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Abstract

We offer a class of solution concepts for dynamic games by allowing

obvious dominance (OD, Li, 2017) to be facilitated by players’ applica-

tion of the sure-thing principle (STP, Savage, 1954) on relevant events in

their contingent reasoning. In the resulting k-OD equilibrium, a lower

k reflects a less demanding level of sophistication in applying STP. We

present the class of gradual mechanisms, featuring dynamic information

feedback, as a revelation principle for k-OD implementation. Applying

k-OD to implement generalized median voter schemes, we show how

an increasing sophistication level k extends the range of implementable

social choice functions.
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At the heart of the literature on mechanism design is the concept of in-

centive compatibility (Hurwicz, 1960, 1972), which stipulates that the mecha-

nism provides incentives to its participants to reveal their private information

truthfully. The concept of strategy-proofness has served as the gold standard

of incentive compatibility (Satterthwaite, 1975) requiring that for each partic-

ipant of the direct mechanism, revealing her private information is a dominant

strategy. Despite the theoretical appeal of the concept of strategy-proofness,

experimental studies have revealed difficulties with its dominant strategy im-

plementation.1

There is substantial interest in understanding why agents participating

in these mechanisms deviate from their dominant strategies (e.g., Cason and

Plott, 2014; Dreyfuss et al., 2022), for which the literature on failure of con-

tingent reasoning (e.g., Charness and Levin, 2009; Esponda and Vespa, 2014;

Mart́ınez-Marquina et al., 2019; Ngangoué and Weizsäcker, 2021) may offer a

clue. One finding in this literature is that subjects are less likely to choose

a theoretically inferior course of action when uncertainty is reduced or elimi-

nated, e.g., postponing decision making until some relevant event is known to

have happened. This motivates us to look for implementations of the same

allocation rule with dynamic information feedback in order to reduce the dif-

ficulty in contingent reasoning and restore truthful behavior.

One recent influential contribution along this line is made by Li (2017)

who offers a refinement of strategy-proofness by strengthening its underlying

solution concept—dominance (dominant strategy equilibrium)—with what he

calls obvious dominance (OD). One strategy is said to obviously dominate

another when the worst outcome following the dominating strategy is no worse

than the best outcome following the dominated strategy, both ranging across

all possible contingencies after any information set where these two strategies

initially diverge. In the context of mechanism design, if a social choice function

can be implemented by a (possibly dynamic) game form with an equilibrium

consisting of OD strategies for all agents, the social choice function is said to

1See, e.g., Kagel et al. (1987), Chen and Sönmez (2006), and Hakimov and Kübler
(2019).
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be obviously dominant (OD) implementable and the game form is called an

OD implementation of that social choice function.

It has been recognized that OD is a particularly demanding concept. Due to

the stringent standard for a dominant strategy to be obvious, many important

strategy-proof social choice functions are OD implementable only in highly

restrictive settings. For example, Li (2017), Ashlagi and Gonczarowski (2018),

Thomas (2020), and Mandal and Roy (2022) study OD implementation of the

two canonical matching rules—top trading cycles and deferred acceptance—

and demonstrate that they may not be OD implementable in a matching

market with 3 or more agents. Additionally, on the domain of single-peaked

preference, according to Bade and Gonczarowski (2017) and Arribillaga et al.

(2020), truth-telling in the majority rule for voting between two candidates is

not an obviously dominant strategy.

There is a somewhat subtle issue in applying the idea of OD implemen-

tation to single-item ascending-price auctions. While Li (2017) motivates his

solution concept with the experimentally observed difference in the proportion

of type-revealing behavior between second-price and ascending-price private

value auctions, the tie breaking rule adopted in his experiment—no winners

in the event of a tie—is inefficient and different from the efficient tie-breaking

rule commonly used, i.e., every remaining bidder wins with equal chance at the

price of the tie (e.g., Kagel et al. 1987).2 As it turns out, this seemingly minor

difference in tie-breaking rule makes a significant theoretical difference—the

ascending-price auction under the usual efficient tie-breaking rule is no longer

an OD implementation.

To see why it is the case, suppose a bidder, Sophie, has private value v for

the object being sold via an ascending-price auction. Her optimal strategy

is to drop out when the next price level exceeds v, while she may entertain

an inferior strategy to drop out earlier at price p.3 Suppose the auction is

2In a second-price auction, a tie happens when there are multiple bids at the same
highest price. In an ascending-price auction, a tie happens when multiple bidders leaves
simultaneously at the last period.

3When there is no tie, a bidder wins the ascending-price auction at price p if she is the
only bidder who chooses to stay in the auction. By dropping out at price p, a bidder avoids
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continuing at the current price level p (i.e., there are multiple bidders, including

Sophie, remaining in the auction). This is the point at which Sophie’s optimal

strategy and inferior strategy first diverge. Sticking to the optimal strategy,

when price eventually exceeds v, Sophie could lose the auction as long as

there are still bidders staying in the auction. Following the inferior strategy,

however, Sophie could possibly win the auction at price p in the event that all

other remaining bidders also drop out and the tie is broken in Sophie’s favor

(see Table 1 below).

Table 1: Ascending-price auction is not an OD implementation.

Worst from optimal Best from inferior

Among all possibility (1) 0 (2) v − p

The fact that (1) < (2) demonstrates that the optimal strategy does not ob-

viously dominates the inferior strategy in the ascending-price auction with an

efficient tie-breaking rule.

An intermediate solution concept between dominance and OD extending

the scope of implementable social choice functions would be valuable if it could

retain some flavor of being more obvious and therefore easier for the agents to

conform to the type-revealing strategy. In this paper, we set out to accomplish

this.

In his Foundations of Statistics, Savage (1954) motivates the key postu-

late P2 in his axiomatization of subjective expected utility by means of the

following businessman example.

A businessman contemplates buying a certain piece of property.

He considers the outcome of the next presidential election relevant.

So, to clarify the matter to himself, he asks whether he would buy

if he knew that the Democratic candidate were going to win, and

decides that he would. Similarly, he considers whether he would

buy if he knew that the Republican candidate were going to win,

the possibility of winning at the subsequent higher price levels.
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and again finds that he would. Seeing that he would buy in either

event, he decides that he should buy, even though he does not

know which event obtains, or will obtain, as we would ordinarily

say. It is all too seldom that a decision can be arrived at on the

basis of this principle, but except possibly for the assumption of

simple ordering, I know of no other extralogical principle governing

decisions that finds such ready acceptance.

Savage describes the businessman’s decision making principle, what he calls

the sure-thing principle, as being intuitive and appealing to cope with un-

certainty and one which would find “ready acceptance”. To make the decision

whether to buy a piece of property, the businessman seeks a relevant event

(and together with its complement) such that buying would be a clearly bet-

ter decision when both the event obtains and its complement obtains. While

such a situation may be infrequent in real life, we show below how STP, when

combined with Li’s (2017) idea of obviousness, addresses the robustness is-

sue of OD implementation in the ascending-price auction under the efficient

tie-breaking rule.

In the earlier discussion about Sophie’s choice between the optimal strategy

and the inferior strategy, a naturally relevant event that may come to her

mind is whether there would be a tie at price p if she drops out (i.e., all other

remaining bidders choose to leave the auction at price p). When there is such

a tie at p, following the optimal strategy (staying in the auction) guarantees

Sophie’s winning the auction at p which is no worse than the best outcome

following the inferior strategy among all possibilities. Should this tie not occur,

following the inferior strategy (dropping out of the auction early) simply loses

the auction, which is no better than the worst outcome following the optimal

strategy among all possibilities (see Table 2 below).

No matter whether there is a tie at p, the optimal strategy is obviously

better than the inferior strategy. Thus, Sophie may adopt STP and recognize

the dominance nature of the optimal strategy over the inferior strategy. In

other words, the optimal strategy obviously dominates the inferior strategy

facilitated by STP since (3) ≥ (2) and (1) ≥ (4).
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Table 2: Ascending-price auction is a STP-OD implementation.

Worst from optimal Best from inferior

Tie at p (3) v − p -

No Tie at p - (4) 0

Among all possibilities (1) 0 (2) v − p

Our endeavor to generalize OD by incorporating a form of contingent rea-

soning captured by STP may seem surprising given that Li’s (2017) original

idea is motivated by the failure of contingent reasoning. Notwithstanding

the widely reported violations of STP in terms of Allais (1953) and Ellsberg

(1961) style problems, Esponda and Vespa (2021) have found it to be effective

as interventions in ameliorating failures in contingent reasoning.

