 0,

1 if t ≥ Gi.

If unit i is never treated within the sample period, we denote the never treated unit with Gi = 0.

The econometrician observes an outcome Yit and treatment timing Gi but does not observe unit

i’s latent type Zi. We call a set of units that are first treated in time g as cohort g. Gi takes a

value on G = {
¯
g, ..., ḡ, 0}, where

¯
g and ḡ denote the earliest and latest first-time treatment periods

across all units within the sample period, where 1 ≤
¯
g ≤ ḡ ≤ T . When

¯
g = ḡ, all treated units

receive their first-time treatment in the same period.

We adopt the potential outcomes framework of Robins (1986), where the potential outcome may

depend on the entire sequence of treatment assignments over the T periods. Denote unit i’s potential

outcome in period t if she is treated for the first time at time g by Yit(0g−1,1T−g+1), where 0g−1

and 1T−g+1 denote a vector of zeros and ones with length g−1 and T −g+1, respectively. Because

treatment is an absorbing state, the sequence of treatment assignments is solely determined by the

first treatment period. Therefore, we simplify notation by denoting Yit(g) := Yit(0g−1,1T−g+1) and

Yit(0) := Yit(0T ). With this notation, the observed outcome Yit is related to potential outcomes

as:

Yit =
∑
g∈G

I{Gi = g}Yit(g). (2)

The joint distribution of potential outcomes, {(Yit(
¯
g), Yit(

¯
g+1), ...., Yit(ḡ), Yit(0)) : t = 1, ..., T},

is assumed to be the same within the identical latent group but may be different between latent

groups. The causal estimand of our primary interest is the latent group average treatment

effects on treated (LGATT) for latent group j and cohort g:

µjg,t = E [Yit(g)− Yit(0) | Gi = g, Zi = j] for t = g, g + 1, ..., T , (3)

where g ∈ G\{0}, and j ∈ J . We are also interested in estimating the average treatment effects on

treated (ATT) for cohort g:

E [Yit(1)− Yit(0) | Gi = g] =
J∑

j=1

Pr(Zi = j|Gi = g)µjg,t.

There are two difficulties in identifying the treatment parameter µjg,t from the observed data.
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First, we are not able to observed the untreated potential outcome Yit(0) for the unit treated after

time g. Second, we are not able to observe the latent type Zi.

If we know the latent type, then we may identify the treatment parameter µjg,t by imposing a

set of assumptions similar to those adopted in the recent difference-in-differences literature (e.g.,

Callaway and Sant’Anna, 2021; Roth et al., 2023). In particular, we assume that the parallel trends

holds within each of latent groups, i.e., untreated potential outcomes are parallel to the treated

potential outcomes within a latent group.

Assumption 1. (Latent-type specific parallel trends) For all t, t′ ∈ T , all j ∈ J , and all g ∈ G,

E [Yit(0)− Yit′(0) | Gi = g, Zi = j] = E [Yit(0)− Yit′(0) | Gi = 0, Zi = j] . (4)

This assumption corresponds to Assumption 4 of Callaway and Sant’Anna (2021) but we require

that the parallel trends hold when conditioned on latent types. Crucially, the parallel trends are

presumed not only for post-treatment but also for pre-treatment periods. This is because, in

our identification analysis, latent structures are determined to ensure that parallel trends during

pre-treatment periods hold within each latent group.

Even when the parallel trends assumption holds within each latent group, the parallel trends

assumption does not generally hold in aggregate as shown in the following example.

Example 1. Suppose that there are two latent types with J = {1, 2} and the timing of receiv-

ing treatment is the same across all units with G = {0, g} for some g ∈ T . If Assumption

1 holds, Pr(Zi = 1|Gi = g) ̸= Pr(Zi = 1|Gi = 0), and E [Yit(0)− Yit′(0) | Gi = 0, Zi = 1] ̸=
E [Yit(0)− Yit′(0) | Gi = 0, Zi = 2], then

E [Yit(0)− Yit′(0) | Gi = g] ̸= E [Yit(0)− Yit′(0) | Gi = 0] .

Figure 2 provides a graphical representation of Example 1 using a potential outcome model

(12)-(13) with two latent types and three periods. In the left figure, the parallel trends assumption

holds within each latent group, as evidenced by the blue and red lines signifying the first and

second latent types, respectively, and the solid and dotted lines denoting treated and untreated

units, respectively. Conversely, the right figure demonstrates the violation of the parallel trends

assumption at the aggregate level when latent types are not taken into account.

This example demonstrates the usefulness of our proposed DiD method within latent groups.

By identifying the latent structure that satisfies Assumption 1, we can estimate the causal effect

by applying the DiD method within each latent group, even when the parallel trends assumption

is not met at the aggregate level.

Additionally, we assume that the treatment status has no influence on observations prior to its

implementation, i.e., there is no anticipation of treatment in treated observations.

Assumption 2. (No anticipatory effects) For all g ∈ G and t ∈ {1, ..., g − 1}, Yit(g) = Yit(0).
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Figure 1: Parallel trends assumption holds within each latent group but not in aggregate.
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Notes: The figure is generated using a potential outcome model (12)-(13) with two latent types
and three periods, where the treatment occurs at t = 3. The parameters employed are:
π1 = π2 = 0.5, δjt = 2× j × t for j = 1, 2, E[ϵ2it] = 1, and µjt = t− 1 if t = 3. Treatment is assigned
for individuals with ∆Yi2 < B where B = 3. In the left figure, the parallel trends assumption is
satisfied within each latent group, with blue and red lines representing the first and second latent
types, respectively, and solid and dotted lines indicating treated and untreated units, respectively.
The right figure illustrates the violation of the parallel trends assumption at the aggregate level
when latent types are not conditioned on.
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To guarantee the identification of latent type-specific treatment parameters, we assume that

the conditional probability of receiving the first treatment at g or never receiving the treatment,

given the latent type, is bounded away from both zero and one.

Assumption 3. (Overlap) There exists a positive constant ϵ > 0 such that ϵ < Pr(Gi = g|Zi =

j) < 1− ϵ for all g = G and j ∈ J .

Under Assumptions 1-3, we may show that, for g =
¯
g, ..., ḡ and t ≥ g, the LGATT is written

as:3

µjg,t = E [Yit(g)− Yit(0) | Gi = g, Zi = j]

= E [Yit − Yi,g−1 | Gi = g, Zi = j]︸ ︷︷ ︸
the j-th group change for Gi=g

−E [Yit − Yi,g−1 | Gi = 0, Zi = j]︸ ︷︷ ︸
the j-th group change for Gi=0

. (5)

Consequently, the LGATT can be identified using the average difference-in-differences in the ob-

served outcomes between the treatment group (Gi = g) and the control group (Gi = 0), conditional

on the latent variable Zi. Since Zi is not directly observable, it is necessary to identify the under-

lying latent group structure to estimate the LGATT.

We write µjg,t in terms of telescoping sums as

µjg,t =

t∑
s=g

γjg,s,

where

γjg,s := E [∆Yis | Gi = g, Zi = j]− E [∆Yis | Gi = 0, Zi = j] (6)

with ∆Yis := Yis − Yi,s−1.

The identification of γjg,s depends on the first-differenced outcomes ∆Yit in (6). Thus, we focus

on these first-differenced outcomes, rather than the outcomes themselves, as the variables in our

dataset. Utilizing the parallel trends within each latent group, we identify latent structures where

different latent groups follow distinct trends.

In our analysis, we consider the scenario where ∆Y i := (∆Yi2, ...,∆YiT )
⊤ is a random vector

with its support ∆Y = (∆Y)T−1. Here, W i := (∆Y ⊤
i , Gi)

⊤ ∈ ∆Y × G denotes the vector of

3Note that

E [Yit(0) | Gi = g, Zi = j] = E [Yi,g−1(0) | Gi = g, Zi = j] + E [Yit(0)− Yi,g−1(0) | Gi = g, Zi = j]

= E [Yi,g−1(0) | Gi = g, Zi = j] + E [Yit(0)− Yi,g−1(0) | Gi = 0, Zi = j]

= E [Yi,g−1(g) | Gi = g, Zi = j] + E [Yit(0)− Yi,g−1(0) | Gi = 0, Zi = j]

= E [Yi,g−1 | Gi = g, Zi = j] + E [Yit − Yi,g−1 | Gi = 0, Zi = j] ,

where the second and third equalities follow from the parallel trends and no anticipatory effects as-
sumptions, respectively. Hence, we have µj

g,t = E [Yit(g) | Gi = g, Zi = j] − E [Yit(0) | Gi = g, Zi = j] =
E [Yit − Yi,g−1 | Gi = g, Zi = j]− E [Yit − Yi,g−1 | Gi = 0, Zi = j].
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first-differenced outcomes and treatment timing for unit i. Our model assumes that the data are

randomly sampled from a finite mixture model.

Assumption 4. (Random Sampling from a Finite Mixture Distribution) (a) We observe a sample

of n i.i.d. draws {W i}ni=1, whereW i
i.i.d.∼ FW (w), (b) The cumulative distribution function FW (w)

follows a finite mixture representation FW (w) =
∑J

j=1 π
jF j
W (w), where πj := Pr(Zi = j) and

F j
W (w) := Pr(W ≤ w|Zi = j), (7)

(c) F j
W (w) satisfies Assumptions 1-3 with the relationship between observed outcome and potential

outcomes given in (2). (d) The true number of components defined as the smallest integer J such

that the data distribution function admits the representation (7) is known.

In Assumption 4(d), we assume that the true number of components is known. In our analysis,

J denotes the true number of components.

3 Identification

For w = (∆y⊤, g)⊤ ∈ ∆Y × G, denote the conditional density function of ∆Y given Gi = g and

Zi = j by f j∆Y |G(∆y|g) and let pjg := Pr(Gi = g|Zi = j). Let

fW (w) :=
J∑

j=1

πjf jW (w) with f jW (w) := f j∆Y |G(∆y|g)p
j
g (8)

so that FW (w) =
∑J

j=1 π
j
∑

g′≤g

∫
∆y′≤∆y f∆Y |G(∆y

′|g′)pj(g′)d∆y′.
Let W s

2,i := (∆Yi2, ...,∆Yis, Gi)
⊤ ∈ (∆Y)s−1 × G for s ≤ T , and define

f jW s
2
(ws

2) :=

∫
...

∫
f jW (ws

2, ws+1, ..., wT )dws+1...dwT

for j = 1, ..., J .

