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Abstract

People with liberal traditions exhibit polar opposite views and behavior to-

ward COVID-19. We analyze this phenomenon by employing a dynamic game

model involving stochastic transmission-intensity rates, asymptomatic infections,

and heterogeneous agents making communicable-activity decisions in each period

under disease uncertainty. Active agents freely choose communicable activities that

increase their utility flows along with infection probabilities. Our analysis reveals

the following: (1) The polarized public response to the pandemic arises when the

disease-probability function is more concave than the agents’ utility function for

communicable activities, which suggests that polarization can be rooted in indi-

vidual rationality. (2) Asymptomatic infection implies a path-dependent disease

probability that declines with agents’past activities, which makes sense of a grad-

ually relaxing lockdown policy even when the transmission intensity remains the

same. (3) Monotone comparative statics results suggest that agents with lower dis-

count factors, lower probability of being sick upon infection, or lower expectation

of suffering upon being sick tend to choose higher equilibrium activities. (4) If

the virus persists, then the only long-run equilibrium outcome without government

intervention is herd immunity.

Keywords: Stochastic dynamic programming; probability function of disease;

asymptomatic infection; polarized public responses

JEL Classification: C73; D01; D82; C25
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“It is not about the virus. It is about us.”

– EURONEWS.

1 Introduction

The COVID-19 pandemic has imposed on every economic agent a decision-making

problem: To what extent should one take preventive measures, such as wearing a

face mask in public places, social distancing, avoiding unnecessary travels, and so

on to reduce the risk of catching the disease? Casual observation and survey data

suggest a stark polarized phenomenon: most agents, whenever possible, either take

maximal measures or do not take any preventive measure at all.

In this paper, we study a new model of rational decision-making during a pan-

demic and show that it provides a rationale for the observed polarization of people’s

responses to the pandemic. In our dynamic public-response model, heterogeneous

agents choose varying degrees of communicable, or transmissible, activities that in-

crease their utility along with the probability of being exposed to the transmission

risk. We show natural conditions on the exposure-probability function that lead

to a polarized equilibrium in which everyone chooses either the minimum or the

maximum activities in every period. Our results do not rely on behavioral biases or

boundedly rational agents, and do not require polarization of underlying preferences

or beliefs. Instead, we show that any atomless distribution of agents’types can lead

to polarized equilibrium responses to the pandemic.

A typical example demonstrating the polarized attitudes towards COVID-19

is the controversy concerning whether or not face masks should be worn in public.

Figure 1 shows the mask-wearing behavior of residents in four leading European

capitals: Berlin, London, Madrid, and Paris, during the early stage of the pandemic

in April 2020.1 A striking commonality is observed across the four cities, as over 70

1During this period, mask-wearing was not mandated in London, Madrid, or Paris and people

could take protective actions according to their own decisions. The results are obtained using

Yougov’s survey data described in the Online Appendix, where we show similar results in 12 cities
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Figure 1: People’s mask-wearing frequency in four cities

percent of residents choose the extreme option of either “always wearing a mask in

public”or “never wearing a mask in public.”This example is by no means unique.

Our empirical investigation will show that such extreme choices were prevalent also

in people’s choices of social activities, out dining, and exercising in public indoor

spaces in the U.S. during the pandemic.

Polarization in the face of a pandemic has been known to cause social un-

rest and instability.2 ,3 Understanding the causes that may underlie such polarized

with vast differences in cultural background, political structure and ethnicity.

2Anecdotal evidence suggests that wars, revolts, and social unrest frequently occurred during

and after a severe plague or epidemic, influencing the course of human history (Hays 2005). The

highly referenced Antonine plague (165—180 AD), Justinian plague (541—549 AD), the bubonic

plague of the 14th Century, and the 1918 influenza pandemic are but a few examples. It has been

widely observed that epidemics sow seeds of conflict or act as incubators of severe social disorders or

institutional change (e.g., Snowden 2020a, 2020b; Censolo and Morelli 2020; Jedwab et al. 2021).

3According to the Armed Conflict Location & Event Data Project (ACLED), as of March

4, 2022, there had been 61,830 pandemic-fueled (violent) demonstrations, public protests, or riots
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behavior is important not only for their potential policy implications but also for

improving our perception of the far-reaching implications of the COVID-19 crisis in

its aftermath. To reduce the unrest and hence the costs of the pandemic, policy

makers need to understand the root causes so they can properly evaluate different

policies. Our paper contributes to this discussion by offering an explanation for

polarized responses without polarization of underlying preferences.

Another contribution of this paper is a formal analysis of the effects of asymp-

tomatic infections, i.e., that agents can be unknowingly infected without symptoms.4

These agents, disguised by their good health while engaging in communicable activ-

ities, could conceivably become a major source of disease transmission. Although

asymptomatic transmission of the coronavirus disease is a well observed fact, its

effects have received no formal analysis in the existing literature. We incorporate

this fact in our model by allowing each infected agent to have a type-dependent

probability of being asymptomatic. As a result, in every period, the infectious

population consists of previously infected agents who were either symptomatic or

asymptomatic. In the absence of continuous and effective testing, a crucial distinc-

tion emerges between these two groups of infectious agents: the former knows the

fact that they are infectious and the latter does not. Consequently, while the infec-

tiousness of the symptomatic group can be limited by exogenous possibilities such as

quarantine, hospitalization, or death, the infectiousness of the asymptomatic group

depends endogenously on the agents’communicable activities.

To capture the varying degrees of infectiousness among the infected agents, we

around the globe. About two-thirds of these were protests against the authorities’anti-coronavirus

measures, one-third demanded greater protection and attention, and a few noteworthy instances

included public protests calling for solidarity. “While COVID-19 had its biggest impact on civil

unrest and political instability, it also significantly invoked feelings of unsafety and interpersonal

violence. Some of these negative effects are likely to last for years to come.”(VISION OF HUMAN-

ITY report https://www.visionofhumanity.org/the-impact-of-the-covid-19-pan)demic-on-peace/ )

4For instance, China reports daily symptomatic and asymptomatic infections under compulsory

testing. Recent data from the Shanghai lockdown suggest that asymptomatic infections are about

10 times more than symptomatic infections.
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introduce a general function(al) χt as a numerical representation of the transmission

risk of the environment, defined by the sum of the infectiousness of the symptomati-

cally and asymptomatically infected population in the preceding period. In our

model, each active agent can decide their probability of exposure to the transmis-

sion risk in any period by choosing a level of communicable activities in that period,

taking into account the possibility of being unknowingly infected in the past with-

out a symptom. Thus, for all agents who have not been sick and who have been

exposed to the transmission risk with positive probabilities in the past, the Bayes

rule implies that they are more likely to be asymptomatic and therefore safe. This

fact leads to a sequence of path-dependent expected payoffs for each active agent

and significantly complicates our analysis. However, by transforming the problem

into a mathematically equivalent one, we find a way to simplify the problem and

obtain sharper characterizations of equilibrium.

In Section 2, we discuss related literature along with the new aspects of this

study and results. Section 3 presents the pandemic-response model. Section 4

presents the main results of the analysis, Propositions 1-4 and Corollaries 1-2. Sec-

tion 5 investigates people’s behavior empirically. And Section 6 concludes. All

proofs of the lemmas and propositions are contained in the Appendix.

2 Related literature and New Results

The polarization in equilibrium responses to the pandemic, one of the main results

from this study (Proposition 1 and Corollary 1), is new. Some previous studies

document the differences from aggregate data in the Americans’responses to the

pandemic due to partisan polarization, as seen in the Trump-Biden transition era in

the United States.5 We are not aware of any previous work that is directly related

5For instance, see Allcott et al. (2020); Grossman et al. (2020). Allcott et al. (2020) find

significant partisan differences in Americans’ response to the COVID-19 pandemic. To explain

such differences, they assume that party members have limited rationality and can be influenced

by their political leaders.
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to our polarization result, except the frequent discussions on social media relating

polarization in attitudes toward the pandemic to the partisan polarization in US.

Such political explanation is limited, however, by the fact that US is the only OECD

country that sees sharp partisan polarization (Boxell et. al. 2022). Public opinions

and behaviors in response to the pandemic were not less polarized in Europe than

in America.

Our modelling and analysis of the asymptomatic infection and path-dependent

disease probabilities are also new. Given the abundant evidence proving that asymp-

tomatic infection plays an important role in spreading an epidemic, we present a

formal analysis by allowing the population to consist of agents who have been in-

fected but show no symptoms. The possibility of asymptomatic infections is well

recognized in a number of studies, but there has been no formal analysis of their

effects. For instance, in his study of the HIV epidemics, Kremer (1996, footnote 7)

noted that older people who had more previous sexual partners were more likely to

be infected; therefore, being healthy makes them more likely to increase their risk-

taking behavior. Although Kremer (1996) did not explicitly model asymptomatic

infection, his idea is perfectly in line with our Bayes updating of the disease proba-

bility for each active agent.

The way our study is related to the existing literature is better discussed with

each specific aspect of the study.

Stochastic transmission-intensity rate and matching function. There are two

mainstream approaches to modelling the spread of epidemic diseases, the SIS (susceptible-

infected-susceptible) approach and the SIR (susceptible, infected, recovered) ap-

proach. The former was popular around the turn of this century, which is well

suited for estimating and analyzing the spreading of computer viruses. The more

recent literature on issues related to the COVID-19 pandemic almost ubiquitously

adopt the SIR approach, extending the framework laid by Kermack, McKendrick,

and Walker in 1927. Since the original SIR model was proposed almost a century

ago, by modern standards it has several limitations. For instance, most SIR models

are deterministic and predict a single peak of newly infected cases. This is incon-
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sistent with the fact that, by far, COVID-19 has produced multiple peaks of newly

infected cases. To overcome this limitation, we consider a generalized SIR model

in which the transmission-intensity rate is an exogenous state variable that may be

affected by the unknown factors such as mutations of the virus. The sequence of

transmission-intensity rates (µt)
∞
t=0 is thus a stochastic process, which may be in-

fluenced by the current transmission risk of the environment determined by agents’

aggregate communicable activities. Our model is thus more amenable to policy

discussions and empirical work.

The key assumption of all the SIR models is that the infection rate at any

time involves a matching function of two components, the infectious component

and the susceptible component. The matching function returns the value of the

product of the two components, measured by the density of the infected and the

susceptible populations, respectively. Acemoglu et al. (2020) discuss the effects

of generalizing this matching function by allowing for a more flexible degree of

“increasing returns to scale”of the two components. Our pandemic-response model

generalizes the matching function of SIR in different ways. We formulate in (2)

the infectious component as a time-t state variable that incorporates symptomatic

and asymptomatic infections, and the heterogeneous types and reactions of the

agents. The infection rate is then formulated in (7), also incorporating the agents’

heterogeneous types and actions. The development of these measures is detailed in

Section 3.

Heterogeneous agents with private information. Acemoglu et al. (2021) and

Gollier (2020) develop a multi-group SIR model, in which agents are partitioned

into a finite number of groups according to their observable traits, focusing on age.

They demonstrate the superiority of targeting different groups with different policies

compared to a uniform lockdown policy (see also Brotherhood et al. 2020, Favero

et al. 2020, Fischer 2020, Glover et al. 2020, and Wilder et al. 2020). In this study,

we present a general three-dimensional type set X, and assume that each agent is

endowed with a type x = (δx, γx, Dx) ∈ X, drawn ex ante according to an atomless
probability measure F overX. Consequently, the multi-group model is extended to a
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personal-characteristics model, in which agents’types can be private information or

imperfectly observable. Here, δx indicates the discount factor a type-x agent uses for

evaluating their life-time utility flows, γx indicates the agent’s probability of getting

symptomatically ill when infected, and Dx indicates the agent’s expected utility

when diseased. Our comparative statistics analysis in Proposition 3 showing how

these personal characteristics affect an agent’s equilibrium response to the pandemic

has not been explored by the existing literature.

Endogenous individual actions and infection probability. Several recent studies

incorporate agents’actions into the SIR model and propose policy recommendations

in response to the COVID-19 pandemic.6 For instance, Eichenbaum et al. (2021)

develop an SIR-based macroeconomics model focusing on balancing the severities of

the epidemic and the potential recession. Jones et al. (2021) study the dynamics

of offering mitigation incentives to the agents working from home at the cost of

lower productivity. Farboodi et al. (2021) develop a model that trades off agents’

utility benefits of social activities against the probability of infection. Garibaldi et

al. (2020) incorporate optimal behavior into the SIR model. The common theme

across these studies is that when agents make decisions, they do not consider their

decision’s negative externality imposed on others. Thus, the resulting distortion

from agents’actions from social optimality justifies government intervention.

Our study differs from previous studies in three aspects. First, most previous

work focuses on interior solutions, assuming a homogeneous agent population. In

contrast, our model derives its equilibrium outcomes from a heterogeneous popu-

lation and a set of flexible primitive assumptions. Polarized actions subsequently

emerge as a plausible equilibrium under natural conditions. Second, we include

asymptomatic infection in our model. To our best knowledge, no other research

distinguishes the asymptomatic cases from the symptomatic ones when agents’re-

sponses to an epidemic are endogenous. The third unique feature of our study is

more fundamental: While the existing research largely focuses on optimal policies

6Earlier work related to this study includes Kremer (1996) and Toxvaerd (2019).
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during the pandemic, we focus on understanding individual behavior and the po-

tential sources of social unrest and political instability, especially in the aftermath

of the pandemic (see Censolo and Morelli 2020).

Dynamic game with sequential rationality and Bayes updating. In our model,

agents play a dynamic, noncooperative game in choosing or planning their contin-

gent communicable activities. Although we do not assume the role of a centralized

decision-maker, our approach is related to the literature on dynamic mechanism

design with incomplete information, for example, the discrete-time, infinite horizon

models of Athey and Segal (2013) and Pavan et al. (2014). We formulate a solu-

tion concept of equilibrium called sequential public-response equilibrium (SPRE),

which requires sequential rationality and Bayes updating akin to perfect Bayesian

equilibrium. Owing to the continuum of agents, a set of measure zero of agents can

be faulty– either in the past or in the planning of future activities– in an SPRE.

Empirical observation. A large empirical literature has emerged since the out-

break of COVID-19. Related work includes those that document people’s choices

regarding mask-wearing and social distancing based on their distinctive features.

For instance, people may differ in their partisan differences and political beliefs in

the U.S. (Allcott et al. 2020, Barrios 2020, Gadarian et al. 2021, Grossman et

al. 2020, Milosh et al. 2021, Painter and Qiu 2021); in their media consumption

and misinformation in the U.S. (Andersen 2020, Ananyev et al. 2021, Gupta et al.

2021); in their ethnic diversity in Russia (Egorov et al. 2021), economic conditions

in the U.S. (Wright et al. 2020), scientific beliefs in the U.S. (Brzezinski et al. 2021);

degrees of individualism and trust in Europe (Bargain and Aminjonov 2020) and

the U.S. (Bazzi et al. 2021), civic capital in Italy (Durante et al. 2021) and the

U.S. (Barrios et al. 2021), and in their degrees of risk-tolerance in the U.S. (Fan et

al. 2020). Other demographic characteristics considered in the empirical literature

include age and gender, amongst others.