In The Republic, Plato offers an observation about the penalty associated

with not voting, “But the chief penalty is to be governed by someone worse if

a man will not himself hold office and rule”. Here, he draws on the relevant

scenario of an inferior candidate winning the election to offer an advice. In

their laboratory study on voting, Esponda and Vespa (2021) employ a pair

of complementary events to offer a contingent treatment, i.e., framing the

decisions in a way facilitating the application of STP. On one event, the subject

wins no matter what she votes, while on the other event, the subject’s vote is

pivotal. Application of STP on them renders the dominant choice obvious.

After introducing some preliminaries of dynamic mechanism design to im-

plement a (stochastic) social choice rule in Section 1, we provide in Section 2

a class of generalizations of the solution concepts of both OD and STP-OD,

which we term as k-OD, by assuming that players are able to apply STP in

more sophisticated manners. Instead of finding a single relevant event (to-

gether with its complement) to make dominance obvious, players can identify

k relevant events forming a partition of the state space to make the comparison

obvious using STP.

The following four sub-figures of Figure 1 give us an intuitive comparison

among the solution concepts of dominance, OD, STP-OD, and k-OD, whose
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formal definitions are given in Section 2.

Payoff

s

State space

(a) Dominance

Payoff

State space

(b) OD

Payoff

State space

E Ec

(c) STP-OD

Payoff

State space

E1 E2 E3

(d) k-OD

Figure 1: Comparison among Solution Concepts

In each sub-figure, two strategies, represented by the red (dark) and green

(light) dashed lines, map possible states to payoffs with the red strategy dom-

inating the green one.4 To see that the red strategy is dominant in sub-figure

(a), notice that its payoff is not worse than that of the green strategy at each

possible state s. That the red strategy in sub-figure (b) is obviously dominant

follows from observing that the worst payoff of the red strategy is not worse

than the best payoff of the green strategy across all possible states. In sub-

figure (c), STP-OD allows the agent to adopt the kind of contingent reasoning

in the businessman example—the agent may find a relevant event E to make

the comparison between two strategies obvious, i.e., on E the worst payoff of

4The co-movements between the red and green lines both downward sloping is only for
expositional convenience.
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the red strategy is no worse than the best possible payoff of the green strategy

on the whole state space, and on Ec the best payoff of the green strategy is

no better than the worst payoff of the red strategy on the whole state space.

Finally, sub-figure (d) illustrates 3-OD in which STP is applied in a more so-

phisticated manner. The player identifies three relevant events E1, E2, and E3

individually making the comparison between the red strategy and green strat-

egy obvious in the sense that best payoff from the dominated strategy is no

better than the worst outcome from the dominating strategy across all states

in each event. It can be shown that OD is equivalent to 1-OD and STP-OD

is equivalent to 2-OD (see Proposition 2 in Section 2).

Applying our solution concepts to mechanism design, we say that a dy-

namic game form is a k-OD implementation of a social choice function if the

derived incomplete information game has a k-OD equilibrium delivering the

same social outcome at every realization of the agents’ type profile. When

such a dynamic game form exists, we say that the social choice function is

k-OD implementable. To study k-OD implementability, it is valuable to iden-

tify a canonical class of game forms such that as long as a strategy-proof

social choice rule has a k-OD implementation, there exists one in this specific

class. For strategy-proofness or dominance implementation, the classic rev-

elation principle (Gibbard, 1973) comes in handy, providing a unique static

mechanism—the direct mechanism—in which all agents simultaneously report

their exact private types to the administrator. Note that direct mechanisms

are without information feedback and truthful reporting may not be a k-OD

equilibrium for a low sophistication level k that is achievable under some dy-

namic implementation.

A natural departure from the direct mechanism incorporating information

feedback, we call the resulting dynamic game form a gradual mechanism, works

as follows:5

Starting from the initial history, the administrator privately sends

5The idea of gradual mechanism is developed contemporaneously in this paper in parallel
with our companion paper where it is called gradual revelation mechanism (Chew and Wang,
2022).
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specific messages and forms to the active agents. Each form con-

sists of a list of pairwise disjoint categories of the agent’s possible

type and the agent can check the category to which she belongs.

The message sent to each agent contains some information about

how other agents have previously checked their forms.6 The admin-

istrator keeps sending forms and messages and collecting returned

forms until she collects enough information to arrive at a public

outcome.

As it turns out, one extreme case of gradual mechanism, called round

table mechanism (Mackenzie, 2020), in which the administrator provides full

information about how other agents checked their forms previously in each

message, serves as a revelation principle for OD implementation.

We show in Section 3 that the class of gradual mechanisms serves as a

revelation principle for k-OD implementations (Theorem 1). Facilitated by

the use of gradual mechanisms, we provide in Section 3 a necessary condition

for k-OD implementability (Proposition 3) and demonstrate its usefulness in

the application to anonymous generalized median voter schemes in Section 4.

Section 5 offers a discussion of the relevant literature and some concluding

remarks.

1 Preliminaries

There is a finite group of agentsN who have interest on a set of public outcomes

X. Each agent i ∈ N has a private type space Θi whose element θi corresponds

to a complete and transitive preference ordering R(θi) over outcomes in X.

Conventionally, a type profile is written as θ = (θi, θ−i) ∈ Θ =
∏

i∈N Θi

where θ−i is a type profile for agents other than i. The social planner wishes

to implement a social choice function f : Θ → X that conditions a public

outcome on agents’ type profile.

6Each history can be identified with an exact description of how each agent has checked
a sequence of forms prior to this history. In the message to an agent, she is only informed
that one history in her information set is reached.
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To accommodate situations such as ascending price auction with a tie-

breaking rule, we also consider stochastic social choice functions. Let AX be

an algebra on X. A lottery is then a probability measure on (X,AX), the

space of which is denoted as ∆(X). A stochastic social choice function f maps

a type profile in Θ to a lottery in ∆(X).

We focus on implementation problems in which the main challenge for the

social planner arises from private information, i.e., the type of any particular

agent is known only to herself. To solve such a problem, the social planner

designs a dynamic game form G with outcomes in X and invites agents, with

any possible type profile θ ∈ Θ, to play the incomplete information game

(G,Θ), in the hope that the game will deliver, in equilibrium, a public outcome

stipulated by the social choice function.

Table 3: A list of notations in dynamic game forms

Name Notation/Definition Generic Element

Actions of i ∈ N0 Ai ai

Action profiles A =
⋃

∅≠M⊂N0

∏
i∈M Ai a = (ai)i∈M

Histories H ⊆
⋃T

t=0 A
t is a tree. h = ∅ or h = (h(1), . . . , h(t))

Precedence relation ⪯ h ⪯ h

Terminal histories ⪯-maximal histories Z ⊆ H

Non-terminal histories H = H\Z

Outcome function X : Z → X

Active-player correspondence P : H ↠ N0

Active history of agent i Hi = {h ∈ H : i ∈ P(h)}

Information sets Hi is a partition of Hi hi

Available actions at hi or h ∈ hi Ai(h) = Ai(hi) ⊆ Ai

Space of interim strategies Si si : Hi → Ai

A dynamic game form G can be described by the following tuple

G = (H, {Ai,H i}i∈N ,X )

and a randomized dynamic game form by

G = (H, {Ai,H i}i∈N0 ,X ,m, {Ω,A, µ})
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where N0 = N ∪ {0} and agent 0 is the administrator who randomizes by

adopting a mixed strategy m based on a randomization device (a probabil-

ity space) (Ω,A, µ). We explicitly allow for simultaneous actions and model

histories using sequences of action profiles (Osborne and Rubinstein, 1994;

Battigalli et al., 2020). Table 3 lists some standard notations that will be

used. A formal definition of dynamic game forms is offered in the appendix.

Starting from a non-terminal history h ∈ H, after specifying the profile of

interim strategies s ∈ S =
∏

i∈N Si and the realization ω of administrator’s

random device, a unique terminal history Z(h, s, ω) along with the associated

outcome X (h, s, ω) will be determined. In these expressions, we will omit the

history h if it is the initial history, i.e., Z(∅, s, ω) will be denoted as Z(s, ω),

and its associated outcome will simply be denoted as X (s, ω).7 Define H(ω) =

{h ∈ H : ∃s ∈ S s.t. h ⪯ Z(s, ω)} as the collection of histories that are

consistent with the realization ω. Similarly, define H(si) = {h ∈ H : ∃s−i ∈
S−i and ω ∈ Ω s.t. h ⪯ Z(si, s−i, ω)} to be the collection of histories that is

consistent with the interim strategy si of agent i. Then Hi(si) = H(si) ∩ Hi

is its subset on which agent i is active. Define H i(si) = {hi ∈ H i : ∃h ∈
Hi(si) s.t. h ∈ hi} as the collection of information sets of agent i consistent

with her interim strategy si. Finally, define D(si, s
′
i) as the collection of ⪯-

maximal information sets in H i(si)∩H i(s
′
i) which are the earliest information

sets on which the two interim strategies si and s′i diverge.

