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Abstract

In Bayesian persuasion, Receiver simply plays an action after Sender’s

public signaling. However, in some applications, Receiver could elicit more

information by offering a screening contract. This contracting stage may

make both Sender and Receiver better off than in Bayesian persuasion:

Sender prefers “being further screened”. The outcome is most efficient with

weak commitment (where Sender privately acquires full information), less

so with strong commitment (where Sender jointly designs both public and

private signals), and least in Bayesian persuasion. This suggests that eco-

nomic predictions based on the standard Bayesian persuasion model might

be biased toward overly inefficient outcomes.
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1 Introduction

Bayesian persuasion / information design models have been applied in many eco-

nomic contexts, as a representative model where an informed party designs an

uninformed party’s information structure. Typically, the model assumes the fol-

lowing timing of the game play: (i) The informed party (“Sender”) sets up an

experiment (at the ex ante stage without knowing the state realization); (ii) the

uninformed party (“Receiver”) observes a realized signal based on the experiment;

and then, (iii) Receiver takes a payoff-relevant action.

The objective of the current paper is to examine an (often implicit) assumption

of this framework, namely, that Receiver just takes an action at (iii). To give an

idea, imagine an equilibrium of this Bayesian persuasion game where Sender does

not offer a fully-revealing experiment at (i). This means that, after observing a

signal at (ii), Receiver is still uncertain about the state. In this case, even though

the standard model assumes that Receiver simply plays an action at (iii), it seems

to us quite natural for Receiver to try to screen Sender’s information further (see

the screening / mechanism design literature).

Motivated by this idea, in this paper, we consider a more general model where

the third stage (iii) is replaced by (iii’) where Receiver designs a mechanism (com-

prising a message space and a mapping from the message space to the action

space), followed by (iv’) where Sender chooses a message, which determines Re-

ceiver’s action. As we discuss more formally later, some results depend on the

assumption as to how Sender behaves at (iv’). First in Section 3, we consider the

case where Sender behaves sequentially rationally at (iv’), that is, given what has

happened at (i)-(iii’), Sender inputs the message to the mechanism that is optimal

for him. This would correspond to the “weak-commitment” interpretation that

Sender can acquire any information at any point (i.e., between (i) and (iv’)) cost-

lessly, and thus, he maximizes the pre-acquisition expected payoff at each point.

In Section 4, we consider an alternative “strong-commitment” assumption where

Sender commits to a joint information structure of public and private(-to-Sender)

signals at the beginning, in order to maximize his ex ante payoff. In this case,

Sender is unable to further acquire information at (iv’). Which approach is more
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reasonable may depend on the contexts.

As is discussed in the screening literature, our modeling assumes some commit-

ment power on Receiver’s side (to the extent that he should not revise his action

after observing Sender’s message choice, even if what the mechanism prescribes

is not optimal), and in this sense, whether this alternative model is sensible may

depend on the applications of interest. For example, imagine that Sender is an

investment consultant and Receiver is an institution planning some investment.

After the consultant’s publishing a generic research report, it is quite common

that the investor desires to know more about the investment environment and

hence contract with the consultant in order to elicit further advice. In such a con-

text, often the contract between them specifies how the payment from the investor

to the consultant is made depending on the investment outcome, consistent with

our modeling.

Our first question is whether the equilibrium prediction would change if Re-

ceiver is allowed to offer a mechanism. For example, if it does not (under ap-

propriate assumptions on the model parameters, say), then it means that the no-

mechanism assumption of the standard framework is innocuous. If it does change,

then the next-step question would be how it changes. For example, are Sender

and Receiver better-/worse-off in our model relative to the standard case? If

Sender is always worse-off, say, then it would be possible to interpret the standard

model as the one where Sender rationally refuses further elicitation by Receiver

(by committing to not acquiring further information). Another question at a more

methodological level is whether some well-known useful techniques in the stan-

dard model, such as concavification (Kamenica and Gentzkow (2011)), are still

applicable, perhaps with appropriate modification.

Our results are as follows. First, we find that there are cases where Receiver has

a strict incentive of designing a mechanism. In this sense, the (implicit) assumption

of the standard model of Receiver’s not designing a mechanism can be, potentially,

with loss of generality. Furthermore, in some cases, not only Receiver but also

Sender are strictly better off if Receiver designs a mechanism. Therefore, we

cannot justify the standard model by simply arguing that “Sender commits to
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refusing any additional communication with Receiver”, as that would be strictly

suboptimal for Sender. Sender sometimes desires to be screened.

On the other hand, there are cases where Receiver has no strict incentive of

designing a mechanism. In those cases, the standard no-mechanism assumption

is justified. Interestingly, some environments popular in applied papers belong to

this class, namely, the environments where Sender’s preference does not depend on

the state (but only on Receiver’s action). This is based on the simple idea that it

is basically impossible for Receiver to separate different sender types, and is quite

robust: The standard no-mechanism assumption is justified for any prior, and any

specification of Receiver’s action space and his payoff function.

We then investigate the equilibrium characterization of more specific model in

order to obtain further insights. Specifically, motivated by the above investment

application, we consider a binary-state environment where Receiver’s action com-

prises a (binary) non-monetary action and an amount of (non-negative) monetary

transfer to Sender.

After briefly explaining the equilibrium in the standard Bayesian persuasion

model, we first compare it with the weak commitment case, where Sender acquires

full information as his private information. We find that, because of the additional

channel of communication between Sender and Receiver through a mechanism, the

amount of public information becomes less than that in the standard model, in the

sense of Blackwell ordering. This suggests that the public and private information

are treated as “substitutes” by Sender. The total communicated information (i.e.,

how well Receiver is informed at the time of finally taking an action) is improved

relative to the standard case. Relatedly, we find that both Sender and Receiver

are better off: Sender prefers “being further screened”.

In the strong commitment model where Sender jointly designs both public and

private signals, he sometimes finds it more profitable to have less precise private

information. The outcome is most efficient (both in terms of information and

welfare) with weak commitment, less so with strong commitment, and least in

Bayesian persuasion. Overall, our analysis suggests that economic predictions

based on the standard model might be biased toward overly inefficient outcomes,
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both in terms of information and welfare.

1.1 Related literature

The paper is related to the large literature of Bayesian persuasion. Pioneered by

Kamenica and Gentzkow (2011), most of the papers follow the “standard” timing

as explained above. In some financial applications, as we argue above, it might

make sense to allow Receiver to further screen Sender’s information by offering a

contract.

For instance, Szydlowski (2021) studies a Bayesian persuasion game in rela-

tionship financing where the entrepreneur designs a disclosure policy which sends

a signal (about the future cash flows of a project) to the investor, who then de-

cides whether to buy the securities (issued by the entrepreneur) at a fixed price.

Azarmsa and Cong (2020) adopts a very similar framework to study the informa-

tional hold-up problem, except that after observing the signal, the investor makes

a take-it-or-leave-it offer to purchase the securities, and then the entrepreneur

decides whether to accept the offer. Ding and Zhu (2019) study the optimal dis-

closure policy in security issuance where an issuer designs an experiment which

generates a signal to persuade an investment bank to underwrite, and then the

bank makes its underwriting and retention decisions. Our paper illustrates how

Receiver’s potentiality to design a mechanism (instead of simply choosing an ac-

tion) can affect economic outcomes. In this sense, the fundamental idea is based

on the vast screening / mechanism design literature (see, for example, Laffont and

Martimort (2002) and Börgers (2015), and references therein).

The intersection of mechanism and information design is a smaller but impor-

tant and growing literature, and our model can be seen as a particular type of

“mechanism and information design”. In this vein, the most closely related papers

to ours is Roesler and Szentes (2017), Condorelli and Szentes (2020), and Deb and

Roesler (2021). In these papers, one of the players (say a buyer) can design his pri-

vate information structure, anticipating that the other player (say a seller) designs

an optimal mechanism given that information structure. This can be interpreted

as a special case of our strong-commitment model where Sender does not send
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any public signal.1 Also in these papers, by construction, Receiver (seller) finds

it always better to offer some mechanism than not, while in our case, sometimes

he finds it better to not offer any non-trivial mechanism (and simply play some

action), depending on his belief at that point. This “individual rationality” aspect

adds richness to our model. In particular, this makes joint design of public and

private information crucial.

Our model may also be seen as a model of mechanism design with (pre-

mechanism) information acquisition, where Sender (or an “agent” in the mech-

anism design terminology) may acquire information, and release a part of it pub-

licly. Our model allows flexible information acquisition, but assumes that any

information structure is costless. See Mensch (2020) who studies mechanism de-

sign where a single agent acquires flexible and costly information. In terms of the

grand framework, our model is also related (at a high level) to the cognitive games

studied by Pavan and Tirole (2021). The optimality of fully-revealing private sig-

nals in our “weak commitment” case is consistent with what they name “unilateral

expectation conformity” in self-directed information acquisition.

2 Model

2.1 Basic ingredients

There exist Sender and Receiver. The payoff-relevant state, denoted by θ ∈ Θ,

follows a common prior µ0 ∈ ∆(Θ). Assume Θ is finite. Receiver takes an action

a ∈ A, where A may be finite or infinite (e.g., A = ∆(A) for finite set A; or

A = [0, 1] × R+ where the first element corresponds to the probability of taking

one of the binary non-monetary action, and the second element corresponds to

monetary transfer from Receiver to Sender). Sender’s ex post payoff is uS(θ, a),

and Receiver’s ex post payoff is uR(θ, a).

Both in the standard Bayesian persuasion / information design model and in

1In general, as we show, not using public signals can be strictly suboptimal. However, it
seems that it is without loss of optimality in the above contexts. We thank Anne-Katrin Roesler
for this point.
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our model, the game is initiated by Sender’s setting up an experiment or a signaling

device denoted by (M̂, σ̂), where M̂ is a measurable space and σ̂ : Θ → ∆(M̂).