While the existing literature examines the differences among people’s commu-

nicable behaviors, this study goes further and emphasizes the polarized distributions

of people’s socializing and mask-wearing behaviors. Our empirical evidence suggests
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that the polarization of people’s COVID-19 responses is observed in a good number

of countries that vary dramatically in the level of political polarization. The evi-

dence suggests that our explanation based on natural conditions on the exposure-

probability function could be more plausible than the alternative that polarization

of responses is a mere reflection of polarization in political views.

3 Pandemic-Response Model

Consider an environment with a countable number of periods t = 0, 1, 2, ... and a

continuum of agents with a population size (or measure) equal to 1. A pandemic

occurs at t = 0 and evolves over time t ∈ {1, 2, ..., T} with T ∈ N
⋃
{∞}.7 In

any period t, agents can be partitioned into three subpopulations: the infectious

with size ϑt, the innocuous (including those who passed away) with size ρt, and the

susceptible with size 1− ϑt − ρt.
The infectious population consists of those who were infected in the previous

period t − 1, which can be further divided into two groups: the symptomatic and

the asymptomatic. The former has shown symptoms of the disease by the end of

t − 1, and the latter will never show symptoms. The symptomatic agents may

either die or, like the asymptomatic agents, recover and acquire immunity by the

end of period t. To focus on the main behavioral issues, we sidestep the possibilities

of testing and vaccination and assume recovered agents are no longer infectious.8

Consequently, the innocuous population in period t consists of all those who had

been infected before the end of t − 2, including the symptomatic ones who know

they are now immune and the asymptomatic ones who do not know the fact with

7To ease exposition, we treat T as a finite number in the modelling and subsequent analyses.

Owing to uniformly bounded utility, marginal utility flows, and discounting, the definitions and

results with a finite time horizon T extend to T →∞ straightforwardly.

8Incorporating the possibility that some people may be infected several times, recovered people

may still be infectious, or that costly and imperfect antigen tests or vaccination are available, can

be done but is not expected to change any qualitative conclusions of this study.
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certainty. Regarding the susceptible population, it consists of agents who have not

been infected by the end of t−1. Again, the possibility of asymptomatic infection in

the past prevents the apparently healthy agents from telling with certainty whether

they are infectious, innocuous, or susceptible.

We say that an agent is active in period t if so far they have not shown symp-

toms (see Figure 2). Thus, the susceptible and the asymptomatically infected agents

are all active. The main factors influencing the development of the pandemic are

communicable, or transmissible, activities (henceforth actions) of the active agents.

To ease exposition, we say that an agent is passive if they are not active. Thus a

passive agent can be passed away, recovered, or symptomatically infected in period

t−1. By assumption, activities of the innocuous agents no longer matter. As for the

symptomatically infected agents in t− 1, there are numerous possible consequences

of being sick, ranging from hospitalization, (self-) quarantine, through various de-

grees of observable symptoms. Consequently, we model the overall infectiousness of

this group, rather than individual activities, in each period in Section 3.2.

Symp. innocuous

Asymp. innocuous

Symp. infectious

Asymp. infectious

Susceptible

Passive agents

Active agents

(Density: it)

(Density: jt)

(Density: ft)

Figure 2: The partition of the population at the start of each period t. The densities

it, jt, and ft are defined in Section 3.2.

The exogenous random state variable is the transmission-intensity rate µt ∈
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[0, 1] of the pandemic, which determines the probability of a susceptible agent get-

ting infected in period t when they are exposed to the transmission risk of the en-

vironment that will be defined and quantified later. We will model µt as a Markov

process influenced by µt−1 and the transmission risk in period t − 1 in Section 3.3.

The realization of µt is publicly known at the start of each period t.

3.1 Heterogeneous agents and communicable activities

Each active agent is endowed with a three-dimensional type x ∈ X ⊂ R3
+, written as

x = (δx, γx, Dx). According to (δ, γ,D), without the pandemic, each type-x agent

would live a normal life and enjoy a utility flow of u ∈ (0,∞) per period. With

δx ∈ (0, δ̄] (δ̄ < 1) being their discount factor, a type-x agent would have a life-time

discounted utility equal to

Ux =
∑

∞
t=0δ

t
xu =

u

1− δx
(1)

Agents observe– and start reacting to– the pandemic in period 1. When a

type-x agent is infected during any period t, they will show symptoms with probabil-

ity γx ∈ (0, 1] by the end of period t and no symptoms with probability 1−γx. If the
agent is symptomatic of the disease, they have an expected utility of Dx ∈ [0, u0

1−δx ],

where 0 < u0 < u.9 Initially, in period 0, the types of population are distributed

according to probability measure F on the Borel subsets of X. To focus on pure

strategies, we assume that the distribution F is atomless, with a measurable asso-

ciated density f .10

Starting from period 1, each active agent can choose a level of communicable

activities (or actions) at ∈ [0, 1] in each period t ≥ 1 that restricts their normal way of

9Our analysis focuses on agents’expected utility Dx in the state of being symptomatically sick,

which includes the possibility of death, without specifying how Dx is calculated.

10A probability measure F over X is atomless if every B ⊆ X with F (B) > 0 has a subset

C ⊂ B for which F (B) > F (C) > 0. (Milgrom and Weber 1985). In special cases, F may have an

associated density function. In general, since X is multi-dimensional, an atomless F also permits

some of the variables, δ, γ, or D to have discrete marginal distributions.
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living– as long as the agent remains active. The risk of being infected increases in at,

with at = 0 being a “safety first”action and at = 1 being a “life as usual”action. We

assume that there is a utility function for communicable activities v : [0, 1]→ [u0, u]

that is twice differentiable on (0, 1), satisfying v(0) = u0, v(1) = u, and v′ > 0.

Thus, u0 indicates the agent’s utility in a period without any communicable activity.

The reduction of normal-life utility, u − v(at), can be seen as a deadweight utility

loss. We perceive communicable activities to be directly related to one’s utility

or wellbeing, not consumption. For instance, reducing communicable activities by

wearing a mask, frequently washing hands, or practicing social-distancing does not

incur a high monetary cost. Nonetheless, these protective measures can reduce

people’s sense of freedom and wellbeing. Thus, unlike the traditional utility models

for money or consumption, we do not require v to be a concave function.

Now let µ0 be given and let µ
t := (µ1, ..., µt) ∈ [0, 1]t denote the history of the

exogenous states in periods 1 through t.

Definition 1 Given µ0 ∈ (0, 1), for all t ∈ {1, 2, ..., T} and µt ∈ [0, 1]t, a public-

response function in period-t is a measurable function αt(·, µt) : X → [0, 1]. Given

information µt in period t, αt(x, µt) is the level of action chosen by the type-x active

agents, in period t.

Definition 2 A public-response plan is a sequence of public-response functions α =

(α1, ..., αT ) with αt : X × [0, 1]t → [0, 1], given µ0 ∈ (0, 1) and α0 ≡ 1. Therefore,

for every x ∈ X, the type-x active agents will choose action α1(x, µ1) in period 1

and plan to choose αt(x, µt) for every future period t ∈ {2, 3, ..., T}, contingent on
µt ∈ [0, 1]t, as long as they are active until T . As soon as an agent shows symptoms,

they will drop out and no longer take action in the subsequent periods.

Remark. We find no need to consider each agent’s private state of being “ac-

tive”or “passive”in a period t. As the population has a continuum of agents, every

point of density x ∈ X involves a continuum of agents even when the set of type-x

has a zero measure. A plan can be viewed as invariably feasible because after some
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type-x agents drop out when they are symptomatic, there are other active type-x

agents to execute the remainder of the plan.

3.2 Endogenous state variables

When active agents follow a public-response plan in choosing their actions, different

types may be exposed to different probabilities of disease. We need to track the type

densities of the following population groups (see Figure 2): for t ∈ {1, 2, ..., T},

it : density of symptomatically infectious types over X in period t

jt : density of asymptomatically infectious types over X in period t

ft : density of susceptible types over X in period t

We have f0 = f , as all agents were susceptible at the start of period 0. We assume

that the initial outbreak of the pandemic in period 0 was due to an exogenous shock

by Nature, causing I0 of the agents infected. For t ≥ 1, we will derive it, jt, and ft

jointly with other endogenous state variables.

To model the quantitative effects of communicable activities, observe that an

active agent increasing action at in a period t has dual effects: it increases the

probability that they may get infected and the probability that they may infect

the others. Although each agent may neglect the effect of their action on others,

the collective actions do matter for the overall transmission environment. We now

introduce an important variable, considered as a numerical representation of the

transmission risk of the environment in period t, defined by

χt : =

∫
X

θ(x)it(x)dx+

∫
X

h(αt(x, µ
t))jt(x)dx, (2)

t ∈ {1, ..., T}

where θ : X → [0, 1] is a measurable, nonnegative function and h : [0, 1] → [0, 1] is

continuously differentiable, satisfying h(0) = 0, h(1) = 1, and h′ > 0 on (0, 1). The

first term on the right side of (2) captures the infectiousness of the symptomatic
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agents in the preceding period, where θ ≡ 0 corresponds to the case in which all sick

agents were immediately (self-) quarantined and no infected agent would deliberately

infect others. As θ increases, sick agents play an increasing role in transmitting the

disease. The last term in (2) captures the infectiousness from the asymptomatically

infected agents. Without symptoms, these agents continue to follow the public-

response plan in choosing their actions in period t. The function h measures the

contribution of different levels of actions to the overall infectiousness of this group.

For the special case where θ ≡ 1 and h ≡ 1, the transmission risk reduces to χt = ϑt,

the population size of the infectious.

Now we assume that when a susceptible agent is exposed to the transmission

risk of the environment, they will be infected with probability µtχt. Associated with

χt are a pair of related state variables, the infection-probability function pt, and the

disease-probability function qt. We assume that given µt, and given that all other

active agents follow the response function αt(·, µt) in choosing their actions, a sus-
ceptible agent choosing activity at in period t has the following infection probability

pt(at, µt, χt) = g(at)µtχt (3)

where g : [0,∞) → [0, 1) is twice continuously differentiable, satisfying g(0) = 0,

lima→∞ g(a) = 1, and g′ > 0 on (0, 1). We interpret g as the cumulative probability of

transmission risk exposure (henceforth, exposure function). Since there is no reason

to assume that taking action 1 will expose the agent to the transmission risk with

certainty, we allow g(1) ≤ 1.11 We will be interested in the behavior of the hazard

rate of exposure function η := g′

1−g . The hazard rate η(at) indicates the marginal

probability of an agent being exposed to the transmission risk by a marginal increase

of at, conditional on them not being exposed to such a risk at action level at. A

special case of interest is where η is memoryless, i.e., a constant. We then have

g(a) = 1− exp{−ηa}.
Our modeling is complicated by the consideration that the active agents do

11Since at ∈ [0, 1] is merely a normalization, defining g on [0,∞) maintains model generality and

allows g to be taken from a larger family of distribution functions.
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not know whether they are susceptible, infectious, or immune in any given period.

They may have been unknowingly infected in the past without showing symptoms.

Thus, we allow rational agents to infer their disease probability, given their past

actions. Consider an active agent with type x who has chosen activities a0, a1..., at−1

in periods 0 through t − 1. Suppose these activities have exposed the agent to

infection probabilities ps, with the associated disease probabilities qs, over periods

s = 0, 1, ..t− 1. Let Pr(susceptiblet|activet) denote the conditional probability that
the agent is susceptible in period t. Since being susceptible is equivalent to being

uninfected in the past, and since being active implies that the agent has not been

sick, we obtain

Pr(susceptiblet|activet) =
(1− p0)(1− p1)...(1− pt−1)

(1− q0)(1− q1)...(1− qt−1)
:= St−1 (4)

Thus, when (almost) all other agents follow the plan α, an active type-x agent with

a history of actions a0 = 1 and at := (a1, ..., at) has an expected disease probability

in any period t = 0, 1, ... equal to (defining S−1 = 1)

qt(x, St−1, pt) = γxSt−1pt (5)

Summarizing, we may perceive the sequence of events that leads to sickness of

an agent so far without symptoms at the start of period t as follows.

Being susceptible & exposed to risk → Infected → Symptomatic

Prob = St−1g(at) Prob = µtχt Prob = γx
(6)

The sequence has the following interpretation. At the start of period t, the agent

commits to action at ∈ [0, 1]. Through this period, the agent runs the risk of being

susceptible and exposed to the transmission risk with probability St−1g(at). Condi-

tional on being susceptible and exposed to the risk, the agent will be infected with

probability µtχt. If the agent is infected, they will show symptoms with conditional

probability γx.

The infection rate of the population in a period t, denoted by It, can be
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calculated by integration over the susceptible types:

It = µtφtχt where φt =

∫
X

g(αt(x, µ
t))ft(x)dx (7)

Thus, It can be seen as µt multiplied by a generalized matching functionMt =

φtχt where the first part φt is directly related to the size and actions of the susceptible

population, and the second part χt the size and actions of the infectious population.

The formula includes the basic SIR model of infection rate as a special case when

there is no asymptomatic transmission (γ ≡ 1), full symptomatic infectiousness

(θ ≡ 1), and no active prevention from the population (g ≡ 1 and h ≡ 1). Then,

φt reduces to the size of the susceptible population and χt the size of the infectious

population, as in the basic assumption of the SIR models. (Since time is continuous

in the SIR models, the infected agents are simultaneously infectious.)

Now, fix public-response plan α and suppose all active agents follow the plan.

The law of motion for (it, jt, ft, χt, pt, qt) can be derived recursively as follows.
12

For t = 0, suppose we are are given exogenously µ0 ∈ (0, 1) and an infection

rate I0 ∈ (0, 1). Then, given f0 = f and α0 ≡ 1, we have p0 ≡ I0. Defining S−1 ≡ 1

gives q0(x, µ0) = γxI0. Consequently,

f1(x) = (1− I0)f0(x)

i1(x) = γxI0f0(x)

j1(x) = (1− γx)I0f0(x)

and χ1 =

∫
X

θ(x)i1(x)dx+

∫
X

h(α1(x, µ1))j1(x)dx,

By induction, suppose for t ∈ {1, 2, ...T −1}, the states (is, js, fs, χs, ps, qs) are

well defined for s = 0, 1, ..., t− 1. Consider now period t. Since for each type x ∈ X,
a fraction pt−1(x, µt−1) of the agents were infected in period t− 1, we have

it(x) = γxpt−1(x, µt−1)ft−1(x) (8)

jt(x) = (1− γx)pt−1(x, µt−1)ft−1(x) (9)

12To ease exposition, pt(x, µt) denotes pt(αt(x, µt), µt, χt), etc.
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and the density of susceptible types shrinks to

ft(x) = (1− pt−1(x, µt−1))ft−1(x) (10)

It follows that

χt(µ
t) =

∫
X

θ(x)it(x)dx+

∫
X

h(αt(x, µ
t))jt(x)dx (11)

and for all x ∈ X,

pt(x, µ
t) = µtg(αt(x, µ

t))χt(µ
t) (12)

qt(x, µ
t) = γxSt−1(x, µt−1)pt(x, µ

t) where St−1 = St−2
1− pt−1(x, µt−1)

1− qt−1(x, µt−1)
(13)

As f and αt are measurable functions, so are (it, jt, ft, χt, pt, qt) for all t ∈ {1, 2, ..., T}.
From the above analysis it follows that the sizes of the infectious and innocuous

populations in period t are given by

ϑt(µ
t) =

∫
X

pt−1(x, µt−1)ft−1(x)dx

ρt(µ
t) =

t−1∑
s=0

ϑs(µ
s)

3.3 Dynamic game and equilibrium

We assume that in any period t ∈ {0, 1, 2, ..., T}, the distribution of µt+1 is governed

by transition probability measure Φ̂t : [0, 1] × [0, 1 − ρt] → ∆([0, 1]), such that

given (µt, χt) ∈ [0, 1] × [0, 1 − ρt], the state µt+1 is a random variable distributed

according to Φ̂t (µt, χt) ∈ ∆([0, 1]) (with Φ̂T (µT , χT ) assigning probability 1 to the

event {µT+1 = 0} for T <∞).13 ,14

13∆([0, 1]) denotes the set of probability measures over [0, 1].