We use the combination of G and Θ, i.e., (G,Θ), to model an incomplete

information game in which each agent i ∈ N only knows her own type.8

Agent i’s (type) strategy in (G,Θ) can be represented by Si : Θi → Si (with

S =
∏

i∈N Si : Θ → S being a strategy profile) where Si(θi) = si is the interim

strategy agent i adopts when her private type is θi.

We say that a social choice function f is implemented by (G,Θ,S) if for

each θ ∈ Θ it is the case that f(θ) = X (S(θ)). When f is a stochastic social

choice function and G is randomized, we say (G,Θ,S) implements f if for each

7Z(h, s) and X (h, s) can be defined for dynamic game form without randomization by
droping ω. This also applies to subsequent notations.

8For solution concepts studied in this paper, players’ belief about each other’s types is
irrelevant. Therefore, it is left unspecified.
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θ ∈ Θ and for each X ′ ∈ AX , let ΩX′ = {ω ∈ Ω : X (S(θ), ω) ∈ X ′}, then
ΩX′ ∈ A and [f(θ)](X ′) = µ(ΩX′). That is, when agents act according to S(θ),
for each type profile θ, the probability of obtaining any specific collection of

outcomes X ′ is what is intended by the social choice function f(θ).

2 Obvious Dominance Facilitated by the Sure-thing Principle

To implement a (stochastic) social choice function f with a triple of (G,Θ,S),
the social planner relies on the incomplete information game (G,Θ) providing

appropriate incentives for the agents to adopt the strategy profile S. This is

captured by S being a proper solution of (G,Θ). For ease of comparison, we

first provide the definition of (weak ) dominance as a comparison between two

interim strategies under a specific type.9

Definition 1. For any agent i ∈ N and any θi ∈ Θi, an interim strategy si

dominates s′i if it is the case that

X (si(θi), s−i, ω) R(θi) X (s′i, s−i, ω)

for all s−i ∈ S−i and any ω ∈ Ω.

A type strategy is dominant if the interim strategy it employs dominates

any other interim strategies under each type. It is known that a social choice

function f is dominance implementable if and only if it is strategy-proof, i.e.,

f(θi, θ−i)R(θi)f(θ
′
i, θ−i) for any θi, θ

′
i ∈ Θi and for each agent i ∈ N , and that

the type strategy of truth telling is dominant in the direct mechanism where

all agents simultaneously report their private types.

We are ready to introduce our solution concept of OD facilitated by STP

(STP-OD). We first provide a definition of one interim strategy si of agent i

obviously dominating another interim strategy s′i facilitated by STP given a

specific type θi.

9The definitions in this section are given for the more complicated randomized dynamic
games. They can be adapted to dynamic games without administrator’s randomization by
omitting ω ∈ Ω.
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Definition 2. For any agent i and any θi ∈ Θi, an interim strategy si obvi-

ously dominates s′i facilitated by STP, if for any hi ∈ D(si, s
′
i), there

exists E ⊆ hi×S−i×Ω such that for all (h, s−i, ω), (h
′, s′−i, ω

′) ∈ hi×S−i×Ω,

if (h, s−i, ω) ∈ E or (h′, s′−i, ω
′) ∈ Ec, then

X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′).

The event E in Definition 2 is the relevant event on which sure-thing

principle can be applied to render the dominance relation between si and s′i

obvious. Applying this definition to the incomplete information dynamic game

(G,Θ), we provide the following definition of OD facilitated by STP for type

strategies—a type strategy is STP-OD if it always employs an interim strategy

that obviously dominates all other interim strategies facilitated by STP.

Definition 3. Si is obviously dominant facilitated by STP, if for any

θi ∈ Θi, any hi ∈ H i(Si(θi)), and any s′i such that s′i(hi) ̸= [Si(θi)](hi), there

exists E ⊆ hi×S−i×Ω such that for all (h, s−i, ω), (h
′, s′−i, ω

′) ∈ hi×S−i×Ω,

if (h, s−i, ω) ∈ E or (h′, s′−i, ω
′) ∈ Ec, then

X (h,Si(θi), s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′).

For any private type and at each information set of an agent, in comparing

the dominating strategy and any deviating strategy, the uncertainty faced by

the agent stems from three sources: (1) uncertainty in the history reached

at this information set, (2) uncertainty in the profile of interim strategies

adopted by other agents, and (3) uncertainty in the realization of administra-

tor’s randomization device.10 STP-OD allows for obviousness in the compar-

ison between the dominating strategy and the deviating one to be facilitated

by STP in the sense that the agent could identify a relevant event such that

the outcome from the dominating strategy when this event happens cannot be

worse than any outcome following the deviating strategy across all possibilities

and, should the complementary event happen, the outcome from the deviating

10If G is not randomized, the third source of uncertainty does not exist.
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strategy cannot be better than any outcome following the dominating strat-

egy across all possibilities. To link STP-OD with OD proposed in Li (2017),

notice that by requiring E = hi ×S−i ×Ω in the definitions 2 and 3, STP-OD

becomes OD.

The solution concept of STP-OD can be generalized further by allowing for

more sophisticated applications of STP. In this sense, STP-OD in definitions

2 and 3 requires only the plainest application of STP and therefore the most

stringent solution concept among such generalizations. Note that the following

further generalization is given as a binary comparison between two interim

strategies under a specific type of an agent. It is apparent that it enables a

definition for type strategies as well.

Definition 4. For any agent i and any θi ∈ Θi,an interim strategy si obvi-

ously dominates s′i facilitated by STP with sophistication level k, if

for any hi ∈ D(si, s
′
i), there exists a partition {E1, . . . , Ek} of hi × S−i × Ω

such that for all 1 ≤ l ≤ k, if both (h, s−i, ω), (h
′, s′−i, ω

′) ∈ El, then

X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′).

From this definition, 1-OD is equivalent to Li’s (2017) OD. We next develop

an alternative definition to k-OD, based on the idea of eliminating obviously

dominating states iteratively. This yields, in Proposition 1, an equivalence

between these two definitions encompassing that between STP-OD and 2-

OD. It also delivers a method in Proposition 2 to derive the lowest level of

sophistication required by a dynamic mechanism.

In the definition of STP-OD, the relevant event E can be considered as

a set of obviously dominating states in the sense that any outcome following

the dominating strategy on E is weakly preferred to any outcome following

the dominated strategy on S = hi × S−i × Ω. After eliminating these obvi-

ously dominating states, any outcome following the dominating strategy on the

remaining Ec = S\E is weakly preferred to any outcome following the domi-

nated strategy. In the case of k-OD, eliminating obviously dominating states

once may not suffice. Then, an iterated elimination of obviously dominating
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states among the remaining state space may give rise eventually to a parti-

tion, on which a player can employ STP style contingent reasoning in place of

state-by-state comparison between the dominating and dominated strategies.

Definition 5. For any agent i and any θi ∈ Θi, an interim strategy si ob-

viously dominates s′i facilitated by STP with k iterations if for any

hi ∈ D(si, s
′
i), there exists a k partition {E1, . . . , Ek} of hi × S−i × Ω such

that (h, s−i, ω) ∈ El and (h′, s′−i, ω
′) ∈ El ∪ . . . ∪ Ek imply

X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′)

for all 1 ≤ l ≤ k.

In the above two definitions, E1, . . . , Ek are the relevant events in play-

ers’ application of STP to render the dominance relation obvious. An imme-

diate implication of iterative-k-OD is that (h′, s′−i, ω
′) ∈ El and (h, s−i, ω) ∈

E1 ∪ . . . ∪ El imply X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′) for all 1 ≤ l ≤ k.

This yields an alternative understanding of iterative-k-OD in terms of iterated

elimination of obviously dominated states. Moreover, if obviousness of domi-

nance between two strategies is facilitated by STP with level k, it is also with

level l when l > k.

Proposition 1. For any agent i and any θi ∈ Θi, an interim strategy si

k-obviously dominates s′i if and only if si iterative-k-obviously dominates s′i.

