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Abstract

We study the revenue-maximizing mechanism when a buyer’s value evolves because

of learning-by-consuming. The buyer chooses the initial consumption based on his rough

valuation. Consuming more induces a finer valuation estimate, after which he determines

the final consumption. The optimum is a try-and-decide contract. In equilibrium, a

higher first-stage valuation buyer chooses more initial consumption and enjoys a lower

second-stage per-unit price. Methodologically, we address the difficulty that without the

single-crossing condition, monotonicity plus envelope condition is insufficient for incentive

compatibility. Our results help to understand contracts with learning features; e.g., leasing

contracts for experience goods and trial course sessions.
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1 Introduction

Situations are abundant in which a consumer is uncertain about how well the good’s

characteristics fit him at the outset, but by consuming (a portion of) the good, he

could learn additional information to refine the value estimation. With such a more

precise value estimate, the consumer then decides how many further units of the good

to consume. Such kind of learning by consuming is widely observed in practice.

For example, car dealers in the U.S. usually provide a menu of contracts to potential

consumers. Some consumers may choose to enter leasing contracts, which give them both

the right to drive the car during the lease term and a lease-end option to buy out the

car. The cost of the leasing contract and the buyout price depend on the length of the

lease term, which usually ranges from two to four years. One reason for these consumers

to choose the leasing contracts is that they can learn their matching values with the car

in the lease term, before deciding whether to buy out the car or not. Consumers who are

more uncertain are often more willing to learn matching values by entering the leasing

contracts. Other consumers may choose to buy the car outright instead. This usually

happens when a consumer is sufficiently optimistic about the matching value, and hence

wishes to secure a lower payment for the long-term ownership of the car.

As another example, when purchasing certain courses with fixed terms — a one-month

package of fitness classes from a gym, a two-month playgroup for pre-school toddlers,

or a summer sports course for children — the consumer often prefers to experience a

few sessions first. After paying a fee and attending a few included sessions which can

be viewed as trial sessions, the consumer refines his valuation and decides whether to

register for additional (or the remaining) sessions or not. As in the car-leasing example,

in practice, the seller often sets a price for the included sessions and another price for

additional sessions, and typically both prices depend on the number/length of included

sessions. It is commonly observed that the seller offers different pricing packages to the

consumer, who then decides which package to choose.1

There are two important features in the examples above. First, the seller can choose

to first sell a portion of the good to the consumer, through which the consumer better

understands how well the good fits him and then decides the subsequent consumption.

1For example, Orangetheory Fitness, a popular fitness chain with more than a million members in
the U.S., offers three monthly membership packages for consumers. These options differ with each other
mainly in terms of the number of included sessions and fee structures.
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Second, since the consumer’s learning is achieved through consuming, there is a tension

between information acquisition and future consumption. Naturally, consuming more

in the beginning would lead to a more precise value estimate, so that he could make a

better decision in the future. However, at the same time, it also means that the size of

the remaining portion of the good decreases. For instance, while entering a contract with

a long lease term induces sufficient learning, it may make the buy-out option unattractive

as the car will be getting old; experiencing more trial sessions helps the consumer better

learn the valuation but decreases the number of sessions that can be sold beyond the

trial.

How should the seller incorporate such kind of learning by consuming into her selling

mechanism? To address this question, we study a two-stage model, in which a risk-

neutral seller sells one unit of a divisible good to a risk-neutral buyer. The buyer’s

valuation depends on how well the good fits him, which is uncertain to him at stage

one. Yet, at stage one, he has a prior – rough private valuation of the good. Relying on

this rough valuation, he decides how many units to experience. Experiencing the good

provides him with additional private information regarding the good’s characteristics.

Consuming more leads to more precise additional information.2 With the updated private

valuation, the buyer further determines his second-stage consumption level.

In our problem, the first-stage allocation (i.e., consumption)3 plays two roles. First,

it is the device for information acquisition, since it provides the buyer with additional

information, which will be more precise with a higher first-stage allocation. Meanwhile,

it also defines an intertemporal problem: It “secures” some consumption in the early

period, regardless of whether the newly acquired information is good or bad, and also

determines the maximum amount of consumption in the later stage. Clearly, a revenue-

maximizing seller should incorporate both roles of the first-stage allocation into her

pricing strategy.

We fully characterize the revenue-maximizing mechanism and find that the optimum

can be implemented by a menu of try-and-decide contracts, consisting of a first-stage

price-quantity pair and a second-stage per-unit price for the remaining quantity. When

the buyer selects some try-and-decide contract, he needs to pay the corresponding first-

stage price specified by the contract chosen. By doing this, the buyer not only gets to

2The precision of the additional information through consumption is defined in the sense of rotation
order, see Section 2 for details.

3We use “allocation” and “consumption” interchangeably.
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experience the corresponding first-stage portion (i.e., quantity) of the good, but also

obtains the option to buy the remaining portion at the prescribed second-stage per-unit

price. In the optimal contract, a larger first-stage consumption level (quantity) is paired

with a higher first-stage price but a lower per-unit second-stage price for the remaining

portion of the good. Moreover, if the buyer ends up buying the entire good across two

stages, a higher first-stage consumption leads to a lower total payment. In equilibrium,

a higher first-stage valuation buyer pays more to consume more in the first stage, in

exchange for a lower per-unit price for the remaining portion.

The intuition is as follows. For a high first-stage valuation buyer, he is more confident

that his updated valuation of the good is sufficiently high, so that he will likely buy the

entire portion of the good. Thus, he is willing to pay to consume more in the first stage

to enjoy a lower price for the additional consumption in the second stage, and also a

lower total price for the entire portion of the good. However, this is quite risky for a

low first-stage valuation buyer. If he does so, despite the second-stage per-unit price

being lower, he has to pay to consume more in the first stage to enjoy this second-stage

benefit. Yet, since his first-stage valuation is low, he really wants to experience the good

just a bit to improve his decision in the second stage, rather than “blindly” having a

high first-stage consumption level, which can lead to a low expected payoff given the low

first-stage valuation.

The format of our optimal try-and-decide contracts resembles practical contracts. For

instance, in the car-leasing example, the leasing price can be viewed as the first-stage

price, while the length of the lease term and the buyout price can be regarded as the

first-stage quantity and second-stage price. In the other course registration example, the

trial sessions and the remaining sessions can be viewed as the consumption at the two

stages, respectively. In this sense, we provide a rationale for the common phenomena of

sequential consumption with learning in reality.

On the technical side, we would like to point out that when solving the optimal

mechanism, establishing the global incentive compatibility (IC) condition is quite

involved in our setting. In canonical sequential screening problems, e.g., Courty and

Li (2000) and Eső and Szentes (2007a), building on local IC, the monotonicity of an

allocation rule leads to global IC, even if it may not be the optimal allocation rule. By

imposing certain regularity conditions, one can check that the optimal allocation rule in

the relaxed problem, which only uses local IC, is indeed monotone. As a result, such

an allocation rule also satisfies global IC, so that it is indeed the optimum. However,
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this standard approach does not apply in our setting. In fact, we provide an example

where the first-stage allocation rule is monotone, but this allocation rule cannot be

part of a global IC mechanism. To establish global IC of our mechanism, we have to

explicitly make use of the optimality of the first-stage allocation rule. The difficulty

we encounter can be better explained by focusing on the first-stage problem, where

the sequential screening problem can be understood as a corresponding static screening

problem; see Krähmer and Strausz (2017) for further discussions. In the corresponding

static problem, a standard condition in the literature, often called the single-crossing

condition (alternatively, the constant sign condition, or the Spence–Mirrlees condition),

is missing. The lack of such kind of a condition prevents us from establishing global IC

only from the monotonicity of the first-stage allocation rule.4

Our paper joins the growing literature on dynamic mechanism design.5 The

canonical literature typically assumes that the agent has two (or more) stages of

private information, where the distribution of the second-stage private information is

exogenously determined by the first-stage private information. In particular, it is often

assumed that a higher first-stage type corresponds to a better distribution of the second-

stage type in the sense of FOSD. See, for example, Courty and Li (2000), Eső and Szentes

(2007a), Krähmer and Strausz (2015, 2017), and more recently Li and Shi (2022), as

well as Battaglini (2005) and Garrett and Pavan (2012) for infinite stages. However, in

the current work, the distribution of the second-stage valuation (type) depends on the

first-stage consumption, which is endogenously chosen by the buyer. Due to rotation

ordering,6 such endogenously generated second-stage information is no longer ranked in

terms of FOSD, which is a feature that does not exist in many canonical papers.7

Within the dynamic mechanism design literature, there is a strand that involves

information acquisition and provision. Among these papers, the channel of information

4Krähmer and Strausz (2017) show that the condition of first-order stochastic dominance (FOSD)
in the canonical sequential screening problem is equivalent to the usual single-crossing condition in a
certain static screening problem. As is well known, without the single-crossing condition, solving the
optimal mechanism is generally believed to be challenging even in static screening problems; see, for
example, Araujo and Moreira (2010) and Schottmüller (2015). In our setting, the standard approach
fails because of the violation of the single-crossing condition. This approach may also fail when the
optimal solution to the standard relaxed problem is non-monotone; see Krähmer and Strausz (2015),
Battaglini and Lamba (2019), Lu and Wang (2021), and Li and Shi (2022) for the analysis of optimal
mechanisms in this case.

5This is now an extensive literature; see Bergemann and Välimäki (2019) for an excellent survey.
6Studies that also use this information order includes, for example, Johnson and Myatt (2006),

Hoffmann and Inderst (2011), and Shi (2012).
7In Liu and Lu (2018), the second-stage type’s distribution is also endogenous (determined by moral

hazard), but it is ranked by FOSD.
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provision is often independent of the product sold by the principal. One approach to

model information provision assumes that the principal releases information directly or

through the sales of a second good. For example, in Eső and Szentes (2007a,b), Li and

Shi (2017), and Guo et al. (2022), the principal directly controls how much information to

release to the agent. In Hoffmann and Inderst (2011), the principal produces two goods:

a product itself and an additional information provision service; the amount of service

determines the precision of the agent’s learning. Another approach models information

acquisition as a moral hazard problem or an entry problem. For example, in Krähmer

and Strausz (2011), the agent can take a hidden action to gather information; in Lu

et al. (2021), the agent can incur an entry cost to fully observe the ex post value. Some

studies, for example, Armstrong and Zhou (2016) and Lu and Wang (2021), model the

information acquisition as searches. An exception is Bonatti (2011), where learning by

consuming also takes place. In that paper, an agent’s private valuation does not evolve,

but the symmetric information about product quality is revealed gradually through total

consumption in the market. In the current paper, the buyer’s first-stage consumption

plays a dual role: The buyer not only enjoys a payoff but also acquires additional private

information from the first-stage consumption. Private learning from the allocation (i.e.,

consumption) itself differentiates the current work from the above-mentioned papers.

