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Abstract

We construct an endogenous growth model with random interactions where firms are subject
to distortions. The productivity distribution evolves endogenously as firms seek to upgrade their
technology over time either by innovating or by imitating other firms. We use the model to quantify
the effects of misallocation on TFP growth in emerging economies. We structurally estimate the
stationary state of the dynamic model targeting moments of the empirical distribution of R&D and
TFP growth in China during the period 2007–12. The estimated model fits the Chinese data well.
We compare the estimates with those obtained using data for Taiwan. We perform counterfactuals
to study the effect of alternative policies. R&D misallocation has a large effect on TFP growth.
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1 Introduction

In this paper, we construct and estimate a model of endogenous technical change with random inter-
actions where firms are subject to distortions. The goal of the paper is to quantify the dynamic effects
of misallocation on the investments firms make to improve their productivity growth.

In the theory, the evolution of the total factor productivity (TFP) distribution hinges on profit-
maximizing firms seeking to upgrade their technology. To this end, firms face a binary choice: they
can either adopt better technologies used by other firms (imitation) or break new ground and search
for new technologies (innovation). Focusing on innovation requires an investment and entails some
opportunity cost of foregoing learning through random interactions. The firms’ relative productivity
determines the comparative advantage of the two alternative strategies. Firms that are farther from
the technology frontier can gain more from random interactions. Conversely, for firms closer to the
technology frontier, the scope for imitating other firms is limited, and they must innovate in order
to improve their technology. The investment decision is affected by firm-specific labor and capital
market distortions (wedges). These wedges affect the investments in innovation because a positive
wedge reduces the gains associated with a future TFP increase.

We structurally estimate the theory exploiting the stationary equilibrium of the dynamic model.
We use the Simulated Method of Moments (SMM), targeting moments of the empirical distribution of
R&D and productivity growth that are salient in the theory. We use data from manufacturing firms
in mainland China (henceforth, China) in the period 2007–12. We are motivated by the observation
that in recent years, the rapid economic growth in China has been accompanied by a boom in R&D
expenditure and growing emphasis by the government on innovation (see, e.g., Ding and Li (2015),
Zilibotti (2017)).1 However, where is all this R&D going? A common concern is that these investment
decisions are distorted by policies and frictions (e.g., credit constraints) that are pervasive in China.
Our methodology allows us to assess the contribution of these investments for aggregate growth.

We proxy the choice between imitation and innovation by the firms’ R&D investment behavior on
the extensive margin. We classify firms making R&D investments as innovators and firms not making
R&D investments as imitators. We study the robustness of the results to the choice of the proxy. We
measure distortions using the methodology proposed by Hsieh and Klenow (2009). In our theory, the
presence of heterogeneous output wedges lowers the correlation between TFP and propensity to pursue
innovation—when the decision to invest in R&D is distorted, the firm’s size matters more than its
TFP. We document that in our data the propensity of firms to invest in R&D is positively correlated
with TFP and size—the latter correlation being stronger. Moreover, conditional on TFP, TFP growth
is higher for R&D than for nonR&D firms. All these observations are in line with the predictions
of the theory. We estimate the model. The estimated model matches well the target moments from
a quantitative perspective. The benchmark model predicts an annual aggregate TFP growth rate of
3.6%, which is close to the empirical counterpart for China for 2007–12 (3% annual growth in our
sample). This moment is not targeted in the estimation.

Next, we extend the model to allow for heterogeneous R&D costs across firms. To this aim, we
introduce “innovation wedges” (that are distinct distortions from the standard output wedges) that we
allow to be correlated with firm-level TFP. The estimated pattern is suggestive of an active industrial

1The transition toward innovation-based growth is a central theme in the government’s strategy. The 13th Five-Year
Plan (2016–20) emphasizes the promotion of research in strategic and frontier fields. The National Innovation-Driven
Development Strategy Outline issued in June 2016 states that China should become an innovation-oriented economy by
2020 and a technological innovation powerhouse by 2050. While China invested barely 1% of its GDP in the 1990s, R&D
investments increased to 2.4% of GDP by 2020.
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policy, which is arguably a salient feature of China. Finally, motivated by the findings of Chen et al.
(2021), we explore an extension in which some Chinese firms may respond to fiscal incentives by fudging
R&D expenditure, that is, relabeling part of their operational expenditure as R&D, in order to cash in
on public subsidies.

For contrast, we estimate the model using plant-level data from Taiwan, for which census data
on R&D investments are also available. Taiwan is a natural comparison for China, not only for its
geographic and cultural proximity, but also for the structural similarities between the two economies
in which the manufacturing sector plays a central role. The results for Taiwan are qualitatively similar
to those obtained for China, although both the TFP growth of R&D firms and the rate of technology
diffusion are larger for Taiwanese firms. Interestingly, the estimates of the Taiwanese technology
parameters are similar to the model in which we allow for some Chinese firms to misreport R&D.
Finally, we perform a set of counterfactual policy experiments. In one of them, we counterfactually
reduce the variance of wedges by 50%. The reduction in misallocation triggers a dynamic adjustment
towards a new stationary equilibrium with higher growth. Because the reduction in misallocation
strengthens the comparative advantage of high-TFP firms, the transition is associated with an increase
in productivity dispersion across firms and an acceleration of growth.

The basic model abstracts from international spillovers. Arguably, China’s stellar growth is partly
driven by the adoption of technologies from the international frontier and is bound to slow down as
China approaches the world technology frontier. In an extension, we incorporate this channel and
embed the analysis into a model where misallocation affects growth only throughout the transition
to the world balanced growth equilibrium. We find that even in this model an exogenous change in
misallocation has a large effect on both transitional growth and the long-run GDP level relative to
the frontier. These effects are largely driven by the endogenous change in the TFP distribution which
impacts on the imitation-innovation decisions of firms.

Another set of counterfactuals studies the effect of a reduction in innovation costs through non-
targeted R&D subsidies. We find a nonmonotonic effect on growth: a subsidy inducing a moderate
increase in R&D investments speeds up TFP growth. However, a sufficiently large subsidy slows down
productivity growth. The reason is that in our model the average TFP growth hinges on both in-
novation and imitation. Inducing too many firms to innovate has a very large opportunity cost in
terms of foregone technology diffusion. Therefore, our theory provides a novel insight to the debate on
innovation policy: it is important to induce the “right firms” to pursue an innovation strategy.