Proof. We only show that when si k-obviously dominates s′i for θi ∈ Θi, it is

also the case that si iterative-k-obviously dominates s′i. The opposite direction

is straightforward. By definition, there exists a partition {E1, . . . , Ek} of hi ×
S−i × Ω such that (h, s−i, ω) ∈ El and (h′, s′−i, ω

′) ∈ El imply

X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′)

for all 1 ≤ l ≤ k. LetE0 = ∅, define a permutation function σ : {0, 1, . . . , k} →
{0, 1, . . . , k} with σ(0) = 0 such that for each l ≤ k there does not exist

14



(h′, s′−i, ω
′) ∈ hi × S−i × Ω\

⋃l−1
j=0Eσ(l) such that

X (h, s′i, s−i, ω) P (θi) X (h′, s′i, s
′
−i, ω

′)

for all (h, s−i, ω) ∈ Eσ(l) in which P (θi) is the strict preference relation defined

by R(θi). Notice that σ is always well defined and for any 1 ≤ l ≤ k, any

(h′, s′−i, ω
′) ∈ Eσ(l) ∪ . . . ∪ Eσ(k), there exists (h, s−i, ω) ∈ Eσ(l) such that

X (h, s′i, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′).

Observe that (h, s−i, ω) ∈ Eσ(l) and (h′, s′−i, ω
′) ∈ Eσ(l) ∪ . . . ∪ Eσ(k) imply

X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′)

for all 1 ≤ l ≤ k. Since hi is chosen arbitrarily in D(si, s
′
i), si iterative-k-

obviously dominates s′i.

For any agent i, any θi ∈ Θi, and any information set hi ∈ D(si, s
′
i), we

provide an iterated elimination procedure which is “greedy” in the sense that it

eliminates, at each step, the biggest collection of obviously dominating states.

Let S = hi × S−i × Ω and E∗
0 = ∅. For each step l ≥ 1, let

E∗
l =

{
(h, s−i, ω) ∈ S\

⋃l−1
t=0E

∗
t :

X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′)

for all (h′, s′−i, ω
′) ∈ S\E∗

0 ∪ . . . E∗
l−1

}

When E∗
k ̸= ∅ and E∗

k+1 = ∅, we say that the greedy iterative elimination

of obviously dominating states delivers a partition with k cells for θi and

hi ∈ D(si, s
′
i). When comparing a dominating strategy with a dominated

strategy, we can show that this greedy iteration procedure delivers the greatest

lower bound for the required sophistication level in applying STP.

Proposition 2. For any agent i and any θi ∈ Θi, an interim strategy si

k-obviously dominates s′i if and only if the greedy iterative elimination of obvi-

ously dominating states delivers a partition with no more than k cells for each

hi ∈ D(si, s
′
i).
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Proof. It is trivial to show the “if” direction. Now, suppose si k-obviously

dominates s′i while the greedy iterative elimination of obviously dominating

states delivers a partition with k′ (with k′ > k) cells for a specific hi ∈
D(si, s

′
i). This implies that there exists a partition {E1, . . . , Ek} of hi×S−i×Ω

such that (h, s−i, ω) ∈ El and (h′, s′−i, ω
′) ∈ El ∪ . . . ∪ Ek imply

X (h, si, s−i, ω) R(θi) X (h′, s′i, s
′
−i, ω

′)

for all 1 ≤ l ≤ k.

Notice that E1 ⊆ E∗
1 by the definition of E∗

1 . Notice also that, inductively,

E1 ∪ . . .∪El ⊆ E∗
1 ∪ . . .∪E∗

l implies that E1 ∪ . . .∪El+1 ⊆ E∗
1 ∪ . . .∪E∗

l+1 for

all 1 ≤ l ≤ k − 1. Therefore, E1 ∪ . . . ∪ Ek ⊆ E∗
1 ∪ . . . ∪ E∗

k ⊊ hi × S−i × Ω.

This is a contradiction.

Finally, we say (randomized) (G,Θ, S) is a k-OD implementation of a

(stochastic) social choice function f if S consists of k-OD strategies for the

incomplete information game (G,Θ). When it exists, we may omit mention

of (G,Θ,S) and say that f is k-OD implementable. If a social choice function

f is k-OD implementable, it is also l-OD implementable for l > k. In other

words, the class of k-OD implementable social choice functions enlarges as k

increases. Should f be k-OD implementable but not (k−1)-OD implementable,

k would be the minimal level of sophistication required for contingent reasoning

facilitated by STP to simplify comparisons between dominating and dominated

strategies in any dynamic implementation of f .

3 Gradual Mechanism and k-OD implementation

As anticipated in the introduction, we develop a definition of (randomized)

gradual mechanism to serve as a revelation principle for k-OD implementation

of a (stochastic) social choice function. An example of gradual mechanism is

provided in the next section in the context of the generalized median voter

scheme.

For any history h ∈ H of a dynamic game form G, we define hi as the
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sequence of actions player i has taken up to h. Formally, a gradual mechanism

is a dynamic game form as defined below.

Definition 6. A gradual mechanism G for social choice function f is a

dynamic game form such that:

1. For each agent i ∈ N , the collection of feasible actions are non-empty

subsets of her possible types, i.e., Ai = 2Θi\{∅}.

2. For each agent i ∈ N and any history h ∈ Hi where agent i is active, the

available actions Ai(h) are pairwise disjoint subsets of Θi whose union

covers her previous reports, i.e., ai ∩ a′i = ∅ for any ai, a
′
i ∈ Ai(h) and⋂

hi ⊆
⋃

Ai(h).
11

3. The public outcome assigned to any terminal history z ∈ Z is aligned

with the social choice function based on information accrued up to z,

i.e.,
∏

i∈N
⋂

zi ̸= ∅ for each z ∈ Z and for any θ ∈
∏

i∈N
⋂

zi, it is the

case that X (z) = f(θ).

As we explicitly allow for simultaneous moves, gradual mechanisms encom-

pass both direct mechanisms serving as the revelation principle for strategy-

proof social choice functions (Gibbard, 1973) and round table mechanisms (i.e.,

gradual mechanisms with perfect information, see Mackenzie, 2020) which pro-

vide a revelation principle for OD implementable social choice functions. The

following definition of a randomized gradual mechanism serves as a revela-

tion principle for k-OD implementation of a stochastic social choice function

in which the administrator randomly chooses and publicly announces a subse-

quent gradual mechanism based on the realization of her randomization device.

Definition 7. A randomized gradual mechanism G for stochastic social

choice function f is a randomized dynamic game form such that:

11By the first condition, hi is a sequence of subsets of agent i’s private type space whose
intersection is denoted as

⋂
hi. Note that

⋃
Ai(h) = Θi if hi = ∅, i.e., the whole type space

is still possible when no action has been taken.
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1. Administrator acts only at history ∅ and the available actions for her

are the realizations of her randomization device, i.e., A0 = Ω, and

m(ω)(∅) = ω.

2. For any ω ∈ Ω, the subgame Gω starting at history (ω) is a gradual

mechanism for a social choice function fω such that collectively for any

type profile θ ∈ Θ and subset of public outcomes X ′ ∈ AX , it is the case

that µ({ω ∈ Ω : fω(θ) ∈ X ′}) = f(θ)(X ′).

3. Administrator’s choice of gradual mechanism is commonly known by all

agents, i.e., for any agent i and any of her information set hi, there

exists ω such that hi ⊆ H(ω).

In a (randomized) gradual mechanism, the type-revealing strategy Ti for

agent i ∈ N refers to a type strategy satisfying θi ∈ Ti(θi)(h) for each type

θi and at each h ∈ Hi with θi ∈
⋃
Ai(h). The following result guarantees

that we can safely restrict our search for a (randomized) dynamic game form

k-OD implementing a given (stochastic) social choice function within the class

of (randomized) gradual mechanisms.

Theorem 1. If a (stochastic) social choice function f is k-OD implementable,

then it has a k-OD implementation with a (randomized) gradual mechanism

and the corresponding type-revealing strategies.

The theorem is proved using an adaptation of the pruning principle in (Li,

2017) to demonstrate that any k-OD implementation (G,Θ,S) of a (stochastic)
social choice function f can be transformed into (G∗,Θ,T) where G∗ is a

(randomized) gradual mechanism and T is the type-revealing strategy in G∗

such that (G∗,Θ,T) is also a k-OD implementation of f . The following pruning

operation can transform, with respect to a strategy profile, a dynamic game

form into a gradual mechanism (after relabeling its actions), in which the

original strategy profile is also transformed into a profile of type-revealing

strategies in the resulting gradual mechanism.
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Definition 8. Let G = (H, {Ai,H i}i∈N ,X ). The pruning of G with respect

to a strategy profile S of the incomplete information game (G,Θ) is given by

G∗ = (H
∗
, {A∗

i ,H
∗
i }i∈N ,X ∗) such that:

1. In G∗, the set of feasible actions for each players is the same with that

in G, i.e., A∗
i = Ai.