This paper also features an intertemporal problem: The first-stage allocation not only

endogenously shapes the distribution of the second-stage valuation but also changes the

feasibility constraint of the second-stage allocation. Pavan et al. (2014) accommodate this

feature before the current work, but they focus on providing a general approach to tackle

dynamic mechanism design problems. On the other hand, we explicitly characterize the

optimum in a consumer-learning environment.

The rest of the paper is organized as follows. Section 2 sets up the model. We analyze

the solution of a relaxed problem in Section 3 and the optimal mechanism in Section 4.

Sections 5 and 6 discuss the results and conclude. The appendix collects omitted proofs.

2 The Model

A risk-neutral monopolist sells one unit of a divisible good to a risk-neutral buyer in

two stages. The buyer’s true valuation V of the good depends on how well the good

fits him. At stage one, the buyer is uncertain about V , but he observes a “rough”
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valuation of the good, v1. Relying on this rough valuation, the buyer purchases q1 ∈
[0, 1] units of the good. The true valuation V is jointly determined by v1 and the

additional information ṽ2, which is independent of v1.8 We assume that E[ṽ2] = 0 and

V = v1 + ṽ2.9 Consuming/experiencing q1 units of the good provides the buyer with

additional information to learn about ṽ2. With a more precise assessment of the good,

at stage two, the buyer decides how many further units q2 ∈ [0, 1 − q1] to buy. The

buyer’s outside option is normalized to be 0.

From the seller’s perspective, v1 is a random draw from a cumulative distribution

function (CDF) G(·), which admits a strictly positive continuous density function g

over the support [0, 1].10 The buyer learns additional information about ṽ2 through

consumption: After buying q1 units of the good, the buyer forms a posterior estimate

v2 of ṽ2. From an ex ante perspective, v2 follows the CDF F (·|q1). The realization of

v2 is again the buyer’s private information. The seller’s goal is to design a contract that

maximizes her revenue.

Intuitively, consuming more at stage one helps the buyer acquire more precise

information at stage two. The precision of the additional information v2 through

consumption is captured by the rotation order (cf. Johnson and Myatt, 2006; Hoffmann

and Inderst, 2011). Specifically, for any q1 ∈ (0, 1] and v2 ∈ (−∞,+∞), F (v2|q1) is

continuously differentiable in q1 such that

∂F (v2|q1)

∂q1


> 0, when v2 < 0;

= 0, when v2 = 0;

< 0, when v2 > 0.

When q1 = 0, F (·|q1) degenerates to a mass at E[ṽ2] = 0, capturing no additional

information gained if there is no consumption. For convenience, suppose that when

q1 > 0, F (v2|q1) is twice continuously differentiable in v2 and the corresponding density

8 The assumption that v1 and ṽ2 are independent means that the ex ante information asymmetry
does not depend on the precision of the second-stage information, which helps us provide a clean
characterization of the optimal mechanism. On the other hand, when considering the more general
setting that v1 and ṽ2 are correlated, one has to impose additional restrictions on the information
structure; see, for example, Courty and Li (2000) and Eső and Szentes (2007a). We focus on the current
setting, as working with the more general structure will make the analysis much more complicated and
the new insights less transparent.

9Such an additive form is not an assumption, because one can define the difference between the true
valuation and the rough valuation as the additional information.

10It is without loss to assume that the support is [0, 1].
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function f(v2|q1) > 0. We also assume that for any v2 6= 0, lim
q1→0+

F (v2|q1) = F (v2|0).

To illustrate the setting, consider the following “truth-or-noise” example, which has

been widely used in the literature; see, for example, Lewis and Sappington (1994) and

Johnson and Myatt (2006).

Example 1 (Truth-or-noise). After consuming q1 units, the buyer observes a signal s

of ṽ2. The signal is true (i.e., s = ṽ2) with probability q1, and is completely noisy

(i.e., s is an independent random draw from the same CDF as ṽ2) with probability 1−q1.

Denote the CDF of ṽ2 by H(·), which is twice continuously differentiable over the support

(−∞,+∞). Then, when observing the signal s, the buyer’s posterior estimate of ṽ2 is

v2 = E[ṽ2|s, q1] = q1s+ (1− q1)E[ṽ2] = q1s.

Thus, ex ante, v2 follows the CDF F (v2|q1) = H(v2
q1

), which satisfies all the assumptions

mentioned above.

After consuming q1 units, imagine that the buyer adopts a simple threshold plan

v2. That is, he will buy the rest 1 − q1 units at stage two only when the additional

information acquired is sufficiently good — i.e., when the additional information is higher

than the threshold v2. Thus, the buyer’s expected consumption in the second stage is

(1− q1)(1− F (v2|q1)), and the expected total consumption across two stages is

C(v2, q1) = q1 + (1− q1)(1− F (v2|q1)) = 1− (1− q1)F (v2|q1). (1)

When q1 > 0, it is clear that a higher threshold v2 — i.e., requiring better information

— leads to a drop in C, as the partial derivative with respect to v2,

∂C(v2, q1)

∂v2

= −(1− q1)f(v2|q1) < 0.

However, the effect of a higher first-stage consumption q1 on C is ambiguous. The

“marginal rate of substitution” is

M(v2, q1) =

∂C(v2,q1)
∂q1

∂C(v2,q1)
∂v2

= − 1

1− q1

F (v2|q1)

f(v2|q1)
+

∂F (v2|q1)
∂q1

f(v2|q1)

for any (v2, q1) ∈ R× (0, 1).

We make the following assumption regarding M(v2, q1).
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Assumption 1. For any fixed q1 ∈ (0, 1) and v2 < v′2,

M(v2, q1) ≤ 0 =⇒ M(v′2, q1) < 0.

Remark 1. Assumption 1 is a natural assumption regarding the substitution between the

first-stage consumption and the additional information. It says that: If at a particular

level of first-stage consumption q1 and a certain requirement of additional information

v2, the buyer is willing to sacrifice his first-stage consumption in exchange for a lower

requirement of information (i.e., a lower v2), then he will still be willing to do so when

the requirement of information is more stringent than v2 (i.e., higher than v2).

Note that Assumption 1 holds when F (v2|q1)/f(v2|q1) is increasing in v2 and
∂F (v2|q1)

∂q1
/f(v2|q1) is decreasing in v2. The former condition is a standard hazard rate

assumption. The latter one is the same as Assumption 3 in Shi (2012), which can

be interpreted as supermodularity. In the truth-or-noise example above, the latter

assumption is automatically satisfied, while the former assumption is satisfied when

H(x)/h(x) is increasing in x.

Finally, we make the following standard hazard rate assumption about G.

Assumption 2. We assume that 1−G(v1)
g(v1)

is strictly decreasing in v1.

We shall focus on truthful direct mechanisms {q1(r1), q2(r1, r2), t(r1, r2)}r1∈[0,1],r2∈R,

which is without loss of generality; see Myerson (1986). In the first stage, when the buyer

reports r1, the seller allocates q1(r1) units of the good to him. In the second stage, v2

is realized according to F (·|q1(r1)). Given the buyer’s second-stage report r2, the seller

allocates q2(r1, r2) units of the good to the buyer and demands a payment t(r1, r2).

2.1 The buyer’s problem

Suppose that the buyer truthfully reported v1 at stage one, but he reports r2 despite

that the true second-stage type is v2. Let π̃(v1, r2, v2) be his expected payoff at stage

two:

π̃(v1, r2, v2) = (v1 + v2)q2(v1, r2)− t(v1, r2).

Envelope theorem yields

dπ̃(v1, v2, v2)

dv2

=
∂π̃(v1, r2, v2)

∂v2

|r2=v2 = q2(v1, v2).
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Denote ψ(v1) = v1 − 1−G(v1)
g(v1)

, which is strictly increasing by Assumption 2. The

following result is standard (see, e.g., Eső and Szentes, 2007a), and its proof is omitted.

Lemma 1. (i) Suppose that the buyer reports the first-stage type v1 truthfully. The

second-stage IC constraint is satisfied if and only if the following two conditions

hold:

(a) For any v1 and v2,11

π̃(v1, v2, v2) = π̃(v1,−ψ(v1),−ψ(v1)) +

∫ v2

−ψ(v1)

q2(v1, s) ds. (2)

(b) The second-stage allocation q2(v1, v2) is increasing in v2 for any v1.

(ii) On the other hand, suppose that the buyer’s first-stage type is v1 but he reported

r1 in the first stage. Then, when he observes v2 in the second stage, he will report

r2 = r2(v1, r1, v2) such that

r1 + r2(v1, r1, v2) = v1 + v2.

Based on Lemma 1, the expected payoff of the buyer with first-stage type v1 and

report r1 can be expressed as

U(v1, r1) = q1(r1)

∫ +∞

−∞
(v1 + v2)F (dv2|q1(r1))

+

∫ +∞

−∞

[
(v1 + v2)q2(r1, r2(v1, r1, v2))

−t(r1, r2(v1, r1, v2))

]
F (dv2|q1(r1)).

The first-stage IC constraint requires that for any v1 and r1,

U(v1, v1) ≥ U(v1, r1).

The following result provides a necessary condition for the first-stage IC constraint (all

the proofs are relegated to the Appendix).

Lemma 2. The first-stage IC constraint implies that for any v1

U(v1, v1) = U(0, 0) +

∫ v1

0

[
q1(s) +

∫ +∞

−∞
q2(s, v2)F (dv2|q1(s))

]
ds.

11 When v2 < −ψ(v1),
∫ v2
−ψ(v1) q2(v1, s) ds = −

∫ −ψ(v1)
v2

q2(v1, s) ds.
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2.2 The seller’s problem

The seller’s expected revenue is the difference between the social welfare and the buyer’s

ex ante expected payoff. By Lemma 2, it can be written as

R =

∫ 1

0

{
v1q1(v1) +

∫ +∞

−∞
(v1 + v2)q2(v1, v2)F (dv2|q1(v1))

}
g(v1) dv1

−
∫ 1

0

U(v1, v1)g(v1) dv1

=

∫ 1

0

[
ψ(v1)q1(v1)

+
∫ +∞
−∞ [ψ(v1) + v2]q2(v1, v2)F (dv2|q1(v1))

]
g(v1) dv1 − U(0, 0).

Now we are ready to state the seller’s problem as follows.

Problem (O) : max
(q1,q2,t)

R

subject to

constraint (2) and q2(v1, v2) is increasing in v2 for any v1; (3)

U(v1, v1) ≥ U(v1, r1), for any v1, r1; (4)

0 ≤ q1(v1) ≤ 1 and 0 ≤ q2(v1, v2) ≤ 1− q1(v1), for any v1, v2. (5)

Here, (3) is the equivalent condition for the second-stage IC constraint, (4) is the first-

stage IC constraint, and (5) is the feasibility constraint imposed on allocations.

Clearly, at the optimum, U(0, 0) = 0, and thus the seller’s ex ante revenue becomes

R =

∫ 1

0

[
ψ(v1)q1(v1)

+
∫ +∞
−∞ [ψ(v1) + v2]q2(v1, v2)F (dv2|q1(v1))

]
g(v1) dv1.