14To focus on individual behaviors, we choose this Markov formulation solely for simplicity.

There is also no need to assume any knowledge of how the state variables are serially correlated,

except a condition proposed in Assumption 1 and Proposition 3. Extension to the more general

processes could follow the treatment and discussion in Pavan et al. (2014) and Athey and Segal

(2013, Appendix A).

18



Given Φ̂ (= (Φ̂0, Φ̂1, ..., Φ̂T )), and the initial states µ0 ∈ (0, 1) and χ0 = 1, by

the Tulcea Extension Theorem each public-response plan α (= (α1, ..., αT )) uniquely

defines a probability measure over the sequence of states (µt)
T
t=1 ∈ [0, 1]T for T ≤ ∞.

Therefore, a unique stochastic process is defined for T ≤ ∞. Subsequently, we fix Φ̂

and let Eαt [·|µt, χt] denote the conditional expectation operator for µt+1 under the

public-response plan α, given (µt, χt). The expected payoff V
∗
t of each active type-x

agent in period t, given µt, can be described recursively:15

V ∗t (x, µt) = v(αt(x, µ
t)) + δx

{
(1− qt(x, µt))Eαt

[
V ∗t+1(x, µt+1)|µt, χt

]
+ qt(x, µ

t)Dx

}
(14)

for t ∈ {1, 2, ..., T}, with V ∗T+1(x, 0) = Ux if T <∞.
The interpretation of (14) is as follows. At the start of period t given µt, for

all x ∈ X, the active type-x agents choose action αt(x, µt) and enjoy utility equal
to v(αt(x, µ

t)) over period t. By the end of the period, with probability qt(x, µt),

each type-x agent will be symptomatically ill and drop out, in which case the agent

expects a life-time utility Dx (< Ux); and with probability 1− qt(x, µt), each type-x
agent will remain active and choose αt+1(x, µt+1) over period t+ 1, according to the

then realized history µt+1. This leads to the continuation payoff Vt+1(x, µt+1). For

T < ∞, from period T + 1 onwards, all the then active agents will enjoy life-time

utility Ux, according to their type x ∈ X.
The active agents play a dynamic noncooperative game in choosing their com-

municable activities, each attempting to maximize their expected payoff. The game

will end after T , if T is finite.

Definition 3 The public-response plan α = (α1, ..., αT ) forms a sequential public-

response equilibrium (SPRE) if and only if the following conditions hold:

(i) Sequential rationality. Given µ0 ∈ (0, 1) and any realized history µt ∈
[0, 1]t, t ∈ {1, 2, ...T}, for almost all x ∈ X, if the agent of type x is active and has
followed the plan α in the past, they will optimally choose action αt(x, µ

t) in the

15The existence of an optimal plan (αt)
T
t=1 for each type of active agents is guaranteed because

Vt is a continuous function of actions defined on the closed interval [0, 1] (see (15)).
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current period and plan to follow αt+1(x, ·), αt+2(x, ·)...until T. Supporting this plan
is the agent’s belief that almost all other active agents have followed the plan in the

past, and will continue to follow the plan in the current and future periods.

(ii) Consistent updating of information. All active agents who have followed

the plan up to t update their beliefs using Bayes rule regarding the active-population

measure Ft, infection-probability function pt, and disease-probability function qt, ac-

cording to (10)—(13).

In an SPRE, active agents are not affected by any other individual agent’s type

or actions, and the information set regarding other active agents’types remains the

same X for all periods. However, agents are affected by the transmission risk χt

of the environment, which is important for their assessment of the infection and

disease probabilities pt and qt, respectively. The equations (8)—(13) for updating

(it, jt, ft, χt, pt, qt) over time can be seen as related to the Bayesian updating of

beliefs in a Perfect Bayesian Equilibrium for games with incomplete information.

Since the agents’disease probabilities depend on their past actions, as in (5), agents

who deviate from the plan α may find it optimal to continue deviating from it.

However, under an SPRE, the set of deviating agents has a zero measure across all

periods so that the law of motion for (it, jt, ft, χt, pt, qt) is unaffected.

4 Equilibrium Analysis

This section contains the main theoretical results. We first establish the existence

and uniqueness of SPRE in propositions 1 and 2. We then derive the equilibrium

behavior and comparative statics results in propositions 4 and 3.

4.1 Path-dependent preferences

We start with a public-response plan α and consider the individual decisions of an

arbitrary active agent in period t ≥ 1. To ease notation, we suppress the expression

of variables unless it is needed for clarity.
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Let at−1 = (a1, ..., at−1) denote the agent’s past actions, such that at = (at−1, at).

By the principle of optimality for stochastic dynamic programming,16 the agent’s op-

timal expected payoff V ∗t in any period t can be described as (suppressing variables

x, µt, χt)

V ∗t (at−1) = max
at∈[0,1]

{
v(at) + δ(1− qt(at))Eαt

[
V ∗t+1(at)|µt, χt

]
+ δqt(a

t)D
}
(15)

t ∈ {1, 2, ..., T}

with V ∗T+1 = U if T < ∞. Let Vt (= Vt(x, at, a
t−1, µt, χt)) denote the term in curly

brackets in (15):

Vt = v(at) + δ
{

(1− qt)Eαt
[
V ∗t+1|µt, χt

]
+ qtD

}
(16)

Maximization of Vt yields the following necessary condition for all optimal

actions a∗t , for which (15) has an interior solution

∂Vt
∂at

= v′(at)− δEαt
[(
V ∗t+1 −D

) ∂qt
∂at
− (1− qt)

∂V ∗t+1

∂at

∣∣∣∣µt, χt] = 0, (17)

otherwise a∗t = 0 or 1, depending on whether Vt(x, 0, at−1, µt, χt) or Vt(x, 1, a
t−1, µt, χt)

is greater than Vt(x, at, at−1, µt, χt) through the entire interval [0, 1].

We interpret the expected term in (17) as the total marginal cost, and the term

v′(at) the marginal benefit, for a marginal increase of at. The first term in square

brackets in (17) is related to the risk of being symptomatically ill, in which case the

agent drops out by the end of the period. The second term in square brackets in

(17) is related to the agent’s continuation payoff when no symptom appears. We

will show that increasing at has a positive marginal effect on the continuation payoff,

i.e.,
∂V ∗t+1
∂at
≥ 0. Consequently, the second term in square brackets offsets the effect of

the first term to an extent. It suggests that if the agent remains active by the end

of the period, having taken a higher level of action would be more desirable.

A complication caused by path-dependency is reflected in the calculation of
∂V ∗t+1
∂at

in (17). Replacing subscript t with t + s in (15) and differentiating each V ∗t+s

16See, e.g., Stokey and Lucas (1989, Chapter 9). Although our model is different from those

treated in their book, the analysis follows similar lines.
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w.r.t. at shows that
∂V ∗t+1
∂at

is recursively defined via

Eαt
[
∂V ∗t+s
∂at

∣∣∣∣µt, χt] = −δEαt
[(
V ∗t+s+1 −D

) ∂qt+s
∂at

− (1− qt+s)
∂V ∗t+s+1

∂at

∣∣∣∣µt, χt]
s = 1, ..., T − t

To obtain sharper characterizations, we need to find a more effi cient approach.

The idea is to examine a mathematically equivalent problem of maximizing

Vt −D = v(at)− (1− δ)D + δ(1− qt)Eαt
[
V ∗t+1 −D|µt, χt

]
∀t ∈ {1, ..., T}

Thus, Vt − D can be expanded as though it was the expected sum of a sequence

of discounted payoffs, with an associated probability of receiving the payoff in each

period:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Period Probability Discounting Payoff flow

t 1 1 v(at)− (1− δ)D
t+ 1 1− qt δ v(αt+1)− (1− δ)D
· · · · · · · · · · · ·
t+ s (1− qt) ...(1− qt+s−1) δs v(αt+s)− (1− δ)D
· · · · · · · · · · · ·
T + 1 (1− qt)...(1− qT ) δT−t+1 U −D

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(18)

where the last row vanishes as T → ∞. Defining Π0
r=1 (1 − qt+r) = 1 and taking

expectation of the sum, we can write

Vt −D = Êαt



v(at)− (1− δ)D

+
T−t∑
s=1

δs

[(
s∏
r=1

(1− qt+r−1)

)
(v(αt+s)− (1− δ)D)

]

+δT−t+1

(
T−t+1∏
r=1

(1− qt+r−1)

)
(U −D)


(19)

where Êαt denotes the expectation operator over the random variables (µt+1, ..., µT ),

conditional on the information at t. Again, due to discounting and bounded payoff,

the last term in (19) vanishes as T → ∞. The expression of Vt − D in the above

sequence effectively simplifies the problem, as shown in the following lemma.
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Lemma 1 The partial derivative in (17) satisfies, for all t ∈ {1, 2, ..., T},

∂Vt
∂at

= v′(at)− δ
∂qt
∂at
Eαt [Ht+1|µt, χt] (20)

where Ht+1 is a positive function defined recursively by

Ht+s = v(αt+s)− (1− δ)D + δ(1− pt+s)Ht+s+1 (21)

for s ∈ {1, ..., T − t}, with HT+1 = U −D if T <∞.

The function Ht+1, when multiplied with
∂qt
∂at
, captures the overall marginal

cost given in square brackets in (17). The most useful property of Ht+1 is that

it does not depend anymore on the path-dependent disease probability functions

qt, qt+1, ... This lemma significantly simplifies our problem.

The next lemma shows that Vt is supermodular in (as, at) for all s < t. This

property implies a “risk-taking fosters risk-taking” effect in that higher levels of

communicable activities in the past encourage the active agents to take higher level

of activity today. This result will be also useful for the analysis of comparative

statics and equilibrium trends in Section 4.3.

Lemma 2 The function Vt as defined in (16) has the cross-partial derivative ∂2Vt
∂at∂as

≥
0 for all s, t ∈ {1, 2, ..., T} such that s < t.

4.2 Polarized Equilibrium Behavior

To establish equilibrium existence and uniqueness, we invoke the following assump-

tion.

Assumption 1 The cumulative distribution function Φt (·|µt, χt) that corresponds
to the transition probability measure Φ̂t (µt, χt) is twice differentiable in all argu-

ments, with the density function ϕt (= Φ′t
(
µt+1|µt, χt

)
) satisfying, for any t ∈

{1, ..., T},
∂ϕt/∂χt
ϕt

≥ −1 (22)

at all points where ϕt > 0.
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Roughly, Assumption 1 requires that a marginal change in χt should not change

the density function of µt+1 “by too much” in the sense of (22). This technical

assumption implies the following behavioral assumption: in every period t, the active

agents’actions are submodular in (at, χt), i.e.,
∂2Vt
∂at∂χt

≤ 0 (see Lemma 3). According

to this behavioral assumption, agents play a submodular game by responding to

a marginal increase in χt with a marginal decrease in their action in any period

t. Since a higher level of χt increases the chances of infection, it naturally lowers

each individual agent’s incentive to choose higher at. Therefore, the submodularity

assumption seems fairly reasonable. Thus, the role of Assumption 1 is to provide a

suffi cient condition for agents to play a submodular game that is based only on the

primitives ϕt in the model.

Lemma 3 Suppose Assumption 1 holds. The function Vt as defined in (16) has the

cross-partial derivative ∂2Vt
∂at∂χt

≤ 0 for all t ∈ {1, 2, ..., T}.

Lemma 4 For all t ∈ {1, 2, ..., T}, given any (at−1, µt, χt), the function Vt as defined

in (16) has the following properties:

(i) ∂2Vt
∂at∂δ

< 0

(ii) ∂2Vt
∂at∂γ

< 0

(iii) ∂2Vt
∂at∂D

> 0

The above two lemmas show that Vt is submodular in (at, χt), (at, δ), (at, γ),

and supermodular in (at, D) (Topkis 1978). These properties have monotone com-

parative statics implications (Milgrom and Shannon 1994, Theorem 6), as to be

specified in Proposition 3. The lemmas are also useful for establishing our first

proposition below, one of the main results of this study.

By Lemma 1, integrate (20) over [0, 1] and obtain, for any (x, µt, χt),

Kt(x, µ
t, χt) : = Vt(x, 1, µ

t, χt)− Vt(x, 0, µt, χt)

= u− u0 − δxqt(x, 1, µt, χt)
∫ 1

0

Ht+1(x, µt+1)dΦ(µt+1|µt, χt) (23)
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where qt(x, 1, µt, χt) = g(1)γxSt−1(x, µt−1)µtχt. Further define

B(µt, χt) =
{
x ∈ X : Kt(x, µ

t, χt) ≥ 0
}

and

Jt(B) =

∫
B

jt(x)dx for all B ⊆ X

Proposition 1 Suppose Assumption 1 holds, and further assume v′′

v′ ≥
g′′

g′ on [0, 1].

Then, given µ0 ∈ (0, 1) and α0 ≡ 1, there exists a unique17 sequential public-response

equilibrium α = (αt)
T
t=1 characterized by polarized actions

αt(x, µ
t) =

 1 if Kt(x, µ
t, χt) ≥ 0

0 if Kt(x, µ
t, χt) < 0

(24)

where

χt =

∫
X

θ(y)it(y)dy + Jt(B(µt, χt)) (25)

for all active type x ∈ X and t ∈ {1, 2, ..., T}.

Here, (24) characterizes the polarized actions of the active agents, and (25) is

an additional equilibrium condition. For types with Kt(x, µ
t, χt) = 0, the agents are

indifferent between choosing 1 or 0, and can choose a randomized strategy. Since the

set of indifferent types has a zero measure, as shown in the proof of the proposition,

we assume that these agents would choose 1 for ease of exposition.

