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Abstract

Expert decisions often deviate from evidence-based guidelines. If experts are unaware of
guidelines, dissemination may improve outcomes. If experts are aware of guidelines but con-
tinue to deviate, promoting stricter adherence has ambiguous effects on outcomes depending on
whether experts have information not in guidelines. We study guidelines for anticoagulant use
to prevent strokes among atrial fibrillation patients. By text-mining physician notes, we iden-
tify when physicians start using guidelines. After mentioning guidelines, physicians become
more guideline-concordant, but adherence remains far from perfect. To evaluate whether non-
adherence reflects physicians’ superior information, we combine observational data on treatment
choices with machine learning estimates of heterogeneous treatment effects from eight random-
ized trials. Most departures from guidelines are not justified by measurable treatment effect
heterogeneity. Promoting stricter adherence to guidelines could prevent 22% more strokes, pro-
ducing much larger gains than broader guideline awareness.
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1 Introduction

In medicine, law, science, and many other settings, expert decision-makers frequently deviate from

guideline recommendations (Arrowsmith et al., 2015; Grimshaw and Russell, 1993; Prior et al., 2008;

Stevenson and Doleac, 2019). Experts may deviate because they lack awareness of guidelines. In this

case, guideline dissemination may reduce deviations and improve outcomes as long as guidelines are

well-crafted. If experts are aware of guidelines but continue to deviate, promoting stricter adherence

may worsen or improve outcomes, depending on whether experts have additional information not

encoded in guidelines.

Understanding deviations from guidelines is especially urgent in healthcare, where research doc-

uments large inefficiencies in care allocation.1 Clinical guidelines have been the principal strategy

used to encourage evidence-based care, with approximately 250,000 peer-reviewed papers about clin-

ical scoring systems published over the past 50 years (Challener et al., 2019). Efforts to encourage

greater guideline adherence have been criticized because they discount the role of physician exper-

tise in tailoring individualized treatments (Basu et al., 2014; Costantini et al., 1999; Woolf et al.,

1999). Important questions in health economics and policy center around whether greater guideline

awareness or adherence would correct or exacerbate care misallocation.

In this paper, we study how physicians employ an existing clinical guideline and we evaluate

treatment choices using novel machine learning (ML) estimates of treatment effects that incorporate

many patient characteristics absent from current guidelines. This approach allows us to test whether

physician treatment choices depend on information about treatment effects not encoded in guidelines

and to investigate how guideline awareness affects this dependence. We assess the impact on patient

outcomes of both guideline “awareness,” the change in decision-making when physicians begin to

note a guideline in the clinical records, and stricter “adherence,” the degree to which a physician

follows guideline recommendations.

We focus on the clinical setting of atrial fibrillation, a common condition afflicting more than 5

million people in the US (Colilla et al., 2013). The principal risk in atrial fibrillation is debilitating

or deadly ischemic stroke (hereafter, stroke); untreated patients have a 5% risk of stroke per year

(Atrial Fibrillation Investigators, 1995). Anticoagulation (blood thinning) has been shown in clini-

1Abaluck et al. (2016) and Ribers and Ullrich (2019) show that physicians allocate testing inefficiently across patients.
Mullainathan and Obermeyer (2019) and Chandra and Staiger (2020) show evidence of misallocation in heart attack testing
and treatments. Similar misallocations have been shown in the setting of C-sections (Currie and MacLeod, 2017), depres-
sion (Currie and MacLeod, 2020), pneumonia (Chan et al., 2019), and emergency department care (Gowrisankaran et al.,
2017).
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cal trials to reduce stroke risk. However, anticoagulation also increases the risk of life-threatening

hemorrhage (hereafter, bleed), including gastrointestinal and intracranial bleeding (Atrial Fibrillation

Investigators, 1995). Therefore, the consequences of misallocating anticoagulation can be serious. In

response to these stakes, researchers have developed the CHADS2 score: a simple predictive score

of stroke risk for patients with atrial fibrillation (Gage et al., 2001). Clinical guidelines recommend

tailoring treatment decisions on the basis of patients’ CHADS2 scores (Fuster et al., 2006; Hirsh et

al., 2008). The CHADS2 score is among the most well known and widely used risk scores for any

clinical condition.2

We study guideline awareness and treatment decisions of nearly 5,800 physicians treating 113,000

newly diagnosed atrial fibrillation patients in the Veterans Health Administration (VHA) from 2002-

2013. For each physician, we measure the date that the physician first incorporates the CHADS2

guideline into their decision-making, by identifying the earliest mention of the CHADS2 score in the

physician’s clinical notes. Following the publication of CHADS2-based treatment guidelines in 2006,

we see steady growth in physicians becoming aware of the guideline. Prior to awareness, physicians

treat roughly 50% of patients with atrial fibrillation, and treatment probability is largely invariant

to the CHADS2 score. After the first CHADS2 mention, practice patterns pivot towards CHADS2-

based recommendations: prescriptions to patients with low risk scores fall by 4.9 percentage points,

while prescriptions to patients with high risk scores increase by 1.6 percentage points. Despite these

changes, physicians who are aware of the CHADS2 score still fail to adhere to guidelines in more

than 40% of cases. Most departures from guideline-based treatment decisions are not explained by a

lack of guideline awareness.

To assess the benefits of guideline awareness as well as the possible benefits of stricter adher-

ence, we need to understand how treatment effects vary across patients. To this end, we generate

novel ML estimates of heterogeneous treatment effects from randomized controlled trial (RCT) mi-

crodata. To estimate heterogeneous treatment effects, we use detailed patient characteristics, clinical

outcomes, and randomized treatment status of each patient from eight RCTs in the Atrial Fibrillation

Investigators database (hereafter, AFI database) (van Walraven et al., 2009). Using a causal-forest

model (Wager and Athey, 2017; Asher et al., 2016), we obtain estimates of conditional average treat-

ment effects (CATEs) on strokes and bleeds that vary both with patient characteristics included in the

2Researchers affiliated with the Mayo Clinic report that the CHADS2 and its successor the CHA2DS2-VASc were the
most common search queries in their internal clinical decision support tool (Challener et al., 2019). MDCalc.com, the
popular website for calculating risk scores, currently lists CHA2DS2-VASc as second-highest in popularity and CHADS2
as sixth-highest in popularity.
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CHADS2 score and with other characteristics. We further compute best linear predictions (BLPs) of

the underlying CATEs using a method described by Chernozhukov et al. (2018), which we use in our

subsequent analysis.

We find substantial heterogeneity in stroke treatment effects. At the 90th percentile, warfarin re-

duces strokes by 6 percentage points, while at the 10th percentile, it reduces strokes by 3 percentage

points. The CHADS2 score explains a substantial share of our estimated variation in stroke treatment

effects ('2 = 0.49); nonetheless, there remains meaningful residual variation in stroke treatment ef-

fects that we can validate across RCTs in the AFI database. We cannot detect conclusive evidence of

heterogeneity in bleed treatment effects in the AFI database.

Exporting the ML-estimated stroke treatment effects to the VHA, we test how clinician treatment

decisions respond to variation in treatment effects, before and after the doctor begins applying the

CHADS2 guideline. Our first finding is that new awareness of the CHADS2 score (proxied by first

mention of the score in a doctor’s clinical notes) leads doctors to place greater decision weight on

CHADS2-related variation in stroke treatment effects. However, consistent with the reduced-form

evidence above, responsiveness to variation in CHADS2-related treatment effects remains low in ab-

solute terms. Our second finding is that awareness of the CHADS2 score does not decrease sensitivity

to components of treatment effects not in the CHADS2 score; i.e. it does not distract physicians from

important factors.

Our model suggests that departures from guidelines in this important setting generally worsen

patient outcomes, but this interpretation relies on two key assumptions. First, our estimates of treat-

ment effects in the AFI data must be externally valid in the VHA data. To assess the external validity

of our estimates across trials, we demonstrate that treatment effects estimated on subsets of our trial

database predict treatment effects in “out-of-bag” trials not used in estimation. Mean patient charac-

teristics in the VHA data are “in the support” of mean patient characteristics across trials in the AFI

data. Further, we show that treatment effects estimated from the AFI database are consistent with key

patterns in our observational data: observational differences between treated and untreated patients

are strongly correlated with RCT-estimated CATEs, and stroke rates are higher for untreated patients

with larger RCT-estimated CATEs.

Our second major assumption is that doctors are not making treatment decisions based on varia-

tion in treatment effects that cannot be predicted by the covariates in the AFI data. The attributes in the

AFI data were included precisely because experts developing the RCT protocols plausibly believed

they might moderate the benefits and costs of anticoagulant treatment. Nonetheless, other attributes
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may also be relevant. To investigate this, we add to the model detailed patient characteristics that may

relate to the benefits of treatment despite not being available in the RCT data; these include variables

that predict patient medication adherence, bleed risk, and fall risk. These characteristics explain very

little of the variance in treatment choices given estimated treatment effects and do not impact the other

coefficients in the model. This suggests that deviations from guidelines are not easily reconciled by

other considerations raised by the clinical literature but not measured in the AFI database.

We consider a variety of counterfactual scenarios, using the model to simulate the impact of

broader awareness or stricter adherence to the existing guideline. Our findings suggest that physi-

cians allocate treatments to patients with atrial fibrillation about as well as a random decision rule.

Extending awareness of the CHADS2 score to all physicians would slightly improve treatment allo-

cation, leading to a 1% improvement in strokes prevented per bleed induced. The benefits of strict

adherence to current guidelines are much larger than the benefits of universal guideline awareness.

Reallocating the same number of treatments in the observed allocation to patients with the highest

CHADS2 scores would prevent 14% more strokes per bleed induced than the status quo. Strict ad-

herence to a guideline which incorporates all validated ML information about heterogeneity in stroke

treatment effects would prevent 22% more strokes per bleed induced than the status quo. These re-

sults suggest that policies that aim to increase adherence may produce much larger improvements in

patient outcomes than policies that only broaden guideline use by increasing awareness.

We contribute to an active literature in economics studying the potential for machine-based algo-

rithms to improve decision-making. Evidence from clinical care (Abaluck et al., 2016; Mullainathan

and Obermeyer, 2019) and judge bail decisions (Kleinberg et al., 2018) suggests that human experts

make frequent mistakes that could be corrected by optimal guidelines, but does not analyze how

guidelines change behavior in practice. Finkelstein et al. (2021) suggest that experts deviate from

guidelines even for themselves and close relatives, but they do not directly link adherence to health

outcomes. Hoffman et al. (2018) finds that managers in their hiring decisions frequently overrule

a technology-driven hiring recommendation, but that doing so worsens outcomes. We build on this

research by studying highly skilled experts making an important clinical decision. We analyze how

new awareness of a guideline changes behavior and outcomes, in addition to simulating the effects of

stricter adherence to existing and novel guidelines using estimates of heterogeneous treatment effects.

An advantage of our approach is the application of pooled RCT data to estimate treatment ef-

fect hetorogneity; by contrast, many prior papers comparing machine decisions to human discretion

have relied on observational data and quasi-experimental assumptions to reach conclusions about
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misallocation.3 The use of RCTs for detection of treatment effect heterogeneity is particularly impor-

tant given recent research in econometrics, which has found that many quasi-experiments recovering

treatment effects may fail to meet the stricter assumptions required for identifying heterogeneous

treatment effects within subgroups (e.g., Kolesar et al., 2015; de Chaisemartin, 2017; Frandsen et al.,

2019). Further, we directly investigate the external validity of our RCT-derived findings in observa-

tional data, addressing some of the concerns about extrapolation raised by Manski (2017).

One concern about the real-world effectiveness of guidelines is that individuals who take up the

recommendations may not be those who would stand to benefit most. Einav et al. (2019) and Oster

(2020) both find that that healthier patients are more likely to take up recommended health screenings

and diets. We study guidelines targeting physician decisions, rather than patient health behaviors,

and find little evidence that selection into guideline compliance dampens the benefits of guideline

use. Guideline-adopting and non-adopting physicians make similar ex ante treatment choices and the

introduction of the CHADS2 score modestly improves patient selection into treatment.

In the medical literature, research has focused on how treatment decisions relate to clinical guide-

lines. The literature has shown widespread lack of adherence, not only in the case of the CHADS2

score, but also across many clinical risk scores and guidelines.4 Our paper builds on this literature by

documenting that even adopting physicians who are aware of the guideline continue to deviate fre-

quently. There is little existing evidence establishing whether guideline non-adherence is detrimental

to health outcomes in practice. Mehta et al. (2015) report that physicians who adhere more closely to

guidelines have better outcomes but do not separate the impact of guidelines from other differences

across physicians. We make progress by combining evidence on guideline adherence with causal

estimates of treatment effects to assess how guideline use affects health outcomes.

The remainder of this paper is organized as follows. Section 2 provides clinical background.

Section 3 describes our data. Section 4 provides reduced form evidence of the impact of CHADS2

awareness on treatment. Section 5 presents our estimates of causal-forest treatment effects. Section 6

models how guideline awareness impacts the relationship between treatment behavior and treatment

3Many of these papers compare treatments and outcomes across decision-makers, usually assuming a common ranking
of cases across decision-makers (e.g., Abaluck et al., 2016; Kleinberg et al., 2018; Chandra and Staiger, 2020). Newer
approaches in Chan et al. (2019) and Arnold et al. (2020) relax this assumption but restrict the direction of treatment
effects. In another vein, recent papers have applied ML techniques to predict outcomes using observational data, again
with necessary quasi-experimental assumptions because outcomes are selectively observed (e.g., Ribers and Ullrich, 2019;
Mullainathan and Obermeyer, 2019).

4An older review article estimated that 40% of patients were not receiving guideline-recommended care for chronic
conditions (Schuster et al., 1998). More recent research suggests non-adherence to guidelines continues to be widespread
across a variety of clinical contexts (Lasser et al., 2016; Valle et al., 2015; Chen et al., 2015; Rosenberg et al., 2015). For
the CHADS2 score specifically, Chapman et al. (2017) find evidence of substantial non-adherence to the guideline.
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effects. Section 7 considers counterfactual policies. Section 8 concludes with a discussion of policy

implications.