We further drop constraints (3) to (4) and omit the choice variable t to form a relaxed

problem, Problem (O-R):

max
(q1,q2)

R

subject to constraint (5).

If the solution to Problem (O-R) also satisfies (3) and (4), then such a solution also

solves Problem (O). As such, we will first solve Problem (O-R), and then verify that its

solution satisfies all the constraints in the original problem.
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3 The solution to Problem (O-R)

In Problem (O-R), for each fixed first-stage allocation rule q1, the following second-stage

allocation rule q2 obviously maximizes the objective function R:

q2(v1, v2) =

1− q1(v1), if ψ(v1) + v2 ≥ 0;

0, otherwise.

Thus, we have12

R =

∫ 1

0

[
ψ(v1)q1(v1) +

∫ +∞

−ψ(v1)

[ψ(v1) + v2](1− q1(v1))F (dv2|q1(v1))

]
g(v1) dv1

=

∫ 1

0

[
ψ(v1) + (1− q1(v1))

∫ −ψ(v1)

−∞
F (v2|q1(v1)) dv2

]
g(v1) dv1. (6)

To facilitate the presentation, define the seller’s revenue from a type-v1 buyer with

the first-stage consumption q1 as

Π(q1, v1) = ψ(v1) + (1− q1)

∫ −ψ(v1)

−∞
F (v2|q1) dv2. (7)

For each v1, let q∗1(v1) be the maximizer of Π(q1, v1) in q1 ∈ [0, 1]. Finally, define

v∗1 = ψ−1(0) and ṽ1 = inf{v1 ∈ [0, 1] : q∗1(v1) > 0}.

We have the following observation.

Lemma 3. The following allocation rule pair {q∗1(v1), q∗2(v1, v2)}v1∈[0,1],v2∈R solves Prob-

lem (O-R):

(i) The first-stage allocation q∗1(v1) is the maximizer of

Π(q1, v1) = ψ(v1) + (1− q1)

∫ −ψ(v1)

−∞
F (v2|q1) dv2

in q1 ∈ [0, 1] for each v1. In particular, there exists a cutoff ṽ1 < v∗1 such that for all

v1 ∈ [0, ṽ1), q∗1(v1) = 0. For all v1 ∈ [ṽ1, 1], q∗1(v1) ∈ [0, 1) and can be characterized

12The detailed derivation can be found in the Appendix.
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by the first-order condition:∫ −ψ(v1)

−∞

[
−F (v2|q∗1(v1)) + (1− q∗1(v1))

∂F (v2|q∗1(v1))

∂q1

]
dv2 = 0. (8)

Moreover, for all v1 ∈ (ṽ1, 1], q∗1(v1) ∈ (0, 1).

(ii) The second-stage allocation rule q∗2 is

q∗2(v1, v2) =

1− q∗1(v1), if ψ(v1) + v2 ≥ 0;

0, otherwise.

In particular, when v1 < ṽ1, F (·|q∗1(v1)) degenerates to a mass at 0 and q∗2(v1, 0) =

0.

The above lemma implies that there is a first-stage cutoff type ṽ1, below which both

the first-stage allocation and the second-stage allocation are zero. Hence, there is no

consumption at the bottom of the distribution G. Moreover, this cutoff is strictly below

v∗1. This is because a low first-stage value v1 buyer would still be willing to experience

the good a bit in the first stage, as he knows that his ex post value (i.e., v1 + v2) is

still likely to be high enough. The seller then should take advantage of this by setting

a positive allocation for such low first-stage types. However, when the first-stage type

is so low (below ṽ1) that the ex post value is quite unlikely to be sufficiently high, the

buyer does not find it worthwhile to experience the good; so the seller, anticipating this,

should set a zero first-stage allocation in this case.

The following result characterizes the monotonicity of the optimal first-stage

allocation rule.

Lemma 4. The first-stage allocation q∗1(v1) is strictly increasing in v1 ∈ [ṽ1, 1].

Remark 2. It is worth pointing out that Π(q1, v1) does not have the supermodularity

or single-crossing property in (q1, v1). As a result, the standard approach of monotone

comparative statics (e.g., Milgrom and Shannon, 1994) is not readily applicable in our

setting.

Remark 3. To ease the notations and presentation, we do not take into account the

possibility that for some v1, the maximizer q∗1(v1) may not be unique. This multiplicity

issue can be addressed by imposing the following assumption analogous to Assumption 1:
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• For any fixed v2 ≤ 0 and any q1, q
′
1 ∈ (0, 1) with q1 < q′1,

M(v2, q1) ≤ 0 =⇒ M(v2, q
′
1) < 0.

This assumption can be interpreted as a natural substitution condition, which says

that: If at a particular level of first-stage consumption q1 and a certain requirement of

additional information v2, the buyer is willing to sacrifice his first-stage consumption in

exchange for a lower requirement of information, then he will still be willing to do so

when his first-stage consumption is higher than q1. Under this condition, one can show

that any selection of maximizers must be strictly increasing in v1 when v1 ≥ ṽ1. The

proof of this claim is given in the Appendix.

4 The solution to Problem (O)

4.1 Optimal direct mechanism

Having characterized the solution to Problem (O-R) as in Lemma 3, we can use the

envelope conditions in Lemmas 1 and 2 to construct a payment rule t∗, the expression

of which is provided in the following result.

Lemma 5. The payment rule t∗ is specified as follows:

t∗(v1, v2) =

(1− q∗1(v1))p∗2(v1) + p∗1(v1), if ψ(v1) + v2 ≥ 0,

p∗1(v1), otherwise,

where

p∗1(v1) = (1− q∗1(v1))

[ ∫ −ψ(v1)

−∞
F (v2|q∗1(v1)) dv2 −

1−G(v1)

g(v1)

]
+

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx

and

p∗2(v1) =
1−G(v1)

g(v1)
.

Thus, we obtain a candidate mechanism {q∗1(v1), q∗2(v1, v2), t∗(v1, v2)}v1∈[0,1],v2∈R for

Problem (O). If we can show that this candidate mechanism satisfies all constraints in
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Problem (O), then it must solve Problem (O). Clearly, one only needs to verify constraints

(3) and (4) — i.e., the first- and second-stage IC constraints.

To this end, we begin by considering a menu of try-and-decide option contracts

{p∗1(v1), q∗1(v1); p∗2(v1)}v1∈[0,1], where functions p∗1, q∗1, and p∗2 are defined in Lemmas 3

and 5. The buyer needs to select a contract from the menu. If for some r1 ∈ [0, 1],

option contract {p∗1(r1), q∗1(r1); p∗2(r1)} is selected, then p∗1(r1) is the advance payment

for a buyer to enter this contract. By paying this advance payment, the buyer not only

consumes q∗1(r1) units of the good, but also reserves the right to buy the remaining

1− q∗1(r1) units at the per-unit strike price p∗2(r1).

In the Appendix, we show that this menu of contracts implements the above-

mentioned direct mechanism. Hence, our direct mechanism satisfies constraints (3) and

(4), and thus is a solution to Problem (O), which is the following result.

Proposition 1. The direct mechanism {q∗1(v1), q∗2(v1, v2), t∗(v1, v2)}v1∈[0,1],v2∈R can be

implemented by a menu of try-and-decide option contracts {p∗1(v1), q∗1(v1); p∗2(v1)}v1∈[0,1].

Hence, this direct mechanism solves Problem (O).

What is crucial in the proof of the above proposition is to establish global IC. The

argument to establish IC in our problem is non-standard. In many canonical sequential

screening problems in the literature, e.g., Courty and Li (2000) and Eső and Szentes

(2007a), as long as the allocation rule satisfies certain monotonicity condition in private

types, regardless of whether it is the solution of the relaxed problem or not, the allocation

rule can be used to construct a direct mechanism satisfying global IC. However, this

approach does not work for our problem. Intuitively, the complication arises because the

first-stage allocation plays a dual role in our problem — a higher first-stage consumption

is associated with a higher precision of information, but reduces the potential second-

stage consumption. We sketch the key step of our argument in Section 4.2 and discuss

further in Section 5.

4.2 Sketch of the proof

To establish Proposition 1, the two global IC constraints in Problem (O) require that:

Facing the menu of contracts {p∗1(v1), q∗1(v1); p∗2(v1)}v1∈[0,1], for each v1 ∈ [0, 1], (i) a type-

v1 buyer who is under contract {p∗1(v1), q∗1(v1); p∗2(v1)} will buy the remaining 1− q∗1(v1)

units if and only if v1 + v2 ≥ p∗2(v1), and (ii) for any r1 ∈ [0, 1], a type-v1 buyer has
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no strict incentive to choose contract {p∗1(r1), q∗1(r1); p∗2(r1)} over {p∗1(v1), q∗1(v1); p∗2(v1)},
regardless of his second-stage strategy after choosing {p∗1(r1), q∗1(r1); p∗2(r1)}. Parts (i)

and (ii) correspond to the second- and first-stage IC constraints of the direct mechanism,

respectively. It is easy to see that (i) is trivial. Hence, we focus on (ii).

Under contract {p∗1(r1), q∗1(r1); p∗2(r1)}, the optimal second-stage strategy for a type-

v1 buyer who learns v2 is to buy the remaining portion if and only if v2 ≥ p∗2(r1) − v1.

Under the above contract and the optimal second-stage strategy, the type-v1 buyer’s

interim payoff is U(v1, r1) = w(q∗1(r1), p∗2(r1), v1)−p∗1(r1), where for all q1 ∈ [0, 1], p2 ≥ 0,

and v1 ∈ [0, 1],

w(q1, p2, v1) ≡ q1v1 +

∫ +∞

p2−v1
(v1 + v2 − p2)(1− q1)F (dv2|q1).

It is shown in the Appendix that the difference of interim payoffs between selecting

{p∗1(v1), q∗1(v1); p∗2(v1)} and {p∗1(r1), q∗1(r1); p∗2(r1)}, ∆(v1, r1) = U(v1, v1)− U(v1, r1), is13

∫ v1

r1

∫ v1

x

[
w31(q∗1(x), p∗2(x), s)q∗1

′(x) + w32(q∗1(x), p∗2(x), s)p∗2
′(x)

]
ds dx. (9)

Clearly, the first-stage IC constraint holds if and only if ∆(v1, r1) ≥ 0. To this

end, it can be easily shown that w32(q1, p2, v1) ≤ 0 for all q1 ∈ [0, 1], p2 ≥ 0, and

v1 ∈ [0, 1]. We have established in Lemma 5 that p∗2(v1) = 1−G(v1)
g(v1)

and thus p∗2
′(·) < 0

by Assumption 2. Hence, the second term in the integrand of the double integral (9),

w32(q∗1(x), p∗2(x), s)p∗2
′(x) ≥ 0. Therefore, it suffices to show that the first term in the

integrand is nonnegative.

