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Abstract. We introduce a new family of mechanisms for one-sided matching markets,

denoted pick-an-object (PAO) mechanisms. When implementing an allocation rule via

PAO, agents are asked to pick an object from individualized menus. These choices may be

rejected later on, and these agents are presented with new menus. When the procedure

ends, agents are assigned the last object they picked. We characterize the allocation

rules that can be sequentialized by PAO mechanisms, as well as the ones that can be

implemented in a robust truthful equilibrium. We justify the use of PAO as opposed to

direct mechanisms by showing that its equilibrium behavior is closely related to the one in

obviously strategy-proof (OSP) mechanisms, but implements commonly used rules, such

as Gale-Shapley DA and top trading cycles, which are not OSP-implementable. We run

laboratory experiments comparing truthful behavior when using PAO, OSP, and direct

mechanisms to implement different rules. These indicate that agents are more likely to

behave in line with the theoretical prediction under PAO and OSP implementations than

their direct counterparts.

JEL classification: C78, C73, D78, D82.

Keywords : Market Design, Matching, Sequential Mechanisms, Experiments, obvious strategy-

proofness.

1. Introduction

The literature of market design, and its applications, has grown and evolved greatly

over recent years. Even if we restrict our attention to the design of centralized matching

markets, the instances in which theoretical and empirical contributions have influenced

the way resources are allocated seem to be continuously expanding. Examples include

the design of school choice procedures (Abdulkadiroğlu and Sönmez, 2003), centralized

college admissions (Balinski and Sönmez, 1999), matching resident doctors to hospitals

(Roth and Peranson, 1999), organs to patients (Roth et al., 2004), refugees to localities

(Jones and Teytelboym, 2017), appointment slots for services (Hakimov et al., 2021a),

and more. By carefully choosing how to determine these allocations as a function of
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information, such as participants’ preferences, priority structures, and fairness concerns,

these procedures can lead to allocations that satisfy certain desirable properties.

One crucial challenge faced by the designer of these mechanisms is that the informa-

tion needed to determine desired allocation is known by the participants but not by the

designer. These are, often, their preferences over outcomes, but may also include other

relevant information, such as their socioeconomic status.1 In real-life applications, this

issue is usually solved by combining two tools: dominant strategy implementation and the

revelation principle. These guarantee that if the designer wants the strategic simplicity

provided by dominant strategy implementation, it suffices to consider revelation mech-

anisms, in which participants are simply asked to report their private information, safe

in teh knowledge that they can be truthful. In fact, the vast majority of the literature

focuses solely on direct revelation, and often strategy-proof, mechanisms.

However, recent experimental and empirical evidence has raised concerns about the

ability of market participants to understand the incentive properties of these mechanisms.

Many participants use dominated strategies, thus distorting the market allocations. This

phenomenon was documented in many laboratory experiments2 and in empirical papers.3

These present a new challenge: is there an alternative to the implementation of allocation

rules via strategy-proof direct mechanisms that would result in behavior that is more

often in line with the theoretical predictions?

One recent and celebrated attempt to formalize an alternative to strategy-proofness

that accounts for the extent to which participants can easily understand the incentives

induced by mechanisms was the concept of obvious strategy-proofness (OSP). “A strategy

is obviously dominant if, for any deviation, at any information set where both strategies

first diverge, the best outcome under the deviation is no better than the worst outcome

under the obvious dominant strategy, and a mechanism is obviously strategy-proof (OSP)

if it has an equilibrium in obviously dominant strategies” (Li, 2017). OSP is, therefore,

a refinement of the notion of strategy-proofness, in that obvious dominance implies weak

dominance. This concept could help explain why, for example, laboratory experiments

indicate that agents are more likely to bid truthfully in a clock auction than in a sealed-bid

second-price auction (Kagel et al., 1987). While both implement the same rule in truthful

dominant strategies, the former is also obviously dominant as opposed to the latter.4

One important shortcoming of OSP, especially for practical purposes, is that it is a very

restrictive concept. Rules that are commonly considered for object allocation problems,

such as top trading cycles, and stable rules, cannot be implemented via OSP mechanisms

(Li, 2017; Ashlagi and Gonczarowski, 2018). This, therefore, leaves a large set of problems

1See Aygün and Bó (2021).
2See Hakimov and Kübler (2021) for an extensive survey of the experimental matching literature.
3See our related literature section.
4The author also presents the results of laboratory experiments comparing behavior and outcomes under
strategy-proof and OSP implementations of the random serial dictatorship rule, obtaining similar results.
Note, however, that Breitmoser and Schweighofer-Kodritsch (2021) raise questions as to whether the
difference can be attributed to obvious strategy-proofness.
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without this kind of behavioral guidance. Another concern is raised in a recent paper by

Pycia and Troyan (forthcoming), who characterize all OSP mechanisms in the domain of

object allocation and show that for some OSP strategies participants must have extensive

foresight to correctly predict feasible actions and outcomes, which can be congnitively

demanding. To address this concern, the authors also define an even stronger concept,

strong OSP, that does not require foresight from participants but leaves the designer with

an essentially unique mechanism—sequential serial dictatorship (SD). In sequential SD,

participants face a menu of objects in order of priority and simply pick their allocation.

The strategy of choosing the most-preferred object on the menu is strongly obviously

dominant.

Recent laboratory experiments indicate that the dynamic implementation of the deferred-

acceptance rule (DA), in which the equilibrium behavior also consists of choosing the

most-preferred object from menus, leads to higher rates of truthful behavior than its

standard direct revelation counterpart (Bó and Hakimov, 2020; Klijn et al., 2019). The

results are especially surprising given that truthful behavior is an equilibrium involving

non-dominant strategies in dynamic DA, while direct DA is strategy-proof.

If one considers that the main driver behind the behavior that is more in line with the

theory in OSP mechanisms is the fact that strategies are obviously dominant, then the

forces behind the experimental results in Li (2017), Bó and Hakimov (2020), and Klijn

et al. (2019) would be unrelated, because in the latter the equilibrium strategy is not even

dominant. In this paper, we conjecture that the main driver behind the observed behavior

more in line with the theoretical predictions is the simple mechanics of the equilibrium

strategy, in which agents “pick” the object they would like to have from a menu, as

opposed to submitting a ranking of objects representing their preferences. This would

provide a unified and alternative explanation to these experimental results. On this basis,

we introduce a class of sequential revelation mechanisms that implement various object

allocation rules via an equilibrium behavior with closely related mechanics. We denote

them pick-an-object mechanisms (PAO).

In a PAO mechanism, agents are asked to pick an object from individualized menus.

These choices may be rejected later on, and agents are then presented with new menus

containing strict subsets of the previous menus from which the previous choices have been

redacted. When the procedure ends, agents are assigned the last object they picked, if any.

A PAO mechanism “sequentializes” an allocation rule if it always results in the unique

allocation consistent with preference profiles that could rationalize the choices made by

the agents. Therefore, if agents simply choose their most-preferred object when given a

menu, then the object they hold once the procedure ends is the one that the allocation

rule determines given their true preferences. Notice, therefore, that truthful equilibrium

behaviors in OSP and PAO mechanisms are closely related. While in the former, it can

be expressed as “Wait until you can pick your best feasible object,” in the latter, it is

“Pick your best feasible object and wait to see if you can keep it.”
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The simple mechanics involved in a PAO mechanism induces a trade-off: because infor-

mation about an agent’s preferences can only be obtained through choices from menus,

obtaining more information on her preferences requires ruling out her last choice. This,

in turn, restricts the set of allocation rules that can be “sequentialized” via PAO mech-

anisms.5 We characterize such rules (Theorem 1), via a new property that we denote

monotonic discoverability. Many familiar rules, such as the Gale-Shapley DA and top

trading cycles, satisfy it (Proposition 1). We characterize the rules that can be imple-

mented in truthful strategies via a robust equilibrium (perfect ex-post equilibrium) as

being those that are strategy-proof and satisfy monotonic discoverability (Theorem 2).

For the case of the Gale-Shapley DA rule or under an additional condition on the rules, we

show that the truthful strategy might also characterize the unique equilibrium strategy

profile (propositions 2 and 3). These results come from the fact that every choice might

be the last one—and therefore there is only one “correct” choice. Finally, we show that

every non-bossy OSP-implementable rule is implementable in weakly dominant strategies

via PAO mechanisms (Proposition 4).

Our justification for the use of PAO mechanisms is non-standard, in the sense that the

game-theoretical incentive properties of the PAO mechanisms are not stronger than the

alternatives, that is, strategy-proof direct mechanisms and OSP mechanisms, but we test

our conjecture via laboratory experiments.

We test two allocation rules, the top trading cycles (TTC) and serial dictatorship (SD),

and we construct three treatments for each: direct revelation implementation, PAO im-

plementation, and OSP implementation. That is, for each one of these rules, we ran each

of the three different mechanisms for implementing them. We changed the mechanisms

implementing the rules between-subjects and the main goal of the experiment is to com-

pare the performance of PAO mechanisms relative to the direct and OSP (when possible)

counterparts in various environments (in our case, rules). We changed the allocation rules

within-subjects out of practical considerations and because we are interested in compar-

ative statics between the types of mechanisms, but not the rules. Because in our setup

TTC is only OSP-implementable for certain “acyclic” priority structures (Troyan, 2019;

Mandal and Roy, 2022), we split the TTC environments into cyclic and acyclic priority

structures, with the former having only direct and PAO implementations.

We find that, in fact, OSP implementations lead to the highest truth-telling rates

across the board. When the OSP implementation exists (i.e., except for TTC with cyclic

priority structures), OSP outperforms both PAO and direct implementations in terms

of truthful preference revelation. When comparing the direct implementation of TTC

vs. the PAO mechanism, the experiments show that the PAO implementation leads to a

higher proportion of subjects following truthful equilibrium strategies for the TTC rule

and no difference for the SD rule.6 As for efficiency, PAO mechanisms lead to significantly

5We provide a simple motivating example in section 2.1.
6The experiments reported in Bó and Hakimov (2020) complement these with a comparison between the
direct revelation Gale-Shapley DA with the iterative deferred acceptance mechanism, which is its PAO
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higher efficiency than direct mechanisms for both TTC and SD. OSP mechanisms improve

efficiency over the direct ones, but there is no significant difference to PAO mechanisms.

Thus, despite a higher proportion of truthful strategies, OSP mechanisms do not improve

efficiency relative to PAO ones. This is because the deviations from the truthful strategy

are more likely to be payoff-relevant in OSP than in PAO mechanisms.

When we look more closely at the results for the OSP implementation of TTC, however,

we see a big difference in the rates of truthful behavior, depending on the nature of the

obviously dominant strategy for a subject. We employ the characterization of Pycia and

Troyan (forthcoming), who show that every OSP-implementable mechanism is equivalent

to a “millipede game.” In millipede games, at every decision node each player has to

choose between leaving with an object among those in a given menu (“clinching action”),

and at most one “passing action.” Unlike the clinching actions—in which agents simply

choose their allocation—the passing actions require foresight to correctly predict feasible

options, which can be cognitively demanding. In our experiment, in the OSP implemen-

tation of the acyclic TTC rule, when the obviously dominant strategy consists of simply

picking the most-preferred object—the “clinching action”—the rate of truthful behavior

is 93%. But when it requires some degree of “foresight,” in that it involves the “passing

action,” the rate of truthful behavior is only 56%. This result strongly supports the strong

OSP concept of Pycia and Troyan (forthcoming), and its myopic “picking” equilibrium

as being a better predictor of behavior than OSP in general.

Thus far, we motivated the PAO mechanisms only by the attractiveness of straight-

forward strategies empirically, which was confirmed by our experiments. However, PAO

mechanisms have other attractive features which, although not directly evaluated in this

paper, are important in practical applications. First, they improve the acquisition of

information on the options available during the execution of the procedure, by requiring

coarser information on preferences and limiting the number of options available between

steps (Grenet et al., 2019; Hakimov et al., 2021b). Second, by allowing the participants

to experience the steps involved in the production of the final allocation, they can be

perceived as more transparent (Hakimov and Raghavan, 2021). Third, they can make

the equilibrium strategy simpler in markets with a very large number of options, such as

nationwide college admissions,7 when compared to direct mechanisms. This is because

in most practical cases, designers constrain the length of a rank-order list, as ranking

even 100 options seems to be a very hard task, while the number of choices that students

have to make in a PAO implementation of DA, for example, is typically much smaller

than the number of alternatives that should be ranked (Bó and Hakimov, 2016). This,

of course, comes at the cost of needing a longer time for the mechanism to run, which

implementation. The results are in line with the ones that we present here: the PAO implementation of
DA results in a higher proportion of truth-telling than its direct counterpart.
7During university admissions in China and Brazil, for example, students face thousands of programs and
universities (Gong and Liang, 2016; Bó and Hakimov, 2016).
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is an important practical consideration.8 Fourth, there has been increasing demand from

policymakers for the use of dynamic college admission mechanisms, e.g., recent reforms of

college admissions in France, Inner-Mongolia, Germany, and Tunisia (Bó and Hakimov,

2016; Gong and Liang, 2016; Luflade, 2018). Our paper provides guidance for construct-

ing dynamic versions of different allocation mechanisms while preserving good incentive

properties.

To sum up, we show that the PAO environment has significant benefits over its direct

counterpart in the general decision environment. However, when there is the option to

use OSP mechanisms, our experiments suggest using them. Because many allocation

rules used in real-life allocation problems are not OSP-implementable, but are PAO-

implementable, we interpret our experimental results as support for the choice of PAO

mechanisms over their direct revelation counterparts in these cases.

Related Literature. In addition to the studies mentioned in the introduction, this paper

is mainly related to two literature strands: the design of sequential allocation mechanisms

and their theoretical properties and the behavioral and experimental aspects of market

design.

From the theoretical perspective, perhaps the closest paper to ours is Mackenzie and

Zhou (2020). They consider the family of menu mechanisms, which are also sequential

revelation mechanisms in which participants are asked to choose from menus of possible

assignments. As in the case of PAO mechanisms, they focus on those in which an agent

can never select an assignment twice. Unlike PAO mechanisms, however, the definition

of menu mechanisms does not imply a restriction on the set of allocation rules that can

be sequentialized because an agent’s assignment does not have to be the last choice of an

agent and may, in fact, be an object that was not chosen at all. Despite considering this

more general setup, they show that strategy-proof rules can be implemented in a truthful

ex-post perfect equilibrium, a result analogous to our Theorem 2.

Another closely related paper is Börgers and Li (2019). As in our case, they are con-

cerned about the notion of simplicity in mechanisms. They define the class of “strategi-

cally simple” mechanisms, which are those in which an agent’s optimal strategy depends

only on first-order beliefs about preferences and rationality. Like the rules implemented

in truthful equilibria in PAO mechanisms, these include all dominant strategy mecha-

nisms and extend to others. It is worth noting, however, that PAO mechanisms are not

necessarily strategically simple.

Other papers have also considered sequential versions of allocation rules, such as multi-

unit auctions (Ausubel, 2004, 2006), stable matchings (Bó and Hakimov, 2016; Kawase

and Bando, 2021; Haeringer and Iehle, 2019), and more general allocations (Schummer and

Velez, 2021). Moreover, there is a growing literature evaluating the sequential mechanisms

8In college admissions in France, which runs a mechanism where students dynamically receive offers from
colleges, the deadline for decision ranges from 5 days at the start of the procedure to 1 day towards the
end. The system has been in place since 2018.
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used in the field (Gong and Liang, 2016; Grenet et al., 2019; Veski et al., 2017; Dur et al.,

2018). Milgrom and Weber (1982) show, in the context of auctions with correlated values,

that are potential advantages of using sequential mechanisms instead of direct ones. Other

recent papers, such as Akbarpour and Li (2020) and Hakimov and Raghavan (2021)

show that the use of sequential mechanisms can also be explained by their transparency

and credibility characteristics: the experience that participants have when interacting

with these mechanisms can convey information that helps them ensure the allocation is

produced by following the rules.