2 Atrial Fibrillation and the CHADS2 Score

Atrial fibrillation is the most common cardiac arrhythmia. It afflicts over 5 million Americans; for

adults older than 40 years, one in four will develop the condition (Hsu et al., 2016). Atrial fibrillation

increases stroke risk by five-fold and is responsible for 40% of strokes among patients older than

80 years (Piccini and Fonarow, 2016). The main treatment to reduce stroke risk among patients with

atrial fibrillation is anticoagulation by warfarin.5 While anticoagulation is effective in reducing stroke

risk, by 68% on average, it has also been shown to more than double the risk of major bleeding (Atrial

Fibrillation Investigators, 1995; Kearon et al., 2012). Given the large potential benefits and risks of

anticoagulation, an important task for clinicians evaluating patients with atrial fibrillation is to decide

which patients to treat with anticoagulation.

Efforts to improve anticoagulation targeting have largely focused on predicting stroke risk, with

the intuition that the benefits of anticoagulation are likely increasing in baseline stroke risk. Earlier

studies re-analyzed data from the control arms of randomized trials of patients with atrial fibrillation

to find hypertension and prior stroke as important risk factors of stroke (Atrial Fibrillation Investiga-

tors, 1995; Stroke Prevention in Atrial Fibrillation Investigators, 1995). Building on this work, the

CHADS2 score was first formulated by Gage et al. (2001), using registry data comprising 1,733 Medi-

care patients, and later validated for clinical practice by Gage et al. (2004). In 2006, the American

College of Cardiology (ACC) became the first specialty society to issue a guideline recommending

treatment decisions based on the CHADS2 score (Fuster et al., 2006). Other professional societies

followed, with the American College of Chest Physicians (ACCP) recommending CHADS2-based

treatment decisions in 2008 (Hirsh et al., 2008).

Designed to be easy to use, the CHADS2 score is an index of five patient characteristics: “C” for

congestive heart failure (1 point), “H” for hypertension (1 point), “A” for age ≥ 75 years (1 point), “D”

for diabetes (1 point), and “S” for stroke (2 points) (Table 1). Since its introduction, the CHADS2

score has become one of the most widely recognized risk scores in clinical practice.6 However,
5In our sample, fewer than 2% of patients are prescribed alternative anticoagulants. Novel oral anticoagulants (NOACs)

were introduced near the end of our sample, with the FDA approval of dabigatran in 2010, rivaroxaban in 2011, and
apixaban in 2012. Based on non-inferiority trials, they are similarly effective in preventing stroke with possibly lower risks
of bleeding (Lane and Lip, 2012). Guideline recommendations for their use (vs. no anticoagulation) rely on the same stroke
risk scores. Warfarin continues to be the mainstay drug for anticoagulation in atrial fibrillation (Hsu et al., 2016).

6In 2010, a modification of the CHADS2 score, the CHA2DS2-VASc score, was introduced (Lip et al., 2010). The
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despite its widespread recognition, studies in a variety of settings have shown that adherence to the

CHADS2 score has been low, typically with only half of recommended patients being prescribed

anticoagulation (Hsu et al., 2016; Piccini and Fonarow, 2016).

While poor adherence to CHADS2-based treatment recommendations has been linked to many

factors, physicians’ concerns of increased bleeding risk due to frailty and multi-morbidity are com-

monly cited. Frailty and multi-morbidity often coexist with atrial fibrillation, since both conditions

increase in prevalence with age. Less evidence has existed to guide physicians to assess bleeding

risk. The first formal risk score for bleeding (HAS-BLED) was published toward the end of our study

period (Lane and Lip, 2012). However, it remains unvalidated in the population of atrial fibrillation

patients and is not as widely used in clinical practice. In recent years, more evidence has emerged

to support the use of anticoagulation in frail and multi-morbid patients; nevertheless, the uptake of

anticoagulation among patients who are frail and have a high risk of stroke remains low (Fawzy et al.,

2019).

3 Data

Our approach combines data from two main sources. We study how treatment decisions relate to

variation in treatment effects, analyzing how the relationship changes with guideline awareness. The

analysis uses observational data from the Veterans Health Administration (VHA) on a sample of

patients with atrial fibrillation, as well as RCT data from the Atrial Fibrillation Investigators (AFI)

database.

3.1 Veterans Health Administration Data

Defining the atrial fibrillation cohort. To study initial treatment decisions, we identify patients

with a new diagnosis of atrial fibrillation using electronic medical records from the Veterans Health

Administration (VHA) from October 2002 to December 2013. Following a protocol developed in

previous work, we err on the side of defining a narrow cohort of patients who are likely to have a new,

confirmed atrial fibrillation diagnosis and to receive care at the VHA (Turakhia et al., 2013; Perino et

CHA2DS2-VASc score changes the weighting of age and introduces vascular disease as an additional risk factor. Due to
the time period covered by our data, from 2003-2013, our analysis focuses principally on the original CHADS2 score.
We observe comparatively little use of the CHA2DS2-VASc score: while 23% of patient encounters in our data are by
physicians who have previously mentioned the CHADS2 score, fewer than 2% of patient encounters are by physicians who
have previously mentioned the CHA2DS2-VASc in their notes. We do consider vascular disease in our causal-forest model
of treatment effects, and in some simulations, we contrast the CHADS2 and CHA2DS2-VASc scores.
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al., 2017).

We first identify potentially new diagnoses of atrial fibrillation (ICD9 codes 427.3X) among pa-

tients with no previous such diagnosis within three years, extending our data back to October 1999 to

perform this exclusion. We also require an electrocardiogram (the primary means to diagnose atrial

fibrillation) near the time of initial diagnosis and no anticoagulation prior to the initial diagnosis. Af-

ter a diagnosis of atrial fibrillation, the anticoagulation decision is typically made by a physician who

provides longitudinal care and makes prescription decisions for the patient. Therefore, to attribute

patients to physicians who are likely responsible for anticoagulation decisions, we require each pa-

tient to have a visit with a VHA cardiologist or primary care physician (PCP) within 90 days after the

initial diagnosis (to decide on treatment). Further, the patient must have received at least one drug

(other than warfarin) prescribed by the attributed physician within one year before or after the atrial

fibrillation diagnosis. We also require each attributed physician to have at least 30 other patients with

atrial fibrillation and to have prescribed warfarin for another patient. Our sample restrictions result in

an analytic cohort of 113,270 patients (see Table 2 for details).

For each patient in this cohort, we capture a broad array of characteristics that may influence

the anticoagulation decision. These characteristics include demographic information, comorbidities,

laboratory test results, body measurements, and blood pressure readings. We use these characteristics

to construct the CHADS2 score, match the other clinical characteristics recorded in the RCT data,

and proxy for concerns not fully captured in the RCT data (e.g., bleed risk, fall risk, frailty, multi-

morbidity); see Appendix Section A.4 for additional details. To capture the anticoagulation decision,

we rely on VHA records of prescriptions for warfarin or a novel oral anticoagulants (dabigatran,

rivaroxaban, apixaban, edoxaban). The VHA records include prescriptions that are dispensed by the

VHA as well as prescriptions that are paid for by the VHA. The vast majority of prescriptions in our

sample are for warfarin: fewer than 2% of patients are prescribed a novel oral anticoagulant (NOAC).

Summary statistics on the VHA atrial fibrillation cohort are reported in Table 3, Column 1.

Defining guideline awareness. We measure awareness of the CHADS2 score guideline at the physi-

cian level by searching physician visit notes for mentions of the CHADS2 score.7 We proxy the timing

7Recall that physicians in our analytic sample are cardiologists and PCPs who have each treated at least 30 atrial
fibrillation patients. We increase our detection of CHADS2 mentions for these physicians by using visit notes within 6
months of initial diagnosis in our broad cohort of 844,312 atrial fibrillation patients, who may be patients with previously
established diagnoses (see Table 2), and search for non-case-sensitive occurrences of the string chads. We settled on this
string after spot-checking several variants for false positives. Consistent with our spot-checking results, we find no positive
mentions of this string in the first two years of our data, prior to diffusion of the CHADS2 score. This suggests that false
positives are very rare.
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of a physician’s first awareness of the guideline by the date of her first clinical note mentioning the

CHADS2 score, and we define her as guideline-aware if she has previously mentioned the CHADS2

score in a note. Our use of the term “awareness” here is an imperfect shorthand: physicians may be

literally aware of a guideline without it ever impacting their practice; our goal is to understand how

physicians change their behavior when they decide to incorporate the guideline into their decision-

making.8

As we will show in Section 4, for physicians who eventually mention the CHADS2 score, treat-

ment decisions become more guideline-concordant at the time of their first mention in clinical notes.

We categorize physicians who have not yet written a note mentioning the CHADS2 score as not cur-

rently aware of the guideline. As an important caveat, it is likely that many physicians whom we label

as currently unaware have actually heard of the guideline, but do not meet the stringent definition of

“awareness” that we impose here. Empirically, we will document that these unaware physicians are

less likely to follow guideline recommendations than physicians with observed guideline use. Al-

though unaware physicians may have heard of the guideline, they are unlikely to be making explicit

use of its recommendations to drive their clinical decision-making.

3.2 Atrial Fibrillation Investigators Database

To estimate heterogeneous treatment effects—which we use to assess physician decision-making and

evaluate the likely effects of counterfactual anticoagulation decisions on patient outcomes—we rely

on the Atrial Fibrillation Investigators database (hereafter, AFI database). The AFI database contains

patient-level observations from eight trials in which patients were randomized to anticoagulants ver-

sus a placebo or control.9 Details of the AFI database have been documented elsewhere (e.g., van

Walraven et al., 2009).

The AFI database was previously compiled by investigators to explore heterogeneity in risk and

in treatment effects. Previous analyses using the database have selected patient characteristics heuris-

tically (van Walraven et al., 2002, 2009). For each patient in the AFI database, we observe randomiza-

tion status and subsequent stroke and bleeding events. In harmonizing data across the clinical trials,

8An earlier draft of the paper referred to this note-mentioning as “adoption” which is also imperfect. Our analysis below
quantifies whether “awareness” in the sense above leads to behavior change.

9There are a total of ten trials in the original AFI database. For our analysis, we define patients who were treated with
aspirin alone as being untreated with anticoagulation. We drop observations for patients on low Warfarin or low Warfarin
plus aspirin therapy. After these modifications, eight trials remain with both treatment and control arms. In three of the eight
trials, patients are divided into eligible versus ineligible groups for anticoagulation and then randomized among eligible
patients. We treat the ineligible patients as separate trials (with only one treatment arm) and use data from all trials in the
causal-forest implementation to increase power.
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the investigators consistently recorded several important patient characteristics at the time of random-

ization, including all variables underlying the CHADS2 score, as well as several additional variables,

including further detail on demographics, height, weight, blood pressure, hemoglobin, smoking sta-

tus, comorbidities, and history of transient ischemic attack (TIA), stroke, anginal symptoms, and

myocardial infarction. In Appendix Table A.1, we list the full set of characteristics that we use from

the AFI database. In Appendix Table A.3, we report the results of balance tests, which suggest suc-

cessful randomization in these clinical trials.

4 CHADS2 Guideline Awareness and Treatment Patterns in the VHA

4.1 Trends in Guideline Use and Prescription Patterns

The 2006 ACC and 2008 ACCP guidelines recommended treating patients with a CHADS2 score

of 0 or 1 potentially with aspirin alone and treating patients with a CHADS2 score of 2 or above

with anticoagulation (Hirsh et al., 2008; Fuster et al., 2006).10 We therefore begin our analysis by

describing trends in prescribing behavior for groups of patients defined by their CHADS2 score.

Figure 1 displays trends in anticoagulation rates for patients with low risk of stroke (CHADS2

score of 0 or 1), patients with moderate risk of stroke (CHADS2 score of 2 or 3), and patients with

high risk of stroke (CHADS2 score of 4 or greater). Prior to the 2006 guideline, patients with lower

CHADS2 scores were remarkably more likely to be treated with anticoagulation. This relationship

held both between patients with low vs. moderate stroke risk and between patients with moderate vs.

high stroke risk. We will later show that this pattern can be explained in part by physicians’ reluctance

to treat multimorbid patients with high mortality risk. In the years after 2006, we observe a gradual re-

duction in anticoagulation rates for low-risk patients for whom the guideline allowed for management

without anticoagulation. There appears to be a small increase in treatment rates for patients at mod-

erate or high risk. However, even among groups where anticoagulation is recommended, prescription

rates remain below 55% for our sample period. Patients with high stroke risk (CHADS2 score of 4 or

greater) remain slightly less likely to be treated than patients with moderate stroke risk (CHADS2 of

2 or 3). These findings establish that physicians had only weak adherence to recommended treatment

patterns over the entire study period.

10In the 2006 and 2008 guidelines, patients with a CHADS2 score of 0 were recommended aspirin, while patients with a
CHADS2 score of 1 could be treated with either aspirin or anticoagulation. Later guidelines suggested anticoagulation for
patients with a CHADS2 score of 1 and some patients with a CHADS2 score of 0 but a CHA2DS2-VASc score of 1 (Lip et
al., 2010). This clinical consensus applied mostly to after our study period.
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These trends towards reduced anticoagulant use for patients with low CHADS2 scores coincides

with the gradual diffusion of the CHADS2 guideline into clinical practice. In Figure 2, we show that

almost no physician mentioned the CHADS2 score in the period prior to the ACC guideline in 2006,

despite the fact that the CHADS2 score was introduced in 2001 and validated in 2004. After 2006,

we find a steady rise in the proportion of physicians who have previously mentioned the CHADS2

score at least once, approaching 70% near the end of our study period in 2013. Similarly, we find

the proportion of atrial fibrillation patients with the CHADS2 score mentioned in their own doctor’s

notes rises from 0% to 17% over the same period. This represents a lower bound to awareness of the

CHADS2 score, as physicians may be aware of the score yet not mention it in their notes.

4.2 Effect of Guideline Awareness on Adherence

We proceed by estimating the causal impact of guideline awareness on prescription choice and inves-

tigating how guideline adherence changes after a physician incorporates the guideline into her clinical

practice. In the Panel A of Figure 3, we first plot how anticoagulation rates among high- and low-

score patients change following an adopting physician’s first note mentioning the CHADS2 score.

Following this event, the anticoagulation rate for low-scoring patients drops by several percentage

points, while the anticoagulation rate for higher-scoring patients increases slightly.