By Lemmas 3 and 4, q∗1
′(·) ≥ 0. However, the sign of

w31(q1, p2, v1) = F (p2 − v1|q1)− (1− q1)
∂F (p2 − v1|q1)

∂q1

is ambiguous. To see this, notice that due to rotation order, when p2 > v1, w31 > 0; but

when p2 < v1, w31 can be positive or negative. The ambiguity of the sign of w31 implies

that the sign of w31(q∗1(x), p∗2(x), s)q∗1
′(x) is ambiguous in general when s is between x

and v1 in (9). Putting these observations together, the sign of the integrand in double

integral (9) is ambiguous.

13In this paper, w3 means partial derivative with respect to the third variable; likewise, w31 means the
second-order partial derivative with respect to the first and the third variables. Other partial derivatives’
notations are analogous.
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We remark that our analysis so far has only used the observation that q∗1
′(·) ≥ 0.

Hence, the ambiguity of the sign of the integrand is not only an issue of our optimal

q∗1(·), but also a problem for more general first-stage allocation rules.

After some transformation, we will obtain that∫ v1

r1

∫ v1

x

w31(q∗1(x), p∗2(x), s)q∗1
′(x) ds dx =

∫ v1

r1

q∗1
′(x)

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy dx, (10)

where ξ(y, q∗1(x)) ≡ −∂C(y,q∗1(x))

∂q∗1(x)
.14 By the optimality of q∗1(·) (i.e., the first-order

condition (8) which implies that
∫ −ψ(x)

−∞ ξ(y, q∗1(x)) dy = 0) as well as Assumption 1,

we can show that for v1 ≥ r1 (resp. v1 ≤ r1),

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy ≥ 0

(resp. ≤ 0) for x between v1 and r1. Hence, the double integral (10) is nonnegative. It

is trivial that ∫ v1

r1

∫ v1

x

w32(q∗1(x), p∗2(x), s)p∗2
′(x) ds dx ≥ 0.

Combining the two inequalities above, one can conclude that ∆(v1, r1) ≥ 0.

4.3 Implementation

The following lemma summarizes several useful properties of the payment rule, and we

will discuss them after Proposition 2.

Lemma 6. (i) For v1 < ṽ1, p∗1(v1) = 0 and t∗(v1, 0) = 0.

(ii) The first-stage payment p∗1(v1) is strictly increasing in v1 ∈ [ṽ1, 1] and equal to

q∗1(ṽ1)1−G(ṽ1)
g(ṽ1)

≥ 0 for v1 = ṽ1.

(iii) The second-stage payment p∗2(v1) is strictly decreasing in v1 ∈ [0, 1] and equal to

zero when v1 = 1.

(iv) The function p∗1(v1) + (1− q∗1(v1))p∗2(v1) is strictly decreasing in v1 ∈ [0, 1].

(v) The function p∗1(v1)+(1−q∗1(v1))p∗2(v1)(1−F (−ψ(v1)|q∗1(v1))) is strictly increasing

in v1 ∈ [ṽ1, 1] and equal to zero elsewhere.

14Recall that the function C(·, ·) is defined in (1).
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Remark 4 (No participation at the bottom). According to Lemmas 3 and 6 (i), when

v1 < ṽ1, there is zero consumption in both stages and the total payment is zero. As such,

the buyer with the first-stage type lower than ṽ1 is completely shut down — he does not

participate.

According to Remark 4, it is immediate that the “reduced” menu of try-and-decide

option contracts {p∗1(v1), q∗1(v1); p∗2(v1)}v1∈[ṽ1,1] implements the solution of Problem (O),

since a buyer with first-stage type v1 < ṽ1 simply does not participate. Hence, we have

the following result.

Proposition 2. The solution of Problem (O) can be implemented by a menu of try-and-

decide option contracts {p∗1(v1), q∗1(v1); p∗2(v1)}v1∈[ṽ1,1].

According to Lemmas 4 and 6, the first-stage payment p∗1(v1) and consumption q∗1(v1)

are strictly increasing when v1 ≥ ṽ1. However, the per-unit strike price p∗2(v1) is strictly

decreasing, and the total payment conditional on buying the entire portion of the good

— i.e., p∗1(v1) + (1 − q∗1(v1))p∗2(v1) — is strictly decreasing in v1. This implies that in

equilibrium, a buyer with a higher first-stage type will choose a contract with a higher

advance payment and higher first-stage consumption, in exchange for a lower per-unit

strike price for additional consumption in the second stage and a lower cost for purchasing

the entire unit of the good.

The intuition is clear. For a high v1-type buyer, he is more confident that his ex post

valuation of the good, v1 + v2, is sufficiently high so that he will likely end up buying the

entire good. The buyer is thus incentivized to choose a contract that “secures” a large

first-stage consumption and first-stage payment so that he can enjoy a lower per-unit

strike price in stage two and a lower cost for purchasing the entire unit. However, this

will be quite risky for a low v1-type. If he does so, in spite of a lower per-unit second-

stage price, he has to pay to consume more in the first stage. Yet, since his first-stage

type is low, he really wants to experience the good a bit to make a better decision in the

second stage, rather than “blindly” having a high first-stage consumption level, which

can lead to a rather low expected payoff given his low first-stage type.

This intuition echoes phenomena seen in practice. For example, consumers who are

optimistic about their matching quality with a car tend to buy the car outright, because

buying the car outright is usually cheaper than leasing it with the intention to buy out

the car at lease end. However, those who are not as optimistic may choose to lease the
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car first before making a buyout decision. This practice can be expensive, but gives

consumers an opportunity to experience the car before committing to it for a longer

duration.

Lemma 6 (v) implies that Π(q∗1(v1), v1) is strictly increasing in v1 for v1 ∈ [ṽ1, 1].

Namely, the seller can expect to extract more surplus from a higher first-stage type.

4.4 An illustrative example

In this section, we provide an illustrative example, which demonstrates the optimal

mechanism that is identified in Proposition 1. In addition, we shall also illustrate that

the monotonicity of the first-stage allocation rule does not imply global IC. To be precise,

we explicitly construct an increasing first-stage allocation rule q̂1, and show that it cannot

be part of an incentive-compatible mechanism.

Recall the truth-or-noise model in Example 1. Let G be the uniform distribution on

[0, 1] with the constant density g ≡ 1, and H be the normal distribution N(0, 1) with

mean 0 and variance 1 (i.e., the density is h(v2) = 1√
2π
e−

v22
2 ). Then ψ(v1) = 2v1 − 1,

F (v2|q1) = H(
v2

q1

) =

∫ v2
q1

−∞

1√
2π
e−

s2

2 ds, and f(v2|q1) =
1

q1

√
2π
e
− v22

2q21 .

In the Appendix, we verify that F satisfies the rotation order, and Assumptions 1 and 2

hold.

As shown in Proposition 1, the optimal first-stage allocation rule q∗1 must maximize

(1− q1)

∫ −ψ(v1)

−∞
F (v2|q1) dv2.

Figure 1 numerically illustrates the optimal allocation rule.15 In this example, ṽ1 ≈
0.43 < 0.5 = v∗1. In Figure 2, we plot Π(q1, v1) when v1 = 0.41, 0.43, and 0.45. As can

be seen, q∗1(v1) is unique and higher than q∗1(ṽ1) ≈ 0.403 when v1 > ṽ1 ≈ 0.43, is either

0 or almost 0.403 when v1 = ṽ1, and is 0 when v1 < ṽ1. This pattern explains the jump

of q∗1 at ṽ1 in Figure 1.

15In this example, we plot the figures by simulation.
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Figure 1: q∗1
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Figure 2: Π(q1, v1)

Below, we construct another allocation rule (q̂1, q̂2):

q̂1(v1) =

ψ2(v1), v1 ≥ 1
2
,

0, otherwise;
q̂2(v1, v2) =

1− q̂1(v1), ψ(v1) + v2 ≥ 0,

0, otherwise.

It is clear that q̂1 is increasing. In the Appendix, we show that (q̂1, q̂2) cannot be the

allocation rule in an incentive-compatible mechanism.

5 Discussions

5.1 Monotonicity does not imply global IC

In many canonical sequential screening problems in the literature (cf. Courty and Li,

2000; Eső and Szentes, 2007a), as long as the allocation rule satisfies certain monotonicity

condition, regardless of whether it is the solution of the relaxed problem, the allocation

rule can be used to construct a mechanism satisfying global IC. As such, the standard

treatment in the literature focuses on identifying sufficient conditions under which the

solution of the relaxed problem is monotone. However, this approach does not work in

the current paper and we will discuss our approach by connecting it with the literature.

By nicely linking a canonical sequential screening problem to a static screening

problem, Krähmer and Strausz (2017) show that the first-order stochastic dominance
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(FOSD) ranking of first-stage types in a canonical sequential screening problem as in

Courty and Li (2000) corresponds to the single-crossing condition16 in the corresponding

static screening problem; and conversely, a sequential screening problem without FOSD

corresponds to a static screening problem without the single-crossing condition. With

FOSD, the above-mentioned standard treatment in sequential screening problems —

i.e., finding sufficient conditions under which the optimal allocation rule in a certain

relaxed problem is monotone — works for establishing global IC. This is similar to the

well-known result that in static screening problems, the single-crossing condition ensures

that local IC plus monotonicity of the allocation rule implies global IC.

However, the counterpart of the single-crossing condition does not hold in our

corresponding static screening problem, as types are not ranked by FOSD here. More

specifically, in the corresponding static screening problem, the condition requires that

w31 has a constant sign in the respective integration region in our optimal solution, but

as we have discussed in Section 4.2, w31 does not satisfy this property.17 Due to the

lack of the single-crossing condition, rather than just establishing the monotonicity of

the allocation rule as in canonical sequential screening problems, we need to deal with

global IC in a non-standard way; indeed, the monotonicity of allocation rule does not

imply global IC, as seen in the example in Section 4.4. In particular, as is illustrated in

Sections 4.2 and 4.4, the optimality of the first-stage allocation rule, i.e., the fact that

the first-stage allocation rule solves the relaxed problem, is explicitly used in establishing

global IC, and this contrasts with many canonical sequential screening problems.

We remark that the expression of w31 is complicated. In particular, the cutoff point

at which w31 changes sign depends on v1, p2, and q1 simultaneously. This is due to the

dual role played by the first-stage allocation. First, the first-stage allocation is a device

of information acquisition. Second, it defines an intertemporal problem: It affects the

feasibility constraint of the second-stage allocation, as the second-stage allocation cannot

exceed the remaining portion of the good. In problems where the first-stage allocation

only affects information acquisition (cf. Hoffmann and Inderst, 2011), the counterpart of

w31 has a more clear-cut structure — the point at which their w31 changes sign depends

on v1 and p2 only. The dual role of our first-stage allocation leads to new observations

16The single-crossing condition is also refereed to as the Spence-Mirrlees condition or the constant
sign condition in the literature. Note that this condition should not be confused with the one required
by our Assumption 1. To minimize confusion, we use the term single-crossing condition to refer to the
standard condition imposed by canonical screening problems exclusively.