We also provide contributions to the literature documenting dominated behavior in

matching mechanisms. Shorrer and Sóvágó (2018); Rees-Jones (2018); Hassidim et al.

(2021); Chen and Pereyra (2019) and Artemov et al. (2017) document dominated strate-

gies being played in real-life centralized allocation processes. These are in line with lab-

oratory experiments that also evaluate truthful behavior in strategy-proof mechanisms

relative to dynamic mechanisms (Echenique et al., 2016; Bó and Hakimov, 2020; Bre-

itmoser and Schweighofer-Kodritsch, 2021; Klijn et al., 2019), and truthful behavior in

TTC and SD (Chen and Sönmez, 2002, 2006; Pais and Pintér, 2008; Guillen and Hakimov,

2017, 2018; Hakimov and Kesten, 2018).

2. Model

Let A = {a1, a2, . . . , an} be a finite set of agents9 and O = {o1, o2, . . . , om} ∪ {∅} be a

set of object types,10 where ∅ is the null object. Each agent a has strict preferences

Pa over the set O. Given Pa we express the induced weak preference by Ra. That is,

oRao
′ if oPao

′ or o = o′. We abuse notation and Pa may represent its binary relation

(ex: oPao
′) or a tuple of elements of O, for example, Pa = (o, o′, ∅, o′′), which implies

oPao
′Pa∅Pao′′. We also often treat tuples of distinct elements of O as sets, if that does

not create any ambiguity. For example, we may say that γ = (o1, o2, o3) and {o2} ⊂ γ.

Denote by P the set of all strict preferences over O. An object o ∈ O is acceptable to

agent a ∈ A if oPa∅, and unacceptable to a if ∅Pao. A preference profile is a list

P = (Pa1 , Pa2 , . . . , Pan). We denote by P−a the set of all preferences in P except for Pa.

Let P = Pn be the set of all preference profiles. An allocation is a function µ : A→ O.11

For a given allocation µ, we say that agent a’s assignment under µ is µ(a). Let M be

the set of all allocations. A random allocation is a probability distribution over M. A

rule is a function ϕ : P →M. Denote by ϕa (P ) = ϕ (P ) (a). A rule ϕ is individually

rational if, for any P ∈ P and a ∈ A, ϕa (P )Ra∅.
A rule is strategy-proof if for every agent a ∈ A, P ∈ P , and P ′ ∈ P, ϕa (Pa, P

−a)Raϕa (P ′, P−a).

9To simplify notation, an agent ai might sometimes be denoted by her index i.
10Whenever there is no ambiguity, we sometimes refer to them simply as objects.
11Notice that while this is a model of discrete object allocation, there is no explicit notion of feasibility
considering capacities. Feasibility is “encoded” in the allocation rules themselves: if an allocation is in
the image of the rule, then it is feasible.
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Define a choice history h as a sequence of tuples ((Ω1, ω1) , (Ω2, ω2) , . . .), where for

every i, Ωi ⊆ O and ωi ∈ Ωi. That is, a choice history is a sequence of sets of object types

and elements of those sets. For example:

(({o1, o2, o3, o4, o5} , o2) , ({o3, o4, o5} , o5))

We denote by
−→
h the last choice in h. That is, if h = ((Ω1, ω1) , . . . , (Ωk, ωk)),

−→
h = ωk.

We say that h is a continuation history of h′ if all the tuples in h′ are also in h. We

denote by H the set of all choice histories, including the empty choice history, represented

by h∅. We say that a preference Pa is consistent with the choice history h if for

every (Ωi, ωi) ∈ h and o ∈ Ωi, ωiRao. We denote by P (h) the set of all preferences

that are consistent with h. We can also say that a choice history is consistent with a

preference using inverse reasoning, and denote by h (Pi) the set of all choice histories that

are consistent with Pi.

Denote by collective history hA a list of n choice histories: (h1, h2, . . . , hn). We denote

by HA the set of all collective histories, by hA−∅ the collective history consisting of n empty

choice histories, and by hAi the i-th element in hA. We also say that hA is a continuation

collective history of hA
′

if each choice history in hA is a continuation history of its

related history in hA
′
. A preference profile P = (Pa1 , Pa2 , . . . , Pan) is consistent with

the collective history hA if for every i, Pai is consistent with hAi .12 We denote by

P
(
hA
)

the set of preference profiles that are consistent with hA. We can also say that

a collective history is consistent with a preference profile using inverse reasoning, and

denote by hA (P ) the set of all collective histories that are consistent with the preference

profile P .

Next, we abuse notation and define ϕ
(
hA
)

as the allocations that are consistent with

the application of the rule ϕ, given the information about the preference profile that can

be deduced from taking the revealed preference approach to the collective history hA:

ϕ
(
hA
)

=
⋃

P∈P (hA)

ϕ (P )

For a given collective history hA, therefore, ϕ
(
hA
)

is a (possibly empty) subset of M.

We also define the set of feasible assignments after hA for ai, or µϕi
(
hA
)

as:

µϕi
(
hA
)

=
⋃

µ∈ϕ(hA)

µ (ai)

Let Φ =
(
2O
)n

. That is, Φ is the set of n-tuples with subsets of O.

A menu function S : HA → Φ specifies, for each collective history, a list of menus to

be given to the agents.

12Note that this implies that a preference profile is consistent with a collective history if all histories are
consistent with some preference. In other words, it is necessary that all histories are rationalizable.
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• S
(
hA−∅

)
= (φ0

1, φ
0
2, . . . , φ

0
n), where for every i, φ0

i is a non-empty subset of O.

These are the initial menus.

• For any collective history hA, where hAi =
(
(Ωi

1, ω
i
1) , (Ωi

2, ω
i
2) , . . . ,

(
Ωi
ki
, ωiki

))
,13

S
(
hA
)

= (φ1, φ2, . . . , φn), where φi ⊆ Ωi
ki
\{ωiki}.

Denote by Si(·) the i-th element in S(·) (or, when convenient, Sa(·) to be the element in

S(·) associated with agent a). For a given menu function S, we define the pick-an-object

mechanism S as follows:

• Period t = 1: For every agent ai, ask her to choose one item in Si
(
hA−∅

)
. Let

agent ai’s choice be σti . Define hA−1 to be the collective history such that for every

agent ai, h
A−1
i = ((φ0

1, σ
1
i )).

• Period t > 1: Let (φt1, φ
t
2, . . . , φ

t
n) = S

(
hA−t

)
.

– If for all i, φti = ∅, then the procedure stops, and outputs the allocation µ,

where for each i, µ (ai) =
−−→
hA−ti .

– Otherwise, for every agent ai, ask her to choose one item in φti, if the menu is

non-empty.14 Let agent ai’s choice be σti . Define hA−(t+1) as the collective his-

tory such that for every agent ai who received a non-empty menu, h
A−(t+1)
i =

hA−ti ⊕ (φti, σ
t
i),

15 and for those with an empty menu, h
A−(t+1)
i = hA−ti .

Notice that because the menus given to each agent do not include her previous choices

and never include objects that were not present in previous menus, every collective history

that results from any number of periods of a PAO mechanism is consistent with a non-

empty set of preference profiles. Moreover, since the agents’ allocation must be their

last choice and menus are subsets of previous ones, every feasible allocation for an agent

is present in the first menu given at t = 1. Given a pick-an-object mechanism S, we

can define the set HA
S of collective histories of S. In other words, HA

S contains all the

collective histories that can take place when the pick-an-object mechanism S is used. All of

them start with every agent i receiving a menu with Si
(
hA−∅

)
and making a choice from

that menu. The other menus that they may face, and in which order, are determined

by all the possible combinations of choices that agents make and the definition of the

pick-an-object mechanism S.

When facing a PAO mechanism, a simple behavior that an agent may follow is what

we call a straightforward strategy, which we define below.

Definition 1. An agent a ∈ A follows a straightforward strategy with respect to

Pa if, whenever presented with a menu I ⊆ O, she chooses the most-preferred element of

I according to Pa.

13For each agent ai, ki represents the number of menus that she was given in hA.
14An agent receiving an empty menu represents a situation in which she is not called to make a choice.
One could alternatively interpret agents receiving empty menus as “inactive” agents in this period.
15We use “⊕” to denote concatenation. That is, for example, ((φ, σ) , (φ′, σ′)) ⊕ (φ′′, σ′′) =
((φ, σ) , (φ′, σ′) , (φ′′, σ′′)).
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Definition 2. A pick-an-object mechanism S sequentializes the rule ϕ if, for any pref-

erence profile P , the pick-an-object mechanism S provides menus such that when each

agent a ∈ A follows the straightforward strategy with respect to Pa, the outcome ϕ (P )

is produced. We say that there exists a pick-an-object mechanism that sequentializes

some rule ϕ if there exists a menu function S such that a pick-an-object mechanism S
sequentializes ϕ.

2.1. Monotonic discoverability. At first glance, it might seem like every rule can be

sequentialized by some pick-an-object mechanism. After all, by asking agents to choose

from menus, one can always recover as much information about their preferences as nec-

essary to pinpoint an allocation for a given rule. The definition of PAO mechanisms,

however, imposes some restrictions on the menus that can be presented to an agent and

how that relates to her assignment. In particular, objects previously chosen cannot be in

future menus, and the agent is assigned to the last object she chose. These conditions re-

sult in mechanisms that have a simple and intuitive operation, but also induce a trade-off

between obtaining more information about her preference and the assignment that the

rule determines for her.

To see this, consider a problem where O = {o1, o2, o3, ∅}, A = {a}, and the rule ϕ∗ as

follows:

o1Pao2Pao3 : µ(a) = o1

o1P
′
ao3P

′
ao2 : µ(a) = o3

Otherwise : µ(a) = ∅

Suppose that we are looking for a PAO mechanism that sequentializes ϕ∗, and consider

first which object types should be in the menu given to the agent in period t = 1. Clearly,

object types o1 and o3, as well as the null object ∅ must be in the menu, since the agent’s

potential assignments must be in it. So there are two possibilities for the first menu:

φ = {o1, o2, o3, ∅} and φ′ = {o1, o3, ∅}.
What happens if the agent chooses o1 from the first menu? If the menu was φ, this

tells us that o1 is the most-preferred object type. This, however, does not provide enough

information to narrow down to a single allocation, since this choice is consistent with the

preferences Pa and P ′a above, but also with, for example, o1P
′′
a o3P

′′
a ∅P ′′a o2. More informa-

tion about the agent’s preferences is necessary to know which allocation to produce.

More information on the agent’s preferences can only be obtained by observing her

choice from another menu. As per the definition of PAO mechanisms, that new menu

and all the following ones cannot have o1 as one of the options. We therefore reach

an informational gridlock: in order to know which assignment to produce, we need to

know, at the very least, whether o2 is preferred to o3 or not. The “costs” of obtaining more

information is the elimination of o1 as a possible assignment for a. But if her preference
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Step 1

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Step 2

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Step 3

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Step 4

Pa1 o1 o2 o3 o4 o5 ∅
Pa2 o3 o1 o4 o3 o5 ∅
Pa3 o2 o5 o4 o1 o3 ∅
Pa4 o5 o4 o2 ∅ o1 o3

Figure 1. Monotonic discoverability and sequentialization

is Pa, the rule ϕ∗ indicates that that should be her assignment. The same problem is

present if the first menu was φ′: if she chooses o1 or o3, we reach the same gridlock.16

We conclude, therefore, that ϕ∗ cannot be sequentialized by a PAO mechanism. This

is because ϕ∗ does not satisfy monotonic discoverability, a property that we now define.

Let µ be an allocation. Let P = (Pa1 , Pa2 , . . . , Pan) be any element of P . We define the

lower contour set of P at µ:

L (P, µ) = {P ′ ∈ P : ∀a ∈ A and o, o′ ∈ O : oPao
′Paµ (a) ⇐⇒ oP ′ao

′P ′aµ (a)}

That is, L (P, µ) contains all preference profiles that, for each agent a, agree with Pa

with respect to µ(a) and all objects preferred by a to µ(a), but may differ with respect

to objects that µ(a) are preferred to, with respect to Pa. We will say that L (P, µ) is

therefore the lower contour set of P at µ. We will denote each element of L (P, µ) a

continuation profile of P at µ.

Definition 3. A rule ϕ satisfies monotonic discoverability if, for any allocation µ

and preference profile P , either ϕ (P ) = µ or there is an agent a∗ ∈ A such that for all

P ′ ∈ L (P, µ), µ (a∗) 6= ϕa∗ (P ′).

In words, when a rule satisfies monotonic discoverability, given any preference profile P

and allocation µ, either the rule maps P to µ, or there is an agent a∗ who is not matched

to her assignment under µ for any preference profile in the lower contour set of P at µ.

16Note that this observation does not rely on the fact that the definition of PAO mechanisms imply that
the first menu must contain all the agent’s feasible assignments. The type of “informational gridlock”
is obtained if we simply require the agent to be assigned her last choice and menus to be such that the
choices are always rationalizable.



PICK-AN-OBJECT MECHANISMS 12

To understand the critical role that monotonic discoverability has when sequentializing

rules, consider Figure 1. Suppose that we have a rule ϕ that satisfies monotonic discover-

ability, and start with the allocation µ0 that matches each agent with her most-preferred

object type, highlighted in blue in Figure 1, step 1. We can consider two cases. In the

first, ϕ is such that for every preference profile in which agent ai’s top option is as in P ,

these agents are matched to their top choices. In that case, knowing those top choices

already gives us enough information to determine this to be the outcome that ϕ maps for

any continuation profile.17 The second case is when this is not true. That is, there are

continuation profiles of P at µ0 for which ϕ does not map those profiles to µ0. Let P 0 be

one such profile. By monotonic discoverability, there is at least one agent who, for every

continuation profile of P 0 at µ0 (and therefore also of P at µ0) will not be matched to

her match at µ0. Without loss of generality, let a2 be such an agent.

Consider next the allocation µ1, which is the same as µ0 except that the object mapped

to a2 is the second one in her preference. This is shown in Figure 1, step 2. Here, once

again, we have two cases. In the first, ϕ is such that for every continuation preference

profile of P at µ1, all agents are matched to their outcomes under µ1. The second case

is where there is at least one, but potentially many, such profiles in which the outcomes

are different than µ1. There is one thing we can say, however. Because the continuation

profiles of P at µ1 are also continuation profiles of P at µ0, for none of these cases is agent

a2 matched to o3. Suppose here, without loss of generality, that the second case is true,

agents a1 and a4 are not matched to their outcomes under µ1 for any continuation profile

of P at µ1. Steps 3 and 4 represent a continuation of this argument, until at step 4, the

allocation µ4 being evaluated is in fact the one that the rule ϕ maps to all continuation

profiles of P at µ4. Notice that this process always converges to the allocation mapped by

ϕ to the profile P , because we only move down the preference ordering of an agent when

we have enough information to determine that ϕ rules out previously considered matches

to her.

Following this process shows us two consequences of a rule satisfying monotonic discov-

erability. The first is that while following this monotonic process of evaluating allocations

that are at each step weakly worse (from the perspective of the underlying preference

profile), we end up at the allocation that ϕ maps to P . This fact is fundamental for a

PAO mechanism to be able to match agents to their last choices without repetition of

their choices.

The second is that monotonic discoverability solves the informational gridlock that is

induced by a PAO mechanism; that is, we must permanently reject the last choice the

agent made to obtain more information about her preferences. Monotonic discoverability

guarantees that whenever we do not have enough information to single out an allocation,

there is at least one agent whose last choice can be rejected and then presented with a

new menu. This allow us to obtain more information about preferences, narrowing down

17One simple example of this situation is when ϕ is a simple serial dictatorship, and no two agents have
the same object as their most-preferred one, as in P .
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the set of preference profiles consistent with the agents’ choices. In fact, this relationship

between monotonic discoverability and PAO mechanisms is as strong as possible, as shown

in Theorem 1 below.