We further assess the effect of awareness on adherence by an event-study regression separately

for the two guideline-relevant groups of patients:

,8 =

5∑
A=−5

1 (A (8) = A) \A +[3 (8) + bC (8) + Y8 . (1)

,8 ∈ {0,1} indicates whether patient 8 was anticoagulated, and A (8) is a function that returns the

year of 8’s visit relative to the prescribing physician’s becoming aware of the CHADS2 score. The

regression includes fixed effects for the prescribing physician, 3 (8), and for the year, C (8). We estimate

Equation (1) separately for patients with CHADS2 scores of 0 and 1 and for those with lasso and

scores 2 and higher. Panel B of Figure 3 displays estimation results of the \A coefficients and is

broadly consistent with the raw treatment rates shown in Panel A. Treatment rates for low-score

patients decline by 4.7 percentage points (standard error of 1.6 percentage points), while they increase

by 1.7-percentage points (standard error of 1.1 percentage points) for higher-score patients.11

Taken together, these results suggest that although the CHADS2 score was becoming widely

11This estimate of changes in treatment rates comes from aggregating the results shown in Figure 3. Specifically, we
calculate the difference between the average level in years 0 through 4 minus the average level in years −5 through −1.
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known, adherence to anticoagulation recommendations increased only modestly with physician aware-

ness. Prior to the 2006 guideline, almost no physician appeared to be using the CHADS2 score in

documented clinical decision-making, yet by the end of 2013, the vast majority had explicitly men-

tioned it in their notes. While our event-study results suggest a clear behavioral shift in prescribing at

the time of becoming aware of the CHADS2 score, most of this response is from avoiding treatment

for low-risk patients, not increasing treatment for high-risk patients. In Figure A.1, we further show

that, while adherence varied substantively across physicians, few physicians reached an adherence

rate of 80%.

Guideline awareness is more difficult to measure than adherence. However, two features of our

setting lend greater confidence to our results on the effect of awareness and allow us to understand

patterns of adherence in the context of guideline awareness. First, the lack of pre-trends in our event-

study results in Figure 3 and the timing of the effect suggest that our measure based on clinical docu-

mentation coincides with a discrete change in physicians’ consideration of the guideline. Second, we

witness a dramatic shift in CHADS2 mentions coinciding with the publication of the ACC guidelines,

as shown in Figure 2, reducing concern about both false-positive and false-negative detection. We

can reconcile our event-study results with the overall shifts in prescription rates across all physicians

shown in Figure 1.

These findings are consistent with a clinical literature that emphasizes the importance of reducing

stroke risk by anticoagulation and documents widespread awareness of the CHADS2 score among

physicians, more than a decade after the 2006 ACC guideline (Ashburner et al., 2018; Amroze et al.,

2019). Yet in numerous settings, only about half of patients with the highest stroke risks are treated

with anticoagulation (Hsu et al., 2016). Our results further show that there is low adherence even

among physicians who discuss the CHADS2 score in their decision-making. Evidence suggests that

reluctance to initiate anticoagulation mostly stems from physician decisions rather than patient pref-

erences (Bungard et al., 2000); in one study, 93% of atrial fibrillation patients offered warfarin elected

to take the treatment (Gottlieb and Salem-Schatz, 1994). In surveys, physicians report hesitance to

anticoagulate patients who are elderly, frail, and multi-morbid, out of concern that anticoagulation

may result in severe bleeding for these patients (Fawzy et al., 2019). The literature suggests that this

hesitation may be in part driven by a mistaken assessment of bleeding risks and an overemphasis

on avoiding adverse events of commission (i.e., due to initiating treatment) as opposed to those of

omission (i.e., due to withholding treatment) (Gross et al., 2003).12

12Specifically, physicians’ estimates of rates of warfarin-associated intracerebral hemmorrhage were more than 10 times
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5 The Effects of Anticoagulation

The results in the previous section show a gap between CHADS2 guideline awareness and full ad-

herence to the CHADS2-based recommendations. Our interpretation of this gap, as well as policy

recommendations for incorporating evidence from clinical trials into practice, will depend on the

relative value of physician discretion versus guideline adherence for patient health outcomes.

In the case of atrial fibrillation, physicians may depart from CHADS2-based recommendations

for good reasons. The CHADS2 score predicts stroke risk, while treatment decisions should be based

on stroke treatment effects. Further, clinicians have access to more patient information than has been

encoded in simple risk scores. Tailoring their treatment decisions to this additional information could

lead to departures from CHADS2-based guidelines.

Nevertheless, an emerging literature has documented widespread decision errors among physi-

cians (Abaluck et al., 2016; Mullainathan and Obermeyer, 2019). Even with private information

that is not encoded in guidelines, perfect recall of outcomes, and random variation, physicians will

typically not have access to the numbers of patients needed to form their own reliable estimates of

heterogeneous treatment effects from personal experience (Chandra et al., 2021).

5.1 Setup and Design

To evaluate treatment decisions and departures from guidelines, we need to characterize counterfac-

tual patient stroke and bleeding outcomes. Let . B
8
(F) ∈ {0,1} denote whether patient 8 will have a

stroke within one year, depending on anticoagulation F ∈ {0,1}, and let.1
8
(F) ∈ {0,1} denote a simi-

lar object for bleeding within one year. We then define conditional average treatment effects (CATEs)

that are a function of patient characteristics, both those that are included in the CHADS2 score and

others that are omitted from it. Specifically, for one-year stroke and bleeding, respectively,

gB (G) ≡ �
[
. B8 (1) −. B8 (0)

��-8 = G] ; (2)

g1 (G) ≡ �
[
.18 (1) −.18 (0)

��-8 = G] , (3)

where -8 is a set characteristics belonging to patient 8.

The experimental design of RCTs is well suited for estimating treatment effect heterogeneity,

larger than research-based estimates (Gross et al., 2003). Further, Choudhry et al. (2006) show that physicians respond
idiosyncratically to individual events, such as whether one of the physicians’ other anticoagulated patients has recently
experienced an adverse bleeding event.
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in contrast to many quasi-experimental designs commonly used in the economics literature. First,

random assignment of treatment within each cell of patient characteristics G, a crucial requirement to

estimate CATEs, is more plausible in RCTs. Second, many quasi-experiments involve monotonicity

and exclusion-restriction violations within cells of the data, even if these violations “average out” in

the entire sample (e.g., Kolesar et al., 2015; Frandsen et al., 2019). Third, RCTs carefully collect

information on infrequent yet important outcomes (e.g., stroke and bleeding) for the disease and

treatment being studied. Capturing these events, particularly their timing relative to initiation of

treatment, may be challenging in even the most detailed of observational data, as we will note later.

5.2 Treatment Effect Estimation Procedure

Treatment effects are estimated in the pooled AFI database containing patient-level data from eight

RCTs. We apply an ensemble machine learning approach that combines causal forest and lasso to

estimate CATEs with conditional random assignment. The lasso method is adapted from Belloni et

al. (2014) and the causal forest methods from Wager and Athey (2017). The ensemble approach com-

bines both machine approaches to improve predictive validity (Younas et al., 2022), in this case, by

leveraging advantages of the causal forest for discovering predictive interactions among discrete vari-

ables and advantages of the lasso for using functional form restrictions to fit predictions that smoothly

vary with the continuous random variables. While many applications of machine learning methods

use very large data sets, new work on causal forests apply related methods to estimate CATEs in

sample sizes more typical of RCTs in medicine and social science; similar-scale RCT applications of

causal-forest estimation have been previously demonstrated (Athey and Wager, 2019; Chernozhukov

et al., 2018). We adapt the insights from these applications to our setting.

The machine learning model takes as input every variable underlying the CHADS2 score, as well

many additional risk factors not currently encoded in clinical guidelines; the complete variable list is

provided in Appendix Table A.1. We also use machine learning predictions of stroke and bleed risk

among control-group patients as inputs, allowing treatment effects to directly depend on risk.

Our estimation procedure begins by applying lasso methods to estimate CATEs that vary with con-

tinuous patient characteristics, including age, height, weight, blood pressure, and blood hemoglobin

levels. Taking the residual variation in stroke and bleed outcomes not predicted by the lasso model,

we then apply causal forest methods to estimate CATEs that vary with discrete patient characteristics

and their interactions. Our final CATE estimates sum the predictions from the lasso and causal forest

models.
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Throughout this estimation process, we account for differences across trials in patient risk and

treatment probability. Trial-level adjustment is performed with fixed effects in the lasso model and

with a re-centering procedure in the causal forest, as formally justified in Athey et al. (2019). We

select parameters through cross-validation to minimize mean squared error. For further details on the

CATE estimation process, see Appendix A.1

5.3 Validation and Best Linear Predictors

In this section, we validate the estimated heterogeneity to assess concerns about potential over-fitting

and external validity across trials, adapting the approach developed by Chernozhukov et al. (2018)

and applied in Athey and Wager (2019). Specifically, we test whether out-of-bag CATE predictions

estimated in seven of the eight trials can predict stroke and bleed treatment effects in the eighth hold-

out trail.

To implement this approach, we construct out-of-bag CATE predictions for each trial in the AFI

database, exclusively using data in the other trials. Denote these leave-out-trial CATE predictions for

stroke and bleeding as ĝ>− 9 (8) (G), > ∈ {B, 1}, for individual 8 in trial 9 (8) with characteristics -8 = G (we

hereafter suppress the 8 in 9 (8) to simplify notation). We also construct and control for risk predictions

of .> (G), based on other trials: .̂>− 9 (G), using only control group data.13

To assess external validity across trials, we estimate a “best linear predictor” regression of realized

outcomes .>
8

on treatment ,8 interacted with demeaned out-of-bag CATE predictions, controlling

for trial fixed effects Z>
9

and treatment probability within each trial % 9 ≡ Pr(,8 | 9 (8) = 9) similarly

interacted with demeaned out-of-bag CATE predictions:

.>8 =

[
X>0 + X

>
1

(
ĝ>− 9 (-8) − g

>
)]
,8 +

W>1

(
ĝ>− 9 (-8) − g

>
)
% 9 +W>2 .̂

>
− 9 (-8) + Z>9 + Y8 , (4)

where g> ≡ ∑
8 ĝ
>
− 9 (-8) is the mean CATE prediction.14 The coefficient X>1 quantifies the predictive

power of heterogeneous CATEs that are estimated in other trials. A coefficient value that is statisti-

13We estimate two risk measures: one using a linear Lasso model with all patient characteristics and one with the
regression forest using only the discrete patient characteristics

14The regression includes trial fixed effects to address a mechanical negative relationship between CATEs across trials
when trials are few. To see this, consider the following decomposition: g> (G | 9) = g>G +g>9 +g>∗G, 9 , where g>∗

G, 9
is by construc-

tion uncorrelated with g>G and g>9 . The heterogeneity of interest in the out-of-bag CATEs, ĝ>− 9 (8) (G), is driven by variation
in g>G . If there are relatively few trials, then variation in g>9 will bias downward the relationship between outcomes and
CATEs, due to the small-sample negative correlation between ĝ>− 9 (8) (G) and ĝ> (G | 9).
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cally indistinguishable from X>1 = 0 would suggest that the CATEs do not robustly predict variation

in treatment effects in the hold-out trial; a coefficient value of X>1 = 1 would suggests that CATEs

well calibrated and that outcomes for a patient with characteristics G would increase one-for-one with

treatment status, ,8 , and the relevant CATE, ĝ>− 9 (G). Intermediate values of X>1 ∈ {0,1} suggest the

machine learning procedure may have over-fit the data. The re-scaled estimates X>1 ĝ
>
− 9 (G) form the

best linear predictors of the CATEs, as discussed in Chernozhukov et al. (2018).

For strokes, we also consider a modified procedure where we decompose treatment effects into

two dimensions: stroke treatment effects that vary with the CHADS2 score, and stroke treatment

effects that are orthogonal to the CHADS2 score. Specifically, we first use a regression to project

leave-out-trial stroke CATEs, ĝB− 9 (G), onto indicators of the CHADS2 score. We call the CHADS2-

projected component ĝ2− 9 (G) and the residual component ĝA− 9 (G), noting that ĝB− 9 (G) = ĝ2− 9 (G)+ ĝA− 9 (G).

We use these components to perform the following BLP projection:

. B8 = XB0,8 +
∑

>̃∈{B (2) ,B (A ) }

[
X>̃1

(
ĝ>̃− 9 (-8) − g

>̃
)
,8 +W>̃1

(
ĝ>̃− 9 (-8) − g

>̃
)
% 9

]
+

W2.̂
B
− 9 (-8) + Z B9 + Y8 . (5)

Using Equation (5), we construct BLP-based adjustments to the stroke CATEs as follows:

ĝB�!% (G) = X̂
B
0 + X̂

2
1 ĝ
2 (G) + X̂A1 ĝ

A (G) . (6)

The BLP estimation validates the performance of our causal-forest procedure on held-out trials.

Results of the BLP procedure are reported in Table 4. For stroke CATEs, using Equation (4), we

estimate X̂B1 = 0.520 (standard error of 0.130), which is statistically distinguishable from 0 at the 1%

level. This coefficient suggests that the CATEs are strongly predictive of treatment effects in out-of-

bag trials, but also, since the coefficient is smaller than 1, the raw CATEs may be over-fit. Using

Equation (5), we estimate the CHADS2 component as X̂21 = 0.666 (standard error of 0.250); for the

residual component in this equation, we estimate X̂A1 = 0.460 (standard error of 0.142). In other words,

both components significantly predict stroke treatment effect variation in held-out trials, with similar

re-scaling for over-fitting. In our subsequent analyses, we will adjust CATEs predicted in Section 5.2

for stroke by using Equation (6) for ĝB
�!%

.

By contrast, the BLP regression suggests that there is little reliably estimated variation in bleed

CATEs across observable covariates. The BLP coefficient is close to zero (X̂11 = −0.374) and not sta-
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tistically significan, indicating that we cannot validate heterogeneity in bleed treatment effects. In our

subsequent analysis, we assume bleed treatment effects are constant at the estimated average treat-

ment effect. This echoes the approach taken by current practice guidelines which focus on allocating

treatment to patients with large expected benefits from stroke risk reduction.

We use the BLP framework to investigate one additional aspect of the causal-forest estimates.