2. The set of histories of G∗ consists histories in G that can be reached for

some θ ∈ Θ, i.e., H
∗
= {h ∈ H : h ⪯ Z(S(θ)) for some θ ∈ Θ}.

3. In G∗, {H∗
i }i∈N and X ∗ are restrictions on the domain H

∗
of their

counterparts in G.

Let S∗ be a profile of type strategies in (G∗,Θ) such that the same terminal

history is reached for every type profile θ with S in (G,Θ), i.e., Z(S∗(θ)) =

Z(S(θ)) for each θ ∈ Θ. This means that agent i adopting the interim strategy

S∗
i (θi) makes the same decisions at each corresponding history when she adopts

the interim strategy Si(θi) in (G,Θ). Since the space of each agent’s interim

strategies shrinks after pruning, if S is a k-OD strategy profile for (G,Θ),

so is S∗
i for (G∗,Θ). Each history h∗ in H

∗
is associated with a non-empty

“rectangle”
∏

i∈N Θi(h
∗) in Θ with Θi(h

∗) ⊆ Θi, capturing the collection of

type profiles for which h∗ is reached when agents follow S∗. Suppose agent i

is active at h∗, each of her available action ai ∈ A∗
i (h

∗) can be identified by

a subset a∗i ⊆ Θi(h
∗) such that any immediate successor h

∗
of h∗ after agent

i taking action ai is associated with Θi(h
∗
) = a∗i . We can relabel all actions

in G∗ as the corresponding subsets of the agents’ type spaces. Doing so, we

relabel G∗ as a gradual mechanism and also relabel S∗ as a type-revealing

strategy profile. Notice that the gradual mechanism derived in this process

has an additional property: For each agent i and each hi ∈ Hi, it is the case

that
⋃

Ai(h) =
⋂

hi.
12

Two additional operations, de-randomization and pre-randomization,13 are

12See our companion paper (Chew and Wang, 2022) for an interpretation of this property
in terms of immediacy.

13See Ashlagi and Gonczarowski (2018) for de-randomization and Pycia and Troyan
(2021) for pre-randomization.
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needed to transform a randomized implementation of a stochastic social choice

function to a randomized gradual mechanism. These operations shift all of ad-

ministrator’s randomization to the initial history. To arrive at a randomized

gradual mechanism, let each subgame starting from a realization of adminis-

trator’s random signal be replaced by its pruned gradual mechanism. Formal

definitions of these two operations in our framework and the corresponding

part of the proof of Theorem 1 are provided in the appendix.

Theorem 1 helps develop the following idea of a starting point to find the

collection of k-OD implementations of a social choice function and a way to

check if they exist. We begin with investigating the direct mechanism in which

all agents simultaneously report their types and check for each agent i ∈ N

whether there exists some information about her private type (modeled by

a partition Πi of her type space Θi) for which type revelation is k-OD, the

meaning of which we elaborate below. We say that type revelation is k-OD

between Πi’s two distinct cells [θi] and [θ̃i] if for any θ′i ∈ [θi] (or any

θ̃′i ∈ [θ̃i]), whenever it is the true type, reporting it truthfully in the direct

mechanism k-obviously dominates reporting any type θ̃′i ∈ [θ̃i] (or any type

θ′i ∈ [θi]). We say that type revelation is k-OD among Πi if type revelation

between any two cells of Πi is k-OD. Potentially, information Πi of agent i can

be transmitted in a gradual mechanism and applied by some other agents,

making their type-revealing decisions easier.

From another perspective, for two types θi and θ′i belonging to the same cell,

some information about other agents’ type profile may be needed to make type-

revelation between them k-OD. These understandings of what information may

be available or required could facilitate the search process by suggesting what

to attempt at the initial history where some information must be transmitted

among the agents to render the overall type-revealing strategy profile k-OD.

Note that if type revelation is k-OD among Πi in the direct mechanism, this

is also the case among any Π′
i that is coarser than Πi. Note also that if type

revelation is k-OD among Π1
i and among Π2

i in the direct mechanism, this is

also the case among Πi which is the coarsest common refinement of Π1
i and

Π2
i .
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The discussion above yields the following necessary condition for k-OD

implementability.

Proposition 3. If f is k-OD implementable, then there exist some agent

i ∈ N and some E ⊆ Θi such that type revelation between E and Ec is k-OD

in the direct mechanism.

Proof. For any given gradual mechanism G implementing social choice func-

tion f , we first identify Θi as a subset of Si for each agent i. Let θi ∈ Θi

correspond to a si ∈ Si such that θi ∈ si(hi) for all hi ∈ H i satisfying

θi ∈
⋃

Ai(hi). Notice that X (θ) = f(θ) under this identification.

Suppose gradual mechanism G is a k-OD implementation of f and let agent

i be active at the initial history. By definition of k-OD implementation, for any

a, a′ ∈ Ai(∅), any θi ∈ a, and any θ′i ∈ a′, there exists a partition {E1, . . . , Ek}
of

∏
j ̸=i Sj such that X (θi, si) R(θi) X (θ′i, s

′
−i) if s−i, s

′
−i ∈ El for all 1 ≤ l ≤ k,

in which θi and θ′i are two interim strategies identified previously. Notice that

{E1, . . . , Ek} defines a partition {F1, . . . , Fk} on Θ−i by Fl = El ∩ Θ−i for all

1 ≤ l ≤ k. Let {E,Ec} be any binary partition of Θi that is a coarsening of

Ai(∅). We have shown, in the direct mechanism, that type revelation between

them is k-OD.

Intuitively, suppose agent i is active at the initial history of a gradual mech-

anism which k-OD implements social choice function f with available actions

Ai(∅) = Πi. By definition, the type-revealing strategy k-obviously dominates

any deviating type strategy at the initial history. In the direct mechanism,

agent i faces less uncertainty given that other agents cannot condition their

actions on her action. Therefore type revelation must be k-OD for agent i

among Πi in the direct mechanism.

Moreover, k-OD has a hereditary property: A k-OD implementable social

choice function will remain k-OD implementable on a smaller domain of type

profiles. This is true since the gradual mechanism that k-OD implements f

on the domain of Θ also k-OD implements f on the domain of Θ̃.
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4 Generalized Median Voter Scheme

Consider the problem of voting on the domain of single-peaked preferences.

There is a finite and linearly ordered outcome space X with a top (best)

alternative for each agent such that alternatives that are further away from

the best are progressively less preferred by the agent. This framework captures

situations such as possible levels or locations of a public good, temperatures in

a meeting room, and platforms of political parties. The OD implementation

of these social choice functions is studied in Arribillaga et al. (2020).14

Formally, we write X = {x1, . . . , xM} with subscripts representing a lin-

ear order on outcomes. Every agent i has the same type space Θi = R in

which each preference relation R satisfies single-peakedness, i.e., there is a

peak t(R) ∈ {1, . . . ,M} such that (i) xt(R)Rxa and (ii) a < b ≤ t(R) or

t(R) ≤ b < a implies xbPxa (where P refers to the strict preference) for all

a, b ∈ {1, . . . ,M}. In addition to strategy-proofness, we consider the following

two properties of a social choice function f . We say that f is onto if for each

outcome xa ∈ X, there is a type profile R ∈ RN such that f(R) = xa and that

f is anonymous if f(R) = f(R̃) for any type profile R ∈ RN and any R̃ that

is a permutation of R.

On the domain of single-peaked preferences, it is known that a social choice

function f is strategy-proof and onto if and only if it is a generalized median

voter scheme (Moulin, 1980; Barberà et al., 1993). We present here results

pertaining to STP-OD implementation of generalized median voter schemes

with two levels and k-OD implementation of anonymous generalized median

voter schemes.

When voting between two candidates, i.e., X = {x1, x2}, generalized me-

dian voter schemes can be described simply by a single family of minimal

winning coalitions C, i.e., a collection of subsets of agents such that S ̸⊂ T for

any two distinct S, T ∈ C, such that x1 is the public outcome unless the subset

of subjects who prefer x2 contains a committee in C, in which case x2 will be

14Also see Bade and Gonczarowski (2017) for a similar setting with infinite number of
levels.
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the outcome.

Let us first verify that type revelation is not OD in the direct mechanism.

Suppose agent i does not form a singleton winning committee, i.e., {i} /∈ C, and
that there exists a winning committee S such that i /∈ S. Truthful reporting,

for each of the two types of agent i, could yield the less preferred public

outcome while misrepresentation may deliver the preferred outcome.

To see that the type revelation is STP-OD in the direct mechanism, con-

sider first the case when agent i prefers x2 over x1. Agent i may find the event

E defined by the existence of committee in C voting for x2 to be relevant.