Receiver observes Sender’s choice of (M̂, σ̂) and also a signal realization m̂ ∈ M̂ ,

which makes Receiver update his belief: µm̂ ∈ ∆(Θ). In this sense, choosing

(M̂, σ̂) is essentially equivalent to choosing a distribution over ∆(Θ) (denoted

λ ∈ ∆(∆(Θ))) that is Bayes plausible:∫
µ∈∆(Θ)

µ dλ = µ0.

Thus, in what follows, we assume that Sender chooses a Bayes-plausible λ ∈
∆(∆(Θ)) without loss of generality.

2.2 Standard Bayesian persuasion model

The standard Bayesian persuasion model assumes that, after Receiver’s updating,

Receiver simply takes an action a ∈ A. We review the basic results in the standard

model here.

Let a∗(µ) ∈ A denote Receiver’s optimal action if his belief is µ ∈ ∆(Θ).2

Thus, Sender’s optimal experiment λ∗ maximizes:∫
µ∈∆(Θ)

∑
θ∈Θ

uS(a∗(µ), θ)µ(θ) dλ =

∫
µ∈∆(Θ)

UBP
S (µ) dλ

subject to Bayes plausibility: ∫
µ∈∆(Θ)

µ dλ = µ0,

where UBP
S (µ) = Eθ∼µ[uS(a∗(µ), θ)] denotes Sender’s reduced-form payoff given

Receiver’s optimal action choice (“BP” stands for “Bayesian persuasion”).

2If Receiver has multiple optimal actions, let a∗(µ) be Sender’s most preferred action, so that
Sender’s indirect utility as a function of µ is upper semi-continuous.
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It is well-known that the optimal λ∗ is characterized by concavification:

Eµ∼λ∗ [UBP
S (µ)] = U

BP

S (µ0)

where U
BP

S is the smallest concave function everywhere above UBP
S .

The implicit assumption of this standard model is that Receiver simply takes

an action after Sender’s public disclosure. However, as pointed out in the introduc-

tion, unless Sender fully discloses the state realization in the initial stage, Receiver

may have an incentive of further eliciting the information from Sender, as generally

observed by the screening / mechanism design literature.

3 Information design followed by Receiver’s mech-

anism design

In this section, we formally introduce our model where Receiver designs a mecha-

nism, followed by Sender’s sequentially rational response (i.e., the “weak-commitment”

case). The “strong-commitment” case is studied in the next section.

The timing of the game is as follows. First, the seller sets up an experiment

generating a public signal, λ ∈ ∆(∆(Θ)). After updating his belief to µ, Receiver

designs a mechanism (M,α), where M is a message set and α : M → A. Then,

Sender sends m ∈M (and Receiver plays a = α(m)).

The “weak-commitment” assumption means that, given true state θ and mech-

anism (M,α), Sender chooses m ∈M which maximizes:

uS(θ, α(m)).

A possible interpretation is that, right after Receiver’s offering a mechanism,

Sender can acquire any information about θ costlessly, and then reports a message

optimally to the mechanism. Given that this information is private, it is weakly

dominant for Sender to fully know θ.

Taking a step backward, for Receiver, it is without loss to focus on a direct

8



mechanism with M = Θ where truth-telling is optimal (“revelation principle”):

uS(θ, α(θ)) ≥ uS(θ, α(θ′)),∀θ, θ′.

Taking a step further backward, Sender’s optimal choice of λ is characterized by

concavification. Let URW
S (µ) denote Sender’s continuation payoff given Receiver’s

belief µ, and given that Receiver designs an optimal mechanism and Sender re-

sponds sequentially rationally (“RW” stands for “Receiver’s mechanism design +

Weak commitment”). Then, the optimal λ satisfies:

Eµ∼λ[URW
S (µ)] = U

RW

S (µ0),

where U
RW

S (µ) is the concavification of URW
S .

3.1 General results

Here, we provide two general observations. First, there exists an example where

Receiver designs a non-trivial mechanism on the equilibrium path. Moreover, in

that example, Sender is better off (always weakly, sometimes strictly) if Receiver

can design a mechanism, relative to the standard no-mechanism case. In this

sense, the (implicit) assumption of the standard model of Receiver’s not designing

a mechanism can be, potentially, with loss of generality.

Theorem 1. There exists an example where U
RW

S (µ0) > U
BP

S (µ0), which nec-

essarily means that Receiver designs a non-trivial mechanism on the equilibrium

path.

Proof. See Example in Section 3.3.

On the other hand, if Sender’s preference does not depend on the state (but

only on Receiver’s action), then Receiver never designs a mechanism.

Theorem 2. If uS(θ, a) = uS(θ′, a)(≡ uS(a)) for all a, θ 6= θ′, and uS(a) 6= uS(a′)

for all a 6= a′, then Receiver never has a strict incentive of designing a non-trivial

mechanism. Accordingly, U
RW

S = U
BP

S .
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3.2 Binary, Transferable Environment

Here, we consider a model with monetary transfer, binary states and binary non-

monetary actions, in order to obtain further insights.

Let Θ = {0, 1} and A = [0, 1]×R+, where for a = (x, p) ∈ A, x ∈ [0, 1] denotes

the probability that Receiver’s playing “action 1” (and 1− x for “action 0”); and

p ∈ R+ denotes a (non-negative) monetary transfer from Receiver to Sender.3

Sender’s ex post payoff is uS = vS(θ)x + p, and Receiver’s ex post payoff is

uR = vR(θ)x− p.
Note that, in the standard case without Receiver’s mechanism design, given any

µ, Receiver always chooses p = 0. This makes the problem a binary-state, binary-

action Bayesian persuasion problem. Receiver plays x = 1 (x = 0) if Eθ∼µ[vR(θ)] >

0 (< 0); and he always chooses p = 0. Sender’s optimal λ is by concavification.

One can easily check that, in the Bayesian persuasion solution, we have: (1) if

µ0 ≥ −vR(0)
−vR(0)+vR(1)

, Sender’s ex ante expected payoff is µ0vS(1) + (1−µ0)vS(0), and

Receiver’s ex ante expected payoff is µ0vR(1)+(1−µ0)vR(0); (2) if µ0 <
−vR(0)

−vR(0)+vR(1)
,

Sender’s ex ante expected payoff is µ0

( vR(1)
−vR(0)

vS(0)+vS(1)
)
, and Receiver’s ex ante

expected payoff is 0.

If Receiver designs a mechanism, he offers a direct mechanism (x(θ), p(θ))θ∈Θ

where Sender finds it optimal to report θ truthfully:

vS(θ)x(θ) + p(θ) ≥ vS(θ)x(θ′) + p(θ′), ∀θ, θ′.

In what follows, we assume vS(1) > vS(0) and vS(1) > 0. This is basically a

normalization in the sense that the other cases with (opposite) strict inequalities

are just the mirror images of this case.4 By the standard argument, Sender’s

incentive compatible constraint implies x(1) ≥ x(0).

We also assume that vR(1) > 0 > vR(0): (i) the case where vR(1) and vR(0)

have the same sign is not interesting, because Receiver always plays the same ac-

tion optimally for any given belief; (ii) the case with vR(1) < 0 < vR(0) is not

3The non-negativity restriction may be interpreted as a limited liability constraint.
4The cases with equality are similar too, although slightly more complicated due to indiffer-

ence.
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interesting either, as Receiver’s optimal mechanism subject to incentive compati-

bility is trivially constant: x(1) = x(0) with p(1) = p(0) = 0.

As for Sender, if vS(1) > 0 > vS(0), then the first best (for both) is trivially

possible by full revelation, and thus, we assume vS(1) > vS(0) > 0.

Due to the above reasons, we impose the following assumption:

Assumption 1. vS(1) > vS(0) > 0 and vR(1) > 0 > vR(0).

The next lemma characterizes the necessary and sufficient condition (on µ and

the payoff parameters) where Receiver offers a non-trivial mechanism.

Lemma 1. Under Assumption 1, if µvR(1)−(1−µ)vS(0) ≥ 0 and vR(0)+vS(0) < 0,

then Receiver’s optimal mechanism is:

(x(1), p(1)) = (1, 0)

(x(0), p(0)) = (0, vS(0));

otherwise, Receiver chooses a constant mechanism (and hence, the standard model

is without loss).

As suggested in the proof, we may interpret the condition that µvR(1)− (1−
µ)vS(0) ≥ 0 (equivalently, µ ≥ µ = vS(0)

vS(0)+vR(1)
5) and vR(0) + vS(0) < 0 as saying

that the necessary transfer for screening is not too costly for Receiver. Otherwise,

Receiver would not design a non-trivial mechanism, and thus there would be no

difference between UBP
S and URW

S .

Taking a step backward, Sender’s optimal choice of λ is characterized by the

same concavification, but for the above “modified” payoff. First, if µ0 ≥ µ, then

Sender initially reveals no information, while it is followed by R’s mechanism,

to which Sender reports the true state. Thus, Receiver plays (x, p) = (1, 0) if

θ = 1; (x, p) = (0, vS(0)) if θ = 0. Sender’s ex ante expected payoff is U
RW

S (µ0) =

µ0vS(1)+(1−µ0)vS(0). Accordingly, Receiver’s ex ante expected payoff is µ0vR(1)−
(1− µ0)vS(0).

5Clearly, we have vS(0)
vS(0)+vR(1) <

−vR(0)
−vR(0)+vR(1) .
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If µ0 < µ, then Sender initially reveals µ = 0 with probability 1− µ0
µ

(implying

(x, p) = (0, 0) and Sender earns 0) and µ = µ with probability µ0
µ

, followed by

Receiver’s mechanism, to which Sender reports the true state.6 Therefore, Sender’s

ex ante expected payoff is U
RW

S (µ0) = µ0
µ

(µvS(1) + (1− µ)vS(0)), while Receiver’s

ex ante expected payoff is 0.