Limited sample size may lead the causal forest to pool subgroups that in truth have different treat-

ment effects because there is limited statistical power to detect treatment effect differences in small

subsamples. Treatment effect heterogeneity that is observed by physicians but not reflected in the

CATEs is of particular concern for our later counterfactual analyses. To test whether physicians

observe treatment effect heterogeneity predicted by observable covariates but not reflected in the es-

timated CATEs, we estimate an index of treatment propensity in the observational VHA data. We

then test whether this treatment propensity index predicts treatment effects in the AFI data, beyond

the variation predicted by the machine learning CATE estimates. Results are reported in Table 4,

Column 3. The coefficient on the treatment propensity index is small at −0.046 and not statistically

distinguishable zero, suggesting that physicians’ decisions based on observable patient characteristics

in the VHA data do not reveal any additional signal of treatment effect heterogeneity. Of course, this

cannot rule out the possibility that physicians have private information about treatment effect hetero-

geneity that is predicted by variables that are not covered in the AFI data. We discuss this possibility

at length in Section 6.3.

5.4 Implied Treatment Effects in the VHA Data

In our main analysis, we take the BLP-adjusted CATEs estimated in the RCTs and import these

estimates to the observational VHA data, constructing a treatment effect for each patient as a function

of their observable characteristics. For brevity, we will hereafter refer to these objects as “treatment

effects” or “CATEs.”

Figure 4, Panel A, shows variability in the distribution of estimated stroke (BLP-adjusted) CATEs

when applied to the VHA data. The 10th percentile stroke treatment effect (corresponding to the

largest reductions in stroke risk) is −0.06, while the 90th percentile is −0.03. Given that the best

linear predictor regression found no statistically significant relationship between predicted CATEs

and treatment effects in holdout trials, we assume constant bleed treatment effects of 0.018 for the

rest of our analysis.

We additionally relate our CATE estimates with the CHADS2 score. Figure 4, Panel B, shows that
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stroke treatment effects increase roughly monotonically with the CHADS2 score. The median value

of ĝB
�!%

for patients with a CHADS2 of 0 is −0.032, while the median value of ĝB
�!%

for patients with

a CHADS2 of 4 to 6 is −0.059. Although stroke treatment effects and the CHADS2 score are highly

correlated, we find substantial residual variation in stroke treatment effects after conditioning on the

CHADS2 score. The '2 from regressing BLP-adjusted stroke treatment effects, ĝB
�!%

, on CHADS2

score indicators is 0.49.

5.5 External Validity

While the BLP validation exercise suggests that our causal forest predictions are externally valid

across trials within the AFI database, we ultimately seek to use treatment effects estimated in the

AFI database to evaluate counterfactuals in the VHA data. To assess whether this extrapolation is

reasonable, we conduct three additional analyses that map patient characteristics and implied CATEs

to key features in the VHA data.

First, we compare mean observable attributes of patients in each trial in the AFI database to those

in the VHA data to assess whether, at least with respect to mean characteristics, the VHA data lies

roughly within the support of mean characteristics across the AFI trials. Table 3 compares summary

statistics in the VHA and AFI data. The clearest difference in average patient characteristics is in

the share of male patients. We estimate CATEs for both male and female patients from the AFI

database, allowing the causal forest to use gender to predict treatment effect heterogeneity. Our anal-

ysis of variable importance, shown in Appendix Table A.2, finds that patient gender is unimportant

in predicting CATEs. Among other patient characteristics, the AFI database has a larger share of the

population over 65, a lower incidence of hypertension and diabetes, and a higher rate of congestive

heart failure than the VHA data on average. However, in Appendix Table A.4, we can see that for all

patient characteristics (including gender), the characteristic mean in the VHA data is within the range

of characteristic means across AFI trials. This mitigates concerns that the types of patients seen in

the VHA are not represented in the AFI database.

Second, we compare our estimated AFI stroke CATEs with observational stroke “treatment ef-

fects” in the VHA data, or regression-adjusted differences in stroke outcomes between treated and

untreated VHA patients.15 In this process, we noted a major limitation of observational data with

15OLS estimates interact anticoagulation treatment with each of the patient characteristics that are covered in both the
AFI and VHA data (see Appendix Table A.1 for the complete list). In addition to controlling for this variable set, the OLS
specification also controls for a complete set of Elixhauser comorbidities, history of hemorrhage, family history of stroke,
and a 3-knot spline in the predicted mortality index. For more details on construction of the predicted mortality index see
Appendix A.5.
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respect to recording the timing of events. Specifically, in contrast to the AFI RCT data generated with

the express purpose of measuring predefined events, ex post measures of stroke diagnosis in observa-

tional data—both those generated by insurance claims and those from electronic health records—can

indicate either a history of stroke or a new event of stroke.16 Thus, to reliably capture the outcome

of stroke, we restricted estimation of observational stroke treatment effects to patients in the VHA

data who had no prior history of stroke. In Figure 5, Panel A, we show that CATEs imputed for these

patients from the AFI database are highly predictive of observational treatment effect estimates in the

VHA data. The correlation coefficient between these two measures of treatment effects, estimated

from different data sets, is 0.62. We also note that OLS treatment effects are on average slightly

positive, which suggests selection bias in the VHA data: physicians tend to treat patients with higher

stroke risk.

Finally, in Figure 5, Panel B, we investigate stroke outcomes among untreated patients in the

VHA. Due to the difficulty distinguishing current from past strokes, we again exclude patients with

stroke history from this analysis. VHA patients with large predicted CATEs who nevertheless go

untreated suffer much higher rates of stroke within one year, compared to patients with smaller pre-

dicted CATEs. Estimated CATEs are strikingly proportional to risk, and align closely with the 47%

average reduction in strokes estimated in the original AFI analysis (van Walraven et al., 2002). Along

similar reasoning as in Mullainathan and Obermeyer (2019), this observational pattern is consistent

with the possibility that patients with large estimated stroke CATEs suffer considerable harm from

under-treatment, while patients with small stroke CATEs have low stroke incidence and thus small

potential benefits from anticoagulation.

6 Assessing Physician Decisions in the VHA

With ML predictions of treatment effects in hand, we turn to assessing how physician treatment

decisions in the VHA relate to treatment effects. We characterize how treatment decisions respond to

treatment effect variation, separately considering variation that is and is not captured by guidelines.

This approach allows us to consider the relative effects of guideline awareness and adherence on

patient outcomes. In particular, we will evaluate whether guidelines may lead physicians to neglect

information relevant for health outcomes but not incorporated into a guideline. Finally, we use the

16This concern is not hypothetical—in our audit of the VHA data at the Palo Alto VA, we found that 40% of patients
recorded in diagnosis codes to be experiencing a current stroke were revealed on detailed chart review to have only a history
of stroke but no recurrence.
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model to simulate the counterfactual impact of adopting guidelines that incorporate more information

about how treatment effects vary across patients.

6.1 Stylized Model of Treatment Decisions

We now investigate how awareness of the CHADS2 score changes the relationship between treatment

decisions and treatment effects. As described in the prior section, we decompose stroke treatment

effects into g2
8

, the variation that is predictable by the CHADS2 score, and gA
8

, the residual variation.

The results in Section 4 suggest the guideline may make physicians more responsive to g2
8

by inform-

ing them about how risk factors predict treatment effects. If physicians over-adhere to the guideline

and neglect other information about how patients might benefit from treatment, then guideline adop-

tion would make physicians less responsive to gA
8

. Our estimation framework allows us to test both

predictions.

We focus on perceived stroke treatment effects rather than bleed treatment effects for two reasons:

First, we detect no meaningful variation in bleed treatment effects in Section 5, and second, the

CHADS2 score was developed to predict benefits from stroke risk reduction.

We estimate the following probit model, where 8 indexes patients, 3 doctors, and C time:

,83C = 1
{

1
fY,6

(
U20g

2
8
+U21g

2
8
%>BC3C +UA0g

A
8
+UA1g

A
8
%>BC3C

+V%>BC3C + 5 (-83C ) + Y83C
)
> 0

}
We include g2

8
directly in the model to control for the baseline relationship between prescription

decisions and variation in stroke treatment effects that is predictable by the CHADS2 score. The

variable %>BC3C equals 1 if the physician has previously mentioned the CHADS2 score in his clinical

note, and 0 otherwise. Thus, the coefficient of interest, U21 , captures the change in sensitivity to

CHADS2-related treatment effects g2
8

, after the physician has become aware of the guideline. A

parallel set of terms with gA
8

allow us to also test whether the sensitivity of prescription decisions to

residual variation in stroke treatment effects (unexplained by the CHADS2 score) changes after the

doctor begins considering the guideline. In our baseline specification, the term 5 (-83C ) includes year

fixed effects and a three-knot spline index of patient mortality risk. We include predicted mortality

risk to capture physicians’ reluctance to treat older and frailer patients (Fawzy et al., 2019).17

17For more details on the construction of our mortality risk index in an external sample of VA patients without diagnosed
atrial fibrillation see Appendix A.5.
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The estimating equation is a heteroskedastic probit where Y83C = h8 + %>BC3CE8 is normally dis-

tributed with variance f2
Y,83C

. For estimation, we specify an error term of Y8,6/fY,6 with a normalized

variance of 1 by construction.

This heteroskedastic probit specification can be micro-founded within a Bayesian model of physi-

cian decision-making, where physicians have preferences over stroke and bleed avoidance, and learn

noisy signals of treatment effects. Under the Bayesian interpretation, the CHADS2 score improves

physician’s signal of the CHADS2-related variation in stroke treatment effects. For more details on

this microfoundation and the resulting interpretation of the model, see Appendix A.2.

In estimating Equation (7), we use ML predictions of treatment effects, ĝ2
�!%
(G) and ĝA

�!%
(G), in

place of true treatment effects, g2 (G), gA (G). These estimates are measured with error in the sense

that they differ from the treatment effects we could obtain with infinite data. One concern is that

differential measurement error of ĝ2 (G) and ĝA (G) may differentially attenuate U26 and UA6. However,

our BLP-adjustment in Section 5.3 of CHADS2-related and residual stroke treatment effects provides

a means to ensure that U26 and UA6 can be interpreted on the same scale. This approach follows a “re-

gression calibration” literature that addresses measurement error (George and Foster, 2000) and also

resembles the first stage of “split-sample” instrumental variables approaches in economics (Angrist

and Krueger, 1995).

6.2 Estimation Results

Table 5 reports estimates of average marginal effects, from Equation (7). To assess direct effects

of guideline adoption, the main coefficient of interest is U21 , the coefficient on the interaction term

between CHADS2-related variation in stroke treatment effects, g2 , and a post indicator. Of secondary

interest is UA1 , which tests whether physicians change their consideration of residual variation in stroke

treatment effects after they become aware of the guideline. Since stroke events are undesirable, we

expect the marginal effects of stroke treatment effects to be negative. In other words, all else equal,

physicians should be more likely to treat patients with larger reductions in stroke risk. Column 1

shows these results. Column 2 allows a time trend to interact with the sensitivity to both CHADS2-

related and residual stroke treatment effects, allowing sensitivity to treatment effects to vary over

time, even in the absence of CHADS2 awareness. Column 3 adds an additional control variable

for the patient’s predicted adherence to a warfarin prescription regimen, as a function of their past

prescription filling behavior and other factors.

The main finding from this analysis is that CHADS2 awareness substantially increases physicians’
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sensitivity to CHADS2 variables in their treatment decisions. After becoming aware of the guideline,

physicians are 3.9 percentage points more likely to treat a patient with one percentage point larger

magnitude treatment effect, which aligns with our reduced form evidence. In addition, this analysis

reveals that the CHADS2 score does not distract from sensitivity to the residual component of treat-

ment effects. If anything, the point estimate is that physicians become more sensitive to the residual

component post CHADS2 adoption, although the point estimate is not significantly significant.

Controlling more flexibly for time trends in column 2, the effect of guideline awareness on sen-

sitivity to stroke treatment effects attenuate slightly to a 3.4 percentage point increase for every one

percentage point greater treatment effect, but remains strongly statistically significant.

In column 3, we explore whether differences in patients’ tendencies to adhere to prescribed regi-

mens can explain these findings. Physicians may be reluctant to treat some patients with large benefits

if they believe those patients are unlikely to adhere. It is worth noting that patient non-adherence may

also arise in the setting of RCTs, and the intent to treat effects estimated from the trials with the

causal forest may already reflect these patterns of non-adherence. But in case adherence patterns in

the VHA practice differ from the typical trial setting, we conduct an additional test. Among patients

receiving warfarin, we use data on past medication adherence, health care utilization, and socioeco-

nomic characteristics to predict both warfarin prescription filling and the proportion of the patients’

lab values indicating warfarin dosing remains in the therapeutic range. More detail on these measures

is provided in Appendix ??. We use these estimates to predict prescription adherence and propor-

tion of time in therapeutic dosing range for all patients, regardless of their prescription status. In the

final column of Table 5, we include these predicted adherence measures as additional control vari-

ables. Including these variables does not substantively change our estimates of how decision-making

changes with guideline adoption. This suggests that physician’s predictions about patient adherence

to the warfarin regimen are unlikely to explain the relationship between guideline awareness and

prescribing decisions.

While guideline awareness may provide important informational benefits, predictors in the base-

line specification explain less than 3% of the total variation in treatment propensity. Thus, deviations

from guideline-based care are largely unexplained by the substantial variation in residual stroke treat-

ment effects that we can detect and validate across trials. Although guideline awareness leads to

a modest increase in physicians’ responsiveness to CHADS2-related treatment effects, much of the

variation in treatment choice remains unexplained by treatment effect variation. These results suggest

that increasing guideline awareness without encouraging stricter adherence may not have dramatic
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effects on treatment decisions.

6.3 Understanding Deviations from Guideline-Based Decisions

We now investigate the extent to which physicians deviate from treatment decisions based on esti-

mated CATEs, because they might have private information about treatment effect heterogeneity. The

model we have estimated cannot directly test whether physicians are responding to other sources of

heterogeneity using characteristics that are unmeasured in the AFI data. However, two patterns in

the data suggest that physicians may not be effectively using information beyond that encoded in the

CHADS2 score to improve treatment allocations.