Related literature: Our study is related to various streams of the growth and development literature.
First, it contributes to the debate on the determinants of success and failure in technological convergence
(e.g., Hall and Jones (1999), Klenow and Rodriguez-Clare (1997), Acemoglu and Zilibotti (2001), Hsieh
and Klenow (2010)). The importance of technology diffusion stretches back to the seminal work of
Griliches (1957). R&D investments and spillovers are core elements of the neo-Schumpeterian theory
à la Aghion and Howitt (1992); see also Griliches (1998). While this literature highlights a process of
creative destruction where new firms are carriers of innovation, recent research by Garcia-Macia et al.
(2019) finds that the lion’s share of aggregate growth stems from productivity growth by incumbent
firms. This evidence is consistent with the tenets of our theory.

The dichotomy between innovation and imitation in the process of development is emphasized by
Acemoglu et al. (2006). The important role of misallocation as a determinant of aggregate productivity
differences is related to the influential work of Hsieh and Klenow (2009). Our study builds on their
methodology, although it attempts to endogenize the distribution of productivity across firms, which is
instead exogenous in their work. The importance of misallocation in China is also emphasized, among
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others, by Song et al. (2011), Hsieh and Song (2015), Cheremukhin et al. (2017), Brandt et al. (2016),
and Tombe and Zhu (2019).

Our paper also contributes to the recent literature describing the endogenous evolution of the
distribution of firm size and productivity. This includes, among others, Jovanovic and Rob (1989),
Luttmer (2007, 2012), Ghiglino (2012), Perla and Tonetti (2014), Acemoglu and Cao (2015), Lucas
and Moll (2014), König et al. (2016), Benhabib et al. (2014, 2021), Akcigit et al. (2018). While a
number of these studies emphasize random interactions, the theoretical paper by König et al. (2016) is
the only one highlighting a trade-off between innovation and imitation. Our theoretical model builds
on that paper.

Finally, our paper is related to the burgeoning theoretical and empirical literature on firms dynamics
with R&D investments and creative distruction. These studies include, among others, Bloom et al.
(2002), Klette and Kortum (2004), Lentz and Mortensen (2008), Acemoglu and Cao (2015), Akcigit
and Kerr (2018), Acemoglu et al. (2018), and Akcigit et al. (2021).

Related literature on R&D in China: Our paper is also related to the empirical literature studying
R&D policy in China. Ding and Li (2015) provide a comprehensive overview of the instruments adopted
by the Chinese government intervention to foster R&D. The systematic policy intervention to stimulate
innovation had its first impetus in 1999 and accelerated in 2006 with the adoption of the Medium–
and Long–term National Plan for Science and Technology Development. The policy instruments are
manifold. The first is direct government funding of research through the establishment of tech parks,
research centers, and a series of mission-oriented programs. The most important among such programs
is Torch, a program intended to kick-start innovation and start-ups through the creation of innovation
clusters, technology business incubators, and the promotion of venture capital. Another important
part of the government strategy is tax incentives for innovation. This takes the form of tax bonuses
applicable to wages, bonus and allowances of R&D personnel, corporate tax rate cuts, and R&D
subsidies. For instance, firms are granted a 150% tax allowance against taxable profits on the level of
R&D expenditure and 100% tax allowance against taxable profits on donations to R&D foundations.
In addition, firms that qualify as innovative can obtain exemption from import duties and VAT on
imported items for R&D purposes. Firms that are invited to join science and technology parks are
often exempted from property taxes and urban land use. Finally, “innovative firms” receive subsidies
on investments. Unused tax allowances can be carried forward to offset future taxes.

The policy interventions leave ample margins for discretion. For instance, central and local gov-
ernments can decide which firms to invite to be part of science and technology parks, which firms
receive priority in High-Tech Special Economic Zones, etc. In short, incentives can be heterogenous
across provinces, local communities, sectors, and even at the firm level, often as a function of political
connections (Bai et al., 2016).

Some empirical studies evaluate the effects of R&D investment and R&D policy in China. Hu and
Jefferson (2009) use a data set that spans the population of China’s large and medium–size enterprises
for the period from 1995 to 2001. Despite not being a representative sample, these enterprises engaged
in nearly 40% of China’s R&D in 2001. The authors estimate the patents–R&D elasticity is 0.3 when
evaluated at the sample mean of the real R&D expenditure (and even lower at the median). This is
smaller than similar estimates for the U.S. and European firms for which the result of earlier studies
find elasticities in the range of 0.6–1. The study is based on data from the 1990s. However, Dang and
Motohashi (2015) find similar results using data for the period 1998–2012 based on matching the NBS
data to patent data.

Jia and Ma (2017) use a panel data set of Chinese listed companies covering 2007–13 to assess
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the effects of tax incentives on firm R&D expenditures and analyze how institutional conditions shape
these effects. They show that tax incentives have significant effects on the R&D expenditure reported
by firms. A 10% reduction in R&D user costs leads firms to increase R&D expenditures by 4% in the
short run. They also document considerable effect heterogeneity: tax incentives significantly stimulate
R&D in private firms but have less influence on state-owned enterprises’ R&D expenditures.

Chen et al. (2021) analyze the effects of the InnoCom program, a large–scale incentive for R&D
investment in the form of a corporate income tax cut. They exploit variation over time in discontinuous
tax incentives to R&D and find that there is significant bunching at the various R&D policy notches.
Moreover, the response of firms suggests a significant amount of fudging, in particular, a large fraction of
the firms appear to respond to the tax incentive by relabeling nonR&D expenditures as R&D expenses.

The paper is structured as follows; Section 2 presents the theory. Section 3 discusses the data
and some descriptive evidence. Section 4 presents the econometric methodology. Sections 5–7 discuss
the estimation results, robustness analysis, and counterfactual experiments. Section 8 concludes. The
supplementary appendix contains technical results and additional tables and figures. Further technical
details are deferred to a web appendix.

2 Theory

Consider a dynamic economy populated by a unit measure of monopolistically competitive firms.
Firms produce differentiated goods that are combined into a homogeneous final good by a Dixit-
Stiglitz aggregator with a constant elasticity of substitution η > 1 between goods, implying Y =(∫ 1

0 Y
(η−1)/η
i di

)η/(η−1)
.

Firms are owned by overlapping generations of two-period–lived manager-entrepreneurs as in Song
et al. (2011). In each period, the firm is owned by an old entrepreneur who is residual claimant on
the firms’ profits, but run by a young manager. In the first period of her life, the manager decides
the strategy to improve the firm’s productivity in the next period having access to frictionless credit
markets. In the following period, she turns into an old entrepreneur, hires a young manager to run the
firm, and appropriates and consumes the firm’s profits.