Given the realized value W s
2,i = w

s
2,i, we may express the posterior probability of being type j

as

τ j(ws
2) := Pr(Z = j|W s

2 = w
s
2) =

πjf jW s
2
(ws

2)∑J
k=1 π

kfkW s
2
(ws

2)
, (9)

We characterize the LGATT in terms of the posterior probability of being type j given the pre-

treatment period’s observations. The following proposition suggests that if we are able to identify

the posterior type probability, τ j(ws
2), and the conditional probability of being type j given the

treatment timing Gi, we can then identify γjg,t, and consequently, µjg,t, from the observed data.

Assumption 5. ∆Yit is independent of {∆Yit−s : s ≥ 2}.

11



Proposition 1. Under Assumptions 1-5, for g =
¯
g, ..., ḡ, and for t = g, ..., T ,

γjg,t =
E
[
τ j(W g−2

2 )∆Yit | Gi = g
]

Pr(Zi = j | Gi = g)
−

E
[
τ j(W g−2

2 )∆Yit | Gi = 0
]

Pr(Zi = j | Gi = 0)
. (10)

The characterization of the LGATT in (10) relies on the identification of latent types from the

pre-treatment periods data.

Given the characterization in Propositions 1, we may identify γjg,t if we identify τ j(·) and

Pr(Zi = j | Gi = g)’s.

In order to identify τ j(·) and Pr(Zi = j | Gi = g), we impose the following Markov assumption.

Let f j∆Yit|∆Yi,t−1,...,∆Yi,t−s,G
(∆yit|∆yi,t−1, ...,∆yi,t−s, g) denote the conditional probability density

function of ∆Yit given Zi = j and (∆Yi,t−1, ...,∆Yi,t−s, Gi) = (∆yi,t−1, ...,∆yi,t−s, g) for 0 ≤ s ≤
t− 1.

Assumption 6. (Markov) For all j ∈ J , conditional on Zi = j, {∆Yit : t = 2, ..., T} follows a

(non-stationary) first-order Markov process conditional on Gi = g, i.e., for t = 2, ..., T and all

g ∈ G,

f j∆Yit|∆Yi,t−1,...,∆Yi,t−s,G
(∆yit|∆yi,t−1, ...,∆yi2, g) = f j∆Yit|∆Yi,t−1,G

(∆yit|∆yi,t−1, g).

Under Assumption 6, for w = (∆yi2, ...,∆yiT , g), the mixture model (8) is written as

fW (w) :=
J∑

j=1

πjpjgf
j
∆Yi2|G(∆yi2|g)

T∏
t=1

f j∆Yit|∆Yi,t−1,G
(∆yit|∆yi,t−1, g), (11)

where pjg := Pr(G = g|Z = j).

By extending the argument in Kasahara and Shimotsu (2009), Carroll et al. (2010), and Hu

and Shum (2012), we may establish the nonparametric identification of the mixture model (8) as

the following proposition states.

Proposition 2. Suppose that Assumptions 4, 6, and 11 holds. Then, we may uniquely identify

{πj , f jW (w) : j ∈ J } from f(w).

Because τ j(·) and Pr(Zi = j|G = g) can be identified from {πj , f jW (w) : j ∈ J }, in view of (5),

(10) and Proposition 3, we may identify γjg,t and µ
j
g,t from fW (w).

Proposition 3. Under Assumptions 1-6 and 11, we may uniquely identify γjg,t and µ
j
g,t from fW (w)

for all g ∈ G, t ≥ g, and j ∈ J .

4 Continuous Outcome

The conjunction of the Markov assumption, as detailed in Assumption 6, along with the parallel

trends and no anticipation assumptions, as outlined in Assumptions 1-2, forms the central identify-

12



ing assumption of this study. Under these assumptions, we now develop a regression specification

based on the potential outcomes framework and propose an estimator for the LGATT.

4.1 Regression specification and potential outcome framework

For the j-th latent type with Zi = j, decompose the potential outcome of untreated as

Yit(0) = δjt + αi + ϵit(0), (12)

where δjt is period-specific intercept for latent type j defined by δjt := E[Yit(0)|Zi = j], αi :=
1
T

∑T
t=1(Yit(0) − δjt ) for Zi = j is a random variable that is mean zero across units but time-

invariant within each unit, and ϵit(0) := Yit(0) − δjt − αi is a time-varying random variable. Note

that E[αi|Zi = j] = E[ϵit(0)|Z∗
i = j] = 0 by construction.

Given δjt and αi in (12), we express the treated potential outcomes as

Yit(g) = δjt + µjg,tDit + αi + ϵit(g), for t ≥ g and g =
¯
g, ..., ḡ, (13)

where µjg,t is defined by (5) while ϵit(g) is defined as

ϵit(g) := Yit(g)− δjt − µjg,tDit − αi.

In the following, for notational brevity, we focus on the subsample of the data set for Gi = g and

Gi = 0. When conditioned on Gi = g or Gi = 0, we have Yit = I{Gi = g}Yit(g) + I{Gi = 0}Yit(0).
Consequently, under Assumption 2, ∆Yit is written as

∆Yit = I{Gi = g}∆Yit(g) + I{Gi = 0}∆Yit(0)

=


∆Yit(0) if t ≤ g − 1,

Dig(Yig(g)− Yi,g−1(0)) + (1−Dig)∆Yig(0) if t = g,

Dig∆Yit(g) + (1−Dig)∆Yit(0) if t > g.

For t ≤ g − 1, using the notations in (12)-(13), ∆Yit is expressed as

∆Yit = ∆δjt +∆ϵit(0)︸ ︷︷ ︸
=ηit

. (14)

For t = g,

∆Yig = ∆δjg + µjg(g)︸ ︷︷ ︸
=γj

g(g)

Dig +Dig(ϵig(g)− ϵi,g−1(0)) + (1−Dig)∆ϵig(0)︸ ︷︷ ︸
:=ηig

. (15)

13



For t > g, noting that Dit = Di,t−1 when Gi = 0 or g,

∆Yit = ∆δjt +∆µjg,t︸ ︷︷ ︸
=γj

g,t

Dit +Dit∆ϵit(g) + (1−Dit)∆ϵit(0)︸ ︷︷ ︸
:=ηit

. (16)

Therefore, from (14)-(16), we have

∆Yit = ∆δjt + γjg,tDit + ηit for Zi = j. (17)

The following proposition states that ηit is mean-independent of Dit conditional on Zi = j

under the parallel trends and no-anticipation assumptions.

Proposition 4. (Mean independence) Suppose that Assumption 1-4 holds. Then, conditional on

Zi = j, ηit defined by (14)-(16) for t = 2, ..., T is mean independent of Dit.

Given the representation (17), the observed outcome {∆Yit : t = 2, ..., T} follows a first-order

Markov process when the regression residuals are serially independent.

Assumption 7. (ϵit(0), ϵit(g)) is independent of (ϵis(0), ϵis(g)) for all t ̸= s conditional on Gi = g

for all g ∈ G.

Assumption 7 implies Assumptions 5-6.

Proposition 5. Suppose that Assumptions 1-4, and 7 hold and the potential outcomes are generated

as in (12)-(13). Then, Assumption 5-6 holds.

Assumption 7 can be relaxed by requiring that (ϵit(0), ϵit(g)) is independent of (ϵis(0), ϵis(g))

for all t and s such that |t− s| ≥ r for some r ≥ 2 when the length panel data is sufficiently large.

Leveraging the result of Propositions 4 and 5, we are now poised to construct an estimator for

the LGATT.

4.2 Soft-classification estimator

Define the parameter θg := ((β1
g)

⊤, ..., (βJ
g )

⊤)⊤ ∈ Θθg with βj
g := ((∆δjg, γ

j
g,g), ..., (∆δ

j
T , γ

j
g,T ))

⊤

for j = 1, 2, ..., J and g ∈ G. Collect the parameter θg for g =
¯
g, ..., ḡ into a vector as ϑ :=

(θ⊤

¯
g , ...,θ

⊤
ḡ )

⊤ ∈ Θϑ :=
∏ḡ

g=
¯
g Θθg . Denote the true value of ϑ by ϑ0 = ((θ0

¯
g)

⊤, ..., (θ0ḡ)
⊤)⊤.

In view of (17) and Proposition 4, we may identify the true value of θg denoted by θ0g as

θ0g = arg min
θg∈Θθg

E

 J∑
j=1

I{Zi = j}
T∑
t=g

(
∆Yit −∆δjt − γjg,tDit

)2∣∣∣∣∣∣Gi ∈ {0, g}

 . (18)

14



By the law of iterated expectations, we have

E

 J∑
j=1

I{Zi = j}
T∑
t=g

(
∆Yit −∆δjt − γjg,tDit

)2∣∣∣∣∣∣Gi ∈ {0, g}


= E

 J∑
j=1

E

[
I{Zi = j}

T∑
t=g

(
∆Yit −∆δjt − γjg,tDit

)2∣∣∣∣∣W g−2
2,i

]∣∣∣∣∣∣Gi ∈ {0, g}


= E

 J∑
j=1

τ j(W g−2
2,i )

T∑
t=g

(
∆Yit −∆δjt − γjg,tDit

)2∣∣∣∣∣∣Gi ∈ {0, g}

 , (19)

where W g−2
2,i = (W i2, ....W i,g−2)

⊤, and the third equality follows from the independence between

W g−2
2,i and {W T

g,i, Dig, ..., DiT }. In view of this equation, the first order condition for the mini-

mization problem in (18) leads to the equation (10).

This suggests that we may estimate θg by minimizing the following sample analogue criterion

function of (18):

θ̂g = arg min
θg∈Θϑg

∑
i∈Ig

J∑
j=1

τ̂ jg (W
g−2
2,i )

T∑
t=g

(∆Yit −∆δjt − γjg,tDit)
2 for g =

¯
g, ..., ḡ, (20)

where Ig := {i : Gi ∈ {0, g}} is a set of indices for the units with Gi = 0 or g in the sample and

τ̂ jg (W
g−2
2,i ) is a consistent estimator for τ j(W g−2

2,i ).

Let ηit := ϵit(0)− ϵit−1(0) for t ≤ g − 2. For estimation, we assume that ηit follows a Gaussian

distribution conditional on ηit−1 and Zi:

Assumption 8. For t = 1, 2, ..., ḡ− 2, ηi2|Zi = j
iid∼ N(0, σ2ϵ ) and ηit|ηit−1, Zi = j

iid∼ N(ρηt−1, (1−
ρ2)σ2ϵ ).