Based on the above analyses, we have the following result.

Theorem 3. If vR(1) > 0 > vR(0), vS(1) > vS(0) > 0, and vR(0) + vS(0) <

0, then given any µ0 ∈ (0, 1), Receiver designs a non-trivial mechanism with a

strictly positive probability on the equilibrium path. Relative to the standard

Bayesian persuasion environment, the possibility of Receiver’s mechanism design

makes both Sender and Receiver weakly better off given any µ0, and strictly so

for some µ0. More specifically, for µ0 ∈
(
0, −vR(0)
−vR(0)+vR(1)

)
, Sender is strictly better

off; for µ0 ∈
(

vS(0)
vS(0)+vR(1)

, 1
)
, Receiver is strictly better off; and in their nonempty

intersection, both are strictly better off.

3.3 Example

Here, we revisit more formally the investment consulting example briefly discussed

in the introduction. There is an investment consultant (“Sender”) and an investor

(“Receiver”). The state is binary, θ ∈ {−1, 1}, where µ0 = Pr(θ = 1). Receiver’s

action comprises an investment decision x ∈ {0, 1} and a non-negative monetary

transfer p ∈ R+ to Sender.

Receiver’s ex post payoff is uR(θ, x, p) = θx−p. Thus, Receiver desires to make

an investment if and only if θ = 1. Sender’s ex post payoff is uS(θ, x, p) = πθx+ p,

where 0 < π−1 < π1 < 1. Thus, Sender always prefers an investment than no

investment, but it is more so given θ = 1 (possibly interpreted as his reputation

concern for recommending a “right” decision).

6In fact, at µ = µ, Receiver is indifferent between the screening mechanism and the constant
allocation rule (x, p) = (0, 0). As in the standard Bayesian persuasion model, we assume that
Receiver chooses the Sender-preferred action to break the tie.
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3.3.1 Standard Bayesian persuasion model

In the standard model, given Receiver’s belief µ ∈ [0, 1] for θ = 1, he plays

(x, p) = (0, 0) if µ < 1
2
, while (x, p) = (1, 0) if µ ≥ 1

2
. Note that p ≡ 0 given any µ.

Given this, Sender’s optimal λ∗ is characterized by concavification: (i) If µ0 ≥
1
2
, then by no revelation, x ≡ 1 and:

U
BP

S (µ0) = µ0π1 + (1− µ0)π−1;

(ii) If µ0 <
1
2
, then reveal µ = 0 with probability 1− 2µ0 (which implies x = 0 and

Sender earns 0), and reveal µ = 1
2

with probability 2µ0 (which implies x = 1 and

Sender earns π1+π−1

2
). Thus, Sender’s ex ante expected payoff is:

U
BP

S (µ0) = µ0(π1 + π−1).

3.3.2 Receiver’s mechanism design

Here, we consider the case where Receiver designs a mechanism, after Receiver

observes a signal given by Sender. Let µ denote Receiver’s belief. By the previous

analysis, if µ ≥ µ ≡ π−1

1+π−1
(< 1

2
), then it is optimal for Receiver to screen Sender’s

type by offering the menu mechanism comprising two actions, (x, p) = (1, 0) and

(x, p) = (0, π−1). Sender chooses (x, p) = (1, 0) if θ = 1, while he chooses (x, p) =

(0, π−1) otherwise. In other words, when the investment is more likely to be “right”,

the investor would like to learn (and pay for) more accurate information from the

consultant, so as to avoid potential investment losses. Meanwhile, the consultant

is ready to give honest advice, since the loss of his personal benefit in a bad state

would be well compensated. Given this, Receiver’s expected payoff (given µ) is

µ− (1− µ)π−1.

If µ < µ, then Receiver just plays (x, p) = (0, 0) (by offering the correspond-

ing constant mechanism). That is, when facing a grim investment prospect, the

investor would simply walk away, because the potential gain from the investment

cannot cover the consulting fees.

In view of Sender, his payoff is URW
S (µ) = 0 if µ < µ, while it is URW

S (µ) =
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µπ1 + (1 − µ)π−1 if µ ≥ µ. Recall that, in the standard model, the seller earns

UBP
S (µ) = 0 if µ < 1

2
and UBP

S (µ) = µπ1 + (1− µ)π−1 if µ > 1
2
. Therefore, for any

µ, the seller is weakly better off, and strictly so if µ ∈ (µ, 1
2
).

Taking a step backward, Sender’s optimal choice of λ is characterized by the

concavification for the above “improved” payoff URW
S . More specifically, if µ0 > µ,

then no initial revelation occurs, while it is followed by R’s mechanism, to which

Sender reports the true state. Thus, Receiver plays (x, p) = (1, 0) if θ = 1;

(x, p) = (0, π−1) if θ = −1. Sender’s ex ante expected payoff is:

U
RW

S (µ0) = µ0π1 + (1− µ0)π−1.

If µ0 < µ, then Sender initially reveals µ = 0 with probability 1− µ0
µ

(implying

(x, p) = (0, 0) and Sender earns 0) and µ = µ with probability µ0
µ

, followed by R’s

mechanism, to which Sender reports the true state. Therefore, Sender’s ex ante

expected payoff is U
RW

S (µ0) = µ0
µ

(µπ1 + (1− µ)π−1).

4 Joint Information Design

The previous “weak-commitment” assumption may be interpreted as (costlessly-

)information-acquiring, sequentially-rational Sender: at each point in time, he can

acquire information costlessly, in order to maximize his pre-acquisition expected

payoff given the history up to then. In this section, we consider an alternative

“strong-commitment” situation where Sender commits to an information structure

jointly of public and private(-to-Sender) signals at the beginning of the game,

before knowing the state. This corresponds to a “committed Sender” interpretation

of the standard Bayesian persuasion model, but given that Receiver’s action is to

design a mechanism, Sender designs not only public information but also Sender’s

private information, which is to be extracted through the mechanism.

The main observation is that, sometimes, Sender may want to limit private

knowledge of the state, if he can commit to it. As we observe in the transferable-

utility context below, this is in order to make Receiver’s mechanism more favorable

(to Sender) in the sense that more information rent is paid to Sender.
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Example 1. Revisit the investment example in Section 3.3, and assume µ0 = 1
2

so that U
BP

S (µ0) = U
RW

S (µ0) = π1+π−1

2
.

Consider the following information structure that Sender commits to. The pub-

lic signal, as in both the standard Bayesian persuasion case and weak-commitment

case, is assumed to reveal no information, so that Receiver’s posterior belief after

observing the public signal, denoted by µ1, is still 1
2
.

As for the private(-to-Sender) signal, fix small ε > 0, and consider an informa-

tion structure which assigns probability 1
2
−ε for µ2 = 0, 1

2
−ε2 for µ2 = 1, and ε+ε2

for µ2 = ε
1+ε

, where µ2 denotes the posterior belief induced by Sender’s private sig-

nal. Note that this is Bayes plausible. Of course, the case with ε = 0 corresponds

to full information, making the situation identical to the weak-commitment case.

If ε > 0 but small, Receiver’s optimal direct mechanism is (x, p) : {0, ε
1+ε

, 1} →
[0, 1]× R+, where

(x(1), p(1)) = (1, 0);

(x(0), p(0)) = (x(
ε

1 + ε
), p(

ε

1 + ε
)) = (0,

επ1 + π−1

1 + ε
).

We omit its derivation, but its optimality should be interpreted as quite natural:

Receiver plays action 1 if Sender reports µ2 = 1, and plays action 0 if Sender

reports that “θ is very likely −1” (i.e., µ2 ∈ {0, ε
1+ε
}); the payment given µ2 = 1 is

the lowest possible (i.e., 0), and the payment given µ2 6= 1 makes Sender’s incentive

compatibility binding, in case his true posterior belief is µ2 = ε
1+ε

.

Sender’s ex ante payoff is then:

(
1

2
− ε2)π1 + (

1

2
+ ε2)

επ1 + π−1

1 + ε
,

which is strictly higher than π1+π−1

2
, because:

(
1

2
− ε2)π1 + (

1

2
+ ε2)

επ1 + π−1

1 + ε
− π1 + π−1

2

=
ε(1− 2ε)

2(1 + ε)
(π1 − π−1) > 0.
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Therefore, by making his private information less precise, Sender can earn

strictly higher expected payoff. This is because, by having a pessimistic but im-

precise signal, Receiver has to pay higher in order to elicit Sender’s information.

However, in case Sender’s signal turns out to be extreme (in particular, µ2 = 0),

this means that Sender earns higher information rent than the case with fully

precise private information.

A question is whether more involved information structure allows further in-

formation rent, and how the optimal joint information structure looks like. To

answer these questions, we formally introduce the strong-commitment model.

Let s1 denote a public signal and s2 denote a private signal for Sender. Sender

designs a joint distribution G for (s1, s2), which is equivalent to a marginal distri-

bution G1 solely for s1, and a conditional distribution G2(·|s1) for s2 given each

realized s1. Thus, the timing of the game is as follows:

1. Sender chooses G1 and G2.

2. Receiver observes s1, while Sender observes (s1, s2).

3. Receiver offers a mechanism (M,α), where M is a message set for Sender,

and α : M → A.

4. Sender sends a message m, and Receiver implements a = α(m).

After observing (s1, s2), Sender forms a posterior belief about θ. For Receiver,

after he observes s1, he forms a posterior belief jointly about (θ, s2).

By a similar argument as in the previous section, it is without loss to consider

the following equivalent formulation:

1. Sender first chooses λ1 ∈ ∆(∆(Θ)) such that
∫
µ1
µ1dλ1(µ1) = µ0.

2. After observing µ1, Sender chooses λ2 ∈ ∆(∆(Θ)) such that
∫
µ2
µ2dλ2(µ2) =

µ1.