In this environment, we can break down the firm’s problem into two steps. First, there is a
static maximization problem: the firm’s manager hires capital and labor to maximize profits given the
current state of productivity. Second, there is an intertemporal investment problem: the firm makes
an investment decision that affects the next period’s productivity and profits. The OLG structure
simplifies the dynamic problem by turning it into a sequence of two-period decisions. This allows us
to retain analytical tractability and avoid complications that would make the structural estimation
problem infeasible.

Static production efficiency: The firm’s technology is represented by a constant returns to scale
Cobb Douglas production function:

Yi (t) = Ai (t)Ki (t)α Li (t)1−α ,

where α ∈ (0, 1), Ki (t) is capital, Li (t) is labor, and Ai (t) is total factor productivity (TFP). Like in
Hsieh and Klenow (2009), firms have heterogeneous Ai (t) and rent capital and labor from competitive
markets subject to distortions. We summarize all distortions into a single output wedge that we view
as a catch-all for a variety of firms-specific distortions on labor and credit markets–the latter being
especially important in China as documented by Song et al. (2011) and Hsieh and Song (2015) . More
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formally, firms maximize profits taking factor prices as given, but their decisions are distorted by a set
of output wedges τi. Note that τi < 0 indicates a negative wedge, or an implicit output subsidy.2

Because the characterization of the static equilibrium is as in Hsieh and Klenow (2009), we omit
details. Here, we summarize the two equilibrium conditions that are sufficient to derive the dynamic
equilibrium and that we use in the empirical analysis. Firm i’s current (period t) profits are given by

πi (t) ∝ (Ai (t) (1− τi (t)))η−1 . (1)

Profits increase in TFP and decrease in the wedge. Moreover, the firm’s value added satisfies

Pi (t)Yi (t) ∝ (Ai (t) (1− τi (t)))η−1 . (2)

Intuitively, the firm’s value added—or its size—is increasing in TFP and decreasing in the wedge.
Equations (1)–(2) then implies that TFP satisfies

Ai ∝
[Yi(t)Pi(t)]

η
η−1

[Ki(t)]
α [Ni(t)]

1−α . (3)

In the theoretical section, we assume that τ takes on only two values, τ ∈ {τh, τl} where τl < τh.
The stochastic realizations of τ follow a persistent Markov process. Namely, the probability that τ
remains constant exceeds 50% in each state. In the empirical analysis, τ has a continuous support.

Productivity dynamics: The endogenous evolution of the productivity distribution is determined by
the strategy firms adopt to increase their productivity. To analyze this decision, it is useful to introduce
some notation. We assume that advancements occur over a productivity ladder where each successful
attempt to move up the ladder results in a constant log-productivity accrual: log(Ai,t+1) = log(Ai,t)+ã,
where ã > 0 is a constant (thus, log(A) ∈ {ã, 2ã, ...}). We define a ≡ log(A)/ã and denote the ranking
in the productivity ladder by a ∈ N+. Moreover, Π denotes the productivity distribution, Π1,Π2, ...
denotes the proportion of firms at each rung of the ladder, and Fa =

∑a
j=1 Πj denotes the associated

cumulative distribution. We model innovation as a step-by-step process: in each period, productivity
can either increase by one step or stay constant.3 We abstract from entry and exit—a limitation to
which we return below.

Firms can increase their productivity through either innovation or imitation. We model imitation
as an attempt to acquire knowledge through random interactions with other firms (e.g., by adopting
better managerial practices). This strategy hinges on the existing productivity distribution because
firms only learn when they meet more productive firms. Innovation is modeled as an exploration of new
avenues and is independent of other firms’ productivity. Although both strategies could in principle
require investments, the crux of the choice is the cost difference. Therefore, we normalize the cost of
imitation to zero, and let the innovation cost be nonnegative.

Imitation: A firm pursuing the imitation strategy is randomly matched with another firm in the
empirical distribution. If the firm meets a more productive firm, its productivity increases by one
notch with probability q > 0. If the firm meets a less productive firm, it retains its initial productivity.

2The wedge τi can alternatively be interpreted as a geometric average of capital and labor wedges. More formally, let
τKi and τLi denote firm-specific “taxes” on capital and labor, respectively. The output wedge τi is then defined by the
following equation: 1− τi ≡ (1 + τKi)

−α (1 + τLi)
−(1−α).

3König et al. (2016), allow for more general stochastic processes, where a successful firm can make improvements of
different magnitudes. For simplicity, we abstract from this possibility.
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Innovation: An innovating firm can improve its productivity via two channels. First, it can make a
discovery unrelated to the knowledge set of other firms. The probability of success through this channel
is p, where p is drawn from an i.i.d. distribution with cumulative distribution function G : [0, p]→ [0, 1]
where p ≤ 1. Firms observe the realization of p before deciding whether to innovate or imitate.
The heterogeneity in p avoids the stark implication that the position of the firm in the productivity
distribution fully determines the innovation-imitation choice that would be rejected by the data.

If innovation fails, the firm gets a second chance to improve its technology via (passive) imitation.
However, in this case the probability of success is different from that of a firm actively pursuing
imitation, being equal to δq (1− Fa) ≥ 0. Thus, the total probability of success of a firm pursuing
innovation is pi + (1− pi) δq (1− Fa) . We impose no restriction on the second-chance parameter δ. If
δ > 1, the innovation investment facilitates the absorption of new ideas through random interactions,
whereas if δ < 1, focusing on innovation reduces the imitation potential.

2.1 Equilibrium dynamics with costless innovation

Consider first the case studied by König et al. (2016) in which innovation entails no investment cost and
δ < 1. Then, the manager chooses the strategy that maximizes TFP growth, as this also maximizes
expected profit. In particular, firm i chooses the innovation strategy if and only if

pi ≥ Q (a, τ ; Π) ≡ q (1− δ) (1− Fa)
1− δq (1− Fa)

, (4)

where Π denotes the productivity distribution. Since ∂Q/∂a < 0, the proportion of innovating firms will
be nondecreasing in the initial productivity. Intuitively, imitation is less effective for high-productivity
firms because they are less likely to meet a more productive firm. Although thus far τ has no bearing on
the innovation-imitation decision, we specify it as an argument of the function to prepare the analysis
of the more general case where τ matters. Note that the ex-post productivity growth gap between
innovating and imitating firms is increasing in the TFP level.4

The Law of Motion of Productivity: We can now write the law of motion of the distribution of
log-productivity, Πa(t). Define the indicator function

χim (a, p, τ ; Π) = 1− χin (a, p, τ ; Π) =


1 if p ≤ Q (a, τ ; Π) ,

0 if p > Q (a, τ ; Π) .
(5)

