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Abstract

We consider mechanism design environments in which agents commonly believe that others’
types are identically distributed, but we do not assume that the actual distribution is common
knowledge, nor that it is known to the designer. Under these assumptions, we study partial
and full implementation questions. First, we characterize the transfers which are incentive
compatible under these assumptions, and provide necessary and sufficient conditions for partial
implementation. Second, we characterize the conditions under which full implementation is
possible via direct mechanisms, and the transfer schemes which achieve it whenever possible.
The latter results are obtained from showing that the full implementation problem in our
setting can be transformed into one of designing a network of strategic externalities, subject
to suitable constraints which are dictated by the incentive compatibility requirements.
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1 Introduction

Many economic models assume that agents believe that the types of others are drawn from the same
distribution. This is a natural way to represent situations in which agents regard their opponents
as ex-ante symmetric from an informational viewpoint, or more broadly that they come from a
common population of ‘types’. Standard modeling techniques, however, not only impose that the
distribution of types is identical across agents, but also that it is common knowledge among them
– and, in mechanism design, also known to the designer. But if identicality is a natural way to
capture a basic qualitative property of these environments, common knowledge of the distribution is
∗Earlier versions of this paper circulated under the title “Implementation via Transfers with Identical but Un-

known Distributions”. We are grateful to Pierpaolo Battigalli, Eddie Dekel, Philippe Jehiel, George Mailath, and
Rakesh Vohra for their comments. We also thank seminar audiences at Yale, LSE, Bocconi, Caltech, MIT-Harvard,
Michigan, Oxford, Carnegie-Mellon, Penn State, Univ. of Edinburgh, Bar-Ilan Univ, Tel-Aviv Univ., Hebrew Uni. of
Jerusalem, ICEF (Moscow), and participants to the 2020.1 World Congress of the Game Theory Society (Budapest),
the 2019 Warwick Economic Theory Workshop (Warwick Univ.) the Workshop on New Directions in Mechanism
Design (Stony Brook, 2019), and the Canadian Economic Theory Conference. The BSE benefited from the finan-
cial support of the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for
Centres of Excellence in R&D (CEX2019-000915-S). Antonio Penta also acknowledges the financial support of the
European Research Council (ERC), ERC Starting Grant #759424.
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a different kind of assumption: not only is it strong and unlikely to be satisfied; it is also well-known
to heavily affect the results. Inspired by Wilson (1987)’s call for a “[...] repeated weakening of
common knowledge assumptions [...]”, and in the spirit of the robust mechanism design literature,1

in this paper we explore questions of partial and full implementation under the assumption that
agents commonly believe that others’ types are identically distributed, but without assuming that
the distribution of types is commonly known, or that it is known to the designer. We will refer
to this assumption as ‘common belief in identicality’, and to the restrictions it entails on agents
beliefs as the Bid-restrictions.

We focus on general environments in which a finite number of agents, i ∈ I, have preferences
over allocations (labeled by x) and a private good, ‘money’. As it is standard in the mechanism
design literature, we assume that preferences are quasi-linear in the latter and that each agent i
has private information (labeled by θi). The designer wishes to choose an allocation x, depending
on agents’ preferences over outcomes, and hence the desired allocation is a function of the realized
vector of types, θ. The designer’s problem is thus to make the agents willing to reveal their types, so
as to implement the desired allocation. We allow for general interdependence in agents’ valuations,
and hence an agent’s preference over outcomes may depend not only on his own type, but also on
others’ types. The main restrictions we impose are that types are one-dimensional, and that both
the valuations and the allocation rules are twice differentiable. For example, x may denote the
quantity of a public good, and the designer may wish to induce the efficient level of provision, that
equalizes the marginal cost of production with the sum of the agents’ marginal utilities. These
marginal utilities may depend on the agent’s own type, θi, as well as on the others’ types, θ−i, and
the more an agent’s marginal utility for the public good depends on others’ types, the stronger the
level of preference interdependence among the agents.

In order to implement the desired decision rule, we assume that the social planner can resort to
transfer schemes that only elicit agents’ information about preferences: for each profile of reports
by the agent, the planner chooses the allocation that corresponds to the desired decision, treating
the reported types as if they were true, and the transfer scheme determines how much each agent
should pay or receive, as a function of everyone’s reports. The implementation question is thus
whether such transfers can be designed so that agents find it in their interest to report their
types truthfully. For partial Bid-implementation, this means that truthful revelation must be a
mutual best response for all beliefs that the agents may hold about others’ types, given the Bid-
restrictions (Bid-incentive compatibility). Full Bid-implementation instead requires that truthful
revelation be the only rationalizable solution under common belief in identicality.2 For each notion
of implementation, we identify the transfer schemes that achieve it whenever possible, and the
conditions on the environment under which partial and full Bid-implementation are possible.

We start our analysis with the introduction of the canonical transfers (cf. Ollár and Penta
(2017)). These are the transfers that one is bound to use if truthful revelation is required to be
an ex-post equilibrium (so called ex-post incentive compatibility), and hence they characterize the

1The robust mechanism design literature was spurred by the seminal works in belief-free settings by Bergemann
and Morris (2005, 2009a,b, 2011) for static mechanisms, followed by Müller (2016, 2020) and Penta (2015) for
dynamic ones. Settings with partial belief restrictions have been studied, for instance, by Lopomo et al. (2011),
Artermov et al. (2013), and Ollár and Penta (2017, 2022).

2The solution concept we adopt, Bid-rationalizability, is a special case of Battigalli and Siniscalchi (2003)’s ∆-
rationalizability. Besides the papers cited in the previous footnote, special version of ∆-rationalizability have also
been used in implementation theory by Oury and Tercieux (2012) and Kunimoto, Saran and Serrano (2021).
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possibility of achieving partial implementation in belief-free settings (cf. Bergemann and Morris
(2005)). For instance, if the designer wishes to implement the efficient allocation rule, then the
canonical transfers coincide with the generalized Vickrey-Clarke-Groves (VCG) mechanism.

Our first result shows that, when only common belief of identicality is maintained, partial
implementation is possible if and only if it can be achieved by the canonical transfers (Theorem 1).
This, however, is not to say that partial Bid-implementation is as demanding as ex-post incentive
compatibility: as we will explan, there may be environments in which the first is possible, but not
the second; and when it is possible, the set of Bid-incentive compatible transfers is strictly larger
than those (if any) that are incentive compatible in the ex-post sense. Nevertheless, in order to
check whether partial implementation is possible or not, under common belief in identicality it is
enough to check whether the canonical transfers are incentive compatible.

Theorem 1 has further important implications. First, necessary and sufficient conditions for
partial Bid-implementation can be promptly obtained from studying the properties of the payoff
functions induced by the canonical transfers at the truthful profile. Thus, for instance, in single-
crossing environments in which agents’ marginal utility for x increases linearly with own type,
partial implementation is possible if and only if the allocation rule is increasing in expectation, for
all beliefs consistent with the Bid-restrictions. Hence, compared to the belief-free settings, while the
extra-information about beliefs cannot be used to better screen types via an alternative design of
transfers (by Theorem 1, the canonical transfers are still without loss of generality under common
belief in identicality), it does relax the constraints on the allocation rule (which, for instance, may
be increasing in expectation but not in the ex-post sense). Second, we show that a result analogous
to Myerson’s Revenue Equivalence Theorem holds in our setting: for any agent, and for any beliefs
that are consistent with the Bid-restrictions, the expected payments as a function of one’s own
type are unique within the class of Bid-incentive compatible transfers, up to an additive constant.

We move next to the analysis of full implementation, which is the main focus of the paper.
Since full Bid-implementation requires that truthful revelation be the only rationalizable solution
under common belief in identicality, strict Bid-incentive compatibility is necessary for full Bid-
implementation. Therefore, compared to partial Bid-implementation, the extra desideratum is a
uniqueness result, and that is the core of our analysis. As we show, this depends crucially on
the strategic externalities that are induced by a mechanism, that is on how agents’ best responses
are affected by the reports of the others. Letting t denote an arbitrary Bid-incentive compatible
transfer scheme, and (U ti (m, θ))i∈I the profile of payoffs functions that it induces (as a function of
everyone’s types θ and reports m), such strategic externalities are captured by the second-order
derivatives of (U ti )i∈I with respect to mi and mj . These cross derivatives, once normalized by
the second-order derivative with respect to mi, can be suitably arranged into a matrix of strategic
externalities, which turns out to be all that matters for the uniqueness result. In particular,
for environments that satisfy a standard single-crossing and a public-concavity condition (SC-PC
environments), and for transfer schemes that are quadratic in the agents’ reports, we show that a
Bid-incentive compatible transfer scheme also achieves full Bid-implementation if and only if the
spectral radius of the associated matrix of strategic externalities is less than one.3

3The spectral radius of a matrix is the largest absolute value of its eigenvalues. The case of SC-PC environments
and quadratic transfers, which we discuss here, provides the easiest-to-read conditions for uniqueness. Outside of
these settings, there is a gap between the necessity and sufficiency. The general conditions we provide in Lemma 1
are based on the spectral radii of an upper and lower-bound of the strategic externality matrix. In SC-PC settings
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For the canonical transfers, for instance, the strategic externality matrix mirrors the preference
interdependence in the environment, and the spectral radius condition is satisfied only if such
interdependence is weak enough (i.e., if the environment is close enough to private values). For
other transfers, however, this need not be the case: the spectral radius condition can be met, even
if preference externalities are strong. Whether full Bid-implementation can be achieved therefore
depends on whether there exist Bid-incentive compatible transfers that satisfy the spectral radius
condition. Thus, we must first understand the restrictions that Bid-incentive compatibility puts on
the matrix of strategic externalities. As we show, a transfer scheme is Bid-incentive compatible only
if the associated matrix of strategic externalities preserves the same row-sums as those induced
by the canonical transfers, which in turn are pegged to the preference interdependence in the
environment. In this sense, under common belief in identicality, in order to pursue uniqueness and
full implementation, the designer may only pursue a redistribution of the strategic externalities,
which in the aggregate must reflect the overall level of preference interdependence.

With the results above, the goal of identifying the transfer scheme that achieves full Bid-
implementation whenever possible, translates into the problem of minimizing the spectral radius
of a matrix of externalities, subject to preserving the same row-sums as the matrix of strategic
externalities associated with the canonical transfers.4 This is equivalent to a network design
problem, in which nodes represent agents, and flows on the directed edges represent the strategic
externalities, which can be designed in order to minimize the spectral radius, up to an inflow
constraint on each node. We find that the transfers that solve this problem induce a mechanism
that features a stark hierarchical structure: besides preserving, for each player, the total level
of strategic externalities, these transfers load them all on the opponent who displays the lowest
amount of preference interdependence. The strategic externalities associated with such loading
transfers are thus described by a star network whose center is the agent with the lowest level
of total preference interdependence. In this star network, each node has one incoming edge;
externalities flow to the peripheral nodes only from the center, and to the center only from the
node with the second-lowest level of preference interdependence.

The structure of the loading transfers enables us to uncover a fairly surprising result: the possi-
bility of full Bid-implementation is characterized by the strength of the preference interdependence
of the two agents for whom it is smallest, regardless of the number of the other agents, and of their
preferences. At the extreme, whenever an environment includes one agent with private values,
common belief in identicality ensures that full implementation is possible via a simple direct mech-
anism. Besides depicting a much more permissive picture for full implementation than Bergemann
and Morris (2009a)’s belief-free benchmark (which, in light of the weakness of the identicality
assumption and of the results on partial implementation we discussed earlier, may perhaps strike
as surprising), this characterization has potentially powerful implications from a broader market
design perspective, which will be discussed in the conclusions.

with quadratic transfers, these two bounds coincide. In Section 4.1 we discuss the connections of our conditions
with the global stability of linear dynamical systems.

4A different characterization of economic concepts, based on the spectral radius of the matrix of payoff external-
ities, is provided by Elliott and Golub (2019), in the context of efficiency with public goods.
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2 Framework

Preferences, Types, and Allocation Rules. We consider environments with transferable
utility with a finite set of agents I = {1, ..., n}, in which the space of allocations X is a compact
and convex subset of a Euclidean space.

Agents privately observe their payoff types θi ∈ Θi := [θ, θ] ⊆ R, drawn from a closed interval
on the real line, which we assume is common to all agents (the latter assumption is inherent to
our main question, which is to study the assumption of identical distributions). We adopt the
standard notation θ−i ∈ Θ−i = ×j 6=iΘj and θ ∈ Θ = ×i∈IΘi for profiles. Agent i’s valuation
function is vi : X×Θ→ R, assumed twice continuously differentiable, and we let ti ∈ R denote the
private transfer to agent i: for each outcome (x, θ, (ti)i∈I), i’s utility is equal to vi (x, θ) + ti. The
tuple

〈
I, (Θi, vi)i∈I

〉
is common knowledge among the agents. If vi is constant in θ−i for every i,

then the environment has private values. If not, it has interdependent values.
An allocation rule is a mapping d : Θ → X which assigns to each payoff state the allocation

that the designer wishes to implement. We focus on allocation rules that are twice continuously
differentiable and responsive, in the sense that for all i and θi 6= θ′i, there exists θ−i ∈ Θ−i such
that d (θi, θ−i) 6= d (θ′i, θ−i) (see, e.g., Bergemann and Morris (2009a)).

The model accommodates general externalities in consumption, including both pure cases of
private and public divisible goods. The main substantive restrictions are the one-dimensionality
of types, and the smoothness of the allocation function. We will use the notation ∂f/∂x for all
derivatives, with the understanding that when X is multidimensional, ∂vi∂x (x, θ) and ∂d

∂θi
(θ) denote

the vectors of partial derivatives and ∂vi
∂x (x, θ) · ∂d∂θi (θ) denotes their inner product.

Beliefs. We assume that agents commonly know that they each regard the types of the
opponents to be identically distributed, but they do not necessarily know (or agree on) the actual
distribution, which importantly is unknown to the designer. Hence, for each type θi, the designer
regards many beliefs Bidθi ⊆ ∆ (Θ−i) as possible for type θi, namely all those which are consistent
with the idea that the opponents’ types are identically distributed.5 Formally, the designer’s
assumptions about beliefs is represented by belief restrictions Bid = ((Bidθi )θi∈Θi)i∈I , assumed
common knowledge, such that:6

Bidθi = {bθi ∈ ∆ (Θ−i) : marg
Θj

bθi = marg
Θk

bθi for all j, k 6= i} for all i and θi. (1)

These belief restrictions entail weaker assumptions on agents’ beliefs than many standard
models in more applied theory and in empirical work. The belief restrictions in (1) are weaker,
for example, than assuming: (i) a joint distribution with identical marginals over agents’ types;
(ii) a joint distribution with exchangeable random variables; (iv) known independent and identical
distributions across agents (as in standard common prior i.i.d. environments); (v) independent and
identical but unknown distributions; (vi) unobserved heterogeneity but symmetrically distributed

5For a measurable set E, ∆ (E) denotes the set of probability measures on its Borel σ-algebra.
6The notion of a belief restriction is introduced by Ollár and Penta (2017) to model general restrictions on

agents’ beliefs: a belief restriction is a commonly known collection B = ((Bθi )θi∈Θi )i∈I such that Bθi ⊆ ∆ (Θ−i)
is non-empty and convex for all i and θi, and Bi : θi → Bθi ⊆ ∆ (Θ−i) is continuous for every i. As discussed
in Ollár and Penta (2017), special cases of interest include (i) standard Bayesian environments, in which Bθi is a
singleton for all θi and i; (ii) common prior environments, in which ∃p ∈ ∆ (Θ) such that Bθi = {p (·|θi)} for all i
and θi; (iii) belief-free environments, in which Bθi = ∆ (Θ−i) for all i and θi.
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values; (vi) environments with pure common values in which the state of the world is unknown to
the designer, but commonly known by the agents; etc. For instance, a type θi may subjectively
believe that others’ types are i.i.d. according to some distribution, whereas a different type θ′i
may believe that they are perfectly correlated (note that both such beliefs satisfy the marginality
condition in (1)). Different types of agent imay thus entertain different beliefs about the opponents,
which may or may not assume that types are i.i.d. across the opponents. However, the only thing
that any of i’s types know about others’ beliefs (as well as the only thing that the designer knows
about them), is that they must satisfy the marginality condition. Hence, our belief restrictions
entail a very weak level of common knowledge in the environment.