Theorem 1. There exists a pick-an-object mechanism that sequentializes an individu-

ally rational rule ϕ if and only if ϕ satisfies monotonic discoverability.

Theorem 1 implies, therefore, that the structure of PAO mechanisms limits the rules

that can be sequentialized using them. If we were to use choices from menus simply as

means to obtain information on the preferences, we would have no such restriction. One

could, for example, make each agent choose one object at a time starting from the entire

set O, eliciting the entire preference profile, which could then be used to determine the

allocation. The participant’s experience with this type of mechanism would be funda-

mentally different, though: the connection between their choices and assignments would

be unclear, in that they might end up matched to an object chosen early in the process,

before having seen many other choices. In PAO mechanisms, there is a much more explicit

connection between choices and assignments: an agent can pick what she wants and will

be able to keep it unless the information provided by the other participants, through their

choices, determines that she cannot keep it, in which case she will be offered the chance

to choose again from a new menu with feasible options.18

2.2. Generalized Deferred Acceptance Procedures. Many mechanisms used in match-

ing are defined by algorithms that produce outcomes, as opposed to axioms or objective

functions. Two classic examples are the Gale-Shapley deferred acceptance mechanism

(DA) (Gale and Shapley, 1962) and Gale’s top trading cycles (TTC) (Shapley and Scarf,

1974). Their definitions describe step-by-step procedures that use agents’ preference rank-

ings (and often other information, such as priority orderings) and result in an allocation.

Generalized DA procedures is a general description of those which produce tentative

allocations at each step, following the agent’s preferences, until no agent has her choice

rejected. They generalize DA in the sense that they determine whether the tentative

allocation of an agent to an object type becomes a rejection based on the entire tentative

allocation and set of proposals, as opposed to the tentative allocation and proposals to

the object type in question. If we use the college admissions analogy, in a generalized

DA procedure, whether a student’s proposal is accepted or not may depend not only on

the college she applies to (and its tentatively matched students) but also on the entire

tentative assignments of students to colleges, and contemporaneous applications.

A generalized DA procedure is, therefore, defined by an update function Ψ : M ×
M →M. In it, Ψ (µ, µ′) informs, for a “tentative” assignment µ, what will be the new

tentative assignment when the new proposals are the ones represented by the assignment

µ′. This has the restriction that, if Ψ (µ, µ′) = µ′′, for every a ∈ A it must be that

18The specific implementation of the PAO mechanism could even allow for the market designer to credibly
and truthfully explain the reason why the agent cannot keep the object, using the information that she
obtained that resulted in that rejection.
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µ′′(a) ∈ {∅, µ(a), µ′(a)}.19 That is, the new tentative allocation must be one that for each

agent, either leaves her with the same tentative allocation, unmatched, or tentatively

assigned to the object type she has just proposed. Given an update function Ψ, the

procedure can be described by the following algorithm:

• Step 1: Let µ0 be an assignment in which, for all a ∈ A, µ0(a) = ∅, and µ∗ be an

assignment consisting of all agents matched to their top choice in P . Moreover, let

µ1 = Ψ (µ0, µ∗). We say that every agent a ∈ A for which µ∗(a) 6= ∅ and µ1(a) = ∅
was rejected by µ∗(a).

• Step t > 1: Construct the assignment µ∗, in which every agent a who was rejected

at step t − 1 is matched to her most-preferred object, with respect to Pa, from

which she was not previously rejected. Moreover, let all other agents be matched

to ∅ in µ∗. Moreover, let µt = Ψ (µt−1, µ∗). If for every a ∈ A it is the case that

µt(a) ∈ {µt−1(a), µ∗(a)}, stop the procedure and determine the assignment to be

µt. Otherwise, go to step t+ 1.

Rules that are described by generalized DA procedures satisfy monotonic discoverabil-

ity, as shown below.

Proposition 1. If ϕ is described by a generalized DA procedure, then ϕ satisfies mono-

tonic discoverability.

Proposition 1 implies that many mechanisms that are commonly used and referenced in

the matching literature satisfy monotonic discoverability and can therefore be sequential-

ized by a PAO mechanism. One can easily see that these include, for example, DA itself,

TTC, and the Boston mechanism (Abdulkadiroğlu and Sönmez, 2003). Note, however,

that the converse does not hold, as shown in the example below.

Example 2.1 (A rule that is monotonic discoverable but not generalized DA). Let O =

{o1, o2, o3}, ϕ be defined for a single agent a, and assign her o1 whenever o1 is her most-

preferred object, o2 when o3Pao1Pao2, and leave the agent unmatched otherwise.

Example 2.1 involves a situation that cannot be handled by a Generalized DA: the

mechanism must “remember” that the agent first chose o3 (and was rejected) before

choosing o1 in order for the outcome to be o2. Monotonic discoverability does not impose

this “short memory” assumption into the sequentialization of the rule.

2.3. A canonical Pick-an-object mechanism. Up to this point, we have described

how PAO mechanisms operate, and which rules can be sequentialized with PAO mecha-

nisms. The next natural question is: given some rule ϕ that satisfies monotonic discover-

ability, how can we design the contents of the menus given to the agents in each step, in

a way that sequentializes ϕ?

19Interestingly, the definition of generalized DA procedures coincides with a deferred acceptance procedure
used by Pycia and Yenmez (2021) to produce stable matchings in the presence of externalities. While
this points to a relation between the family of rules that we are defining and their outcomes potentially
satisfying certain properties in the presence of those externalities, these are not the subject of our analysis,
neither are sequential mechanisms the subject of theirs.
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In principle, there might be multiple PAO mechanisms that sequentialize a given rule,

with variations over which agents are asked to choose from menus and the contents of

those menus. We can, however, construct a canonical PAO mechanism for that rule.

Let ϕ be a rule that satisfies monotonic discoverability, and define the PAO function S,

such that for every i and hA ∈ HA:

Si
(
hA
)

=

∅ if
∣∣ϕ (hA)∣∣ = 1 or

−→
hAi ∈ µ

ϕ
i

(
hA
)

µϕi
(
hA
)

otherwise

The proof of Theorem 1 involves showing that the PAO mechanism S above sequential-

izes the rule ϕ. The resulting PAO mechanism can also be easily explained:

• Step 1: Every agent i is given a menu containing µϕi
(
h∅
)
, that is, all the object

types that are allotted to i in some allocation produced by the rule ϕ.20

• Step t > 1: Let hA be the collective history representing the menus and choices

made by the agents up to period t. There are two cases.

–
∣∣ϕ (hA)∣∣ = 1, that is, every preference profile consistent with the collective

history up to step t is mapped to the same assignment by ϕ. In that case,

by monotonic discoverability, the last object chosen by the agents is exactly

that assignment, and therefore the procedure ends and agents leave with the

last object they picked.

– Otherwise, monotonic discoverability implies A∗ ≡
{
i ∈ A :

−→
hAi 6∈ µ

ϕ
i

(
hA
)}

is

non-empty. This set contains each agent for which, for any preference profile

consistent with the collective history hA, the assignment given by ϕ is different

from her last chosen object type. Each one of these agents in A∗ are given a

menu containing the set of object types that are still feasible for them, under

ϕ, for the preference profiles consistent with the collective history hA.

Therefore, for a given rule ϕ, the canonical PAO mechanism gives a simple recipe for

how the menus should be constructed. For some rules the resulting mechanism is very

intuitive.21 For some others, such as the simple serial dictatorship (SD), it might be less

so, and alternatively formulated PAO implementations are “simpler” to understand (see

section 4).

Notice that the canonical PAO mechanism implies some additional properties given in

the remark below.

Remark 1. For every collective history hA that results from using a canonical PAO mech-

anism, an object o is in a menu given to an agent a after hA if and only if there is a

continuation history of hA for which a is assigned object o.

20In other words, the set of feasible assignments for i under ϕ. In a college admissions environment, for
example, that would be every college that deems i acceptable.
21The Iterative Deferred Acceptance Mechanism in which each student submits at most one college at a
time (Bó and Hakimov, 2016), for example, is the canonical PAO mechanism for the DA rule.
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In other words, since menus are always subsets of previous menus and agents are as-

signed to the last object they chose, it must be the case that every object type that is

feasible after that point must be in any menu given to agents. Moreover, canonical PAO

mechanisms only present object types that are feasible—conditional on the collective

history—to the agent facing it.

Another fact worth noting is that when a rule is individually rational, every menu given

by the canonical PAO mechanism contains the element ∅, and whenever an agent chooses

it, her assignment is determined to be the null object—that is, she is left without any

object. Individual rationality, in fact, is a property intrinsically connected with the idea

of sequentializing rules using PAO mechanisms. If a rule is not individually rational, this

implies that agents might have to make choices from menus that include only unacceptable

objects. Since their outcomes in general depend on these choices, we would face a situation

in which agents have to make “correct” outcome-relevant choices among unacceptable

objects, an arguably undesirable property for this family of mechanisms.

Monotonic discoverability therefore gives a full characterization of the rules for which it

is possible to use a PAO mechanism to “sequentialize” the process of obtaining information

on the participants’ preferences, and Proposition 1 gives us a family of mechanisms that

satisfy that condition. This does not, however, guarantee that it will be in the participants’

own interest to truthfully reveal their preferences. When that is not the case, then the

outcomes produced by these PAO mechanisms may differ substantially, with respect to

the agents’ true preferences, with that determined by the rule being used. In other words,

we also need to consider the implementation problem when using PAO mechanisms.

3. Implementation in Pick-an-Object Mechanisms

In this section we will consider the game that is induced by PAO mechanisms, and

conditions on the rules that guarantee that it is in the participants’ own interest to

reveal their true preferences using straightforward strategies. The equilibrium concept

that we will use is that of perfect ex-post equilibrium (Bergemann and Morris, 2005;

Ausubel, 2004). Implementation in perfect ex-post equilibrium is considered a robust

implementation notion, since an agent’ optimal behavior does not depend on unrealistic

assumptions about their knowledge of other players. Straightforward strategies being a

perfect ex-post equilibrium implies that agents choosing from menus according to their

true preferences is a mutual best-response regardless of previous behaviors, and for every

preference profile.

Let a be any agent, S be a PAO mechanism, and HA
S be the set of collective histories

of S. Moreover, let HA
S (a) ≡

⋃
hA∈HA

S
hAa . That is, HA

S (a) is the set of all choice histories

that agent a might experience while interacting with that mechanism. We define an

agent a’s strategy for S to be a function σa : HA
S (a) ∪ {∅} × 2O → O, where for every

h ∈ HA
S (a) ∪ {∅}, σa(h,Ω) = o implies that h ⊕ (Ω, o) ∈ HA

S (a). In other words, for
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each agent, strategies allow agents to condition their choices on past choice histories and

menus that they faced.

This representation of strategies is intuitive and simple: agents can condition their

choices based on their past experience while interacting with the mechanism and the menu

they face. It also reflects an environment in which agents are not given any information

about the other agents’ choices except for the ones that the agents can infer from the

mechanics of the mechanism being used and their experience using it.22

A type-strategy for S is a function Σ that maps each preference ranking in P to

a strategy for S. Define the outcome starting from hA under σ, O|hA (σ), as the

assignment that results from following the PAO mechanism S when agents follow the

strategies for S in σ starting from the collective history hA ∈ HA
S ∪ {hA−∅}. Define

moreover Oa|hA (σ) as agent a’s outcome under that profile.

Definition 4. A type-strategy profile (Σa)a∈A for S is a perfect ex-post equilibrium

if for every a ∈ A, hA ∈ HA
S ∪ {hA−∅}, strategy σ′a for agent a and P ∈ P |A|:

Oa|hA
(

Σa(Pa), (Σa′(Pa′))a′∈A\{a}

)
Ra Oa|hA

(
σ′a, (Σa′(Pa′))a′∈A\{a}

)
We say that an allocation rule ϕ is pick-an-object implementable in perfect ex-

post equilibrium if there exists a PAO mechanism S that sequentializes ϕ, in which

straightforward strategies constitute a perfect ex-post equilibrium.

Theorem 2. Let ϕ be an individually rational rule. Then ϕ is pick-an-object imple-

mentable in perfect ex-post equilibrium if and only if ϕ is strategy-proof and satisfies

monotonic discoverability. Moreover, straightforward strategies constitute a perfect ex-

post equilibrium profile for every pick-an-object mechanism that sequentializes a rule that

is pick-an-object implementable in perfect ex-post equilibrium.

Theorem 2 says, therefore, that strategy-proofness and monotonic discoverability fully

characterize the individually rational rules that can be pick-an-object implemented in

perfect ex-post equilibrium. Moreover, it shows that every PAO mechanism that sequen-

tializes each of these rules implements them in perfect ex-post straightforward equilibria.

The implementation result, therefore, does not rely on some particular PAO mechanism.

The canonical PAO mechanism introduced in section 2.3, for example, can be used with

that objective for any of these rules.23

22For instance, when the PAO mechanism being used sequentializes a serial dictatorship, an agent can
infer the choice made by those higher than her in the priority order by looking at the missing items in
the menu she receives. Her strategy could, therefore, condition her choice on these agents’ actions in this
case.
23In a previous version of this paper, this result was shown under a different solution concept—(Robust)
Ordinal Perfect Bayesian Equilibrium. In its robust form, that concept is equivalent to perfect ex-post
equilibrium. Mackenzie and Zhou (2020) presents simultaneous and independent work showing that this
result holds for Menu Mechanisms, a generalization of PAO mechanisms that does not necessarily assign
agents to the objects they choose.
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Notice that the definition of perfect ex-post equilibrium points to unique actions at

every decision node in the game induced by the mechanism. Therefore, in an equilibrium

with straightforward strategies, players simply follow a simple and myopic truthful rule

of thumb and expect that to remain the case for any deviation that they might make.

Here, it is important to note that monotonic discoverability and strategy-proofness are

independent. Firstly, it is easy to see that the Boston mechanism is a generalized DA

procedure (and therefore satisfies monotonic discoverability) while famously not being

strategy-proof. Below, we show an example of a rule that is strategy-proof but does not

satisfy monotonic discoverability:

Example 3.1 (A rule that is strategy-proof but not monotonic discoverable). Let O =

{o1, o2, o3, o4} and ϕ be defined for two agents a1, a2. Agent a1 is assigned her most-

preferred object, and a2 is assigned her most-preferred object among the two least-

preferred objects by a1.

3.1. Implementation via unique straightforward equilibrium. While we could

make the case that Theorem 2 already provides a good foundation for using PAO mech-

anisms when implementing rules, we will show that some rules can be implemented via a

unique perfect ex-post equilibrium.

The first result involves a condition on the allocation rule:

Definition 5. Let a∗ be an agent and P be a preference profile. Let P ′a∗ be such that

ϕa∗(P
′
a∗ , P−a∗) = ∅. If the rule ϕ satisfies resource monotonicity, then for every a ∈

A\{a∗}, ϕa(P ′a∗ , P−a∗) Ra ϕa(P ).

Resource monotonicity, therefore, says that if an agent changes her preferences and

as a result either remains or becomes unmatched, other agents cannot be made worse

off. An example of a class of rules that are resource monotonic (and strategy-proof) are

generalizations of the serial dictatorship, which can be defined by a procedure in which

agents take turns choosing their most preferred allocation among the set of objects not

yet assigned, but (i) depending on the agent and the object, choosing an object might

also remove other objects from the set of available objects,24 and (ii) if an agent chooses

∅, then the set of objects that remain available does not change.

This condition allows us to obtain the following result:

Proposition 2. Let ϕ be an individually rational rule that is resource monotonic, strategy-

proof and satisfies monotonic discoverability. Moreover, let S be the canonical PAO mech-

anism that sequentializes ϕ. Agents following straightforward strategies constitute the

unique perfect ex-post equilibrium of the game induced by S.