Let ψ := (π1, ..., πJ−1, (∆δ1ḡ)
⊤, ..., (∆δJḡ )

⊤, ρ, σ2ϵ )
⊤ ∈ Θψ with ∆δjḡ := (∆δj2, ...,∆δ

j
ḡ−2)

⊤ and

πJ = 1 −
∑J−1

j=1 π
j . Denote the true value of ψ by ψ0. Assumption 8 with ϵit(0)

iid∼ N(0, σ2)

implies that ηit|ηit−1 ∼ N(ρηit−1, (1 − ρ2)σ2ϵ ) with ρ = 1/2. We estimate ψ using pre-treatment

observations by the maximum likelihood estimator as

ψ̂ = arg max
ψ∈Θψ

n∑
i=1

logL(W ḡ−2
2,i , Gi;ψ) (21)

with

L(W ḡ−2
2,i , Gi;ψ) :=

J∑
j=1

πj

I{Gi = 0}fḡ(W ḡ−2
2,i ; ∆δjḡ, σ

2
ϵ ) +

ḡ∑
g=

¯
g

I{Gi = g}fg(W g−2
2,i ; ∆δjg, σ

2
ϵ )

 ,
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where ∆δjg := (∆δj2, ...,∆δ
j
g−2)

⊤ and

fg(W
g−2
2,i ; ∆δjg, ρ, σ

2
ϵ ) :=

1

σϵ
ϕ

(
ηi2(∆δ

j
t )

σϵ

)
g−2∏
t=3

1√
1− ρ2σϵ

ϕ

(
ηit(∆δ

j
t )− ρηit−1(∆δ

j
t−1)√

1− ρ2σϵ

)

with ηit(∆δ
j
t ) := ∆Yit −∆δjt and ϕ(t) =: exp(−t2/2)/

√
2π.

The posterior probabilities of latent type j given W g−2
2 and G ∈ {0, g} depend on ψ as

τ jg (W
g−2
2 ;ψ) :=

πjfg(W
g−2
2 ; ∆δjg, ρ, σ

2
ϵ )∑J

k=1 π
kfg(W

g−2
2 ; ∆δkg , ρ, σ

2
ϵ )
, (22)

and we set τ̂ jg (W
g−2
2 ) := τ jg (W

g−2
2 ; ψ̂) in (20).

Let

mg(W
T
g , G;θg,ψ) := I{G ∈ {0, g}}∇θg

J∑
j=1

τ jg (W
g−2
2 ;ψ)

T∑
t=g

(∆Yt −∆δjt − γjg,tDt)
2,

s(W ḡ−2
2 , G;ψ) := ∇ψ⊤ logL(W ḡ−2

2 , G;ψ),

and define

Mθ,g := E[∇θ⊤mg(W
T
g , G;θ

0
g,ψ

0)], Mψ,g := E[∇ψ⊤mg(W
T
g , G;θ

0
g,ψ

0)], S := E[∇ψ⊤s(W
ḡ−2
2 , G;ψ0)],

Ωg,g′ = E
[{
m0

g(W
T
g , G) +Mψ,gS

−1s0(W ḡ−2
2 , G)

}{
m0

g′(W
T
g′ , G) +Mψ,g′S

−1s0(W ḡ−2
2 , G)

}⊤
]
,

where m0
g(W

T
g , G) := mg(W

T
g , G;θ

0
g,ψ

0) and s0(W ḡ−2
2 , G) := s(W ḡ−2

2 , G;ψ0).

Recall that the number of components, J , is the smallest integer such that the representation

of the data density forW g−2
2,i given by

∑J
j=1 π

jf(W g−2
2,i ; ∆δj , σ2ϵ ) admits the true density function.

Assumption 9. (a) (ϑ0,ψ0) ∈ int(Θϑ ×Θψ), where Θϑ ×Θψ is compact. (b) ∆δj,0 ̸= ∆δk,0 for

j ̸= k and j, k = 1, ..., J . (c) βj,0
g ̸= βk,0

g for j ̸= k and j, k = 1, ..., J and for g =
¯
g, ..., ḡ. (d) J is

known. (e) E∆Y 2+δ <∞ for some δ > 0.

Proposition 6. Assumptions 1-4 and 7-9 hold. Then, (a) ψ̂
p→ ψ0, (b) ϑ̂

p→ ϑ0, and (c)
√
n(ϑ̂−

ϑ0)
d→ N(0,Σ), where

Σ :=


Σ

¯
g,
¯
g Σ

¯
g,
¯
g+1 · · · Σ

¯
g,ḡ

Σ
¯
g+1,

¯
g Σ

¯
g+1,

¯
g+1 · · · Σ

¯
g+1,ḡ

...
...

. . .
...

Σḡ,
¯
g Σḡ,

¯
g+1 · · · Σḡ,ḡ

 .

with Σg,g′ =M
−1
θ,gΩg,g′(M

−1
θ,g′)

⊤.

When Assumption 8 does not hold because the Gaussian parametric model is a mis-specified

model, the estimator ψ̂ is no longer consistent. Consequently, ϑ̂ becomes inconsistent and is
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subject to asymptotic bias. Nonetheless, we may analyze an asymptotic distribution of ϑ̂ under

mis-specification as in Gallant and White (1988).

To analyze a misspecified case, define the pseudo true value of ϑ by

ϑ∗ = arg max
ϑ∈Θϑ

E

 J∑
j=1

τ jg (W
g−2
2,i ;ψ∗)

T∑
t=g

(
∆Yit −∆δjt − γjg,tDit

)2∣∣∣∣∣∣Gi ∈ {0, g}

 ,
where

ψ∗ = arg max
ψ∈Θψ

E

log
 J∑

j=1

πj

I{Gi = 0}fḡ(W ḡ−2
2,i ; ∆δjḡ, σ

2
ϵ ) +

ḡ∑
g=

¯
g

I{Gi = g}fg(W g−2
2,i ; ∆δjg, σ

2
ϵ )


 .

When Assumption 8 does not hold, the value of ϑ0 defined in (18), ϑ∗ ̸= ϑ0 because τ j(W g−2
2,i ;ψ∗) ̸=

E[Zi = j|W g−2
2,i ]. The following proposition shows that the asymptotic distribution of ϑ̂ under a

misspecification.

Assumption 10. (a) (ϑ∗,ψ∗) ∈ int(Θϑ × Θψ), where Θϑ × Θψ is compact. (b) ∆δj∗ ̸= ∆δk∗ for

j ̸= k and j, k = 1, ..., J . (c) βj
∗g ̸= βk

∗g for j ̸= k and j, k = 1, ..., J and for g =
¯
g, ..., ḡ. (d) J is

known. (e) ∆Yit has a finite variance.

Proposition 7. Assumptions 1-4 and 7, 10 hold. Then, (a) ψ̂
p→ ψ∗, (b) ϑ̂

p→ ϑ∗, and (c)
√
n(ϑ̂−ϑ∗)

d→ N(0,Σ∗), where Σ∗ is defined similarly to Σ in Proposition 6 but replacing ψ0 and

ϑ0 with ψ∗ and ϑ∗, respectively.

4.3 Hard-classification estimator

We also consider an estimator based on “hard classification” of each unit. Namely, given the

posterior probability estimate τ̂ jg (W
g−2
2,i ) in (22), define an estimator for the value of Zi as

Ẑi = j if τ̂ jg (W
g−2
2,i ) > τ̂kg (W

g−2
2,i ) for all k ̸= j.

Then, we propose the following estimator based on hard-classification:

θ̃g = arg min
θg∈Θθg

∑
i∈Ig

J∑
j=1

I{Ẑi = j}
T∑
t=g

(∆Yit −∆δjt − γjg,tDit)
2. (23)

When the time length T is fixed and short, the hard-classification estimator θ̃g is an inconsistent

estimator of θ0g because the misclassification of Ẑi does not approach zero even when n→ ∞.

By Proposition 6(a), the classifier Ẑi is asymptotically equivalent to the classifier of latent type

defined by

Z∗
i = j if τ j,0(W g−2

2,i ) > τk,0(W g−2
2,i ) for all k ̸= j,
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where

τ j,0(W g−2
2,i ) :=

πj,0f(W g−2
2,i ; ∆δj,0, (σ0ϵ )

2)∑J
k=1 π̂

k,0f(W g−2
2,i ; ∆δk,0, (σ0ϵ )

2)
.

The classifier Z∗
i misclassifies its latent type with strictly positive probabilities, i.e., Pr(Z∗

i ̸= Zi) >

0. Consequently, θ̃g is asymptotically biased.

To define the probability limit of θ̃g, consider a population analogue of (23) and define θ∗g by

θ∗g := arg min
θg∈Θθg

E

 J∑
j=1

T∑
t=g

I{Z∗
i = j}(∆Yit −∆δjt − γjg,tDit)

2

∣∣∣∣∣∣Gi ∈ {0, g}

 for g =
¯
g, ..., ḡ.

(24)

In general, θ∗g ̸= θ0g because Pr(Z∗
i ̸= j|Zi = j) > 0.

Define a binary random variable

Ijg(W
g−2
2 ;ψ) := I{τ jg (W

g−2
2 ;ψ) > τkg (W

g−2
2 ;ψ) for all k ̸= j}.

Note that I{Ẑi = j} = Ijg(W
g−2
i,2 ; ψ̂) and I{Z∗

i = j} = Ijg(W
g−2
i,2 ;ψ0).

Let

m̃g(W
T
g , G;θg,ψ) := I{G ∈ {0, g}}∇θg

J∑
j=1

Ijg(W
g−2
i,2 ;ψ)

T∑
t=g

(∆Yt −∆δjt − γjg,tDt)
2,

and define

M̃θ,g := E[∇θ⊤m̃g(W
T
g , G;θ

0
g,ψ

0)], M̃ψ,g := ∇ψ⊤E[m̃g(W
T
g , G;θ

0
g,ψ

0)],

Ω̃g,g′ = E
[{
m̃0

g(W
T
g , G) + M̃ψ,gS

−1s0(W ḡ−2
2 , G)

}{
m̃0

g′(W
T
g′ , G) + M̃ψ,g′S

−1s0(W ḡ−2
2 , G)

}⊤
]
,

where m̃0
g(W

T
g , G) := m̃g(W

T
g , G;θ

0
g,ψ

0).

The following proposition derives the asymptotic distribution of θ̃g.