Mechanisms. We consider direct mechanisms, in which agents report their payoff types and
the allocation is chosen according to d. A direct mechanism is thus uniquely determined by a
transfer scheme t = (ti)i∈I , where ti : M → R is twice differentiable and specifies the transfer
to each agent i, for all profiles of reports m ∈ Θ. (To distinguish the report from the state, we
maintain the notation mi even though the message spaces are Mi = Θi.) Any transfer scheme
induces a game with ex-post payoff functions U ti (m; θ) = vi (d(m), θ) + ti (m). When the transfers
are clear from the context, we don’t emphasize the dependence of the payoff functions on t, and
simply write Ui (m; θ). For the analysis of partial implementation, in which each agent expects
his opponents to report truthfully, the following notation will be useful: For any θi, bθi ∈ ∆ (Θ−i)
and mi, we let Ebθi (Ui (mi, θ−i; θi, θ−i))) :=

∫
Θ−i Ui (mi, θ−i; θi, θ−i) dbθi . For full implementation

instead we will also consider other (non-truthful) reporting strategies for the opponents, and also
use the following notation: For every θi ∈ Θi, µ ∈ ∆ (M−i ×Θ−i) andmi ∈Mi, we let EUµθi (mi) =∫
M−i×Θ−i Ui (mi,m−i; θi, θ−i) dµ denote agent i’s expected payoff from message mi, if i’s type is
θi and his conjectures are µ, and define BRθi (µ) := arg maxmi∈Mi EU

µ
θi

(mi).

2.1 Leading Examples and Preview of Results

In this section we provide some examples to illustrate the key ideas of the paper and their con-
nection with the previous literature. The examples are all based on the following environment:
There are three agents, {1, 2, 3}, with preferences over the quantity x ∈ R+ of public good such
that vi (x, θ) = (θi + γijθj + γikθk)x for all i, j 6= i and k 6= i, j. Types θi ∈ [0, 1] are private
information to each agent i, and γ = ((γij)j 6=i)i=1,2,3 ∈ R6 are the parameters of preference in-
terdependence. For instance, the public good in question could be quantity of public amenities in
a city, and each agent’s valuation for such a public good depends on both their own extroversion
score, θi, as well as on others’ (for references on the extroversion scale and other personality traits,
and their use in economics, see e.g. Becker et al. (2012)). The effect of others’ extroversion
on one’s own valuation, however, may vary – e.g., j’s extroversion may have a larger effect than
k’s on the valuation of agent i (i.e., γij > γik), for instance because i is more likely to interact
with j-types than with k-types (e.g., based on their geographic location within the city). In this
context, the commonly known γ parameters represent how much the valuation of agents from
different neighborhoods depend on the extroversion of individuals’ from other neighborhoods. The
Bid-restrictions instead reflect the idea that extroversion (which is private information, and hence
unobservable to others as well as to the designer) is commonly believed to be identically distributed
across the (observable) neighborhoods, although agents from different neighborhoods or different
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types from each neighborhood may differ in their beliefs about such a distribution.
The designer wishes to implement the efficient allocation rule. With production costs c (x) =

x2/2, the efficient decision rule is d (θ) =
∑3
i=1 κiθi, where κi ≡ 1 + γji + γki for all i, which we

assume positive. Given this environment, we consider three sets of assumptions on agents’ beliefs:
(i) a belief-free setting, (ii) a standard common prior environment, and (iii) a setting in which only
common belief in identicality is maintained. Our paper focuses on the latter environment, which
will be discussed in Example 1.3. It is instructive, however, to first go over the examples about
the belief-free and i.i.d. common prior benchmarks.

Belief-Free Implementation. If the designer has no information about agents’ beliefs, or if he
wishes to achieve implementation without relying on any belief restriction, then only the generalized
VCG mechanism can be used (cf. Bergemann and Morris (2009a)).

Example 1.1 (Belief-free Implementation.). In our example, the VCG transfers are the following:

t∗i (m) = −κi
(
0.5m2

i +mi (γijmj + γikmk)
)
.

Given this, as long as κi > 0 for all i, for any profile (θ−i,m−i) of opponents’ types and reports,
the ex-post best-reply function for type θi of player i is

BR∗θi (θ−i,m−i) = proj[0,1]

(
θi +

∑
j 6=i

γij (θj −mj)
)
.7

Observe that, regardless of what γ is, for any realization of θ, truthful revelation (mi (θi) = θi)
is a best response to the opponent’s truthful strategy (mj (θj) = θj). This is the well-known
ex-post incentive compatibility of the VCG mechanism. Partial implementation of the efficient
allocation is thus guaranteed independent of agents’ beliefs. Furthermore, if

∑
j 6=i |γij | < 1 for all

i ∈ I, then the equation above is a contraction, and its iteration delivers truthful revelation as
the only rationalizable strategy. In this case, the VCG mechanism also guarantees full belief-free
implementation. Full implementation, however, is only possible if the preference interdependence
is ‘small’. For instance, suppose that preference parameters are such that

(γ12, γ13, γ21, γ2,3, γ31, γ32) = (0.9,−0.5, 1.2,−0.6,−0.8, 1.6) =: γ̂

Then, all report profiles are rationalizable, and hence belief-free full implementation fails. �

Hence, partial belief-free implementation is always possible in this setting, but full belief-
free implementation fails if the preference interdependence is too strong (Bergemann and Morris
(2009a)). The reason is that if preference interdepedence is strong, then players’ best responses in
the VCG mechanism are strongly affected by others’ strategies. This in turn generates multiplicity
of equilibria, and hence failure of full implementation. We thus shift the focus from preference
interdependence to the strategic externalities of a mechanism, which can be captured by studying
how agents’ best responses are affected by changes in the opponents’ report. This information
can be conveniently summarized in a strategic externality matrix, whose ij-th entry contains the
derivative of player i’s best response with respect to j’s report, for j 6= i, normalized by the

7For any y ∈ R, we let proj[0,1] (y) := arg minθi∈[0,1] |θi − y| denote the projection of y on the interval [0, 1].
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concavity of i’s payoff function with respect to his own report. In the case of the canonical
mechanism, this amounts to:

SE∗ =

 0 γ12 γ13

γ21 0 γ23

γ31 γ32 0

 .
Identical and Known Distribution: Reduction of Strategic Externalities. Strategic ex-
ternalities and preference interdependence necessarily coincide in the VCG mechanism. But if the
designer has some information about the agents’ beliefs, then this coincidence is relaxed: the strate-
gic externalities can be weakened, so as to ensure uniqueness, even if preference interdependence
is strong. This is the main insight from Ollár and Penta (2017).

Example 1.2 (Known i.i.d. Common Prior.). Suppose that types are commonly known to be
i.i.d. draws from a uniform distribution over [0, 1], and this is known to the designer. Consider
the following transfers, which are a special case of Proposition 3 in Ollár and Penta (2017):

tOPi (m) := t∗i +miκi

(∑
l 6=i

γil (ml − 0.5)
)

= −κi
(

1
2m

2
i +mi

∑
l 6=i

γil0.5
)
.

These transfers induce the following best response function to conjectures µ ∈ ∆(Θ−i ×M−i):

BROPθi (µ) = proj[0,1]

(
θi +

∑
l 6=i

γil [E (θl|θi)− 0.5]
)
.

Under the maintained assumptions, E (θl|θi) = 0.5 for all θi and l 6= i. Hence the term in square
brackets cancels out for all types. Truthful revelation therefore is strictly dominant (what we
refer to as interim dominant strategy implementation), and full implementation is achieved for any
γ. Players’ best-responses are not affected by other reports, and hence strategic externalities are
completely eliminated in this case. �

The result in this example does rely on the restriction on agents’ beliefs, and in particular on
the knowledge that “E (θl|θi) = 0.5 for all θi and l 6= i”. If this moment condition were not satisfied,
these transfers would achieve neither full nor partial implementation. This moment condition was
used in Example 1.2 to weaken the strategic externalities of the baseline transfers from Example
1.1, but in principle, others could be used too. Intuitively, the more information the designer
has about agents’ beliefs, the more freedom he has to choose a convenient moment condition. As
shown by Ollár and Penta (2017), common prior models are maximal in the freedom they allow to
the designer and, for a large class of environments, as in the example, strategic externalities can
be completely eliminated when types are independent or affiliated.

Identical but Unknown Distribution: Redistribution of Strategic Externalities. Now
suppose that agents commonly know that they each regard the types of their opponents as being
drawn from the same distribution over Θi. The distribution itself, however, is not necessarily
known to the agents and, most importantly, it is unknown to the designer. Transfers from the
previous example do not ensure implementation anymore, since agents’ beliefs neet not satisfy the
moment condition “E (θl|θi) = 0.5 for all θi and l 6= i”, and hence incentive compatibility may
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fail. In fact, as we will show, Ollár and Penta (2017)’s idea of reducing strategic externalities is
incompatible with incentive compatibility under these belief restrictions. The designer is therefore
much more limited than in a standard common prior setting, such as that of the previous example.
Nonetheless, a novel design strategy, based on a redistribution of the strategic externalities, may
still be used to achieve full implementation.

Example 1.3 (Bid-Implementation.). Suppose that γ = γ̂ as at the end of Example 1.1, and
hence belief-free implementation is not possible. Now consider the following transfers:

tei (m) = t∗i (m) +miκi
γij − γik

2 (mj −mk) for all i;

In this case, the best replies become

BReθi(µ) = proj[0,1]

(
θi + 1

2 (γij + γik)
∑
l 6=i

Eµ (θl −ml) + 1
2 (γij − γik)Eµ (θj − θk)

)

= proj[0,1]

(
θi + 1

2 (γij + γik)
∑
l 6=i

Eµ (θl −ml)
)

The simplification in the last line follows from the fact that, under the Bid restrictions, it
is common belief that E(θj − θk) = 0 for all beliefs that any type θi may entertain. Thus, this
mechanism is incentive compatible for all beliefs consistent with Bid: if for all θl and l 6= i, ml = θl,
then for all i, the best response ismi = θi. Moreover, it can be shown that these best-replies induce
a contraction, which ensures that truthful revelation is the only rationalizable profile for all agents.
Transfers (tei )i∈I therefore achieve both partial and full Bid-implementation in this setting.

Next, consider the following transfers: tl1 (m)
tl2 (m)
tl3 (m)

 =

 t∗1 (m) +m1κ1γ13 (m3 −m2)
t∗2 (m) +m2κ2γ23 (m3 −m1)
t∗3 (m) +m3κ3γ32 (m2 −m1)

 .
It can be shown that these transfers too are incentive compatible under the Bid-restrictions,

that is, they are based on moment conditions which are commonly known among the agents. More-
over, these transfers too induce contractive best replies and, hence, achieve full implementation.

To understand the logic behind these transfers, it is useful to look at the induced SE-matrices
when γ = γ̂, and compare them to the SE-matrix of the VCG transfers:

SE∗ =

 0 0.9 −0.5
1.2 0 −0.6
−0.8 1.6 0

 , SEe =

 0 0.2 0.2
0.3 0 0.3
0.4 0.4 0

 , SEl =

 0 0.4 0
0.6 0 0
0.8 0 0

 .
First notice that both (tei )i∈I and

(
tli
)
i∈I induce SE-matrices such that the sum of the strategic

externalities within each row is the same as in the baseline VCG mechanism. This is not a
coincidence: as one of our results will show, under the Bid-restrictions, any incentive compatible
transfer scheme would have to preserve, for every agent, the total externalities across all of his
opponents which are present in the underlying canonical mechanism, which in turn are pinned
down by the total level of preference interdependence. (So, for instance, transfers such as

(
tOPi

)
i∈I

9



Figure 1: Strategic Externalities and Transfer Schemes in Example 1.3. These network representations
illustrate the strategic externalities induced, respectively, by the canonical, equal externality, and loading transfers.
For example, the green arrow from agent 2 to 1 illustrates the absolute influence of 2’s choice on 1’s best reply.

from Example 1.2, whose SE-matrix consists of all zeros, will not be incentive compatible under
the Bid-restrictions.) In this sense, strategic externalities can only be redistributed, not reduced.

Second, the SE-matrix of the (tei )i∈I transfers are such that the externalities that any agent i
is subject to is constant across all of his opponents. In this sense, the (tei )i∈I transfers induce an
equal redistribution of the total strategic externalities for every player. With the

(
tli
)
i∈I transfers

instead, for every i, the total strategic externalities are all loaded on the opponent l 6= i who is
subject to the lowest total strategic externalities (that is l = 2 for i = 1, and l = 1 for i = 2, 3).

But while both matrices induce a contraction and have the same row-sums – which implies
that, in both mechanisms, the same strategies survive the first round of elimination of never best-
responses – the square of the SEl-matrix exhibits lower row-sums than that of the SEe-matrix:

(SEe)2 =

 0.14 0.08 0.06
0.12 0.18 0.06
0.12 0.08 0.2

 ,
(
SEl

)2 =

 0.24 0 0
0 0.24 0
0 0.32 0

 .
Recursively, this also extends to all powers k ≥ 2, which implies that, from the second round of
elimination on, the set of rationalizable reports shrinks more under

(
tli
)
i∈I than under (tei )i∈I . In

fact, it can be shown that among all matrices which preserve the row-sums of the SE∗-matrix,
the strategic externality matrix associated with the loading transfers is the one with the smallest
spectral radius. This implies that, among all incentive compatible transfers, the loading transfers
are those which induce the fastest contraction of the best-reply sets. �

Our main results for full implementation show that, in a general class of environments, a
suitable generalization of the loading transfers in the example characterizes the mechanisms which
achieve full Bid-implementation: under these belief restrictions, full implementation is possible if
and only if it is achieved by the loading transfers. This in turn enables us to characterize the
environments in which full implementation is possible. We also show that the loading transfers
induce the fastest contraction among all implementing mechanisms, and that they are the ‘most
robust’ with respect to lower order beliefs in rationality. The equal-externality transfers, instead,
are ‘most robust’ if one considers the possibility of the risk of mistakes in some agents’ play (cf.
Ollár and Penta (2022), also discussed in Section 4.3).
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2.2 Implementation Concepts

We next formalize the notions of both partial and full implementation. We start from partial im-
plementation, and first recall the standard notion of ex-post incentive compatibility, which requires
truthful revelation to be an ex-post equilibrium of the game induced by a direct mechanism:

Definition 1. A direct mechanism is ex-post incentive compatible (ep-IC) if, Ui(θ; θ) ≥ Ui(θ′i, θ−i; θ)
for all θ and for all θ′i.