The role that resource monotonicity has in Proposition 2 is guaranteeing that if, starting

at some period, other agents follow strategies that leave them unmatched, this cannot

24Consider, for example, a problem in which agents are assigned software packages, but whenever an
agent with a hearing disability chooses a multimedia software, a transcription software is automatically
bundled in—and therefore removed from the list of remaining softwares for the other agents.



PICK-AN-OBJECT MECHANISMS 19

make an object unavailable for someone else. This implies that at any step of a PAO

mechanism, for each agent, there is a preference profile for the other players for which

any choice she makes is final.

Next, we show that when implementing the Gale-Shapley DA rule via the canonical

PAO mechanism, straightforward strategies constitute the unique ex-post equilibrium.25

Proposition 3. Let ϕ be the Gale-Shapley DA rule for an arbitrary list of capacities

and priorities for the colleges. Moreover, let S be the canonical PAO mechanism that

sequentializes ϕ. Agents following straightforward strategies constitute the unique perfect

ex-post equilibrium of the game induced by S.

While uniqueness of equilibrium outcomes—i.e., full implementation—is a common ob-

jective that is achievable in some settings and for some rules, uniqueness of equilibrium

strategies is less often so. It is worth comparing Proposition 3 with related results in the

literature. Kawase and Bando (2021) show that, in a perfect information PAO implemen-

tation of Gale-Shapley DA, the student-optimal stable matching is the unique subgame-

perfect Nash equilibrium outcome. Bó and Hakimov (2016) also show that, under an

additional behavioral assumption, straightforward strategies constitute a unique ex-post

equilibrium for the Iterative Deferred Acceptance mechanism (a PAO implementation of

Gale-Shapley DA). Mackenzie and Zhou (2020) show that the Gale-Shapley DA rule can

be ex-post “everywhere-dominant” (but not uniquely) implemented via a menu mecha-

nism (which is also, in that case, a pick-an-object mechanism) in which only previous

choices are removed from the participants’ menus.

3.2. Relation with Obviously Strategy-proof Mechanisms. When introducing the

concept of obvious strategy-proofness (OSP), Li (2017) defined an OSP mechanism as one

that has an equilibrium in obviously dominant strategies. A rule ϕ is OSP-implementable

if there is a game and an obviously dominant strategy for each type of player in that game,

such that the outcome produced by this strategy for each type profile is what is determined

by ϕ. Pycia and Troyan (forthcoming) showed that, in an object allocation environment

such as the one that we use, every OSP-implementable rule could be implemented via a

millipede game with a greedy strategy. Millipede games are sequential games where, in

each period, some agent can either “pass” or “clinch” one of potentially multiple options

in a menu which corresponds to private allocations that they can guarantee (in our setup,

therefore, that agent can clinch an object and leave with it). A greedy strategy consists of

an agent choosing to “pass” as long as her most-preferred object can still be clinched from

a menu in some continuation history, and clinching it whenever it is in a given menu.26

25Note that the Gale-Shapley DA rule is not resource monotonic.
26While each option in a menu given to a player in a millipede game corresponds to a private allocation
for that player, there might be multiple options in that menu associated with the same allocation. While
every option associated with an allocation results in the same outcome for the player making that choice,
different choices among these might result in different outcomes for other players. Our results will consider
only situations in which that is not the case: different items in a menu correspond to different private
allocations for the agent making the choice. Therefore, we will ignore the possibility that they do not.
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The first thing to note is that there is a direct relation between a greedy strategy in

a millipede game and a straightforward strategy in a PAO mechanism. In a millipede

game, every time an agent interacts with the mechanism she is given a menu of objects

that she can pick and keep for good and, potentially, also one option to “pass.” That is,

as in PAO mechanisms, in millipede games an agent is always matched to the last object

that she chose. However, in a millipede game, an agent can only choose an object once,

and it remains her final allocation. In contrast, in a PAO mechanism, a chosen object can

be interpreted as her “tentative allocation,” and thus she can potentially choose multiple

times. The authors show that the greedy strategy is obviously dominant in that game.

As long as an agent can infer the set of clinchable objects in continuation histories,

following the greedy strategy is very simple: the only object she chooses from a menu is

her most preferred in the set of feasible objects. Otherwise, she simply passes.27

In a canonical PAO mechanism, on the other hand, menus always contain the entire set

of feasible objects. Therefore, an agent following a straightforward strategy chooses the

most-preferred object among those that are feasible, and will only have to make another

choice once, and then only if that object is no longer feasible. Notice that, as opposed to

millipede games, in these PAO mechanisms agents do not have to infer the set of feasible

objects: all feasible objects are offered in the menus. Our next result relies on the common

property of non-bossiness, defined below.

Definition 6. A rule ϕ is non-bossy if, for every a ∈ A, if ϕa (Pa, P−a) = ϕa (P ′a, P−a),

then ϕ (Pa, P−a) = ϕ (P ′a, P−a).

If a rule is non-bossy and OSP implementable, we obtain the following relation with

PAO mechanisms:28

Proposition 4. Every non-bossy OSP implementable rule is PAO implementable in

weakly dominant strategies.

Given the simplicity of these strategies, a question one may have is whether what drives

a high proportion of behavior in line with an obviously dominant strategy is, in fact, the

simplicity of the strategy itself, as opposed to more sophisticated arguments in terms of

the kind of counterfactual reasoning that is eliminated in an OSP mechanism. If that

is the case, a PAO mechanism could also lead agents to behave more in line with its

theoretical prediction.

27Pycia and Troyan (forthcoming) question, however, the simplicity of inferring the set of clinchable
objects in continuation histories, as it requires foresight from agents. They then introduce the concept of
strong obvious strategy-proofness. In a strong OSP mechanism, the agents face a menu to choose from
only once, and there is no passing option. The obviously dominant strategy in these games thus simply
requires choosing the best object from the single menu that is offered.
28In their Supplementary Appendix, Pycia and Ünver (2017) provide a definition of their trading cycle
mechanism that is a generalized DA procedure. Since trading cycle mechanisms characterize strategy-
proof and non-bossy mechanisms, Theorem 2 together with their characterization implies that strategy-
proof and non-bossy mechanisms are implementable in perfect ex-post equilibrium via PAO mechanisms.
Proposition 4 strengthens that result for implementation in weakly dominant strategies when the rule is
also OSP implementable.
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4. Experiments

In this section, we present experiments designed to test the performance of PAO mecha-

nisms for implementing different allocation rules, when compared to the traditional direct

revelation mechanisms and OSP mechanisms, when possible. We chose two rules: top

trading cycles (TTC) and serial dictatorship (SD). Ideally, we would have liked to compare

implementing multiple allocation rules via PAO versus multiple alternative mechanisms.

Our choice of using SD and TTC is driven mainly by the importance of both rules for

practical applications. Another contender could be DA, but the comparison of the PAO

implementation of DA versus its direct counterpart was made in two recent papers Bó

and Hakimov (2020) and Klijn et al. (2019). Both led to a similar conclusion, reporting

the better performance of the PAO mechanism, with respect to the truth-telling rates and

stability of the allocations, when compared to the direct DA mechanism. Additionally,

our choice of allocation rules was driven by the possibility of the OSP implementation

of both rules (in the case of acyclic priorities for TTC). This allows us to compare PAO

versus OSP implementations in a restricted setup.

4.1. Mechanisms. In this subsection, we describe the six mechanisms used in the experi-

ments. For each allocation rule, namely TTC and SD, we use three different mechanisms:

Direct,29 PAO, and OSP. For the PAO mechanisms, we used the canonical mechanism

induced by these rules (see section 2.3). The mechanisms correspond to treatments in the

experiments. Note that we describe the mechanisms in the same way they were described

to the participants. We omit the description of actions when some or all objects are not

acceptable for simplicity and to prevent confusion. The reason is that all objects lead

to a positive payoff for the subjects in the experiments. Moreover, in the experiments,

subjects had to choose at least one object in all sequential mechanisms and list all objects

in the rank-order lists in the direct mechanisms. Details of the information given to the

participants in the experiment are shown in section 4.2.

Direct TTC

Every participant submits her rank-order list of objects to a central authority. The

following steps are executed by the central authority, without any further participation

from the subjects.

• Step 1.1 All participants point to the object at the top of their submitted rank-

ordered lists. Each object points to the participant with the highest priority at

that object.

– The mechanism looks for cycles. There is at least one cycle. All participants

in the cycle are assigned the object they pointed to.

29We capitalize ”Direct” when referring to the treatment name.
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• Step 1.2 The priorities of the objects are updated to account for assigned partici-

pants. Submitted rank-ordered lists are updated to account for assigned objects.

Steps 1–1.2 are repeated until all objects are assigned.

Direct TTC is strategy-proof, and Pareto efficient (Abdulkadiroğlu and Sönmez, 2003).

PAO TTC

All participants are asked to pick one object from a menu with all objects.

• Step 1.1. All participants point to the object they picked. All objects point to the

participant with the highest priority at that object.

– The mechanism looks for cycles. There is at least one cycle. All participants

in the cycle receive the object they pointed to.

• Step 1.2 For the remaining participants, if their last picked object was already

assigned, the participant is asked to choose a new object from a menu of remaining

objects. Steps 1–1.2 are repeated until all the objects are assigned.

In PAO-TTC, every participant following the straightforward strategy is a perfect ex-

post equilibrium (see Theorem 2). If all participants follow straightforward strategies, the

allocation is Pareto efficient.

OSP TTC

Note that OSP TTC is only defined when the priorities of the objects are acyclic. We

use the mechanism described in Troyan (2019).

• Step 1.0. The mechanism first tentatively assigns each object to the participant

with the highest priority at that object (i.e., the participant tentatively owns the

object).

• Step 1.1. One by one each participant who tentatively owns an object is asked

whether one of the objects that she owns is her favorite object. There are two

possible answers for each participant and object:

– If ”Yes,” the corresponding participant receives the object. Go to Step 1.2.

– If ”No,” she is asked about the next object among the ones she tentatively

owns. If the participant answers “No” to all tentatively owned objects, the

algorithm moves to the next participant who owns at least one object. If all

participants who tentatively own at least one object say ”No” to all owned

objects, then each participant who tentatively owns at least one object is

asked to pick one object among the objects she does not own.

∗ All participants point to the object they picked. Each object points to

its owner. The mechanism looks for cycles. There is at least one cycle.

All participants in the cycle receive the object they picked.

• Step 1.2 The priorities of the objects are updated to account for the participants

who left. Steps 1.1–1.2 are repeated until all objects are assigned.
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In OSP TTC, the truthful strategy30 is obviously dominant, leading to a Pareto efficient

allocation.

Note that in mechanisms implementing the SD allocation rule, we use priority scores

instead of using ordinal tables priorities. In the experiments, each subject knew her score,

and knew that the higher the score, the higher her priority. Details are explained in the

experimental design section.

Direct SD

Every participant submits her rank-order list of objects to a central authority. The

following steps are executed by the central authority, without any further input from the

subjects.

• Step 1. The participant with the highest priority score is assigned the top-ranked

object on her list.

• Step 2. The participant with the second-highest priority score is assigned the top

object on her list, among the remaining objects. ....

• Step N. The participant with the Nth-highest priority score is assigned whatever

object remains.

Direct SD is Pareto efficient and strategy-proof.

PAO SD

• Step 1. All participants are asked to pick one object from a menu with all objects.

• Step 2. The participant with the highest priority score is assigned the object she

picked. All other participants who chose this object are asked to pick a new object

from a menu containing the remaining objects.

• Step 3. The participant with the second-highest priority score is assigned the last

object she picked. All other participants with lower priority who chose this object

are asked to pick a new object from the menu containing the remaining objects.

....

• Step N+1. The participant with the lowest priority score is assigned the last object

she picked.

In PAO-SD, every player using the straightforward strategy is a perfect ex-post equilib-

rium (see Theorem 2). If all participants follow straightforward strategies, the allocation

is Pareto efficient.

OSP SD

• Step 1. The participant with the highest priority is asked to pick an object and

she is assigned the object she picked.

30More specifically, the truthful strategy consists of only saying ”Yes” when the object is the most-
preferred among the objects that are still available, and picking the most-preferred object when asked to
pick from objects that she does not own.
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• Step 2. The participant with the second-highest priority is asked to pick an object

among the remaining ones, and she is assigned the object she picked. ....

• Step N. The participant with the lowest priority is assigned to the last remaining

object.

In OSP SD, straightforward strategies are strongly obviously dominant, leading to a

Pareto efficient allocation (Pycia and Troyan, forthcoming).

4.2. Experimental design. In the experiment, there were eight objects and eight par-

ticipants. In all treatments, participants received 22 euros if they were matched to their

most-preferred object, 19 euros for their second most-preferred object, 16 euros for their

third most-preferred object, and so on. Participants received 1 euro if they were matched

to their least-preferred object.

Each session lasted for 21 rounds. At the end of the experiment, one round was ran-

domly drawn to determine the participants’ payoffs.

Each round represented a new market. The preferences used in each market were gen-

erated following the designed market idea of Chen and Sönmez (2006). For each market,

agents’ ordinal preferences were generated from cardinal utilities by adding, for each ob-

ject, a common and an idiosyncratic value. The common values for each object were

drawn from the uniform distribution with the range [0, 40]. The idiosyncratic values were

drawn, for each object and each agent, from the uniform distribution with the range [0, 20].

The agent’s utility from being matched to the object was the sum of both components.

The resulting utilities were transformed into ordinal preferences. The procedure above

ensures some correlation between participants’ preferences. All objects had priorities over

participants. The priorities were independently drawn from uniform distributions, in each

round.31

We ran three treatments between-subjects: Direct, PAO, and OSP. Comparing Direct

and PAO is our main focus. We additionally ran OSP, which is only available in SD

and for a restricted set of environments in TTC – namely those with acyclic priorities

– to disentangle the effect of the sequential pick-an-object setup from the effect of the

simpler strategic setup of OSP mechanisms. To have a comparison of the treatments under

a variety of parameters, including different allocation rules, we ran three environments

within-subjects: TTC with cyclic priorities, TTC with acyclic priorities, and SD.

Note that, with respect to the TTC rule, general priorities (cyclic) is the most applicable

environment, and therefore the main focus of our analysis for that rule. TTC with acyclic

priorities is a simpler decision environment as the acyclic priorities ensure that, at any

time of the mechanism, only two participants could be at the top of the priorities of

all objects.32 TTC with acyclic priorities is implementable through an OSP mechanism,

thus allowing us to compare it to a PAO implementation of that rule. SD is arguably

31For rounds with acyclic priorities, priorities were drawn from the set of acyclic priorities. A new draw
of acyclic priorities was generated for each round.
32TTC cycles, therefore, could involve only one or two agents.
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Rounds Direct PAO OSP
1-7 TTC cyc TTC cyc TTC acyc
8-14 TTC acyc TTC acyc TTC acyc
15-21 SD SD SD

Table 1. Summary of treatments

the simplest allocation rule and also allows implementation through the OSP mechanism,

which also coincides with the setup of sequentially making choices from a menu. Unlike

the general PAO mechanism, it does not require the simultaneous play of participants at

the first step.

For the first 14 rounds of the experiment, participants were matched using the TTC

rule. During the first seven of these rounds, they faced markets with cyclic priorities

in the Direct and PAO treatments. Given the importance of this comparison, and to

prevent learning effects from other environments implemented within-subjects, we always

run cyclic TTC in the first seven rounds. The same markets were used for Direct and

PAO treatments. Because there is no OSP mechanism for TTC with cyclic priorities,

we also generated acyclic priorities for the first seven rounds of the OSP treatment. For

rounds eight to 14, TTC with acyclic priorities was used to match participants to objects.

The same markets were used in all three between-subjects treatments.