First, as discussed in Section 5.3 and reported in Table 4, we find that physician treatment propen-

sity does not predict any heterogeneity in treatment effects beyond the variation predicted by the esti-

mated CATEs. Note that the machine learning process used to estimate CATEs might fail to discover

all the true variation in treatment effect, when estimated in a finite sample. If physicians have informa-

tion about CATE variation that is not predicted by the ML estimates, then we might expect physician

treatment propensity to be predictive of treatment effects in the RCT data. We find no evidence that

physician treatment decisions are predictive of additional variation in treatment effects.

Second, we consider the possibility that physician decisions are responding to other variables

that might predict treatment effect heterogeneity but are not available in the AFI data. We can use

the rich set of covariates in the VHA data to assess this possibility. Recall that our baseline model

already accounts for the role of many variables covered in the AFI that predict treatment effect het-

erogeneity and may enter physician decision-making, including salient biomarkers (blood pressure,

hemoglobin), patient history (stroke, heart attack, angina), key comorbidities and demographic vari-

ables. In Appendix A.4, we describe many additional patient characteristics from the VHA electronic

health record that may influence anticoagulation decisions, which we now incorporate in our analysis.

These variables extensively cover factors suggested by clinicians and prior researchers to influence

treatment decisions. These include many variables related to frailty and fall risk, including past re-

ports of dizziness, muscle weakness, prior injuries (fractures, head injuries), and other conditions

(Parkinson’s Disease, neuropathy, arthritis, vision problems). We also include variables that were

later included into the HAS-BLED guideline to assess bleeding risk (liver disease, renal failure, al-

cohol abuse, prior bleeds). Other variables include a full set of Elixhauser comorbidities, physician

specialization, and variables that predict patients’ ability to comply with warfarin monitoring.

In Figure A.3, we investigate the robustness of our findings to these additional control variables.
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Panel A shows that enriching the control variables does not substantively change the estimated effect

of CHADS2 awareness on treatment decisions. Specifically, the change in physicians’ responsiveness

to CHADS2-related variation in stroke treatment effects after guideline awareness, U21/U
2
0 , does not

vary much as we progressively add these additional covariates to the model. Panel B shows that

these additional control variables do not explain a large fraction of treatment decisions and therefore

cannot explain the high rates guideline non-adherence.18 Even as we control for detailed patient

characteristics, we find little increase in the explained share of variance in treatment decisions.

This evidence suggests that deviations from treating according to measured treatment effects are

unlikely to be explained by unmeasured variation in treatment effects, nor as noted in the prior sub-

section, can the deviations be explained by differences in likely prescription adherence. Instead, these

deviations might represent practice style variation across physicians or idiosyncratic decision-making

within each physician.19 These findings are broadly consistent with earlier analysis of physician

survey responses to clinical vignettes by Gross et al. (2003). The survey found that there was no rela-

tionship between physicians’ perceived benefits of warfarin and their clinical decisions to recommend

its use. Although perception of bleeding risk was an important determinant of prescription choice in

the survey, physicians had quantitatively large mistakes in their perceptions of bleeding risk.

7 Counterfactual Awareness and Adherence

Based on our ML-predicted treatment effects in Section 5 and our analysis of physician decision-

making in Section 6, we simulate outcomes under counterfactual scenarios of guideline awareness

and adherence. When discussing counterfactual outcomes, it is useful to compare outcomes to a few

benchmarks. Treating all patients with newly diagnosed atrial fibrillation in the VHA would prevent

409 strokes (hereafter, “preventable strokes”) and induce 187 bleeding events (hereafter, “inducible

bleeds”) per 10,000 patients after one year.

In Figure 6 and Table 6, we show key results on prevented strokes and induced bleeds under

counterfactual scenarios. We first show that status quo physician decisions perform similarly to ran-

18To the degree that one interprets the results in Panel A as a nonlinear analogue of the test in Altonji et al. (2008),
one might argue that Panel B suggests that this test has limited power in the sense of Oster (2019). The test in Panel A
is of direct interest because the covariates we include account for specific normative justifications that physicians give for
non-adherence, but it is not especially informative about other unobservable characteristics in the Oster (2019) sense.

19Finally, note that selection on unobservable determinants of treatment effects is immaterial for our counterfactual
analyses comparing strict adherence with random treatment decisions. These analyses consider treatment rules based only
on observable characteristics, for which CATEs are the relevant objects. If doctors did have private information about
treatment effects, our counterfactuals will understate the benefits of the status quo, but still correctly assess the impact of
guideline adherence relative to random treatment.
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dom anticoagulation of atrial fibrillation patients: physicians prescribe anticoagulation to 49.8% of

patients and prevent 49.4% of preventable strokes.

Universal guideline awareness. Next, we consider counterfactual outcomes under scenarios vary-

ing the extensive margin of guideline awareness. Awareness of the CHADS2 score had relatively

muted effects on outcomes. Under the counterfactual scenario of no CHADS2 awareness, 49.5% of

patients would be treated, preventing 49.1% of preventable strokes. Universal CHADS2 awareness

boosts the treatment rate to 50.6%, slightly reducing the rate of induced bleeds accordingly, and avert-

ing 50.6% of preventable strokes; this is a 1% improvement in the number of strokes prevented per

bleed induced, relative to the no CHADS2 awareness counterfactual.

Strict guideline adherence. We then turn to scenarios involving strict adherence to a guideline.

Treatment decisions under these scenarios strictly follow an ordering according to guideline recom-

mendations. Each guideline implies a “score” that we use to order patients; patients with the same

score (e.g., patients with the same CHADS2 score for the CHADS2 guideline) are randomly ordered.

We evaluate the performance of adhering to each guideline-implied ordering by a set of counterfactual

outcomes, moving from no patients treated to all patients treated. Under the assumption that the costs

of treatment and monitoring are negligible relative to the clinical benefits,20 two guideline orderings

can be welfare-ranked if one guideline prevents more strokes than the other guideline, for any fixed

number of induced bleeds.

Compared to expanding awareness of guidelines, policies that achieve strict adherence to guide-

lines produce much better outcomes. Holding treatment rates fixed at the status quo level, strict

adherence to the CHADS2 score prevents 56.3% of preventable strokes, which is 14% more than

were prevented under the status quo. Adherence to a score based on full stroke treatment effects per-

forms better still, preventing 60.3% of preventable strokes, or 22% more strokes than those prevented

under the status quo. Strict adherence to the stroke-minimizing guideline could yield more than 50

times greater improvement in the number of strokes prevented per bleed induced, relative to universal

CHADS2 awareness.

Guideline revisions. In recent years, the CHADS2 score has been replaced with the enriched

CHA2DS2-VASc score as the basis for anticoagulation recommendations. In Appendix Figure A.4,

we show that adherence to the CHA2DS2-VASc score performs quite similarly to the CHADS2 score,

20This assumption is standard in the existing medical literature on anticoagulation, e.g. Singer et al. (2009).
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preventing an equivalent or slightly larger number of strokes for any given number of bleeds induced.

Although our causal-forest estimates corroborate that vascular disease is an important predictor of

stroke treatment effects, the CHA2DS2-VASc guideline gives vascular disease too much weight rel-

ative to other variables, undermining the performance of the augmented model.21 In this case, the

more comprehensive guideline does not substantially improve the recommended allocation.

The role of patient frailty. We confirm previous reports that physicians are reluctant to treat older

and more frail patients (Fawzy et al., 2019).22 In Appendix Figure A.5 and Appendix Table A.5, we

explore the extent to which these treatment patterns can account for the large returns of treatment re-

allocation. In these counterfactual analyses, we reallocate treatment only within ventiles of predicted

mortality risk. We find that status quo decisions perform equivaelently to a benchmark of random as-

signment within ventiles of predicted mortality, preventing an equivalent number of strokes per bleed

induced. The benefits of guideline adherence within mortality risk bins are only slightly attenuated

compared to what we find in the unconstrained counterfactuals. Adherence to an optimal guideline

within mortality risk bins could still prevent 19% more strokes per bleed than in the status quo.

8 Conclusion

Our findings suggest that evidence-based clinical guidelines have the potential to improve patient

health outcomes. The CHADS2 score shifted physician behavior and likely prevented a small number

of additional strokes while inducing an even smaller number of additional bleeds. Awareness of

more comprehensive guidelines that incorporate all of the variables predicting stroke treatment effects

would have larger benefits. Stricter adherence to existing or novel treatment rules produces much

larger gains than awareness with discretionary adherence. Strict adherence to an optimal treatment

rule that minimizes strokes can prevent 22% more strokes without increasing the number of induced

bleeds.

Our results suggest an important lesson for the use of guidelines in clinical care. Increasing the

extensive-margin of guideline awareness, making physicians are aware of the guideline but allowing

broad discretion in how to apply it, achieves only a fraction of the benefits of greater intensive-

21In the interest of simplicity, most of the existing CHADS2 weights were unchanged in the CHA2DS2-VASc score (all
variables other than age), but additional variables were added. Vascular disease was given a weight of “1”, the lowest
weight available in the score. This weight was still too large and reduced the performance of the score.

22A similar pattern has been documented in the setting of heart attack care by (Currie et al., 2016): physicians avoid
treating older patients, even when they would benefit from treatment.
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margin guideline adherence. Many policy instruments are available to promote adherence. On the less

restrictive end of the spectrum, in-person campaigns to educate and persuade physicians to adhere to

guidelines, as well as order sets and electronic reminders can make more salient the costs of departing

from guidelines (Piccini et al., 2019). Alerting physicians if their adherence rates are low relative to

peers could also shift behavior (Sacarny et al., 2018). More directly, pay for performance incentives

could reward physicians whose treatment behavior accords with guidelines (Werner et al., 2011),

and insurers could impose hassle costs on physicians to justify treatment decisions which do not

comply with guidelines (e.g. failing to treat patients with higher stroke to bleed ratios than other

treated patients) (Dillender, 2018). Best practices for implementing guidelines in clinical decision

support (CDS) IT systems call for generating evidence for their external validity (Bates et al., 2020).

An alternative way to increase adherence to new and existing guidelines may be to generate better

evidence for their validity as we seek to do here, increasing the strength of the signal that guidelines

provide.

Our results incorporate more information to estimate treatment effects than has been previously

considered, but they only scratch the surface of what is possible. Machine-based algorithms could

continue to learn both from additional trials and from observational data, in order to create more

powerful predictors of treatment effects. While there remain logistical challenges to the widespread

integration of machine-based algorithms into health IT systems (Kawamoto and McDonald, 2020),

these are likely to be lessened as data integration and methods of validation in healthcare becomes

more commonplace. Important avenues for future research include refining techniques used to build

and validate clinical decision rules, as well as identifying best practices for encouraging effective

guideline use.
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Figure 1: Anticoagulation Trends by CHADS2 Score
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Notes: This figure shows the fraction of atrial fibrillation patients treated with anticoagulation over time, for
three groups of patients by CHADS2 score. The sample reflect patients with newly diagnosed atrial fibrillation
in the VHA, and anticoagulation treatments are defined as prescriptions within 90 days of initial diagnosis.
Table 2 provides further details about the sample selection.
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Figure 2: Diffusion of the CHADS2 Score
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Notes: This figure shows the fraction of patients in a given year with physicians who either mention the
CHADS2 score in the note for the index patient or have mentioned the CHADS2 score in either the note for the
index patient or in a previous note. We identify mentions by searching the note text for the phrase chads (not
case-sensitive). We consider any physician who has mentioned the the CHADS2 score in the current note or in
a previous note as being aware of the CHADS2 guideline, shown in the solid line. The dashed line reflects the
rate of mentions in the index patient’s note. The sample reflect patients with newly diagnosed atrial fibrillation
in the VHA. Table 2 provides further details about the sample selection.
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Figure 3: Treatment Decisions and CHADS2 Awareness

A. Trends Relative to CHADS2 Awareness
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Notes: Panel A displays the fraction of atrial fibrillation patients treated with anticoagulation in each year rela-
tive to CHADS2 awareness for physicians who eventually adopt the CHADS2 score. Panel B shows regression
coefficients and 95% confidence intervals from Equation (1), run separately for patients with CHADS2 ∈ {0,1}
and for patients with CHADS2 ≥ 2. The 12-month period prior to the physician’s first CHADS2 mention is
normalized to 0. The regression sample includes 104,585 VHA patients who either are treated within 5 years
of their physician’s observed CHADS2 awareness or are treated by a never-aware physician.
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Figure 4: Distribution of Stroke Treatment Effects Across VHA Patients

A. Histogram of Stroke Treatment Effects
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Notes: Panel A displays a histogram of stroke treatment effects in the VHA sample. Panel B shows a box plot
for the distribution of treatment effects by CHADS2 score in the VHA data. Bounds on the box plot are at the
25th and 75th percentile, with the median marked with a horizontal line. Whiskers extend to the 5th and 95th
percentiles. For both panels, conditional average treatment effect (CATE) predictions are trained and validated
by using causal-forest methods, described in Section 5, applied to RCT data in the AFI database. We use the
causal-forest rules to calculate CATEs as a function of patient characteristics for each patient in the VHA data.
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Figure 5: Evidence on the External Validity of AFI CATEs

A. AFI CATEs and Observational Treatment Effects
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B. Stroke Outcomes Among Untreated Patients and AFI CATEs
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Notes: Panel A displays a binned scatterplot of the relationship between z-standardized stroke treatment effects
estimated by causal forest in the AFI RCT data and z-standardized stroke treatment effects estimated by OLS
in the VHA observational data. The correlation coefficient is 0.68. OLS estimates interact anticoagulation
treatment with each of the patient characteristics that are covered in both the AFI and VHA data (see Appendix
Table A.1 for the complete list). In addition to controlling for this variable set, the OLS specification also
controls for a complete set of Elixhauser comorbidities, history of hemorrhage, family history of stroke, and
a 3-knot spline in the predicted mortality index. In Panel B, we show a binned scatterplot of the relationship
between 1-year stroke incidence for untreated patients in the VHA data and CATE estimates from the AFI RCT
data. Due to data limitations that prevent us from differentiating new stroke events from repeated coding of a
prior stroke, both panels are estimated in a restricted sample of 91,797 patients with no stroke history at the
time of atrial fibrillation diagnosis.
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Figure 6: Counterfactual Outcomes
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Notes: This figure shows strokes prevented and bleeds induced by anticoagulation in counterfactual scenarios.
Strokes prevented per 10,000 patients are shown on the y-axis, and bleeds induced per 10,000 patients are
shown on the x-axis. Both panels display outcomes under a random treatment allocation, ranging from 0%
of patients treated (top-left corner of Panel A) to 100% of patients treated (bottom-right corner of Panel A).
Panel A shows outcomes under counterfactual strict adherence to various guideline rules. Each rule implies a
patient sorting, and the curves indicate counterfactual outcomes ranging from treating 0% to 100% of patients.
Patients with the same score or treatment effect are randomly sorted into treatment. Panel B shows an inset
area and plots outcomes for counterfactual awareness (i.e., imperfect adherence) scenarios.