As shown by Bergemann and Morris (2005), ex-post incentive compatibility characterizes the
possibility of partial implementation when the designer has no information about agents’ beliefs.
In the present context, however, the designer knows that agents’ beliefs are consistent with the Bid-
restrictions, and hence our analysis of partial implementation relies on the following less demanding
notion of incentive compatibility:

Definition 2. A direct mechanism is Bid-incentive compatible (Bid-IC) if for all i ∈ I, for all
θi, θ

′
i ∈ Θi, and for all bθi ∈ Bidθi , E

bθi (Ui (θi, θ−i; θi, θ−i)) ≥ Ebθi (Ui (θ′i, θ−i; θi, θ−i)) (when d is
clear from the context, we may say that t is Bid-IC). If the inequality holds strictly for all i, θi,
bθi ∈ Bidθi and θ′i 6= θi, then we say that it is strictly Bid-IC.

Definition 3. If (d, t) is Bid-IC, then we say that the transfers t partially Bid-implement the
allocation function d. Allocation rule d is partially Bid-implementable if there exist some transfers
that partially Bid-implement it.

First note that Bid-IC is more demanding than standard Bayesian incentive compatibility, since
it requires truthful revelation to be a mutual best-reply for all beliefs in the set Bidθi , as opposed to
the single beliefs that each type would have in a standard Bayesian setting. However, since each
Bidθi is a strict subset of ∆ (Θ−i) (and, in particular, it does not contain all degenerate beliefs over
each θ−i ∈ Θ−i), then Bid-IC is less demanding than ex-post incentive compatibility.

Similar to Bergemann and Morris (2005), one could define Partial Bid-Implementation as
requiring truthful revelation to be a Bayes-Nash equilibrium for all type spaces consistent with
the Bid-restrictions. By arguments similar to Bergemann and Morris (2005), it can be shown such
a notion is equivalent to the incentive compatibility condition in Def. 2. Given this, the natural
full implementation notion is to require truthful revelation to be the only Bayes-Nash equilibrium
strategy for all type spaces consistent with the Bid-restrictions. Once again, arguments similar to
Bergemann and Morris (2009a) show that the set of all such Bayes-Nash equilibrium strategies
is conveniently characterized by a suitable notion of rationalizability, which will be introduced
shortly, and which we refer to as Bid-rationalizability.8 Our notion of full implementation will thus
require truthful revelation to be the only Bid-rationalizable strategy. For the reasons we explained,
this notion can be seen as a shortcut to analyze standard questions of Bayesian implementation
for all beliefs consistent with the Bid restrictions, and hence provides the natural counterpart to

8Bid-rationalizability is a special case of Battigalli and Siniscalchi (2003)’s ∆-rationalizability, which in general
allows for general restrictions on players’ first-order beliefs on others’ types and strategies. Within robust mechanism
design, special cases of ∆-rationalizability have been used by Bergemann and Morris (2009a), who impose no belief
restrictions, and by Ollár and Penta (2017), who focused on belief restrictions that are only on others’ types;
Lipnowski and Sadler (2019) instead adopted restrictions on beliefs about others’ behavior for their concept of
peer-confirming equilibrium, although not in an implementation setting.
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the notion of partial implementation that we introduced above.9

Formally, Bid-rationalizability is defined by an iterated deletion procedure in which, for each
type θi, a report survives the k-th round of deletion if and only if it can be justified by conjectures
(joint distributions over opponents’ types and reports) that are consistent with the Bid-restrictions,
and with the previous rounds of deletion. For every i and θi, the set of conjectures that are
consistent with the Bid-restrictions is Cidθi :=

{
µi ∈ ∆ (M−i ×Θ−i) : margΘ−iµi ∈ Bidθi

}
.

Definition 4 (Bid-rationalizability). Fix a direct mechanism. For every i ∈ I, let Rid,0i = Mi×Θi

and for each k = 1, 2, ..., let Rid,k−1
−i = ×j 6=iRid,k−1

j ,

Rid,ki =
{

(mi, θi) : mi ∈ BRθi (µi) for some µi ∈ Cidθi ∩∆
(
Rid,k−1
−i

)}
.

The set of Bid-rationalizable messages for type θi is Ridi (θi) :=
{
mi : (mi, θi) ∈

⋂
k≥0

Rid,ki

}
.

Definition 5 (Full Implementation). The transfer scheme t = (ti)i∈I fully implements d under
common belief in identicality if Ridi (θi) = {θi} for all θi and all i. Allocation rule d is fully
Bid-implementable if there exist some transfers that fully Bid-implement it.10

First we note that Bid-Rationalizability is in general a weak solution concept, and hence our
notion of implementation is a demanding one. On the other hand, sufficient conditions for full
Bid-implementation guarantee full implementation with respect to any (non-empty) refinement
of Bid-Rationalizability, and hence the weakness of the solution concept strengthens our results.
Finally, note that in order to achieve full Bid-implementation, the truthful profile must be a mutual
(strict) best response for all types θi and for all beliefs bθi ∈ ∆ (Θ−i). Strict Bid-IC therefore is
necessary condition for full Bid-implementation. For this reason, while the main focus of the paper
is on the analysis of full implementation, we first tackle the partial Bid-implementation problem,
and return to full Bid–implementation in Section 4.

In the next two sections, we characterize the joint conditions on (v, d) under which partial
and full Bid-implementation is possible, as well as the transfer schemes that (partially or fully)
implement d whenever possible.

3 Incentive Compatibility and Partial Implementation

In this Section we characterize properties of the transfers which partially implement a given al-
location function d : Θ → X, and study necessary and sufficient conditions for Bid-partial imple-
mentation. We begin with introducing the canonical transfers, t∗ = (t∗i (·))i∈I , which are defined
as follows: for each i ∈ I and m ∈ Θ,

t∗i (m) = −vi (d (m) ,m) +
∫ mi

θi

∂vi
∂θi

(d (si,m−i) , si,m−i) dsi.

9By the same arguments, Bergemann and Morris (2009a) and Ollár and Penta (2017) study full implementa-
tion, respectively in belief-free settings and under general belief-restrictions, using corresponding versions of ∆-
rationalizability. (For earlier versions of these results on ∆-rationalizability, see Battigalli and Siniscalchi (2003).)

10A weaker notion of implementability would allow non-truthful reports, provided that they all induce the same
allocation as the true type profile. It can be shown that the two notions coincide for responsive allocation rules.
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In the following, we will refer to the pair (d, t∗) as the canonical direct mechanism.11

As shown by Ollár and Penta (2017), the canonical transfers characterize the ex-post incentive
compatible transfers in general environments with interdependent valuations, up to a constant
which does not depend on i’s own report (Lemma 1). Hence, the canonical transfers characterize
the mechanisms which may achieve partial implementation in the belief-free sense. As discussed,
in the present context the designer knows that agents ‘commonly believe in identicality’, and hence
our analysis of partial implementation relies on the less demanding notion of incentive compatibility
that we introduced in Definition 2. Nonetheless, as shown by the next result, the canonical transfers
are still without loss of generality for partial Bid-Implementation:

Theorem 1 (Partial Implementation). Under the maintained assumptions: d is partially Bid-
implementable if and only if (d, t∗) is Bid-incentive compatible.

Theorem 1 implies that, under the Bid-restrictions, there is no reason to consider transfers
other than the canonical ones. As we will see, this will not be the case for full implementation: full
implementation may fail under the canonical transfers, but be achieved by other transfers. Besides
its intrinsic interest, this result also simplifies the task of identifying which conditions on the
environment are necessary or sufficient for partial implementation: it suffices to study properties
of the payoff functions induced by the canonical mechanism, U∗i (m; θ), which only depend on the
allocation function (d) and on the agents’ preferences (v). First note that, under the maintained
assumptions, the canonical direct mechanism induces twice differentiable payoff functions. Since,
by construction, the canonical transfers satisfy the first-order conditions, sufficiency hinges on the
second-order conditions of agents’ optimization problem at the truthful profile.

Corollary 1. (Partial Implementability and the Canonical Payoffs)

(i) If d is partially Bid-implementable, then Ebθi
(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
≤ 0 for all i,

θi, and for all bθi ∈ Bidθi .

(ii) If Ebθi
(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
< 0 for all i, θi and for all bθi ∈ Bidθi , then d is

partially Bid-implementable.

Note that, if the expectation operators were removed from these conditions, so that the second-
order conditions are satisfied in the ex-post sense, then these conditions would correspond to ep-IC.
It is clear, however, that there is a gap between the two: As the next example shows, there are
environments in which (d, t∗) satisfies the second-order conditions in expectation, for all beliefs
consistent with the Bid restrictions, but not in the ex-post sense:

Example 2. Consider an environment with three agents, I = {1, 2, 3}, with types θi ∈ [−1, 1] and
valuations vi (x, θ) = (θi + θi (θj − θk))x for all i ∈ I, where x ∈ R, and consider the allocation
rule d (θ) =

∑3
i=1 θi. In this environment, the second order derivative of the payoff functions

11The term ‘canonical mechanism’ is traditionally used to refer to Maskin’s mechanism for full implementation.
That mechanism is not ‘direct’ and it induces an integer game to eliminate undesirable equilibria. We call (d, t∗)
the canonical direct mechanism, since special cases of this mechanism are pervasive in the partial implementation
literature. For example, in auctions (Myerson (1981), Dasgupta and Maskin (2000), Segal (2003), Li (2017)), in
pivot mechanisms (Milgrom (2004), Jehiel and Lamy (2018)), in public goods problems (Green and Laffont (1977)),
Laffont and Maskin (1980), etc. Lemma 1 in Ollár and Penta (2017) generalized the earlier results in the papers
above. The term canonical direct mechanism was first used with this acceptation in Ollár and Penta (2017).
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induced by the canonical transfers are the following:

∂2U∗i (m; θ)
∂2mi

= −2 (1 +mj −mk) + (1 +mj −mk) = − (1 +mj −mk) ,

which, at the truth-telling profile m = θ, is equal to:

∂2U∗i (θ; θ)
∂2mi

= − (1 + θj − θk) ,

Since this term is positive at some θ ∈ Θ, truthful reporting is not optimal at all states. On the
other hand, t∗ ensures Bid-incentive compatibility, since at the truthtelling profile,

∂2Ebθi (U∗i (mi, θ−i; θ))
∂2mi

= −1 < 0 for all mi and for all bθi ∈ Bidθi .

Hence, (d, t∗) is Bid-IC, but not ep-IC. It follows that, with these preferences, this allocation rule
is partially Bid-implementable, but not belief-free implementable. �

This clarifies that the result in Theorem 1 does not imply that Bid-IC is possible if and only
if ep-IC is possible, but only that in both cases it suffices to consider the same mechanism, t∗.
Similar to the way that ex-post monotonicity (of d) and single-crossing (of v) are sufficient for
ep-IC, one can show that if interim monotonicity and single-crossing are satisfied for all beliefs
consistent with the Bid-restrictions, then the sufficient condition in part (ii) of Corollary 1 also
holds, and hence they provide sufficient conditions for partial Bid-implementation.12

The intuition for the result in Theorem 1 is the following: under the Bid-restrictions, types
do not differ in terms of their beliefs (i.e., Bidθi = Bidθ′

i
for all θi, θ′i ∈ Θi), and hence beliefs cannot

be used to separate types, beyond what can be achieved without exploiting them. Thus, relative
to the belief-free case, the role of the belief-restriction Bid is limited to relaxing the incentive
compatibility constraint that the canonical transfers need to satisfy (from ex-post, to Bid-IC), but
it cannot be further leveraged to improve the design of transfers, to screen types.

The fact that Bidθi = Bidθ′
i

=: Bidi for all θi, θ′i ∈ Θi also has the following interesting implication,
which in fact emerges from the proof of Theorem 1: For every Bid-IC (d, t), and for any belief
consistent with the Bid-restrictions, the expected payment from every type of every agent at the
truthtelling profile is the same as in the canonical mechanism (up to a constant). Formally:

Proposition 1 (‘Payoff Equivalence’ for Bid-restrictions). If (d, t) is Bid-IC, then for every b ∈
Bidi , ∃κ ∈ R such that Eb (ti (θi, θ−i)) = Eb (t∗i (θi, θ−i)) + κ, for all θi ∈ Θi.

This result is an extension of the revenue-equivalence theorem, from the standard case of
independent common prior, to the Bid-restrictions. To understand this result, note that both the
Bid-restrictions and models of independent common prior share the feature that an agent’s beliefs
(a set, or a singleton) about others’ types are the same for all his types. As further discussed in
Ollár and Penta (2021b), this property of generalized independence is key to revenue equivalence.

12Example 2 above is an instance of an environment with a (ex-post) monotonic allocation rule, in which the
single crossing condition holds in expectation, for all bi ∈ Bidθi , but not in the ex-post sense.
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4 Full Implementation

For later reference, we introduce a class of environments which satisfy a standard single-crossing
condition, and in which the concavity of agents’ valuation functions is public information:

Definition 6. An environment (d, v) satisfies single crossing and public concavity (SC-PC) if

(i) Single-Crossing Environment: for all i and (x, θ),

• single-crossing preferences: ∂2vi
∂x∂θi

(x, θ) > 0, and

• monotonic allocation: ∂d/∂θi > 0,

(ii) Public Concavity Environment: for all i, ∂2vi/∂
2x and ∂d/∂θi are constant in θ, and

for all i and j, ∂2vi/∂x∂θj is constant in (x, θ).

These conditions generalize properties of standard quadratic-linear environments with single
crossing preferences, which are common both in the theoretical and in the empirical literature
for the convenient property that they imply linear best replies. Special cases of our conditions
are common in models of social interactions, markets with network externalities, supply function
competition, divisible good auctions, markets with adverse selection, provision of public goods.13

Compared to these applications, Definition 6 also accommodates more general dependence on x,
as long as the concavity and the cross derivatives are public information.

These assumptions have two important consequences: Part (i) is a standard condition for
ex-post incentive compatibility, which ensures in particular that partial Bid-implementation is
possible; Part (ii) ensures that, in the canonical direct mechanism, the second order derivatives
∂2U∗i

∂mi∂mj
= − ∂2vi

∂x∂θj
· ∂d∂θi are constant in (θ,m) and that ∂2U∗i /∂

2mi 6= 0. We can thus define

the (normalized) canonical externalities as real numbers ξij := ∂2U∗i /∂mi∂mj
∂2U∗

i
/∂2mi

. For each i, let
ξi :=

∑
j 6=i ξij , and relabel agents, if necessary, so that |ξ1| ≤ |ξ2| ≤ . . . ≤ |ξn|. In SC-PC

environments, these properties of the second-order derivatives of the payoff functions hold for all
transfers with constant curvature, i.e. such that ∂3ti

∂mi∂mj∂mk
= 0 for all i, j, k ∈ I.