In the first 14 rounds, participants observed the full priority tables of all objects. The

provision of priority tables is necessary, as it allows participants to see when they are

acyclic in the OSP TTC. Participants knew only their own preferences, however, and not

the preferences of other participants. They were aware that other participants might have

the same or different preferences. We chose this informational environment to simplify

the processing of market information, as providing complete information would lead to a

longer decision time every round.

Finally, the SD allocation rule was used for the last seven rounds (rounds 15 to 21).

Before round 15, subjects were informed about the switch of the mechanism. In the last

seven rounds, the participants were assigned a priority score instead of observing the

priority table of objects. They knew that the higher the score, the higher the priority.

Participants were also informed that the priority scores would be drawn for each subject

and each round independently from a uniform distribution with the range [1, 100] and

each participant was informed of their own draw. This choice was made to ensure that

even the participants with the lowest score had incentives to play a meaningful strategy.

Otherwise, they would know that their choices were irrelevant for the allocation. As for

preferences, just like in the first 14 rounds, participants only knew their own preferences

and were informed that other participants might have different preferences.

Table 1 presents the summary of the experimental design. Each cell of the table rep-

resents the mechanism used. Note that we explained to each subject two mechanisms

to compare treatments under more than one allocation rule. It was feasible, as all SD

mechanisms are quite simple and straightforward to explain; thus, we decided to run it
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within-subjects together with the TTC mechanisms. After each round, the participants

learned the object they were matched to, but not the matches of the other participants.

The within-subjects design is driven by practical considerations and the goal of com-

paring treatments under various environments. We did not randomize the order of en-

vironments intentionally because we aimed at having high statistical power for the main

comparison of the paper—PAO versus Direct under general priorities of TTC, given the

number of participants. This environment was always run first and thus represents a

clean comparison. The comparison between treatments under other environments might

be affected by subjects’ experience in the previous rounds. If subjects are more likely to

play truthfully in the next round, given the truthful play in the previous round using the

same kind of mechanism, it is possible that the design biases the results “against” the

PAO treatment and “in favor” of the OSP treatment, since players in the OSP treatment

play OSP TTC (with acyclic priorities) for 14 rounds, while in the PAO treatment, there

were seven rounds with acyclic priorities, followed by seven rounds with cyclic priorities.

The experiment was run at the experimental economics lab at the Technical University

of Berlin. We recruited student subjects from our pool with the help of ORSEE (Greiner,

2015). The experiments were programmed in z-Tree (Fischbacher, 2007). Independent

sessions were carried out for each of the three between-subjects treatments. Each session

consisted of either 16 or 24 participants that were split into two or three groups of eight

for the entire session. We use fixed groups in order to increase the number of independent

observations and allow for maximum learning. As every round represents a new market

and subjects play under incomplete information on the preferences of the other partici-

pants, subjects could not identify the strategies or identities of the players from previous

rounds. Thus, we are not concerned about repeated games caveats.

In total, 15 sessions with 296 subjects were conducted. Thus, we have 96 subjects

and 12 independent observations in Direct and PAO treatments, and 104 subjects and 13

independent observations for the OSP treatment. On average, the experiment lasted 110

minutes, and the average earnings per subject were 27 euros, including a show-up fee of

9 euros.

At the beginning of the experiment, printed instructions were given to the participants

(see Appendix B). Participants were informed that the experiment was about the study

of decision-making. The instructions were identical for all participants of each treatment,

explaining the experimental setting in detail. First, the mechanism implementing the TTC

rule was explained, with an example. The participants were told that this mechanism

would be used to match them to objects for the first 14 rounds. Then, the mechanism

implementing the SD rule was explained, also with an example, and participants were

told that this mechanism would be used to match them to objects in the last seven

rounds. After round 14, participants were reminded about the mechanism switch. They

were invited to re-read instructions for the second mechanism. Clarifying questions were

answered in private. Note that the switch between cyclic and acyclic priorities does not
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switch the mechanism, and this change was not emphasized to subjects. They could,

however, infer the difference from the priority tables.

4.3. Experimental Results. The significance level of all our results is 5%, unless oth-

erwise stated. For all tests, we use the p-values of the coefficient of the treatment dummy

in regressions on the variable of interest. Standard errors are clustered at the level of

matching groups, and the sample is restricted to the treatments that are of interest for

the test. We use the > sign in the results between treatments to communicate ”signifi-

cantly higher,” and the = sign to communicate ”the absence of a statistically significant”

difference between treatments.

4.3.1. Truthful reporting. The focus of the paper is the comparison of the different propor-

tions of equilibrium behavior induced by different mechanisms for the same environment.

We consider the proportions of subjects following a dominant strategy of truthful report-

ing in the direct mechanisms, a straightforward strategy that constitutes a perfect ex-post

equilibrium in the PAO mechanisms, and the obviously dominant strategy in the OSP

mechanisms. To simplify the language of distinguishing between these strategies, we use

the concept of truthful strategy. A participant follows a truthful strategy under a direct

mechanism when she submits the truthful list of all eight objects.33 In PAO mechanisms

and OSP-SD, a participant following the truthful strategy is equivalent to her following

the straightforward strategy. In OSP-TTC, participants following the truthful strategy

must truthfully answer the “yes-no” questions about the most-preferred object among the

ones for which the participant has the highest priority, and in case of all “no” answers, the

participant must make a truthful choice of the favorite object among the other objects.

Result 1 (Behavior in line with the truthful strategy):

(1) Under the TTC rule with cyclic priorities, the comparison of average proportions

of subjects behaving in line with the truthful strategy leads to the following results:

PAO>Direct.34

(2) Under the TTC rule with acyclic priorities, the comparison of average proportions

of subjects behaving in line with the truthful strategy leads to the following results:

OSP>PAO>Direct.35

33Note that there are typically multiple undominated strategies, given the information available to the
subjects taking part in the experiments. We argue that the submission of the full truthful list (truncations
are not allowed by design), however, is the simplest strategy among the undominated. Nevertheless, as
a robustness check we consider alternative definitions of truthful strategies throughout the section.
34The result is robust to two changes of the definition of truthful strategy in the direct TTC. First, if
instead of requiring the full truthful list we count as truthful all truthful submissions until the guaranteed
object, the result remains the same. Second, if instead of requiring the full truthful list in the direct TTC
we count as truthful all submissions with the truthful ranking of objects until the assigned object, the
result also remains the same.
35If instead of requiring the full truthful list in the direct TTC we count as truthful all truthful submissions
until the guaranteed object, the result remains. If instead of requiring the full truthful list in the direct
TTC we count as truthful all submissions with the truthful ranking of objects until the assigned object,
the difference between Direct and PAO becomes not significant.
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Figure 2. Truthful strategies by treatments and rounds

Direct PAO OSP Direct=PAO Direct=OSP PAO=OSP
p-value p-value p-value

TTC cyclic 35% 55% n/a 0.00 n/a n/a
TTC acyclic 56% 67% 77% 0.00 0.00 0.00

SD 72% 75% 98% 0.47 0.00 0.00

Notes: All the p-values are for the coefficient of the dummy for the corresponding treatment in the
probit regression of the dummy for the truthful strategy on the treatment dummy, with the sample
restricted to the treatments involved in the test. The standard errors of all regressions are clustered
at the level of the matching groups. Thus, we have 24 clusters in regressions comparing Direct and
PAO treatments, and 25 clusters in regressions that involve a comparison of the OSP treatment.

Table 2. Proportions of truthful strategies

(3) Under the SD rule, the comparison of average proportions of subjects behaving in

line with the truthful strategy leads to the following results: OSP>PAO=Direct.36

Support:

Figure 2 presents the proportions of truthful strategies played by participants by treat-

ments and rounds.

First, under the TTC rule with cyclic priorities, the average proportion of truthful

strategies under direct TTC is 20 percentage points lower than under PAO TTC. The

difference is significant. The significance of the difference is robust to modifications of

36If instead of requiring the full truthful list in the direct SD we count as truthful all truthful submissions
until the assigned object, the result remains. Note that under the informational conditions of the last
seven rounds, there is no such thing as “guaranteed objects.”
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the definition of truthful strategy in the direct TTC. Note that, in the setup of cyclic

priorities, no mechanism that implements the TTC rule is OSP (Li, 2017). We observe

that despite the strategy-proofness of direct TTC, the proportion of truthful strategies is

only 35%, which is rather low. However, this rate is comparable to some other studies in

the literature, that found similar rates of truthful reporting in TTC (for instance, 46%

in Chen and Sönmez, 2006 and 41% in Hakimov and Kesten, citeyearHakimov2018-qe).37

Sequentialization of the mechanism through PAO leads to a significant increase in the

proportion of truthful strategies. This finding is similar to the finding of Klijn et al.

(2019) and Bó and Hakimov (2020), who show that the PAO implementation of the DA

rule outperforms the direct mechanism. This is the main comparison of the experiment—

in the absence of OSP alternatives, the PAO implementation can improve the proportions

of equilibrium behavior relative to the implementation through the direct mechanism.

Second, in the case of TTC with acyclic priorities, the OSP TTC outperforms both

PAO and Direct mechanisms. The difference is significant for both the test considering

only rounds 8 to 14, and the test considering rounds one to 14 in OSP TTC versus rounds

eight to 14 in Direct and PAO TTC.38 As for the difference between Direct and PAO TTC,

the proportion of truthful strategies is 9 percentage points higher under PAO TTC, and

the difference is significant.39 The difference between Direct and PAO becomes smaller

in TTC with acyclic priorities than in TTC with cyclic priorities. One can argue that

learning is steeper under direct TTC. While this argument is hard to reject formally,

suggestive evidence goes against this argument. More specifically, the coefficient for the

variable “round” in the probit regression of the dummy for the truthful strategy is not

significant in either Direct or PAO TTC. Also, there is a jump in the proportion of

truthful strategies between rounds seven and eight under both treatments, suggesting

that participants reacted to the switch of priorities from cyclic to acyclic.

Third, for the SD rule, the use of the OSP mechanism results in almost universal (98%)

truthful behavior, as evident from Table 2. The rate of truthful strategies in OSP SD

is significantly higher than in the Direct and PAO treatments. One can argue that the

high rate of OSP is driven by the experience of subjects under OSP TTC, where the

rate of truthful strategies was already higher. Again, the within-subjects feature of the

design does not allow us to reject this argument formally. However, note that the decision

environment under SD was quite different due to the different informational environment,

37Two notable exceptions are Calsamiglia et al. (2010) and Pais and Pintér (2008), who documented
higher rates of truth-telling under TTC (62% and 85%, respectively). The high rate in Pais and Pintér
(2008) is likely driven by the fact that the rank-order list contained only three schools. Note, that in
Hakimov and Kesten (2018) in an environment with five schools, the rate is just 30%.
38One can argue that the difference is driven by learning, as subjects in the OSP treatment had already
played the OSP mechanism in the first eight rounds. We acknowledge the bias of our design in favor
of the OSP treatment. Note, however, that the rate of truthful strategies in the OSP treatment in the
first seven rounds is higher than the rate of truthful strategies under Direct and PAO in rounds 14-20,
suggesting that the difference is unlikely to be entirely explained by learning.
39Note, however, that the significance of the difference is not robust to redefining truthful strategies in
direct TTC as the truthful ranking of objects in the rank-order lists until the assigned object. In this
case, the difference between Direct and PAO becomes not significant.
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and we also notified subjects about the switch of the mechanism before round 15. Also,

the rate of truthful reporting under OSP SD is quite similar to Hakimov et al. (2021b) who

run OSP SD between-subjects. There is no significant difference between Direct and PAO.

SD is a simple allocation rule, and thus the rates of manipulations are already relatively

low under the Direct mechanism. Note that under PAO SD, participants might engage in

multiple decisions, especially when they have a low priority: every time the chosen object

is taken by someone with a higher priority, the agent is asked to pick another one.

Next, we take a closer look at the determinants of higher truthful rates under OSP.

Result 2 (The truthful strategy in OSP): In OSP TTC, the rate of truthful behavior

in the passing actions is much lower than in the clinching actions, and the difference is

significant.40

Support:

In line with the theory, obvious strategy-proofness leads to a higher rate of truthful

strategies under both TTC and SD. Note that, in general, OSP-TTC is not strongly

obviously strategy-proof, and the obviously dominant strategy might contain so-called

“passing” actions that require forward-looking from participants. In line with the defini-

tion of Pycia and Troyan (forthcoming), we can categorize possible paths of the obviously

dominant strategies of the participants into two groups:

(1) Clinching actions—paths of the obviously dominant strategy that contain only

clinching actions. If a participants was at the top of the priority of her favorite

remaining object by the time the OSP TTC mechanism interviewed her (thus, she

was at the top of the priority of at least one object). This strategy is strongly

obviously strategy-proof, as it does not require passing to the other player, and

thus does not require foresight from the participant.

(2) Passing actions—paths of the obviously dominant strategy that contain at least

one passing action. If a participant was not at the top of the priority of her favorite

remaining object by the time the OSP TTC mechanism interviewed her (thus, she

was at the top of the priority of at least one object). OSP requires to “pass”

the interview turn to another participant. This path of the obviously dominant

strategy does require foresight from the participant. In the context of OSP TTC,

these strategies require saying “no” to all objects and then picking the favorite

object among those for which the participant does not have the top priority.

Table 3 presents the proportion of truthful strategies in OSP TTC, depending on the

path of the OSP strategy. The rate of truthfulness in the passing actions is much lower

than in the clinching actions. In fact, the rate of truthfulness in passing actions is not

40We follow the insights from Pycia and Troyan (forthcoming) and define “passing actions” as OSP
strategies, which involve saying “no” to all objects which the agent tentatively owns under OSP TTC.
Thus, the agent has to pass the decision to the next agent, hoping that a better object will appear in her
choice set. “Clinching actions” are OSP strategies that require only saying “yes” to the most-preferred
object in OSP TTC. Thus, whenever an agent is asked to act, she tentatively owns the most-preferred
object.
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significantly different from truthful rates under direct TTC (p=0.94), and is significantly

lower than under PAO (p < 0.01), which are not obviously strategy-proof. In contrast,

once the path of OSP contains only clinching actions like in strongly obviously strategy-

proof strategies, the truthful rate is much higher than in other treatments and reaches

93%.

OSP TTC acyclic
N % of truthful

Clinching actions 836 93%
Passing actions 620 56%

Table 3. Truthful strategies by clinching and passing in OSP TTC

This result supports the concept of strong obvious strategy-proofness by Pycia and

Troyan (forthcoming). Indeed, when the market is such that the preferences and priorities

of the object are strongly negatively correlated (the agents prefer objects that rank them

the lowest), the obvious strategy-proofness of OSP TTC might not result in the high rates

of optimal behavior, as most paths of the OSP strategy will contain passing actions.

Summing up the subsection on individual strategies, experimental results support using

the PAO mechanisms in the complex environment, where an OSP mechanism is not

available. Once the environment is simple enough to allow for the presence of the OSP

mechanisms, they should be used. The benefit of the OSP mechanisms comes mostly

through the presence of the paths in OSP that contain only clinching actions.

4.3.2. Efficiency. While our experiment focuses on the subjects’ individual behavior, we

look at the efficiency of the reached allocations in this subsection. On one hand, the match-

ing game is often a zero-sum game, and a difference in efficiency is unlikely to appear.41

Thus, as in many previous experiments, we do not expect to find large differences in effi-

ciency between treatments. The differences might only appear due to Pareto-dominated

allocations.

Result 3 (Efficiency):

(1) Under the TTC rule with cyclic priorities: Direct>PAO.

(2) Under the TTC rule with acyclic priorities: Direct>PAO, OSP = PAO (round

8-14), OSP = Direct (round 8-14).

(3) Under the SD rule : Direct>OSP=PAO.