The intuition for the polarized equilibrium in Proposition 1 is that the condi-

tion v′′

v′ ≥
g′′

g′ implies that each agent’s expected payoff is a convex function of their

actions. To develop some insights into this condition, we take a look at the hazard

rate of the exposure function η = g′

1−g .

Differentiating η yields

η′ = η

(
η +

g′′

g′

)
17In the present context, uniqueness of equilibrium α means that any other equilibrium may

differ from α, only in a set of types with a zero Ft-measure in each period t ∈ {1, 2, ..., T}.
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Thus, if η′ ≤ 0 and η ≥ −v′′

v′ , then

− g′′

g′
≥ η ≥ −v

′′

v′
(26)

Corollary 1 Suppose Assumption 1 holds and that the hazard ratio η (= g′

1−g ) is

nonincreasing, satisfying η ≥ −v′′

v′ on (0, 1). Then the conclusion of Proposition 1

holds.

The nonincreasing hazard rate assumption in this corollary may be construed

as follows. The hazard rate η(at) indicates the marginal probability of an agent

being exposed to the transmission risk by a marginal increase of at to at + ∆a, con-

ditional on them not being exposed to such a risk at action level at. Now consider

a mind experiment. Suppose there are some people shopping in a grocery store

without wearing a mask. Let ∆a denote their shopping activities and ask this ques-

tion: Take any two of these people who have not been exposed to the transmission

risk when they entered the store, should their probability of risk exposure, due to

shopping at the store, differ? Although the two may have taken very different lev-

els of communicable activities before shopping, we have no reason to surmise that

their probabilities of risk exposure differ in the same shop. Therefore, it seems a

reasonable starting point to assume that in any subenvironment, the hazard rate of

risk exposure is a constant. Since the above example concerns only one of numerous

possible communicable activities taken place in different subenvironments, we may

assume that g is an expected probability function involving exponential functions of

different hazard rates, given by

g(a) =

∫ ∞
0

(
1− e−λa

)
dψ(λ)

where ψ is any arbitrarily given probability measure over [0,∞). By the fact that

any probability mixture of nonincreasing hazard-rate probability functions has the

nonincreasing hazard-rate property (e.g., Barlow et al. 1963, Theorem 3.4), the so

defined g above satisfies the assumption of Corollary 1.

Regarding the assumption η ≥ −v′′

v′ , since η > 0, the assumption holds in-

variably for all functions v that are linear or convex. More generally, the polarized
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equilibrium in Proposition 1 holds under all circumstances in which the hazard rate

η of the exposure function g is nonincreasing and is suffi ciently large.

Notably, the prediction that all active agents would choose polarized actions

amidst a pandemic is based on the primitives v and g only. For instance, the

equilibrium prediction in Proposition 1 does not require agents to have polarized

distribution for types or personal characteristics. Under any atomless distribution

of the individual characteristics (δ, γ,D), Proposition 1 holds, even if the agents

have infinitesimal type differences and are observationally “nearly”homogeneous.

To make our analysis more complete, consider next the complementing case

of Proposition 1, when v′′

v′ <
g′′

g′ . Then, each agent’s expected payoff is a concave

function of their actions. In this case, the equilibrium is characterized by the more

standard first-order conditions, as presented in the next proposition.

Proposition 2 Suppose Assumption 1 holds and further assume v′′

v′ <
g′′

g′ on (0, 1).

Then there exists a unique sequential public-response equilibrium α = (αt)
T
t=1 char-

acterized by

v′(αt(x, µ
t)) = δxγxSt−1(x, µt−1)µtg

′(αt(x, µ
t))χt

(
µt
) ∫ 1

0

Ht+1(x, µt+1)dΦ(µt+1|µt, χt)
(27)

for αt(x, µt) ∈ (0, 1), or else αt(x, µt) = 0 or 1, depending on whether Vt(x, 0, µt, χt)

or Vt(x, 1, µt, χt) is greater than Vt(x, at, µ
t, χt) through [0, 1], for all x ∈ X and

t ∈ {1, 2, ..., T}, where

χt
(
µt
)

=

∫
X

θ(y)it(y)dy +

∫
X

h(αt(y, µ
t))jt(y)dy (28)

Proof. Omitted, as the main arguments are similar to the proof of Proposition 1,

noting that (27) is merely an alternative expression of (17).

In this proposition, equation (27) provides the standard first-order conditions

for the dynamic maximization problem. The term v′ is the marginal benefit of

increasing at in period t, and the term on the right side is the marginal cost. Equation

(28) provides an additional equilibrium condition.
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As mentioned earlier, we interpret u− v as a deadweight utility loss caused by

restricting one’s communicable activities. Therefore, a plausible, simpler modelling

is to assume a linear function v, in which case the conditions in Propositions 1-2

simplify to g′′ ≤ 0 and g′′ > 0, respectively. Consider the following corollary of the

two cases.

Corollary 2 Suppose v(a) = u0 + a(u − u0) and g(a) = aζ with ζ > 0. Then, for

ζ ≤ 1, the results of Proposition 1 hold and for ζ > 1, the results of Proposition 2

hold. In addition, for the case with ζ > 1, we have g′(0) = 0. This implies, by (27),

that ∂Vt
∂at

= v′(at) = u − u0 > 0 at at = 0. Proposition 2 would then predict that

αt(x, µ
t) > 0 for all x ∈ X, µt ∈ [0, 1]t and t ∈ {1, ..., T}.

This corollary illustrates that the nonincreasing hazard rate assumption of g

in Corollary 2 is not necessary, as g(a) = aζ does not exhibit this property on

[0, 1]. The condition ζ ≤ 1 in this Corollary 2, see formula (7), is consistent with

the common assumption in matching theory that the matching function is concave

(Petrongolo and Pissarides 2001). For ζ > 1, Corollary 2 reveals an additional

prediction of Proposition 2 that no single active agent would choose the safety-first

action at = 0 in any period– regardless of their individual characteristics and the

virus transmission intensity. Notably, this additional prediction is inconsistent with

our data, as presented in Section 5.

4.3 Comparative statics and long-run equilibrium behavior

We now consider the comparative equilibrium behavior among agents endowed with

different types. As the types are three-dimensional, it is impossible to have a com-

plete ranking of the preferences and behavior based on agents’types. Nevertheless,

each dimension of the types, δ, γ, and D has unambiguous implications for the equi-

librium behavior.

Proposition 3 The equilibrium public-response functions αt has the following prop-

erties: for all t ∈ {1, 2, ..., T},

28



(i) αt is nonincreasing in δ;

(ii) αt is nonincreasing in γ;

(iii) αt is nondecreasing in D.

Prediction (i) of this proposition might appear controversial. On one hand,

it seems reasonable to predict higher levels of communicable activities among peo-

ple who subscribe to carpe diem (pluck the day), or yolo (you live only once), as

something close to their philosophy of life. A lower discount factor would be then

consistent with their penchant to make the most of the present time and give little

thought to the future. On the other hand, it would be misleading to predict higher

levels of communicable activities among older people, as they might exhibit lower δ

but at the same time higher γ and lower D– given that they are more likely to be

sick or die upon infection. Therefore, it is worth emphasizing that all personal traits

jointly influence agents’behavior. The main intuition why part (i) of the proposition

holds, can be seen from the fact that once infected symptomatically, an agent’s loss

of utility (U − D = u
1−δ − D) is positively related to their δ. Therefore, given two

agents with the same γ and D, the agent with a higher δ has less incentive to take

risks. Likewise, the disease probability when infected, γ, has a similar effect as δ

because a higher γ means that the agent is more likely to suffer illness than agents

with lower γ. The level of expected utility when diseased, D, is positively related to

an agent’s action because a higher D means a lower loss of utility (U −D).
Our next proposition shows the long-run behavior of the equilibrium and in-

fection trends under an SPRE.

Proposition 4 The the following holds for any SPRE.

(i) If µτϑτ = 0 for some τ ∈ {1, 2, ..., T}, then αt ≡ 1 and ϑt = 0 for all t ≥ τ .

(ii) Suppose T =∞. Then, the sequence of probabilities Pr(αt(x, µ
t) = 1)→ 1

uniformly over X, and ϑt → 0, as t→∞.

Based on the COVID-19 experience, the random behavior of the coronavirus

is highly unpredictable. We therefore focus on two broad scenarios, making no
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assumption about the dynamic behavior of the state variable µt. In scenario (i),

either the transmission-intensity rate hits zero by a fluke or the infectious population

shrinks to zero. While µτ = 0 is a chancy event, ϑτ = 0 can occur for various reasons.

For instance, consider the extreme case when γ ≡ 1, i.e., all infected agents will be

sick so that the last term in (11) equals zero, and θ ≡ 0, i.e., the infected agents

will be so sick as to have no capacity to transmit the disease to others. Then,

the transmission risk defined in (11) vanishes, implying no new infection in the

current period and therefore no infectious agents in the subsequent period. The

severe Ebola virus disease, which could cause up to 90% of death but never became

a pandemic, might be considered an example for this case. Another possibility

for scenario (i) is that an extremely high rate of infection occurred in a period,

causing a large population of infectious agents, or large transmission risk in the

subsequent period such that all the remaining active agents find it optimal to choose

action 0. Notably, this may not be a possible equilibrium under the assumption

of Proposition 2 (see Corollary 2), but is well possible under the assumption of

Proposition 1. If there were an effective government that could implement a strict

lockdown policy among the whole population, then, by Proposition 4(i), the society

would be able to get rid of the virus quickly. Of course, this is a big ‘if’given the

virtual impossibility of a worldwide, coordinated lockdown. In scenario (ii) of the

proposition, the virus persists. Then, the proposition predicts herd immunity as the

only long-run equilibrium outcome.

5 Empirical Evidence

In this section, we set out to investigate empirically people’s responses to COVID-

19, focusing on the testing of the competing predictions of Propositions 1 and 2. We

use data from the American Time Use Survey (ATUS) to study how people change

their time spent on face-to-face socializing during the pandemic in the absence of

stay-at-home orders. Our analysis found that compared to 2019, the proportion of

people who did not socialize significantly increased during the pandemic, while the
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distribution of social time among those who did socialize remained unchanged. This

finding means that some people chose “safety first”and stopped socializing, while

others chose to “life as usual”without reducing their social time. This is consistent

with the polarization equilibrium predicted by Proposition 1, and it clearly negates

the interior equilibrium prediction of Proposition 2, which implies that socially active

people will continue their socializing activities, but their social time will be shortened

during the pandemic.

We focus on face-to-face social activities in our baseline analysis and include

more types of activities for robustness checks. Face-to-face social activities are an

appropriate counterpart to behavior in our theoretical model for several reasons.

First, they significantly increase the risk of infection because the virus is transmit-

ted by exposure to infectious respiratory fluids including inhalation of fine respira-

tory droplets and aerosol particles18. Second, a reduction in face-to-face socializing

decreases an individual’s utility. Third, modern communication technologies make

face-to-face social interaction relatively dispensable compared to behaviors neces-

sary for survival, such as buying food at a supermarket. Thus, it is possible for a

person to (at least temporarily) stop face-to-face socializing, which corresponds to

at = 0 in our theoretical model.

Our analysis employs the data from American Time Use Survey (ATUS) that

measures the amount of time people spend doing various activities. Daily time spent

socializing is collected from 2 subcategories under category 12 of ATUS data: (1201)

socializing and communicating and (1202) attending or hosting social events. These

subcategories contain face-to-face social activities with a high risk of infection. For

example, conversing with people dining at a restaurant is coded as 1201; attending a

meeting or festival party is coded as 1202. Note that communications by telephone

or Internet, which have no risk of infection, are excluded from these subcategories

and are therefore not defined as social activity in our analysis. The ATUS data

also provide information on location and "with whom" during the activity, as well

18https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-

transmission.html
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as the characteristics of the respondents, including age, family income, education,

employment status, number of children, child’s age, etc. A descriptive summary of

the data is included in the Online Appendix.

The COVID-19 outbreak divided the 2020 ATUS data into two periods: a

pre-pandemic period including January and February 2020 and a period during the

pandemic from July to December 2020. The data from March to May 2020 are

not included because data collection was suspended in 2020 from mid-March to

mid-May. Data for June 2020 is excluded because the stay-at-home policy, which

restricts people’s freedom to socialize, had not been lifted in more than 10% of U.S.

counties19. Moreover, data for the same months of 2019 are used as a reference for

behaviors under normal circumstances. Comparing data from January and February

2019 to 2020, we do not find any annual trend or systematic change in people’s social

behavior in the absence of the pandemic. If this situation persists for the remainder

of 2020, then changes in social time from July 2020 to December 2020 relative to

the same period in 2019 can be considered as a result of the pandemic. Lastly, we

exclude data beyond 2020 to eliminate the effect of vaccination20 so that behavioral

changes relative to 2019 were purely a result of the pandemic.

The key implication of Proposition 1 is that people will choose oppositely

polarized corner solutions. It is worth noting that the corner solution at = 0 can be

directly mapped to zero social time, while the other corner solution at = 1 does not

correspond to a specific amount of social time. Instead, at = 1 means that people

lived a normal life, i.e., they spent a similar amount of time socializing during the

pandemic compared to the same period in 2019. Thus, these two corner solutions

lead to different forms of testable hypotheses, which are tested separately in the

analysis below.

First, we consider the zero corner solution in Proposition 1. Since a respon-

dent might not have any social activities on the day of interview, the dataset has

19Our hypothesis testing results are robust to the inclusion of the data for June 2020

20According to data from ourworldindata.org, less than 1% of the population were vaccinated in

the U.S. by the end of 2020.
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observations with zero social time even before the pandemic. Proposition 1 predicts

that some people who used to socialize would stop socializing during the pandemic,

resulting an increase in the proportion of people choosing zero social time during the

pandemic compared to the same period in 2019. In contrast, Proposition 2 shows

that all agents would choose an interior solution at > 0 (see Corollary 2) during

the pandemic. This implies that while people reduce their social time, relative to

the same month in 2019, the proportion of people choosing zero social time should

remain approximately the same. Thus, we test the following hypotheses

H1
0 : N t

1 = N t
2

H1
1 : N t

1 < N t
2, (29)

where N t
1 and N

t
2 denote the proportions of individuals with nonzero daily social

time during month t in 2019 and 2020, respectively. Figure 3 plots N t
1 and N

t
2 in

different months and reports the p-value for the null hypothesis H1
0 . The data show

that the proportion of observations with zero social time in January and February

2020 did not change significantly relative to 2019. In contrast, the proportion of

observations with zero social time between July and December 2020 was significantly

higher than during the same period in 2019, which is consistent with the prediction

by Proposition 1.

Next, we consider the other corner solution "life as usual", i.,e., at = 1, which

represents a relative rather than an absolute measure, indicating that people do not

change their behavior during the pandemic. In order to test this hypothesis, we

conduct a counterfactual analysis of how people who socialized during the pandemic

changed their daily social time compared to what they would have done in 2019.