42



Table 1: CHADS2 Score and Treatment Recommendations

CHADS2 Components Points

History of congestive heart failure 1
History of hypertension 1
History of diabetes mellitus 1
Aged 75 or older 1
Previous stroke or transient ischemic attack 2

Treatment Recommendation

Score of 2 or greater: high risk of stroke;
oral anticoagulant recommended
Score of 1: moderate risk of stroke;
oral anticoagulant considered
Score of 0: low risk of stroke;
oral anticoagulant not recommended

Notes: This table describes the CHADS2 score used to assess stroke risk among patients with atrial
fibrillation. The score is based on evidence developed by Gage et al. (2001, 2004). In the bottom panel,
the table also summarizes the 2006 ACC and 2008 ACCP guideline treatment recommendations based on
the CHADS2 score, published in Fuster et al. (2006) and Hirsh et al. (2008).
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Table 3: Summary Statistics

VHA Data AFI Database
Mean Overall Smallest

Trial Mean
Largest Trial

Mean
Characteristic (1) (2) (3) (4)

Treated with anticoagulation 0.50 0.44 0.34 0.50
Male 0.99 0.67 0.46 1.00
Age 74.05 70.37 67.75 73.67
Stroke treatment effect −0.04 −0.04 −0.08 −0.03
Bleed treatment effect 0.02 0.02 0.02 0.02
CHADS2 components:

Congestive heart failure 0.15 0.30 0.00 0.70
Hypertension 0.84 0.45 0.32 0.59
Age ≥ 65 0.52 0.76 0.63 0.90
Diabetes 0.36 0.14 0.08 0.19
Previous stroke 0.15 0.11 0.00 0.76

Number of physicians 5,752
Number of patients 113,270 4,720
Notes: This table reports mean and standard deviations of characteristics of patients in the VHA data
and in the AFI database. Column 1 shows characteristics of patients in the VHA data, specifically in the
sample created by the steps described in Table 2. Column 2 shows characteristics of patients in the overall
AFI database. Columns 3 and 4 show the smallest and largest trial means, respectively, for the patient
characteristics.
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Table 4: Causal-Forest BLP Validation Regressions

Stroke Bleed
(1) (2) (3) (4)

Treatment,,8 −0.042*** −0.041*** −0.042*** 0.018***
(0.007) (0.007) (0.007) (0.005)

Treatment effect interactions

,8 ×
(
ĝ>− 9 (-8) − g

>
)

0.520*** 0.519*** −0.374

(0.130) (0.123) (0.691)

,8 ×
(
ĝ
B (2)
− 9 (-8) − ḡB (2)

)
0.666***

(0.250)

,8 ×
(
ĝ
B (A )
− 9 (-8) − ḡB (A )

)
0.460**

(0.142)

,8 ×
(
PrVHA (,8 | -8) −PrVHA (,8)

)
−0.046

(0.061)
Outcome mean 0.065 0.065 0.065 0.030
Observations 4,720 4,720 4,720 4,720

Trial fixed effects Yes Yes Yes Yes
Predicted outcome controls
.̂>− 9 (-8) Yes Yes Yes Yes

% 9 ×
(
ĝ>− 9 (-8) − g

>
)

Yes Yes Yes

% 9 ×
(
ĝ
B (2)
− 9 (-8) − g

B (2)
)

Yes

% 9 ×
(
ĝ
B (A )
− 9 (-8) − g

B (A )
)

Yes

PrVHA (,8 | -8) Yes

Notes: This table reports the coefficients of best linear predictor (BLP) validation regressions of stroke
and bleed outcomes. Columns 1 and 4 corresponds to Equation (4), which interacts treatment with the
demeaned full treatment effect

(
ĝ>− 9 (-8) − g

>
)

for stroke and bleed, respectively. Column 2 corresponds
to Equation (5), which interacts treatment with the demeaned CHADS2 and residual components of the
stroke treatment effect, or

(
ĝ2− 9 (-8) − ḡ2

)
and

(
ĝA− 9 (-8) − ḡA

)
. Column 3 reports the specification in

Column 1 with the additional interaction between treatment and demeaned VHA propensity to treat, or(
PrVHA (,8 | -8) −PrVHA (,8)

)
. The VHA propensity to treat, PrVHA, is constructed as the OLS proba-

bility of treatment in the VHA data given patient characteristics and exported to the AFI databse, detailed
further in Appendix A.5. All specifications control for trial fixed effects and regression forest predic-
tions of the outcome estimated in the control groups of leave-out trials, or .̂>− 9 (-8). Additionally, the
specifications in Column 1, 3 and 4 control for treatment probability in each trial interacted with de-
meaned treatment effect, or % 9 ×

(
ĝ>− 9 (-8) − g

>
)
, where % 9 denotes the treatment probability in each trial.

Analogously, the specification in Column 2 controls for the treatment probability in each trial interacted
with demeaned CHADS2 and residual components of the stroke treatment effect, or % 9 ×

(
ĝ2− 9 (-8) − g

2
)

and % 9 ×
(
ĝA− 9 (-8) − g

A
)
. The specification in Column 3 additionally controls for the treatment propen-

sity main effect. The sample used in the validation regression exclude patients ineligible for Warfarin,
reducing the sample size to 4,720. *** ? < 0.01, ** ? < 0.05, * ? < 0.1
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Table 5: Average Marginal Effects of Probit Model

Dependent Variable: Anticoagulant Prescription
(1) (2) (3)

CHADS2-related stroke treatment effects × Post (U21 ) −3.875*** −3.358*** −3.067***
(0.585) (0.641) (0.587)

Residual stroke treatment effects × Post (UA1) −0.126 0.812 0.619
(0.566) (0.621) (0.582)

Year fixed effects Yes Yes Yes
Predicted mortality spline Yes Yes Yes
Time trend × treatment effects No Yes Yes
Predicted warfarin adherence No No Yes

Notes: This table reports average marginal effects from probit regressions of anticoagulation treatment
decisions, as specified in Equation (7). Key regressors of interest are causal-forest predictions of CATEs:
CHADS2-related stroke treatment effects, or ĝ2

�!%
(G); residual stroke treatment effects, or ĝA

�!%
(G); and

bleed treatment effects, or ĝ1
�!%
(G). All specifications include calendar year fixed effects and a 3-knot

spline in predicted mortality. Column 2 includes linear trends interacted with each of these treatment
effects. Column 3 includes interactions of CHADS2 awareness status with both year fixed effects and the
predicted mortality spline variables. Standard errors are clustered at the physician level. *** ? < 0.01, **
? < 0.05, * ? < 0.1.
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Table 6: Counterfactual Treatment Decisions and Outcomes

Strokes prevented Bleeds induced
Percent of
patients
treated

Per 10K
patients

Percent of
maximum

Per 10K
patients

Percent of
maximum

A: Benchmarks
Status quo 49.8% 202 49.4% 93 49.8%
Randomly assigned treatment 49.8% 204 49.8% 93 49.8%
All patients treated 100% 409 100% 187 100%

B: Guideline Awareness
No CHADS2 awareness 49.5% 201 49.1% 92 49.5%
Universal CHADS2 awareness 50.6% 207 50.6% 94 50.6%

C: Strict Guideline Adherence
CHADS2 guideline 49.8% 231 56.3% 93 49.8%
Stroke TE guideline 49.8% 247 60.3% 93 49.8%

Notes: This table reports treatment rates and patient outcomes in counterfactual awareness and adherence
scenarios for patients in the VHA data. Outcomes of strokes prevented and bleeds induced are reported
per 10,000 patients and as a percent of the maximum number of preventable strokes or inducible bleeds.
Panel A reports treatment rates and outcomes under the status quo, which we observe in our data, and
in a counterfactual assignment of the same number of treatments to random patients. Panel B reports
treatment rates and outcomes under counterfactual awareness scenarios, assuming adherence implied by
our structural model in Equation (7). Panel C reports treatment rates and outcomes under patient orderings
according to scores implied by counterfactual strict adherence to different guidelines. Patients with the
same score are randomly ranked. “CHADS2 guideline” orders patients by their CHADS2 score. “Stroke
TE guideline” orders patients by ĝB

�!%
(G).
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A.1 Machine learning procedure for estimation of heterogeneous treat-
ment effects

We recover conditional average treatment effect (CATE) estimates using an ensemble method that

combines lasso and causal forest. We begin by estimating heterogeneous treatment effects with a lasso

model, where lasso selection both chooses the control variables and the treatment effect interactions.

The lasso model predicts stroke (> = B) and bleed (> = 1) outcomes .>
8

, taking as inputs patient’s

warfarin treatment status (,8) and patient characteristics listed in Appendix Table A.1 (-8). The

estimating equation also directly controls for trial fixed effects W 9 , where lasso is applied after the

within transformation to remove the fixed effects (Ahrens et al., 2020). The lasso equation takes the

following form:

.̂> (G) = V>0 -8 + V
>
1 -8,8 +W 9 , > ∈ {B, 1} (A.1)

The penalty parameter is selected through cross validation. We then construct ĝ>
2>=C8=D>DB

(G) , CATE

estimates that vary with the continuously varying risk factors with a post-lasso regression. The con-

tinuous variables use to predict CATEs include height, weight, systolic blood pressure, diastolic blood

pressure, blood hemoglobin level, and lasso-predicted stroke or bleed risk among the control group

patients.

We construct residualized stroke and bleed outcomes by subtracting lasso-predicted outcomes

from true observed outcomes for each patient, to calculate .̃>
8
= .>

8
− .̂>

2>=C8=D>DB
(G). Residual varia-

tion in stroke and bleed outcomes will reflect both treatment effect and risk heterogeneity that cannot

be predicted by the lasso function of the continuous variables. Further, before fitting the causal forest,

we first recenter both treatment variable and residualized outcomes and to remove trial fixed effects.1

Next, we use these residualized stroke and bleed outcomes to fit the causal forest model. The

causal forest takes as inputs all discrete patient characteristics -38B2 (gender, smoking status, his-

tory of: angina, congestive heart failure, diabetes, hypertension, myocardial infarction, peripheral

vascular disease, TIA and stroke) and a regression forest prediction of risk among control-group pa-

tients. We estimate the causal forest to generate predictions of stroke and bleeding treatment effects,

gB
5 >A4BC

(G38B2) and g1 (G38B2) respectively, capturing heterogeneity in treatment effects along discrete

patient characteristics observable in the AFI database, G38B2 and allowing interactions between these

risk factors.

Finally, we obtain the CATEs by summing the causal forest treatment effect estimates g>
5 >A4BC

(G)
and treatment effect from the Lasso-selected continuous variables tau g>

2>=C8=D>DB
(G). We then pro-

ceed with the a validation procedure that adjusts these estimates for potential over-fitting to construct

the best linear predictor (BLP) of CATEs. The BLP procedure is described in Section 5.3.

Parameter selection and package for estimation of lasso models. We use the lassopack package

in Stata to run Lasso models. Details can be found at https://statalasso.github.io/docs/
1The “recentering” procedure is formally justified in Section 6.1.1 of Athey et al. (2019).

A.1

lassopack
https://statalasso.github.io/docs/lassopack/
https://statalasso.github.io/docs/lassopack/
https://statalasso.github.io/docs/lassopack/


lassopack/. We first use cvlasso to find the lambda that minimizes mean-squared prediction error.

We then use this lambda value to run lasso2 to select variables. Both the risk and treatment effect lasso

models include only linear terms. In the risk lasso model, we include all the patient characteristics.

In the treatment effect model, we include all the patient characteristics and their interaction with the

treatment indicator.

Parameter selection and package for estimation of causal forest models. We use the grf pack-

age developed by Tibshirani et al. (2020) to run causal and regression forests. Details about the

algorithm can be found at https://github.com/grf-labs/grf. In brief, both causal and regres-

sion forests form predictions by creating a number of decision trees, each trained on a random sample

of observations. In each tree, nodes are split recursively by a random subset of characteristics. This

process occurs until no node can be split any further, as determined by parameters of the algorithm

that we discuss below. Causal forests split nodes with the objective of maximizing differences in treat-

ment effects—the difference between average outcomes among treated and untreated observations—

between child nodes. Regression forests split nodes with the objective of maximizing differences in

average outcomes between child nodes. After a decision tree is formed, predicted treatment effects

(or outcomes) for a given vector of characteristic values are determined by the average treatment ef-

fect (or outcome) in the terminal node that contains those characteristic values. The prediction of the

forest is the average prediction over each tree in the forest.

In training both causal and regression forests, we use the default honesty option. This ensures

that separate random samples of the data are used to determine splits and to compute average treat-

ment effects or outcomes in the nodes (Athey and Wager, 2019).

We use the following parameter values in our algorithm. We use cross-validation to select the

minimum node size for causal and regression forests. We set the parameter alpha to 0.2, which

restricts imbalance of splits so that each child node required to be greater than 20% of the size of its

parent node. We set the number of trees grown in the forest (num.trees) at 2000. We set sample.

fraction, or the fraction of the data used to build each tree, at 0.75, within the default range. We

set honesty.fraction, or the fraction of the training sample used for determining splits, at 0.75,

also within the default range. We left the number of variables considered in each split (mtry) at the

default value, which implied that all variables were considered in each split.

Appendix Table A.2 summarizes the sources of treatment effect heterogeneity from the causal

forest results. The table lists the important predictors of treatment effect heterogeneity by reporting

lasso-selected continuous variables and ranking discrete characteristics by their “variable importance”

in the causal forest model.2 We also report the sign of each variable in a linear regression of treatment

effects on the ten most important variables. The most important predictor of treatment effects in the

stroke models is predicted stroke risk. The variables in the CHADS2 score generally rank highly in

both the causal-forest and regression-forest models, but several variables not in the CHADS2 score

2There are several methods to compute variable importance, and there is no clear consensus yet on the best method (Wei
et al., 2015). We use a measure from Athey et al. (2019) which ranks variables more highly in importance if the algorithm
chooses to split trees in the forest earlier on those variables.
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also matter: e.g., body weight, hemoglobin, and smoking behavior all predict stroke treatment effects.