Support:

Figure 3 shows the average rank of the assigned objects under the true preferences

of participants by rounds. Thus, the higher the rank, the worse the assignment for

participants. Table 4 shows the average ranks of assigned objects by treatments. Under

TTC with cyclic priorities (first seven rounds), the average rank of the assigned objects

is significantly higher under Direct than under PAO. The difference is, on average, 0.29

41Consider the theoretical argument of Liu and Pycia (2016) for further details of this discussion.
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Figure 3. Average rank of assigned objects by treatments

Direct PAO OSP Direct=PAO Direct=OSP PAO=OSP
p-value p-value p-value

TTC cyclic 2.87 2.58 n/a 0.00 n/a n/a
TTC acyclic 2.43 2.19 2.34 0.00 0.33 0.08

SD 2.49 2.35 2.37 0.02 0.02 0.66

Notes: All the p-values are p-values for the coefficient of the dummy for the corresponding treatment
in the OLS regression of the rank of the assigned object in the true preferences of participants on the
treatment dummy, with the sample restricted to the treatments involved in the test. The standard
errors of all regressions are clustered at the level of the matching groups. Thus, we have 24 clusters
in regression comparing Direct and PAO treatments, and 25 clusters in regressions that involve
comparison of OSP treatment.

Table 4. Average rank of assigned objects in the true preferences of the
participants

of a rank. This is a large difference for matching markets experiments, as often a worse

assignment of one participant leads to a better assignment of the other. Note that we

do not present the results for the OSP treatment for the first seven rounds. Because the

comparison would not be meaningful, as the participants played under different priorities,

and thus the equilibrium allocations are different.

Under TTC with acyclic priorities, there is a small but statistically significant differ-

ence between PAO and Direct. Again, the average assignment is significantly better for

participants under the PAO treatment. There is no significant difference between OSP
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and other treatments. Thus, a higher rate of truthful strategies in OSP does not result

in a better average allocation of objects.

Finally, under the SD rule, the average rank in the Direct mechanism is significantly

higher than under OSP and PAO. Despite a similar rate of truthful strategies, the conse-

quence of the deviations from truthful strategies is different between the Direct and PAO

treatments. At the same time, despite the large difference in truthful rates between PAO

and OSP, the average rank of assigned objects does not differ significantly.42

Summing up the subsection on efficiency, PAO outperforms Direct in all environments.

Interestingly, PAO does not perform worse than OSP in both acyclyc TTC and SD, despite

lower rates of truthful strategies. This is because in PAO some deviations from truthful

strategies are payoff-irrelevant, while under OSP they are more likely to be payoff-relevant

under acyclyc TTC and are always payoff-relevant under SD.

5. Conclusion

Recent empirical evidence raises concerns about the practical success of strategy-proof

matching mechanisms inducing the truthful reporting of preferences in practical applica-

tions. Recent work by Li (2017) sheds a new light on the design of market mechanisms,

emphasizing the importance of simpler and thus potentially more successful solutions

for practice. However, the hope was not long-lasting, as many desirable allocation rules

cannot be implemented via obvious strategy-proof mechanisms.

Our paper takes a different stand on potential solutions to the perceived complexity

of direct mechanisms. We suggest using PAO mechanisms when a rule cannot be imple-

mented via OSP mechanisms but belongs to an extensive family of rules, which include

many commonly considered in practice and the literature. Similar to OSP mechanisms,

PAO mechanisms can also implement those rules with an attractive and simple equilib-

rium strategy.

Our experimental evidence, together with recent evidence by Bó and Hakimov (2020)

and Klijn et al. (2019), show that improvement over direct mechanisms in allocations

and the percentage of people following an equilibrium is possible for allocation rules for

which OSP implementation is not available. These results might appear puzzling, and

may invite further research on understanding the relative strength of different equilibrium

concepts in predicting behavior, especially of inexperienced participants.

Finally, implementing rules via PAO mechanisms can be interpreted as a new type of

interaction between a market designer and the participants. Agents make requests to the

designer, saying what they want, as opposed to being asked questions about their “types.”

The designer satisfies the request as long as the rule allows it. While it might be possible

that the designer will return with bad news, this only happens when the designer cannot

satisfy the request—and could, in principle, provide information justifying that decision.

42For alternative definitions of efficiency and estimation of the costs of deviation from truthful strategies
in each treatment see Appendix B.0.1
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Appendix A. Proofs

Proof of Theorem 1.

Theorem 1. There exists a pick-an-object mechanism that sequentializes an individu-

ally rational rule ϕ if and only if ϕ satisfies monotonic discoverability.

Proof. First we assume that ϕ satisfies monotonic discoverability and show that the canon-

ical pick-an-object function S is such that its mechanism sequentializes ϕ.

Define a pick-an-object function S such that for every i and hA ∈ HA:

Si
(
hA
)

=

∅ if
∣∣ϕ (hA)∣∣ = 1 or

−→
hAi ∈ µ

ϕ
i

(
hA
)

µϕi
(
hA
)

otherwise

To show that S sequentializes ϕ, we will show that: (i) if the collective history hA is

such that
∣∣ϕ (hA)∣∣ > 1, at least one agent must be given a non-empty menu, that is, there

must be at least one i such that Si
(
hA
)
6= ∅; (ii) When an empty menu is returned for

all agents, their last choices must be the allocation that ϕ determines what should be

produced by any preference profile consistent with the collective history.

First, (i). Suppose not. Then
∣∣ϕ (hA)∣∣ > 1 and for all i, Si

(
hA
)

= ∅. By the definition

of S, this implies that for all i,
−→
hAi ∈ µ

ϕ
i

(
hA
)
. That is, the last choice of each agent is a

feasible assignment after hA.

Let −→µ be the allocation that matches each agent with her last choice in hA, that is,

for every i, −→µ (ai) =
−→
hAi , and PA be any preference profile consistent with hA. Mono-

tonic discoverability implies that either (a) for every preference profile P ′ consistent with

continuations of hA, ϕ (P ′) = −→µ , which is a contradiction with
∣∣ϕ (hA)∣∣ > 1, or (b) that

there is at least one agent ai∗ such that for all P ∈ L
(
PA,−→µ

)
,
−→
hAi∗ 6= µi∗ (P ), which is

again a contradiction with
−→
hAi∗ ∈ µ

ϕ
i∗
(
hA
)
.

Now, to (ii). Since an empty menu is given to all agents, then by the definition of S,

either (a)
∣∣ϕ (hA)∣∣ = 1 or (b) for every i,

−→
hAi ∈ µ

ϕ
i

(
hA
)
. Consider first (a). By definition

of the notation,
∣∣ϕ (hA)∣∣ = 1 implies that for all preference profiles consistent with hA,

the rule ϕ determines the same allocation. Suppose, however, that ϕ
(
hA
)
6= −→µ , and let

ai be an agent for whom ϕi
(
hA
)
6= −→µ (ai). Clearly, ϕi

(
hA
)

cannot be any choice made

before −→µ (ai) in hA, since by design of the pick-an-object mechanism it is only rejected if

it is not a feasible assignment anymore. So it can either be an object which was present in

a menu previous to the one where
−→
hAi was chosen but not in some future menu, or in the

menu given when
−→
hAi was chosen. The first option contradicts the way in which menus are

constructed: menus contain all feasible assignments conditional on the collective history.

So if at some point the object type was not feasible anymore, it cannot be that agent’s

assignment under ϕ. For the second, this implies that the allocation was determined by ϕ

to match agent ai to some object type o∗ that was not chosen. Notice, however, that since

ϕ is individually rational, a collective history cannot point to a single allocation unless

the agents’ preferences consider these objects acceptable. That is, the collective history
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must include agents choosing, at some point, these objects from a menu that includes the

option “∅”. Therefore, it cannot be the case that ϕ is individually rational,
∣∣ϕ (hA)∣∣ = 1,

and an ϕ
(
hA
)

matches some agent to an object that she did not choose from a menu.

Now, case (b). Here, all the last choices of all agents are feasible in ϕ
(
hA
)
. That is,

there is no agent who will not be matched to their last choice for a preference profile that

is consistent with ϕ
(
hA
)
. But then monotonic discoverability implies that ϕ

(
hA
)

= −→µ ,

which is what we wanted to show.

Next, we will show that if a rule ϕ does not satisfy monotonic discoverability, then it

cannot be sequentialized by some pick-an-object function S. Suppose not. Then there is

a rule ϕ∗ that does not satisfy monotonic discoverability and a pick-an-object mechanism

S that sequentializes it. Since ϕ∗ does not satisfy monotonic discoverability, there exists

a preference profile P ∗ and an allocation µ∗ such that (i*) ϕ∗ (P ∗) 6= µ∗ and (ii*) for each

agent a ∈ A, there is at least one preference profile P ∗,a ∈ L (P ∗, µ∗) where ϕ∗a (P ∗,a) =

µ∗ (a). If there is more than one such allocation µ∗ for that given P ∗, let µ∗ be such

that for every µ′ 6= µ∗ satisfying (i*) and (ii*), there is at least one a ∈ A such that

µ∗(a)P ∗aµ
′(a).

The first thing to note next is that (ii*) implies that when all agents follow straight-

forward strategies with respect to P ∗, there must be for each agent a a period in which

she chooses µ∗(a), and that this must happen before she chooses other objects that she

is matched to by ϕ∗ for any profile in L (P ∗, µ∗). That is, since when following P ∗ “up to

µ∗” there is some continuation in which a is matched to µ∗(a), then a must first choose

that object from a given menu.

The next observation is that, after the period in which a chooses µ∗(a), the determi-

nation of whether an agent a will be matched to µ∗(a) or some other object below µ∗(a)

in her preference cannot depend on that agent’s preferences among objects below µ∗(a)

in her preference, since in order to obtain information about that part of agent a’s pref-

erences requires rejecting µ∗(a) as a potential allocation for a. This implies that whether

a will be matched to µ∗(a) or not depends on information about the other agents ’ pref-

erences. More than that, (ii*) specifically implies that the conclusion that a will not be

matched to µ∗(a) cannot be reached before some other agent b makes choices after having

her choice of µ∗(b) rejected. This, therefore, has the following implications:

• Every agent a∗ following the straightforward strategy with respect to P ∗ will, in

some period, choose her allocation under µ∗,

• In any periods that follow, in which the other agents did not yet choose their

allocation under µ∗, agent a∗’s allocation may or not be determined to be µ∗ (a∗),

but will not have her choice rejected, since there is still some continuation in which

µ∗ (a∗) will be her allocation, and rejections are final.

The two implications above result in the following dynamic when agents follow straight-

forward strategies with respect to P ∗: agents make choices over menus until, at some point,

they choose their allocation under µ∗. After a certain number of periods, therefore, we
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reach a point in which all agents’ last choices are their allocations in µ∗. By (i*), µ∗

should not be the allocation, but by (ii*), for each agent, more information about the

preference profile is necessary to point out the correct allocation to be produced. This

requires rejecting at least one of the agents’ choices, but by (ii) for every agent there is a

continuation in which she is matched to her assignment under µ∗. So no more information

can be obtained when using any pick-an-object function, leading to a contradiction.

�

Proof of Proposition 1.

Proposition 1. If ϕ is described by a generalized DA procedure, then ϕ satisfies mono-

tonic discoverability.

Proof. In light of Theorem 1, it suffices to show that there is a pick-an-object mechanism

that sequentializes the rule that is specified by the generalized DA procedure. Let Ψ∗ be

the update function used to describe the rule ϕ. We construct the menu function S∗ as

follows:

S∗
(
hA−∅

)
= (O,O,O, . . .)

The value of S∗ for other collective histories are determined, recursively, as follows. Let

hA be a collective history for which the value of S∗
(
hA
)

has already been determined as

S∗
(
hA
)

= (φ1, φ2, . . . , φn).

For each choice profile (o1, o2, . . . , on), where for each i ∈ A, oi ∈ φi if φi 6= ∅ and oi = ♦
otherwise,43 perform the following:

(1) Construct the assignments µ1 and µ2 as follows:

• For every ai ∈ A:

– If oi = ♦ and hA 6= hA−∅, let µ1(ai) =
−→
hAi .

– Otherwise, let µ1(ai) = ∅.
• For every ai ∈ A, let µ2(ai) = ∅ if oi = ♦, and µ2(ai) = oi otherwise.

(2) For every ai ∈ A, define the choice history hi to be:

• hi = hAi ⊕ (φi, o
i) if oi 6= ♦,

• hi = hAi otherwise.

(3) Let µ3 = Ψ∗ (µ1, µ2).

• If for every a ∈ A it is the case that µt(3) ∈ {µ1(a), µ2(a)}, then S∗ (h1, h2, . . . , hn) =

(∅, ∅, . . . , ∅).
• Otherwise, S∗ (h1, h2, . . . , hn) = (φ′1, φ

′
2, . . . , φ

′
n), where for each ai ∈ A:

– φ′i = ∅ if µ3(ai) ∈ {µ1(ai), µ
2(ai)},

– φ′i = O\
⋃

(Ω,ω)∈hAi
ω otherwise.

Notice first that S∗ is a menu function: initial menus are the entire set O, and for every

collective history the menus given are precisely the last menu an agent was given with her

43Here the symbol ♦ is used as a placeholder for the agents who are not presented with a menu to choose
from.
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last choice removed. Since S∗ is defined recursively for each collective history that can

be generated by choices from the menus that can be offered, every possible path of the

pick-an-object mechanism is well defined. Consider now the pick-an-object mechanism S∗

and the agents in A following straightforward strategies with respect to P .

What follows is an exact reproduction of the steps of the generalized DA procedure

under the preference profile P . Since the menus always include all elements of O minus the

agents’ past choices, agents will make choices from the top until their last choice following

their preference, as in the generalized DA. Agents who have their last choices rejected and

are given new menus, for any collective history, are determined by the function Ψ∗, so

that the way in which the sequences of choices from menus determine whether an agent

is tentatively matched or not is given by that function. And finally, whenever the last

choice of agents should be determined as the outcome, S∗ returns a list of empty menus.

We can conclude, therefore, that the pick-an-object mechanism S∗ sequentializes the

rule ϕ. �

Proof of Theorem 2. The proof proceeds as follows: first, we assume that ϕ is strategy-

proof and satisfies monotonic discoverability, and show that straightforward strategies

constitute a perfect ex-post equilibrium for every PAO mechanism that sequentializes ϕ.

Next, we show that if ϕ is not strategy-proof, no PAO mechanism that sequentializes ϕ

has a straightforward perfect ex-post equilibrium. Adding the fact that Theorem 1 shows

that monotonic discoverability is necessary for the existence of a PAO mechanism that

sequentializes ϕ and the fact that strategy-proofness does not imply monotonic discover-

ability, we have everything we need.

In order to show that straightforward strategies constitute a perfect ex-post equilibrium,

we need to show that even when past choices were not a result of following straightfor-

ward strategies, being truthful from that point forward is still a best-response for every

preference an agent might have. Since the PAO mechanism sequentializes ϕ, this will

involve comparisons of outcomes among non-truthful strategies. While at first sight these

comparisons are not implied by any of the properties that we assume ϕ has, the compar-

ison we need can be done based on the strategy-proofness of ϕ. Some notation is needed

first.

For any set I ⊆ O, let I! denote the set of all permutations of the elements of I.44 For

any tuple γ of distinct elements of O (for example, γ = (o4, o7, o2)), let:

P|γ ≡
⋃

λ∈(O\γ)!

γ ⊕ λ

That is, P|γ is the set of all preferences in which γ are the most-preferred object types,

ordered as in the tuple γ itself. Let also P |I , where I ⊆ O, be the preference P restricted

to I (for example, if P = (o1, o4, ∅, o2, o3), P |(o2,o4) = (o4, o2)). We can now define recursive

dominance.