17The lack of single-crossing condition issue has been discussed by Araujo and Moreira (2010) and
Schottmüller (2015) in their respective static screening environments.
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as we will discuss in Sections 5.2 and 5.3.

5.2 Monotonicity of the first-stage allocation rule

Notice that at the optimum, a higher first-stage type always consumes more, and thus

he acquires more information. This is a bit counter-intuitive. After all, a sufficiently

high type does not need to actively acquire additional information, because his current

information (first-stage type) is already sufficiently good; similarly, a sufficiently low

type also does not want to incur a cost to acquire information, because his current

information is already so bad that costly information acquisition is not beneficial. Thus,

intuitively, only “middle” types have a strong incentive to acquire information. In fact,

this is indeed the case in the continuous information acquisition model of Hoffmann and

Inderst (2011) and the discrete information acquisition model of Krähmer and Strausz

(2011). In particular, Hoffmann and Inderst (2011) study a similar problem as our

paper. They show that the level of information acquisition is of hump shape: The level

first increases and then decreases in the first-stage type.

The crucial difference is that in our paper, the first-stage consumption plays a dual

role for the buyer. On the one hand, it is a device for acquiring more information that

shapes the distribution of additional information as in these papers; on the other hand,

it also directly changes the buyer’s payoff by determining the division between the first-

and second-stage consumption. The latter role is absent in these papers.

5.3 Distortion

Finally, we compare the consumption levels in both stages with their counterparts in

the first-best scenario, in which the buyer’s first- and second-stage types are public.

Denote the buyer’s first- and second-stage types as v1 and v2, respectively. Let qFB1 (v1)

and qFB2 (v1, v2) be his socially efficient first- and second-stage consumption, respectively.

The expected social surplus from a buyer with first-stage type v1 is

v1q
FB
1 (v1) +

∫ +∞

−∞
(v1 + v2)qFB2 (v1, v2)F (dv2|qFB1 (v1)).
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Suppose qFB1 is given. Then, the first-best qFB2 is

qFB2 (v1, v2) =

1− qFB1 (v1), if v1 + v2 ≥ 0;

0, otherwise.

Thus, the above expression of social surplus can be written as18

v1q
FB
1 (v1) +

∫ +∞

−v1
(v1 + v2)(1− qFB1 (v1, v2))F (dv2|qFB1 (v1))

= v1 + (1− qFB1 (v1))

∫ −v1
−∞

F (v2|qFB1 (v1)) dv2.

Therefore, qFB1 (v1) maximizes the function

Π̃(q1, v1) = v1 + (1− q1)

∫ −v1
−∞

F (v2|q1) dv2.

Comparing with (7), one can see that qFB1 (ψ(v1)) = q∗1(v1) for all v1 ∈ [v∗1, 1]. This

leads to qFB1 (v1) = q∗1(ψ−1(v1)) for all v1 ∈ [0, 1]. By Lemma 4, the fact that ψ is strictly

increasing, and the fact that ψ−1(0) = v∗1 > ṽ1, qFB1 is strictly increasing. Also, recall that

v1 ≥ ψ(v1) with strict inequality when v1 ∈ [0, 1), we have qFB1 (v1) ≥ qFB1 (ψ(v1)) = q∗1(v1)

with strict inequality when v1 ∈ [0, 1). We summarize these observations below.

Proposition 3. (i) qFB1 (v1) = q∗1(ψ−1(v1)) for all v1 ∈ [0, 1];

(ii) qFB1 (v1) is strictly increasing when v1 ∈ [0, 1];

(iii) qFB1 (v1) ≥ q∗1(v1), with strict inequality when v1 ∈ [0, 1).

The above proposition implies that in general, there is an under-provision of

information when asymmetric information arises compared to the first best. This again

differs from Hoffmann and Inderst (2011) and Krähmer and Strausz (2011), in which

there can be an over- and under-provision of information, depending on the first-stage

type.

Now let us focus on the case that v1 ∈ [0, 1) to compare the optimal and the

first-best second-stage allocations. For v2 ≥ −ψ(v1), qFB2 (v1, v2) < q∗2(v1, v2) and

qFB1 (v1) + qFB2 (v1, v2) = q∗1(v1) + q∗2(v1, v2) = 1; for v2 ∈ [−v1,−ψ(v1)), qFB2 (v1, v2) >

18The derivation is almost the same as that for the integral in (6); one just needs to replace ψ(v1)
and q1(v1) there with v1 and qFB1 (v1), respectively.
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q∗2(v1, v2) = 0 and qFB1 (v1) + qFB2 (v1, v2) = 1 > q∗1(v1) + q∗2(v1, v2); for v2 < −v1,

qFB2 (v1, v2) = q∗2(v1, v2) = 0 and qFB1 (v1) + qFB2 (v1, v2) > q∗1(v1) + q∗2(v1, v2). This means

that although the second-stage consumption can be upward or downward distorted, the

total consumption can only be downward distorted.

6 Concluding Remarks

In this paper, we study the two-stage revenue-maximizing mechanism when the buyer

acquires additional information by first-stage consumption. The buyer’s decision of first-

stage consumption depends on his private, prior valuation of the good. A higher first-

stage consumption level leads to a more precise value estimate of the good but reduces

the available amount of consumption left for the second stage. The key feature of our

model is that the first-stage consumption plays a dual rule: The buyer not only enjoys

a payoff but also acquires additional information from the first-stage consumption.

We fully characterize the optimum and find that it can be implemented by a menu

of try-and-decide option contracts, consisting of a first-stage price-quantity pair and

a second-stage per-unit price for the remaining quantity. A larger first-stage quantity

is paired with a higher first-stage price but a lower second-stage per-unit price. In

equilibrium, a higher first-stage valuation buyer pays more to have higher first-stage

consumption and enjoys a lower second-stage price.

Since the second-stage type’s distribution is not ranked by first-order stochastic

dominance, we face the difficulty of the failure of the single-crossing condition when

establishing global IC. The monotonicity in the first-stage consumption plus local IC is

not sufficient for global IC. As such, we cannot apply the usual approach as in many

dynamic mechanism design papers, which assume FOSD, to establish global IC.

In our current analysis, we assumed that the second-stage type’s distribution only

depends on the first-stage consumption. A more general environment is when it depends

on both the first-stage consumption level and the first-stage type. This is a highly

meaningful but challenging direction to explore. We leave it for future work.
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A Appendix

A.1 Proof of Lemma 2

By Lemma 1, the expected payoff of the buyer with first-stage type v1 and report r1 can
be expressed as

U(v1, r1) =q1(r1)

∫ +∞

−∞
(v1 + v2)F (dv2|q1(r1))

+

∫ +∞

−∞

[
(v1 + v2)q2(r1, r2(v1, r1, v2))
−t(r1, r2(v1, r1, v2))

]
F (dv2|q1(r1)).

=q1(r1)v1 +

∫ +∞

−∞

[
(v1 + v2)q2(r1, r2(v1, r1, v2))
−t(r1, r2(v1, r1, v2))

]
F (dv2|q1(r1)),
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where the second equality uses the fact that E[v2] = 0. Taking the partial derivative
with respect to v1 leads to19

∂U(v1, r1)

∂v1

= q1(r1)+

∫ +∞

−∞


q2(r1, r2(v1, r1, v2))

+∂r2(v1,r1,v2)
∂v1

[
(v1 + v2)∂q2(r1,r2(v1,r1,v2))

∂r2

−∂t(r1,r2(v1,r1,v2))
∂r2

] F (dv2|q1(r1)).

Since r2(v1, r1, v2) is the optimal report following a lie in the first stage — i.e., it
maximizes the second-stage expected payoff after a lie — it must satisfy the first-order
condition, so

(v1 + v2)
∂q2(r1, r2(v1, r1, v2))

∂r2

− ∂t(r1, r2(v1, r1, v2))

∂r2

= 0.

Therefore,

∂U(v1, r1)

∂v1

= q1(r1) +

∫ +∞

−∞
q2(r1, r2(v1, r1, v2))F (dv2|q1(r1)).

Note that r2(v1, r1, v2) = v2 when r1 = v1 (i.e., a truthful report in the first stage). The
envelope theorem (cf. Milgrom and Segal, 2002) implies that

U(v1, v1) = U(0, 0) +

∫ v1

0

[
q1(s) +

∫ +∞

−∞
q2(s, v2)F (dv2|q1(s))

]
ds.

This completes the proof. �

A.2 Derivation of Equation (6)

Before proving Equation (6), we first prove the following preparatory lemma.

Lemma 7. For any a ∈ (−∞,+∞) and q1 > 0,∫ a

−∞
v2F (dv2|q1) = aF (a|q1)−

∫ a

−∞
F (v2|q1) dv2.

Proof. We first claim that as b → −∞, bF (b|q1) → 0. Suppose that the claim is not
true. Then there exists some ε > 0 and a negative sequence {bk} that converges to −∞
such that |bk|F (bk|q1) > ε for any k. Since the integral

∫ +∞
−∞ v2F (dv2|q1) is well defined,

there exists some sufficiently large K such that for any k ≥ K,
∫ bk
−∞ |v2|F (dv2|q1) < ε. It

implies that

|bk|F (bk|q1) =

∫ bk

−∞
|bk|F (dv2|q1) ≤

∫ bk

−∞
|v2|F (dv2|q1) < ε,

19 The (almost everywhere) differentiability of q2 and t in r2 follows from the second-stage IC
constraint.
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which is a contradiction.

For any b < min{a, 0}, due to integral by parts,∫ a

b

v2F (dv2|q1) = aF (a|q1)− bF (b|q1)−
∫ a

b

F (v2|q1) dv2.

It implies that ∫ a

b

F (v2|q1) dv2 = aF (a|q1)− bF (b|q1)−
∫ a

b

v2F (dv2|q1).

It is obvious that
∫ a
b
F (v2|q1) dv2 is decreasing in b. In addition, it is bounded as

bF (b|q1) → 0 and
∫ a
b
v2F (dv2|q1) →

∫ a
−∞ v2F (dv2|q1) when b → −∞. Thus, the limit

limb→−∞
∫ a
b
F (v2|q1) dv2 exists, which is

∫ a
−∞ F (v2|q1) dv2. This completes the proof.

Now we derive Equation (6).

q1(v1)ψ(v1) + (1− q1(v1))

∫ +∞

−ψ(v1)

[ψ(v1) + v2]F (dv2|q1(v1))

=q1(v1)ψ(v1) + (1− q1(v1))

[
ψ(v1)[1− F (−ψ(v1)|q1(v1))] +

∫ +∞

−ψ(v1)

v2F (dv2|q1(v1))

]
=ψ(v1)− (1− q1(v1))

[
ψ(v1)F (−ψ(v1)|q1(v1)) +

∫ −ψ(v1)

−∞
v2F (dv2|q1(v1))

]

=ψ(v1)− (1− q1(v1))

[
ψ(v1)F (−ψ(v1)|q1(v1))

+
(
−ψ(v1)F (−ψ(v1)|q1(v1))−

∫ −ψ(v1)

−∞ F (v2|q1(v1)) dv2

) ]

=ψ(v1) + (1− q1(v1))

∫ −ψ(v1)

−∞
F (v2|q1(v1)) dv2,

where the second equality uses the fact that∫ +∞

−ψ(v1)

v2F (dv2|q1(v1)) +

∫ −ψ(v1)

−∞
v2F (dv2|q1(v1)) = 0,

and the third equality holds because of Lemma 7. �

A.3 Proof of Lemma 3

We first establish (i). Since the optimal q∗1(·) maximizes (7), the solution either satisfies
the first-order condition or is the corner solution.