Let X1 and X2 denote the personal characteristics of the respondents in 2019

and 2020, respectively, and let Y1 and Y2 denote the time they spent socializing each

day in 2019 and 2020, respectively. Let FX2(x|Y2 > 0) denote the distribution of

X2 conditional on Y2 > 0. Following Chernozhukov et al. (2013), we consider the

following distributions

FY (y)t,2 ≡
∫
FYt|Xt,Yt>0(y|x) dFX2(x|Y2 > 0) (30)
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for t = 1, 2, where FYt|Xt,Yt>0(y|x) denotes the conditional distribution of Yt given Xt

and Yt > 0, which captures the dependence of daily social time on people’s charac-

teristics in year t given that they socialized. FY (y)2,2 denotes the fitted distribution

of Y conditional on Y > 0 in 2020 and FY (y)1,2 denotes the counterfactual distrib-

ution of Y , which integrates the conditional distribution of Y given X and Y > 0

in 2019 with respect to the distribution of characteristics X given Y > 0 in 2020.

Thus, the counterfactual distribution FY (y)1,2 represents the distribution of time

that people who socialized in 2020 would have spent socializing, if they followed

their behavioral mode in 2019 without the pandemic.

Jan  (0.49) Feb  (0.73) Jul  (1.8e­03) Aug  (1.3e­02) Sep  (9.7e­06) Oct  (3.5e­05) Nov  (3.3e­04) Dec (9.2e­07)
0.5

0.55

0.6

0.65

0.7

0.75
2019
2020

Figure 3: The proportions of people with zero social time in 2019 and 2020

The numbers in paretheses are the p-values for the null hypothesis that the proportion in

2020 remains the same compared to the same month in 2019.

The corner solution at = 1 in Proposition 1 indicates that some people would

choose “life as usual”during the pandemic. This implies that people who continued

to socialize during the pandemic should spend a similar amount time socializing in

2019. In contrast, the interior solution in Proposition 2 implies that people who
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continued to socialize during the pandemic should have spent more time socializing

if there were no pandemic, so FY (y)1,2 is expected to be smaller than FY (y)2,2 for

a given y (i.e., FY (y)1,2 has larger quantile values than FY (y)2,2). In order to test

these two competing implications, we compare the difference

δ(y) = FY (y)2,2 − FY (y)1,2.

Under Proposition 1, δ(y) is expected to be close to zero for all y ∈ Y with Y ⊆ R+.

Hence, we test the following hypotheses

H2
0 : sup

y∈Y
|δ(y)| = 0

H2
1 : sup

y∈Y
|δ(y)| 6= 0. (31)

The null hypothesis in (31) is restrictive in the sense that it requires the empirical

distance between FY (y)1,2 and FY (y)2,2 close to zero for all y values.

We estimate FY (y)t,2 using the estimator developed by Chernozhukov et al.

(2013) and compute the deciles of FY (y)1,2 and FY (y)2,2 with bootstrap uniform

confidence bands. Since the social time has mass points at rounded minute val-

ues, we follow Chernozhukov et al. (2013) and estimate the conditional distribution

FYt|Xt,Yt>0(y|x) using distribution regression (Foresi and Peracchi, 1995; Han and

Hausman, 1990) with a probit link function, where the covariates X include the

following variables in our baseline specification: age, squared age, family income,

employed or not, having kids or not, the number of children, the age of the youngest

child, and dummy variables for Monday through Saturday. Adding additional con-

trols (eg., dummy variables for months) did not qualitatively change the results. The

sample consists of 542 (521) observations from January and Feburary 2020 (2019)

and 1417 (1634) observations from July to December 2020 (2019).

Figure 4 plots the deciles of FY (y)2,2 and FY (y)1,2 with the 95% level uniform

confidence band of FY (y)1,2 for the period before the pandemic (January and Feb-

ruary 2020, upper left panel) and period during the pandemic (July to December

2020, lower left panel). The right upper and right lower panels plot the difference

between the deciles of FY (y)1,2 and FY (y)2,2 for the periods before and during the
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pandemic, respectively. The fitted distribution is always within the 95% confidence

band of the counterfactual distribution before and during the pandemic. Also, the

horizontal axis is always within the 95% confidence band of the difference between

the deciles of FY (y)1,2 and FY (y)2,2 in both periods. Moreover, the p-values of the

Kolmogorov-Smirnov statistics for testing H2
0 are 0.75 and 0.9 before and during the

pandemic, respectively, implying that the difference between FY (y)1,2 and FY (y)2,2

is not significantly different from zero for all y. Based on these results, we accept the

null hypothesis in (31), meaning that people socializing during the 2020 pandemic

would spend a similar amount of time socializing if they behaved the same way they

did in 2019 in the absence of pandemic. This indicates that these people choose the

“life as usual”option, which is in line with the prediction by Proposition 1.

In order to check the robustness of our results, we further analyzed the total

time respondents spend per day on a wider range of behaviors. In addition to

socializing, we also incorporate dining in restaurants and bars and exercising in

public indoor spaces in the absence of orders for closing restaurants, bars, and

gyms.21. These additional behaviors are apparently associated with high risks of

infection and can be avoided at the cost of utility loss during the pandemic (i.e., it

is possible to choose at = 0 for these behaviors). Adding these types of behaviors

to our empirical analysis benefits us for at least two reasons. First, it increases the

sample size and thus makes the test more powerful. Second, if a person avoids some

risky behaviors (e.g., socializing) but continues some other risky behaviors (e.g.,

exercising in a gym), then the total time spent would be nonzero but less than if

there were no pandemic. This means that interior solutions are more likely to be

observed when we consider the total time spent on multiple activities. These two

21To be specific, we consider time spent eating in public places including restaurants, bars, malls,

and grocery stores. Our analysis excluded the purchase of takeout, as it is a relatively low-risk

activity if people wear masks and the dwell time is short. For sport, we only consider excercises in

indoor public spaces because exercising in the open air or in a private place (such as at home) is

much less risky. These two additional types of activities are highly risky because it is diffi cult or

even impossible for people to wear masks during these activities.
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reasons will render the null hypothesis H2
0 more likely to be rejected if it is false. In

other words, if we still cannot reject H2
0 using the augmented data, then it provides

a stronger support for the corner solution in our Proposition 1.

The estimated distributions using the augmented data are plotted in Figures

A2 in the Online Appendix. The results are similar to those shown in Figure 4. The

p-values of the Kolmogorov-Smirnov statistics for testing H2
0 are 0.87 (Jan-Feb) and

0.79 (Jul-Dec) during the two subperiods in 2020. Thus, the fitted distribution is not

significantly different from the counterfactual distribution, which is again consistent

with the prediction of Proposition 1.
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Figure 4: Fitted versus counterfactual quantiles of time spent socializing for people

who socialized in 2020

The p-values of the Kolmogorov-Smirnov statistic for testing H2
0 are 0.75 and 0.9 before

and during the pandemic, respectively.
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6 Conclusion

We have studied a dynamic game model with heterogeneous agents under pandemic

risk and obtained three main results. The first result provides a rational explana-

tion for the puzzling phenomenon of polarization and how people can be deeply

divided in their thinking and behaviors during a pandemic. We show that polar-

ized responses during a pandemic do not need to be derived from any assumption

of polarized distribution among agents’types. They can, instead, be rationalized

under various relative conditions between agents’probability function of exposure

to the transmission risk and their utility function for communicable activities. This

result improves our understanding of human behavior in times of a pandemic. It

highlights that the polarization phenomenon is a combined consequence of individ-

ual rationality, personal conditions, and the nature of disease transmission. For a

society concerned about peace and community solidarity, a viable way to overcome

the conflict in interests is to promote awareness and “accept the rights of others”

(The eight Pillars of Positive Peace - Vision of Humanity). For instance, people

can learn that opposing preferences are unrelated to being “right”or “wrong,”and

appearing to be "extreme" is irrelevant to irrationality. These phenomena are the

natural consequences of individual rationality: chacun à son goût.

The second result stems from the fact that infected people can be asymp-

tomatic and acquire immunity without noticing. With this possibility in mind, the

agents in our model are enabled to rationally update their probability of disease

based on their past actions, using the Bayes rule. The result, therefore, predicts an

effect of past actions: the higher levels of the past actions, the more incentives an

active agent has to take further high-risk actions. The resulting path-dependent ex-

pected payoffs suggest then that as time goes by, people will increasingly neglect the

risk of disease and live their life as usual during a pandemic. Our results regarding

the long-run equilibrium towards herd immunity, and our empirical investigations,

both support all these propositions.

The third result shows that in equilibrium, the agents’actions are akinly re-
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lated to their personal traits. We show that an agent’s communicable activities are

inversely related to their (1) discount factor, (2) probability of contracting the dis-

ease upon infection, and (3) expected loss of utility in the event of disease. These

personal characteristics may be used as indications of an agent’s vulnerability to

transmission risk and help us better understand the individual reactions to the pan-

demic.

In terms of policy considerations, our results corroborate the view of Acemoglu

et al. (2021) and Gollier (2020) regarding the validity of targeting different types

of agents with different policies. For instance, instead of full-fledged lockdowns, a

government can consider playing a more constructive role by facilitating more vul-

nerable people to choose safety-first while allowing the less vulnerable to conduct

life as usual. Since the lesser vulnerable population would not be a heavy social

healthcare burden and will mostly acquire immunity through (asymptomatic) in-

fections among themselves, the potential cost of facilitating such a policy could be

conceivably much lesser than implementing a (partial) lockdown for everyone. How-

ever, although such policies seem more plausible in theory, a serious discussion of

optimal policies is beyond the scope of this study.

Akin to many historic plagues and epidemics, COVID-19 had a significant im-

pact on the level of conflict and violence worldwide. While the path to recovery

is full of uncertainties, the crisis will have far-reaching implications across various

dimensions of our society. In a post-pandemic world, studying the patterns ob-

served during the outbreak is crucial to understand the reasons behind them and

their implications. This can help governments, policy-makers, organizations, and

individuals mitigate the potential damages in the future if such a crisis arises again.

We hope that the general framework and analysis presented here will be useful for

future research.
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7 Appendix

7.1 Proofs of the lemmas

Proof of Lemma 1. Fix any t ∈ {1, 2, ..., T}. We show by induction on s =

1, ..., T − t that the product term in (18) has a derivative

∂

∂at

s∏
r=1

(1− qt+r−1) = −γSt−1p
′
t(at)

s−1∏
r=1

(1− pt+r) (32)

where Π0
r=1 (1− pt+r) is defined as unity. For s = 1, from (5) we have

1− qt = 1− γSt−1pt(at) (33)

so that ∂(1−qt)
∂at

= −γSt−1p
′
t(at), conforming (32). Now, supposing (32) holds for

arbitrary s ≥ 1, let us consider the case with s+ 1. Noting from (4) and (5) that

qt+s = γSt+s−1pt+s = γSt−1pt+s ×

s∏
r=1

(1− pt+r−1)

s∏
r=1

(1− qt+r−1)

Therefore
s+1∏
r=1

(1− qt+r−1) =
s∏
r=1

(1− qt+r−1)− qt+s
s∏
r=1

(1− qt+r−1)

=
s∏
r=1

(1− qt+r−1)− γSt−1pt+s

s∏
r=1

(1− pt+r−1)

=
s∏
r=1

(1− qt+r−1)− γSt−1pt+s(1− pt)
s−1∏
r=1

(1− pt+r)

Differentiating w.r.t. at and invoking the induction hypothesis, the first term on the

right side of the third equation satisfies (32). The second term depends on at only

through pt. Thus,

∂

∂at

s+1∏
r=1

(1− qt+r−1)

= −γSt−1p
′
t(at)

s−1∏
r=1

(1− pt+r) + γSt−1p
′
t(at)

s−1∏
r=1

(1− pt+r)pt+s

= −γSt−1p
′
t(at)

s∏
r=1

(1− pt+r)
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This shows that (32) holds for all s ≥ 1. Now, differentiating (19) with respect to at

using (32), and defining Ht+1 by

Ht+1 =
T−t∑
s=1

s−1∏
r=1

(1− pt+r)δs (v(αt+s)− (1− δ)D) (34)

+

(
T−t+1∏
r=1

(1− pt+r−1)

)
δT−t (U −D) (35)

one can readily verify that (20) holds, where the equivalent recursive expression of

Ht+1 derives from (34)—(35).

Finally, to determine whether Ht+1 is positive, we have HT+1 = U − D > 0.

Since 0 ≤ pt+s ≤ 1 − ρt+s < 1 and v(a) ≥ u0 ≥ (1 − δ)D For all a ∈ [0, 1], by

backward induction, we derive

Ht+s = v(αt+s)− (1− δ)D + δ(1− pt+s)Ht+s+1

≥ δ(1− pt+s)Ht+s+1 > 0

for all t ∈ {1, 2, ..., T}, s ∈ {1, ..., T − t}

Proof of Lemma 2. Pick any t ∈ {2, ..., T} and s ∈ {1, ..., t − 1}. Recall that
qt = γSt−1pt, so that the cross-partial derivative

∂2qt
∂at∂St−1

= γp′t > 0

Notice further that St−1 can be written as (define
0∏
r=1

(1− ps+r) = 1)

St−1 = A
(1− ps)

t−s∏
r=1

(1− qs+r−1)
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where A := Ss−1

t−s−1∏
r=1

(1− ps+r) > 0 is independent of as. Therefore,

∂St−1

∂as
= A

∂

∂as

(1− ps)
t−s∏
r=1

(1− qs+r−1)

= A

−p′s
t−s∏
r=1

(1− qs+r−1)− (1− ps) ∂
∂as

t−s∏
r=1

(1− qs+r−1)(
t−s∏
r=1

(1− qs+r−1)

)2 (36)

By (32) in the proof of Lemma 1, we derive

∂

∂as

t−s∏
r=1

(1− qs+r−1) = −p′sSs−1γ
t−s−1∏
r=1

(1− ps+r)

It follows that

−p′s
t−s∏
r=1

(1− qs+r−1)− (1− ps)
∂

∂as

t−s∏
r=1

(1− qs+r−1)

= −p′s
t−s∏
r=1

(1− qs+r−1) + (1− ps)p′sSs−1γ
t−s−1∏
r=1

(1− ps+r)

=

−p′s + (1− ps)p′sSs−1γ

t−s−1∏
r=1

(1− ps+r)

t−s∏
r=1

(1− qs+r−1)


t−s∏
r=1

(1− qs+r−1)

= − (1− γSt−1) p′s

t−s∏
r=1

(1− qs+r−1) (37)

Now, substituting A and (37) into (36) yields

∂St−1

∂as
= −St−1

(1− γSt−1) p′s
(1− ps)

< 0

because 0 < γ, St−1, ps < 1. Thus, from (27) we derive

∂2Vt
∂at∂as

= −δ ∂2qt
∂at∂St−1

∂St−1

∂as

∫ 1

0

Ht+1dΦt > 0
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Proof of Lemma 3. For any t ∈ {1, ..., T}, we can write

∂Vt
∂at

= v′(at)− γSt−1µtg
′(at)χt

∫
Ht+1ϕt(µt+1|µt, χt)dµt+1

= v′(at)− γSt−1µtg
′(at)χt

∫
ϕt>0

Ht+1ϕt(µt+1|µt, χt)dµt+1

It follows that

∂2Vt
∂at∂χt

= −γSt−1µtg
′(at)

∫
ϕt>0

Ht+1dµt+1 − γSt−1µtg
′(at)χt

∫
ϕt>0

Ht+1
∂ϕ/∂χt
ϕ

dµt+1

= −γSt−1µtg
′(at)

∫
ϕt>0

(
Ht+1 ×

(
1 + χt

∂ϕ/∂χt
ϕ

))
dµt+1

Because Ht+1 > 0 and 0 < χt < 1, Assumption 1 implies 1 + χt
∂ϕ/∂χt

ϕ
> 0 and

therefore ∂2Vt
∂at∂χt

≤ 0 for all t ∈ {1, 2, ..., T} and T ≤ ∞.