In plain words, χim is unity when the firm finds it optimal to imitate, while χin (a, p, τ ; Π) is unity when
it finds it optimal to innovate. The law of motion for the productivity distribution is characterized by
the following system of integro-difference equations:

4A larger a has two opposite effects on next period’s (expected) productivity gap between innovating and imitating
firms. On the one hand, it reduces the potential growth through imitation, thereby increasing the gap. On the other
hand, it lowers Q (a, τ ; Π), inducing firms with lower p to innovate. This negative selection is a second-order effect which
is always dominated by the former effect.
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Πa(t+ 1)−Πa(t)

=

∫ p

0


χin (a− 1, p, τ ; Π)× (p+ (1− p) δq (1− Fa−1(t))) Πa−1(t)+

+χim (a− 1, p, τ ; Π)× q (1− Fa−1(t)) Πa−1(t)
−χin (a, p, τ ; Π)× (p+ (1− p) δq (1− Fa(t))) Πa (t)

−χim (a, p, τ ; Π)× q(1− Fa(t))Πa (t)

 dG (p) (6)

=

∫ p

Q(a−1,τ ;Π)
(p+ (1− p) δq (1− Fa−1(t))) Πa−1(t) dG (p)

+G (min{Q (a− 1, τ ; Π) , p})× q (1− Fa−1(t)) Πa−1(t)

−
∫ p

Q(a,τ ;Π)
× (p+ (1− p) δq (1− Fa(t))) Πa (t) dG (p)

−G (min{Q (a, τ ; Π) , p})× q(1− Fa(t))Πa (t)

The first and second lines inside the first integral sign capture the inflow into productivity a of, respec-
tively, successful innovating and imitating firms whose productivity was a − 1 in period t. The third
and fourth lines inside the integral capture the outflow of productivity a of, respectively, successful
innovating and imitating firms whose productivity was a in period t. Note that for sufficiently low a,
all firms imitate. In that case, G = 1 and the integrals in the expression vanish. Conversely, the share
of imitating firms vanishes as a→∞.

Stationary distribution: Next, we characterize the stationary distribution associated with the sys-
tem of difference equations. For ease of exposition, we first consider the special case of zero innovation
cost for which a sharper analytical characterization is available.

Proposition 1 Consider the model of innovation-imitation described in the text whose equilibrium
law of motion satisfies Equation (6), where each firm draws p from a distribution G : [0, p] → [0, 1].
Assume that q > p̂, where p̂ ≡

∫ p̄
0 p dG (p). Assume the cost of both imitation and innovation is

equal to zero. Then, there exists a traveling wave solution of the form Πa(t) = f(a− νt) with velocity
ν = ν (q, δ, g (p)) > 0, with left and right Pareto tails. For a given t, Πa is characterized as follows: (i)
for a sufficiently large, Πa(t) = O

(
e−ρ(a−νt)) , where the exponent ρ is the solution to the transcendental

equation ρν = p̂ (eρ − 1); (ii) for a sufficiently small, Πa(t) = O
(
eλ(a−νt)), where the exponent λ is the

solution to the transcendental equation λν = q(1− e−λ).

Intuitively, a traveling wave is a productivity distribution that is stationary after removing the (en-
dogenous) constant growth trend. In particular, if we denote by a∗(p, t) the threshold productivity such
that, at time t and conditional on drawing p, all firms with productivity a ≤ a∗(p, t) imitate and all
firms with productivity a > a∗(p, t) innovate, then, a∗ (p, t+ ∆t) = a∗ (p, t) + ν∆t. Thus, the function
a∗ is the inverse of the threshold function Q along the balanced growth path, a∗(p, t) ≡ Q−1 (p, τ,Π(t))
where Π(t) is the stationary distribution at time t. The proof in the appendix generalizes the result that
random growth with a lower reflecting barrier generates a Pareto tail–a result formalized by Kesten
(1973) and applied in economics by Gabaix (1999 and 2009). Although our model features no reflect-
ing barrier strictly speaking, on the one hand low productivity firms have a comparative advantage
in imitation—in fact, firms with very low productivity imitate irrespective of the realization of p. On
the other hand less productive firms are more likely to successfully imitate because they meet a more
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Figure 1: Equilibrium Dynamics with a Stationary Distribution
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Note: Panel A displays the threshold a∗ and the stationary TFP distribution. Panel B plots a traveling wave.

productive firm with a higher probability. Thus, the subdistribution of imitating firms catches up,
which prevents the upper end of the distribution from diverging provided that q is sufficiently large.

A distinctive feature that sets aside our model from earlier is that the stationary distribution
features a Pareto tail of low-productivity firms. The left tail originates from the fact that, although the
probability of matching a better firm tends to unity at very low productivity levels, the probability of
successful adoption is q < 1. This prevents the convergence of the subdistribution of imitating firms to
a mass point. Figure 1 illustrates the equilibrium dynamics of the stationary distribution in a simplified
version of the model in which all firms draw the same p. Panel A displays the threshold and the force
implying convergence.5 Panel B illustrates the traveling wave.

Proposition 1 yields no algebraic representation of the velocity of the traveling wave. In fact, ν can
only be defined implicitly and solved for numerically. Numerical analysis shows that the growth rate
is increasing in the parameters q, δ, and p̄, implying that both the productivity of innovation and the
rate at which ideas diffuse affect aggregate TFP growth.6

2.2 Equilibrium dynamics with costly innovation

Next, we generalize the analysis to an environment in which innovation requires a costly investment,
which we label the R&D cost. The discounted value of profits is given by

πi(t) = Ξ(1− τi(t))η−1Ai(t)
η−1 − ci(t− 1),

5The solutions for ρ and λ are in an implicit form and involve transcendental equations. Standard methods allow one
to show that the equations ρν = q (eρ − 1) and λν = p̄

(
1− e−λ

)
admit closed-form solutions for ρ and λ if, respectively,

q/ν ·e−q/ν/ν ≤ e−1 and p̄/ν ·e−q/ν ≤ e−1. In particular, λ = W (−q/ν ·e−q/ν)+q/ν and ρ = W (−p̄/(2ν)·e−p̄/(2ν))+p̄/(2ν),
where W denotes the Lambert-W function.

6Analytical comparative statics can be obtained under a triangular approximation of the stationary distribution in
a simpler version of the model with no heterogeneity in p. The analytical results under this approximation, which are
consistent with the numerical results of the full model, are in the web appendix.