A.2 Bayesian Model of Decision-Making

In this appendix, we describe in greater detail the Bayesian model of decision-making specified in

Equation (??), which we restate here. Anticoagulation decisions,8 in state 6 are made as follows:

,8 = 1
{
Vg̃B8,6 + 56 (-8) + E8,6 > 0

}
,

We focus on the Bayesian posterior beliefs about stroke treatment effects: g̃B
8,6

. Recall that 6 denotes

the awareness status of the physician. Awareness status may change the informativeness of physician

beliefs about treatment effects.

This model includes two components. First, physicians consider beliefs about patient-specific

stroke treatment effects, g̃B
8,6

, with preference weight V. Guideline awareness may improve physi-

cians’ information about treatment effects, giving them more accurate posterior beliefs. The second

component consists of other factors—including both observable characteristics (to the econometri-

cian) 56 (-8) and otherwise unobservable factors E8,6—which may impact treatment decisions. This

component may capture beliefs about bleed treatment effects that we cannot detect in our AFI data or

other concerns, such as frailty, that have been discussed in the literature (Fawzy et al., 2019).

For the first component—beliefs about stroke treatment effects—we consider a simple Bayesian

model, laid out below. The model implies that posterior beliefs are a linear function of true treatment

effects and prior beliefs. This linear projection can be exactly micro-founded by a standard Bayesian

model with normal true treatment effects and normal noise. However, absent a joint-normal model

of signals and noise, Equation (A.2) is a linear approximation of Bayesian updating, common in

empirical Bayes applications (e.g., Chetty et al., 2014).

g̃B8,6 = _26g
2
8 +_A6gA8 + `6 +h8,6 . (A.2)

True stroke treatment effects, gB
8

, are decomposed into a CHADS2-related component g2
8

and a resid-

ual component gA
8

, such that gB
8
= g2

8
+ gA

8
. The parameter _>̃, >̃ ∈ {2,A}, correspond to the signal-

to-noise ratio of posterior beliefs g̃B
8,6

with respect to g2
8

and gA
8

. Physicians may have more precise

signals for g2
8

than for gA
8

, and the precision of their signals may change with guideline awareness

status 6. In the model, CHADS2 awareness increases the precision of the doctor’s signal of g2
8

, the

CHADS2-related variation in stroke treatment effects. `6 is a constant within 6 (which depend on

physician’s priors), and h8,6 is a noise term with variance that depend on the precision of the signals

that physicians receive.

Our framework also allows for the possibility of “distraction effects,” whereby guideline aware-

ness leads physicians to place less weight on other decision-relevant factors. In the Bayesian language

of the model, distraction effects correspond to physicians forming less precise beliefs about gA
8

. By the
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same token, however, guidelines may also lead physicians to place less weight on any consideration,

including those in 56 (-8) and E8,6 that may not strictly align with reducing strokes or bleeds.

A.2.1 Component Treatment Effects, Signals, and Beliefs

Treatment effects and physician beliefs depend on patient characteristics, which we may orthogonal-

ize into components : ∈ K. We can conceptualize each principal component as implying additional

(orthogonal) information about treatment effects. Specifically, assume that stroke treatment effects

are normally distributed and comprise component treatment effects that are also normally distributed:

gB8,: ∼ #
(
gB: ,f

2
g (B) ,:

)
, (A.3)

for each : ∈ K. We assume that physicians know the moments of each component treatment effect(
gB: ,f

2
g (B) ,:

) 
:=1

.3

For each component : , physicians receive a noisy signal of the underlying treatment effect, ¤gB
8,:

:

¤gB8,6,: = g
B
8,: + n

B
8,6,: , (A.4)

where n B
8,6,:

is a normally distributed noise term with variance f2
n (B) ,6,: , or n B

8,6,:
∼ #

(
0,f2

n (B) ,6,:

)
.

Note the dependence of signals on 6. This models the possibility that awareness status may change

the quality of information that physicians receive about treatment effects.

Given prior beliefs and the noisy signals, physicians form posterior beliefs, g̃B
8,:

. Specifically,

g̃B8,6,: = _
B
6,: ¤g

B
8,6,: + (1−_

B
6,:)g

B
: , (A.5)

where _B
6,:

=
f2

g (B) ,:
f2

g (B) ,:+f
2
n (B) ,6,:

is the signal-to-noise ratio of the :th component.

A.2.2 Regression Interpretation

The relationship between posterior beliefs and signals in Equation (A.5) can be interpreted as a re-

gression of posterior beliefs on signals. This relationship may also be interpreted as a regression

of posterior beliefs on true treatment effects, since the noise component of signals is orthogonal to

treatment effects:

g̃B8,6,: = _B6,: ¤g
B
8,6,: + (1−_

B
6,:)g

B
:

= _B6,:g
B
8,: + (1−_

B
6,:)g

B
: +_

B
6,:n

B
8,6,: ,

where the second line uses the definition of the signal in Equation (A.4). In other words, a unit

increase in the treatment effect gB
8,:

should increase posterior beliefs by _B
6,:

.

3Our model in Equation (??) allows for potentially non-Bayesian beliefs that can shift decision-making via 56 (-8) and
E8,6. In order to study the effect of information in a Bayesian framework, we compartmentalize the two components of the
model and consider the first component, described in this appendix, as Bayesian.
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We may use this framework to consider the relationship between overall treatment effects, overall

signals, and overall posterior beliefs, aggregated across components : ∈ K. These overall objects are,

respectively, gB
8
≡∑

:∈K g
B
8,:

; ¤gB
8,6

=
∑
:∈K ¤gB8,6,: ; and g̃B

8,6
=

∑
:∈K g̃

B
8,6,:

. Substituting the definition of

the component signals from Equation (A.5), we may also state the overall posterior belief as

g̃B8,6 =
∑
:∈K

(
_B6,: ¤g

B
8,6,: + (1−_

B
6,:)g

B
:

)
. (A.6)

We now consider the overall signal-to-noise ratio in a regression predicting the overall posterior

belief using the signal:

g̃B8,6 = _
B
6 ¤gB8,6 + (1−_B6)g

B . (A.7)

Using Equation (A.6) for g̃B
8,6

and the definition of the overall signal for ¤gB
8,6

, the coefficient _B6 in this

regression is

_B6 =

Cov
(
g̃B
8,6
, ¤gB
8,6

)
Var

(
¤gB
8,6

) =

∑
:∈K _

B
6,:

Var
(
¤gB
8,6,:

)
∑
:∈KVar

(
¤gB
8,6,:

) (A.8)

=

∑
:∈K f

2
g (B) ,6,:∑

:∈K

(
f2
g (B) ,6,: +f

2
n (B) ,6,:

) . (A.9)

Equation (A.8) reveals that the overall signal-to-noise ratio, _B6, can be thought of as a variance-

weighted average of the component signal-to-noise ratios, _B
6,:

. Equation (A.9) shows that a posterior

belief formed directly from the aggregate signal, as in Equation (A.7), will have the same signal-to-

noise ratio as a posterior belief aggregated from component posterior beliefs, as in Equation (A.6).

A.2.3 CHADS2 and Residual Treatment Effects

We are now in a position to state posterior beliefs as in Equations (A.2). For strokes, we can separate

the set of components K2 that predict CHADS2-related treatment effects and K \K2 components

that predict residual treatment effects. We expect that the component posterior beliefs related to the

CHADS2 score should increase in informativeness. That is, we expect that _B
6,:

should increase with

6 = post, for : ∈ K2 . We first define the two components of stroke treatment effects: g2
8
≡∑

:∈K2
gB
8,:

,

and gA
8
≡∑

:∉K2
gB
8,:

. Restating Equation (A.2) as

g̃B8,6 = _
2
6g
2
8 +_A6gA8 + `B6 +hB8,6,
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we can then interpret the signal-to-noise coefficients in the equation as follows:

_26 =

∑
:∈K2

f2
g (B) ,6,:∑

:∈K2

(
f2
g (B) ,6,: +f

2
n (B) ,6,:

) ;

_A6 =

∑
:∉K2

f2
g (B) ,6,:∑

:∉K2

(
f2
g (B) ,6,: +f

2
n (B) ,6,:

) .
If we conceptualize the posterior belief as directly formed from ¤g2

8
≡ g2

8
+∑

:∈K2
n B
8,6,:

and ¤gA
8
≡

gA
8
+∑:∉K2

n B
8,6,:

, then we can interpret the constant, `B6, and error term, hB
8,6

as

`B6 =
∑
:∈K

(
1−1 (: ∈ K2)_26 −1 (: ∉K2)_A6

)
gB: ;

hB8,6 =
∑
:∈K

(
1 (: ∈ K2)_26 +1 (: ∉K2)_A6

)
n B8,6,: .

Unlike _26 and _A6, `B6 and Var
(
hB
8,6

)
are not exactly invariant to the level of aggregation with which

posterior beliefs are formed.4 Nevertheless, regardless of this level of aggregation, qualitative inter-

pretations are unchanged: `B6 is a function of the signal-to-noise ratio and prior beliefs, and hB
8,6

is a

function of signal-to-noise ratio and noise. If _B
6,:

= 1 for all : ∈ K, there is no noise, and hB
8,6

= 0.

At the other extreme, if _B
6,:

= 0 for all : ∈ K, there is no meaningful signal. In this case, physicians

will ignore all ¤gB
6,:

, and we will also have hB
8,6

= 0.

A.3 Predicting Patient Warfarin Adherence

In this appendix, we describe how we construct a measure of each patient’s predicted adherence to a

prescribed warfarin regime. Physicians may be reluctant to prescribe warfarin to patients who will not

maintain consistency with medication dosing, since excessive anticoagulation increases the patient’s

vulnerability to bleeds, while insufficient anticoagulation may fail to deliver stroke-reducing benefits.

To predict medication adherence, we use measures of patients’ past health care utilization, medication

adherence and socioeconomic characteristics; these are all factors physicians could plausibly consider

when deciding on an anticoagulation treatment course. We then assess the predictive power of these

metrics on various measures of warfarin medication compliance. These measures will be described

in detail below, and are further summarized in Table A.6.

4For `B6 to be invariant, we require _B6 to be a different weighted average of _B
6,:

, with weights proportional to gB
:

rather than Var
(
¤gB
8,6,:

)
. For Var

(
hB
8,6

)
to be invariant, we require (_B6)2 to be a weighted average of (_B

6,:
)2, with weights

proportional to Var
(
nB
8,6,:

)
rather than Var

(
¤gB
8,6,:

)
.
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A.3.1 Past Health Care Utilization.

In the VHA analytic cohort, we count the number of hospitalizations, emergency department, primary

care, specialist and all outpatient visits in the year prior to Atrial Fibrillation diagnosis. Table A.6

displays the averages of these measures.

A.3.2 Zip code income.

We obtain zip code level median household income data from the 2013 5-year American Community

Survey (ACS). This survey, conducted by the U.S. Census Bureau, provides estimates that draw on

the previous 5 years of income data. The benefits of using 5-year estimates include availability and

increased precision in areas with lower and higher population density, respectively (U.S. Census

Bureau, 2020). The U.S. Census Bureau collects income information by ZIP Code Tabulation Areas

(ZCTAs), which are general aerial representations of USPS zip codes. We map median ZCTA income

to zip codes using the 2013 UDS Mapper ZCTA-zip code crosswalk (Health Resources and Services

Administration, n.d.).

We determine VHA cohort zip codes by selecting the zip code reported closest to the end of day

on the date of Atrial Fibrillation diagnosis. We then match these zip codes to the census income data

via the UDS ZCTA-zip code crosswalk. We find a high matching rate, with over 99% of the cohort

showing non-missing income data.

A.3.3 Medication Adherence.

We construct measures of medication adherence to asses whether prior medication adherence predicts

future warfarin compliance. We adopt two measures of adherence, proportion of days covered (PDC)

and time in therapeutic range (TTR).

Proportion of Days Covered PDC is a well recognized measure of medication adherence, endorsed

and utilized by the Pharmacy Quality Alliance (PQA) and CMS Quality Ratings System (QRS) (Phar-

macy Quality Alliance, 2022; Centers for Medicare and Medicaid Services, 2021). While methods

to calculate PDC vary modestly across studies, we adopt the conventional approach as described by

Prieto-Merino et al. (2021). Non-warfarin PDC measures are calculated for the period between a

patient’s first prescription fill (after one-year prior to Atrial Fibrillation diagnosis) and the day before

diagnosis. PDC of warfarin is calculated from the first fill after diagnosis, until one year after diag-

nosis. For each period of interest, we count the number of days a patient was covered by a fill. We

calculate PDC as,

PDC = min

(
1,

∑
A ∈R(8)min(B(A), C − C (A))

C (8) −minR(8)

)
(A.10)

where A is the prescription, R(8) is the set of prescriptions for patient 8, B(A) and C (A) are the days

supplied and fill date of prescription A , respectively, and C (8) is the date of diagnosis.
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Time in Therapeutic Range Our method of calculating TTR follows the Rosendaal et al. (1993)

method, calculating a patient’s TTR in a specified period after initial treatment. TTR measures the

percent of time a patient’s INR lab values are between 2.0-3.0, which is the typical preferred range

for patients on warfarin. Equation A.11 displays the formula used to calculate TTR between two lab

INR values, h and h′.

c(h,h′) =


0, h = h′ ∉ [2,3],

1, h = h′ ∈ [2,3],
max(2,min(h,3))−max(2,min(h′,3))

h−h′ , h ≠ h′

(A.11)

We measure TTR over 273 and 458 day windows for patients whose testing period is at least 180 and

365 days, respectively. We also construct an unrestricted measure that estimates TTR for all patients

with at least two lab results. Generalizing Equation A.11 to cases with more than two INR lab results,

we calculate TTR as follows:

TTR =

)∑
C=0

c(hC , hC+1) (LabDateC+1−LabDateC ) (A.12)

A.3.4 Predicting Medication Adherence

We test the predictive power of the pre-diagnosis measures on post-diagnosis anticoagulant prescrip-

tion compliance using the following OLS regression:

.8 = V0 + V1(PDC8) + V2(Util8) + V3(Income8) + V4(X) + n8 (A.13)

In Equation A.13, .8 represents various measures of anticoagulant medication compliance shown

in Columns 1 - 4 of Table A.7. We assess the predictive power of all measures in Table A.6 on

post-diagnosis medication compliance. In addition to these measure, we also include binary variables

representing whether the patient recorded a fill in the year prior to diagnosis, denoted as X in Equation

A.13.