Proof of Lemma 4. We fix the equilibrium response functions α1, ..., αT and check

the sign of the partial derivatives of ∂Vt
∂at
w.r.t. (δ, γ,D) by backward induction. Write

∂Vt
∂at

as
∂Vt
∂at

= v′(at)− δ
∂qt
∂at

∫ 1

0

Ht+1dΦt.

(i) Differentiating ∂Vt
∂at

w.r.t. δ yields

∂2Vt
∂at∂δ

= −∂qt
∂at

∫ 1

0

Ht+1dΦt − δ
∂qt
∂at

∫ 1

0

∂

∂δ
Ht+1dΦt

Because Ht+1 > 0 by Lemma 1, it suffi ces to show ∂Ht+1
∂δ
≥ 0. As shown in Lemma

1, the functions Ht+s are recursively defined by, for s = 1, ..., T − t,

Ht+s = v(αt+s)− (1− δ)D + δ(1− pt+s)Ht+s+1

Differentiating w.r.t. δ yields

∂

∂δ
Ht+s = D + (1− pt+s)Ht+s+1 + δ(1− pt+s)

∂

∂δ
Ht+s+1

Since D ≥ 0 and ∂HT+1
∂δ

= 0, backward induction implies

∂2Vt
∂at∂δ

< 0, t ∈ {1, 2, ..., T}
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(ii) Differentiating ∂Vt
∂at

w.r.t. γ yields

∂2Vt
∂at∂γ

= −δ ∂2qt
∂at∂γ

∫ 1

0

Ht+1dΦt

From qt = γSt−1pt, we derive

∂2qt
∂at∂γ

=

(
St−1 + γ

∂

∂γ
St−1

)
p′t

Because ps is independent of γ and qs increasing in γ,

∂St−1

∂γ
=

∂

∂γ

(1− p0)(1− p1)...(1− pt−1)

(1− q0)(1− q1)...(1− qt−1)
> 0

Consequently, we have
∂2Vt
∂at∂γ

< 0, t ∈ {1, 2, ..., T}

(iii) Differentiating ∂Vt
∂at

w.r.t. D yields

∂2Vt
∂at∂D

= −δ ∂qt
∂at

∫ 1

0

∂

∂D
Ht+1dΦt.

We have ∂HT+1
∂D

= ∂(U−D)
∂D

= −1, implying

∂

∂D
Ht+s = − (1− δ) + δ(1− pt+s)

∂

∂D
Ht+s+1 < 0

and therefore
∂2Vt
∂at∂D

> 0, t ∈ {1, 2, ..., T}

7.2 Proofs of the propositions

Proof of Proposition 1. Step 1. We show first v′′

v′ ≥
g′′

g′ implies that any SPRE

necessarily involves only the corner solutions such that αt ∈ {0, 1}. By Lemma 1,
the problem of maximizin Vt as defined in (16) can be expressed by the program

(suppressing other variables):

max
at∈[0,1]

Vt(at) = v(at)− δγSt−1µtg(at)χtEαt [Ht+1|µt, χt] + Vt(0)
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Since v′ > 0, we can define vt = v(at) and at = v−1(vt) so that the above program

is isomorphic to the program

max
vt∈[u0,u]

Vt(v
−1(vt)) = vt − δγSt−1µtg(v−1(vt))χtEαt [Ht+1|µt, χt] + Vt(0)

By Pratt (1964, Theorem 1(d)), v′′

v′ ≥
g′′

g′ on [0, 1] is equivalent to g(v−1(vt))

being a concave function of vt on [u0, u], which implies that Vt(v−1(vt)) is a convex

function of vt. Therefore, the optimal solution to the above program must be either

vt = u0 or vt = u, or, equivalently, at = 0 or at = 1.

Step 2. We next show the existence and characterization of an individual plan

(a∗t )
T
t=0 for each type of the active agents, taking a public plan α and the process of

the transmission risk (χt)
T
t=0 (yet to be established) as given.

Starting with an arbitrary T < ∞. By backward induction on t, it is easily
seen that given any past actions at−1, history µt, and current transmission risk χt

of the environment, for each type x there exists an optimal solution

a∗t (x, a
t−1, µt, χt) = arg max

at∈[0,1]
Vt(x, at, a

t−1, µt, χt)

for all
(
x, at−1, µt, χt

)
∈ X × {0, 1}t−1 × [0, 1]t × [θt, ϑt], t ∈ {1, ..., T}

where θt :=
∫
X
θ(x)it(x)dx. For Kt defined in (23), we modify it for now by

Kt(x, a
t−1, µt, χt) := Vt(x, 1, a

t−1, µt, χt)− Vt(x, 0, at−1, µt, χt)

The conclusion in Step 1 then implies that for any (x, at−1, µt, χt), the optimal

individual plan (a∗t )
T
t=1 must satisfy, for all t ∈ {1, ..., T},

a∗t (x, a
t−1, µt, χt) =

 1 if Kt(x, a
t−1, µt, χt) > 0

0 if Kt(x, a
t−1, µt, χt) < 0

(38)

Types in the set B0(at−1, µt, χt) := {x ∈ X : Kt(x, a
t−1, µt, χt) = 0} may randomize

between 0 and 1.

Now, because δx ≤ δ̄ < 1 and Ux−Dx ≤ u
1−δ̄ <∞ for all x ∈ X, the last term

in (19) converges uniformly to 0 as T →∞. Thus, the characterization of a∗t in (38)
extends to the infinite horizon case as T →∞.
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Step 3. For equilibrium uniqueness, we show next that the set B0(at−1, µt, χt)

has a zero Jt-measure for all (at−1, µt, χt).

Since F is atomless, so is Jt, and therefore, the set of any singleton {x} ⊂ X has

a zero measure (see footnote 10). By contradiction, suppose for some (at−1, µt, χt)

we have Jt(B0(at−1, µt, χt)) > 0. Then, given X ⊂ R3, we can partition B0 into 23

subsets with positive measures and find out two of these:

B+
0 = {x ∈ B0 : δx ≤ δ0, γx ≤ γ0, Dx ≥ D0)}

B−0 = {x ∈ B0 : δx ≥ δ0, γx ≥ γ0, Dx ≤ D0)}

by properly choosing the vector x0 = (δ0, γ0, D0) ∈ X. As x0 is atomless, removing

x0 from these sets preserves their measures as B+
0 and B

−
0 respectively, while causing

at least one of the inequalities to hold strictly for B+
0 \{x0} and B−0 \{x0}. However,

Lemma 4 implies that the types in B+
0 \{x0} would prefer strictly higher actions than

the types in B−0 \{x0}, which contradicts the definition of B0(µt, χt). Therefore, we

must have Jt(B0(µt, χt)) = 0 for all (µt, χt).

Step 4. Finally, we establish the SPRE by forward induction on t. The ar-

gument goes as follows. In period 1, define α̂1(x, µ1, χ1) = a∗1(x, 1, µ1, χ1) as all

agents chose action 1 in period 0. Then we use α̂1 to find an equilibrium level of

transmission risk χ1(µ1) satisfying (25). Substituting into α̂1, we obtain period-1

equilibrium plan α1(x, µ1) = α̂1(x, µ1, χ1(µ1)) for all (x, µ1) ∈ X × [0, 1]. For period

t ≥ 2, suppose we have established the equilibrium plan up to t−1 : αt−1(x, µt−1) =

(α1(x, µ1), ..., αt−1(x, µt−1)). Then, defining α̂t(x, µt, χt) = a∗t (x, α
t−1(x, µt−1), µt, χt),

we go on to find the equilibrium transmission risk level χt(µ
t) that satisfies (25),

and so on.

To ease notation, we suppress variable µt in the remainder of the proof. Recall

that we have defined

B(χ) = {x ∈ X : Kt(x, χ) ≥ 0}

and

Jt(B) =

∫
B

jt(x)dx for all B ⊆ X
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Pick any t ∈ {1, 2, ..., T − 1} and suppose α̂t(x, µt, χt) is given. Define mapping
Γt : [θt, ϑt]→ [θt, ϑt] by

Γt(χ) = θt +

∫
X

h(α̂t(x, χ))jt(x)dx = θt + Jt(B(χ)), ∀χ ∈ [θt, ϑt]

By Lemma 3, Γt is nonincreasing. We now show that Γt is also continuous. By

Assumption 1, Eαt [Ht+1|µt, χt] is continuous in χt, so that Kt(x, χt) is a continuous

function of χt. It follows that ∀ε > 0,

lim
ε→0

B(χ− ε)\B(χ+ ε)

= lim
ε→0
{x ∈ X : Kt(x, χt − ε) ≥ 0, Kt(x, χt + ε) < 0}

= {x ∈ X : Kt(x, χt) = 0} = B0(χt)

which implies

lim
ε→0

[Jt(B(χ− ε))− Jt(B(χ+ ε))]

= lim
ε→0

Jt(B(χ− ε)\B(χ+ ε))

= lim
ε→0

Jt(B0(χ)) = 0

where the last equation is due to Step 3. Having established the continuity of Γt,

Brouwer’s fixed point theorem, combined with Γt being nonincreasing, implies a

unique fixed point χt = Γt(χt) that satisfies (25). The proof of the proposition is

thus completed by induction, for arbitrary T ≤ ∞.

Proof of Proposition 3. We prove the proposition by induction, using the results

of Lemma 4.

(i) Starting from t = 1. Suppose the two types x and y differ only in δx > δy.

Notice that y can always choose to mimic the plan of x. However, y can be better.

For instance, by Lemma 4, ∂2V1
∂at∂δ

< 0 implies that y would be better off by switching

from the plan of x to a plan that differs in period 1, with α1(y, µ1) ≥ α1(x, µ1).

Therefore, we let y choose α1(y, µ1).

According to Lemma 2, in period t = 2, the type-y agents who remain active

have even less incentives to mimic the plan of x because α1(y, µ1) ≥ α1(x, µ1)
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implies S1(y) ≤ S1(x). This advantage is reflected in q2(y, a2, µ
2) ≤ q2(y, a2, µ

2),

which, together with ∂2V1
∂a1∂δ

< 0, suggests that y can, again, do better by switching

from the plan of x in period 2 to a higher level of action α2(y, µ1) ≥ α2(x, µ1).

Repeating the same argument for t = 3, ..., T, we can show that in all periods,

y can do better by choosing a (weakly ) higher action level than x. Note that the

derived actions for y are not necessarily equilibrium actions. These are used only to

indicate the direction of change as a result of increasing δ.

For conclusions (ii) and (iii), similar arguments apply, and hence, they are

omitted.

Proof of Proposition 4. (i) Suppose µτϑτ = 0 for some 0 < τ <∞. Then from
(2) χτ (µ

τ ) = 0, which implies ατ ≡ 1 and no new infection in period τ and therefore

ϑτ+1 = 0. The conclusion thus holds by induction.

(ii) By contradiction, suppose ϑt → 0 were false. Then, ∃ε > 0 such that for

all τ > 0, there exists t(τ) ≥ τ such that ϑt(τ) > ε.

Consider now the process (ρt)
∞
t=0 of the size of the innocuous population. It is

nondecreasing and bounded from above by 1. So the process has a limit ρ̄ ≤ 1 as

t→∞. It implies that ∀ε̂ > 0, there exists τ̂ > 0 such that

ρ̄− ε̂ ≤ ρt ≤ ρ̄ for all t ≥ τ̂ .

But, choosing ε̂ < ε and τ > τ̂ , we derive

ρt(τ) ≥ ρτ + ε ≥ ρ̄− ε̂+ ε > ρ̄

This contradiction shows that ϑt → 0 as t→∞.
Now to show Pr(αt(x, µ

t) = 1) → 1, we need to show that ∀ε > 0, ∃τ > 0

such that for all t ≥ τ and µt ∈ (0, 1]t, Pr(αt(x, µ
t) = 1) > 1 − ε, or, equivalently,

1− Pr(αt(x, µ
t) = 1) = Pr(αt(x, µ

t) < 1) < ε.
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∂Vt
∂at

= v′(at)− δ
∂qt
∂at
Eαt [Ht+1|µt, χt]

Integrating over (a, 1) yields

Vt(1)− Vt(a)

= v(1)− v(a)− [g(1)− g(a)] δγSt−1µtχt(µ
t)Eαt [Ht+1|µt, χt]

≥ v(1)− v(a)− ϑt [g(1)− g(a)] δγSt−1µtEαt [Ht+1|µt, χt] (χt(µ
t) ≤ ϑt)

≥ v(1)− v(a)− ϑt [g(1)− g(a)] sup
x∈X

(Ux −Dx)

> 0 for t suffi ciently large, because ϑt → 0

Consequently, for all ε such that

v(1)− v(at)

[g(1)− g(a)] supx∈X(Ux −Dx)
> ε > 0,

there exists τ > 0 such that for all t ≥ τ , ϑt < ε and therefore Vt(1)−Vt(a) > 0 for all

x ∈ X. Since a can be chosen arbitrarily close to 1, we conclude that Pr(αt(x, µ
t) <

1) converges to 0 uniformly on X as t→∞.
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1 Online Appendix of SupplementaryMaterial (not

for publication)

1.1 Patterns of Mask-wearing Frequencies

Figure 1 in the paper shows the mask-wearing frequency in four leading European

capitals. This section introduces how the results are obtained and how the frequency

of mask-wearing is distributed in more cities during the pandemic. Mask-wearing

is an appropriate counterpart to the action in our theoretical model because it is

an effective and low-cost intervention to limit the spread of the virus1. In addition,

facial covers are not worn by ordinary people in the absence of a pandemic and

have traditionally been considered essential only for healthcare workers (Taylor et

al. 2021), so we assume that a zero mask-wearing frequency corresponds to a choice

of “life as usual”. Since the frequency is a continuous random variable between zero

and one, it can be easily mapped into the behavior variable in the theoretical model,

i.e., at = 1− frequency of mask-wearing.
Our analysis employs the YouGov COVID-19 behavior tracker data collected

by Imperial College London2, which interviewed around 29,000 people every week

since April 2020. The data contain information about people’s self-reported choices

of normal preventative measures and perceptions of COVID-19. Regarding their

1Recent medical research has identified face-covering as one of the primary non-pharmaceutical

interventions that can substantially limit the spread of infection during the pandemic (Schune-

mann et al. 2020, Abaluck et al. 2022), especially when COVID-19 is highly transmissible from

presymptomatic and asymptomatic individuals (Howard et al. 2020). Compared to other preven-

tative measures like observing social distancing, compliance with shelter-in-place directives, and

working from home, face-covering has a limited negative impact on economic activity (Milosh et

al., 2021; Goolsbee and Syverson, 2020, Chetty et al., 2020, Coibion et al., 2020). Although wear-

ing a face cover may cause a reduction in utility due to uncomfortable breathing and diffi culty

in communication, it comes at a low cost, and is thus less likely to be affected by an individuals

financial situation (Wright et al., 2020).