3. After observing µ1 but not µ2, Receiver chooses a direct mechanism (∆(Θ), α),

where ∆(Θ) is the message space for Sender, and α : ∆(Θ)→ A.
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4. Based on Sender’s reported µ2, Receiver implements a = α(µ2).

An immediate consequence of this strong-commitment modeling is that Sender

would never be worse off relative to (i) the standard model, because Sender can

always commit (if he desires so) to not having any private information; nor to (ii)

the weak-commitment model, because Sender can always commit (if he desires so)

to privately knowing θ fully. These two observations imply that Theorem 1 in

Section 3 continues to hold even in the strong-commitment model. Also, it is not

difficult to show Theorems 2 in the strong-commitment model too.

Furthermore, validity of concavification (with appropriately modified payoff)

is easy to see. Given any public signal µ1 ∼ λ1, let URS
S (µ1) denote Sender’s

expected payoff given that he optimally designs his private information λ2 given

µ1, and that Receiver optimally designs his incentive compatible direct mechanism

(“RS” stands for “Receiver’s mechanism design + Strong commitment”). Then,

Sender’s maximum ex ante payoff is given by U
RS

S (µ0), where U
RS

S is the smallest

concave function everywhere above URS
S .

4.1 Binary, Transferable Environment

In general, the joint design problem is far more complicated than the weak-

commitment case, because Sender now designs a distribution of two (arbitrarily

correlated) continuous random variables instead of one, and in principle, for each

of the possible joint distributions, we must solve Receiver’s mechanism design

problem.

Here, in order to provide some key insights by contrasting the strong- and

weak-commitment cases, we focus on the binary, transferable environment, and

obtain the optimal disclosure policy (and its associated continuation equilibrium)

under the same parametric condition as before.7

Assumption 2. vS(1) > vS(0) > 0, vR(1) > 0 > vR(0), and vS(0) + vR(0) < 0.

Assumption 2 is, as in Lemma 1, in order to avoid trivial cases.

7We also fully solve the binary-state, three-action case (without monetary transfer) in Online
Appendix, and we deliver similar qualitative messages.
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As shown in the example above, in general, Sender can be better off by lim-

iting his private information: Having a not-so-informative private signal, Sender

earns a relatively high information rent in case the private signal turns out to be

extreme. Obviously, if we fix the receiver’s mechanism choice, making λ2 assign

more probability on the extreme realization would be more beneficial for Sender.

However, doing so too much would eventually change Receiver’s mechanism (for

example, Sender loses the rent if his private signal is fully informative, as in the

previous section). Thus, the optimal disclosure policy must hit a right balance.

Based on this logic, in what follows, we “guess” that the optimal informa-

tion policy makes Receiver indifferent across multiple (in fact, continuously many)

mechanisms.8 We characterize the optimal one within that class. Later, based on

a (weak) duality argument, we verify that our guess is indeed correct.

For each c ∈ [0, 1], we say that Receiver’s (direct) mechanism α = (x, p) :

∆(Θ) → A is a cutoff mechanism with cutoff c if x(µ2) = 1{µ2>c}. By incentive

compatibility and optimality, it is without loss to let the transfer be p(µ2) =

(1−x(µ2))vS(c). It is worth mentioning that the cutoff mechanism with cutoff c = 0

weakly dominates the constant mechanism of “always playing 1” for Receiver: The

only difference between two mechanisms is that the cutoff mechanism implements

x = 0 and p = vS(0) if Sender reports µ2 = 0 (hence Receiver earns −vS(0)), while

the constant mechanism implements x = 1 without payment (hence Receiver earns

vR(0), where −vS(0) > vR(0)). Sender prefers the cutoff mechanism with c = 0

too. Thus, in what follows, we ignore this constant mechanism without loss of

generality. On the other hand, the constant mechanism of “always playing 0” is

more carefully treated.

Given any public signal realization µ1, consider Sender’s problem of choosing

λ2. As discussed above, one candidate for optimal λ2 is such that Receiver is made

indifferent across multiple cutoff mechanisms. Of course, if µ1 is too low (in fact,

lower than µ = vS(0)
vS(0)+vR(1)

), then Receiver plays a = 0 regardless of λ2. Even if

8This logic of making a mechanism designer indifferent across multiple (continuously many)
mechanisms also plays a key role in the buyer’s optimal information structure in the monopoly-
pricing context (Roesler and Szentes (2017)), hold-up context (Condorelli and Szentes (2020))
and in the robust mechanism design context (Brooks and Du (2021)).
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µ1 > µ, the set of cutoff mechanisms among which Receiver can be indifferent

depends on µ1.

Proposition 1. There exists µ∗1 ∈ [µ, 1] such that the following holds.

(i) If µ1 < µ, then any λ2 is optimal, and Receiver plays a = (0, 0). Sender

(and Receiver) earn expected payoff 0.

(ii) If µ1 ∈ [µ, µ∗1], then there exists c(µ1) such that λ2 is supported on [0, c(µ1)]∪
{1}, and that Receiver is indifferent across all cutoff mechanisms with cutoff

c ∈ [0, c(µ1)].9 Moreover, c(·) is continuous; strictly increasing; and c(µ) = 0.

Sender’s expected payoff is strictly concave, and its supporting hyperplane at

µ1 = µ goes through the origin.

(iii) If µ1 > µ∗1, then λ2 is supported on [0, c(µ∗1)] ∪ {1}, and that Receiver is

indifferent across all cutoff mechanisms with cutoff c ∈ [0, c(µ∗1)].10

The upper bound of the cutoff c(µ1) is because of “Receiver’s individual ratio-

nality” condition that he prefers the cutoff mechanism with cutoff c(µ1) to playing

a = (0, 0). As explained above, no such cutoff exists if µ1 < µ, and the set of

possible cutoffs is very limited if µ1 is small. As µ1 becomes larger, Receiver

becomes able to offer higher-cutoff mechanisms (i.e., c(µ1) is increasing). Once

µ1 becomes sufficiently large (µ1 > µ∗1), “Receiver’s IR” becomes non-binding in

Sender’s problem, after which c(µ1) becomes constant.

In the special case of µ1 = µ, Sender’s optimal λ2 is supported just on {0, 1}
(because c(µ) = 0), that is, his private information is fully revealing. Hence, the

outcome becomes the same as the weak-commitment case.11

Finally, consider the problem of choosing λ1, the optimal public disclosure. Re-

call that URS
S (µ1) denotes Sender’s expected payoff given µ1 based on the proposi-

tion above. The optimal λ1 is given by concavification: let U
RS

S (·) be the smallest

9On the path of the continuation equilibrium, Receiver chooses the cutoff mechanism with cut-
off c(µ1) with probability one; a standard tie-breaking rule which ensures upper semi-continuity
of Sender’s indirect utility as a function of λ2.

10Again, Receiver chooses the cutoff mechanism with cutoff c(µ∗
1) with probability one.

11This also explains why its supporting hyperplane goes through the origin. Basically, this
supporting hyperplane at µ1 = µ depicts how Sender’s payoff would change for µ1 < µ, if both
Sender and Receiver behaved the same way (i.e., Sender choosing fully revealing λ2 and Receiver
choosing the cutoff mechanism with cutoff 0 (even though it is suboptimal for both). As µ1 → 0,
such hypothetical payoff of Sender linearly converges to 0 (i.e., the origin).
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µ0

US

1µ −vR(0)
v′
R

vS(1)

vS(0)

µ̂1(c̄∗)

Figure 1: URS
S (·) (green line) and U

RS

S (·) (red line)

concave function everywhere above URS
S (·). Then, Sender’s payoff given optimal

λ1 is U
RS

S (µ0). The optimal policy λ1 is obvious from the above graph.

Theorem 4. If µ0 > µ, then optimal λ1 is fully uninformative (i.e., µ1 = µ0 with

probability one).

If µ0 < µ, then optimal λ1 splits µ0 to µ1 ∈ {0, µ} (with probability µ0
µ

for

µ1 = µ).

4.2 Comparison of the three regimes

Sender with strong commitment limits his private information in order to make

Receiver’s mechanism more favorable to Sender. Naturally, this shifts some surplus

from Receiver to Sender, at the cost of informational efficiency.

In the following theorems, BP refers to the standard Bayesian persuasion model

(i.e., without Receiver’s mechanism design), RW refers to the model with Re-

ceiver’s mechanism design and weak commitment, and RS is with strong commit-
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ment. First, from the informational viewpoint, we can rank the three regimes in

terms of Blackwell ordering as follows:

Theorem 5. Sender’s private information is most informative in RW, less in RS,

and not at all in BP.

The public information in BP is more informative than those in RW and RS,

which are actually the same as each other.

The total information (i.e., how much Receiver is informed when he takes an

action) is most informative in RW, less in RS, and least in BP.

Sender’s private information is perhaps the easiest to understand: It is fully

informative in RW by definition, and no private information is considered in BP.

The result about the public information implies that the public and private

information are “substitute” to each other in this problem. As the private infor-

mation is expected to be more informative, less public information is released.

For the total informativeness, the private part dominates the public part. In-

tuitively, this is because Sender can earn information rent based on private infor-

mation, while public information is released for free; hence, he has less incentive

to release more public information.

Next, from the payoff / surplus viewpoint, again the three regimes can be fully

ranked, as follows:

Theorem 6. For any given prior µ0, we have:

Sender’s payoff is the highest in RS, less in RW, and lowest in BP;

Receiver’s payoff is the highest in RW, less in RS, and lowest in BP;

The total payoff is the highest in RW, less in RS, and lowest in BP.

The payoff comparison for each player is straightforward. For the total payoff,

the ranking coincides with that of the total information, which suggests that the

ranking of the total payoff is basically based on how informed Receiver’s decision-

making is.