8



where

ci (t) =


c̄
(
Ai (t)θ Ā(t)1−θ

)η−1
if i innovates,

0 if i imitates.

(7)

Here, Ā(t) denotes the average productivity at time t and c̄ > 0 and θ ∈ [0, 1] are parameters. For
simplicity, we set the discount factor to Ξ = R−1, where R denotes the gross interest rate. This
normalization entails no loss of generality since the equilibrium is pinned down by the ratio c̄/Ξ.

We assume the innovation cost to be proportional to a geometric combination of Ai and Ā. If
θ = 0, the R&D investment is a fixed (overhead) labor cost (note that wages are proportional to Ā)
independent of firm-specific TFP. In the polar opposite case of θ = 1, the R&D investment is a variable
cost in terms of managerial time whose opportunity cost is proportional to the firm’s productivity. The
general case captures in a flexible way a combination of fixed and variable costs. That flexibility is
important in the empirical analysis because it improves the model’s ability to match the heterogeneity
in R&D costs relative to value added that we observe in the data. In this case, the function Q is
modified as follows:

Q (a, τj ; Π) =
q (1− δ) (1− Fa)
1− δq (1− Fa)

+
e(1−θ)(η−1)(a−a)

(eη−1 − 1)E
[
(1− τ ′)η−1 |τj

] c̄

1− δq (1− Fa)
, (8)

where a ≡ log Ā and E [τ ′|τ ] denotes the conditional expectation of next-period wedge. The expression
in Equation (8) is the same as that in Equation (4) except for the new second term. Note that
although ā trends over time, the second term in the right-hand side expression depends on (a − a),
which is consistent with a stationary equilibrium.

There are two key differences relative to Equation (4). First, the R&D cost makes imitation more
attractive ceteris paribus. Therefore, conditional on the realization of p, the threshold Q will be larger
than in Equation (4). Second, the wedge affects the choice: a larger wedge τj deters innovation
by reducing the future profit proportionally to TFP without affecting the R&D cost. More formally,
∂Q/∂τ > 0: firms with higher wedges are less likely to engage in R&D. Note that the cost of innovation
depends on the elasticity of substitution between varieties η, implying that the opportunity cost of R&D
is larger when profits are higher. This assumption is necessary for balanced growth properties.7

The law of motion of productivity (cf. Equation (6)) must then take into account the heterogeneity
in wedges:

Πa(t+ 1)−Πa(t)

=
∑

j∈{l,h}

ωτj (t)×
∫ p

0


χin (a− 1, p, τj ; Π)× (p+ (1− p) δq (1− Fa−1(t))) Πa−1(t)+

+χim (a− 1, p, τj ; Π)× q (1− Fa−1(t)) Πa−1(t)
−χin (a, p, τj ; Π)× (p+ (1− p) δq (1− Fa(t))) Πa (t)

−χim (a, p, τj ; Π)× q(1− Fa(t))Πa (t)

 dG (p) , (9)

where ωτl , ωτh denote the proportion of low- and high-wedge firms, respectively. The model is closed by
the law of motion for ωτl . Let ρh and ρl denote the arrival rate of movements to τh and τl, respectively.
The law of motion is then given by ωτl(t + 1) − ωτl(t) = (1− ρh) (1− ωτl (t)) − (1− ρl)ωτl (t) , where
ωτl converges in the long run to ω̄τl ≡ (1− ρh) / ((1− ρh) + (1− ρl)) .

7Profits are proportional to Aη−1
i . Our specification in Equation (7) guarantees that the same is true for the innovation

cost. Otherwise, secular changes in Ai would affect the incentives to do R&D making the model nonstationary. Our
specification ensures that the relative level of Ai—but not its absolute value—matters for the R&D decision.
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The next proposition characterizes the stationary equilibrium. The proof is an extension of the
proof of Proposition 1 and is available from the web appendix.

Proposition 2 The characterization of Proposition 1 carries over to a model with costly R&D invest-
ments where c̄ > 0. More formally, there exists a traveling wave solution of the form Πa(t) = f(a− νt)
with velocity ν = ν (q, δ,G (p) , c̄, τh, τl, ω̄τl) > 0, with left and right Pareto tails. Conditional on ν, the
characterization of the tails is the same as in Proposition 1.

Predictions of the theory: In summary, the model has four testable implications:

1. ceteris paribus, the proportion of firms engaged in R&D is increasing in TFP;

2. ceteris paribus, firms with higher wedges are less likely to engage in R&D. Then, Equation (2)
implies that firms with higher sales are more likely to engage in R&D, even after conditioning on
TFP;

3. expected TFP growth is falling in current productivity, especially so for nonR&D firms;

4. the gap in average TFP growth between R&D firms and nonR&D firms increases in TFP.

3 Data and descriptive evidence

We consider firm-level data for China and, in an extension, Taiwan. The Chinese data are from the
Annual Survey of Industries conducted by China’s National Bureau of Statistics for 1998–2007 and
2011–13. This survey is a census of all state-owned firms and the private firms with more than five
million RMB (20 million RMB since 2010) in revenue in the industrial sector. To estimate firm-level
productivity growth, we focus on a balanced panel for all manufacturing firms in 2007–12 including all
firms that are in our sample in both 2007 and 2012. The data for R&D expenditure at the firm level
are for the year 2007.8 Although this is a firm-level survey, most of the Chinese firms were single-plant
firms during this period. The Taiwanese data is at the plant level, collected by Taiwan’s Ministry of
Economic Affairs, for the years 1999–2004.9 To make the Taiwanese sample more comparable to its
Chinese counterpart, we drop the firms with annual sales below 18 million Taiwan dollars.

Table 1 reports summary statistics for the Chinese and Taiwanese balanced panels. Chinese firms
are on average larger than Taiwanese firms. Part of the difference is accounted for by the Chinese
state-owned enterprises (SOE). The fraction of firms reporting positive R&D expenditure in 2007 is
15% (data are not available after 2007). The corresponding fraction of R&D firms in the Taiwanese
sample is 13% in 1999 and 10% in 2004.

We take investment in R&D as a proxy for the pursuit of an innovation strategy. We classify
firms reporting positive R&D expenditure as innovators and all other firms as imitators. We test the
robustness of the results to alternative classifications. We focus on the extensive margin of R&D for
three reasons. First, it is consistent with the discrete-choice model we estimate. Second, there are
important fixed costs of setting up an R&D lab, and only a small fraction of firms perform any R&D.

8We do not use the 2013 firm data because China’s National Bureau of Statistics adjusted the definition of firm
employment in 2013, making the 2013 employment data inconsistent with those in the earlier years.