Proposition 8. Assumptions 1-4 and 7-9 hold. Then, (a) θ̃g
p→ θ∗g and (b)

√
n(ϑ̃−ϑ∗)

d→ N(0, Σ̃),

where

Σ̃ :=


Σ̃

¯
g,
¯
g Σ̃

¯
g,
¯
g+1 · · · Σ̃

¯
g,ḡ

Σ̃
¯
g+1,

¯
g Σ̃

¯
g+1,

¯
g+1 · · · Σ̃

¯
g+1,ḡ

...
...

. . .
...

Σ̃ḡ,
¯
g Σ̃ḡ,

¯
g+1 · · · Σ̃ḡ,ḡ

 .

with Σ̃g,g′ = M̃
−1
θ,gΩ̃g,g′(M̃

−1
θ,g′)

⊤.

4.4 Multiplier bootstrap

We implement the following multiplier bootstrap to compute the confidence intervals.
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1. We generate ξbi
i.i.d.∼ N(0, 1) for i = 1, ..., n and b = 1, 2, ...., B and compute

T b
n,g = M̂−1

θg
× 1√

n

n∑
i=1

(
mg(W

T
g,i, Gi; θ̂g, ψ̂) + M̂ψ,gŜ

−1s(W ḡ−2
2,i , Gi; ψ̂)

)
ξbi

for g =
¯
g, ..., ḡ and b = 1, 2, ..., B, where M̂θg , M̂ψ, and Ŝg are sample analogue estimators

of Mθg , Mψ, and Sg. Let {{T b
n,g}

ḡ
g=

¯
g}Bb=1 be the compute values of T b

n,g.

2. Let θ∗g[k] and T b
n,g[k] denote the kth element of θ∗g and T b

n,g, respectively. Given α ∈ (0, 1/2),

e.g., α = 0.05, compute the α/2 and (1−α/2) quantile of {T b
n,g[k]}Bb=1 denoted by qBn,g,α/2[k]

and qBn,g,1−α/2[k], respectively. Then, we construct the 100(1−α) percentile confidence interval
for θ∗g[k] as

CIBn,g[k] = [θ̂g[k]− qBn,g,1−α/2[k]/
√
n, θ̂g[k]− qBn,g,α/2[k]/

√
n].

Then,

Pr(θ∗g[k] ∈ CIBn,g[k]) → 1− α, as n,B → ∞.

4.5 Implementation

We describe implementation of the proposed estimators. Our proposed estimation procedure con-

sists of the following two steps: first, we run the EM algorithm on the pre-treatment observations

to estimate the posterior probabilities τ̂ j(W g−2
2,i ) for each i, j, and g. Second, we solve the weighted

least squares problem in (20) using the estimated posterior probabilities from the first step as

weights. The entire procedure can be summarized as follows:

Algorithm 1. (Two-step estimation procedure)

0. Initiate the process with a given starting value, ψ(0) ∈ Θψ.

1. Estimate ψ by employing the following EM algorithm, starting with s = 0:

(a) (E-step) Compute the posterior probabilities from ψ(s) for each g, i, and j:

τ̂ j(s)(W
g−2
2,i ) =

πj(s)f
(
W g−2

2,i ;ψj
(s), σ

2
ϵ(s)

)
∑J

k=1 π
k
(s)f

(
W g−2

2,i ;ψk
(s), σ

2
ϵ(s)

)
(b) (M-step) Update the parameters by maximum likelihood estimation:

ψ(s+1) = arg max
ψ∈Θψ

n∑
i=1

log

 J∑
j=1

τ̂ j(s)(W
g−2
2,i )f(W g−2

2,i ; ∆δj , σ2ϵ )

 ,

(c) Set s = s+ 1 and repeat until convergence.
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2. Using the weights τ̂ j(W g−2
2,i ) from the first step, solve the following weighted least squares

problem:

θ̂g = arg min
θg∈Θθg

∑
i∈Ig

J∑
j=1

τ̂ j(W g−2
2,i )

T∑
t=g

(∆Yit −∆δjt − γjg,tDit)
2

It is worth noting the EM algorithm is executed only on the pre-treatment observations and we

do not require any iterative repetition on post-treatment observations for estimating the parameters

of interest, γjt . This is because we identify latent group structures based solely on pre-treatment

trends.

The algorithm above is described for the soft-classification case. In the case of hard classification,

the posterior probabilities τ̂ j(W g−2
2,i ) can be replaced with the hard-classification I{Ẑi = j} in the

second step of the algorithm, by defining Ẑi := argmaxj=1,...,J τ̂
j(W g−2

2,i ).

5 Test for the parallel trends in pre-treatment periods

When we have a sufficiently long length of the pre-treatment periods, we may identify the latent

types using the data from t = 2 to, say, t = g − 3 and test if the parallel trends assumption holds

at t = g − 1. Specifically, we estimate

θ̃g = arg min
θg∈Θθ

∑
i∈Ig

J∑
j=1

τ̂ j(W g−3
2,i )

T∑
t=g−1

(∆Yit −∆δjt − γjg,tDit)
2, (25)

Then, we test H0 : γj(g, g − 1) = 0. The rejection of this null hypothesis indicates evidence that

the parallel trends do not hold at t = g− 1. The asymptotic distribution of γ̂j(g, g− 1) is obtained

analogously to that in Proposition 6 and so testing H0 : γ
j(g, g − 1) = 0 is straightforward.

6 Simulation

In this section, we investigate the finite-sample performance of our proposed method under an

event study setup with G = {T ∗, 0}, where T ∗ represents the time of the event. We consider the

following data generating process with two components j = 1, 2 as:

Yit = αi + δjt + µjtDit + εjit (26)

where ϵjit is assumed to be independently and identically distributed following a normal distribution

with mean 0 and standard deviation 1. We employ a total time period of T = 12 and a treatment

assignment phase of T ∗ = 8. The individual effect αi is drawn from a normal distribution with

mean 0 and standard deviation 0.5.

We assign identical population latent group probabilities as π1 = π2 = 0.5, yet with different

trends across groups as δjt as 2× (j− 2)× t. We use the threshold rule for treatment assignment so
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that ith unit is treated at T ∗ if ∆Yi,T ∗−1 < B and receives no treatment otherwise with B = 3. We

also set µjt = 3 ·(2−j) ·(t−T ∗) for t ≥ T ∗ and zero for pre-treatment periods for j = 1, 2. Note that

this data generating process features heterogenous treatment effects across the groups with γ1t = 3

and γ2t = 0 for all post-treatment periods t. Also, we let the parallel trends assumption hold within

each latent group, but not in an aggregate level as illustrated in Figure 2, as we have different

conditional probabilities of being treated across the groups due to heterogeneity in pretrends.

The simulation is run with a sample size of 400 units, supported by 500 replications. Our

simulation results include the estimated trends γjt in Table 1 and LGATTs µjt in Table 2, along

with their aggregate treatment effects on treated µt in Table 3. The mean estimates are presented,

supplemented with their respective standard deviations, enclosed in parentheses. Despite having

a small sample size, our LGATT and ATT estimates typically align closely with the population

parameters.

It is noteworthy that, in the absence of any latent group structure (J = 1), the LGATT estimates

align with the ATT estimates derived from the standard DID estimator, which suffer from negative

bias. In fact, the sign of the ATT estimate is opposite of the true ATT when latent group structures

are not taken into account. This highlights the importance of incorporating a latent group structure

when identifying dynamic treatment effects, particularly when parallel trends assumptions do not

hold at an aggregate level.

Table 1: Numerical Simulations, Trend Estimates.

J = 1 J = 2
Parameters j = 1 j = 1 j = 2

γjT ∗ 0.95 3.03 0.02
(0.05) (0.13) (0.06)

γjT ∗+1 0.94 3.00 -0.01

(0.05) (0.13) (0.06)

γjT ∗+2 0.94 3.00 0.00

(0.05) (0.12) (0.06)

γjT ∗+3 0.94 3.00 0.00

(0.05) (0.13) (0.06)

γjT ∗+4 0.94 3.00 0.00

(0.05) (0.13) (0.06)

7 Empirical Applications

In this section, we illustrate our method in empirical context by revisiting several economic papers

that were published in journals. We first describe the data and the empirical strategy in each

example, and then present the results. We also provide a brief discussion on the interpretation of

the results and the limitations of our method in each example.

21



Figure 2: Numerical Simulations, Samples.
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colors) but not in an aggregate level.
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Table 2: Numerical Simulations, LGATT Estimates.

J = 1 J = 2
Parameters j = 1 j = 1 j = 2

µjT ∗ 0.95 3.03 0.02
(0.05) (0.13) (0.06)

µjT ∗+1 1.89 6.03 0.02

(0.08) (0.12) (0.06)

µjT ∗+2 2.83 9.03 0.02

(0.11) (0.13) (0.06)

µjT ∗+3 3.77 12.03 0.02

(0.14) (0.13) (0.06)

µjT ∗+4 4.71 15.03 0.02

(0.18) (0.12) (0.06)

Table 3: Numerical Simulations, ATT Estimates

Parameters J = 1 J = 2

µT ∗ 0.95 2.60
(0.05) (0.13)

µT ∗+1 1.89 5.18
(0.08) (0.17)

µT ∗+2 2.83 7.75
(0.11) (0.23)

µT ∗+3 3.77 10.33
(0.14) (0.28)

µT ∗+4 4.71 12.90
(0.18) (0.35)

7.1 The effects of copyrights on science

To illustrate our method in an empirical context, we revisit Biasi and Moser (2021) that studies

the impact of copyrights on science by exploiting an exogenous change toward weaker copyrights

as a result of World War II. In 1942, the United States has introduced the Book Republication

Program (BRP hereafter), which allowed publishers to reprint copies of science books that were

owned by the enemy states at the time as a part of the broader war effort to increase the production

of scientific knowledge in the United States.

Biasi and Moser (2021) compared the variation in citations received by books subjected to the

Book Republication Program (BRP) with those from Switzerland to isolate the causal effect of

the policy. This comparison was conducted with the assumption that authors writing in English

could serve as an approximation for U.S. authors. Although certain Swiss books were published

in German, they were not impacted by the BRP due to Switzerland’s neutrality during the war.
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This condition facilitates an objective measure for the comparison of new cumulative knowledge

derived from the books, thus aiding in analyzing the effects of the policy on American science. This

analysis operates on the assumption that both the BRP and Swiss books exhibited parallel trends

in citations prior to the implementation of the BRP.