That the standard Bayesian persuasion case is the least favorable for both of

the players strongly suggests that, in applications where Receiver’s commitment

power (to mechanisms) is reasonable, we should seriously consider the models with
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Receiver’s mechanism design. As the analysis here suggests, the obtained economic

insights could be significantly different.

5 Conclusion

This paper raises the point that, in the standard timing of Bayesian persuasion

games, unless the sender’s initial public disclosure is fully revealing, the receiver

may have an incentive to try to further elicit information from the sender, by

offering a mechanism. Importantly, not only the receiver, but the sender may also

prefer to be screened by this mechanism. Our analysis also suggests that more

information may be communicated from the sender to the receiver if the receiver

can offer a mechanism, and in this sense, the economic predictions based on the

standard model might be biased toward overly inefficient outcomes, at least in

certain environments.

A Omitted proofs

A.1 Proof of Theorem 2

Proof. Fix any µ as Receiver’s belief at his mechanism design stage. It suffices to

show that only constant mechanisms are incentive compatible.

Direct mechanism α : Θ→ A is incentive compatible only if:

uS(α(θ)) ≥ uS(α(θ′))

uS(α(θ′)) ≥ uS(α(θ)),

implying uS(α(θ)) ≥ uS(α(θ′)) for all θ, θ′. Sender’s no-indifference condition over

A implies α(θ) = α(θ′). Thus, only constant mechanisms are incentive compatible.
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A.2 Proof of Lemma 1

Proof. Given µ, Receiver’s optimal mechanism is given by:

max
(x,p):{0,1}→[0,1]×R+

µ(vR(1)x(1)− p(1)) + (1− µ)(vR(0)x(0)− p(0))

sub. to vS(1)x(1) + p(1) ≥ vS(1)x(0) + p(0)

vS(0)x(0) + p(0) ≥ vS(0)x(1) + p(1).

In the solution, we must have x(1) ≥ x(0), p(1) = 0, and p(0) = vS(0)x(1) −
vS(0)x(0), and thus, the problem reduces to:

max
(x,p):{0,1}→[0,1]×R+

(µvR(1)− (1− µ)vS(0))x(1) + (1− µ)(vR(0) + vS(0))x(0)

sub. to x(1) ≥ x(0).

If µvR(1) − (1 − µ)vS(0) > 0 and vR(0) + vS(0) < 0, then it is optimal to set

x(1) = 1 and x(0) = 0. If µvR(1)−(1−µ)vS(0) = 0 and vR(0)+vS(0) < 0, Receiver

is indifferent between the screening mechanism (i.e., x(1) = 1, x(0) = 0) and the

constant allocation rule x(1) = x(0) = 0. As in the standard Bayesian persuasion

model, we assume that Receiver chooses the Sender-preferred action to break the

tie, which is the screening mechanism. In the other cases, either x(1) = x(0) = 1

or x(1) = x(0) = 0 is optimal.

A.3 Proof of Proposition 1

Proof. As mentioned in the main text, we characterize the optimal λ2 for each

µ1 in two steps: first, we consider a particular class of distributions which make

Receiver indifferent to continuously many cutoff mechanisms, and then solve the

optimal one within that class; second, we prove that the solution we obtain in the

first step is indeed optimal among all possible λ2 such that
∫
µ2
µ2dλ2(µ2) = µ1.

To simplify the notations, we write v′S = vS(1) − vS(0), v′R = vR(1) − vR(0) and

w(·) = vS(·) + vR(·).
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Step 1

Given any µ1, we formally define such class of λ2: (i) for some c ∈ [0, 1], any

cutoff mechanism with a cutoff in [0, c] is optimal for Receiver; (ii) λ2 is supported

on [0, c] ∪ {1} admitting density on (0, c) and having atoms only at 0 and 1; and

(iii) vS(c) + vR(c) ≤ 0 for all c ∈ [0, c] (equivalently, c ≤ −vS(0)−vR(0)
v′S+v′R

). The

first condition and the regularity part of the second condition is based on our

“indifference” guess above. The reason why λ2 may be supported not only on [0, c]

but also on {1} is because of the Bayes plausibility requirement (e.g., imagine the

case where µ1 is higher than c). The third condition also makes sense, because if

vS(c) + vR(c) > 0 for some c ∈ [0, c], then Receiver strictly prefers a = 1 if Sender

reports exactly c, while the mechanism recommends a = 0. By lowering the cutoff,

Receiver is strictly better off, because Receiver plays a = 1 more often when it is

beneficial for him, and he pays less to Sender.

If Receiver chooses a cutoff mechanism with cutoff c, his expected payoff is:∫
µ≤c

(−vS(c))dλ2(µ) +

∫
µ>c

vR(µ)dλ2(µ)

=

∫
µ≤c

(−vS(c)− vR(µ))dλ2(µ) + vR(µ1)

=

∫
µ≤c

(−w(c))dλ2(µ) + v′R

∫
µ≤c

λ2(µ)dµ+ vR(µ1)

and thus, any cutoff mechanism with cutoff c ∈ [0, c] is optimal only if the deriva-

tive of this expression with respect to c is 0:

(−w(c))
dλ2

dµ
(c)− v′Sλ2(c) = 0,

where λ2(c) should be interpreted as a cumulative distribution function here; and

also, Receiver earns no less than when he simply plays a = 0:∫
µ≤c

(−w(c))dλ2(µ) + v′R

∫
µ≤c

λ2(µ)dµ+ vR(µ1) ≥ 0.
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The above ordinary differential equation implies:

λ2(µ) = λ2(0)
(−w(0)

−w(µ)

) v′S
v′
S
+v′

R

for each µ ∈ [0, c], and λ2(1) = 1−λ2(c). This expression indeed makes sense as a

cumulative distribution function because w(µ) = vS(µ) + vR(µ) < 0 for all µ ≤ c.

Moreover, the Bayes plausibility requires µ1 =
∫
µ∈[0,1]

µdλ2(µ), which implies

λ2(0) =
(1− µ1)v′R(

vS(c) + vR(1)
)(−w(0)
−w(c)

) v′
S

v′
S
+v′

R − w(0)

(≥ 0).

Thus, the form of λ2 in this class is fully determined up to a single parameter

c. Given any choice of c, assume that the best continuation equilibrium in view

of Sender is to be selected (as standard in Bayesian persuasion); that is, Receiver

plays the cutoff mechanism with cutoff c for sure, in spite of his indifference to any

cutoffs within [0, c].12 Then, Sender’s expected payoff (given µ1) is:

US(c;µ1) =

∫
µ≤c

vS(c)dλ2(µ) +

∫
µ>c

vS(µ)dλ2(µ) = v′S

∫
µ≤c

(c− µ)dλ2(µ) + vS(µ1)

= (1− µ1)v′S

[
1− (1− c)v′R

vS(c) + vR(1) + (−w(0))
v′
R

v′
S
+v′

R (−w(c))
v′
S

v′
S
+v′

R

]
+ vS(µ1).

Thus, Sender’s best expected payoff (given µ1) within this class of λ2 is given by:

U∗S(µ1) = max
c∈[0,

−w(0)

v′
S
+v′

R
]

US(c;µ1)

sub. to (−w(0))λ2(0) + vR(µ1) ≥ 0

λ2(c) ≤ 1,

where the first constraint says that Receiver prefers the cutoff mechanism with

12Even if other selection criteria were adopted, Sender could earn the same expected payoff
approximately, i.e., by a sequence of appropriately perturbed λ2’s. In this sense, our qualitative
result would not change.
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cutoff 0 (and any cutoff mechanism with cutoff less than or equal to c) to the

constant mechanism of “always playing x = 0”.

Lemma 2. The constraint λ2(c) ≤ 1 is redundant.

Proof of the lemma. It suffices to show that the constraint λ2(c) ≤ 1 is implied by

(−w(0))λ2(0) + vR(µ1) ≥ 0. Because we have

λ(c) ≤ 1⇔ λ2(0)
(−w(0)

−w(c)

) v′S
v′
S
+v′

R ≤ 1

⇔ µ1 ≥ −
vS(c) + vR(0)

v′R
+
w(0)

v′R

(−w(c)

−w(0)

) v′S
v′
S
+v′

R := µ̃1(c),

c satisfies λ2(c) ≤ 1 if and only if µ1 ≥ µ̃1(c). Similarly, because we have

(−w(0))λ2(0) + vR(µ1) ≥ 0

⇔µ1 ≥
−vR(0)

v′R
− vR(1)

v′R

(
− w(0)

) v′R
v′
S
+v′

R

(
− w(c)

) v′S
v′
S
+v′

R

vS(c) + vR(1)
:= µ̂1(c),

c satisfies (−w(0))λ2(0) + vR(µ1) ≥ 0 if and only if µ1 ≥ µ̂1(c). Since we have

µ̂1(c)− µ̃1(c) =
vS(c)

v′R

[
1 +

(
− w(0)

) v′R
v′
S
+v′

R

(
− w(c)

) v′S
v′
S
+v′

R

vS(c) + vR(1)

]
> 0

for any c, we conclude that the constraint λ(c) ≤ 1 is redundant.

One can easily check that µ̂1(c) is increasing in c, and µ̂1(0) = µ. The next

lemma shows that Sender’s problem has a unique unconstrained maximizer.

Lemma 3. Sender’s objective function US(c;µ1) has a unique maximizer, named

c∗, over [0, −w(0)
v′S+v′R

], which is given by

(−w(c∗)

−w(0)

) v′R
v′
S
+v′

R =
vS(1) + vR(c∗)

w(1)
. (1)
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Proof of the lemma. One can easily check that the first order derivative of US(c;µ1)

with respect to c has the same sign as

w(1)−
(
vR(c) + vS(1)

)(
− w(0)

) v′R
v′
S
+v′

R

(
− w(c)

)− v′R
v′
S
+v′

R := h(c).