44For example, if I = {o1, o2, o3}, then I! = {(o1, o2, o3), (o1, o3, o2), (o2, o1, o3), (o2, o3, o1), (o3, o1, o2), (o3, o2, o1)}.
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Definition 7. A rule ϕ satisfies recursive dominance if for every agent a, preference

Pa, preferences of other agents P−a, set I ⊆ O, permutation γ of I and P ∗ ∈ P|γ:

ϕa

(
γ ⊕ P |O\I , P−a

)
Ra ϕa (P ∗, P−a)

The following corollary is derived from the fact that recursive dominance is implied by

monotone strategy-proofness, a concept introduced by Haeringer and Ha laburda (2016):

Corollary 1. (Haeringer and Ha laburda, 2016) A rule ϕ satisfies recursive dominance if

and only if it is strategy-proof.

The next lemma shows the outcomes that are produced when other agents follow

straightforward strategies starting from a particular collective history.

Lemma 1. Let Sϕ be a pick-an-object mechanism that sequentializes ϕ, and hA ∈ HA
S be

any collective history of Sϕ. Let P be any preference profile, σP be the straightforward

strategy profile with respect to P , a∗ be any agent, and σ′ be any other strategy for a∗.

Then there is a set of object types I ⊆ O, a tuple γ with elements of O, a preference

P ∗ ∈ P, and a preference profile for agents other than a∗ P ′−a∗ such that:

Oa∗ |hA
(
σPa∗ , σ

P
−a∗
)

= ϕa∗
(
γ ⊕ P |O\I , P

′
−a∗

)
and

Oa∗|hA
(
σ′, σP−a∗

)
= ϕa∗

(
γ ⊕ P ∗|O\I , P

′
−a∗

)
Proof. Let a be any agent, and take the element of hA containing her menus and choices:

hAa = ((Ω1, ω1) , (Ω2, ω2) , . . . , (Ωk, ωk))

Consider the tuple γha as follows, where the sets in double brackets are replaced by an

arbitrary permutation of their elements:

γha = (ω1 , JΩ1\({ω1} ∪ Ω2)K , ω2 , JΩ2\({ω2} ∪ Ω3)K , · · · , ωk)

Notice that if agent a had preferences P h
a = γha⊕JΩk\{ωk}K, she would have made these

exact same choices when facing the menus that she faced in hA. Consider now the con-

tinuation collective history hA−P that results from every agent following straightforward

strategies with respect to P after hA. For any agent a, the element of hA−P containing

her menus and choices has the following form:

hA−Pa = hAa ⊕ ((Ωk+1, ωk+1) , (Ωk+2, ωk+2) , . . . , (Ω`, ω`))

Since we assume that a followed the straightforward strategy, ωk+1 is the most-preferred

element of Ωk+1 with respect to Pa, and so on. Therefore, if agent a had preferences

P h
a = γha⊕Pa|Ωk\{ωk}, she would have the choices observed in hA−Pa . Since Sϕ sequentializes

ϕ, the outcome of agent a∗ produced after the collective history hA−P is, therefore:
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(1) Oa∗|hA
(
σPa∗ , σ

P
−a∗
)

= ϕa∗
(
γha∗ ⊕ Pa|Ωk\{ωk} , P

h
−a

)
Suppose now that agent a∗ follows some arbitrary strategy σ′ while the others follows

straightforward strategies with respect to P after hA. The resulting collective history is

in general different from hA−P , but for each agent a it has the following format:

hA−P
′

a = hAa ⊕
((

Ω′k+1, ω
′
k+1

)
,
(
Ω′k+2, ω

′
k+2

)
, . . . , (Ω′`′ , ω

′
`′)
)

For every agent except for a∗, the menus that they are presented after hAa —and also their

choices as a result— might be different from those in hA−P
′

a . But since by assumption they

are all consistent with their preferences in P , it is also the case that if they had preferences

P h
a = γha ⊕ Pa|Ωk\{ωk} they would have made the same choices. Agent a∗, on the other

hand, followed different preferences, which resulted in a different hA−P
′

a∗ , in which choices

made after hAa might not be the same as the ones she would make while following the

straightforward strategy with respect to Pa∗ . However, for the same reason highlighted

above for hAa , we could construct a preference P ∗a that rationalizes the choices in hA−P
′

a∗ .

The outcome of agent a∗ produced after the collective history hA−P
′

is, therefore:

(2) Oa∗|hA
(
σ′, σP−a∗

)
= ϕa∗

(
γha∗ ⊕ P ∗a |Ωk\{ωk} , P

h
−a

)
For I = {o ∈ γha∗}, equations 1 and 2 finish the proof. �

Remember that by construction Sϕ sequentializes ϕ, and therefore when all agents

use straightforward strategies with respect to their preferences P , ϕ(P ) is the outcome

produced. Suppose now, for contradiction, that Sϕ does not implement ϕ in perfect ex-

post equilibrium. Then, there is a preference profile P ∗ ∈ P for which a strategy profile

in which all agents follow straightforward strategies is not a a perfect ex-post equilibrium.

That is, there is a collective history hA ∈ HA
S , an agent a and a strategy σ′a, which is

not straightforward, for which Oa|hA
(
σ′a, σ

P ∗
−a
)
P ∗a Oa∗ |hA

(
σP
∗

a , σP
∗
−a
)
, where σP

∗
i is the

straightforward strategy for some agent i with respect to P ∗.

By Lemma 1, when the preference profile is P ∗ and all agents follow the straightfor-

ward strategies after hA, outcome for a under the straightforward strategy and σ′a are,

respectively:

o = ϕa

(
γ ⊕ P ′a|O\I , P

∗
−a

)
and o′ = ϕa

(
γ ⊕ P ∗|O\I , P

∗
−a

)
for some I ⊆ O, a tuple γ with the elements in I, and preference P ′a. Since a obtains a

better outcome, o P ∗a o
′. But by strategy-proofness of ϕ and corollary 1, o′ Ra o. Contra-

diction. Therefore, straightforward strategies constitute an ex-post perfect equilibrium

for the game induced by Sϕ. Therefore, if ϕ satisfies monotonic discoverability and is

strategy-proof, any pick-an-object mechanism that sequentializes ϕ implements ϕ in a

perfect ex-post equilibrium in straightforward strategies.
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Next, suppose that ϕ satisfies monotonic discoverability but is not strategy-proof.

Moreover, suppose for contradiction that there is a pick-an-object mechanism Sϕ that

implements ϕ in perfect ex-post equilibrium. This implies that Sϕ sequentializes ϕ and

that straightforward strategies constitute a perfect ex-post equilibrium. Since ϕ is not

strategy-proof, then there is preference profile P ∗, an agent a∗ and a preference P ′a 6= P ∗a
such that ϕa(P

′
a, P

∗
−a)P

∗
aϕa(P∗a, P ∗−a). Since Sϕ sequentializes ϕ, when players have the

preference profile P ∗ and follow straightforward strategies from hA−∅, agent a obtains the

outcome ϕa(P∗a, P ∗−a). If agent a deviates at hA−∅ and follows a straightforward strategy

that acts as if she had the preference P ′a, her outcome would be ϕa(P
′
a, P

∗
−a), making

that deviation profitable. This is a contradiction with straightforward strategies being a

perfect ex-post equilibrium of the game induced by Sϕ.

Finally, if the rule is strategy-proof but does not satisfy monotonic discoverability, it

cannot be implemented by a pick-an-object mechanism, since by Theorem 1, and the fact

that strategy-proofness does not imply monotonic discoverability (see Example 3.1) the

rule cannot be sequentialized by a pick-an-object mechanism.

Proof of Propositions 2 and 3.

Proof. The proof for both propositions rely on situations in which, starting from a period

t, every agent who will make any choice at t or later, except for a∗ ∈ A, deems every

remaining object unacceptable. For that, we will first show that if ϕ is individually

rational, resource monotonic and strategy-proof, a∗ will be matched to whatever object

she chooses from her menu.

Let S be the canonical PAO mechanism that sequentializes ϕ—by monotonic discover-

ability and Theorem 1 it exists.

For the case where ϕ is the Gale-Shapley DA, notice that the canonical PAO mechanism

that sequentializes operates precisely as an instance of the Iterative Deferred Acceptance

Mechanism introduced in Bó and Hakimov (2016), in which agents can choose only one

option at a time: at t = 1 each agent a receives a menu with all the object-types (or

colleges) in which she is deemed acceptable. For every t > 1, every student who was

rejected45 in period t− 1 is given a menu which includes ∅ and every object type that is

still feasible for her. Notice that, for the Gale-Shapley DA rule, an object o being feasible

for an agent in period t has two implications: (i) if she is the only agent choosing o in

period t, then she will be “tentatively matched” to o, instead of rejected, by the end of

period t, and (ii) if no other agent chooses o in any period after t, when the final allocation

is produced she will be matched to o. In what follows, we will refer to these observations

as Observation (*).

For the case considered in proposition 2, the argument needs additional work. Let hA

be a collective history of S, where S(hA) = (φa)a∈A and at least one of these menus is

non-empty.46 Let a∗ ∈ A be an agent with one of these non-empty menus φa∗ .

45That is, for whom the last object type she chose is no longer feasible.
46That is, there is at least one agent with a non-empty menu to choose from after hA.
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Lemma 2. Let ϕ be individually rational, resource monotonic and strategy-proof. Let

moreover hA−o be the continuation history of hA in which agent a∗ chooses object type

o from the menu φa∗, and every other choice made in the same period or any following

period, made by any agent, is ∅. Let P ∗ be any preference profile consistent with hA−o.

Then, ϕa∗(P
∗) = o.

Proof. Let PA be any preference profile consistent with hA. Let µA be an allocation in

which every agent is matched to her last choice in hA. Since S sequentializes ϕ, and

o ∈ φa∗ , there is a preference profile PA−o that is a continuation profile of PA at µA for

which ϕa∗(P
A−o) = o.47

Now, let P 1 be the same as PA−o except that o is moved to come right after µA(a∗) in

PA−o
a∗ —if that was not already the case in PA−o

a∗ . By strategy-proofness of ϕ, ϕa∗(P
1) = o.48

Next, let P 2 be the same as P 1 except that for every a 6= a∗, every object o ∈ O\{∅}
such that µA(a)P 1

a o, ∅ P 2
a o.

49 Notice that P 2 is consistent with hA−o.

Individual rationality of ϕ implies that under ϕ(P 2) agents other than a∗ are matched

to either their match under µA or to ∅. By resource monotonicity of ϕ, a∗ cannot obtain

in ϕ(P 2) an outcome that is worse than o with respect to P 1. By definition of PAO

mechanism, a∗ cannot be matched to an object chosen previously. Since S sequentializes

ϕ, therefore, this must imply that ϕa∗(P
2) = o.

Finally, notice that by construction
∣∣ϕ(hA−o)

∣∣ = 1,50 and that any P ∗ consistent with

hA−o results in the same outcome. Therefore, ϕ(P ∗)a∗ = ϕ(P 2)a∗ = o. �

Lemma 2 implies, therefore, that while using a PAO mechanism that sequentializes a

rule that is strategy-proof and resource monotonic, if starting at some period only one

agent chooses an object, then that agent will keep that object—as is also the case with

the Gale-Shapley DA rule.

By Theorem 2, straightforward strategies constitute a perfect ex-post equilibrium in

the PAO mechanism S. We will now prove by backward induction on the number of steps

involved in that mechanism that no other type-strategy profile also constitutes a perfect

ex-post equilibrium.

Let TMAX be the maximum number of steps that can result from agents interacting

with the mechanism.51 Choices made by agents in period TMAX − 1, therefore, are final.

By definition of PAO mechanisms, this implies that every agent who makes a choice in

period TMAX − 1 will be assigned the object in the menu that they chose. Therefore, any

47That is, since o is in the menu given to a∗, there must be a preference profile consistent with hA such
that a∗ is matched to o under ϕ. Otherwise, o would not be in the menu.
48If that was not the case, it would imply that a∗ could obtain o by reporting it as less desirable than it
actually is, which would contradict strategy-proofness.
49That is, every object below µA(a) is unacceptable.
50That is, hA−o is defined to include choices from menus until an outcome is produced.
51Notice that since the set of object types is finite and menus given to agents never include their last
choices, there is such finite TMAX .
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type-strategy profile in which an agent does not simply picks her most preferred object-

type from a menu in period TMAX − 1 with respect to her true preference cannot be part

of a perfect ex-post equilibrium.

Next, suppose that this is period t < TMAX − 1 while running the PAO mechanism S,

and the set of agents A∗ ⊆ A receive non-empty menus (φa)a∈A∗ . By backward induction—

which we will denote by backward induction assumption—every choice made in a perfect

ex-post equilibrium by an agent in every period after t follow straightforward strategies.

Suppose for contradiction, that there is an agent a∗ ∈ A∗ who, with a preference Pa∗ ,

does not follow a straightforward strategy—choosing o′ from a menu φa∗ , while o∗ is the

most-preferred object in φa∗ with respect to Pa∗ .
52

Let hA−t = {ha}a∈A be the collective history followed all the players up to period t.

Construct now a preference profile P t∗, where, for each a ∈ A:

ha = ((Ω1, ω1), (Ω2, ω2), . . . , (Ωk, ωk))

implies

ω1 P
t∗
a ω2 P

t∗
a · · · P t∗

a ωk P
t∗
a ∅ and for every o ∈ O\{ω1, . . . , ωk, ∅}, ∅ P t∗

a o

Notice that any such P t∗ is trivially consistent with hA−t.53 Moreover, by backward

induction assumption, under P t∗, every agent who is given a menu in any period after

t will choose the option ∅—since agents follow straightforward strategies after t, and

every item in any menu that they receive is deemed unacceptable with respect to their

preferences in P t∗.

By assumption, agent a∗ will choose the object o′ from her menu. If a∗ is the only

agent making a choice in period t, Lemma 2 or Observation (*) imply that this is the last

choice that a∗ will make, and that she will be matched to o′. But Lemma 2 or Observation

(*) also imply that whatever object she chooses, she will be matched to it, including o∗,

which is strictly preferred to o′ and any other item in her menu. Therefore, a strategy in

which a∗ chooses any object other than o∗ when she is the only player making a choice at

period t cannot be part of a perfect ex-post equilibrium when her preference is Pa∗ .

It must be, therefore, that there are other agents making choices from menus in period

t, that is, |A∗| > 1. Take any agent a∅ ∈ A∗\{a∗}. Since her preferences in P t∗ imply that

every object in the menu she receives is unacceptable, no strategy in which she is not left

unmatched can be part of a perfect ex-post equilibrium for this preference.

We now separate the remaining arguments depending on the assumptions about ϕ.

Case 1: ϕ is the Gale-Shapley DA rule.

If every agent a∅ ∈ A∗\{a∗} chooses ∅, then by backward induction assumption and

Observation (*) , agent a∗ will be matched to o′, but would end up matched to o∗ if

52In principle, the deviation could involve other changes in agent a∗’s choices after period t. The argument
we follow, however, involves a situation in which her choice in period t is her last one.
53Notice that since we are considering perfect ex-post equilibrium, we should not assume that any agent,
including a∗, followed straightforward strategies before t.
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she chose it, which is a contradiction with this strategy being part of a perfect ex-post

equilibrium when her preference is Pa∗ .

Next, if any agent a∅ ∈ A∗\{a∗} chooses an object type and is not rejected, by back-

ward induction assumption and Observation (*), she will by the end of the procedure be

matched to an unacceptable outcome, while if she chose ∅ instead, she would be strictly

better off. Therefore, no agent other than a∗ can choose an object type after hA−t and

not have that choice rejected by the end of that period in a perfect ex-post equilibrium

strategy profile. Notice, moreover, that given the backward induction assumption, if more

than one agent chooses some object type in period t, at least one of them will end up

matched to it by the end of the procedure, which again cannot be part of a perfect ex-post

equilibrium.