When q1 > 0,

∂Π(q1, v1)

∂q1

= −
∫ −ψ(v1)

−∞
F (v2|q1) dv2 + (1− q1)

∫ −ψ(v1)

−∞

∂F (v2|q1)

∂q1

dv2.
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We first show that q1 = 1 cannot be optimal. In fact,

∂Π(q1, v1)

∂q1

|q1=1 = −
∫ −ψ(v1)

−∞
F (v2|1) dv2 < 0,

which makes q1 = 1 suboptimal.

On the other hand, if q1 = 0 is optimal, it must be the case that ψ(v1) < 0 — i.e.,
v1 < v∗1. In fact, when ψ(v1) ≥ 0 and q1 = 0, the seller’s revenue is

Π(0, v1) = ψ(v1) +

∫ −ψ(v1)

−∞
F (v2|0) dv2 = ψ(v1),

which is strictly dominated by, for example, choosing q1 = 1
2
:

Π(
1

2
, v1) = ψ(v1) +

1

2

∫ −ψ(v1)

−∞
F (v2|

1

2
) dv2 > ψ(v1).

This means that the value ṽ1 ≡ inf{v1 ∈ [0, 1] : q∗1(v1) > 0} < v∗1.

Finally, we show that if q∗1(v1) = 0 for some v1, then q∗1(v′1) = 0 for any v′1 < v1. We
have shown that if q∗1(v1) = 0, then v1 < v∗1, and thus

Π(0, v1) = ψ(v1) +

∫ −ψ(v1)

−∞
F (v2|0) dv2 = ψ(v1)− ψ(v1) = 0.

In addition, q∗1(v1) = 0 implies that Π(q1, v1) ≤ Π(0, v1) = 0 for all q1 ∈ (0, 1). When
v′1 < v1, ψ(v′1) < ψ(v1) < 0, and thus for any q1 ∈ (0, 1), we have

Π(q1, v
′
1) = ψ(v′1) + (1− q1)

∫ −ψ(v′1)

−∞
F (v2|q1) dv2

= ψ(v′1) + (1− q1)

∫ −ψ(v1)

−∞
F (v2|q1) dv2 +

∫ −ψ(v′1)

−ψ(v1)

F (v2|q1)︸ ︷︷ ︸
<1

dv2


< ψ(v′1) + (1− q1)

[∫ −ψ(v1)

−∞
F (v2|q1) dv2 + ψ(v1)− ψ(v′1)

]

< ψ(v′1) + (1− q1)

∫ −ψ(v1)

−∞
F (v2|q1) dv2 + ψ(v1)− ψ(v′1)

= Π(q1, v1) ≤ Π(0, v1) = 0 = Π(0, v′1),

implying that q∗1(v′1) = 0.

As a result, for v1 < ṽ1, q∗1(v1) = 0; for v1 ≥ ṽ1, q∗1(v1) ∈ [0, 1) and satisfies the
first-order condition stated in the lemma; for v1 > ṽ1, q∗1(v1) ∈ (0, 1).

To establish (ii), notice that for v1 < ṽ1, F (·|q∗1(v1)) reduces to a mass at v2 = 0. In
this case, v2 = 0 ≥ −ψ(v1) is impossible, as −ψ(v1) > −ψ(ṽ1) > −ψ(v∗1) = 0. Therefore,
q∗2(v1, 0) = 0. The remainder of (ii) has been established in the text. �
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A.4 Proof of Lemma 4

Fix any v1 > ṽ1. The problem is to choose q1 ∈ [0, 1] to maximize

Π(q1, v1) = ψ(v1) + (1− q1)

∫ −ψ(v1)

−∞
F (v2|q1) dv2. (11)

Note that restricting the range of q1 to (0, 1) is without loss of generality, because (i)
by the definition of ṽ1, q1 = 0 cannot be optimal; and (ii) by Lemma 3, q1 = 1 is not
optimal either.

Define a function ξ : R× (0, 1)→ R as

ξ(v2, q1) = M(v2, q1) · (1− q1) · f(v2|q1)

= −F (v2|q1) + (1− q1)
∂F (v2|q1)

∂q1

. (12)

Since the maximizer q∗1(v1) ∈ (0, 1), it satisfies the first-order condition of (11) with
respect to q1:

∂Π(q1, v1)

∂q1

|q1=q∗1(v1) =

∫ −ψ(v1)

−∞
ξ(v2, q

∗
1(v1)) dv2 = 0. (13)

By the second-order condition, ∂2Π(q1,v1)

∂q21
|q1=q∗1(v1) ≤ 0.

Note that
ξ(−ψ(v1), q∗1(v1)) < 0, (14)

as otherwise ξ(v2, q
∗
1(v1)) > 0 for any v2 < −ψ(v1) by Assumption 1, which violates (13).

It implies that

∂2Π(q1, v1)

∂q1∂v1

|q1=q∗1(v1) = −ψ′(v1)ξ(−ψ(v1), q∗1(v1)) > 0. (15)

Now differentiating the first-order condition (13) with respect to v1 on both sides of the
equation leads to

dq∗1(v1)

dv1

· ∂
2Π(q1, v1)

∂q2
1

|q1=q∗1(v1)︸ ︷︷ ︸
≤0

+
∂2Π(q1, v1)

∂q1∂v1

|q1=q∗1(v1)︸ ︷︷ ︸
>0

= 0,

which further implies that
dq∗1(v1)

dv1
> 0. �

A.5 Proof of the claim in Remark 3

Pick any v1, v
′
1 ∈ [ṽ1, 1] with v1 < v′1. Let q∗1 and q∗′1 be a maximizer of Π(q1, v1) and

Π(q1, v
′
1), respectively. By Lemma 3, q∗1 ∈ [0, 1) (since v1 may be ṽ1) and q∗′1 ∈ (0, 1).

Our goal is to show that q∗1 < q∗′1 . Hence, it is without loss to focus on the case that
q∗1, q

∗′
1 ∈ (0, 1).
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Note that (15) still applies because it only uses Assumption 1. Hence,

ξ(−ψ(v1), q∗1) < 0 and ξ(−ψ(v′1), q∗′1 ) < 0.

Suppose to the contrary that q∗1 ≥ q∗′1 . We claim that

ξ(−ψ(s), q1) < 0 for any s ∈ [v1, v
′
1] and any q1 ∈ [q∗′1 , q

∗
1]. (16)

To see this, recall that F (·|·) satisfies the rotation order. If −ψ(s) > 0, then
ξ(−ψ(s), q1) < 0 for any q1 ∈ [q∗′1 , q

∗
1].

• If −ψ(v′1) > 0, then −ψ(s) > 0 for any s ∈ [v1, v
′
1], so (16) holds.

• Suppose that −ψ(v′1) ≤ 0. Since ξ(−ψ(v′1), q∗′1 ) < 0, the additional condition
mentioned in Remark 3 implies that ξ(−ψ(v′1), q1) < 0 for any q1 ∈ [q∗′1 , q

∗
1]. Then

due to Assumption 1 and the monotonicity of ψ, ξ(−ψ(s), q1) < 0 for any q1 ∈
[q∗′1 , q

∗
1] and s ∈ [v1, v

′
1]. This establishes (16).

Due to the definition of q∗1, Π(q∗1, v1) ≥ Π(q∗′1 , v1). If q∗1 > q∗′1 , then

0 ≤ Π(q∗1, v1)− Π(q∗′1 , v1) =

∫ q∗1

q∗′1

∂Π(q1, v1)

∂q1

dq1

=

∫ q∗1

q∗′1

(∫ −ψ(v1)

−∞
ξ(v2, q1) dv2

)
dq1

=

∫ q∗1

q∗′1

∫ −ψ(v′1)

−∞
ξ(v2, q1) dv2 +

∫ −ψ(v1)

−ψ(v′1)

ξ(v2, q1)︸ ︷︷ ︸
<0 by (16)

dv2

 dq1

<

∫ q∗1

q∗′1

(∫ −ψ(v′1)

−∞
ξ(v2, q1) dv2

)
dq1

=

∫ q∗1

q∗′1

∂Π(q1, v
′
1)

∂q1

dq1 = Π(q∗1, v
′
1)− Π(q∗′1 , v

′
1).

However, Π(q∗1, v
′
1)− Π(q∗′1 , v

′
1) > 0 contradicts the optimality of q∗′1 .

Finally, what is left to show is that q∗1 = q∗′1 also leads to a contradiction. In fact, if
q∗1 = q∗′1 , the first-order condition (13) implies that∫ −ψ(v1)

−∞
ξ(v2, q

∗
1) dv2 = 0 =

∫ −ψ(v′1)

−∞
ξ(v2, q

∗
1) dv2.

However, (16) implies that ξ(v2, q
∗
1) < 0 for any v2 ∈ [−ψ(v′1),−ψ(v1)]. Then,

0 =

∫ −ψ(v1)

−∞
ξ(v2, q

∗
1) dv2 =

∫ −ψ(v′1)

−∞
ξ(v2, q

∗
1) dv2︸ ︷︷ ︸

=0

+

∫ −ψ(v1)

−ψ(v′1)

ξ(v2, q
∗
1) dv2

31



=

∫ −ψ(v1)

−ψ(v′1)

ξ(v2, q
∗
1) dv2 < 0,

which is a contradiction. This completes the proof of the claim in Remark 3. �

A.6 Proof of Lemma 5

We first construct the payment rule t∗. By Lemmas 2 and 3 and U(0, 0) = 0, for each
v1 ∈ [0, 1], we have

U(v1, v1) = U(0, 0) +

∫ v1

0

[
q∗1(x) +

∫ +∞

−∞
q∗2(x, v2)F (dv2|q∗1(x))

]
dx

=

∫ v1

0

[
q∗1(x) +

∫ +∞

−ψ(x)

(1− q∗1(x))F (dv2|q∗1(x))

]
dx

=

∫ v1

0

[
q∗1(x) + (1− q∗1(x)) (1− F (−ψ(x)|q∗1(x)))

]
dx

=

∫ v1

0

[
1− (1− q∗1(x))F (−ψ(x)|q∗1(x))

]
dx

= v1 −
∫ v1

0

(
1− q∗1(x)

)
F (−ψ(x)|q∗1(x)) dx. (17)

On the other hand, from the envelope condition (2) in the second stage,

(v1 + v2)q∗2(v1, v2)− t∗(v1, v2) = π̃(v1, v2, v2)

= π̃(v1,−ψ(v1),−ψ(v1)) +

∫ v2

−ψ(v1)

q∗2(v1, s) ds.