9More than 90% of Taiwanese and Chinese manufacturing plants are owned by single-plant firms in the time periods
we study. Following Aw et al. (2011), we ignore the distinction between plants and firms.
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Table 1: Summary Statistics

Year
Number
of Firms

Number of
R&D
Firms

Median
Value Added
(million
USD)

Mean
Value Added
(million
USD)

Median
R&D
Intensity
(%)

Aggregate
R&D
Intensity
(%)

Balanced Panel of Chinese Firms
2007 123368 18140 1.48 5.81 1.73 1.86
2012 123368 N.A. 3.33 11.45 N.A. N.A.

Private Chinese Firms in the Balanced Panel
2007 117983 15828 1.43 4.67 1.65 1.54
2012 117771 N.A. 3.26 9.57 N.A. N.A.

Balanced Panel of Taiwanese Firms
1999 11229 1487 0.16 2.91 8.50 3.14
2004 11229 1144 0.17 4.78 6.42 2.93

Note: R&D intensity is the ratio of R&D expenditure to value added. Median R&D
intensity is the median R&D intensity among firms performing some R&D. Aggregate
R&D intensity is the ratio of aggregate R&D expenditure to aggregate value added for
all firms. Missing information is due to the lack of R&D data in 2012.

Third, the intensive margin is subject to a more severe measurement error.10 We also discuss how the
main insights of our analysis carry over to considering an intensive margin of the R&D choice.

Figure 2 shows the distribution of R&D and TFP growth conditional on TFP in the initial year
and conditional on firm size (measured by value added). We estimate TFP following the methodology
proposed by Hsieh and Klenow (2009). This requires a calibration of the production parameter α and
the demand elasticity η. We allow α to vary across industries and set αj in (two-digit) industry j
equal to the measured industry-specific labor income share. Following Hsieh and Song (2015), we set
η = 5. We have also estimated TFP using the methodology of Ackerberg et al. (2015) following the
implementation proposed by Brandt et al. (2017) who estimate production functions for Chinese man-
ufacturing industries. The empirical moments we target are very similar when we use this alternative
procedure—see Appendix Figure A1. To control for observable sources of heterogeneity, we regress
TFP on province, industry, and age dummies and take the residual as the measure of firm TFP.

The industry classification refers to 30 two-digit manufacturing industries. We normalize firm-level
value added by the median value in the industry to which each firm belongs. We do not explicitly
separate R&D expenditure when estimating TFP. This could potentially bias the TFP estimates for
R&D firms. The problem has no perfect solution because we do not have R&D data after 2007. To
assess its importance, we adjusted TFP in the earlier period 2001–07 by subtracting R&D expenditure

10This issue has been noted in the literature that studies firm-level R&D expenditure in Western countries (see, e.g.,
Lichtenberg 1992, Acemoglu et al., 2010). In China, it is especially severe because R&D expenditure is vaguely defined
in China’s industrial survey. For instance, the survey does not distinguish between R&D performed and R&D paid for by
the firm.
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from labor costs. Then, we plotted a version of Figure 2 based on the adjusted data. The empirical
moments are almost indistinguishable from the original figure. We conclude that the problem is likely
quantitatively small.

Figure 2: Chinese Firms in the Balanced Panel 2007–12
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Note: The X-axis in Panels A, C, and D is the 2007 TFP percentile. The X-axis in Panel B is the 2007 value added
percentile. The solid lines in Panel A and B plot the 2007 fraction of R&D firms in each TFP and value added percentile,
respectively. The solid line in Panel C plots the median annualized 2007–12 TFP growth among nonR&D firms in each
TFP percentile. The solid line in Panel D plots the difference between the median 2007–12 TFP growth R&D and
nonR&D firms within each percentile. A firm’s TFP growth is the residual of the regression of TFP growth on industry,
age, and province fixed effects. All the solid lines are smoothed by a fifth-order polynomial. The dotted lines plot the
95% confidence intervals by bootstrap.

Panel A shows the share of R&D firms by TFP percentile. The positive correlation is in line with the
prediction of our theory that more productive firms do more R&D. The share of R&D firms increases
from 11.6% in the lowest decile to 20% in the top percentile of the TFP distribution. Panel B shows
that firm size is also positively correlated with the share of R&D firms. The relationship is significantly
steeper than in Panel A: almost 50% of the firms in the top percentile of the size distribution invest
in R&D. Since larger firms are on average more productive, TFP is a driver of both panels. However,
the steeper profile in Panel B indicates that factors other than TFP must matter. In our model, a
firms’ size is determined by the product of its TFP and (one minus its) wedge. Thus, firms subject to
positive (negative) wedges are smaller (larger) than what their TFP alone would predict. The wedge
also affects the profit and, hence, the incentive to pursue an innovation strategy. Note that, in the
absence of wedges, Panels A and B would be identical. In the presence of wedges, we expect Panel B
to be steeper than Panel A which is consistent with the empirical observation.

Panels C and D show relationships between TFP growth and the distribution of initial TFP. Panel
C shows that the TFP growth rate is decreasing in TFP among nonR&D firms. In other words, there
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Figure 3: Taiwanese Firms in the Balanced Panel 1999–2004
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Note: This figure is the analogue of Figure 2 for the sample of Taiwanese firms.

is strong convergence in productivity across nonR&D firms. This is consistent with the main tenet
of our theory that learning through random interactions and imitation is easier for less productive
firms. A concern is that the negative relationship might partly be due to a survivor’s bias: low-
performing firms are more likely to exit causing the TFP growth of the surviving firms to be higher.
Since this problem is most important for low-TFP firms, we trim the lower tail of the distribution.
Another concern is measurement error in TFP. If measurement error is classic, firms with a negative
(positive) measurement error at t are overrepresented among low- (high-)TFP firms at t. Reversion to
the mean would then exaggerate the convergence pattern. In the estimation section below, we model
measurement error explicitly and allow it to influence the graph in Panel C.

Finally, Panel D compares the TFP growth for R&D firms and nonR&D firms at different percentiles
of the TFP distribution. In line with the prediction of our theory, TFP growth is higher for R&D firms
than for nonR&D firms at most percentiles. The observation that the pattern is reversed for firms with
very low TFPs can be rationalized by extending our theory with heterogeneity in R&D subsidies, as
we discuss below.