2See https://github.com/YouGov-Data/covid-19-tracker for more details of the survey.
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mask-wearing frequency, respondents are asked to choose one of the five options,

“always”, “frequently”, “sometimes”, “rarely”, and “not at all”. We refer to “al-

ways”and “not at all”as extreme options and refer to the other three as moderate

options. Our analysis covers data from April 1st to Dec 31st, 2020, when vaccinated

people in each country were still a negligible fraction of the population3. Figure A1

shows the proportions of people with extreme and moderate options during April

8 to April 14, 20204. The proportion of extreme options outweighs the moderate

options in every country and territory5.

The polarized pattern of mask-wearing frequency in Figure A1 may, however,

be driven by within-country variations in pandemic severity (Allcott et al. 2020).

Moreover, individual behaviors can be shifted by face mask usage recommendations

from the government (Feng et al. 2020). A mandatory mask-wearing order from

the government may compel people to choose to always wear a mask, leading to

an ad hoc cluster of peoples choices at extreme options. To address these concerns

and achieve more rigorous results, we further conduct analysis using local area data

where there is no mandatory policy on mask-wearing.

3According to data from ourworldindata.org, less than 1% of the population were vaccinated in

the U.S. by the end of 2020.

4Due to data limitations, data from April 1-7, 2020 is used for Canada and Mexico. We did not

include data from Mainland China because stringent mask-wearing orders have been implemented

ever since the outbreak in early 2020.

5The percentage of respondents choosing extreme options is 0.50 in Singapore, the lowest among

all countries and territories in Figure A1. One reason to the large cross-country variation in Figure

A1 could be people’s perceptions about the utility reduction caused by mask-wearing. For example,

a question included in the YouGov survey during May 2020 asked respondents about their mask-

wearing experience outside their homes. The proportion of people who chose "general discomfort"

ranges from 8.7% in Mexico to 49.6% in the United Kingdom, while the proportion of people who

chose "hard to communicate" ranges from 8.9% in Saudi Arabia to 41.0% in the United Kingdom.

Other factors like country-specific exogenous features, such as population demographics, population

density, and availability of healthcare resources may influence people’s choices by affecting the

transmission rate of COVID-19. Nevertheless, Figure A1 shows that the majority of people choosing

moderate options is not observed in almost every country and territory.
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Local area data: We choose metropolitan areas to strike a balance between

adequate number of observations and suffi ciently small regions6. Our sample cov-

ers 18 metropolitan areas worldwide, including Abu Dhabi (United Arab Emi-

rates), Akershus (Norway), Bangkok Metropolitan Region (Thailand), Community

of Madrid (Spain), Delhi (India), the Federal District (Mexico), Helsinki-Uusimaa

(Finland), Hovedstaden (Denmark), Jakarta (Indonesia), Jeddah (Saudi Arabia),

Kuala Lumpur (Malaysia), London (UK), Paris Area (France), Riyadh (Saudi Ara-

bia), Sao Paulo (Brazil), Seoul special city (South Korea), Singapore, and Stockholm

(Sweden). These cities are significantly heterogeneous in cultural background, polit-

ical structure, and ethnicity. In order to reduce the impacts of regional heterogeneity

of pandemic severity, we study the distribution of mask-wearing frequency within

each city, assuming respondents from the same city are exposed to roughly the same

level of transmission-intensity rate. To control for the temporal variation in pan-

demic severity, we conduct our analysis using observations collected during the same

week7. This leads to a sample that consists of respondents from 18 cities over 39

weeks (unbalanced), with a total of 404 city-week combinations.

No mandatory policy on mask-wearing: A daily time-series data of each coun-

try’s facial-covering policy indicator in response to the pandemic is collected from the

Oxford COVID-19 Government Response Tracker (OxCGRT).8. The policy indica-

6The YouGov data provides information about the region of each respondent within a country.

However, most of those regions (e.g., a state in the U.S. or a first-level NUTS region in a Euro-

pean country) are too big to rule out the within-region heterogeneity in pandemic severity. Some

countries have regional data at a lower administrative level (e.g., Saudi Arabia’s data are at the

city-level), but the number of respondents is too few to ensure reliable statistical tests.

7Respondents are asked how often they wore face masks outside their home in the last seven

days. Therefore, the underlying assumption of this setup is that the pandemic severity remains

roughly on the same level within a biweekly time window. Since the survey data are mostly collected

in two or three consecutive days in a week, the effective length of the time window is mostly 9-10

days. Our main findings still hold if we restrict our analysis using observations interviewed on the

same day, with some test results being less significant due to the smaller sample size.

8See https://github.com/OxCGRT/covid-policy-tracker for more details of the data.
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tor takes integer values ranging from 0 to 4 to stand for different levels of facial cov-

ering regulation: no policy, recommended, required in some specified shared/public

space with other people present, required in all shared/public space with other peo-

ple present, and required outside the home at all times regardless of presence of

other people. We focus on the periods when the policy indicator is less than or

equal to one, and with no policy change within one week, which yields a subsample

with 125 city-week pairs from 12 cities.

Test for Polarized Behaviors:

After controlling for policy intervention and regional and temporal heterogene-

ity in pandemic severity, we now study whether the distribution of mask-wearing

frequency is consistent with the polarized pattern predicted by Proposition 1. If

the type of respondents follows a smooth distribution with no clustered probability

mass at extreme points9, Proposition 2 predicts that the mask-wearing frequency

should also follow a smooth distribution between zero and one. In contrast, Proposi-

tion 1 implies that mask-wearing frequency should follow a binary distribution, with

only point masses at zero and one. These two distinct predictions imply a testable

hypothesis: whether the probability mass of the distribution is concentrated at its

boundaries (Proposition 1) or at some interior point (Proposition 2).

Due to the data limitation, we only have quinary instead of continuous obser-

vations on the frequency of mask wearing. Hence, in order to test if there are more

observations near two boundaries, we consider the following hypotheses

H0 : Prob(choosing extreme options) ≤ T

versus H1 : Prob(choosing extreme options) > T , (1)

where T is a pre-specified threshold and we set T ∈ {0.5, 0.6, 0.7}. Apparently, H1

with T = 0.5 means that more than half of the probability mass is concentrated

at the extreme options. Hence, a rejection of H0 in favour of H1 suggests that the

9This is a reasonable assumption in our dataset. The appendix provides the histograms of a

number of characteristics of respondents, none of which exhibits a distribution with large proba-

bility mass at the extreme points.
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data are more likely to be generated by a model that satisfies Proposition 1. The

larger T is, the stronger the evidence to support the polarization pattern predicted
by Proposition 2 if H0 is rejected. The hypotheses in (1) can be examined using a

binomial test for each given T . Although the test is valid even in small samples,
we focus on city-weeks with at least 50 or 100 respondents to reduce the sampling

uncertainty and generate more robust results.

Results: Table A1 summarizes the findings. Panel A shows the results for

city-weeks with at least 50 respondents. When the policy index takes a value of 0 or

1 and the threshold T takes a value of 0.5, 91(85) out of 100 tests reject the null hy-
pothesis at the 5% (1%) significance level. 77/54 (72/51) out of 100 tests reject the

null hypothesis at the 5% (1%) significance level when the testing threshold value

takes a value of 0.6/0.7. We obtain similar results for city-weeks with at least 100

respondents in Panel B. Roughly 90% (50%) of the city-week pairs reject the null

hypothesis at 5% significance level at a threshold T of 0.5 (0.7). Columns (4) to (6)
further show the results when there is no policy recommendation from the govern-

ment (the policy index takes a value of 0). The results are qualitatively similar. The

robust pattern we show in Table A1 demonstrates that people’s choices regarding

mask-wearing frequency are more inclined to be polarized, which is consistent with

Proposition 1 in the theoretical model.

Using the YouGov survey data, we can further test the implications of Propo-

sition 4 by examining how individual characteristics affect mask-wearing behavior.

An ordered logit model is estimated for the choice regarding mask-wearing frequency

using data collected in the same metropolitan areas10, and in periods when the pol-

icy index takes a value of 0 or 1. Table A2 presents the summary statistics of key

variables used in our empirical investigation. We include four sets of variables from

the survey to proxy for individual traits in the theoretical model. Firstly, we include

each individual’s age, gender and underlying medical condition that could be related

to their discount factor (δ), probability of contracting the disease upon infection (γ),

10We also estimate an ordered logit model using respondents from each country in the data. The

results are qualitatively similar.
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and expectation of suffering when ill from the disease (D). The underlying medical

condition is measured by the number of illnesses the respondent has. Since 97.2% of

respondents report no more than 3 underlying disease, we set the number of diseases

as discrete values from 0 and 3. Secondly, family status, including fatality status

and family size, are also related to δ and D. The fertility status is measured by the

number of children a respondent has (truncated at 5 by the survey). The size of the

family is denoted by the number of family members (truncated at 8 by the survey).

Thirdly, we include each individual’s employment status to measure the economic

factors that may affect δ andD. The respondents are classified into 7 types based on

their employment status: full-time employed, part-time employed, student, retired,

unemployed, not working and others. Lastly, we include a self-reported indicator

about fear of contracting COVID-19, which is classified as very / fairly / not very

/ not at all scared of COVID-19 (denoted as integer values 1 to 4). The survey

question of "feelings towards contracting COVID-19" was only asked from April to

September 2020, which therefore overlaps the sample periods of our analysis. Table

A3 shows the results. We find that respondents with more children, a larger family,

underlying medical conditions, or who are more scared of the virus are more willing

to always wear masks instead of never wearing them. This is consistent with the

implication of Proposition 4.

1.2 Asymptomatic Infections and Communicable Behaviors

This section shows empirical observations consistent with Proposition 4. We inves-

tigate whether people’s belief of having been asymptomatically infected is linked

with more communicable activities during the pandemic. Our analysis also uses the

YouGov survey data. We find that (1) the proportion of survey respondents who

believe they have been infected since March 2020 has a higher growth rate than

the offi cially announced cumulative cases in each country, indicating the existence

of asymptomatic (and not tested) infections; (2) people who believe that they have

been infected are significantly more risk-taking in each of the 24 communicable activ-
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ities surveyed in the data (as listed in Column (1) in Table A4), after we control for

individual characteristics. The results are consistent with Lemma 2 and Proposition

4.

Apart from mask-wearing frequency, the YouGov survey interviews respon-

dents about their self-reported frequencies to apply other preventive measures, for

instance, washing hands, avoiding taking public transport, avoiding attending pub-

lic events, etc. To each of the 24 questions regarding these behaviors, respondents

are asked to choose one of the five options, “always”, “frequently”, “sometimes”,

“rarely”, and “not at all”. During 1/24-2/1, 2022, the survey introduced one ques-

tion of “have you tested positive for COVID-19 since March 2020”in 11 countries

(as listed in Column (1) in Table A6). Later, during 2/2-3/29, 2022, the question

was replaced by “do you believe you have had COVID-19 since March 2020”. Us-

ing answers to the two questions and self-reported communicable behaviors, our

analysis focuses on two questions, (1) are (at least a subset of) the respondents who

“believe” they have had Covid-19 have not been tested (either asymptomatic or

with mild symptoms); and (2) how is the belief of having been infected linked with

people’s communicable behaviors.

Regarding the first question, we find that the growth rate of the proportion of

respondents who believe they have been infected is higher than that of the offi cially

reported cumulative cases. Firstly, we compare the proportion of respondents who

have been tested positive (surveyed during 1/24-2/1, 2022, henceforth, period 1)

with that of respondents who believe that they have been infected (surveyed during

2/2-3/29, 2022, henceforth period 2). Column (1) in Table A4 shows the proportion

of respondents (surveyed in period 1) who have been tested positive since March

2020. Column (2) is the proportion of respondents (surveyed in period 2) who

believe that they have been infected since March 2020. Column (3) shows the

growth rate of Column (1) relative to Column (2). In Column (4), (5) and (6), we

list the average share of cumulative cases in total population in period 1 and 2, and

the growth rate. Column (7) is the difference between Column (3) and (6). It shows

that in each of the 11 countries, the value of Column (7) is positive, indicating a
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substantial probability that a subset of respondents with the belief of having been

infected have not been tested positive.

Furthermore, we look into period 2. For each day in the survey, we compute

the proportion of respondents with belief of being infected (believe-ratio) as well

as the offi cially share of reported cumulative cases in population(offi cial-ratio). We

conduct a linear regression of the two ratios on daily trend, respectively. The results

are shown in Table A5. In Column (1)-(2), we use the OLS, and country fixed

effects are included in Column (3) to (6). In Column (5) and (6), we exclude the

country-week pairs with less than 20 respondents as robustness checks. The results

suggest that the believe-ratio increases faster with time than the cumulative cases,

consistent with the finding in Table A4.

Secondly, we compare the communicable behaviors of respondents who answer

“yes”and “no” to the question of “do you believe you have had COVID-19 since

March 2020”. We firstly look into people’s mask-wearing behaviors. Figure A2 shows

that the proportion of respondents choosing always wear a mask outside home is

larger for the “yes”group in each country.

Next, we measure communicable behaviors with integer values of 1 to 5 where

1 indicates “always”and 5 indicates “not at all”. Table A6 compares the uncondi-

tional and conditional mean value of 24 behaviors covered by the survey. Column

(4) and (5) shows the difference of the unconditional mean (Column (2) and (3))

of two groups of respondents and t statistics. For all 24 behaviors, the “yes”group

has significant higher value than the “no” group. Column (6) and (7) shows the

estimated coeffi cient and t statistics on the “yes”dummy in a country fixed-effects

regression of behaviors, controlling for individual characteristics including age, gen-

der, size of household, number of children, employment status, number of underlying

diseases. For all of the behaviors (except for avoiding working outside home and let-

ting children to school), the coeffi cient on the “yes”dummy is significantly positive,

indicating that people who believe they have been infected have more risk-taking

behaviors, ceteris paribus. The results are qualitatively similar with Figure A2.
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1.3 Supplementary results for counterfactual analysis

Table A7 shows a descriptive summary of the duration data we use for counterfactual

analysis in Section 5. Panel A and B show that the proportions of respondents with

zero socializing time during July to December reduce substantially from 33.8% in

2019 to 26.7% in 2020, while that during January to February only reduced slightly

from 31.5% in 2019 to 30.1% in 2020. Moreover, the average durations of non-

zero socializing from July to December are similar between 2019 (123.62) and 2020

(123.91). Similar results are obtained in Panel C and D for more communicable

behaviors.