Because we have

dh(c)

dc
= −v′Rv′S(1− c)

(
− w(0)

) v′R
v′
S
+v′

R

(
− w(c)

)− v′R
v′
S
+v′

R
−1
< 0,

h(0) = v′R > 0, lim
c↗ −w(0)

v′
S
+v′

R

h(c) = −∞,

there exists a unique c∗ ∈ [0, −w(0)
v′S+v′R

] such that h(c∗) = 0. It follows that US(c;µ1) is

increasing in c over (0, c∗), and decreasing over (c∗, −w(0)
v′S+v′R

). Thus, c∗ is the unique

maximizer of US(c;µ1), given by h(c∗) = 0, which is equivalent to Equation (1).

It is worth noting that c∗ is independent of µ1. Based on these results, we get

the optimal c for each µ1: When µ1 ≥ µ̂1(c∗) := µ∗1, the unconstrained maximizer

automatically satisfies (−w(0))λ2(0) + vR(µ1) ≥ 0, thus we have

U∗S(µ1) = US(c∗;µ1) =
−w(c∗)

1− c∗
(1− µ1) + vS(µ1).

When µ1 ∈ [µ, µ∗1), we get a binding constraint (−w(0))λ2(0) + vR(µ1) = 0 (or

equivalently, µ1 = µ̂1(c)), which pins down the optimal c(µ1), and we have

U∗S(µ1) = US(c(µ1);µ1) = v′S(1− µ1)− v′S(1− c(µ1))vR(1)

vS(c(µ1)) + vR(1)
+ vS(µ1).

When µ1 < µ, there is no candidate within this class of λ2 such that (−w(0))λ2(0)+

vR(µ1) ≥ 0. In other words, Receiver always prefers playing a = (0, 0) to any cutoff

mechanisms, and Sender’s choice of c doesn’t matter.

27



Step 2

Now we prove that what we get in Step 1 is indeed optimal among all Bayes plau-

sible λ2. First, consider any information policy λ = (λ1, λ2) and its associated

continuation equilibrium given each realized µ1, in particular, Receiver’s mecha-

nism α = (x, p) : ∆(Θ) → [0, 1] × R+. By the standard argument, x(µ2) must be

non-decreasing, and p(µ2) is given by the envelope formula:

x(µ2)vS(µ2) + p(µ2) = x(1)vS(1) + p(1)−
∫ 1

z=µ2

x(z)v′Sdz,

where p(1) = 0 by optimality. Accordingly, Receiver’s payoff for each given µ2 is:

x(µ2)vR(µ2)− p(µ2)

= x(µ2)vR(µ2)− [x(1)vS(1)−
∫ 1

z=µ2

x(z)v′Sdz − x(µ2)vS(µ2)]

= x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz

Case (i). µ1 ≥ µ∗1.

Consider the following problem:

max
λ2∈∆([0,1]),x(·)

∫
µ2∈[0,1]

[x(1)vS(1)−
∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

sub. to

∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

≥ vR(µ1)−
∫
µ2≤y

(vS(y) + vR(µ2))dλ2(µ2), ∀y ∈ [0, c∗]∫
µ2∈[0,1]

µ2dλ2(µ2) = µ1, x : non-decreasing.

This is to maximize Sender’s expected payoff by choosing a distribution λ2 that

is Bayes plausible with respect to µ1 (the second constraint), letting Receiver’s

mechanism α = (x, p) : ∆(Θ) → [0, 1] × R+. The first constraint requires that

Receiver prefers this mechanism to any cutoff mechanism with cutoff in [0, c∗]. To
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the extent that only a subset of Receiver’s incentive conditions is taken care of,

the value of the above problem must be (weakly) higher than Sender’s expected

payoff given µ1 under the optimal λ2.

By a standard (weak) duality argument, the following min-max problem attains

a (weakly) even higher value:

min
φ≥0

[
max

λ2∈∆([0,1]),x(·)

∫
µ2∈[0,1]

[x(1)vS(1)−
∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

+

∫ c∗

y=0

[ ∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

−vR(µ1) +

∫
µ2≤y

(vS(y) + vR(µ2))dλ2(µ2)
]
φ(y)dy

sub. to

∫
µ2∈[0,1]

µ2dλ2(µ2) = µ1, x : non-decreasing
]

Consider the following candidate solution to this min-max problem:

φ(y) =
vR(c∗) + vS(1)

(−w(y))(1− c∗)

(−w(0)

−w(y)

) v′R
v′
S
+v′

R

for y ∈ [0, c∗], and φ(y) = 0 otherwise. Notice that

Φ(y) =

∫
z∈[0,y]

φ(z)dz =
vR(c∗) + vS(1)

v′R(1− c∗)

[(−w(0)

−w(y)

) v′R
v′
S
+v′

R − 1
]

satisfies Φ(c∗) = 1 (due to Equation (1)), thus φmay be interpreted as a probability

density, and Φ denotes its cumulative distribution function. Then, the objective

of the min-max problem becomes:

−vR(µ1) +

∫ 1

µ2=0

x(µ2)w(µ2)dλ2(µ2) +

∫ c∗

y=0

[ ∫ y

µ2=0

(vS(y) + vR(µ2))dλ2(µ2)
]
φ(y)dy.

Thus, the optimal x is given by x(µ2) = 1{µ2>µ∗}, where µ∗ is such that w(µ∗) = 0.
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Since c∗ < µ∗ < 1, the objective further becomes:

vS(µ1)−
∫ µ∗

µ2=0

w(µ2)dλ2(µ2) +

∫ c∗

y=0

[ ∫ y

µ2=0

(vS(y) + vR(µ2))dλ2(µ2)
]
φ(y)dy.

Applying integration by parts (twice), the third item (that is, the double inte-

gral) can be written as:∫ c∗

y=0

(1− Φ(y))w(y)dλ2(y) + v′S

∫ c∗

y=0

J(y)dλ2(y),

where

J(y) =

∫ c∗

y′=y

(
1− Φ(y′)

)
dy′

=
w(1)(c∗ − y)

v′R(1− c∗)
+
vR(c∗) + vS(1)

v′Sv
′
R(1− c∗)

(−w(0))
v′R

v′
S
+v′

R

[
(−w(c∗))

v′S
v′
S
+v′

R − (−w(y))
v′S

v′
S
+v′

R

]
and therefore, the objective finally becomes:

vS(µ1)−
∫ µ∗

µ2=0

w(µ2)dλ2(µ2) +

∫ c∗

µ2=0

[
(1− Φ(µ2))w(µ2) + v′SJ(µ2)

]
dλ2(µ2)

= vS(µ1) +

∫ 1

µ2=0

K(µ2)dλ2(µ2),

where

K(µ2) = 1{µ2≤c∗}
(
v′SJ(µ2)− Φ(µ2)w(µ2)

)
+ 1{µ2∈(c∗,µ∗]}

(
− w(µ2)

)
.

Lemma 4. K(µ2) = −w(c∗)
1−c∗ (1−µ2) for µ2 ∈ [0, c∗]∪{1}, and K(µ2) ≤ −w(c∗)

1−c∗ (1−µ2)

otherwise.

Proof of the lemma. For µ2 ∈ (0, c∗), by differentiation, we have

K ′(µ2) = −v′S − φ(µ2)w(µ2)− v′RΦ(µ2) =
w(c∗)

1− c∗
.
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Because K(µ2) is continuous at µ2 ∈ {0, c∗}, and

K(0) = v′SJ(0) = v′S

∫ c∗

y′=0

(
1− Φ(y′)

)
dy′

=
w(1)v′Sc

∗

v′R(1− c∗)
+
vR(c∗) + vS(1)

v′R(1− c∗)

[
(−w(0))

v′R
v′
S
+v′

R (−w(c∗))
v′S

v′
S
+v′

R + w(0)
]

=
w(1)v′Sc

∗

v′R(1− c∗)
+
vR(c∗) + vS(1)

v′R(1− c∗)

[ −w(c∗)w(1)

vS(1) + vR(c∗)
+ w(0)

]
=
−w(c∗)

1− c∗
,

we obtain K(µ2) = −w(c∗)
1−c∗ (1− µ2) for µ2 ∈ [0, c∗].

For µ2 ∈ (c∗, µ∗], because K(µ2) is linear, and continuous at µ2 = c∗, it suffices

to show that K(µ∗) ≤ −w(c∗)
1−c∗ (1 − µ∗). This is indeed the case, because K(µ∗) =

−w(µ∗) = 0, while −w(c∗)
1−c∗ (1 − µ∗) > 0. For µ2 ∈ (µ∗, 1), we have K(µ2) = 0 <

−w(c∗)
1−c∗ (1− µ2). Finally, for µ2 = 1, we have K(µ2) = 0.

Fixed the above candidate solution φ, the inner maximization problem of the

min-max problem becomes:

max
λ2∈∆([0,1])

vS(µ1) +

∫
µ2∈[0,1]

K(µ2)dλ2(µ2)

sub. to

∫
µ2∈[0,1]

µ2dλ2(µ2) = µ1.

This is a standard Bayesian persuasion problem of choosing λ2 given µ1. By

Lemma 4, its value is at most vS(µ1) + −w(c∗)
1−c∗ (1− µ1), which is attainable by any

λ2 supported only on [0, c∗]∪{1}, and serves as the upper bound of Sender’s payoff

given µ1 ∈ [µ∗1, 1]. On the other hand, this value coincides with U∗S(µ1) in Step 1

(by the specific λ2 with parameter c = c∗). We therefore complete the verification.