Therefore, the only possibility that remains is one where every agent who chooses an

object type other than ∅ in period t also chooses o′, but all of them have their choice

rejected by the end of that period, and therefore by backward induction assumption will

end up unmatched. Notice, however, that o′ was feasible for a∗, she chose o′ in period t

and every other agent who chose o′ in the same period was rejected. This implies that

(i) a∗ is tentatively matched to o′ by the end of period t, and by backward induction

assumption will end up matched to it by the end of the procedure, and (ii) if she chose

o∗, she would be the only agent doing so in period t, and by Observation (*) would end

up matched to o∗. Choosing any object other than o∗, therefore, cannot be part of a

perfect ex-post equilibrium, contradicting the assumption that she chooses o′ under some

equilibrium.

Case 2: ϕ is individually rational, resource monotonic, strategy-proof and

satisfies monotonic discoverability.

If a∅ and every player other than a∗ who makes a choice in period t chooses ∅, Lemma

2 would yield a contradiction, since a∗ has a strategy that would result in a strictly

better outcome—choosing o∗. Suppose, then, that there is a perfect ex-post equilibrium

in which some set A′ ⊂ A∗\{a∗} of these players do not choose ∅ in period t, but instead

choose some other object types at t, but still end up left unmatched when the procedure

ends.54 The choices that result from these non-straightforward choices from the agents

in A′, combined with the choices made by other players and the backward induction

assumption, are consistent with a preference profile where the preferences of all agents in

A\(A′ ∪ {a∗}) are the same as in P t∗, and agents in A′ have preferences different than

those in P t∗. Denote, for each agent a ∈ A′, these different preferences as P ′a.

Let o be any object type in the menu faced by agent a∗ in period t. Let P o
a∗ be a

preference for a∗ that is exactly as P t∗
a∗ except that o is the least-preferred acceptable

object.55 By Lemma 2, the definition of P t∗, and the fact that the S sequentializes ϕ,

54This could happen if, for example, these agents are not matched to the object type they chose when a∗

chooses some object other than ∅.
55That is, it differs from P t∗

a∗ only in that the object o is moved to the position right above ∅ in the
ranking.
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ϕa∗(P
o
a∗ , P

t∗
−a∗) = o. Since ϕ is individually rational, for each a ∈ A′, ϕa(P o

a∗ , P
t∗
−a∗) = ∅.56

Next, let for an arbitrary a′ ∈ A′, P 1
−a∗ be the same as P t∗

−a∗ except that P 1
a′ = P ′a′ . Since ϕ

is resource monotonic and a′ is left unmatched under both ϕ(P o
a∗ , P

t∗
−a∗) and ϕ(P o

a∗ , P
1
−a∗),

a∗ cannot be worse off and ϕ(P o
a∗ , P

t∗
−a∗)a∗ = ϕ(P o

a∗ , P
1
−a∗)a∗ . If we keep replacing the

preferences of each agent a ∈ A′ with P ′a, resource monotonicity implies that the outcome

obtained by a∗ does not change. Denote the preference profile that results from this entire

process by P ∗−o. We conclude, therefore, that ϕa∗(P
∗−o) = o.

In any perfect ex-post equilibrium, the strategies used by the players in A∗\{a∗} cannot

result in them being matched to any unacceptable object. Therefore, no matter what

strategy they follow from period t on, we can construct a preference profile P ∗−o as above

that is consistent with the resulting collective history.

Notice, now, that the profile P ∗−o is consistent with (i) an arbitrary set of agents

A′ making choices at time t which, despite not being straightforward, still results in

the unique (conditional) acceptable outcome, which is remaining unmatched, (ii) the

remaining players following straightforward strategies, and (iii) player a∗ choosing an

arbitrary object o in the menu she is given in period t.

Since S sequentializes ϕ, we have therefore that in any perfect ex-post equilibrium a∗

is, therefore, matched to the object she chooses in the menu she is given in period t

under the preference profile P t∗. Choosing any object other than o∗ cannot be part of a

perfect ex-post equilibrium, contradicting the assumption that she chooses o′ under some

equilibrium.

�

Theorem 4. Every non-bossy OSP implementable rule is pick-an-object implementable

in weakly dominant strategies.

Proof. We prove the result by constructing a pick-an-object mechanism which serves as

an interface between the agents and the millipede game of the OSP mechanism. Let

ϕOSP be an OSP-implementable rule. Then, by Pycia and Troyan (forthcoming), there is

a millipede game Γ where, for every preference profile P , each agent following a greedy

strategy with respect to their preference, results in the allocation ϕOSP (P ). In the game

Γ, Nature moves once, at history h∅57, and all players have perfect information. For every

non-terminal history h (except for the one in which Nature moves,) there is an associated

player P (h) ∈ A and a menu φ(h).

By the definition of the millipede game in Pycia and Troyan (forthcoming), the menu

φ(h) might contain multiple items, each of them associated with an element of O, and

at most one pass option. In principle, there might be multiple items associates with the

same o ∈ O, and the choice among these options be consequential to the final allocation

for other players. The characterization of OSP mechanisms as milipede games associated

with a greedy strategy allows for that selection to depend on the preferences of the player

56Remember that under P t∗ all object types in the menus given to agents in A′ are unacceptable.
57If Nature does not move, then we can simply consider that Nature chooses a constant action at h∅.
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making that choice. For example, you could have an agent a who receives a menu φ(h)

containing, among other options, items ω and ω′. Choosing either will result in a being

assigned object o, but the greedy strategy associated with this millipede game indicates

that the agent chooses ω if her preference is oPao
′Pao

′′, but ω′ if her preference is oPao
′′Pao

′.

Non-bossiness, however, implies that even if Γ contains multiple items for the same

private allocation that are chosen, under the greedy strategy, when the agent has differ-

ent preferences, these must result in the same allocation, fixed the other agents’ greedy

strategies. Therefore, every item associated with a private allocation is equivalent to

each other. This allows us to assume, instead that items in the menu given to the play-

ers in a millipede game consist are all objects, with at most one pass option. That is,

φ(h) ⊆ O ∪ {pass}.
With that, we can define the set of clinchable objects for agent a at continuations of h

as follows:

Ca(h) =
⋃

h′∈P−1(a):h⊆h′
φ(h′)\{pass}

That is, Ca(h) is the set of objects that are given in a menu to player a at some

continuation history from h. The menu function S for the pick-an-object mechanism that

we are constructing is such that S
(
hA−∅

)
=
(
Ca1

(
h∅
)
, Ca2

(
h∅
)
, . . . , Can

(
h∅
))

. The value

of S
(
hA
)

for any collective history hA = (h1, h2, . . . , hn) is defined as follows:

• Let hji be the jth item in hi, and hji =
(
Ωi
j, ω

i
j

)
. That is, Ωi

j is the jth menu faced

by agent ai, in which she chose the item ωij ∈ Ωi
j.

• Let h = h∅ and for all i = 1, . . . , n, let ηi = 1. Follow the game tree in Γ by

making the agents play as follows:

– Step 0: If h is a terminal node of Γ, then we can determine the value of

S
(
hA
)

to be (∅, ∅, . . . , ∅).
– Step 1: Let ai = P (h). That is, ai is the active player at history h. If ωiηi 6∈
Cai(h) and ηi < |hi|, increase the value of ηi by 1. Otherwise, if ωiηi 6∈ Cai(h)

and ηi = |hi| we can determine the value of S
(
hA
)

to be (φ1, φ2, . . . , φn),

where φj = ∅ if ωjηj ∈ Caj(h), and φj = Caj(h) otherwise.

– Step 2: If ωiηi ∈ φ(h), follow the node that represents choosing ωiηi , and let

h be the history that follows that choice. Otherwise, choose the node Pass,

and let h be the history that follows that choice. In either case, go back to

step 0.

Notice that the procedure above will produce a list of menus for any collective history,

even those which could never take place under a pick-an-object mechanism. To get our

result, however, it suffices for us to show that collective histories that are generated

by agents following straightforward strategies while interacting with the pick-an-object

mechanism S described above are translated to greedy strategies from these same agents

playing the game Γ.
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Suppose then, for contradiction, that agents follow straightforward strategies while

interacting with the pick-an-object mechanism S but that is not translated, in the de-

scription above, into these agents following greedy strategies. That must imply, therefore,

that there is an agent a∗ ∈ A who in the procedure described above either (i) chooses

Pass at some history h∗, and the most-preferred element in Ca∗ (h∗) with respect to Pa∗

is in φ (h∗), or (ii) chooses an object o ∈ φ (h∗) while there is another object o′ ∈ Ca∗ (h∗)

for which o′Pa∗o.

Fist, consider case (i). Notice that, by the definition of the value of S
(
hA
)

and by the

description of Step 1, every time an agent receives a menu of objects, that menu contains

all objects in the continuation outcomes of the history that is reached by following the

collective history that precedes the offering of that menu. Moreover, Step 1 also implies

that whenever a history h in which the last choice made by a∗ from a menu is not in

Ca∗ (h), the procedure does not follow the game Γ after h. Therefore, at every history

h, the last choice made by a∗ in her choice history is her most-preferred object in Ca∗(h)

with respect to Pa∗ . Step 2 requires that Pass would only be chosen if that last choice

was not in φ (h∗), a contradiction.

Next, case (ii). In the previous paragraph we established that every time an agent

receives a menu of objects, it contains all objects in the continuation outcomes. Since the

agent chooses o in the game Γ, Step 2 and the way in which the pick-an-object mechanism

works requires that o must have been the last choice made by a∗. Since both o and o′

are in Ca∗ (h∗), they both must be in the menu from which a∗ chose o. But that means

that o′Pa∗o and a∗ chose o from a menu containing o′, which is a contradiction with a∗

following the straightforward strategy.

Finally, note that any deviation from straightforward strategies in the pick-an-object

mechanism S either leads to the same paths through Γ as the greedy strategy or to different

ones. Since the greedy strategy is obviously dominant in Γ, then it weakly dominates

any other strategy, including any deviation induced by deviations from straightforward

strategies in S. Therefore, straightforward strategies are weakly dominant in the pick-an-

object mechanism S.58 �

Appendix B. Additional experimental results

B.0.1. Alternative efficiency definitions. Given the fact that it might be the case that the

equilibrium allocation has a lower sum of ranks than the allocation when a participant

deviates from the truthful strategy, it is essential to look at different criteria. One measure

of the success of the mechanism is whether the desired allocation is reached. This approach

is used in Li (2017) to estimate the performance of direct versus OSP SD. We adopt this

approach for all treatments. Note, however, that in Li (2017), the market consists of four

58Notice, however, that straightforward strategies may not be obviously dominant in the game induced
by the pick-an-object mechanism S. One can easily see, for example, that in the pick-an-object imple-
mentation of serial dictatorship used in our experimental section, the worst outcome that could come
from following a straightforward strategy is typically worse than the best outcome that can come from a
deviation from it in the first step of the mechanism.
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participants, while in our case, it consists of eight participants. In the larger market, we

can expect a lower rate of the equilibrium allocations reached, as it is enough for one

participant in the group to deviate from truthful strategy in the consequential way to

distort the whole allocation.

Direct PAO OSP Direc=PAO Direct=OSP PAO=OSP
p-value p-value p-value

TTC cyclic 5.9% 5.9% n/a 1.00 n/a n/a
TTC acyclic 22.6% 26.2% 12.6% 0.72 0.05 0.01

SD 38.1% 50% 83.% 0.16 0.00 0.00

Notes: All the p-values are for the two-sided Fisher exact test for equality of proportions of the
equilibrium strategy allocations by treatments. test is performed on the allocation-level data

Table 5. Proportions of equilibrium allocations reached.

Table 5 presents the proportion of equilibrium allocations by treatments. Under TTC

with cyclic priorities, only 5.9% of allocations in Direct and PAO were equilibrium allo-

cations. This low rate is not surprising, given the rate of the truthful strategies manip-

ulations, and the fact that even one consequential manipulation distorts the allocations.

Under TTC with acyclic priorities, we observe that the OSP treatment has the lowest

rate of equilibrium allocations. Despite the higher rate of truthful strategies, as every

deviation from the truthful strategy more likely to be consequential for the allocation,

it leads to only 12.6% of equilibrium allocations on average, which is significantly lower

than in Direct and PAO treatments. Finally, under SD, OSP outperforms Direct and

PAO mechanisms. Thus, we replicate the finding by Li (2017).

While the comparison of the rate of equilibrium allocations is useful for a smaller

market, or under very low deviations from truthful strategies, we think the criterion is

not very informative about the consequences of deviations in the case of a high rate of

deviations from truthful strategies. Another approach would be to analyze the difference

in the consequence of deviation from truthful strategies from an individual perspective

by treatments. We define cost of deviation as the average difference between the payoffs

of those who played truthfully and those who deviated from truthfulness, controlling for

the role in the market.

Result 4 (Cost of deviation from truthful strategy):

(1) Under the TTC rule with cyclic priorities the average cost of deviation from the

truthful strategy under Direct is 3.97 euros, under PAO 3.61 euros, with no sig-

nificant difference between treatments.

(2) Under the TTC rule with acyclic priorities the average cost of deviation from the

truthful strategy in Direct is 2.43 euros, in PAO 1.98 euros, and in OSP 3.36 euros

with no significant difference between treatments.

(3) Under the SD rule the average cost of deviation from the truthful strategy in

Direct is 2.53 euros, in PAO 1.55 euros, and in OSP 6.01 euros with all differences

between treatments being statistically significant.
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(1) (2) (3)
Payoff Payoff Payoff

TTC cyclic TTC acyclic SD
Non-truthful strategy -3.97*** -2.43*** -2.53***

(.29) (.29) (.24)
Non-truthful in PAO .38 .45 .98**

(.39) (.38) (.36)
Non-truthful in OSP -.93 -3.48***

(.60) (.76)
Dummies for each participant ID in each round yes yes yes
Observations 1344 2800 2072
No. of clusters 24 37 37
R2 .287 .370 .759
log(likelihood) -4063.06 -7796.13 -5136.51

Notes: OLS regression. * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at
the level of matching groups and are presented in parentheses. Non-truthful is a dummy for
not playing the truthful strategy. Non-truthful in PAO is the interaction of the Non-truthful
dummy and the dummy for PAO treatment. Non-truthful in OSP is the interaction of the
Non-truthful dummy and the dummy for OSP treatment.

Table 6. OLS regression of payoff on the dummy for non-truthful strategy

Support:

Table 6 presents the results of the OLS estimation of the effect of misreporting on the

payoff of the subjects.

Each regression includes 56 dummies for each combination of ID and round, to account

for the “role-specific” fixed effects, as the roles (a combination of preferences and pri-

orities/scores) vary the prospects of earning high payoffs. Thus, the coefficient for the

non-truthful dummy presents the average differences between subjects who play truth-

fully relative to subjects who play non-truthfully in the Direct mechanism, controlling for

the role of the subjects. Under TTC with cyclic priorities (Model (1) of Table 6), the

deviation from the truthful strategy, on average, leads to a loss of 3.97 euros in Direct

(note that the maximum payoff for the allocation is 22 euros), while the deviations are 38

cents less costly in PAO, though the difference is not significant. Under TTC with acyclic

priorities (Model (2) of Table 6), the deviation from the truthful strategy, on average,

leads to a loss of 2.43 euros in Direct, while the deviations are 45 cents less costly in PAO,

and 93 cents more costly in OSP, though the differences are not significant. Finally, under

SD, (Model (3) of Table 6), the deviation from the truthful strategy, on average, leads to

a loss of 2.53 euros in Direct, while the deviations are 98 cents less costly in PAO, and

3.48 euros more costly in OSP, with all differences being significant. The difference can

be explained by the fact that skipping in PAO is less consequential, due to intermediate

updates on which objects are left for allocation, which is not the case in Direct. The

highest cost of deviations in OSP can be explained by the fact that all deviations from

the truthful strategy are payoff-relevant in SD, as it is a unique equilibrium strategy in

OSP, unlike in the other treatments.
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