When there is such a committee, agent i’s voting will not change the outcome

x2 which is the preferred one. It is therefore obvious that truthful reporting

is weakly better. Should this not be the case, voting for x1 will result in the

less preferred outcome x1. We can do a similar analysis for the case of agent

i preferring x1 over x2 by applying STP to the same event.

Observation 1. When there are two levels, the direct mechanism STP-OD

implements the generalized median voter scheme.

For the more general case of M levels of a public good X = {x1, . . . , xM},
it is known that a generalized median voter scheme is anonymous if and only if

it can be described by an increasing sequence of voting quotas 1 = T1 ≤ T2 ≤
. . . ≤ TM ≤ TM+1 = N such that xk is the public outcome if there are at least

Tk agents whose peaks are not less than k, i.e., #{i ∈ N : t(Ri) ≥ k} ≥ Tk,

while the number of agents whose peaks are greater than k is less than Tk+1,

i.e., #{i ∈ N : t(Ri) > k} < Tk+1. From Arribillaga et al. (2020), we know

that the anonymous a generalized median voter scheme is OD implementable

if and only if the voting quotas are either 1 or N .

Consider k-OD implementation of generalized median voter schemes. Sup-

pose l is the highest level with voting quota being 1 and there are (k−1) levels

with quotas strictly between 1 and N , then it must be that 1 = Tl < Tl+1 ≤
. . . ≤ Tl+k−1 < Tl+k = N . We can show that such a generalized median voter

scheme is k-OD implementable via the following gradual mechanism.

1. At the initial history, administrator sends a form to each agent with
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the following three categories concerning her type R: (a) t(R) ≤ l; (b)

l < t(R) < l + k; (c) t(R) ≥ l + k.

2. In the following two cases, administrator have collected enough informa-

tion to determine the final level after collecting the returned forms.

(a) When there are less than Tl+1 agents but at least one checks cate-

gory l < t(R) < l + k or category t(R) ≥ l + k, administrator has

collected enough information to set the level at l.

(b) When, for some 1 < k′ < k, there are no less than Tl+k′ agents

checking category t(R) ≥ l+k and less than Tl+k′+1 agents checking

category t(R) ≥ l + k or category l < t(R) < l + k, administrator

has collected enough information to set the level at l + k′.

3. Should administrator not be able to set the level in Step 2, it must fall

into the following three cases.

(a) When all agents check category t(R) ≤ l, administrator does not

have enough information to determine the level among {1, . . . , l}.

(b) When all agents check category t(R) ≥ l + k, administrator does

not have enough information to determine the the level among {l+
k, . . . ,M}.

(c) When, for some 1 < k′ < k′′ < k, there are no less than Tl+k′ and

more than Tl+k′−1 agents checking category t(R) ≥ l+k and no less

than Tl+k′′ while less than Tl+k′′+1 agents checking category t(R) ≥
l + k or category l < t(R) < l + k, administrator does not have

enough information to determine the level among {l+k′, . . . , l+k′′}.

4. For case 3(a) (or 3(b) respectively), administrator proceeds as follows.

(a) Sends each agent a form containing two categories (i) t(R) = l (or

t(R) = l+ k in case 3(b)) and (ii) t(R) < l (or t(R) > l+ k in case

3(b)). Informs each agent that all agents have previously checked

t(R) ≤ l (or t(R) ≥ l + k in case 3(b)).
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(b) When at least one agent checks t(R) = l (or t(R) = l + k in case

3(b)), administrator has collected enough information to set the

level at l (or l + k in case 3(b)).

(c) Otherwise, iteratively for h ≥ 0, suppose the administrator cannot

set the level to be l− h (or l+ k+ h in case 3(b)), then each agent

is sent a form containing two categories (i) t(R) = l − h − 1 (or

t(R) = l + k + h + 1 in case 3(b)) and (ii) t(R) < l − h − 1 (or

t(R) > l+ k+ h+ 1 in case 3(b) and informed that all agents have

previously checked t(R) < l − h (or t(R) > l + k + h in case 3(b)).

(d) When at least one agent checks t(R) = l−h−1 (or t(R) = l+k+h+1

in case 3(b)), administrator has collected enough information to set

the level at l − h− 1 (or l + k + h+ 1 in case 3(b)).

5. In case 3(c), each agent who has checked category l < t(R) < l + k

receives a form with k − 1 categories consisting of t(R) = l + h for one

1 ≤ h ≤ k − 1 and is informed that more information is needed to

determine the level among {l + 1, . . . , l + k − 1}. After collecting the

returned forms, administrator has enough information to set the level.

In addition, k is lowest level of sophistication that is achievable in any dy-

namic implementation of such an anonymous generalized median voter scheme.

Summarizing, we have the following proposition.

Proposition 4. An anonymous generalized median voter scheme is k-OD

implementable if and only if there exist at most k− 1 levels with voting quotas

strictly between 1 and N .

Proof. Observe that for each agent i and for each information set hi, the

number of overlapping levels that could follow any two actions a, a′ available

at hi is at most k. This is obvious for information sets after the initial history.

For the initial history, notice that (i) the possible levels after choosing category

t(R) ≤ l are among {1, . . . , l + k − 1}; (ii) the possible levels after choosing

category l < t(R) < l + k are among {l, . . . , l + k − 1}; and (iii) the possible

levels after choosing category t(R) ≥ l + k are among {l, . . . ,M}.

25



Since the overlapping levels are less than k after any two actions at each

information sets, given any true type θi, the greedy iterative elimination of

obviously dominating states delivers a partition with no more than k cells.

By Proposition 2, type-revealing strategy is k-OD and therefore anonymous

generalized median voter schemes with k − 1 levels of quotas being strictly 1

and N is k-OD implementable.

We next show that such an anonymous generalized median voter scheme

is not a (k − 1)-OD implementation. For each agent i, let Θ̃i be the subset of

Θi in which l ≤ t(R) ≤ l + k. Consider the following table summarizing some

outcome relevant events of the direct mechanism in which the action l + h

corresponds to reporting any R with t(R) = l + h.

Actions

Events
E1

l E2
l . . . E2

l+h−1 E1
l+h E2

l+h . . . E1
l+k−1 E2

l+k−1

l l l . . . l + h− 1 l + h l + h . . . l + k − 1 l + k − 1

...
...

...
. . .

...
...

...
. . .

...
...

l + h l l + 1 . . . l + h l + h l + h . . . l + k − 1 l + k − 1

...
...

...
. . .

...
...

...
. . .

...
...

l + k l l + 1 . . . l + h l + h l+ h+ 1 . . . l + k − 1 l + k

For each 1 ≤ h ≤ k − 1, E1
l+h is the event in which there are no less than

Tl+h agents reporting t(R) ≥ l + h while there are less than Tl+h+1 − 2 agents

reporting t(R) > l + h; E2
l+h is the event in which there are no less than

Tl+h agents reporting t(R) ≥ l + h while there are exactly Tl+h+1 − 1 agents

reporting t(R) > l + h with at least one agent reporting t(R) = l + h + 1.

Notice that each of these events is non-empty and any pair of them is disjoint.

Observe that for any two actions l + h and l + h′ (0 ≤ h, h′ ≤ k), since

the outcomes are identical on events E1
l+k′ for all 0 ≤ k′ ≤ k − 1, greedy iter-

ated elimination will deliver k cells. By propositions 2, 3, and the hereditary

property, the anonymous generalized median voter scheme is not (k − 1)-OD

implementable.

The above proposition demonstrates how k-OD extends the range of im-
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plementable anonymous generalized median voter schemes as the level of so-

phistication in the application of STP increases.

5 Discussion and Conclusion

In the implementation literature, there has been a longstanding concern on

the need for robustness of mechanisms in terms of actual performance. In en-

vironments with complete information, this need may arise from flaws in rea-

soning and mistakes in the specification of the agents’ preferences, knowledge,

or situation. In this regard, Moore (1992) highlights the value of simplicity

for the mechanism itself with a parallel message for implementation theory

that mechanisms which do not allow for mis-specifications in the agent’s pref-

erence, knowledge, and situation may perform poorly in actual applications,

especially if they place undue demands in terms of attention, cognition and

strategic calculations.15

In an incomplete information setting, Bergemann and Morris (2005) in-

vestigate the question of robustness by relaxing the common knowledge as-

sumption among players and designer by studying mechanism design on richer

type spaces. This inspires Börgers and Li (2019) to proposes a new simplicity

criterion such that participants can deduce their optimal strategy using only

their first-order beliefs about other players’ preferences.16

Li’s (2017) definition of OD, which has ushered in a novel direction of

research on simplicity of mechanisms, has inspired the present paper along

with Pycia and Troyan (2021) and Zhang and Levin (2021).