Case (ii). µ ≤ µ1 < µ∗1.
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Consider the following problem:

max
λ2∈∆([0,1]),x(·)

∫
µ2∈[0,1]

[x(1)vS(1)−
∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

sub. to

∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

≥ vR(µ1)−
∫
µ2≤y

(vS(y) + vR(µ2))dλ2(µ2), ∀y ∈ [0, c(µ1)]∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2) ≥ 0∫
µ2∈[0,1]

µ2dλ2(µ2) = µ1, x : non-decreasing.

where c(µ1) is given by µ1 = µ̂1(c(µ1)); or equivalently,

(−w(0))
v′R

v′
R

+v′
S (−w(c(µ1)))

v′S
v′
R

+v′
S =

−vR(µ1)
(
vR(1) + vS(c(µ1))

)
vR(1)

. (2)

Unlike Case (i), the incentive constraints are only for y ∈ [0, c(µ1)]; however, we

now have an “individual rationality” constraint where Receiver does not deviate

to “always playing a = 0”. Now the Lagrangian is:

L =

∫
µ2∈[0,1]

[x(1)vS(1)−
∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

+γ

∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

+

∫ c(µ1)

y=0

[ ∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

−vR(µ1) +

∫
µ2≤y

(vS(y) + vR(µ2))dλ2(µ2)
]
φ(y)dy,

where γ ≥ 0 is the multiplier for Receiver’s IR constraint.

Consider the following candidate solution to minφ,γ≥0 maxλ2∈∆([0,1]),x(·) L (where
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λ2 is Bayes plausible and x is non-decreasing) :

φ(y) =
w(1)

(1− c(µ1))

(
− w(c(µ1))

) v′R
v′
S
+v′

R (−w(y))
− v′R

v′
S
+v′

R
−1

for y ∈ [0, c(µ1)], and φ(y) = 0 otherwise; γ = 1 − Φ(c(µ1)) = 1 −
∫ c(µ1)

y=0
φ(y)dy.

The following lemma guarantees that this is indeed a feasible solution.

Lemma 5. Φ(c(µ1)) ≤ 1.

Proof of the lemma. First, by integrating φ, we have

Φ(y) =

∫ y

y′=0

φ(y′)dy′ =
w(1)

v′R(1− c(µ1))

[(−w(c(µ1))

−w(y)

) v′R
v′
S
+v′

R −
(−w(c(µ1))

−w(0)

) v′R
v′
S
+v′

R

]
.

From c(µ1) < c∗ and Equation (1), we have

(−w(c(µ1))

−w(0)

) v′R
v′
S
+v′

R >
vS(1) + vR(c(µ1))

w(1)
.

Thus,

1− Φ(c(µ1)) = 1− w(1)

v′R(1− c(µ1))

[
1−

(−w(c(µ1))

−w(0)

) v′R
v′
S
+v′

R

]
> 1− w(1)

v′R(1− c(µ1))

[
1− vS(1) + vR(c(µ1))

w(1)

]
= 0.

Then, by the similar procedure as in Case (i) (that is, verifying that it is optimal

to set x(z) = 1{z>µ∗}, and applying integration by parts twice), we obtain:

L = w(µ1)− Φ(c(µ1))vR(µ1) +

∫ 1

µ2=0

H(µ2)dλ2(µ2),
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where

H(µ2) = 1{µ2∈(c(µ1),µ∗]}
(
− w(µ2)

)
+ 1{µ2≤c(µ1)}

(
v′S

∫ c(µ1)

z=µ2

(Φ(c(µ1))− Φ(z))dz + w(µ2)(Φ(c(µ1))− Φ(µ2))− w(µ2)
)
.

Following the same procedure as in Lemma 4, we have H(µ2) = −w(c(µ1))
1−c(µ1)

(1−µ2)

for µ2 ∈ [0, c(µ1)]∪{1}, and H(µ2) ≤ −w(c(µ1))
1−c(µ1)

(1−µ2) otherwise. Then the optimal

λ2 is any distribution that is supported on [0, c(µ1)] ∪ {1} (and has mean µ1 by

Bayes plausibility). It follows that w(µ1)−Φ(c(µ1))vR(µ1)− w(c(µ1))
1−c(µ1)

(1− µ1) is an

upper bound of Sender’s payoff given µ1 ∈ [µ, µ∗1). Applying the (weak) duality

argument and Equation (2), we have

0 ≤ min
φ,γ≥0

[
max

λ2∈∆([0,1]),x(·)
L, s.t. Eλ2 [µ2] = µ1, x : non-decreasing

]
− US(c(µ1);µ1)

≤
[
w(µ1)− vR(µ1)w(1)

v′R(1− c(µ1))

(
1− w(c(µ1))vR(1)

vR(µ1)(vR(1) + vS(c(µ1)))

)
− w(c(µ1))

1− c(µ1)
(1− µ1)

]
−
[
v′S(1− µ1)− v′S(1− c(µ1))vR(1)

vS(c(µ1)) + vR(1)
+ vS(µ1)

]
= 0,

which means the specific λ2 with parameter c = c(µ1) in Step 1 is indeed optimal.

Case (iii). µ1 < µ.

Consider the following problem:

max
λ2∈∆([0,1]),x(·)

∫
µ2∈[0,1]

[x(1)vS(1)−
∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

sub. to

∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2) ≥ 0∫
µ2∈[0,1]

µ2dλ2(µ2) = µ1, x : non-decreasing.

Here, we only consider Receiver’s individual rationality constraint. The corre-
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sponding Lagrangian becomes:

L =

∫
µ2∈[0,1]

[x(1)vS(1)−
∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2)

+γ

∫
µ2∈[0,1]

[x(µ2)w(µ2)− x(1)vS(1) +

∫ 1

z=µ2

x(z)v′Sdz]dλ2(µ2).

The goal is to show that, with an appropriate γ, the value of the Lagrangian

cannot be strictly positive. This verifies that the optimal policy for Sender is just

to let Receiver always play a = 0. Taking integration by parts (twice), we obtain:

L = x(1)
(
γvR(µ1) + vS(µ1)

)
+

∫ 1

µ2=0

[
(γv′R + v′S)Λ(µ2)− γλ2(µ2)w(µ2)

]
dx(µ2),

where Λ(µ2) =
∫ µ2
y=0

λ2(y)dy. Immediately, we have

L ≤ x(1)
(
γvR(µ1) + vS(µ1)

)
+ x(1) max

z∈[0,1]

{
(γv′R + v′S)Λ(z)− γλ2(z)w(z)

}
= x(1) max

z∈[0,1]

{
γvR(µ1) + vS(µ1) + (γv′R + v′S)Λ(z)− γλ2(z)w(z)︸ ︷︷ ︸

:=l(z,λ2)

}
.

Fixed some γ ≥ vS(µ1)
vS(0)−µ1(vS(0)+vR(1))

(> 1), to prove L is always non-positive, it

suffices to show that l(z, λ2) ≤ 0 for any z and any Bayes-plausible λ2.

(I) w(z) ≤ 0. Because λ2 is a cumulative distribution function over [0, 1] with

mean µ1, for any z ∈ [0, 1], we have Λ(z) + (1 − z)λ2(z) ≤ Λ(1) = 1 − µ1, which

means λ2(z) ≤ 1−µ1−Λ(z)
1−z . Since Λ(z) is convex, we have Λ(z) ≤ (1 − z)Λ(0) +
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zΛ(1) = z(1− µ1). Then, we have

l(z, λ2) ≤γvR(µ1) + vS(µ1) + (γv′R + v′S)Λ(z)− γ 1− µ1 − Λ(z)

1− z
w(z)

=γvR(µ1) + vS(µ1)− γ 1− µ1

1− z
w(z) + Λ(z)

(
v′S + γ

vR(1) + vS(z)

1− z

)
≤γvR(µ1) + vS(µ1)− γ 1− µ1

1− z
w(z) + z(1− µ1)

(
v′S + γ

vR(1) + vS(z)

1− z

)
=γvR(µ1) + vS(µ1) + (1− µ1)

[
− (γ − 1)v′Sz − γw(0)

]
≤γvR(µ1) + vS(µ1)− γ(1− µ1)w(0)

=vS(µ1)− γ
[
vS(0)− µ1(vS(0) + vR(1))

]
≤ 0.

(II) w(z) > 0. Because Λ(z) ≤ λ2(z)z for any z ∈ [0, 1], we have

l(z, λ2) ≤γvR(µ1) + vS(µ1) + (γv′R + v′S)Λ(z)− γΛ(z)

z
w(z),

which is a linear function with respect to Λ(z). Since Λ(z) ∈ [0, z(1 − µ1)], to

prove l(z, λ2) ≤ 0, it suffices to show that the right hand side is non-positive at

Λ(z) = 0 and Λ(z) = z(1− µ1). In fact, we have

γvR(µ1) + vS(µ1) + (γv′R + v′S)z(1− µ1)− γ z(1− µ1)

z
w(z)

= γvR(µ1) + vS(µ1) + (1− µ1)
[
− (γ − 1)v′Sz − γw(0)

]
≤ γvR(µ1) + vS(µ1)− γ(1− µ1)w(0) ≤ 0;

and from vR(µ1) ≤ vR(0) + v′R
vS(0)

vS(0)+vR(1)
= w(0)vR(1)

vS(0)+vR(1)
< 0, we have

γvR(µ1) + vS(µ1) + (γv′R + v′S) · 0− γ 0

z
w(z)

≤ vS(µ1)

vS(0)− µ1(vS(0) + vR(1))
vR(µ1) + vS(µ1) =

vS(µ1)w(0)(1− µ1)

vS(0)− µ1(vS(0) + vR(1))
< 0.

36



Shape of U∗S(µ1)

In Case (i), U∗S(µ1) is linear in µ1: when µ1 ≥ µ̂1(c̄∗),

U∗S(µ1) =
−w(c∗)

1− c∗
(1− µ1) + vS(µ1).

In Case (iii), U∗S(µ1) is also linear in µ1: when µ1 < µ,

U∗S(µ1) = 0.

In Case (ii), U∗S(µ1) is increasing and concave. To prove this, we first take the

derivative of Equation (2) with respect to µ1, and get:

dc̄(µ1)

dµ1

=
w(c̄(µ1))(vR(1) + vS(c̄(µ1)))

v′SvR(µ1)(1− c̄(µ1))
.