Thus,

t∗(v1, v2) = (v1 + v2)q∗2(v1, v2)−
∫ v2

−ψ(v1)

q∗2(v1, s) ds− π̃(v1,−ψ(v1),−ψ(v1)).

• When v2 < −ψ(v1), q∗2(v1, v2) = 0 and

t∗(v1, v2) = −π̃(v1,−ψ(v1),−ψ(v1)).

• When v2 ≥ −ψ(v1) and v1 ≥ ṽ1, q∗2(v1, v2) = 1− q∗1(v1) and

t∗(v1, v2) = (v1 + v2)(1− q∗1(v1))−
∫ v2

−ψ(v1)

(1− q∗1(v1)) ds− π̃(v1,−ψ(v1),−ψ(v1))

=
1−G(v1)

g(v1)
(1− q∗1(v1))− π̃(v1,−ψ(v1),−ψ(v1)).

• When v1 < ṽ1, −ψ(v1) > 0, q∗1(v1) = 0, and F (·|q∗1(v1)) reduces to a mass at 0,
implying that v2 ≥ −ψ(v1) > 0 is impossible. As a result, with probability one
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v2 < −ψ(v1), which implies that

q∗2(v1, v2) = 0 and t∗(v1, v2) = −π̃(v1,−ψ(v1),−ψ(v1)).

To construct the payment rule t∗, it remains to pin down π̃(v1,−ψ(v1),−ψ(v1)). To
this end, notice that by the definition of the first-stage expected payoff,

U(v1, v1) = q∗1(v1)

∫ +∞

−∞
(v1 + v2)F (dv2|q∗1(v1)) +

∫ +∞

−∞
π̃(v1, v2, v2)F (dv2|q∗1(v1))

= q∗1(v1)v1 +

∫ +∞

−∞

[
(v1 + v2)q∗2(v1, v2)− t∗(v1, v2)

]
F (dv2|q∗1(v1))

= q∗1(v1)v1 +

∫ +∞

−ψ(v1)

(1− q∗1(v1))

[
v1 + v2 −

1−G(v1)

g(v1)

]
F (dv2|q∗1(v1))

+π̃(v1,−ψ(v1),−ψ(v1))

= q∗1(v1)v1 +

∫ +∞

−ψ(v1)

(1− q∗1(v1)) (ψ(v1) + v2)F (dv2|q∗1(v1))

+π̃(v1,−ψ(v1),−ψ(v1)).

Comparing with (17), we obtain

− π̃(v1,−ψ(v1),−ψ(v1))

=q∗1(v1)v1 +

∫ +∞

−ψ(v1)

(1− q∗1(v1))[ψ(v1) + v2]F (dv2|q∗1(v1))

−
[
v1 −

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx

]
=

∫ +∞

−ψ(v1)

(1− q∗1(v1))[ψ(v1) + v2]F (dv2|q∗1(v1))− v1(1− q∗1(v1))

+

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx

=(1− q∗1(v1))

{
[1− F (−ψ(v1)|q∗1(v1))]ψ(v1)− v1

+
∫ +∞
−ψ(v1)

v2F (dv2|q∗1(v1))

}

+

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx

E[v2]=0
= (1− q∗1(v1))

{
[1− F (−ψ(v1)|q∗1(v1))]ψ(v1)− v1

−
∫ −ψ(v1)

−∞ v2F (dv2|q∗1(v1))

}

+

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx

Lemma 7
= (1− q∗1(v1))

{
[1− F (−ψ(v1)|q∗1(v1))]ψ(v1)− v1

+ψ(v1)F (−ψ(v1)|q∗1(v1)) +
∫ −ψ(v1)

−∞ F (v2|q∗1(v1)) dv2

}

+

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx
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=(1− q∗1(v1))

[ ∫ −ψ(v1)

−∞
F (v2|q∗1(v1)) dv2 −

1−G(v1)

g(v1)

]
+

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx.

Thus,

t∗(v1, v2) =

{
(1− q∗1(v1))p∗2(v1) + p∗1(v1), if ψ(v1) + v2 ≥ 0,

p∗1(v1), otherwise,

where

p∗1(v1) = −π̃(v1,−ψ(v1),−ψ(v1)) = (1− q∗1(v1))[

∫ −ψ(v1)

−∞
F (v2|q∗1(v1)) dv2 −

1−G(v1)

g(v1)
]

+

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx

and p∗2(v1) = 1−G(v1)
g(v1)

. �

A.7 Proof of Proposition 1

We need to show that the buyer has the incentive to follow the “recommendation” that
for each v1 ∈ [0, 1], (i) if type-v1 buyer chooses the option contract {p∗1(v1), q∗1(v1); p∗2(v1)},
he should buy the remaining 1 − q∗1(v1) portion in the second stage if and only if v1 +
v2 ≥ p∗2(v1); (ii) type-v1 buyer should find it optimal to choose the option contract
{p∗1(v1), q∗1(v1); p∗2(v1)}. The verification of (i) is trivial. Thus, we only need to establish
(ii) in this proof.

As we have defined in the text,

w(q1, p2, v1) = q1v1 +

∫ +∞

p2−v1
(v1 + v2 − p2)(1− q1)F (dv2|q1).

If type-v1 buyer chooses the contract {p∗1(r1), q∗1(r1); p∗2(r1)} for some r1, he will buy the
remaining 1− q∗1(r1) portion in the second stage if and only if v1 + v2 ≥ p∗2(r1); that is,
v2 ≥ −v1 + p∗2(r1). Hence, his expected utility when selecting {p∗1(r1), q∗1(r1); p∗2(r1)} and
following the optimal second-stage strategy is given by

U(v1, r1) = w(q∗1(r1), p∗2(r1), v1)− p∗1(r1).

Our goal is to show that ∆(v1, r1) ≡ U(v1, v1)− U(v1, r1) ≥ 0, for any v1, r1 ∈ [0, 1].

To this end, notice that

w3(q1, p2, v1) = 1− (1− q1)F (p2 − v1|q1) ≥ 0. (18)

By the construction of option contracts, it is easy to verify that when the type-v1

buyer chooses the contract {p∗1(v1), q∗1(v1); p∗2(v1)}, his expected utility U(v1, v1) can be
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expressed as the form in (17). Therefore, we have

dU(v1, v1)

dv1

= 1− (1− q∗1(v1))F (−ψ(v1)|q∗1(v1))
(18)
= w3(q∗1(v1), p∗2(v1), v1). (19)

For any v1 and r1 ∈ [0, 1], ∆(v1, r1) ≡ U(v1, v1)− U(v1, r1) is further equal to

U(v1, v1)− U(r1, r1) + U(r1, r1)− U(v1, r1)

=U(v1, v1)− U(r1, r1) + [w(q∗1(r1), p∗2(r1), r1)− p∗1(r1)]− [w(q∗1(r1), p∗2(r1), v1)− p∗1(r1)]

(19)
=

∫ v1

r1

w3(q∗1(s), p∗2(s), s) ds+ w(q∗1(r1), p∗2(r1), r1)− w(q∗1(r1), p∗2(r1), v1)

=

∫ v1

r1

[w3(q∗1(s), p∗2(s), s)− w3(q∗1(r1), p∗2(r1), s)] ds

=

∫ v1

r1

∫ s

r1

[
w31(q∗1(x), p∗2(x), s)q∗1

′(x) + w32(q∗1(x), p∗2(x), s)p∗2
′(x)
]

dx ds

=

∫ v1

r1

∫ v1

x

[
w31(q∗1(x), p∗2(x), s)q∗1

′(x) + w32(q∗1(x), p∗2(x), s)p∗2
′(x)
]

ds dx,

where the third and the fourth equalities follow from the fundamental theorem of calculus
and the last equality interchanges the order of integration.

Since p∗2
′(x) ≤ 0 and w32(q∗1(x), p∗2(x), s) ≤ 0 for all x, s ∈ [0, 1], to establish

∆(v1, r1) ≥ 0, it suffices to show that∫ v1

r1

∫ v1

x

w31(q∗1(x), p∗2(x), s)q∗1
′(x) ds dx ≥ 0.

Notice that∫ v1

x

w31(q∗1(x), p∗2(x), s) ds
(18)
=

∫ v1

x

∂[1− (1− q∗1(x))F (p∗2(x)− s|q∗1(x))]

∂q∗1(x)
ds

(12)
= −

∫ v1

x

ξ(p∗2(x)− s, q∗1(x)) ds

=

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy,

where the last equality follows the definition of p∗2(x) and the change of variable y =
1−G(x)
g(x)

− s = x− s− ψ(x). Hence, to show ∆(v1, r1) ≥ 0, it suffices to show∫ v1

r1

q∗1
′(x)

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy dx ≥ 0. (20)

Now we discuss two cases and show that in both cases expression (20) holds; therefore
∆(v1, r1) ≥ 0.

Case 1: for r1 ≥ v1 and x ∈ [v1, r1], we must have −ψ(x) ≤ x− v1 − ψ(x).
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If x is such that q∗1(x) = 0, it has been established that q∗1
′(x) = 0. Thus,

q∗1
′(x)

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy = 0.

If x is such that q∗1(x) > 0, by (15), ξ(−ψ(x), q∗1(x)) < 0. Assumption 1 implies that
ξ(y, q∗1(x)) < 0 for any y ≥ −ψ(x). Also, notice that q∗1

′(x) ≥ 0. Thus,

q∗1
′(x)

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy ≤ 0.

Since r1 ≥ v1, expression (20) holds.

Case 2: for r1 ≤ v1 and x ∈ [r1, v1], we have −ψ(x) ≥ x− v1 − ψ(x).

If x is such that q∗1(x) = 0, again,

q∗1
′(x)

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy = 0.

If x is such that q∗1(x) > 0 and ξ(x−v1−ψ(x), q∗1(x)) ≤ 0, then Assumption 1 implies
that ξ(y, q∗1(x)) ≤ 0 for any y ≥ x− v1 − ψ(x), which further implies that

q∗1
′(x)

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy ≥ 0.

If x is such that q∗1(x) > 0 and ξ(x−v1−ψ(x), q∗1(x)) > 0, then Assumption 1 implies
that ξ(y, q∗1(x)) ≥ 0 for any y ≤ x−v1−ψ(x). Since q∗1(x) > 0, from (13), the optimality

of q∗1(x) requires
∫ −ψ(x)

−∞ ξ(y, q∗1(x)) dy = 0. It then follows that

0 =

∫ −ψ(x)

−∞
ξ(y, q∗1(x)) dy =

∫ x−v1−ψ(x)

−∞
ξ(y, q∗1(x)) dy︸ ︷︷ ︸
≥0

+

∫ −ψ(x)

x−v1−ψ(x)

ξ(y, q∗1(x)) dy,

which implies that
∫ −ψ(x)

x−v1−ψ(x)
ξ(y, q∗1(x)) dy ≤ 0, i.e.,

q∗1
′(x)

∫ x−v1−ψ(x)

−ψ(x)

ξ(y, q∗1(x)) dy ≥ 0.