The same patterns emerge from a set of multiple regressions whose results are reported in Table
2. Panels A and B of Table 2 are related to Panels A–B and Panels C–D of Figure 2, respectively.
Panel A shows the results for a linear probability model whose dependent variable is a dummy for
R&D firms. All regressions use annual data and include industry fixed effects and year dummies, with
standard errors clustered at the industry level. We also include provincial dummies and, in column
(4), dummies for SOEs. The table shows that the fraction of R&D firms is robustly correlated with
the log of TFP. The estimated coefficient increases significantly when we include an estimated output

13



Table 2: Balanced Panel of Chinese firms, 2007–2012.

PANEL A

Dependent variable: R&D decision in 2007.

(1)
R&Dd

(2)
R&Dd

(3)
R&Dd

(4)
R&Dd

log(TFP) 0.062*** 0.368*** 0.343*** 0.305***
(0.0074) (0.0284) (0.0259) (0.0232)

wedge -0.410*** -0.378*** -0.332***
(0.0357) (0.0323) (0.0296)

exportd 0.053*** 0.054***
(0.0134) (0.0132)

SOEd 0.205***
(0.0232)

R-squared 0.143 0.208 0.211 0.224

PANEL B
Dependent variable: TFP growth.

(1)
TFP growth

(2)
TFP growth

(3)
TFP growth

(4)
TFP growth

(5)
TFP growth

log(TFP) -0.062*** -0.062*** -0.062*** -0.062*** -0.062***
(0.0035) (0.0036) (0.0035) (0.0036) (0.0036)

R&Dd 0.036*** 0.037*** 0.034***
(0.0042) (0.0040) (0.0035)

exportd -0.006 -0.006* -0.006 -0.007*
(0.0038) (0.0035) (0.0037) (0.0035)

SOEd 0.029** 0.029**
(0.0115) (0.0113)

R&D intensityh 0.044*** 0.041***
(0.0060) (0.0058)

R&D intensitym 0.042*** 0.038***
(0.0069) (0.0056)

R&D intensityl 0.025*** 0.023***
(0.0035) (0.0033)

R-squared 0.122 0.122 0.123 0.122 0.123

Note: Panel A: the dependent variable R&Dd is a dummy variable switching on for firms that report positive R&D
expenditure. Panel B: the dependent variable is annualized TFP growth 2007–12. Explanatory variables: log(TFP) is
the logarithm of TFP; Wedge indicates the firm’s output wedge − log(1 − τi) and is calculated as described in Section
2; exportd is a dummy variable for exporters; SOEd is a dummy variable for state-owned firms; R&D intensityh is a
dummy variable for high R&D intensity switching on if the firm R&D expenditure over sales is in the 67th percentile
and above (among all R&D firms); R&D intensitym is the analogue dummy for medium R&D intensity (between 33rd
and 66th percentiles); R&D intensityl is the analogue dummy for low R&D intensity (below the 33rd percentile.) All the
explanatory variables are from 2007. Standard errors are reported in parenthesis. The number of observations is 109,799.
Observations are weighted by employment and standard errors are clustered by industry. All regressions include industry,
age, and province fixed effects. We drop firms with TFP in the bottom 10 percentiles.
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wedge among the regressors.11 Both the positive correlation with TFP and the negative correlation
with the output wedge line up with the predictions of the theory. A large output wedge discourages
firms from investing in R&D by reducing profits. Columns (3)–(4) show that the results are not driven
by exporting firms nor SOEs.

We cannot include firm fixed effects in this regression analysis because we have data on R&D
investments only for 2007. However, we have performed the same analysis on an earlier sample (2001–
07) for which R&D information is available in both the initial and final year. Including firm fixed
effect implies that the effect of R&D are identified by firms adopting (or dropping) R&D over time.
The results for the 2001–07 panel—which we report in Appendix Table A1—are qualitatively similar
to those reported in Table 2: as firms become more productive over time they become more likely to
perform R&D.

Panel B reports the results of regressions with average TFP growth during 2007–12 as the dependent
variable. TFP growth is regressed on the initial log-TFP level and on an R&D dummy in 2007. The
tables show a robust negative correlation between TFP growth and initial TFP (consistent with Panel
C of Figure 2) and a robust positive correlation between TFP growth and an R&D dummy (consistent
with Panel D of Figure 2). The results are robust to controlling for SOE and export firm dummies.

Columns (4) and (5) focus on the intensive margin of R&D by breaking the R&D dummy into three
separate dummies, one per each tercile of R&D expenditure. All three dummies are both statistically
and economically significant. Reassuringly, a higher (lower) investment in R&D is associated with
a higher (lower) future TFP growth. The growth difference between the upper and lower terciles is
statistically significant.12

Appendix Figure A2 shows that the patterns in Figure 2 are robust to a more stringent classification
counting only those firms with R&D-to-value added ratio exceeding 1.73% (median among R&D firms)
as innovative. While this criterion by construction reduces the share of innovative firms, the four panels
are qualitatively similar. The same is true for a version of the multiple regressions in Table 2 where
we apply the more stringent classification of R&D firms. The sign of the coefficients of interest is the
same as in Table 2 and all coefficients are highly significant. Details are available upon request.

Another potential concern is that the results might be driven by a subset of industries (e.g., semi-
conductors) for which R&D is especially salient. However, we find that the patterns do not change
significantly if we exclude the top five R&D-intensive industries. We also find that the results are sim-
ilar when partitioning the sample into subgroups: exporting versus nonexporting firms, SOEs versus
non-SOEs, and sorting firm by regions.

The empirical patterns are similar in Taiwan for both the intensive and the extensive margin—see
Figure 3 and Appendix Table A2—with two noteworthy quantitative differences. First, the R&D-TFP
profile in Panel A is steeper in Taiwan than in China. Moving from the 60th to the 99th TFP percentile
the share of Taiwanese R&D firms increases from 10% to over 35%. Second, Panel D has very large
standard errors. However, the regression analysis in Table A2 establishes that there is a robust and
highly significant positive correlation between R&D and future productivity growth similar to China.

11The measurement of output wedges—which follows Hsieh and Klenow (2009)—is discussed in Section 4. Here, we
note that measurement error might exaggerate the negative correlation between the estimated TFP and the output wedge,
driving part of the strong opposite-sign pattern for the estimated coefficients in Table 2. We address this issue in our
structural estimation below.

12We also run separate regressions like in Panel A to detect whether the selection into high versus low R&D intensity
is driven by the TFP level. However, the data show no clear pattern.
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4 Estimation

We estimate the model assuming a closed-economy environment. We classify firms performing R&D as
pursuing an innovation strategy. The other firms are imitators. International knowledge spillovers are
not part of the model, although they are partially incorporated through the activity of multinational
firms producing in China which are part of the sample (cf. Holmes et al. (2015)). In Section 7 we
study an extension explicitly incorporating international spillovers.