4.1 Redistribution of Strategic Externalities

In order to achieve full Bid-implementation, the truthful profile must be a mutual (strict) best
response for all types θi and for all beliefs bθi ∈ ∆ (Θ−i). Strict Bid-IC therefore is a necessary
condition for full Bid-implementation. Beyond this partial implementation requirement, however,
we will show that full implementation imposes more stringent restrictions on the mechanism, and
specifically on the strategic externalities that it induces.

To this end, for any transfer scheme t, and for every (m, θ) ∈ M × Θ, we define the strategic
externality matrix, SEt (m, θ) ∈ R̄n×n, in which the entry in row i and column j is equal to
SEt (m, θ)ij = ∂2Uti (m,θ)/∂mi∂mj

∂2Ut
i
(m,θ)/∂2mi

∈ R̄ if i 6= j and SEtij = 0 if i = j. (Recall that U ti (m, θ) denotes
i’s payoff function induced by transfers t.) When the transfers in question are the canonical ones,

13Quadratic-linear models are frequent in the literature of networks (e.g., Ballester et al. (2006), Bramoullé and
Kranton (2007), Bramoullé et al. (2014), Galeotti, Golub and Goyal (2020)), social interactions models (Blume et
al. (2015)), markets with network externalities (e.g., Fainmasser and Galeotti (2015)), divisible good auctions (e.g.,
Wilson (1979)) and public goods (e.g., Duggan and Roberts (2002)).
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t∗, then we write SE∗ instead of SEt∗ . For example, in SC-PC settings, the canonical transfers t∗

induce the following matrix of strategic externalities: for all (m, θ),

SE∗ (m, θ) =


0 ξ12 . . . ξ1n

ξ21 0 . . . ξ2n
...

...
. . .

...
ξn1 ξn2 . . . 0

 .

The next result shows that strategic externalities are key for full implementation. In particular,
it shows that whether a strictly Bid-IC transfer scheme t achieves full implementation, depends on
the properties of two matrices which are closely related to SEt (m, θ). Such matrices are obtained
by focusing on the largest and smallest externalities across the domain, respecitvely normalized
by the smallest and largest concavity in the domain. Formally, let |SEtmax| and |SEtmin| be
such that |SEtmax|ii = |SEtmin|ii = 0 for each i and, for each i and j 6= i, let |SEtmax|ij :=
max(m,θ)∈Θ×Θ |∂2Uti (m,θ)/∂mi∂mj |

min(m,θ)∈Θ×Θ |∂2Ut
i
(m,θ)/∂2mi| and |SEtmin|ij := min(m,θ)∈Θ×Θ |∂2Uti (m,θ)/∂mi∂mj |

max(m,θ)∈Θ×Θ |∂2Ut
i
(m,θ)/∂2mi| . For any square

matrix A ∈ Rn×n, we let ρ (A) denote the spectral radius of A, i.e. the largest absolute value of
its eigenvalues.14 The next lemma formalizes the connection between the spectral radius of the
|SEtmax| and |SEtmin|-matrices and full Bid-implementation:

Lemma 1. (Spectral Radius and Full Bid-Implementation) If t is Bid-IC, then

(i) ρ (|SEtmax|) < 1 implies that t fully Bid-implements d,

(ii) ρ (|SEtmin|) ≥ 1 implies that t does not fully Bid-implement d.

First note that, if t is such that SEt (m, θ) is constant in (m, θ) (as is the case, for instance,
in SC-PC environments and transfers with constant curvature), then |SEtmax| = |SEtmin| ≡ |SEt|,
and then this Lemma implies that a transfer scheme t fully Bid-implements d if and only if
ρ(|SEt|) < 1. Intuitively, the reason for this result is that eigenvalues in general describe the
properties of iterated matrices. For strategic externality matrices, this amounts to describing the
iterations of best replies which are implicit in the rationalizability operator. The condition that
the spectral radius is smaller than one determines whether the transfers induce contractive best
replies, and hence a unique rationalizable profile.15 Incentive Compatibility – which is assumed in
the Lemma – in turn ensures that such a unique profile is actually the truthful revelation profile.
Since, in general, strategic externalities may vary over the domain, the necessary and sufficient
conditions in the Lemma refer to the lower and upper bounds of such externalities, i.e. respectively
to the |SEtmin| and |SEtmax|-matrices.

As discussed, Bid-IC is a necessary condition for full Bid-implementation. Hence, we turn next
to the implications of Bid-IC for the mechanism’s strategic externalities:

Lemma 2. If t is Bid-IC, then for all θ and (mi, m̄−i) s.t. m̄j = m̄k for all j, k 6= i,

(i) ∂2Ui (mi, m̄−i; θ) /∂2mi = ∂2U∗i (mi, m̄−i; θ) /∂2mi and
14If A is such that Aij = ∞ for some ij-entry, we let ρ(A) := limK→∞ ρ (AK), where AK is s.t. [AK ]ij := K if

Aij =∞ and [AK ]ij := Aij otherwise.
15Results analogous to Lemma 1 can be stated for other belief restrictions too, in that the spectral radius condition

can be shown to characterize contractiveness of best replies in general games with payoff uncertainty. Other known
conditions, such as diagonal dominance, are easier to check but only sufficient.
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(ii)
∑
j 6=i ∂

2Ui (mi, m̄−i; θ) /∂mi∂mj =
∑
j 6=i ∂

2U∗i (mi, m̄−i; θ) /∂mi∂mj.

These conditions are also sufficient in SC-PC, when t has constant curvature.

In words, these conditions say that for any agent i and for any state θ, at any profile in which i’s
opponents report (not necessarily truthfully) the same type, then both the concavity in own-action
(condition 1), and the sum of the strategic externalities of all the opponents (condition 2), induced
by any Bid-IC transfer scheme, must be the same as those of the canonical direct mechanism.

The intuition for this result, which is formalized by Lemmas 3 and 4 in Appendix A, is the
following: by Lemma 3, the only way in which the designer can exploit the information on agents’
beliefs to design Bid-incentive compatible mechanisms, is to correct the baseline canonical transfers
by adding a belief dependent term which can be chosen for instance to minimize the spectral
radius of the strategic externality matrix. In order to preserve incentive compatibility, however,
the designer must know the expected value of this corrective term – formally, a function of the
opponents’ types – at the truthful strategy profile, for all beliefs that agents might have about
others’ types. Under the Bid, essentially the only restriction which holds for all beliefs of all types
is the idea that any player i regards the types of any two players as identically distributed. Hence,
the only functions of the opponents’ types whose expectation is known to the designer, regardless
of which beliefs among those in Bid are entertained by the agents, are functions for which any
‘increase’ on the effect of one opponent’s type, must be offset by a commensurate ‘decrease’ of
some other opponent’s type (cf. Lemma 4). The overall expectation of this corrective term must
thus ensure a rebalance of the effects across the opponents, at least at profiles of identical types,
which overall implies the constraint on the strategic externalities in the result above (cf. App. A).

The general design principle that emerges from combining Lemma 1 and 2 is that the designer
should seek to minimize the spectral radius of the |SEtmax|-matrix, subject to the constraints
imposed by Bid-IC (and, particularly, by Lemma 2). Such constraints imply that the designer
may only redistribute, not reduce, the total strategic externalities induced by the canonical direct
mechanism. In SC-PC environments and with quadratic transfers (which imply, in particular, that
the SEt-matrix is constant in (m, θ)), the conditions in Lemma 2 require that, in order to preserve
Bid-IC, a transfer scheme should induce a matrix of strategic externalities which preserves, row
by row, the same row-sums of the SE∗-matrix, (ξi)i∈I , which in turn are uniquely pinned down
by environment, (v, d). Our main result does not restrict the transfers to be quadratic, but
it is nonetheless useful to consider that case. With such a restriction, in SC-PC settings, the
design problem of identifying the transfers t̂ that achieve full Bid-implementation whenever some
transfers in the same class do, is equivalent to a problem of minimizing the spectral radius subject
to preserving the row-sums. That is:

Corollary 2. Bid-IC transfer scheme t̂ solves the ‘design problem’ in the sense above if and only
if the associated matrix of strategic externalities solves the following program:
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min
A

ρ (|A|)

subject to Aii = 0 for every i ∈ I,∑
j 6=i

Aij = ξi for every i ∈ I.

Similarly, the set of quadratic transfers that achieve full Bid-implementation in a given environment
(v, d) consists of all Bid-IC transfers t whose matrix of strategic externalities, SEt, satisfies the
constraints in this program and is such that ρ (|SEt|) < 1.

This result formalizes the connection between the full implementation and the network design
problems that we discussed in the introduction and in Section 2. The second part of the result,
that characterizes the set of transfers that achieve full implementation, is useful to think about
other desiderata that one can impose, beyond full implementation. In Ollár and Penta (2022),
for instance, we consider the problem of a designer who wishes to fulfill other robustness crite-
ria, besides full Bid-implementation. In that case, the program can be adapted by replacing the
minimization of ρ (which corresponds to identifying the ‘most contractive’ transfers, that achieve
full implementation whenever possible – what is needed to identify general conditions on (v, d) for
implementability in the next subsection) with some other objective, tailored to the specific desider-
ata, and adding the requirement ρ (|SEt|) < 1 to the constraints of the program. In this sense,
the connection between the approaches can prove fruitful for further questions of implementation.
We discuss this point further in Section 4.3.

The uniqueness results above are also related to the literature on rationalizability and on
global stability in dynamical systems. As we explained, the matrix of strategic externalities is
key to uniqueness. The literature on dominance solvability provides some insights in this sense,
but mainly for complete information games (Moulin (1984)). One may intuit that uniqueness
of rationalizability is related to global stability, meaning that it is guaranteed if the dynamical
system which describes the iterations of best replies is globally stable. We give broad conditions
under which this intuition is valid and extends to incomplete information environments with belief-
restrictions.16 For instance, with quadratic transfers and under the SC-PC restriction, the matrix
of strategic externalities determines a linear dynamical system which describes the relevant best-
reply sets given the belief-restrictions. Unique rationalizability is equivalent to the global stability
of this system which, in turn, is characterized by the largest absolute eigenvalue (the spectral
radius). Given that a Bid-incentive compatible t already ensures that truthful revelation has the
best-reply property, uniqueness (and, hence, full Bid-implementation) is achieved if and only if the
spectral radius of the associated matrix of strategic externalities is less than one. As mentioned,
outside of this special case, the resulting dynamical system is not necessarily linear, and there may
be a gap between necessary and sufficient conditions. Our general conditions therefore involve
upper and lower bound matrices of strategic externalities (Lemma 1).

16Ollár and Penta (2017) already noted the relevance of strategic externalities for uniqueness of rationalizability
in incomplete information games and for general belief restrictions, but they only focused on sufficient conditions.
The spectral radius results that we provide in this paper (also applied in Ollár and Penta (2022)) are novel.
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4.2 Full Implementation via Transfers: Characterization

In this section we restrict attention to SC-PC environments, which as discussed are especially
important from the viewpoint of the applied theoretical literature. Similar to what we did for
partial implementation, we seek to identify a transfer scheme which can be used to identify whether
or not full Bid-Implementation is possible. To this end, we introduce the loading transfers. As
illustrated in Example 1.3, the logic of the construction is to redistribute the strategic externalities
so that, in the resulting mechanism, they are all concentrated on the two agents with the smallest
canonical externalities (given the relabeling above, these are agents 1 and 2). Formally, the loading
transfers

(
tli
)
i∈I are defined as follows: for each i ∈ I and m ∈Mi ×M−i,

tli (m) = t∗i (m)︸ ︷︷ ︸
canonical transfers

+ Lli (m−i)mi︸ ︷︷ ︸
redistribution of

canonical externalities

, (2)

where Lli : M−i → R is such that

Lli (m−i) =


[
−
∑
k 6=1
k 6=2

∂2v1
∂x∂θk

m2 +
∑
k 6=1
k 6=2

∂2v1
∂x∂θk

mk

]
∂d
∂θ1

if i = 1[
−
∑
k 6=1
k 6=j

∂2vj
∂x∂θk

m1 +
∑
k 6=1
k 6=j

∂2vj
∂x∂θk

mk

]
∂d
∂θj

if i 6= 1

First, it can be checked that these transfers ensure Bid-IC (cf. Lemma 3 in Appendix A).
Second, letting U li (m; θ) denote the payoff function which results from these transfers, it can be
checked that ∂2

i1U
l
i =

∑
j 6=i ∂

2
ijU
∗
i for all i 6= 1; ∂2

12U
l
1 =

∑
j 6=1 ∂

2
1jU

∗
1 and otherwise ∂2

ijU
l
i = 0.

That is, the total canonical externalities are all loaded onto the two agents with the smallest
canonical externalities: for all i 6= 1, the sum of canonical externalitites for i are all loaded onto
agent 1; whereas the sum of canonical externalities for agent 1 are loaded onto 2.

SEl =


0 ξ1 . . . 0
ξ2 0 . . . 0
...

...
. . .

...
ξn 0 . . . 0

 .

Theorem 2 (Full Implementation: Characterization). For any SC-PC environment (v, d):

(i) d is fully Bid-implementable if and only if it is fully Bid-implemented by tl;

(ii) d is fully Bid-implementable if and only if the canonical externalities are s.t. |ξ1ξ2| < 1.

Before discussing the logic of the proof, first note that the condition in Part (ii) is equivalent
to requiring that the preference interdependence of agents 1 and 2 be sufficiently small. Formally:
|ξ1ξ2| < 1 if and only if |

∑
j 6=1

∂2v1
∂x∂θj

·
∑
j 6=2

∂2v2
∂x∂θj

| < ∂2v1
∂x∂θ1

· ∂
2v2

∂x∂θ2
.

Part (i) of the theorem derives from the following observations. First, in SC-PC environments,
the loading transfers are strictly Bid-IC and induce constant strategic externalities. Hence (by
Lemma 1) they achieve full implementation if and only if ρ(|SEl|) < 1. Second, by examining the
iterative rounds of rationalizability, we show that all Bid-IC transfers induce sets of rationalizable
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profiles that contain the ones induced by the loading transfers. The steps in the proof also imply
that ρ(|SEl|) ≤ ρ(|SEtmax|) for every Bid-IC transfers t. The reason why tl achieves the minimal
spectral radius among the possible strategic externality matrices is perhaps best illustrated in
Example 1.3. To concentrate all of i’s strategic externalities on the opponent with the smallest
|ξj | (that is, 1’s externalities on agent 2, and all other agents’ externalities on agent 1) decreases
the impact of the flow of externalities on best replies. This impact is key to rationalizability and is
linear algebraically represented by the iterated matrix of strategic externalities. The intuition, as
our proof shows, indeed carries over to all rounds of iterations and is optimal in the here considered
broader space of transfers. Hence, if ρ(|SEl|) ≥ 1, then full implementation necessarily fails for all
other transfers too. On the other hand, if ρ(|SEl|) < 1, then full implementation is possible, and
it is achieved, for example, by tl.