To address possible fundamental differences between the two types of the books, Biasi and

Moser (2021) use Mahalanobis propensity score matching methods to create a comparable Swiss

book sample for each BRP book by matching based on the research field and pre-BRP non-English-

language citations. Their OLS estimates show that citations to BRP books in English compared to

Swiss books increased significantly by additional 0.386 citations per year with the complete matched

sample, suggesting that weaker copyrights helped cumulating further scientific knowledge in the

United States. We revisit the sample used by Biasi and Moser (2021) and apply our method to

estimate the LGATTs and the ATTs. Throughout this example, we use the following specification

that extends the OLS regression setup Biasi and Moser (2021) used:

citesit = µjtBRPit + booki + δjt + εit, (27)

where the dependent variable citesit is citations to book i in English in year t. The variable Dit

is a treatment variable variable that is equal to one if the BRP is applied on book i in year t.

The parameter of interest is µjt , which captures the changes in citations to BRP books in English

compared to Swiss books after the BRP implementation. As in the original specification, we include

both individual book fixed effects booki and time fixed effects δjt with one caveat: the time fixed

effect terms are grouped by the latent component j to capture grouped heterogeneity in trends for

the observations in pretreatment periods. We use 6 years of data before the BRP and 20 years

of data after the BRP to estimate the LGATTs. Of the 253 books included in the matched book

sample, 152 books have complete citation history during the period.

We estimate models up to three components (J = 1, 2, 3) and compute the Bayesian information

criterion (BIC) for each model for model selection. The estimated LGATTs for each model are

presented in Figure 3. Three latent groups are differentiated by color in the plots. Notably, the

first group consistently maintains higher citation trends compared to the other latent groups. In

contrast, the second and third groups, initially characterized by low citation numbers prior to the

BRP, display a consistent ascent in citations following the policy’s initiation. The trends and group

averages of the additional third group in the J = 3 model bear a strong resemblance to those of the

second group. Crucially, the BIC criterion favors the J = 2 model over the J = 1 or J = 3 models,

indicating that the model with two latent groups sufficiently captures heterogeneity in trends in

the pre-treatment periods.

We additionally report the LGATTs and dynamic ATT estimates for J = 2 in Figure 4 and

Figure 5 respectively with bootstrap confidence intervals. Interestingly, while the dynamic ATT

estimates appear similar across all three models, the aggregate ATT estimates produce different

values. The J = 2 model yields a marginally higher aggregate ATT estimate with an addition
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of 0.705 citations per year, compared to the 0.693 additional citations per year yielded by the

J = 1 model. This indicates the importance of accounting for grouped heterogeneity within the

pretreatment trends. Note that our estimate for the J = 1 model within the LGATT framework

differs from the OLS estimate reported in Biasi and Moser (2021) as we utilize a subset of their

dataset that includes complete pretreatment history.

7.2 The effects of the block of Chinese Wikipedia in mainland China on user

contribution

The block on Wikipedia, implemented in October 2005, affected Chinese Wikipedia users in main-

land China. However, Chinese-speaking users in regions like Taiwan, Hong Kong, Singapore, and

others around the world still had access. Zhang and Zhu (2011) mainly focused on the changes in

behaviors of the nonblocked contributors who were active before the block and observed the change

in their contribution behavior after the block was implemented. In this example, we explore the

potency of social effects on contribution by comparing the shifts in contributions after the block,

between users who were socially active prior to the block, and those who were not.

We use 8 weeks of data before the block and 8 weeks of data after the block to estimate the

LGATTs. Of the 6,062 contributors who joined Wikipedia before the block, 1,408 are classified

as nonblocked contributors and have complete contribution history during the period. It is worth

noting that in the original study, the authors utilized a distinct sample of 1,707 contributors that

included individuals who joined Wikipedia shortly before the block. We use a different sample of

contributors because we need to observe the contribution levels of the contributors before the block

for multiple periods.

We now examine the social effects of the block by employing the following difference-in-

differences specification:

contributionsit = β0 + δjt + µjtDit + ϵit with Dit = AfterBlockt × SocialInteractioni (28)

where i indexes the contributors and t indexes the weeks. The dependent variable, contributionsit,

is the logarithm of weekly contributions of each nonblocked contributor to Wikipedia articles, where

contribution is measured as the sum of the total characters added and deleted weekly. AfterBlockt

is a dummy that equals one if the time period is after the block, and zero otherwise. To evaluate

how the impact was larger for contributors who were actively involved in social interactions with

other users, we incorporate two measures for SocialInteractioni: participation in any social activities

(social participation) and having a collaborator blocked in mainland China (having any collaborator

blocked). 54.4% of the total sample belong to the first group and 85.6% belong to the second group.

We report LGATTs for two groups in both models in Figure 6 and Figure 7. The LGATTs are

estimated using the same procedure as in the simulation study. The two groups are distinguished by

color; the first group, which exhibited a relatively lower trend in contribution amounts on average

before the block, is represented by red, while the second group, which had a relatively higher
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Figure 3: Citations in English on BRP books compared to Swiss books, LGATT.
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Figure 4: Citations in English on BRP books compared to Swiss books, LGATT for J = 2 model.
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Figure 5: Citations in English on BRP books compared to Swiss books, ATT for J = 2 model.
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trend in contribution levels, is denoted by blue. The prior latent group assignment probability

estimates suggest that both groups contain a significant number of contributors. Specifically, the

prior probability of belonging to the first group stands at 6.55% and 6.34% for the models with

social activity and having any collaborator blocked respectively.

Introducing an additional group with J = 3 allows us to identify a new set of units exhibiting

lower average treatment effects. In fact, the BIC criterion favors the J = 3 model over the other

alternative specifications with J = 1, 2, or J = 4. The third group, which is represented by the green

color in both figures, has a prior probability of 9.76% and 9.52% for the models with social activity

and having any collaborator blocked respectively. The third group exhibits relatively higher levels

of contribution before the block, and the LGATTs for this group are both negative and statistically

significant.

On the other hand, their between-group differences in within-group differences between the

treated and control groups are not statistically significant, as confirmed in the figures for the ATT

in Figure 8 and Figure 9. These results reaffirm that the block negatively impacted contribution

levels, irrespective of the contributors’ trends of social activity or their interactions with other

collaborators prior to the block, supporting the finding from Zhang and Zhu (2011) that social

effects significantly motivate contribution.

8 Proofs

8.1 Proof of Proposition 1

For any g ∈ G and t = 2, 3, ..., T , we have

E [∆Yit | Gi = g, Zi = j] =
Pr(Zi = j | Gi = g)E [1(Zi = j)∆Yit | Gi = g, Zi = j]

Pr(Zi = j | Gi = g)

=
E [1(Zi = j)∆Yit | Gi = g]

Pr(Zi = j | Gi = g)

=
E
[
E
[
1(Zi = j) |W g−2

2,i

]
∆Yit | Gi = g

]
Pr(Zi = j | Gi = g)

=
E
[
τ j(W g−2

2,i )∆Yit | Gi = g
]

Pr(Zi = j | Gi = g)
, (29)

where the second equality follows from the law of iterated expectations and E[∆Yit|W g−2
2,i ] =

E[∆Yit|Gi] because ∆Yis is independent of ∆Yit for |t − s| ≥ 2 conditional on Gi. Therefore, the

stated result follows from (10) and (29).
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Figure 6: The block of Wikipedia on unblocked users with social participation, LGATT.
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Notes: Plots on the left column present average weekly contribution per cohort and latent group.
Latent-group specific average treatment effects on treated (LGATT) are shown on the right.
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social activity) and colors respectively. 95% confidence intervals for the LGATT are generated
from nonparametric bootstraps with 200 draws.
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Figure 7: The block of Wikipedia on unblocked users with a blocked collaborator, LGATT.
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Notes: Plots on the left column present average weekly contribution per cohort and latent group.
Latent-group specific average treatment effects on treated (LGATT) are shown on the right.
Cohorts and latent groups are represented by line types (dotted lines for contributors with no
collaborator being blocked) and colors respectively. 95% confidence intervals for the LGATT are
generated from nonparametric bootstraps with 200 draws.
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Figure 8: The block of Wikipedia on unblocked users with social participation, ATT.
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Notes: ATT estimates from the canonical two-way fixed effects estimators are reported in the top
figure. The bottom figure presents the ATT estimates computed from the weighted averages of
LGATTs with two latent groups. 95% confidence intervals for all the ATTs are generated from
nonparametric bootstraps with 200 draws. The treated group is defined as the contributors who
have participated in any social activities.
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Figure 9: The block of Wikipedia on unblocked users with a blocked collaborator, ATT.
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Notes: ATT estimates from the canonical two-way fixed effects estimators are reported in the top
figure. The bottom figure presents the ATT estimates computed from the weighted averages of
LGATTs with two latent groups. 95% confidence intervals for all the ATTs are generated from
nonparametric bootstraps with 200 draws. The treated group is defined as the contributors who
have any collaborator being blocked.
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8.2 Proof of Proposition 2

For notational brevity, letXit := ∆Yit+1 and write f j∆Yt+1|∆Yt,G
(∆yt+1|∆yt, c) as f jXt|Xt−1,G

(xt|xt−1, c)

for c = 0 and g. Under Assumption 2, (∆Y2, ...,∆Yg−1) = (∆Y2(0), ...,∆Yg−1(0)) regardless of

the value of Gi, and therefore (∆Y2, ...,∆Yg−1) does not depend on Gi. Consequently, we have

f jX1|G(x1|c) = f jX1
(x1) and f

j
Xt|Xt−1,G

(xt|xt−1, c) as f
j
Xt|Xt−1

(xt|xt−1) for t = 1, ..., g− 2. Then, (11)

with W = (X1, X2, ..., XT−1, G) is written as

fX1,...,XT−1,G(x1, ..., xT−1, c) =
J∑

j=1

πjpj(c)f jX1
(x1)

g−2∏
t=2

f jXt|Xt−1
(xt|xt−1)

T−1∏
t=g−1

f jXt|Xt−1,G
(xt|xt−1, c)

(30)

We establish the identification when g ≥ 6 so that the first five periods are pre-treatment

periods. We first prove the identification of the latent type probabilities and conditional density

functions up to the first five periods. By integrating out Xg−1, ..., XT−1 in (30), we have

fX1,X2,X3,X4,G(x1, x2, x3, x4, c) =

J∑
j=1

πjpj(c)f jX1
(x1)

4∏
t=2

f jXt|Xt−1
(xt|xt−1). (31)

Define

Lx3 :=


1 · · · 1

λ14(b1|x3) · · · λJ4 (b1|x3)
...

. . .
...