Relying on an exogenously given partition of the state space, Zhang and

Levin (2017, 2021) provide a generalization of OD, named partition obvious

15In terms of iterative elimination of dominated strategies in a normal game, Glazer and
Rubinstein (1996) offer a more formal sense of what may constitute simplicity by showing
how a dynamic game can be viewed as a guide, and thus conclude that calculating the
subgame perfect equilibrium outcome in a dynamic game is simpler. The sense of this need
to address the issue of complexity is echoed in Maskin and Sjöström’s (2002) recognition of
the incidence of bounded rationality in developing mechanisms that are more forgiving of
departures from full-blown “homo game theoreticus”.

16De Clippel et al. (2019) offers a nonequilibrium model of robustness involving level-k
reasoning.
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dominance, in which the decision maker compares the worst outcome of one act

(strategy) with the best outcome of another act (strategy) on each cell. When

applied to dynamic mechanism design, the exogenously given partition is up-

dated by removing possibilities in each cell of the partition that are ruled out

by the emergence of new information. The major difference between partition

obvious dominance and k-OD is that the relevant partition in our definition

emerges endogenously from the agents’ application of STP and that this par-

tition may vary at different information sets in comparing different strategies.

This being said, partition obvious dominance can be viewed as a special case

of k-OD requiring an exogenously given “fixed” partition.

Pycia and Troyan (2021) offer a model of simplicity which delivers a se-

quence of solution concepts, also indexed by a natural number, capturing the

number of forward-looking steps rather than planning for the entire future of a

game.17 We apply Savage’s (1954) sure-thing principle to generalize OD with

k-OD serving as a bridge between dominance and OD. In going beyond OD,

Pycia and Troyan’s limited foresight model is motivated by the proverb “you

can cross the bridge when you come to it” also appearing in Savage (1954).

We develop in Section 3 a definition of a (randomized) gradual mecha-

nism to serve as a revelation principle for k-OD implementation. This proof is

straightforward once we have developed a framework capable of representing

the design domain of dynamic mechanisms. A similar observation is stated

in Myerson (1989) in his demonstration of the direct revelation principle for

Bayesian implementation. Another shared feature with the proof of direct

revelation principle is a pruning operation which removes actions never used

by the agents. Li (2017) provides this pruning operation for dynamic mech-

anisms which has appeared in several follow up studies, such as Ashlagi and

Gonczarowski (2018), Bade and Gonczarowski (2017), Mackenzie (2020), and

Pycia and Troyan (2021).

Facilitated by gradual mechanism, we provide in Section 3 a necessary

condition for k-OD implementability and demonstrate its usefulness, together

17Relatedly, Catonini and Xue (2021) study simplicity by applying a one-step foresight
model.
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with the hereditary property of k-OD implementability, in the application to

anonymous generalized median voter schemes in Section 4. There has been

several papers studying the OD implementability of specific social choice rules

offering new insights arising from obviousness of the truth-telling strategy in

dynamic implementation.18 Given the sense in which k-OD may capture a

bound on the required level of sophistication in applying STP for contingent

reasoning, it may hold promise for further research to explore its applicability

in a range of mechanisms such as matching, auctions, and voting.

The ability of dynamic mechanisms to make dominant strategy obvious

stems from the dynamic information flow which brings other benefits, such

as simplicity (Bó and Hakimov, 2021; Pycia and Troyan, 2021), credibility

(Akbarpour and Li, 2020), and privacy preservation (Mackenzie and Zhou,

2020; Haupt and Hitzig, 2022). Many of the dynamic mechanisms proposed

in the literature, including the round table mechanisms (Mackenzie, 2020),

millipedes games (Pycia and Troyan, 2021), pick-an-object mechanisms (Bó

and Hakimov, 2021), and menu mechanisms (Mackenzie and Zhou, 2020),

are in effect special cases of gradual mechanisms.19 In subsequent research,

besides serving as revelation principle for k-OD implementations, the gradual

mechanism defined in this paper could serve as a canonical class of dynamic

mechanisms to accommodate a rich range of properties associated with the

underlying information flow (Chew and Wang, 2022). Moreover, it would be

valuable to exploit, following Golowich and Li (2021), the class of gradual

mechanism towards a computationally efficient way to check whether a given

social choice rule is k-OD implementable.

As an intermediate solution concept between dominance and OD, there is

value in testing the performance of k-OD implementation. A useful test may

involve contingent versus non-contingent framing (Esponda and Vespa, 2021).

Building on the reported effectiveness in the provision of advice about the

18In addition to the ones mentioned in the introduction, there are others such as Bade
and Gonczarowski (2017), Bade (2019), Ferraioli and Ventre (2021), Tsakas (2019), and
Troyan and Morrill (2020)

19In pick-an-object mechanisms and menu mechanisms, the administrator always collects
information about agents’ top preference in a menu.
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value of truthful reporting (Masuda et al., 2022), we can enrich the dynamic

mechanism under consideration towards prompting subjects into engaging in

the type of contingent thinking implicit in STP and observe their effectiveness

in bringing about greater incidence of truthful revelation.20
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Bó, I. and R. Hakimov (2021). Pick-an-object Mechanisms. Working Paper.

20In Chen et al.’s (2021) study of the robustness of their simultaneous report mechanisms,
each subject completes a screening quiz containing contingencies which may arise in the
experiment. Like Masuda et al. (2022), they also provide advice to subjects about reports
consistent with their true values being in their material interests.

30



Börgers, T. and J. Li (2019). Strategically Simple Mechanisms. Economet-
rica 87, 2003–2035.

Cason, T. N. and C. R. Plott (2014). Misconceptions and Game Form Recog-
nition: Challenges to Theories of Revealed Preference and Framing. Journal
of Political Economy 122, 1235–1270.

Catonini, E. and J. Xue (2021). Local Dominance. Working Paper.

Charness, G. and D. Levin (2009). The Origin of the Winner’s Curse: A
Laboratory Study. American Economic Journal: Microeconomics 1, 207–
236.

Chen, Y. and T. Sönmez (2006). School Choice: An Experimental Study.
Journal of Economic Theory 127, 202–231.

Chen, Y.-C., R. Holden, T. Kunimoto, Y. Sun, and T. Wilkening (2021).
Getting Dynamic Implementation to Work. Working Paper.

Chew, S. H. and W. Wang (2022). Information Design of Dynamic Mecha-
nisms. Working Paper.

De Clippel, G., R. Saran, and R. Serrano (2019). Level-k Mechanism Design.
Review of Economic Studies 86, 1207–1227.

Dreyfuss, B., O. Heffetz, and M. Rabin (2022). Expectations-Based Loss Aver-
sion May Help Explain Seemingly Dominated Choices in Strategy-Proof
Mechanisms. American Economic Journal: Microeconomics . Forthcoming.

Ellsberg, D. (1961). Risk, Ambiguity, and the Savage Axioms. Quarterly
Journal of Economics 75, 643–669.

Esponda, I. and E. Vespa (2014). Hypothetical Thinking and Information Ex-
traction in the Laboratory. American Economic Journal: Microeconomics 6,
180–202.

Esponda, I. and E. Vespa (2021). Contingent Preferences and the Sure-Thing
Principle: Revisiting Classic Anomalies in the Laboratory. Working Paper.

Ferraioli, D. and C. Ventre (2021). Approximation Guarantee of OSP Mech-
anisms: The Case of Machine Scheduling and Facility Location. Algorith-
mica 83, 695–725.

31



Gibbard, A. (1973). Manipulation of Voting Schemes: A General Result.
Econometrica 41, 587–601.

Glazer, J. and A. Rubinstein (1996). An Extensive Game as a Guide for
Solving a Normal Game. Journal of Economic Theory 70, 32–42.

Golowich, L. and S. Li (2021). On the Computational Properties of Obviously
Strategy-Proof Mechanisms. Working Paper.
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Appendix

In this appendix, we provide the formal definitions of (randomized) dynamic

game forms and the two randomization operations—de-randomization and pre-

randomization.

• Players. In addition to agents in N , there is one additional player 0

representing the mechanism administrator who brings randomization to

the mechanism.

• Actions. For each agent i ∈ N , Ai is a nonempty action set. Denote the

set of action profiles by

A = {∅} ∪
⋃

∅⊊M⊆N0

∏
i∈M

Ai

in which the empty action profile ∅ is introduced only to simplify expo-

sition.

– Pick an action profile a ∈
∏

i∈M Ai ⊆ A. Suppose i ∈ M . Let ai

denote the action of agent i in a and a−i the action profile of other

agents in a. Otherwise, suppose i /∈ M . Then ai = ∅ and a−i = a.