Table A.7 shows the results of Equation A.13. We find strong evidence that adherence to prior

chronic medications increases the probability that patients will refill their warfarin prescriptions and

dose the medication appropriately to remain in therapeutic range. Patients with more intensive past

health care utilization have lower compliance to warfarin prescription regime, perhaps due to the

challenges of managing other co-occuring health conditions. Finally, patients residing in wealthier

zip codes are less likely to maintain their prescription fills, but are more likely to maintain dosing

with the therapeutic range.
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A.4 Predicting Physician Treatment Decisions

Observable variation in treatment effects, patient age, and time trends explain a relatively small frac-

tion of the total variation in treatment decisions. In this section, we explore other factors that might

drive physician treatment decisions. Specifically, we consider the following additional variables,

which may influence physicians’ treatment decisions. None of these variables are available in the

AFI database, and so estimated treatment effects are not a direct function of these variables.

1. Variables related to frailty and fall risk. We include indicators for neurologic disorder (in-

cluding Parkinson’s Disease), fall risk (neuropathy, muscle weakness, dizziness), vision prob-

lems, arthritis, head injury, fracture. Frailty and fall risk are frequently cited clinical explana-

tions for not prescribing warfarin to patients with high CHADS2 scores. Patients with high fall

risk may be more likely to suffer intracranial bleeds if they are taking warfarin.

2. Elixhauser comorbidities that are not in the AFI database. We include indicators for

HIV/AIDS, deficiency anemia, hypothyroidism, tumor, metastasis, lymphoma, obesity, weight

loss, paralysis, pulmonary circulation disorders, ulcer, valvular disease. These are additional

patient characteristics that have been shown to predict health care spending and mortality.

3. Variables included in the HAS-BLED score to predict bleeding risk if anticoagulated.
We include indicators for liver disease, renal failure, alcohol abuse, history of bleeds. These

variables are included in the HAS-BLED score, which is a predictive risk score that aims to

inform physicians of the risk of induced bleed, if the patient is anticoagulated. The HAS-

BLED score incorporates three variables that we have already included into our predictions of

bleed treatment effect heterogeneity, including age, hypertension, and stroke history; we do

not consider these variables separately here, since included bleed treatment effects may already

depend on these variables. The HAS-BLED also includes a measure of a measure of unstable or

high INRs among treated patients, which is not observed prior to treatment, and so not included

here. Finally, HAS-BLED score also includes medication usage that predisposes patients to

bleeding, such as aspirin or NSAIDS. Unfortunately, we do not consistently observe the use of

these medications because they are widely available over the counter, without a prescription.

4. Variables related to patient’s ability to comply with warfarin monitoring. We include indi-

cators for drug abuse, depression, psychoses, number of years of military service. Appropriate

management of patients on warfarin requires blood work repeated at regular intervals (typically

every 2-4 weeks) to ensure the dosing is appropriate. Optimal dosing can depend on a patient’s

diet and other medications, and may need to be adjusted from time to time as those factors

change. If the warfarin dosage is too low, the patient will not reap the benefits of anticoagula-

tion for stroke reduction; if the dosage is too high, the patient will be at elevated risk of bleeds.

These variables included here are related to the likelihood that the patient can comply with the

monitoring regimen.
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5. Physician characteristics. We include indicators for the physician’s specialty code, specifi-

cally for cardiology, internal medicine, and primary care. This specialty coding variable indi-

cates the physician’s training and role at the VHA.

Controlling for these variables in our model estimation does not materially change the conclusions

of our analysis. Figure A.3 reports the results of regressions that permute the control variable sets

to cover every possible combination of the above list. In Panel A, we find a similar increase in

sensitivity to the CHADS2-component of stroke treatment effects after guideline awareness in each

model, regardless of the set of included controls. In Panel B, we show that the unexplained variance

in treatment propensity does not change substantially, even after we control for these detailed patient

and physician characteristics.

A.5 Construction and Prediction Details

In this appendix, we provide further details of various constructed objects and predictions.

Predicted Mortality. We construct a measure of predicted mortality based on patient characteris-

tics, using mortality outcomes among patients in the VHA who do not have atrial fibrillation. To select

this sample, we first take all patients at the VHA who are administratively linked to a primary care

physician in 2010 for the first time. We exclude patients who are administratively linked in a primary

care relationship to nurse practitioners or physician assistants; we also exclude patients linked to pri-

mary care doctors whose service section falls under the following categories: psychiatry, geriatrics,

orthopedics, surgery, infectious diseases, rheumatology, neurology, renal failure, spinal conditions,

cardiology, oncology, sleep, and behavioral health. We exclude patients whose age is below 18 years

or above 100 years. Importantly, we exclude patients with a history of atrial fibrillation. This leaves us

with 833,298 patients. We construct an OLS prediction of 3-year mortality using patient age, weight,

height, vital signs, hemoglobin, gender, the indicator for whether a patient is white, and indicators for

Elixhauser comorbidities.

Treatment Propensity. We construct the propensity of treatment as a function of patient character-

istics in the VHA data and denote this object as PrVHA (,8 | -8). This treatment propensity model is

constructed as the OLS linear probability of being treated with anticoagulants given patient charac-

teristics from the VHA data using patient covariates that also exist in the AFI database, as reported in

Table A.1. We then take this model to calculate PrVHA (,8 | -8) for each patient in the AFI database,

in order to test whether physician treatment decisions in the VHA reveal additional signal about treat-

ment effects heterogeneity in the AFI database, in Section 5.3 and Table 4.
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Figure A.1: Distribution of Physician Treatment Decisions
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Notes: These figures show the distribution of treatment rates and CHADS2 adherence rates across physicians.
They cover the subsample of 1,146 physicians treating at least 30 patients in our final analysis sample. This
covers 50,426 patients treated by the higher volume doctors, or a little less than half of the VHA sample defined
in Table 2. Panel A shows the distribution of treatment rates. Panel B shows the distribution of CHADS2
adherence rates. We define CHADS2-adherent anticoagulation decisions as follows: No anticoagulation for
patients with a CHADS2 of 0 and anticoagulation for patients with a CHADS2 score greater than or equal 2;
we omit patients with a CHADS2 score of 1 from this calculation, since the ACC and ACCP guideline allowed
for either anticoagulation or aspirin for these patients.
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Figure A.2: Treatment Probability by Predicted Mortality Risk
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Notes: This figure shows the probability of anticoagulation as a function of predicted mortality risk in the VHA
sample. The statistical model predicting mortality risk is calculated in a separate sample of patients receiving
primary care at the VHA who have no diagnosis of atrial fibrillation. The curve fits the observed data with a
kernel weighted local polynomial. The shaded area represents the 95% confidence interval.

A.12



Figure A.3: Stability of the Structural Results
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Notes: These graphs illustrate how key results of our structural model vary as we include various sets of control
variables in its estimation. Panel A examines the increased decision weight physicians place on CHADS2-
related stroke treatment effects with CHADS2 awareness, or U2pre/U2post. Panel B examines the proportion of
variance in the latent variable that we can explain with observable characteristics (i.e., the complement of the
share explained by f2

Y,6). In each panel, we include varying sets of patient characteristics in 5 (-8) in our
structural model stated in Equation (7). We estimate the baseline specification, shown in Column 1 of Table 5.
The solid line shows the mean value of the statistic among specifications with the indicated number of control
sets; the top (bottom) dashed line shows the maximum (minimum) of the statistic. The control variables are
detailed in Appendix Section A.4.
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Figure A.4: Counterfactual Outcomes with CHA2DS2-VASc Guideline
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Notes: Relative to Figure 6, this figure includes an additional set of counterfactual outcomes under strict
adherence to the CHA2DS2-VASc guideline. Like other counterfactuals of strict adherence, strict adherence to
this guideline implies ranking patients by their CHA2DS2-VASc score. The CHA2DS2-VASc score assigns one
point for congestive heart failure, hypertension, age 65-74 years, female sex, vascular disease, and diabetes; it
assigns two points for age 75 years or older, and for stroke, transient ischemic attack, or thromboembolism.
Details for this figure are otherwise described in the notes for Figure 6.
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Figure A.5: Counterfactual Outcomes, Fixed Predicted Mortality Distribution

A. Strict Guideline Adherence
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Notes: Relative to Figure 6, this figure shows counterfactual outcomes for patient rankings that hold fixed the
predicted mortality distribution of treated patients at every point along the curve. The fraction of treated patients
in each 5-year age bin matches the fraction observed treated in our sample. Within each predicted mortality
group, patients are ranked according to scores in each guideline. In order to maintain a predicted mortality
distribution of treated patients, it is not possible to treat 100% of patients. This is reflected by curves for
counterfactual outcomes not reaching the same bottom-right corner of Figure 6. Only counterfactual outcomes
for strict adherence and for random sorting are changed in this figure; outcomes for awareness scenarios are
unchanged from Figure 6. For more details, see notes to Figure 6.
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Table A.3: Balance Table

Patient Characteristics
Control Group

Mean
Treatment

Group Mean
Coefficient

Age 70.4 70.3 0.18
(0.47)

Congestive Heart Failure 0.30 0.29 -0.006
(0.012)

Age above 65 0.77 0.76 0.003
(0.012)

History of Hypertension 0.45 0.46 -0.008
(0.015)

History of Stroke 0.17 0.12 -0.006
(0.008)

History of Diabetes 0.14 0.14 -0.006
(0.010)

Male 0.67 0.68 -0.016
(0.013)

Notes: This table shows the unadjusted means of each patient characteristics in the treatment and control
group. The last column shows results of a regression of each patient characteristics on trial fixed effects
and treatment indicator in AFI database. Standard errors are shown in parentheses.
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Table A.5: Counterfactual Outcomes, Fixed Predicted Mortality Risk Distribution

Strokes prevented Bleeds induced

Percent of
patients
treated

Per 10K
patients

Percent of
maximum

Per 10K
patients

Percent of
maximum

A: Benchmarks (from Table 6)
Observed treatment choices 49.8% 202 49.4% 93 49.8%
Randomly assigned treatment 49.8% 204 49.8% 93 49.8%
All patients treated 100% 409 100% 187 100%

B: Assignment within Predicted Mortality Bins
Randomly assigned treatment 49.8% 202 49.3% 93 49.8%
Adherence to CHADS2 guideline 49.8% 224 54.8% 93 49.8%
Adherence to stroke TE guideline 49.8% 241 59.0% 93 49.8%

Notes: This table reports counterfactual outcomes that hold the fixed the predicted mortality risk distri-
bution of treated patients. For comparison, Panel A reproduces benchmark results from Table 6, in which
treatment probability is not held fixed within predicted mortality bins. In Panel B, the fraction of treated
patients in each ventile of predicted mortality bin matches the fraction observed treated in our sample. We
also hold the overall percentage of treated patients fixed at 49.8%. For adherence counterfactuals, within
each predicted mortality group, patients are treated according to rankings implied by the noted guideline.
Figure A.5 shows counterfactual outcomes varying the overall percentage of treated patients. For more
details, see notes to Table 6 and Figure A.5.
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Table A.6: Medication Adherence Summary Statistics

Mean Share with Prescription

Proportion of days covered
Statin 0.86 0.59
Beta-adrenergic blockers 0.86 0.42
ACE inhibitors 0.86 0.44
Angiotensin II receptor blockers 0.87 0.11
Calcium channel blockers 0.86 0.33
Diuretics 0.84 0.40
Diabetes 0.89 0.23

Utilization
Emergency Department 0.31
Primary care 3.34
Specialist 4.66
Outpatient visits 19.64
Hospitalizations 0.16

Income by zip code
Median household income $52,500

Notes: This table reports the average values of the data used to predict medication adherence. 113,263
VHA patients were included in this sub-analysis - encompassing 99.99% of the analytic cohort. For the
PDC measurement, we also report the share of the analytic sample that was prescribed the specified drug
class in the year prior to Atrial Fibrillation diagnosis.
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Table A.7: Predictive Power of Medication Adherence

(1) (2)
Warfarin PDC TTR365

Statin PDC 0.071∗∗∗ 0.077∗∗∗

(0.009) (0.010)
Beta-adrenergic blockers PDC 0.044∗∗∗ 0.036∗∗∗

(0.010) (0.011)
ACE inhibitors PDC 0.036∗∗∗ 0.042∗∗∗

(0.010) (0.011)
Angiotensin II receptor blockers PDC 0.064∗∗∗ 0.053∗∗

(0.021) (0.023)
Calcium channel blockers PDC 0.060∗∗∗ 0.031∗∗

(0.012) (0.013)
Diuretics PDC 0.027∗∗∗ 0.018∗

(0.009) (0.010)
Diabetes PDC 0.043∗∗∗ 0.066∗∗∗

(0.014) (0.015)
Emergency Department -0.002 -0.016∗∗∗

(0.002) (0.002)
Primary care 0.000 -0.002∗∗∗

(0.000) (0.000)
Specialist 0.000∗ -0.002∗∗∗

(0.000) (0.000)
Outpatient visits -0.000∗ -0.001∗∗∗

(0.000) (0.000)
Hospitalizations -0.009∗ -0.012∗

(0.005) (0.007)
Median household income (in $10,000s) -0.005∗∗∗ 0.004∗∗∗

(0.001) (0.001)

Mean dep. var 0.745 0.455
S.D. dep. var 0.293 0.287
Adjusted R-Squared 0.013 0.058
Number of observations 49,203 39,684

Notes: This table reports resykts from Equation A.13. In addition to the regressors shown, the speci-
fication also includes indicator variables for whether the patient was prescribed each drug listed above.
Robust standard errors are reported in parentheses. *** ? < 0.01, ** ? < 0.05, * ? < 0.1.
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