Part (ii) follows from the fact that ρ(|SEl|) < 1 if and only if |ξ1ξ2| < 1. As we explained,
this implies that the possibility of achieving full Bid-implementation depends on the canonical
externalities of the two agents with the smallest canonical externalities (equivalently, of the two
smallest levels of preference interdependence). Thus, full implementation is possible if and only if
the combined effect of these two agents’ canonical externalities is not too large, regardless of the
strength of the preference interdependence of the other agents and their number. At the extreme,
if an environment involves just one agent with private values, then full implementation is possible.

4.3 Discussion

It may be useful at this point to discuss how the results above and our approach more broadly
compare with the typical approach in the literature to full implementation.

On the restriction to direct mechanisms: The first, main point of departure, is our restric-
tion to direct mechanisms. As it is well-known, this restriction is without loss of generality for
the purpose of partial implementation, but it may make the task of achieving full implementation
harder. Note, however, that if this means that the necessity part of our characterization may be
stronger than what could be identified with unrestricted mechanisms, the opposite is true for the
sufficiency direction: the fact that we provide remarkably permissive results, despite the restric-
tion to the class of mechanisms, strengthens those results. There are, however, other reasons for
restricting the class of mechanisms.

First, classical results on full implementation typically involve unrealistically complicated
mechanisms, which have been criticized for providing limited economic insight (e.g., Jackson
(1992)). The artificial nature of those mechanisms, and the related emphasis in the literature
on necessity results, in our view explain why the full implementation approach has overall been
less successful than the partial implementation one, in terms of delivering clear qualitative insights
on the design of real world mechanisms. Our insistence on using the same class of mechanisms
as is typical in the partial implementation literature allows for an easier comparison with that
literature, which favors the interpretability of the results and hence pushes a bit further Jackson’s
concern for economic ‘relevance’ of full implementation theory.

This restriction also enables us to uncover what features of an incentive compatible transfer
scheme – namely, the structure of its strategic externalities – may or may not be problematic from
the full implementation viewpoint. With this understanding, our approach develops constructive
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insights on how failures of full implementation can be overcome, while maintaining the same
fundamental structure as the transfer schemes for partial implementation, which have a clear
economic interpretation and may thus be more portable to the real world. One by-product of
this is the possibility of recasting the implementation problem in terms of a weighted network
design problem, thereby connecting full implementation with more familiar concepts of mainstream
economics, such as networks and externalities. As we further discuss in the conclusions, we think
that this connection may benefit both the implementation and the network literature.

Constructive insights for Transfer Design: The classical approach in the full implementation
literature considers preferences which are not necessarily quasi-linear, and focuses on social choice
functions (SCFs) f : Θ → Y , where Y denotes the space of outcomes (see, e.g., Bergemann and
Morris (2009a)). With quasilinear preferences, Y = X ×Rn, and hence such characterizations can
be used to check whether a given f (·) = (d (·) , t (·)) is implementable by a direct mechanism (and
hence, similar to Lemma 1, whether a given t implements d), but they do not provide insights on
how to design transfers for full implementation. Since we are interested in this kind of constructive
insights, we adopted here the standard setup of the partial implementation literature, only taking
d : Θ→ X as given, and letting the designer choose t : Θ→ Rn. Second, as we already discussed,
the restriction to direct mechanisms also entails some loss of generality for full implementation, but
in these environments it enables an easier comparison with the partial implementation literature,
and to focus on the structural properties of the transfer schemes. The emphasis on the ability
to generate insights for the design of transfers represents an important point of departure from
the full implementation literature, and is also reflected in the kind of conditions we provide (cf.
Lemma 1).17 By referring to the eigenvalues of the strategic externality matrices, these conditions
also enabled us to draw a bridge between full implementation and networks (e.g., Elliott and
Golub (2019), Galeotti, Golub and Goyal (2020)), which may prove fertile for both strands of the
literatures (these points are further discussed in the Conclusions).

Alternative Robustness Criteria: In many settings, it may be desirable to ensure that the
implementing mechanism does not rely too heavily on agents’ behavior exactly coinciding with
that entailed by the maintained assumptions on their preferences and rationality. In Ollár and
Penta (2022), we explore the implications of this kind of desiderata on the design of transfers
for full implementation, by requiring the implementing mechanism to minimize the impact of an
ε-mistake in agents’ reports. Such ‘mistakes’ can be interpreted as stemming from agents’ slightly
faulty behavior (similar to Eliaz (2002)), or as a shorthand to account for possible misspecification
of their preferences in the model.18 Intuitively, the extreme hierarchical structure of the strategic

17As a comparison, Bergemann and Morris (2009a) characterize belief-free rationalizable implementation via di-
rect mechanisms in environments with monotone aggregators (i.e., such that ∀i, vi (x, θ) = wi (x, hi (θ)) for some
wi : X×R→R and hi : Θ→ R strictly increasing in θi) in terms of strict ep-IC and the following ‘contraction prop-
erty’ (Def.5, p.1183, ibid.): ∀β : Θ→ 2Θ s.t. θ ∈ β (θ) for all θ, but β (θ′) 6= {θ′} for some θ′, there exists i, θi and
θ′′i ∈ βi (θi) with θ′′i 6= θi such that, for all θ−i and θ′−i ∈ β−i (θ−i), sign(θi− θ′′i ) = sign(hi(θi, θ−i)−hi(θ′′i , θ

′
−i)).

With more general preferences and with unrestricted mechanisms, the analogous condition for belief-free rationaliz-
ability is robust monotonicity (Bergemann and Morris (2011)): ∀β : Θ→ 2Θ s.t. ∃θ, θ′: θ′ ∈ β (θ) and f(θ) 6= f(θ′),
∃i, θi, θ′′i ∈ βi (θi) s.t. ∀θ−i and ψ ∈ ∆(β−1

−i (θ′−i)), ∃y ∈ Y : (i)
∑

θ′−i∈β
−1
−i (θ−i)

ψ(θ−i)ui(y, (θi, θ−i)) >∑
θ′−i∈β

−1
−i (θ−i)

ψ(θ−i)ui(f(θ′i, θ
′
−i), (θi, θ−i)); and (ii) ∀θ′′i , ui(f(θ′′i , θ

′
−i), (θ

′′
i , θ
′
−i)) > ui(y, (θ′′i , θ

′
−i)). Similar

characterizations, alternative to Lemma 1, could be provided for full Bid-implementation.
18Ollár and Penta (2022) only focus on the implementation of efficient allocation rules, and for settings in which

the distributions of other players’ types have identical means (but not necessarily identical distributions). Their
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externalities induced by the loading transfers may entail an unnecessarily high fragility of the
system in this context, and hence if full Bid-implementation is possible, other transfer schemes
may provide a better compromise between the various desiderata.

The robustness notion in Ollár and Penta (2022) reflects the idea that the designer does not
know how many or which agents might be potentially faulty, and the criterion with which he/she
assesses the robustness of the mechanism is the worst-case scenario across all possible configurations
of sets of faulty agents. The measure of the fragility of the mechanism is therefore provided by
the largest misreport consistent with a solution concept, RFεi , which characterizes the behavioral
implication of assuming common knowledge that a subset F of players may be ε-faulty, across
all agents and all configurations of the set of faulty agents. As shown in Ollár and Penta (2022),
in SC-PC environments with symmetric aggregators, among the set of transfers that achieve full
implementation, the transfers that are the most robust in this sense are characterized by an equal
redistribution of the given total strategic externalities, among the opponents of every player.

The intuition behind this result is simple: as explained, the loading transfers induce a very
hierarchical strategic structure, in which the contractiveness of the mechanism is completely de-
termined by the two agents with smallest preference interdependence. But loading all strategic
externalities on these agents also makes the mechanism especially vulnerable to the possibility of
these agents being faulty. In that case, the loading transfers would perform rather poorly. To
avoid this risk, and not knowing which of the agents may potentially be faulty, the safest solution
for the designer is to redistribute the strategic externalities uniformly across all players, so that no
player is especially critical for the mechanism.

Beyond SC-PC Environments: Ollár and Penta (2021a) also consider environments that do
not satisfy the SC-PC restriction. In those settings, the key difficulty is that the canonical strategic
externality matrix may not be constant over the domain of types and reports, and hence opera-
tionalizing the general principle of redistributing the strategic externalities subject to the incentive
compatibility constraints requires tracing how they vary over the entire domain. One way to ap-
proach this problem is to construct the modification of the baseline transfers, based on a midpoint
between the lowest and highest strategic externalities generated by the environment. Theorem 3
in Ollár and Penta (2021a) shows that such a design strategy ensures full Bid-implementation, if
the strategic externalities at such a midpoint are not too large for at least two agents, and as long
as the strategic externalities do not vary too much across the entire domain. So, in that sense,
the main qualitative insight obtained under the SC-PC restriction carry over to general settings,
provided that the design of the loading transfer is suitably generalized.

5 Conclusions

This paper continues a long tradition of works on implementation, that have taken upWilson (1987)
and Jackson (1992)’s call for a greater ‘relevance’ of full implementation theory, through a repeated
weakening of common knowledge assumptions on the environment, and the exploration of restricted
classes of mechanisms.19 In this paper, we focused specifically on implementation via transfers that

results, however, can be extended to more general allocation rules and the Bid-restrictions of this paper.
19For instance, under standard common knowledge assumptions, Jackson (1992) studied implementation via

bounded mechanisms, and Bergemann and Morris (2009a); Oury and Tercieux (2012) studied implementation via
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only elicit agents’ payoff-relevant information, under weak common knowledge assumptions that
reflect a natural economic idea: namely, that agents’ types are drawn from an identical distribution.
Our main results characterize the transfer schemes that achieve, respectively, partial and full
implementation whenever possible, under such a ‘common belief in identicality’ restriction, as well
as the conditions on the agents’ preferences and on the allocation rule under which these notions
of implementation are possible. Despite the restriction to the class of mechanisms, which ensures
a clear economic interpretation of the results, we uncovered surprisingly permissive results. For
instance, we showed that the possibility of full implementation is determined by the strength of the
preference interdependence of the two agents with the least amount of preference interdependence,
regardless of the number of the other agents, and of their preferences.

Our analysis also revealed that the joint restrictions on the mechanisms and on the common
knowledge assumptions impose a peculiar mathematical structure on the implementation prob-
lem, which enabled us to recast the mechanism design problem as one of ‘optimally’ designing
a network of strategic externalities, subject to suitable constraints. The objective of this design
exercise (dictated by the aim of identifying the transfer schemes that achieve full implementation
whenever possible) is to minimize the spectral radius of the matrix of strategic externalities; the
constraints (which are dictated by incentive compatibility under ‘common belief in identicality’)
require preserving the total level of such externalities. Aside from the implementation results in a
strict sense, this formulation of the problem generates further insights, which may prove valuable
for other strands of the literature.

For instance, Galeotti, Golub and Goyal (2020) recently studied the problem of optimally
intervening on the nodes of a game with networked externalities. The interventions considered in
that paper concern the idiosyncratic (non-strategic) components of players’ preferences, taking as
given a network of externalities which is assumed to induce contractive best replies and uniqueness
of equilibrium. In contrast, our analysis concerns the design of the very network of strategic
externalities (subjects to certain constraints, as we discussed in the previous paragraph). The
objective of minimizing the spectral radius, within a class of networks of strategic externalities,
may prove useful in itself, as several properties of a networked economy may be related to the
spectral radius of its matrix of strategic externalities: for instance, when the spectral radius is
less than one, it is closely related to Cournot stability of the associated Nash equilibrium (cf.
Moulin (1984)). Our solution to the spectral radius-minimization problem is thus also informative
about structural properties of networks, well beyond the full implementation problem from which it
stemmed in this paper. In fact, the solution we identified (namely, the star network that describes
the strategic externalities induced by the loaded transfers in Theorem 2) has interesting structural
features, which we think are quite revealing from a pure network perspective.

Our characterization of full implementation in terms of a spectral radius condition on a suit-
able matrix of strategic externalities is also related to Elliott and Golub (2019)’s characterization
of efficient allocations in economies with networked externalities, which is also based on a spectral
radius condition of a matrix of externalities. The main difference is that their spectral radius con-
dition refers to a matrix of payoff externalities, which are captured by the first-order derivatives
of agents’ payoff functions. In contrast, our condition refers to a matrix of strategic externalities,

direct mechanisms; With unrestricted mechanisms, Bergemann and Morris (2011); Müller (2020) studied implemen-
tation in belief-free settings; papers that included both non-standard (weak) common knowledge restrictions and
restricted mechanisms, include Bergemann and Morris (2009a,b) and Ollár and Penta (2017); etc.
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which describes how players’ best responses are affected by others’ actions, and hence are described
by the second-order derivatives of agents’ payoff function. Nonetheless, both papers provide clear
cases in point on how a network approach may shed a new light on classical problems, and enable
novel results. For the problem we consider, specifically, this connection favors a more clear integra-
tion of full implementation theory with more familiar concepts of mainstream economics, such as
transfers schemes, networks and externalities. The other important difference is that Elliott and
Golub (2019) consider complete information settings, whereas we allow for incomplete information
with both private and interdepenndent values. From this viewpoint, our results also contribute
to the growing literature on network games with incomplete information (e.g., Calvó-Armengol
and De Martí (2007), Galeotti et al. (2010), Calvó-Armengol et al. (2015), De Martí and Zenou
(2015), Golub and Morris (2017),Myatt and Wallace (2019), Leister (2020), Leister, Zenou and
Zhou (2020)). With respect to this literature, our results on the spectral radius of the strategic
externality matrix provide sufficient conditions for equilibrium uniqueness (as well as a charac-
terization of uniqueness of rationalizable solutions) for incomplete information games, with both
private and interdependent values.

With respect to robust mechanism design, this paper contributes to the literature which has
explored environments with limited information about agents’ beliefs, intermediate between stan-
dard Bayesian settings (e.g., Postlewaite and Schmeidler (1986), Jackson (1991)), and the belief-free
benchmark (e.g., Bergemann and Morris (2005, 2009a)). Compared to Ollár and Penta (2017),
which introduced general belief-restrictions and studied sufficient conditions under which full im-
plementation may be achieved via a reduction of strategic externalities,20 this paper represents
an example of a specific belief restriction based on an interesting class of economic environments
(namely, the common belief assumption only about identicality). As discussed, these restrictions
turn out to induce a tractable mathematical structure, that translates into a different design prin-
ciple – namely, a redistribution of the strategic externality – that also enables strong implemen-
tation results. Interesting directions for future research include exploring other belief restrictions,
similarly motivated to capture primitive qualitative properties of beliefs, without imposing the
standard common prior assumption. For instance, it would be interesting to study implementation
under qualitative restrictions such as independence, affiliation, positive correlation, etc., without
the extra common knowledge assumptions of standard models.