λ14(bJ−1|x3) · · · λJ4 (bJ−1|x3)

 and L̄x2,c :=


λ̄12(a1, x2, c) · · · λ̄J2 (a1, x2, c)

...
. . . . . .

λ̄12(aJ , x2, c) · · · λ̄J2 (aJ , x2, c)

 ,
(32)

where λ̄j2(x1, x2, c) := πjpj(c)f jX1
(x1)f

j
X2|X1

(x2|x1) with pj(c) := Pr(Gi = c|Zi = j), λj3(x3|x2) :=
f jX3|X2

(x3|x2), and λj4(x4|x2) := f jX4|X3
(x4|x3).

Assumption 11. There exists a value x∗3 that satisfies the following condition: for every x2 ∈ ∆Y3,

we can find (x̄2, x̌2, x̄3) ∈ ∆Y3 ×∆Y3 ×∆Y4, (a1, ..., aJ) ∈ (∆Y2)
J and (b1, ..., bJ−1) ∈ (∆Y5)

J−1

such that (a) Lx∗
3
, Lx3, Lx̄3, L̄x̌2, and L̄x̄2 are non-singular, and (b) all the diagonal elements of

Dx3,x3 defined in (38) with x∗3 = x3 take distinct values. Furthermore, (c) for every (x3, x4) ∈
∆Y4 ×∆Y5, f

j
X4|X3

(x4|x3) > 0 for j = 1, ..., J .

For each value of x2 ∈ ∆Y3, choose (x̌2, x̄2, x̄3) ∈ ∆Y3 × ∆Y3 × ∆Y4, (a1, ..., aJ) ∈ ∆YJ
2 ,

and (b1, ..., bJ−1) ∈ ∆YJ−1
5 that satisfy Assumption 11. Evaluating (30) at (X1, X2, X3, X4, G) =

(a, x2, x3, b, c) gives

fX1,X2,X3,X4,G(a, x2, x3, b, c) =
J∑

z=1

λ̄j2(a, x2, c)λ
j
3(x3|x2)λ

j
4(b|x3). (33)

Similarly, evaluating fX1,X2,X3,G(x1, x2, x3, c) =
∑J

j=1 π
jpj(c)f jX3|X2

(x3|x2)f jX2|X1
(x2|x1)f jX1

(x1) at
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(x1, x2, x3) = (a, x2, x3) gives

fX1,X2,X3,G(a, x2, x3, c) =
J∑

j=1

λ̄j2(a, x2, c)λ
j
3(x3|x2). (34)

Denote qx2,x3(a, b, c) := fX1,X2,X3,X4,G(a, x2, x3, b, c) and q̄x2,x3(a, c) := fX1,X2,X3,G(a, x2, x3, c).

Evaluating (33) at a = a1, ..., aJ and b = b1, ..., bJ−1 gives J(J − 1) equations while evaluating

(34) at a = a1, ..., aJ gives J equations.

Using matrix notation, we collect these J(J − 1) + J = J2 equations as

Qx2,x3,c = Lx3Dx3|x2
L̄⊤

x2,c, (35)

where Lx3 and L̄x2,c are defined in (32) while

Qx2,x3,c :=


q̄x2,x3(a1, c) q̄x2,x3(a2, c) · · · q̄x2,x3(aJ , c)

qx2,x3(a1, b1, c) qx2,x3(a2, b1, c) · · · qx2,x3(aJ , b1, c)
...

...
. . .

...

qx2,x3(a1, bJ−1, c) qx2,x3(a2, bJ−1, c) · · · qx2,x3(aJ , bJ−1, c)

 (36)

and Dx3|x2
:= diag

(
λ13(x3|x2), ..., λJ3 (x3|x2)

)
. Let x∗3 be the value of x3 as defined in Assumption

Assumption 11. For each x3, choose x̌2, x̄2, and x̄3 that satisfy Assumption 11(a)(b). Evaluating

(35) at four different points, (x̌2, x
∗
3), (x̄2, x3), (x̌2, x̄3), and (x̄2, x̄3) gives

Qx̌2,x3,c = Lx3Dx3|x̌2
L̄⊤

x̌2,c, Qx̄2,x̄3,c = Lx̄3Dx̄3|x̄2
L̄⊤

x̄2,c,

Qx̌2,x̄3,c = Lx̄3Dx̄3|x̌2
L̄⊤

x̌2,c, Qx̄2,x∗
3
= Lx∗

3
Dx∗

3|x̄2
L̄⊤

x̄2,c.

Then, following the identification argument in Carroll et al. (2010), under Assumption 11(a)(c),

we have

Ax∗
3,x3 := Qx̌2,x3

Q−1
x̌2,x̄3

Qx̄2,x̄3
Q−1

x̄2,x∗
3
= Lx3Dx∗

3,x3L
−1
x∗
3
, (37)

where

Dx∗
3,x3 :=Dx3|x̌2

D−1
x̄3|x̌2

Dx̄3|x̄2
D−1

x∗
3|x̄2

. (38)

We first identify Lx3 for all x3 ∈ ∆Y3 up to an unknown permutation matrix. Evaluating (37)

at x∗3 = x3, we have

Ax3,x3Lx3 = Lx3Dx3,x3 .

Because Ax3,x3 has J distinct eigenvalues under Assumption 11(b), the eignvalues of Ax3,x3 deter-

mine the diagonal elements of Dx3,x3 while the right eigenvectors of Ax3,x3 determine the columns

of Lx3 up to multiplicative constant and the ordering of its columns. Namely, collecting the right
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eigenvectors of Ax3,x3 into a matrix in descending order of their eigenvalues, we identify

B := Lx3∆x3C,

where b satisfies Ax3,x3B = BDx3,x3 , ∆x3 is an unknown permutation matrix, and C is some

diagonal matrix with non-zero diagonal elements.

We can determine the diagonal matrix CDx3,x3 from the first row of Ax3,x3B = BDx3,x3 =

Lx3∆x3CDx3,x3 because the first row of Lx3∆x3 is a vector of ones. Then, Lx3∆x3 is deter-

mined from Ax3,x3B and CDx3,x3 as Lx3∆x3 = Ax3,x3B(CDx3,x3)
−1 in view of Ax3,x3B =

Lx3∆x3CDx3,x3 . Repeating the above argument for all values of x3 ∈ ∆Y4, the eigenvalue de-

composition algorithm identifies the matrices

L̃x3 := Lx3∆x3 for all x3 ∈ ∆Y4, (39)

where ∆x3 is an unknown permutation matrix that depends on x3.

Next, we identify permutation matrices that re-arrange Lx3∆x3 in a common order of latent

types across different values of x3 using the identification argument in Higgins and Jochmans (2021).

Pre- and post- multiplying (37) by L̃−1
x3

and L̃x∗
3
, respectively, we have

D̃x∗
3,x3 := L̃−1

x3
Ax∗

3,x3L̃x∗
3
= ∆−1

x3
Dx∗

3,x3∆x∗
3
= ∆−1

x3
∆x∗

3

(
∆−1

x∗
3
Dx∗

3,x3∆x∗
3

)
,

where the last equality uses the fact that ∆x∗
3
∆−1

x∗
3

is an identity matrix. Because ∆−1
x3

∆x∗
3
is a

permutation matrix, D̃x∗
3,x3 is a matrix obtained by permutating the rows of the diagonal ma-

trix ∆−1
x∗
3
Dx∗

3,x3∆x∗
3
. Therefore, each diagonal element of ∆−1

x∗
3
Dx∗

3,x3∆x∗
3
is identified with the sum

of elements in the corresponding column of D̃x∗
3,x3 , and the identification of ∆−1

x∗
3
Dx∗

3,x3∆x∗
3
fol-

lows. Then, we may identify ∆−1
x3

∆x∗
3
as ∆−1

x3
∆x∗

3
= D̃x∗

3,x3

(
∆−1

x∗
3
Dx∗

3,x3∆x∗
3

)−1
. Therefore, Lx3 is

identified up to a common permutation matrix ∆x∗
3
that does not depend on x3 from (39) as

L∗
x3

:= Lx3∆x∗
3
= L̃x3∆

−1
x3

∆x∗
3
= L̃x3D̃x∗

3,x3

(
∆−1

x∗
3
Dx∗

3,x3∆x∗
3

)−1
. (40)

In the next step, we identify {πj , pj(c), f jX1
(x1), f

j
X2|X1

(x2|x1), f jX3|X2
(x3|x2), f jX4|X3

(x4|x3)}Jj=1

up to a permutation matrix ∆x∗
3
. For this purpose, we evaluate fX3,X4|X2,G(X3, X4|x2, c) =∑J

j=1 π
jpj(c)f jX2,X3,X4

(x2, x3, x4)/
∑J

k=1 π
kpk(c)fkX2

(x2) at (x2, x3, x4) = (x2, x3, b) as

fX3,X4|X2
(x3, b|x2, c) =

∑J
j=1 π

jpj(c)f jX2
(x2)f

j
X3|X2

(x3|x2)f jX4|X3
(b|x3)∑J

j=1 π
jpj(c)f jX2

(x2)

=

J∑
j=1

π̃jx2
(c)f jX3|X2

(x3|x2) f jX4|X3
(b|x3)︸ ︷︷ ︸

=λj
4(b|x3)

,
(41)
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where π̃jx2(c) := πjpj(c)f jX2
(x2)/

∑J
k=1 π

kpk(c)fkX2
(x2). Then, evaluating (41) at b = b1, ..., bJ−1

and collecting them into a vector together with fX3|X2
(x3|x2, c) =

∑J
j=1 π̃

j
x2(c)f

j
X3|X2

(x3|x2) gives

rx3|x2,c = Lx3dx3|x2,c = L
∗
x3
∆−1

x∗
3
dx3|x2,c (42)

with

rx3|x2,c =


fX3|X2

(x3|x2, c)
fX3,X4|X2

(x3, b1|x2, c)
...

fX3,X4|X2
(x3, bJ−1|x2, c)

 and dx3|x2,c =


d1x3|x2,c

...

dJx3|x2,c

 :=


π̃1x2

(c)f1X3|X2
(x3|x2)

...