Table A8 reports the descriptive statistics for the control variables we use in the

distributional regression, including age, employment status (dummy for employed or

not), family income (classified into 16 categories from "less than $5,000" to "$150,000

and over"), number of children under 18, age of youngest child under 18, and dummy

for not having children under 18 of each respondents, as well as day of the week of the

diary day (1-7 for Monday to Sunday). We report the mean and standard deviation

(in parenthesis) of each variable for respondents with zero / non-zero socializing

time, during Jan to February (pre) and July to December (post), for 2019 and 2020,

respectively. It shows that respondents with non-zero socializing time during the

pandemic are slightly younger and with higher family income than the other groups.

Figure A3 reports the results for testing (29) using the augmented data for

three types of daily activities: socializing, dining in restaurants, and exercising in

public indoor spaces. The null hypothesis H1
0 cannot be rejected when we compare

the pre-pandemic period of 2020 to the same months in 2019 (i.e., January and

February), but it is strongly rejected in favor of H1
1 when comparing the second half

of 2020 to the same period in 2019. This result consolidates the findings in Section

5.
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Figure A1. Mask-wearing Frequencies in Different Countries and Territories

10



Figure A2. Mask-wearing frequency and people’s belief about having been infected
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Figure A3. The proportions of people spending no time on socializing, dining in

restaurants, and exercising in public indoor spaces in 2019 and 2020

The numbers in paretheses are the p-values for the null hypothesis that the

proportion in 2020 remains the same compared to the same month in 2019.
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Figure A4. Fitted versus counterfactual quantiles of daily time spent socializing,

dining in restaurants, and exercising in public indoor spaces for people who

engaged in these activities in 2020

The p-values of the Kolmogorov-Smirnov statistic for testing H ?are 0.87 and 0.79

before and during the pandemic, respectively.
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Table A1. Results of tests for polarized behaviors

(1) (2) (3) (4) (5) (6)

policy index 0 or 1 0

value of threshold T 0.5 0.6 0.7 0.5 0.6 0.7

Panel A: Number of respondents ≥ 50
total number of city-week pairs 100 74

Rejecting H0 at 5% significance level 91 77 54 71 68 58

Rejecting H0 at 1% significance level 85 72 51 71 68 55

Panel B: Number of respondents ≥ 100
total number of city-week pairs 91 66

Rejecting H0 at 5% significance level 89 72 44 65 63 50

Rejecting H0 at 1% significance level 83 68 42 65 63 48

Table A2. Descriptive Statistics of YouGov survey data

Variable Obs. Mean Std. Dev Min Max

Mask-wearing frequency 12,852 4.074 1.437 1 5

fear 12,852 2.587 0.843 1 4

disease (#D) 12,852 0.708 0.950 0 3

household size (hh) 12,852 2.434 1.340 1 8

number of children (children) 12,852 0.806 1.113 0 5

female 12,852 0.502 0.500 0 1

age 12,852 46.00 17.08 18 90

Employment status:

full-time employed 12,852 0.487 0.500 0 1

part-time employed 12,852 0.102 0.302 0 1

student 12,852 0.917 0.289 0 1

retired 12,852 0.211 0.408 0 1

unemployed 12,852 0.059 0.235 0 1

not-working 12,852 0.045 0.207 0 1
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Table A3: Individual characteristics and mask-wearing frequency

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Variables whole Madrid Helsinki HovedstadenLondon Oslo Paris Riyadh Stockholm

female 0.107*** -0.295 -0.0716 0.830*** 0.0328 0.430*** -0.218 -

1.202***

0.491***

(0.0373) (0.292) (0.0879) (0.111) (0.135) (0.102) (0.175) (0.239) (0.103)

logage 1.997* 0.361 4.969* 2.951 7.090* -

7.807***

1.046 4.328 4.902*

(1.170) (12.60) (2.599) (3.338) (3.896) (2.980) (7.130) (7.579) (2.909)

logage2 -0.203 -0.125 -0.692* -0.152 -0.972* 1.259*** -0.141 -0.622 -0.507

(0.161) (1.698) (0.360) (0.462) (0.545) (0.415) (0.972) (1.063) (0.405)

#D.1 -

0.0773*

0.308 -

0.331***

0.0143 -0.149 -0.126 0.193 0.268 -

0.374***

(0.0454) (0.309) (0.102) (0.140) (0.159) (0.114) (0.212) (0.235) (0.116)

#D.2 -

0.176**

-0.191 -

0.340**

-0.0769 -0.446 -

0.627***

-0.322 -0.127 -

0.405**

(0.0689) (0.464) (0.141) (0.206) (0.300) (0.168) (0.359) (0.380) (0.171)

#D.3 -

0.322***

-0.882 -

0.485***

-0.770*** -0.249 -

0.405**

-0.182 0.544 -

0.806***

(0.0795) (0.652) (0.161) (0.206) (0.349) (0.186) (0.428) (0.378) (0.198)

children -

0.0678***

0.229 -0.0996 -0.152** -0.0730 -

0.173***

-0.122 0.0233 -

0.196***

(0.0235) (0.170) (0.0648) (0.0766) (0.0828) (0.0584) (0.0877) (0.0544) (0.0727)

hh -

0.0730***

-0.0328 -0.0530 -0.182*** 0.00253 -

0.128***

-0.0620 0.0112 -0.0378

(0.0170) (0.127) (0.0462) (0.0562) (0.0603) (0.0445) (0.0735) (0.0556) (0.0554)
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Table A3: Individual characteristics and mask-wearing frequency (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Variables whole Madrid Helsinki HovedstadenLondon Oslo Paris Riyadh Stockholm

full 0.0879 0.723 -0.411* -0.310 -0.164 0.0684 -0.399 -0.836 0.472*

(0.243) (0.707) (0.249) (0.436) (0.395) (0.237) (0.616) (0.867) (0.276)

part -0.241 0.858 -

0.557**

-0.453 -0.237 -0.395 -0.689 -0.668 -0.175

(0.248) (0.871) (0.264) (0.457) (0.439) (0.262) (0.715) (0.887) (0.303)

student -0.121 0.714 -

0.560**

0.0738 -0.621 -0.438 -0.345 -0.113 0.0597

(0.255) (1.043) (0.283) (0.466) (0.476) (0.284) (0.788) (0.947) (0.315)

retired -0.0908 1.087 -0.193 -0.811* -0.0751 -

0.633**

-0.858 -0.352 -0.245

(0.252) (0.849) (0.272) (0.489) (0.476) (0.294) (0.692) (1.012) (0.323)

unemployed0.261 0.643 0.303 0.461 0.0316 0.155 -0.0436 -0.316 -0.323

(0.255) (0.803) (0.302) (0.511) (0.470) (0.328) (0.686) (0.960) (0.351)

notworking 0.233 1.729** 0.114 -0.480 0.814

(0.259) (0.809) (0.467) (0.948) (0.954)

fear 0.416*** 0.564*** 0.594*** 0.140** 0.407*** 0.577*** 0.378*** 0.172* 0.552***

(0.0232) (0.164) (0.0602) (0.0695) (0.0884) (0.0600) (0.0995) (0.104) (0.0669)

N 16,367 275 2,787 2,595 865 2,429 478 598 2,494

r2_p 0.301 0.0559 0.0597 0.100 0.0315 0.0953 0.0281 0.0369 0.0706

Note: Ordered logit regression of mask-wearing frequency on individual characteristics. All

regressions include week dummies. Standard errors are reported in parentheses, * p < 0.1, ** p <

0.05, *** p < 0.01.
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Table A4. Trend in the proportion of respondents who believe they have been infected:

Period 1 v.s. Period 2
(1) (2) (3) (4) (5) (6) (7)

Tested Believe Growth Cum. Cases Cum. Cases Growth Difference:

positive have rate / population / population rate (3) - (6)

(period 1) (period 2) (survey) (period 1) (period 2) (offi cial)

Australia 0.100 0.152 52.37% 0.097 0.135 39.11% 13.26%

Canada 0.114 0.224 96.03% 0.081 0.088 9.17% 86.85%

Denmark 0.209 0.39 87.03% 0.268 0.462 72.28% 14.75%

France 0.189 0.314 66.25% 0.256 0.330 29.13% 37.12%

Germany 0.115 0.225 95.22% 0.108 0.184 69.20% 26.02%

Israel 0.234 0.491 109.68% 0.292 0.400 37.15% 72.53%

Italy 0.168 0.246 46.39% 0.169 0.213 25.95% 20.45%

Japan 0.016 0.036 128.58% 0.018 0.039 115.25% 13.33%

Netherlands 0.233 0.406 74.16% 0.240 0.379 58.38% 15.78%

Spain 0.265 0.353 33.00% 0.201 0.233 15.87% 17.13%

United Kingdom 0.214 0.344 60.42% 0.239 0.286 19.39% 41.03%

Table A5. Trend in the proportion of respondents who believe they have been infected:

Period 2
(1) (2) (3) (4) (5) (6)

VARIABLES offi cial ratio believe ratio offi cial ratio believe ratio offi cial ratio believe ratio

time 0.00177*** 0.00278*** 0.00144*** 0.00224*** 0.00142*** 0.00164***

(3.584) (3.559) (20.80) (3.741) (17.15) (6.185)

country FE NO NO YES YES YES YES

Observations 268 268 268 268 208 208

R-squared 0.046 0.045 0.982 0.468 0.981 0.773

t-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. drop if observations<20 in

Column (5) and (6).
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Table A6. Communicable behaviors and people’s belief about having been infected

(1) (2) (3) (4) (5) (6) (7)

unconditional conditional

Behavior obs Mean-Yes Mean-No diff t stat beta t-stat

wearing masks outside 16,474 2.191 1.814 0.377 30.94 0.117*** 5.842

wash hands 16,474 1.675 1.514 0.161 16.223 0.0830*** 5.038

use hand sanitiser 16,474 2.268 2.033 0.235 23.117 0.159*** 7.244

cover nose and mouth when sneezing 16,474 1.538 1.398 0.139 16.511 0.0417** 2.566

avoid contact with people with symptoms 16,474 2.250 1.835 0.415 35.224 0.209*** 8.928

avoid going out in general 16,474 3.650 3.304 0.346 33.327 0.149*** 5.932

avoid going to hospital 16,474 3.124 2.795 0.329 26.691 0.133*** 4.567

avoid taking public transport 16,474 2.941 2.518 0.423 32.547 0.170*** 5.864

avoid working outside home 9,151 3.788 3.619 0.169 13.966 0.0395 1.095

avoid letting children to school 5,184 3.894 3.864 0.030 2.459 -0.0363 -0.822

avoid guests to home 16,474 3.217 2.793 0.424 30.676 0.208*** 7.720

avoid small gatherings 16,474 3.467 3.014 0.452 41.153 0.201*** 7.428

avoid median gatherings 16,474 3.213 2.667 0.546 46.796 0.253*** 9.379

avoid large gatherings 16,474 2.885 2.291 0.594 46.709 0.274*** 10.230

avoid crowded areas 16,474 2.823 2.272 0.550 46.879 0.266*** 10.960

avoid going to shops 16,474 3.724 3.481 0.244 23.767 0.130*** 5.305

wearing mask in grocery store 16,474 2.054 1.659 0.395 30.634 0.108*** 5.782

wearing mask in clothing store 16,474 2.028 1.727 0.300 19.917 0.117*** 5.361

wearing mask in workplace 9,151 2.616 2.232 0.385 26.527 0.103*** 3.297

wearing mask on public transport 16,474 2.174 1.842 0.332 24.734 0.141*** 5.786

avoid public events 16,474 2.905 2.339 0.567 44.037 0.263*** 9.377

avoid mixing with other households 16,474 3.292 2.795 0.497 44.356 0.238*** 9.217

avoid staying overnight outside home 16,474 2.871 2.377 0.494 37.285 0.224*** 7.658

avoid travelling outside local area 16,474 3.241 2.803 0.438 36.658 0.179*** 6.462
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Table A7. Descriptive statistics of durations of socializing, outdining and exercising

month variable obs. mean s.d. min max

A. socializing, 2019

1-2 duration 1,580 34.67 78.51 0 625

duration (>0) (share:31.5%) 497 109.58 106.66 1 625

7-12 duration 4,561 41.82 90.67 0 861

duration (>0) (share:33.8%) 1,543 123.62 119.14 1 861

B. socializing, 2020

1-2 duration 1,609 34.88 88.46 0 990

duration (>0) (share:30.1%) 498 112.70 128.57 2 990

7-12 duration 5,002 33.15 81.13 0 720

duration (>0) (share:26.7%) 1,338 123.91 115.60 1 720

C. socializing, outdining, exercising in public spaces, 2019

1-2 duration 1,580 52.52 93.74 0 720

duration (>0) (share:44.4%) 702 118.20 109.63 1 720

7-12 duration 4,561 62.62 105.95 0 861

duration (>0) (share:47.7%) 2,176 131.25 120.52 1 861

D. socializing, outdining, exercising in public spaces, 2020

1-2 duration 1,609 50.41 97.66 0 990

duration (>0) (share:43.0%) 693 117.04 119.79 2 990

7-12 duration 5,002 44.55 93.19 0 750

duration (>0) (share:34.0%) 1,701 130.99 119.23 1 750
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Table A8. Descriptive statistics of control variables

2019 2020

variable 0 pre 0 post >0 pre >0 post 0 pre 0 post >0 pre >0 post

(obs:824) (obs:2,253) (obs:756) (obs:2308) (obs:856) (obs:3,175) (obs:753) (obs:1,827)

age 51.49 51.49 50.35 51.04 51.50 52.22 50.61 49.75

(17.91) (17.77) (18.08) (18.33) (17.72) (18.35) (18.25) (18.03)

emp 0.58 0.58 0.57 0.57 0.58 0.53 0.56 0.56

(0.49) (0.49) (0.50) (0.50) (0.49) (0.50) (0.50) (0.50)

faminc 11.16 11.03 11.66 11.91 11.14 11.71 12.16 12.27

(4.04) (4.09) (3.85) (3.81) (4.01) (3.79) (3.78) (3.53)

childnum 0.68 0.68 0.72 0.69 0.64 0.62 0.72 0.68

(1.10) (1.10) (1.06) (1.05) (1.04) (1.02) (1.12) (1.07)

kidage 3.72 3.73 4.06 3.95 3.71 3.52 3.99 3.85

(5.90) (5.90) (6.04) (6.01) (5.93) (5.78) (6.08) (5.99)

nokid 0.65 0.65 0.61 0.62 0.65 0.66 0.63 0.64

(0.48) (0.48) (0.49) (0.49) (0.48) (0.47) (0.48) (0.48)

diaryday 3.75 3.84 3.75 3.99 3.99 3.90 4.08 4.05

(2.25) (2.30) (2.36) (2.39) (2.29) (2.32) (2.37) (2.43)
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