In a similar spirit, it would also be important to explore different restrictions to the class
of mechanisms, especially tailored to specific environments, or by imposing specific properties on
the mechanism.21 This is important because, if direct mechanisms are ideal to provide economic
insights on incentive compatibility, they are not always the simplest to implement in practice. In
some settings, indirect yet simpler mechanisms may also achieve implementation (auctions are a
classical example). While our results are silent on such specific indirect mechanisms, the general

20For instance, Ollár and Penta (2017) show that (under certain preference restrictions) strategic externalities can
always be eliminated in common prior models with independent or affiliated types and hence full implementation be
achieved in (interim) dominant strategies. When strategic externalities cannot completely eliminated, they provide
sufficient conditions for contractive best replies, so as to obtain uniqueness of the rationalizable strategy profiles.

21In recent years, many papers have re-visited standard implementation problems imposing extra desiderata on
the mechanisms. Deb and Pai (2017), for instance, pursue symmetry of the mechanism; Mathevet (2010) and
Mathevet and Taneva (2013) pursue supermodularity; Healy and Mathevet (2012) and Ollár and Penta (2017)
pursue contractiveness. In the classical literature, the broader idea of modifying ex-post incentive compatible
transfers using information about beliefs has been pursued, among others, by d’Aspremont, Cremer and Gerard-
Varet (1979), Arrow (1979), Cremer and McLean (1988).
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idea of focusing on the matrix of strategic externality, and to pursue contractive best replies via
the addition of belief-dependent terms (cf. Appendix A.2), is based on general game theoretic
principles which may be applied to any kind of baseline mechanism.

Finally, we note that the characterization of full implementation under common belief in iden-
ticality may have potentially interesting implications from a broader market design perspective:
for instance, if full implementation cannot be achieved for a given set of agents, then adding two
more agents whose preferences do not depend much on others’ information would suffice to make
full implementation possible. In practical problems of market design, however, these possibility
results ought to be weighted against other considerations, which may entail a different structure
for the implementing mechanism. One such example, which we discussed in Section 4.3, is ro-
bustness with respect to ‘mistakes in play’ (Ollár and Penta (2022)), which suggests a more even
redistribution of the strategic externalities. Exploring further desiderata and robustness criteria is
another interesting direction for future research.

Appendix
A On Partial Bid-Implementation

A.1 On the Proof of Theorem 1: Main ideas

The key for the proof of Theorem 1 is provided by the following Lemma:

Lemma 3 (Bid-IC Transfers: Necessary and Sufficient Conditions).
[Necessity:] If (d, t) is twice differentiable and Bid-IC, then for all i, and for all m ∈M ≡ Θ,

ti (m) = t∗i (m) + τi (m−i)︸ ︷︷ ︸
belief-free transfers

(ep-IC characterization)

+
∫ mi

θ

Ki (si,m−i) dsi︸ ︷︷ ︸
belief-based component

(3)

where τi : M−i → R and Ki : M → R are differentiable functions and Ki is such that:

Ebθi (Ki (θi, θ−i)) = 0 for all θi and for all bθi ∈ Bidθi .
22 (4)

[Sufficiency:] If (d, t) is twice differentiable, t satisfies (3) and (4), and the resulting payoffs are
such that Ebθi

(
∂2Ui (mi, θ−i; θ) /∂2mi

)
< 0 for all mi and bθi ∈ Bidθi , then (d, t) is Bid-IC.

Equation (3) implies that, as far as Bid-IC is concerned, it is without loss of generality
to design transfers starting from the canonical transfers, and then adding a belief-based term
Ki : M → R. The sense in which the extra component is ‘belief-dependent’ is clarified by the
condition in Equation (4), which has to be satisfied for all beliefs consistent with Bid. Note
that any twice continuously differentiable mechanism is Bid-IC if the truthful profile satisfies the
first- and second-order conditions of agents’ optimization problem, for all interior types and for
all beliefs consistent with the Bid restrictions. Moreover, the associated payoff function must
be such that, for all θi ∈ (θ, θ̄) and bθi ∈ Bidθi , (i) E

bθi (∂Ui (θi, θ−i; θi, θ−i) /∂mi) = 0 and (ii)

22For any f : Θ→ R, θi ∈ Θi and bθi ∈ Bidθi , we let Ebθi (f (θi, θ−i)) :=
∫

Θ−i
f (θi, θ−i) dbθi .
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Ebθi
(
∂2Ui (θi, θ−i; θi, θ−i) /∂2mi

)
≤ 0. But if t partially implements d, then by Lemma 3 it can

be written as in (3), and hence – letting U∗ denote the payoff function of the canonical direct
mechanism – for any θi ∈ (θ, θ̄) and bθi ∈ Bidθi , we have:

Ebθi (∂Ui (θi, θ−i; θi, θ−i) /∂mi) = Ebθi (∂U∗i (θi, θ−i; θi, θ−i) /∂mi) + Ebθi (Ki (θi, θ−i)) , and

Ebθi
(
∂2Ui (θi, θ−i; θi, θ−i) /∂2mi

)
= Ebθi

(
∂2U∗i (θi, θ−i; θi, θ−i) /∂2mi

)
+ Ebθi (∂Ki (θi, θ−i) /∂mi) .

Condition (4) in Lemma 3 implies that the second term on the right-hand side of the first
equation is zero, and hence the first-order conditions of any Bid-IC mechanism coincide with those
of the canonical direct mechanism. Furthermore, it can be shown that any Ki function which
satisfies condition (4) also ensures that the second term of right-hand side of the second equation
is zero, for all beliefs bθi ∈ Bidθi . Hence, the first- and second-order conditions are met in (d, t) if and
only if they are met in the canonical direct mechanism. Theorem 1 expands on this observation.

A.2 Incentive Compatibility and Moment Conditions

Further intuition on the belief-based components in condition (4) of Lemma 3 can be gathered by
looking at the special case in which the Ki function can be written as Ki (m) = Li (m−i)−fi (mi),
for some Li : Θ−i → R and fi : Θi → R. Then, the expected value condition (4) can be written as

Ebθi (Li (θ−i)) = fi (θi) for all θi and for all bθi ∈ Bidθi . (5)

If a collection (Li, fi)i∈I of functions Li : Θ−i → R and fi : Θi → R satisfies (5) for every i,
then it means that under the belief restrictions Bid, agents commonly believe that, for every i, his
expectation of moment Li (θ−i) of others’ types varies with θi according to fi. Hence, this condition
expresses commonly known assumptions on agents’ conditional expectations on a moment of others’
types. Based on this observation, Ollár and Penta (2017) introduced the following notion:

Definition 7. A moment condition is represented by a collection (Li, fi)i∈I such that Li : Θ−i → R
and fi : Θi → R. It is consistent with the Bid-restrictions if it satisfies (5) for all i; it is a linear
moment condition if Li is linear for every i.

Setting Ki (θ) = Li (θ−i)− fi (θi) in the statement of Lemma 3, eq.(3) specializes to

ti (m) = t∗i (m) + τi (m−i)︸ ︷︷ ︸
characterization
of ep-IC transfers

+Li (m−i)mi −
∫ mi

fi (si) dsi︸ ︷︷ ︸
moment condition-based term

. (6)

This is precisely the class of transfers for which Ollár and Penta (2017) provide sufficient conditions
for full implementation.23 By Lemma 3, there may exist incentive compatible transfers which
cannot be written as in Equation (6), since not all functions Ki : Θ → R in that Lemma are
equivalent to moment conditions in the sense of Definition 7. Nonetheless, understanding the set
of moment conditions which are commonly known under given belief restrictions is a useful way

23In particular, Ollár and Penta (2017) show that if the belief-restrictions admit moment conditions with certain
properties, then this design strategy ensures full implementation. They also illustrate the usefulness of those
sufficient conditions in common prior environments and in settings in which only the conditional averages are
common knowledge. (Note that, under the Bid restrictions of this paper, the conditional averages of types are
neither common knowledge nor known to the designer.)
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of looking at the possibilities that the designer has to device incentive compatible transfers under
these easy-to-interpret belief-based components. Being concerned with full implementation under
general belief restrictions, and particularly on sufficient conditions, Ollár and Penta (2017) did not
characterize the set of available moment conditions. That task can be difficult in general, but such
a characterization is possible for the belief restrictions considered in this paper, and it provides
particularly clean insights into the set of transfers which are available to the designer:

Lemma 4 (Moment Conditions under Bid: Characterization). The moment condition (Li, fi)i∈I
is consistent with Bid if and only if

1. fi (θi) = c for some c ∈ R, for all θi;

2. Li is constant at identical types and agrees with c: Li (θ) = c for all θ s.t. θi = θj for all i, j;

3. Li is additively separable across players: there exist real functions Lij such that Li (θ−i) =∑
j 6=i Lij (θj) for all θ−i ∈ Θ−i.

Proof of Lemma 4. Setting Ki := Li − fi in Step 1 of the Proof of Theorem 2 below, which
gives the characterization of Bid-consistent Ki functions, implies this Lemma. �

An interesting question is how our analysis would change if, beyond common knowledge of
identicality, one also assumed common knowledge of independence across different players. This
can be formalized by replacing the Bid-restrictions with the stronger belief restrictions Biid, which
also require beliefs bθi ∈ ∆(Θ−i) in condition (1) to be the independent product of an identical
distribution over [θ, θ]. It can be shown that results analogous to Lemma 3 obtain for Biid-
restrictions, as well as a characterization analogous to Lemma 4, with the only difference that part
3 of Lemma 4 is not required. Intuitively, the stronger information that the designer has about
agents beliefs in Biid, compared to Bid, allows a richer set of moment conditions which can be
used to design incentive compatible transfers. Interestingly, however, such extra freedom does not
really expand the possibility of implementation: it can be shown that, under the Biid-restrictions,
the characterizations of both partial and full implementation is the same as in Theorems 1 and 2.

A.3 Proofs

Proof of Lemma 3. Assume that t ensures Bid-incentive compatibility which, by t’s differentia-
bility and the applicability of Leibniz’s rule, means that for all i and θi

Ebθi (∂ (vi (d (mi, θ−i) , θ) + ti (mi, θ−i)) /∂mi)
∣∣∣∣
mi=θi

= 0 for all bθi ∈ Bidθi .

The canonical transfer t∗i also satisfies this equation, thus for the difference between ti and t∗i ,

Ebθi (∂ (ti (mi, θ−i)− t∗i (mi, θ−i)) /∂mi)
∣∣∣∣
mi=θi

= 0 for all bθi ∈ Bidθi .

Let the difference between ti and t∗i be Di (m) := ti (m)− t∗i (m). By the smoothness assumptions
of this Lemma, Di is differentiable. Consider the part of Di that is independent from mi and let
this part be τi (m−i) := Di (m) −

∫mi
θ

∂Di
∂mi

(si,m−i) dsi, and further let Ki (m) := ∂Di (m) /∂mi

for all m. Then, the transfer ti takes the form ti (m) = t∗i (m) + τi (m−i) +
∫mi
θ

Ki (si,m−i) dsi for
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all m and Ki satisfies the expected value condition in (4). Moreover, if (d, t) is twice differentiable,
then by the definition of canonical transfers t∗ is twice differentiable, and thus Ki is differentiable.
Since Ki is differentiable in all its arguments, τi is twice differentiable, which completes the proof
of the necessity part of this Lemma.

If (d, t) is twice differentiable and t satisfies the characterization in (3) and the expected value
condition in (4), then

Ebθi (∂Ui (θ; θ) /∂mi) = Ebθi (∂vi (θ; θ) /∂mi + ∂ti (θ; θ) /∂mi)

= Ebθi (∂vi (θ; θ) /∂mi + ∂t∗i (θ; θ) /∂mi) + 0 + Ebθi (Ki (θ; θ))

= Ebθi (∂vi (θ; θ) /∂mi − ∂vi (θ; θ) /∂mi) + 0 + 0 = 0,

and thus the message mi = θi is an extreme point. For all beliefs in Bidθi , the corresponding
expected utility, by assumption, is strictly concave, therefore this extreme point is a global optimum
for all beliefs in Bidθi , and thus (d, t) is Bid-IC which completes the proof of the sufficiency part of
this Lemma. �

Proof of Theorem 1.
Step 1: If Ki : M → R satisfies condition (4), then for all θi Ebθi (Ki (mi, θ−i)) = 0 for all mi

and for all bθi ∈ Bidθi .

To show this step, recall the expected value condition in 4, Ebθi (Ki (θi, θ−i)) = 0 for all θi and
for all bθi ∈ Bidθi . Fix p ∈ B

id
θi
. It is a consequence of identicality that if p ∈ Bidθi , then p ∈ B

id
mi for

all mi ∈ [θ, θ], that is Ep (Ki (mi, θ−i)) ≡ 0 as a function of mi, and this holds for any p ∈ Bidθi ,
which proves this Step.24 �

To show the Theorem, if (d, t) partially implements d, then by Lemma 3, t can be written as
in (3), and hence – letting U∗ denote the payoff function of the canonical direct mechanism – for
any θi and bθi ∈ Bid:

Ebθi (∂Ui (mi, θ−i; θi, θ−i) /∂mi) = Ebθi (∂U∗i (mi, θ−i; θi, θ−i) /∂mi) + Ebθi (Ki (mi, θ−i))

= Ebθi (∂U∗i (mi, θ−i; θi, θ−i) /∂mi) ,

where the latter is a well-defined function of mi. Hence, for all types, the set of optimal reports
for all beliefs in Bid are equivalent in (d, t) and (d, t∗), which proves this Theorem. �

B Proofs of Results from Section 4

Proof of Lemma 1.25 (i) (Sufficiency: Eigenvalue Condition for Full Implementation.)26 Fix
θi in

(
θ, θ
)
and examine the k-th round of eliminations: fix mi ∈ Rki (θi). Thus for mi, there exists

24Note that Ki need not be the 0 function. For example, (θj − θk) θi satisfies the expected value condition for
all identical distributions. Moreover, if K1

i and K2
i satisfy the condition, then any linear combination αK1

i + βK2
i

satisfies the condition as well.
25The sufficiency of the eigenvalue condition for full implementation and the points in this lemma are stated for

identical distributions but, as it is clear from the proofs, they generalize beyond Bid to arbitrary belief restrictions.
26Recall that to extend the spectral radius operator to the affinely extended reals, given a non-negative matrix

A, we let AK be such that [AK ]ij := K if Aij =∞ and [AK ]ij := Aij otherwise. We let ρ(A) := limK→∞ ρ (AK).
Beyond the standard extensions of operators, we adopt the understanding that 0/0 =∞ and ∞/∞ =∞.
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a conjecture which supports mi as a best reply and is concentrated on Rk−1
−i . Let this conjecture

be µL. At the same time, since (d, t) is Bid − IC, θi is best-reply to truthtelling conjectures. In
particular, consider a truthtelling conjecture which is concentrated on Rk−1

−i , let this conjecture be
µT ; and pick µT such that margΘ−i µT = margΘ−i µL .

We use the notation EµUi (mi; θi) to denote the expected utility of type θi, given this type’s
conjecture µ, when reporting mi.