π̃Jx2
(c)fJX3|X2

(x3|x2)

 ,

where the last equality in (42) follows from (40). Therefore, from (40) and (42), we identify

π̃jx2(c)f
j
X3|X2

(x3|x2) for all values of (x2, x3, c) ∈ ∆Y3 ×∆Y4 × G up to ∆x∗
3
as

∆−1
x∗
3
dx3|x2,c :=


d
α(1)
x3|x2,c
...

d
α(J)
x3|x2,c

 =
(
L∗

x3

)−1
rx3|x2,c, (43)

where

α : {1, 2, ..., J} → {1, 2, ..., J}

is a permutation implied by ∆−1
x∗
3
. Furthermore, because π̃jx2(c) =

∫
∆Y4

π̃jx2p
j(c)f jX3|X2

(x3|x2)dx3
and f jX3|X2

(x3|x2) = [π̃jx2(c)f
j
X3|X2

(x3|x2)]/π̃jx2(c), we may identify f
α(j)
X3|X2

(x3|x2) from d
α(j)
x3|x2,c

as

f
α(j)
X3|X2

(x3|x2) :=
d
α(j)
x3|x2,c∫

∆Y4
d
α(j)
x′
3|x2,c

dx′3

. (44)

Then, we may identify Dx3|x2
up to ∆x∗

3
as

∆−1
x∗
3
Dx3|x2

∆x∗
3
= diag

(
f
α(1)
X3|X2

(x3|x2), ..., fα(J)X3|X2
(x3|x2)

)
, (45)

and L̄⊤
x2,c is identified from (35), (40), and (45) up to ∆x∗

3
as

∆−1
x∗
3
L̄⊤

x2,c = (∆−1
x∗
3
Dx3|x2

∆x∗
3
)−1

(
L∗

x3

)−1
Qx2,x3,c, (46)

where the invertibility of Dx3|x2
follows from Assumption 11(c).

Once Dx3|x2
and L̄x2,c are identified up to ∆x∗

3
as in (45)-(46), we determine ℓx3(x4) :=

(λ14(x4|x3), ..., λJ4 (x4|x3)) = (f1X4|X3
(x4|x3), ..., fJX4|X3

(x4|x3)) for any (x3, x4) ∈ ∆Y4 × ∆Y5 up
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to ∆x∗
3
by constructing

px2,x3,c(x4) := (qx2,x3,c(a1, x4), qx2,x3,c(a2, x4), ..., qx2,x3,c(aJ , x4))

from the observed data, and using the relationship

ℓx3(x4)∆x∗
3
=
(
f
α(1)
X4|X3

(x4|x3), ..., fα(J)X4|X3
(x4|x3)

)
= px2,x3,c(x4)(∆

−1
x∗
3
L̄⊤

x2,c)
−1(∆−1

x∗
3
Dx3|x2

∆x∗
3
)−1

(47)

for all values of (x3, x4) ∈ ∆Y4 ×∆Y5. Therefore, {f jX4|X3
(x4|x3)}Jj=1 is identified up to ∆x∗

3
.

Similarly, we determine ℓ̄x2,c(x1) := (λ̄12(x1, x2, c), ..., λ̄
J
2 (x1, x2, c))

⊤ = (π1p1(c)f
1
X1

(x1)f
1
X2|X1

(x2|a), ...,
πJpj(c)fJX1

(x1)f
J
X2|X1

(x2|a))⊤ up to ∆x∗
3
for any (x1, x2) ∈ ∆Y2×∆Y3 and for c ∈ {0, 6, ..., ḡ} from

(40) and (45) by constructing

p̄x2,x3,c(x1) := (q̄x2,x3,c(x1), qx2,x3,c(x1, b1), qx2,x3,c(x1, b2), ..., qx2,x3,c(x1, bJ−1))

and using the relationship

∆−1
x∗
3
ℓ̄x2,c(x1) =


λ̄
α(1)
2 (x1, x2, c)

...

λ̄
α(J)
2 (x1, x2, c)

 = (∆−1
x∗
3
Dx3|x2

∆x∗
3
)−1

(
L∗

x3

)−1
p̄x2,x3,c(x1)

⊤. (48)

Then, {πjpj(c), f jX1
(x1), f

j
X2|X1

(x2|x1)}Jj=1 is identified up to ∆x∗
3
from {λ̄α(j)2 (x1, x2, c)}Jj=1 in (48)

given λ̄j2(x1, x2, c) = πjpj(c)f jX1
(x1)f

j
X2

(x2|x1) as

πjpj(c) :=

∫
∆Y1

∫
∆Y2

λ̄j2(x1, x2, c)dx2dx1, f jX1
(x1) :=

∫
∆Y2

λ̄j2(x1, x2)dx2

πjpj(c)
,

and f jX2|X1
(x2|x1) :=

λ̄j2(x1, x2)

πjpj(c)× f jX1
(x1)

for j = 1, ..., J . (49)

Repeating the above argument using the subsample of Gi = 0 and g, we have pj(0) + pjg = 1.

Therefore, given the identification of πjpj(c) for c ∈ {0, g}, we may identify πj as πj = πjpj(0)+πjpjg

and the identification of pj(c) follows as pj(c) = (πjpj(c))/(πjpj(0) + πjpjg) for c ∈ {0, g}.
Therefore, we identify {πj , pj(c), f jX1

(x1), f
j
X2|X1

(x2|x1), f jX3|X2
(x3|x2), f jX4|X3

(x4|x3)}Jj=1 up to

a permutation matrix ∆x∗
3
.

8.3 Proof of Proposition 3

In view of Proposition 1, it suffices to show that Pr(Zi = j|G = g) and τ j(W ) are identified

from {πj , f jW (w) : j ∈ J }. Using the Bayes’ theorem, we may identify Pr(Zi = j|G = g) as

Pr(Zi = j|G = g) =
πjpjg∑J

k=1 π
kpk(g)

, where pjg = Pr(Gi = g|Zi = j) =
∫
f jW (y′, g)dy′ is identified
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from f jW (w). The identification of τ j(·) immediately follows from (22) given that f j
W g−2

2

(wg−2
2 ) is

identified from f jW (w).

8.4 Proof of Proposition 4

The mean independence of ηit for t ≤ g − 1 in (14) follows from E[ϵit(0)|Gi = g, Zi = j] =

E[ϵit(0)|Gi = 0, Zi = j] = 0 by Assumption 2.

To prove the mean independence of ηit for t = g, because Di,g−1 = 0 when Gi = 0 and Gi = g

while Dig = I{Gi = g}, it suffices to show that E[ηig|Gi = 0, Z∗
i = j] = E[ηig|Gi = g, Z∗

i = j] = 0.

Note that

E[ηig|Gi = 0, Z∗
i = j] = E[∆ϵig(0)|Gi = 0, Z∗

i = j] = 0

because E[ϵig(0)|Gi = 0, Z∗
i = j] = E[ϵi,g−1(0)|Gi = 0, Z∗

i = j] = 0. Second,

E[ηig|Gi = g, Z∗
i = j]

= E[ϵig(g)− ϵi,g−1(0)|Gi = g, Z∗
i = j]

= E[ϵig(g)− ϵig(0)|Gi = g, Z∗
i = j] + E[ϵig(0)− ϵi,g−1(0)|Gi = g, Z∗

i = j]

= 0,

where the last equality holds because the definition of µjg,t implies that µjg,t =

E [Yit(g)− Yit(0) | Gi = g, Zi = j] = E
[
µjg,t + ϵit(g)− ϵit(0) | Gi = g, Zi = j

]
for all t ≥ g so

that E[ϵig(g) − ϵig(0)|Gi = g, Z∗
i = j] = 0 while E[ϵig(0) − ϵi,g−1(0)|Gi = g, Z∗

i = j] =

E[ϵig(0) − ϵi,g−1(0)|Gi = 0, Z∗
i = j] = 0 by the parallel trend assumptions and E[ϵig(0)|Z∗

i =

j] = E[ϵi,g−1(0)|Z∗
i = j] = 0. Therefore, ηig is mean-independent of Dig conditional on latent type.

For t > g, E[ηig|Gi = 0, Z∗
i = j] = E[∆ϵit(0)|Gi = 0, Z∗

i = j] = 0 while

E[ηig|Gi = g, Z∗
i = j] = E[∆ϵit(g)|Gi = g, Z∗

i = j]

= E[ϵit(g)− ϵit(0)|Gi = g, Z∗
i = j]− E[ϵi,t−1(g)− ϵi,t−1(0)|Gi = g, Z∗

i = j]

+ E[ϵi,t(0)− ϵi,t−1(0)|Gi = g, Z∗
i = j]

= 0,

where the last equality follows because E[ϵit(g)−ϵit(0)|Gi = g, Z∗
i = j] = E[ϵi,t−1(g)−ϵi,t−1(0)|Gi =

g, Z∗
i = j] = 0 by the definition of µjg,t and µj(g, t − 1) while E[ϵi,t(0) − ϵi,t−1(0)|Gi = g, Z∗

i =

j] = E[ϵi,t(0) − ϵi,t−1(0)|Gi = 0, Z∗
i = j] = 0 by the parallel trends assumption. Therefore,

E[ηig|Gi = 0, Z∗
i = j] = E[ηig|Gi = g, Z∗

i = j] = 0.

8.5 Proof of Proposition 5

Note that {ηit}Tt=2 = {∆ϵit(0)}Tt=2 when Gi = 0 while {ηit}Tt=2 = {∆ϵi2(0), ...,∆ϵi,g−1(0), ϵig(g) −
ϵi,g−1(0),∆ϵi,g+1(g), ...,∆ϵiT } when Gi = g for any g ∈ G\{0}. It follows from Assumption 5 that
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ηit is independent of ηi,t−s for any s ≥ 2 conditional on Gi = g for all g ∈ G. Therefore, in view of

(17), {∆Yit}Tt=2 follows a first-order Markov process conditional on Gi = g for all g ∈ G.

8.6 Proof of Proposition 6

The stated result of part (a) follows from Theorem 2.1 of Newey and McFadden (1994), where

the theorem’s condition (i) follows from Lemma 2.2 of Newey and McFadden (1994) in view of

Assumptions 8 and 9 (b)(d); the condition (ii) follows from Assumption 9(a); the condition (iii)

follows from Lemma 2.4 of Newey and McFadden (1994) given Assumptions 4, 8, and 9(a). Similarly,

part (b) follows from Theorem 2.1 of Newey and McFadden (1994), where the condition (i) holds

because E
[∑T

t=g

(
∆Yit −∆δjt − γjg,tDit

)2∣∣∣∣Gi ∈ {0, g}, Zi = j

]
is uniquely minimized at θj,0g , the

condition (ii) follow from Assumption 9(a), and the condition (iii) follows from Lemma 2.4 of Newey

and McFadden (1994).