– For each T > 0, let AT denote the collection of histories of length T

with a generic history being denoted by h = (h(1), . . . , h(T )) in which

h(T ) is also referred to as h(−1). Let A0 = {∅} be the singleton set

of the empty history.

– Let A<N =
⋃

T∈N A
T denote the collection of all histories of finite

length.
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– An action profile a and the corresponding sequence (a) containing

only a are used interchangeably. The empty history ∅ and any

sequence of empty action profiles are used interchangeably. For his-

tory h = (h(1), . . . , h(T )) consisting of S non-empty action profiles

and some empty action profiles, let h = (h(1), . . . , h(S)) be the corre-

sponding history without empty action profiles, i.e., s-th non-empty

action profiles in h equals h(s) for each 1 ≤ s ≤ S. We will use h

and h interchangeably.

– There is a precedence relation ⪯ on A<N, i.e., h ⪯ h (reads h is a

predecessor of h or h is a successor of h) if h ∈ AS and h ∈ AT such

that S = 0 or that 0 < S ≤ T and h(s) = h(s) for any 1 ≤ s ≤ S.

– Let h1, . . . , hm ∈ A<N be m sequences of action profiles, define

(h1, . . . , hm) ∈ A<N by concatenation.

– If h ⪯ h in A<N such that h ∈ AT , h ∈ AT+1, and h(−1) ̸= ∅, we say

h is an immediate predecessor of h or h is an immediate successor

of h. Note that a nonempty history h has a unique immediate

predecessor.

– Let h = (h(1), . . . , h(T )), define hi = (h
(1)
i , . . . , h

(T )
i ) and h−i =

(h
(1)
−i , . . . , h

(T )
−i ).

• Histories. The set of histories H is modeled by a tree of finite length

in A<N, i.e., a subset of A<N such that (i) there exists T such that

H ⊆
⋃T

T=0A
T , (ii) ∅ ∈ H, and (iii) for any h ∈ H such that h ̸= ∅,

the immediate predecessor of h is in H. We make use of the following

assumptions and notations.

– Denote the set of terminal histories by Z and non-terminal histories

by H.

– For any non-terminal history h ∈ H, denote by σ(h) the collection

of its immediate successors.

– H satisfies the following property: there exists an active-player cor-

respondence P : H ↠ N0 such that for any non-terminal history
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h ∈ H and any a ∈ A satisfying (h, a) ∈ σ(h), it is the case that

a ∈
∏

i∈P(h)Ai. Therefore, P(·) depicts the players that are simul-

taneously active at a particular non-terminal history.

– Let Hi = {h ∈ H : i ∈ P(h)} represent the collection of histories on

which player i is active. For each h ∈ H and each i ∈ P(h), define
Ai(h) = {ai ∈ Ai : (h, a) ∈ H for some a ∈ A} as the collection of

available actions for player i at history h.

– H satisfies the following property: for any h ∈ H and any a ∈∏
i∈P(h)Ai(h), we have (h, a) ∈ H. The two assumptions here depict

decentralized decision making.

• Information Structure. For each i ∈ N0, H i is a partition of Hi whose

elements are information sets of player i, with a generic information set

being denoted by hi. We introduce further assumptions, notations, and

observations below.

– Assume that for any hi ∈ H i and any h, h̃ ∈ hi, we have Ai(h) =

Ai(h̃). Then A(hi) = Ai(h) for which h ∈ hi is well defined.

– Assume that the game form G has perfect recall. Formally, for any

h, h̃ ∈ hi, we have hi = h̃i and for any h ⪯ h with h ∈ Hi, there

exists h̃ ⪯ h̃ such that h and h̃ are in the same information set of

agent i.

– Given perfect recall, an ordering on H i can be defined, hi ⪯ hi, if

there exist h ∈ hi and h ∈ hi such that h ⪯ h.

– Administrator has perfect information, i.e., H0 consists of singleton

information sets.

• Outcomes. X : Z → X assigns each terminal history a public outcome.

Given a game form G and any of its non-terminal history h ∈ H, we can

define the subgame form ofG starting from h by restricting various components

of G to its truncated successors in H, i.e., to {h′ ∈ A<N : (h, h′) ∈ H}.
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An interim strategy si : Hi → Ai of agent i ∈ N specifies an available

action si(h) ∈ Ai(h) for each history h ∈ Hi such that si(h) = si(h̃) if h, h̃

belong to the same information set. Therefore, si : H i → Ai is well defined.

We use Si to denote the set of interim strategies for agent i and use s ∈ S and

s−i ∈ S−i to denote the profile of interim strategies for all agents in N and

that for those other than agent i respectively.

Administrator’s randomization is modeled by a probability space (Ω,A, µ)

providing a randomization device for the administrator to adopt a mixed strat-

egy m. In particular, upon receiving ω ∈ Ω, the administrator adopts the

interim strategy m(σ) : H0 → A0 which specifies an action at every history

the administrator is active. The two randomization operations are formally

defined as follows.

Definition 9. Let G = (H, {Ai,H i}i∈N0 ,X ,m, {Ω,A, µ}), then for each ω ∈
Ω, the ω-derandomization of G is Gω = (H

ω
, {Aω

i ,H
ω
i }i∈N ,X ω) such that:

1. The set of feasible actions for each agent in Gω is the same with that in

G, i.e., Aω
i = Ai.

2. H
ω
is the collection of histories that are consistent with administrator

acting according to m(ω) but with administrator’s actions removed, i.e.,

H
ω
= {h−0 : h ∈ H(ω)}.

3. {Hω
i }i∈N and X ω are restrictions of their counterparts in G on the do-

main H
ω
.

Note that both {Hω
i }i∈N and X ω are well defined since for each agent i

and each history hω ∈ Hω
i , there exists a unique h ∈ Hi ∩ H(ω) such that

h−0 = hω.

Definition 10. Let G = (H, {Ai,H i}i∈N0 ,X ,m, {Ω,A, µ}), then the pre-

randomization of G is G∗ = (H
∗
, {A∗

i ,H
∗
i }i∈N0 ,X ∗,m∗, {Ω,A, µ}) such that:

1. In G∗, the administrator is active only at the initial history whose avail-

able actions are the realizations of the same randomization device as in

G, i.e., H∗
0 = {∅}, A∗

0 = Ω, and m∗(ω)(∅) = ω.
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2. For each ω ∈ Ω, the subgame in G∗ following history ω ∈ H
∗
is the

ω-derandomization Gω of the original G.

3. The action of the administrator is known by all agent, i.e., for all agent

i and all information set hi, there exists ω such that hi ⊆ H∗(ω).

Proof of Theorem 1. Consider a randomized dynamic game form G. Let G∗

be its pre-randomization. Observe that each history h∗ ∈ H
∗
corresponds to

a unique m(h∗) = h ∈ H such that h∗
−0 = h−0. Suppose agent i is active at

h∗, then she will be active at h = m(h∗) as well and that the sets of available

actions for agent i at h and at h∗ are the same. Based on this observation,

there is a surjective mapping from Si to S∗
i (the set of interim strategies in G

and G∗ respectively) for each agent i, in which si ∈ Si of the original game

form G is mapped to an interim strategy s∗i such that s∗i (h
∗) = si(h) for any

h∗ ∈ H∗
i and h ∈ Hi such that h∗

−0 = h−0. Notice that X ∗(s∗, ω) = X (s, ω)

when s is mapped to s∗ agent by agent.

Let S be a strategy profile in the incomplete information game (G,Θ), then

we can define a strategy profile S∗ for (G∗,Θ) by letting S∗
i (θi)(h

∗) = Si(θi)(h)

for each agent i, each private type θi, and each non-terminal history h∗ such

that h∗
−0 = h−0. In short, S∗ defines a strategy profile in G∗ that acts in the

same way as S in G at corresponding histories.

To demonstrate that S being a k-OD strategy profile in G implies that S∗

being a k-OD strategy profile in G∗, note that an information set h∗
i of agent

i in G∗ corresponds to a unique information set hi in G defined by the cor-

respondence relation between histories mentioned in the previous paragraph.

Suppose two strategies S∗(θi)(h
∗
i ) and s∗i deviate on h∗

i , then S(θi)(hi) deviate

from any si ∈ Si that maps to s∗i on hi. Now, notice that the space of uncer-

tainties h∗
i ×S∗

−i×Ω in G∗ shrinks in each of the three sources compared with

that in G.

Next, do pruning on each subgame form following (ω) in G∗ and we will

have randomized gradual mechanism k-OD implementing the same stochastic

social choice function.
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