First, if mi is an interior point, then we have that

0 = ∂iE
µLUi (mi; θi)− ∂iEµTUi (θi; θi)

= ∂iE
µLUi (mi; θi)− ∂iEµLUi (θi; θi)︸ ︷︷ ︸

difference due to own action

+ ∂iE
µLUi (θi; θi)− ∂iEµTUi (θi; θi)︸ ︷︷ ︸

difference due to external (others’) actions

.

Examining these two differences, notice that applying a mean value theorem to each of these
two differences gives that there exist si and m−i, s−i ∈ Rk−1

−i (θ−i) such that

−∂2
iiE

µLUi (si; θi) (mi − θi) =
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

Second, let bl ≤ bu be the boundary points of the set of k − 1-rationalizable messages of θi. If
mi is such that mi = bl, then, because mi is best reply,

−∂2
iiE

µLUi (si; θi) (mi − θi) ≥
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

If mi is boundary such that mi = bu, then, because mi is best reply,

−∂2
iiE

µLUi (si; θi) (mi − θi) ≤
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) .

After examining the signs of ∂2
iiE

µLUi (si; θi) and the respective signs of (mi − θi) in the latter
two cases, we can summarize that for all, either boundary or inner, mi ∈ Rki (θi) there exist not-yet
eliminated messages si, s−i,m−i such that

|∂2
iiE

µLUi (si; θi) || (mi − θi) | ≤ |
∑
j 6=i

∂2
ijUi (θi, s−i; θ) (mj − θj) |.

From this, for each agent j and round k, letting lkj := maxθj ,mj∈Rkj (θj) |θj − mj |, and letting
l0j = l = θ − θ, we have

|mi − θi| ≤
∑
j 6=i |∂2

ijUi (θi, s−i; θ) |lk−1
j

|∂2
iiE

µLUi (si; θi) |
≤
[
|SEtmax|lk−1]

i
.

Since this inequality holds for all k, we can apply it iteratively, which gives that in the kth
round for all mi ∈ Rki (θi),

|mi − θi| ≤
[
|SEtmax|lk−1]

i
≤
[
|SEtmax||SEtmax|lk−2]

i
≤ . . . ≤

[
|SEtmax|k1l

]
i
.

Since ρ (|SEtmax|) < 1, we have |SEtmax|k → 0, and thus full Bid-implementation follows. �
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(ii)(Necessity: Eigenvalue Condition for Failure of Full Implementation.) The key step for
this part is to show that for all rounds k there is an agent i such that for all types θi, there
is a kth round B-rationalizable message – a message in Rki (θi) – which falls outside a positive
measure open set around θi. In particular, consider the largest subset of agents whose interaction
matrix in |SEtmin| is irreducible and features no 0 eigenvalues. (Such subset IE ⊆ I of the agents
exists and, since ρ (|SEtmin|) > 1 and the diagonal contains 0s, it has at least two agents.) We
maintain the ordering of the agents and use notation E for this irreducible block of |SEtmin|. We
will show next, that for each round k for some i ∈ IE , there is a best reply outside the open set(
θi ±

[
E · lk−1

min,E

]
i

)
∩ int cl Rk−1

i (θi). The notation lkmin,E is such that: for each agent j ∈ IE and

round k, let lkj,min,E := infθj min
{

supmj∈Rkj (θj);mj≤θj (θj −mj) ; supmj∈Rkj (θj);mj>θj (mj − θj)
}
,

and let l0j,min := θ − θ.27

To show this, consider an internal type θi for some agent i ∈ IE . First notice that the previous
statement is true for k = 1. Moreover, since the truthtelling profile is never eliminated, Rki (θi) is
always non-empty. Next, consider round k and letmi be a message that is best reply to a conjecture
µEL ∈ ∆ (M ×Θ) that is consistent with B, with round k− 1 rationalizability, and is such that for
all j ∈ IE , µEL places probability one on positive misreports that are lkj,min,E apart from θj if the
absolute smallest ∂2

ijU
t
i is positive and on negative misreports if it is negative; and for all j /∈ IE , µEL

places probability one on the true type θj being reported. Now, if the considered mi is an extremal
point of cl Rk−1

i (θi), then we are done. However, if it is an internal point, then ∂2
iiE

µELU ti (mi) ≤ 0
and there is a small ε such that the modified function EµELU t,εi := Eµ

E
LU ti (si)−ε (si −mi)2 admits

mi as a strict optimizer. For the difference between the derivative of this function and the expected
utility at the corresponding truthtelling conjecture; using mean value theorems, we can establish
that for mi there exist messages si, s−i,m−i such that mj reflects the distances in µEL and

−∂2
iiE

µELU t,εi (si; θi) (mi − θi) =
∑

j 6=i,i∈IE

∂2
ijUi (θi, s−i; θ) (mj − θj) .

Taking absolute values and lower bounding by the relevant minimum partial derivatives, we
get that for all small ε > 0

(
−∂2

iiE
µELUi (si; θi) + ε

)
| (mi − θi) | ≥

∑
j 6=i

min
m,θ
|∂2
ijUi (m; θ) |lk−1

j,min,

which further implies for such mi that

|mi − θi| ≥
∑
j 6=i minm,θ |∂2

ijUi (m; θ) |lk−1
j,min

|∂2
iiE

µE
LUi (si; θi) |

≥
[
Elk−1

min

]
i
.

Thus, summarizing this, for each k, there is a kth round rationalizable message that is outside
the set

(
θi ±

[
E · lk−1

min,E

]
i

)
∩ int clRk−1

i (θi), which when iterated gives that it is outside the set(
θi ±

[
Ek · l0min,E

]
i

)
∩
(
θi, θi

)
. Iteratively, one can see that l0min,E , l1min,E are strictly positive.

Assuming that lk−1
min,E is strictly positive, and by the irreducibility of the non-negative E, we have

that lkmin,E is strictly positive. From this, we can see that if the spectral radius ρ (|SEtmin|) ≥ 1,
then the sequence

{
Ek
}∞
k=1 of nonnegative matrices is bounded away from 0 and thus there are

27The intuition for lkmin,E is that it is a vector that keeps track of the minimum distance of worst-case positive
or negative misreports; resulting from interactions based on the irreducible E, among agents in IE .
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rationalizable messages for agents in IE which are distinct from their true types; and thus full
B-implementation fails.� �

Proof of Lemma 2. First, we give a characterization of belief-based terms under Bid. (The
following step is again used in Theorem 2 below.)

Step 1: (Belief-Based Components under Bid: Characterization) A differentiable function Ki :
M → R satisfies the expected value condition in (4) if and only if it can be written as

Ki (m) =
∞∑
k=0

mk
i

∑
j 6=i

Hk
ij (mj)

where
{
Hk
ij

}
j 6=i,k∈N are polynomials Hk

ij : Mj → R such that

for all m−i for which ml = mj for all j, l 6= i :
∑
j 6=i

Hk
ij (mj) = 0.

To show this step, assume, that Ki satisfies the expected value condition in (4) under Bid.
Since Ki is a continuous function, it can be approximated by Bernstein polynomials such that
Ki (m) = limn→∞

∑n
v=0Ki (m/n) bv,n (m). Since Ki is bounded, this polynomial expression can

be reorganized into a power series of mi and thus there exist polynomials Hk : M−i → R such that
Ki (m) =

∑∞
k=0Hk (m−i)mk

i .
In the next two sub-steps, we show that, since Ki satisfies the expected value condition in (4)

under Bid, these Hks are additively separable and at identical profiles, they are 0.
Step 1a: (Each Hk is additively separable.) From the polynomial format and since Ki satisfies

the expected value condition, we have that for all k, Ebθi (Hk (θ−i)) = 0 for all beliefs bθi ∈ Bidθi for
all θi. Fix a type θi. Assume, by way of contradiction, that Hk is not separable in its variables.
More specifically and without loss of generality, assume thatHk is not separable in its first argument
and, to avoid confusions in indexing, refer to this agent as j. This step relies on comparing
two constructed joint distributions which both represent identical distributions but one of them
represents perfectly correlated random variables, while the other one represents independence; that
is, the jth random variable is independent from the other n−2 variables while these n−2 variables
are again perfectly correlated.28

By the assumed non-separability, there exist θ1 ∈ [θ, θ] and θ2 ∈ [θ, θ] such that θ1 6= θ2 and

Hk

(
θ1, θ2, . . . , θ2)−Hk

(
θ2, θ2, . . . , θ2) 6= Hk

(
θ1, θ1, . . . , θ1)−Hk

(
θ2, θ1, . . . , θ1) . (7)

Consider the following two joint distributions over Θ−i. Let pcorr be such that it prescribes
perfect correlation for all agents in I \ {i}, and let pindep be such that it prescribes perfect
correlations for all agents in I \ {i} except for j, where j’s type is independent of the others’
types. Let these two joint distributions further be such that on all their margins, they are equal
and concentrated on the two specific values θ1 and θ2 such that for all k 6= i, margΘk p

corr =
margΘk p

indep, and on θ1: margΘk p
corr

(
{θk = θ1}

)
= margΘk p

indep
(
{θk = θ1}

)
= 0.5, and on θ2:

margΘk p
corr

(
{θk = θ2}

)
= margΘk p

indep
(
{θk = θ2}

)
= 0.5. Observe that both pcorr and pindep

are available under the belief restrictions Bid, formally, pcorr ∈ Bidθi and pindep ∈ Bidθi . For ease of
28This proof is a proof by coupling, a proof technique here applied to distributions over continuous support.
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notations, let p be a probability measure over [θ, θ] such that p
(
{θk = θ1}

)
= p

(
{θk = θ2}

)
= 0.5

and let fp be p’s distribution function.
Consider the perfectly correlated joint distribution pcorr, and observe that

Ep
corr

(Hk (θ−i)) =
∫

Θ−i
Hk (θ−i) dpcorr =

∫ θ

θ

Hk (θ, θ, . . . , θ) fpdθ =

= 0.5Hk

(
θ1, θ1, . . . , θ1)+ 0.5Hk

(
θ2, θ2, . . . , θ2) .

Consider the joint distribution, with independence from θj , pindep, and observe that

Ep
indep

(Hk (θ−i)) =
∫ Θ−i

Hk (θj , θ−j,−i) dpindep =
∫ θ

θ

∫ θ

θ

Hk (θj , θ, θ, . . . , θ) fp · fpdθjdθ =

=0.25Hk

(
θ1, θ1, . . . , θ1)+ 0.25Hk

(
θ1, θ2, . . . , θ2)+ 0.25Hk

(
θ2, θ1, . . . , θ1)+

+ 0.25Hk

(
θ2, θ2, . . . , θ2) 6=

6=0.5Hk

(
θ1, θ1, . . . , θ1)+ 0.5Hk

(
θ2, θ2, . . . , θ2) .

The last negation follows from Equation (7), which recall was the consequence of non-separability,
and this negation implies that Epindep (Hk (θ−i)) 6= Ep

corr (Hk (θ−i)), which would imply the con-
tradiction that Ki does not satisfy the expected value condition. And therefore, Hk must be
separable.

Step 1b: (Each Hk gives 0 at identical profiles.) Fix a type θi. Consider beliefs of i which
are identical point-distributions; distributions which are concentrated on the same type of all
other agents. Formally, consider a belief bθi such that, for some θ ∈ [θ, θ], the probability
bθi ({θj = θ for all j 6= i}) is 1 for all j 6= i. Then, bθi is included in Bidθi , moreover such point-beliefs
exist for all θ. Fix this (independent) point belief bθi . The expected value condition implies that
for the polynomial format 0 ≡

∑∞
k=1E

bθi (Hk (θ−i)) θki and thus for any k Ebθi (Hk (θ−i)) = 0. At
identical profiles as represented by bθi , this latter means that Hk(θ, θ . . . , θ) = 0 for all θ ∈ [θ, θ],
which proves that the Hk are 0 at identical profiles.

To prove the other direction of this Step 1, assume that Ki satisfies the two conditions above,
that is Hks are additively separable and Hks give 0 at identical profiles. For a type θi and belief
bθi ∈ Bidθi , by the separability of Hks and by the boundedness of Ki, the conditional expectation
is such that

Ebθi (Ki (θ)) =
∫

Θ−i

∞∑
k=1

Hk (θ−i) θkdbθi =
∫

Θ−i

∞∑
k=1

∑
j 6=i

Hkj (θj) θkdbθi

=
∞∑
k=1

∑
j 6=i

[∫
Θj
Hkj (θj) dmarg

Θj
bθi

]
θk (8)

Let p denote the identical distribution over [θ, θ] such that p := margΘj bθi for all j 6= i. With
this notation, Equation (8) is

Ebθi (Ki (θ)) =
∞∑
k=1

∑
j 6=i

[∫ θ

θ

Hkj (θ) dp
]
θk =

∫ θ

θ

∞∑
k=1

∑
j 6=i

Hkj (θ) θkdp =
∫ θ

θ

Ki (θi, θ, θ, . . . , θ) dp,
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and the two conditions,

Ebθi (Ki (θ)) =
∫ θ

θ

Ki (θi, θ, θ, . . . , θ) dp =
∫ θ

θ

0dp = 0.

and thus Ki satisfies the expected value condition under Bid and thus proves the characterization
result in this Step. �

If Ki satisfies the expected value condition in 3, then based on the characterization in Step 1
of Proof of Lemma 1, we have

(1) ∂Ki (mi,m−i) /∂mi =
∑∞
k=0 km

k−1
i

∑
j 6=iH

k
ij (mj) =

∑∞
k=0 km

k−1
i 0 = 0 for all mi and

m−i such that ml = mj for all j, l 6= i; and
(2)

∑
j 6=i (∂Ki (mi,m−i) /∂mj) =

∑
j 6=i

(∑∞
k=0m

k
i

∑
s6=iH

k
is (ms)

)
= 0 for all mi and m−i

such that ml = ms for all s, l 6= i.
If (d, t) is Bid-IC, then by Lemma 3, there exist Ki : M → R which satisfies the expected value

condition in 3; and is such that ∂U ti (m; θ) /∂mi = ∂U∗i (m; θ) /∂mi + Ki (mi,m−i). This equa-
tion and the two properties above imply the points of the lemma. Finally, the characterization’s
application to SC-PC environments and constant curvature in t proves this Lemma. �

Proof of Theorem 2. Consider the loading transfers tl. It is useful to characterize the resulting
sets of rationalizable strategies from the step by step eliminations of Bid-rationalizability.

Step 1: In every round k, for all i and θi, the set of rationalizable messages Rid,ki

(
θi|tl

)
is a

closed interval around θi.29

To show this, note that by construction θi ∈ Rid,ki

(
θi|tl

)
. By the boundedness (which is

implied by the differentiability) of v, d, tl and by the SC-PC conditions, the best reply map is
single valued and continuous. Using this, one can show in a proof by induction that for every k,
the set of conjectures which are consistent with the k − 1-st round and with identicality is closed
in the sup-norm. By continuity of the best reply function, the set of best replies is closed, and
thus Rid,ki

(
θi|tl

)
is a closed interval which contains θi. �

Recall that agents are ordered according to the absolute value of the ratio of the sum of
their canonical externalities and own concavity, from the lowest to the highest, such that ξij :=
∂2U∗i / (∂mi∂mj) = −

(
∂2vi/∂x∂θj

)
· (∂d/∂θi), ξi :=

∑
j 6=i ξij/ξii and |ξ1| ≤ |ξ2| ≤ . . . ≤ |ξn|.