Part (c) follows from Theorem 6.1 of Newey and McFadden (1994) by verifying conditions (i)-

(v) of their Theorem 3.4. Conditions (i) and (ii) hold by Assumption 9(a) and Assumption 8,

respectively. For conditions (iii) and (iv), E[mg(W
T
g , G;θ

0
g,ψ

0)] = 0 hold as argued above while

E[||mg(W
T
g , G;θ

0
g,ψ

0)||] and E[supθg ||∇θgmg(W
T
g , G;θ

0
g,ψ

0)||] are finite because both ∆Yit and

Dit have finite variance given Assumption 8 and Dit being a binary random variable. Condition

(v) follows from Assumption 3.

8.7 Proof of Proposition 8

Denote m̃g,i(θg,ψ) := m̃(W T
g,i;Gi;θg,ψ) so that

1√
n

n∑
i=1

m̃g,i(θ̃g, ψ̂) = 0 (50)

from (23). Then, the mean value expansion of (50) gives

0 =
1√
n

n∑
i=1

(
m̃g,i(θ

∗
g, ψ̂)− E[m̃g,i(θ

∗
g, ψ̂)]

)
+
√
nE[m̃g,i(θ

∗
g, ψ̂)] +

(
1

n

n∑
i=1

∇θ⊤g m̃g,i(θ̄g, ψ̂)

)
√
n(θ̃g − θ∗g),

(51)

where θ̄g lies between θ̃g and θ∗g.

Let

νn(ψ) :=
1√
n

n∑
i=1

(
m̃g,i(θ

∗
g,ψ)− E[m̃g,i(θ

∗
g,ψ)]

)
. (52)

By Lemma 2, {νn(·) : n ≥ 1} is stochastically equicontinuous and, given ψ̂
p→ ψ0 in the Eu-

clidean norm, we have νn(ψ̂) − νn(ψ
0)

p→ 0 (c.f., page 2265 of Andrews, 1994). Therefore, given
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E[m̃g,i(θ
∗
g,ψ

0)] = 0, the first term in (51) is written as

1√
n

n∑
i=1

(
m̃g,i(θ

∗
g, ψ̂)− E[m̃g,i(θ

∗
g, ψ̂)]

)
= νn(ψ

0) + (νn(ψ̂)− νn(ψ
0))

= νn(ψ
0) + op(1)

=
1√
n

n∑
i=1

m̃g,i(θ
∗
g,ψ

0) + op(1). (53)

For the second term in (51), noting that ψ̂
p→ ψ0 and E[m̃g,i(θ

∗
g,ψ

0)] = 0 from (24), we may

apply the mean value theorem to
√
nE[m̃g,i(θ

∗
g, ψ̂)] in conjunction with the continuous mapping

theorem to obtain

√
nE[m̃g,i(θ

∗
g, ψ̂)] = (∇ψ⊤E[m̃g,i(θ

∗
g,ψ

0)] + op(1))
√
n(ψ̂ −ψ0) (54)

where E[m̃g,i(θ
∗
g,ψ)] is continuously differentiable with respect to ψ. It also follows from applying

the mean value theorem to 1√
n

∑n
i=1 s(W

ḡ−2
2,i ; ψ̂) = 0 from (21) with ψ̂

p→ ψ0, the law of large

numbers, the continuous mapping theorem, and 1√
n

∑n
i=1 s(W

ḡ−2
2,i ;ψ0) = Op(1) that

√
n(ψ̂ −ψ0) = (S + op(1))

−1 1√
n

n∑
i=1

s(W ḡ−2
2,i ;ψ0) = S−1 1√

n

n∑
i=1

s(W ḡ−2
2,i ;ψ0) + op(1). (55)

Let M̃ g,n(θg,ψ) := 1
n

∑n
i=1∇θ⊤g m̃g,i(θg,ψ) and M̃ g(θg,ψ) := E[∇θ⊤g m̃g,i(θg,ψ)]. Then, for

the third term in (51), we have

1

n

n∑
i=1

∇θ⊤g m̃g,i(θ̄g, ψ̂) = M̃ g(θ
∗
g,ψ

0) + (M̃ g,n(θ̄g, ψ̂)− M̃ g(θ
∗
g,ψ

0)) = M̃ g(θ
∗
g,ψ

0) + op(1), (56)

where the last equality follows from

||M̃ g,n(θ̄g, ψ̂)− M̃ g(θ
∗
g,ψ

0)|| ≤ ||M̃ g,n(θ̄g, ψ̂)− M̃ g(θ̄
∗
g, ψ̂)||+ ||M̃ g(θ̄

∗
g, ψ̂)− M̃ g(θ

∗
g,ψ

0)||

≤ sup
(θg ,ψ)∈N ((θ∗g ,ψ

0),ϵ)

||M̃ g,n(θg,ψ)− M̃ g(θg,ψ)||+ op(1)

= op(1)

where the second inequality follows from (θ̄g, ψ̂)
p→ (θ∗g,ψ

0) and the continuous mapping theorem;

the last equality follows from Lemma 3, where N ((θ∗g,ψ
0), ϵ) is an ϵ-neighborhood of (θ∗g,ψ

0) for

some ϵ > 0.
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Thus, it follows from (51)-(56) that

√
n(θ̃g − θ∗g) =

(
M̃θg + op(1)

)−1

×

{
1√
n

n∑
i=1

(
m̃g,i(θ

∗
g,ψ

0) + M̃ψ,gS
−1s(W ḡ−2

2,i ;ψ0)
)
+ op(1)

}
for g =

¯
g, ..., ḡ,

and the stated result follows from the multivariate Lindeberg-Levy Central Limit Theorem.

8.8 Auxiliary Lemmas

Lemma 1. The first order condition for the minimization problem in (18) implies the equation

(10).

Lemma 2. {νn(·) : n ≥ 1} is stochastically equicontinuous.

Proof. We verify the conditions A-C of Theorem 1 of Andrews (1994).

Write m̃g(W
T
g , G;θg,ψ) as

m̃g(W
T
g , G;θg,ψ) = I{G ∈ {0, g}}

J∑
j=1

Ijg(W
g−2
2 ;ψ)

T∑
t=g

ξ(∆Yt,Xt;β
j
g,t),

where ξ(∆Yt,Xt;β
j
g,t) := Xt(∆Yt −X⊤

t β
j
g,t), Xt := (1, Dt)

⊤, and βj
g,t := (∆δjt , γ

j
g,t)

⊤. Notice

that ξ(∆Yt,Xt;β
j
g,t) is Lipschitz in βj

g,t because ||ξ(·;βj,1
g,t) − ξ(·;βj,2

g,t)|| ≤ 2||βj,1
g,t − β

j,2
g,t|| for all

βj,1
g,t,β

j,2
g,t ∈ Θ

βj
g,t

given that ||XtX
⊤
t ||2 ≤ 2. Thus, a class of functions {ξ(·;βj

g,t) : βj
g,t ∈ Θ

βj
g,t
}

satisfies the Pollard’s entropy condition with the envelop given by 2 ∨ sup
βj
g,t∈Θβjg,t

|ξ(·;βj
g,t)| by

Theorem 2 of Andrews (1994).

Note also that Ijg(W
g−2
2 ;ψ) =

∏
k ̸=j I{h

jk
g (W g−2

2 ;ψ) > 0}, where hjkg (W g−2
2 ;ψ) :=

ln τ jg (W
g−2
2 ;ψ) − ln τkg (W

g−2
2 ;ψ) for j ̸= k. Given the definition of τ jg (W

g−2
2 ;ψ) in (22),

hjkg (W g−2
2 ;ψ) is written as

hjkg (W g−2
2 ;ψ) = ajk +

g−2∑
t=2

bjkt ∆Yit,

where ajk depends on lnπj/πk, {(∆δjt )2, (∆δkt )2}
g−2
t=2 , and {∆δjt∆δ

j
t−1}

g−2
t=3 while bjkt depends on

{∆δjs,∆δks}t+1
s=t−1. Therefore, Hjk

g := {hjkg (·;ψ) : ψ ∈ Θψ} is a finite-dimensional vector space

of real functions on Wg−2
2 . It follows from II.Lemma 18 of Pollard (1984) that the class of sets

of the form {hjkg (·;ψ) > 0} for hjkg (·;ψ) ∈ Hjk
g has polynomial discrimination. Furthermore, by

II.Lemma 15 of Pollard (1984), the class of sets of the form ∩k ̸=j{hjkg (·;ψ) > 0} also has polynomial

discrimination. Therefore, {Ijg(·;ψ) : ψ ∈ Θψ} is a class of indicator functions of VC sets and

satisfies the Pollard’s entropy condition with the envelop given by 1.

Then, because m̃g(W
T
g , G;θg,ψ) is written as the sum and multiplications of classes of functions

that satisfy the Pollard’s entropy condition, it follows from Theorem 3 of Andrews (1994) that a
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class of functions {m̃g(·, ·;θg,ψ) : (θg,ψ) ∈ Θθg × Θψ} satisfies the Pollard’s entropy condition

with the envelop
∑J

j=1

∑T
t=g 2 ∨ sup

βj
g,t∈Θβjg,t

|ξ(·;βj
g,t)|. Therefore, the condition A of Theorem

1 of Andrews (1994) holds. Furthermore, the condition B holds because, by Assumption 9(a)(e),

E sup
βj
g,t∈Θβjg,t

|ξ(·;βj
g,t)|2+δ <∞. The condition C holds by Assumption 4(a), and the stated result

follows from Theorem 1 of Andrews (1994).

Lemma 3. There exists ϵ > 0 such that sup(θg ,ψ)∈N ((θ∗g ,ψ
0),ϵ) ||M̃ g,n(θg,ψ)−M̃ g(θg,ψ)|| = op(1).

Proof. We verify the condition for Lemma 2.4 of Newey and McFadden (1994). By Assumption

4(a), the data are i.i.d. while Θθg and Θψ are compact by Assumption 9(a). ∇θ⊤g m̃g(W
T
2 , G;θg,ψ)

is continuous at each (θg,ψ) with probability one given that ∆Yt is continuously distributed.

Finally, given ||Ijg(W g−2
2 ;ψ)|| ≤ 1, ||∇θ⊤g m̃g(W

T
2 , G;θg,ψ)|| ≤

∑J
j=1

∑T
t=g ||XtX

⊤
t || < ∞ with

Xt := (1, Dt)
⊤. Therefore, the condition for Lemma 2.4 of Newey and McFadden (1994) is satisfied,

and the stated result follows from Lemma 2.4 of Newey and McFadden (1994).
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