Expression (20) holds again, since r1 ≤ v1.

In both Cases 1 and 2, we conclude that ∆(v1, r1) ≥ 0. This completes the proof. �
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A.8 Proof of Lemma 6

For (i), notice that for v1 < ṽ1, q∗1(v1) = 0. In this case, F (·|0) degenerates to a mass
at 0 and with probability one ψ(v1) + v2 = ψ(v1) < 0, where the inequality follows from
Lemma 3. As a result,

p∗1(v1) =

∫ −ψ(v1)

−∞
F (v2|0) dv2 −

1−G(v1)

g(v1)
+

∫ v1

0

F (−ψ(x)|0) dx

= −ψ(v1)− 1−G(v1)

g(v1)
+ v1

= 0. (21)

By Lemma 3, there is no consumption in both stages when v1 ∈ [0, ṽ1). Then by Lemma
5, when v1 < ṽ1,

t∗(v1, 0) = p∗1(v1) = 0.

For (ii), when v1 ∈ [ṽ1, 1],

p∗′1 (v1) =− ψ′(v1)(1− q∗1(v1))F (−ψ(v1)|q∗1(v1))

+ q∗′1 (v1)

∫ −ψ(v1)

−∞

∂(1− q∗1(v1))F (v2|q∗1(v1))

∂q∗1(v1)
dv2︸ ︷︷ ︸

=0 by (13)

− (1− q∗1(v1))(
1−G(v1)

g(v1)
)′ + q∗′1 (v1)

1−G(v1)

g(v1)

+ (1− q∗1(v1))F (−ψ(v1)|q∗1(v1))

=q∗′1 (v1)
1−G(v1)

g(v1)
− (1− q∗1(v1))(1− F (−ψ(v1)|q∗1(v1)))(

1−G(v1)

g(v1)
)′.

Recall that for v1 ∈ [ṽ1, 1], q∗′1 (v1) > 0, 1−G(v1)
g(v1)

≥ 0 with strict inequality when v1 ∈ [ṽ1, 1),

and (1−G(v1)
g(v1)

)′ < 0 (Assumption 2). It can be seen that p∗′1 (v1) ≥ 0 with strict inequality

when v1 ∈ [ṽ1, 1). Hence, p∗1 is strictly increasing on [ṽ1, 1].

It is easy to see that Π(0, ṽ1) = Π(q∗1(ṽ1), ṽ1). As a result,∫ −ψ(ṽ1)

−∞
F (x|0) dx = (1− q∗1(ṽ1))

∫ −ψ(ṽ1)

−∞
F (x|q∗1(ṽ1)) dx,

which, jointly with Lemma 5, implies that

p∗1(ṽ1) =

∫ −ψ(ṽ1)

−∞
F (x|0) dx− (1− q∗1(ṽ1))

1−G(ṽ1)

g(ṽ1)
+

∫ ṽ1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx

=− ψ(ṽ1)− (1− q∗1(ṽ1))
1−G(ṽ1)

g(ṽ1)
+ ṽ1 = q∗1(ṽ1)

1−G(ṽ1)

g(ṽ1)
.

For (iii), the result follows directly from Assumption 2.
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For (iv), when v1 < ṽ1, q∗1(v1) = 0,

p∗1(v1)︸ ︷︷ ︸
=0 by (21)

+ p∗2(v1)(1− q∗1(v1)) = p∗2(v1) =
1−G(v1)

g(v1)
,

which is strictly decreasing in v1.

Plugging in the expressions of p∗1 and p∗2, we have that

p∗1(v1) + p∗2(v1)(1− q∗1(v1))

=(1− q∗1(v1))

∫ −ψ(v1)

−∞
F (v2|q∗1(v1)) dv2 +

∫ v1

0

(1− q∗1(x))F (−ψ(x)|q∗1(x)) dx.

For v1 ≥ ṽ1, since (8) applies, the derivative of the above expression with respect to v1 is

(1− q∗1(v1))F (−ψ(v1)|q∗1(v1)) · (1−G(v1)

g(v1)
)′ < 0.

For (v), the expected payment of any type v1 is given by

p∗1(v1) + p∗2(v1)(1− q∗1(v1))(1− F (−ψ(v1)|q∗1(v1)))

=p∗1(v1) + p∗2(v1)(1− q∗1(v1))− p∗2(v1)(1− q∗1(v1))F (−ψ(v1)|q∗1(v1)).

For v1 ∈ [0, ṽ1), p∗1(v1) = 0 and F (−ψ(v1)|q∗1(v1)) = F (−ψ(v1)|0) = 1 (since ṽ1 < v∗1).
Thus, the expected payment of v1 ∈ [0, ṽ1) is equal to zero. For v1 ∈ [ṽ1, 1], the derivative
of the above expression with respect to v1 is

(1− q∗1(v1))F (−ψ(v1)|q∗1(v1)) · (1−G(v1)

g(v1)
)′ −

(1−G(v1)

g(v1)
(1− q∗1(v1))F (−ψ(v1)|q∗1(v1))

)′
=− 1−G(v1)

g(v1)

(
(1− q∗1(v1))F (−ψ(v1)|q∗1(v1))

)′
=− 1−G(v1)

g(v1)

(
−ψ′(v1)︸ ︷︷ ︸

<0

(1− q∗1(v1))f(−ψ(v1)|q∗1(v1)) + ξ(−ψ(v1), q∗1(v1))︸ ︷︷ ︸ q∗1 ′(v1)

<0 by (14)

)
> 0.

The proof completes. �

A.9 Proof of the claim in Section 4.4

Rotation order. Note that

∂F (v2|q1)

∂q1

=
∂
∫ v2

q1
−∞

1√
2π
e−

s2

2 ds

∂q1

= −v2

q2
1

1√
2π
e
− v22

2q21 .
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It is clear that F satisfies the rotation order, as

∂F (v2|q1)

∂q1


> 0, when v2 < 0;

= 0, when v2 = 0;

< 0, when v2 > 0.

Assumption 1. By Remark 1, it suffices to show that F (v2|q1)/f(v2|q1) is increasing

in v2 and ∂F (v2|q1)
∂q1

/f(v2|q1) is decreasing in v2. The latter is straightforward as

∂F (v2|q1)

∂q1

/f(v2|q1) =

(
−v2

q2
1

1√
2π
e
− v22

2q21

)
/

(
1

q1

√
2π
e
− v22

2q21

)
= −v2

q1

.

To show that F (v2|q1)/f(v2|q1) is increasing in v2, note that

F (v2|q1)/f(v2|q1) =

(∫ v2
q1

−∞

1√
2π
e−

s2

2 ds

)
/

(
1

q1

√
2π
e
− v22

2q21

)
.

By changing variables as x = v2
q1

, one needs to show that ϕ(x) =
(∫ x
−∞ e

− s2

2 ds
)
e

x2

2 is

increasing in x. We have that

ϕ′(x) = 1 +

(∫ x

−∞
e−

s2

2 ds

)
e

x2

2 x = e
x2

2

(
e−

x2

2 + x

∫ x

−∞
e−

s2

2 ds

)
.

When x→ −∞, e−
x2

2 → 0, and x
∫ x
−∞ e

− s2

2 ds→ 0 by L’Hôspital’s rule. In addition,(
e−

x2

2 + x

∫ x

−∞
e−

s2

2 ds

)′
=

∫ x

−∞
e−

s2

2 ds > 0.

Thus, ϕ′(x) ≥ 0 and ϕ(x) is increasing, which implies that Assumption 1 holds.

Assumption 2. It is clear that 1−G(v1)
g(v1)

= 1 − v1 is decreasing, implying that
Assumption 2 holds.

Monotonicity ; global IC. Finally, we show that (q̂1, q̂2) cannot be the allocation
rule in an incentive-compatible mechanism. Suppose that the claim does not hold. Then
there exists some t̂ such that (q̂1, q̂2, t̂) is IC in both stages. We abuse the notation a
bit by still using U(v1, r1) to denote the buyer’s utility with the first-stage type v1 and
report r1.

By Lemma 2, for v1 ≥ 1
2
,

U(v1, v1) =

∫ v1

0

[
q̂1(s) +

∫ +∞

−∞
q̂2(s, v2)F (dv2|q̂1(s))

]
ds

=

∫ v1

0

[
q̂1(s) +

∫ +∞

−ψ(s)

(1− q̂1(s))F (dv2|q̂1(s))

]
ds
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=

∫ v1

0

[
q̂1(s) + (1− q̂1(s))(1− F (−ψ(s)|q̂1(s))

]
ds

=

∫ v1

0

[
1−H

(
− 1

ψ(s)

)
(1− ψ2(s))

]
ds,

where the last equality holds since F (v1|q1) = H(v1
q1

). On the other hand,

U(v1, v1) = q̂1(v1)v1 +

∫ +∞

−ψ(v1)

(1− q̂1(v1))(v1 + v2)F (dv2|q̂1(v1))− T̂ (v1),

where

T̂ (v1) =

∫ +∞

−∞
t̂(v1, v2)F (dv2|q̂1(v1)).

Then we have

U(v1, r1) = q̂1(r1)v1 +

∫ +∞

−ψ(r1)

(1− q̂1(r1))(v1 + v2)F (dv2|q̂1(r1))− T̂ (r1)

= q̂1(r1)v1 +

∫ +∞

−ψ(r1)

(1− q̂1(r1))(v1 + v2)F (dv2|q̂1(r1))

+ U(r1, r1)− q̂1(r1)r1 −
∫ +∞

−ψ(r1)

(1− q̂1(r1))(r1 + v2)F (dv2|q̂1(r1))

= U(r1, r1) + q̂1(r1)(v1 − r1) + (1− q̂1(r1))(v1 − r1)

(
1−H

(
− 1

ψ(r1)

))
= U(r1, r1) + (v1 − r1)− (1− ψ2(r1))(v1 − r1)H

(
− 1

ψ(r1)

)
.

By simple algebra,
U(v1, v1) ≥ U(v1, r1) ⇐⇒∫ v1

r1

H

(
− 1

ψ(s)

)
(1− ψ2(s)) ds ≤ (v1 − r1)H

(
− 1

ψ(r1)

)
(1− ψ2(r1)),

which may not be always true. We observe that H(− 1
x
)(1 − x2) ≥ 0 for x ∈ [0, 1],

converges to 0 when either x→ 0 or x→ 1. Thus, there must be an open set (a1, a2) ⊆
[0, 1] such that H(− 1

x
)(1− x2) is strictly increasing on (a1, a2). Pick r1 and v1 such that

a1 < ψ(r1) < ψ(v1) < a2. Then for any s ∈ (r1, v1],

H

(
− 1

ψ(s)

)
(1− ψ2(s)) > H

(
− 1

ψ(r1)

)
(1− ψ2(r1)),

which implies that U(v1, v1) < U(v1, r1). This is a contraction. �
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