Recall that under SC-PC, these canonical externalities and the cross-derivatives in the resulting
payoff functions in the loading mechanism

(
d, tl

)
are constants.

Step 2: In the loading mechanism, in every two rounds, the rate of shrinkage of the best reply
sets in the iterative eliminations is |ξ1ξ2| for all agents.

To show this step, consider the loading direct mechanism
(
d, tl

)
and the iterative elimination

process of Bid-rationalizability.
In the first round of iterations, the size of the intervals which contain the strategies that survive

the elimination derive from the loaded externality matrix such that:
29Note that this property is stated for tl but it extends in SC-PC to every bounded and smooth Bid-IC t.
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SEl =



0 ξ1 0 . . . 0
ξ2 0 0 . . . 0
ξ3 0 0 . . . 0
...

...
...

. . .
...

ξn 0 0 . . . 0


and

[
Rid,1i

(
θi|tl

)]
i∈I

=



[θ1 ± ξ1] ∩
[
θ, θ
]

[θ2 ± ξ2] ∩
[
θ, θ
]

[θ3 ± ξ3] ∩
[
θ, θ
]

...
[θn ± ξn] ∩

[
θ, θ
]


.

In the second round of iterations:

(
SEl

)2 =



ξ1ξ2 0 0 . . . 0
0 ξ1ξ2 0 . . . 0
0 ξ1ξ3 0 . . . 0
...

...
...

. . .
...

0 ξ1ξn 0 . . . 0


and

[
Rid,2i

(
θi|tl

)]
i∈I

=



[θ1 ± ξ1ξ2] ∩Rid,1i

(
θ1|tl

)
[θ2 ± ξ1ξ2] ∩Rid,1i

(
θ2|tl

)
[θ3 ± ξ1ξ3] ∩Rid,1i

(
θ3|tl

)
...

[θn ± ξ1ξn] ∩Rid,1i

(
θn|tl

)


.

In the third round of iterations:

(
SEl

)3 =



0 ξ2
1ξ2 0 . . . 0

ξ1ξ
2
2 0 0 . . . 0

ξ1ξ2ξ3 0 0 . . . 0
...

...
...

. . .
...

ξ1ξ2ξn 0 0 . . . 0


and

[
Rid,3i

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ2

1ξ2
]
∩Rid,21

(
θ1|tl

)[
θ2 ± ξ1ξ2

2
]
∩Rid,22

(
θ2|tl

)
[θ3 ± ξ1ξ2ξ3] ∩Rid,23

(
θ3|tl

)
...

[θn ± ξ1ξ2ξn] ∩Rid,2n

(
θn|tl

)


.

And so on, in the k-th round of iteration, the size of the intervals which contain the strategies
that survive the elimination derive from the loaded externality matrix to the power k and, if k is
even, these intervals are given by

[
Rid,ki

(
θi|tl

)]
i∈I

=



[
θ1 ± ξk/21 ξ

k/2
2

]
∩Rid,k−1

1
(
θ1|tl

)[
θ2 ± ξk/21 ξ

k/2
2

]
∩Rid,k−1

2
(
θ2|tl

)[
θ3 ± ξk/21 ξ

k/2−1
2 ξ3

]
∩Rid,k−1

3
(
θ3|tl

)
...[

θn ± ξk/21 ξ
k/2−1
2 ξn

]
∩Rid,k−1

n

(
θn|tl

)


,

and, if k is odd, these intervals are given by

[
Rid,ki

(
θi|tl

)]
i∈I

=



[
θ1 ± ξ(k+1)/2

1 ξ
(k−1)/2
2

]
∩Rid,k−1

1
(
θ1|tl

)[
θ2 ± ξ(k−1)/2

1 ξ
(k+1)/2
2

]
∩Rid,k−1

2
(
θ2|tl

)[
θ3 ± ξ(k−1)/2

1 ξ
(k−1)/2
2 ξ3

]
∩Rid,k−1

3
(
θ3|tl

)
...[

θn ± ξ(k−1)/2
1 ξ

(k−1)/2
2 ξn

]
∩Rid,k−1

n

(
θn|tl

)


.

In words, this means that in every even round of iteration, for each type of agent 1, the
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rationalizable set is either given by the previous rationalizable set or it is shrank to |ξ2| of this set
and, for each type of agent j 6= 1, the rationalizable set is either the previous rationalizable set or
it is shrank to |ξ1| of this set. Similarly, it holds for every odd round of iteration that for each type
of agent 1, the rationalizable set is either the previous rationalizable set or it is shrank to |ξ1| of
this set and, for each type of agent j 6= 1, the rationalizable set is either the previous rationalizable
set or it is shrank to |ξ2| of this set. Combining the conclusions for odd and even rounds, we get
that in every two rounds of iterations, for each type of each agent, the rationalizable set is either
unchanged or it is shrank to |ξ1ξ2| of this previous rationalizable set. �

And thus this step implies that if the sum of canonical externalities is such that |ξ1ξ2| < 1, then
the size of the k-rationalizable sets converges to 0, and Ridi

(
θi|tl

)
= {θi} for all i for all θi. On the

other hand, if |ξ1ξ2| ≥ 1, then |ξ2| ≥ 1 and in every round k, Rid,k2
(
θ2|tl

)
=
[
θ2 ±

(
θ − θ

)]
∩
[
θ, θ
]

=[
θ, θ
]
, in other words, all reports remain rationalizable for all types of agent 2 (and for all agents

with an index larger than 2, too) and thus full implementation via tl fails (which will lead to the
characterizing inequalities in part 2 of this Theorem).

Recall that in this proof for Part 1, we need to show that the allocation function d is Bid-
implementable if and only if it is Bid-implementable via the loading transfers tl in Equation (2).
The if part is straightforward. The only if part, relies on the following Step, which shows that
a Bid-IC transfer scheme ensures that the step-by-step iterative eliminations result in sets of k-
rationalizable strategies whose sizes reflect the canonical externalitites.

Step 3: (Iterations and Canonical Externalities, given Bid.) Consider a twice differentiable,
Bid-IC direct mechanism (d, t). In relation to the canonical direct mechanism, for all θi there exist
message profiles s+ and s+′ such that the message

proj
Rid,k−1
i

(θi)

(
θi +

∑
j 6=i ∂

2
ijE

bθiU∗i (s+; θi) lk−1,+
o,i

|∂2
iiE

bθiU∗i (s+′ ; θi) |

)

is in Rid,ki (θi), and there exist message profiles s− and s−′ such that the message

proj
Rid,k−1
i

(θi)

(
θi −

∑
j 6=i ∂

2
ijE

bθiU∗i (s−; θi) lk−1,−
o,i

|∂2
iiE

bθiU∗i (s−′ ; θi) |

)

is in Rid,ki (θi) too.

To show this Step, fix θi in
(
θ, θ
)
and fix some type θo ∈

(
θ, θ
)
and some message mo ∈

(
θ, θ
)

for i’s opponents. Since t defines a Bid−IC mechanism, θi is best-reply to truthtelling conjectures.
In particular, it is best-reply to the conjecture which, assigns probability 1 to the event that all
oppponents types are θj = θo and report their true types. Let this - concentrated truth-reporting
- conjecture be µT ∈ ∆ (M ×Θ). There exists also a message of i which is best-reply to the
conjecture that assigns probability 1 to the event that opponents are θj = θo and report mo

regardless of their types. Denote this undominated strategy by mi and let this - concentrated
mo-reporting - conjecture be µL ∈ ∆ (M ×Θ). Note that both µT and µL are consistent with Bid.
Consider the message mi which is best reply to µL.
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First, if mi is an interior point, then we have that

0 = ∂iE
µLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE

µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi)

= ∂iE
µLU∗i (mi; θi)− ∂iEµLU∗i (θi; θi)︸ ︷︷ ︸

difference due to own action

+ ∂iE
µLU∗i (θi; θi)− ∂iEµTU∗i (θi; θi)︸ ︷︷ ︸

difference due to external (others’) actions

,

where the first equality holds because of the canonical representation of (d, t) in Lemma 3, the of
belief-based terms in Step 1 of Theorem 1 and because of the conjectures µT and µL are constructed
such that they satisfy identicality on the margins of the messages too.

In this Step, we simplify the notation of those profiles in which opponents’ elements are identical
in that instead of (so, . . . , so, θi, so, . . . , so) we write

(
θi, s

o
−i
)
.

Examining the two differences above, notice that by the mean value theorem, there exists si
such that

∂iE
µLU∗i (mi; θi)− ∂iEµLU∗i (θi; θi) = ∂2

iiE
µLU∗i (si; θi) (mi − θi) ,

and there exists so such that

∂iE
µLU∗i (θi; θi)− ∂iEµTU∗i (θi; θi) =

∑
j 6=i

∂2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo) .

Note that any k-th-round best-reply mi is either inner point (as above) or a boundary point.
Let bl ≤ bu be the boundary points of the set of k − 1-rationalizable messages of θi.

Second, if mi is boundary such that mi = bl, then, because mi is best reply,

0 ≥ ∂iEµLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE
µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi) ,

which, following the steps as above, gives that there exists si and so such that

0 ≥ ∂2
iiE

µLU∗i (si; θi) (mi − θi) +
∑
j 6=i

∂2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo) .

This gives that mi = bl only if there exists profiles such that

θi −
∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo)

∂2
iiE

µLU∗i (si; θi)
≤ bl = mi.

Third, if mi is boundary such that mi = bu, then, because mi is best reply,

0 ≤ ∂iEµLUi (mi; θi)− ∂iEµTUi (θi; θi) = ∂iE
µLU∗i (mi; θi)− ∂iEµTU∗i (θi; θi) ,

which gives that, for some profile,

θi −
∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
(mo − θo)

∂2
iiE

µLU∗i (si; θi)
≥ bu = mi.

For this step, let l0,+i,o = l0,−i,o := θ − θ. To measure the size of higher-than-true misreports, let
lk,+i,o := minj 6=i maxθj max

mj∈RatB
id,k

j
(θj)

(mj − θj) and similarly, for lower-than-true misreports,
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let lk,−i,o := minj 6=i maxθj max
mj∈RatB

id,k
j

(θj)
(θj −mj).

We summarize the above three cases and note that, for every θi, one can set θo and mo such
that mo − θo = lk−1,+

i,o , which gives that there exists so and si such that

mi = proj
Rid,k−1
i

(θi)

(
θi −

∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o
−i; θi, θo−i

)
lk−1,+
i,o

|∂2
iiU
∗
i

(
si,mo

−i; θi, θo−i
)
|

)
∈ Rid,ki (θi) ,

Now, for every θi, it is also possible to set θo and mo such that mo − θo = −lk−1,−
i,o . Considering

the corresponding k-th round best reply mi being interior or boundary, and following the previous
steps we have that there exists s′o and s′i such that

mi = proj
Rid,k−1
i

(θi)

θi +

∑
j 6=i ∂

2
ijU
∗
i

(
θi, s

o′

−i; θi, θo−i
)
lk−1,−
i,o

|∂2
iiU
∗
i

(
s′i,m

o
−i; θi, θo−i

)
|

 ∈ Rid,ki (θi) ,

which, completes the proof of this Step. �

Step 3 as established above is the key step to the if and only if result. In words, it implies
that in any Bid-implementing direct mechanism, the externalities cannot be reduced beyond the
sum of externalities in the canonical direct mechanism. The consequence of such irreducibility of
externalities is reflected in each k-rationalizable set of the step-by-step iterations; for all Bid-IC
t. Next, the final step below formalizes the observation that it is the loading transfer scheme
that minimizes the size of rationalizable sets, given the constraint on nessecary externalitites and
therefore leads to full implmenetation whenever that is possible.

Step 4: We use Step 3 of this proof to show that in every round k, for all i and θi, the set
of rationalizable messages of the loading direct mechanism Rid,ki

(
θi|tl

)
, which we characterized in

Step 1, are contained in Rid,ki (θi|t) for any partially implementing direct mechanism (d, t).

To show this, fix a direct mechanism (d, t). Under SC-PC environments, Step 3 implies that
every k-rationalizable interval of θi of any implementing (d, t) direct mechanism contains the
following set:

proj
Rid,k−1
i

(θi|t)

[
θi − ξi · lk−1,−

i,o , θi + ξi · lk−1,+
i,o

]
⊆ Rid,ki (θi|t) .

Recall that lk−1,+
i,o is the largest distance between positive misreport and the true type, which

can arise for all opponents of i based on the previous round of iteration and lk−1,−
i,o is similarly this

largest distance for negative misreport.
Next, we compare the k-rationalizable sets of (d, t) to the k-rationalizable sets of

(
d, tl

)
, where

the latter sets are already given in Step 2 of this proof. In particular, for the first round of iteration,

[θi − ξi, θi + ξi] ∩
[
θ, θ
]
⊆ Rid,1i (θi|t) .

For the second round of iteration,

[θ1 − ξ1ξ2, θ1 + ξ1ξ2] ∩
[
θ, θ
]
⊆ Rid,2i (θi|t) if i = 1 and
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[θi − ξiξ1, θi + ξiξ1] ∩
[
θ, θ
]
⊆ Rid,2i (θi|t) if i 6= 1.

For the third round of iteration,

[θ1 − ξ1 (ξ1ξ2) , θ1 + ξ1 (ξ1ξ2)] ∩
[
θ, θ
]
⊆ Rid,3i (θi|t) if i = 1 and

[θi − ξi (ξ1ξ2) , θi + ξi (ξ1ξ2)] ∩
[
θ, θ
]
⊆ Rid,3i (θi|t) if i 6= 1.

For the forth round of iteration,

[
θ1 − ξ1

(
ξ1ξ

2
2
)
, θ1 + ξ1

(
ξ1ξ

2
2
)]
∩
[
θ, θ
]
⊆ Rid,4i (θi|t) if i = 1 and[

θi − ξi
(
ξ2
1ξ2
)
, θi + ξi

(
ξ2
1ξ2
)]
∩
[
θ, θ
]
⊆ Rid,4i (θi|t) if i 6= 1.

Observe that in these expressions on the left hand side, the iterated sets derived in Step 3,
for every k, coincide with the iterated rationalizable sets of the loaded direct mechanism

(
d, tl

)
,

and thus by induction, for all k, Rid,ki

(
θi|tl

)
⊆ Rid,ki (θi|t).30 This latter holds for any partially

implementing direct mechanism (d, t), which completes the proof of this Step. �
Turning to Part 1, if tl ensures full Bid-implementation, then, clearly, d is fully Bid-implementable.

If the direct mechanism (d, t) achieves full Bid-implementation, by the containment above, we must
have that as k → ∞, |Rid,ki

(
θi|tl

)
| → 0, and thus

(
d, tl

)
achieves full Bid-implementation too,

which completes the proof of Part 1 of this Theorem. Applying Lemma 1 to the loaded externality
matrix, completes Part 2 of this Theorem. �
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