Then, we check the first-order and second-order derivatives of U∗S(µ1) with respect

to µ1 : (We write c̄ instead of c(µ1) to simplify the notation.)

dU∗S(µ1)

dµ1

= v′S

[
−1− −vR(1)(vR(1) + vS(c̄))− vR(1)(1− c̄)v′S

(vR(1) + vS(c̄))2

dc̄

dµ1

]
+ v′S

=
vR(1)w(1)w(c̄)

vR(µ1)(1− c̄)(vR(1) + vS(c̄))
(> 0),
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and

d2U∗S(µ1)

d(µ1)2
=

vR(1)w(1)[
vR(µ1)(1− c̄)(vR(1) + vS(c̄))

]2[(v′R + v′S)
dc̄

dµ1

vR(µ1)(1− c̄)(vR(1) + vS(c̄))

− w(c̄)v′R(1− c̄)(vR(1) + vS(c̄)) + w(c̄)vR(µ1)
dc̄

dµ1

(vR(1) + vS(c̄))− w(c̄)vR(µ1)(1− c̄)v′S
dc̄

dµ1

]
=

vR(1)w(1)[
vR(µ1)(1− c̄)(vR(1) + vS(c̄))

]2[(v′R + v′S)
w(c̄)(vR(1) + vS(c̄))

v′S
(vR(1) + vS(c̄))

− w(c̄)v′R(1− c̄)(vR(1) + vS(c̄)) + w(c̄)
w(c̄)(vR(1) + vS(c̄))2

v′S(1− c̄)
− w(c̄)2(vR(1) + vS(c̄))

]
=

vR(1)w(1)w(c̄)(vR(1) + vS(c̄))2[
vR(µ1)(1− c̄)(vR(1) + vS(c̄))

]2 · [v′R + v′S
v′S

+
w(c̄)

v′S(1− c̄)
− 1
]

=
vR(1)w(1)(vR(1) + vS(c̄))3[

vR(µ1)(1− c̄)(vR(1) + vS(c̄))
]2 · w(c̄)

v′S(1− c̄)
(< 0).

Thus, U∗S(µ1) is indeed increasing and concave in Case (ii).

Based on the above results, the following lemma gives a complete description

of the shape of U∗S(·), as well as the smallest concave function everywhere above

it, named U
RS

S (·):

Lemma 6. U
RS

S (µ) = w(1)µ for µ ∈ [0, µ), and U
RS

S (µ) = U∗S(µ) for µ ∈ [µ, 1].

Proof of the lemma. We observes that U∗S(µ) is discontinuous at µ = µ. Specifi-

cally, as µ decreases to µ, c̄(µ) will decrease to 0, which means U∗S(µ) will converge

to vS(µ) = vS(0) + v′Sµ = w(1)µ; while U∗S(µ) = 0 for µ ∈ [0, µ). As µ decreases

to µ, the right-hand limit of
dU∗S(µ)

dµ
is

lim
µ↘µ

dU∗S(µ)

dµ
=

vR(1)w(1)w(0)

vR(µ)(vR(1) + vS(0))
= w(1).

Because for µ ∈ [0, µ), U∗S(µ) is always below the line segment connecting (0, 0) and

(µ, U∗S(µ)), whose slope is also equal to w(1), we conclude that this line segment

and U∗S(µ) in Case (ii) constitute a concave function.

On the other hand, because U∗S(µ) is continuous at µ = µ̂(c̄∗), to prove that

U∗S(µ) is already concave over [µ, 1], we only need to show that the left-hand limit
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of
dU∗S(µ)

dµ
is (weakly) larger than its right-hand limit at µ = µ̂(c̄∗). Suppose not,

then in the neighborhood of µ̂(c̄∗) we can find some µ′ < µ̂(c̄∗) such that U∗S(µ′) is

strictly above the line we get in Case (i). However, this is impossible because there

are more binding constraints (i.e., Receiver’s “individual rationality” constraint)

in Case (ii) than in Case (i).

A.4 Proof of Theorem 5

Proof. The ranking of Sender’s private information (as well as the public informa-

tion) follows directly from Section 3.2 and 4.1. As for the total information, we

only need to compare the BP solution and the RS solution, since the RW solution

eventually fully reveals the state. Recall that s1 denote the public signal and s2

denote the private signal for Sender.

When µ0 < µ, (s1, s2) fully reveals the state in the RS solution, while the BP

solution only partially discloses the state.

When µ ≤ µ0 < µ̂1(c̄∗), (s1, s2) in the RS solution splits µ0 to [0, c̄] ∪ {1}
according to λRS2 with parameter c̄ satisfying µ0 = µ̂1(c̄); while the BP solution

splits µ0 to {0, −vR(0)
v′R
} with λBP1 (0) = −vR(µ0)

−vR(0)
, where −vR(0)

v′R
> c̄. Thus, to prove

that λRS2 is a mean-preserving spread of λBP1 (and thus λRS2 is more Blackwell-

informative than λBP1 ), it suffices to show that λRS2 (0) > λBP1 (0) :

λRS2 (0) =
v′R(1− µ0)

−w(0) + (vR(1) + vS(c̄))(−w(0))
v′
S

v′
S
+v′

R (−w(c̄))
−

v′
S

v′
S
+v′

R

=
v′R(1− µ0)

−w(0) + (vR(1) + vS(c̄)) −w(0)vR(1)
−vR(µ0)(vR(1)+vS(c̄))

=
−vR(µ0)

−w(0)
>
−vR(µ0)

−vR(0)
= λBP1 (0).

When µ̂1(c̄∗) ≤ µ0 <
−vR(0)
v′R

, (s1, s2) in the RS solution splits µ0 to [0, c̄∗] ∪ {1}
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according to λRS2 with parameter c̄∗, thus, we have

λRS2 (0) =
v′R(1− µ0)

−w(0) + (vR(1) + vS(c̄∗))(−w(0))
v′
S

v′
S
+v′

R (−w(c̄∗))
−

v′
S

v′
S
+v′

R

,

which is linear in µ0, and strictly positive. On the other hand, the BP solution

splits µ0 to {0, −vR(0)
v′R
} with λBP1 (0) = −vR(µ0)

−vR(0)
, which is also linear in µ0. Because

we have λRS2 (0) > λBP1 (0) for µ0 = µ̂1(c̄∗) (which is already proved in the previous

case) and for µ0 = −vR(0)
v′R

(where λBP1 (0) = 0), we conclude that λRS2 (0) > λBP1 (0)

for all µ0 ∈ [µ̂1(c̄∗), −vR(0)
v′R

). Since −vR(0)
v′R

> c̄∗, λRS2 is more Blackwell-informative

than λBP1 .

When µ0 ≥ −vR(0)
v′R

, (s1, s2) in the RS solution splits µ0 to [0, c̄∗]∪{1} according

to λRS2 with parameter c̄∗; while the BP solution reveals no information.

A.5 Proof of Theorem 6

Proof. For each regime r ∈ {BP,RW,RS}, let U
r

R(µ0), U
r

S(µ0) and TW
r
(µ0)

denote Receiver’s expected payoff, Sender’s expected payoff, and the total welfare

at the ex ante stage, respectively.

(1) BP solution: When µ0 ∈ [0, −vR(0)
v′R

), we have U
BP

R (µ0) = 0, U
BP

S (µ0) =

TW
BP

(µ0) = µ0

( vS(0)
−vR(0)

vR(1) + vS(1)
)
.

When µ0 ∈ [−vR(0)
v′R

, 1], we have U
BP

R (µ0) = vR(0) + µ0v
′
R, U

BP

S (µ0) = vS(0) +

µ0v
′
S, and TW

BP
(µ0) = w(0) + µ0(v′R + v′S).

(2) RW solution: When µ0 ∈ [0, µ), we have U
RW

R (µ0) = 0, U
RW

S (µ0) =

TW
RW

(µ0) = µ0w(1) > U
BP

S (µ0) = TW
BP

(µ0).

When µ0 ∈ [µ, 1], we have U
RW

R (µ0) = −vS(0)+µ0

(
vS(0)+vR(1)

)
, U

RW

S (µ0) =

vS(0) + µ0v
′
S ≥ U

BP

S (µ0), and TW
RW

(µ0) = µ0w(1).

In fact, the RW solution implements the efficient outcome where (s1, s2) fully

reveals the state and Receiver chooses a = 0 (or 1) in state 0 (or 1).

(3) RS solution: U
RS

R (µ0) = 0 for µ0 ∈ [0, µ̂1(c∗)), and U
RS

R (µ0) =

vR(1) − (1 − µ0) vR(1)
1−µ̂1(c∗)

for µ0 ∈ [µ̂1(c∗), 1]. Notice that µ < µ̂1(c∗) < −vR(0)
v′R

,

and immediately we have U
RW

R (µ0) ≥ U
RS

R (µ0) ≥ U
BP

R (µ0) for any µ0 ∈ [0, 1].
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Because the RW solution is always a candidate solution in the RS model, we

have U
RS

S (µ0) ≥ U
RW

S (µ0). It follows that U
RS

S (µ0) ≥ U
RW

S (µ0) ≥ U
BP

S (µ0) for

any µ0 ∈ [0, 1].

Since U
RS

R (µ0) ≥ U
BP

R (µ0) and U
RS

S (µ0) ≥ U
BP

S (µ0), we have TW
RS

(µ0) ≥
TW

BP
(µ0) for any µ0 ∈ [0, 1]. On the other hand, because (s1, s2) in the RS

solution only partially reveals the state (when µ0 > µ), there is some probability

that the state is 1 but Receiver implements a = 0, which would induce efficiency

loss; while the RW solution always induces the efficient outcome. Thus, we have

TW
RW

(µ0) ≥ TW
RS

(µ0) for any µ0 ∈ [0, 1].
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