The estimation targets two sets of moments: moments that are informative about the economic
mechanism of the model and moments that are informative about measurement error. For the former,
we focus on a set of selected percentiles in Figure 2. We consider four intervals of the distribution
of TFP and size in each of the four panels: the 10th to 49th percentile, the 50th to 79th percentile,
the 80th to 94th percentile, and the top five percentiles.13 This choice yields sixteen empirical target
moments. Appendix Figure A3 plots the confidence intervals around these moments.

We calibrate the parameters α, η, θ, and ã, and structurally estimate the remaining parameters
using simulated method of moments. The calibration of α and η, discussed above, is external to the
model. We return to the calibration of θ and ã when discussing the technology of innovation below.

4.1 Measurement error and wedges

Measurement error: Measurement error (m.e.) is a common concern in models of misallocation à
la Hsieh and Klenow (2009) because it potentially affects both the measured moments of TFP and the
imputed wedges. In our model, m.e. affects the target moments in Appendix Figure A3. On the one
hand, it generates an attenuation bias in the relationships between the propensity to engage in R&D
and both TFP (Panel A) and size (Panel B), flattening both profiles. On the other hand, it exaggerates
TFP convergence in Panel C, steepening the profile. We now propose an explicit model of m.e. and
discuss its estimation.

We assume that value added and inputs (capital and labor) are measured with classical m.e.:

ln
(
P̂iYi

)
= ln (PiYi) + µy,

ln

(
̂Kα
i N

1−α
i

)
= ln

(
Kα
i N

1−α
i

)
+ µI ,

where µy and µI are i.i.d. measurement errors with variances v̂y and v̂I . The notation with hats
denotes observed variables, while no hat denotes true variables.

We make the key identifying assumption that the firm-specific wedges τi are constant over the unit
of time we consider, that is, the 2007–12 period.14 Under this assumption, the time series variation
(2007–12) in value added and input measures at the firm level can be used to infer the extent of m.e.
Equations (2) and (3) imply that inputs are proportional to value added times the output wedge, i.e.,
(1− τi) (PitYit) ∝ (rt)

α (wt)
1−α (Kit)

α (Lit)
1−α. Then, a constant τi implies that

∆ ln
[
(Kit)

α (Lit)
1−α
]

= ∆ ln (PitYit)−∆ ln
[
(rt)

α (wt)
1−α
]
,

13We zoom on the upper tail of the distribution because large and high-productivity firms are more likely to engage in
R&D. We abstract from the first decile to mitigate concerns about survivors’ bias.

14In the data, the variance of ln(1 − τi) is approximately constant, increasing slightly from 0.724 in 2007 to 0.769 in
2012 in the balanced sample. In the full sample, the dispersion declines slightly, from 0.806 to 0.794.
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where ∆ lnXt ≡ lnXt − lnXt−1. The variance of (true) value added growth can then be identified as
follows:

cov

(
∆ ln

(
P̂itYit

)
,∆ ln

(
̂(Kit)
α (Lit)

1−α
))

= cov
(

∆ ln (PitYit) + ∆µyt,∆ ln (PitYit)−∆ ln
[
(rt)

α (wt)
1−α
]

+ ∆µIt

)
= var (∆ ln (PitYit)) . (10)

The second equality follows from the assumptions that m.e. is classical—implying that ∆µyt and ∆µIt
are white noise—and that the input price (rt)

α (wt)
1−α is identical across firms. Therefore, the cross-

sectional covariance is not affected by the aggregate input price growth. The variance of m.e. in value
added and inputs can then be identified as

var
(

∆ ln
(
P̂itYit

))
− cov

(
∆ ln

(
P̂itYit

)
,∆ ln

(
̂(Kit)
α (Lit)

1−α
))

= 2v̂µy (11)

var

(
∆ ln

(
̂(Kit)
α (Lit)

1−α
))
− cov

(
∆ ln

(
P̂itYit

)
,∆ ln

(
̂(Kit)
α (Lit)

1−α
))

= 2v̂µI . (12)

We measure the empirical covariances in Equations (11) and (12) using data on growth rates in revenue
and inputs between 2007 and 2012—see Appendix Table A3. M.e. in revenue and inputs translates into
m.e. in TFP. Equation (3) implies that m.e. in TFP is â − a = [η/ (η − 1)]µy − µI , where a ≡ logA.
The variance of m.e. in TFP is, then, v̂µa = [η/(η − 1)]2 v̂µy + v̂µI . We set η = 5 and use the empirical
v̂µa as a target moment in the joint estimation of the parameters of the model. In the appendix we
characterize analytically the effect of m.e. on the moments of the model.15 This analytical mapping
speeds up computations significantly so that estimation becomes feasible. Adding m.e. by way of
simulations would be time-consuming and would be a computational curse for the estimation.

Distribution of output wedges: The estimated output wedges and TFP are correlated. To keep
consistency between the simulated model and the data, we assume a distribution of output wedges
that has the same correlation between output wedges and TFP as in the empirical distribution. This
correlation affects the size of aggregate distortions as discussed by Restuccia and Rogerson (2008).
More formally, we assume the following relationship:

− ln (1− τi) = b · (ait − at) + ετit, (13)

where at is the mean of ait, and we assume that ετit ∼ N (0, var(ετit)). We are interested in estimating
the coefficient b in Equation (13) and var(ετit). Estimating b by OLS yields a biased estimate because
of m.e. However, the m.e. model above implies the following unbiased estimate of b,

b =
cov (ait,− ln (1− τi))

var (ait)
=
cov (âit,− ln (1− τ̂i))−

(
η
η−1

)
· v̂µy − v̂µI

var (âit)−
(

η
η−1

)2
v̂µy − v̂µI

. (14)

15In principle, we could estimate two of three empirical variances v̂µa, v̂µy, and v̂µI , (the third being a combination of
the other two) in the estimation. However, the variances must be constrained to be non-negative. In the estimation of
the benchmark model the constraint v̂µI ≥ 0 turns out to be binding. This holds true for all data samples we consider.
To keep the number of estimated parameters low, we impose v̂µI = 0 and set v̂µy = [(η − 1)/η]2 v̂µa when adding m.e. to
the empirical moments.
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Then, equation (13) implies var (ετit) = var (ln (1− τi))−b2var (ait), where var (ln (1− τi)) = var (log (1− τ̂i))−
v̂µy−v̂µI and, by construction, var (âit) = var(ait)+v̂µa. The resulting unbiased estimates are b = 0.779
and var (ετit) = 0.042 (compared to biased OLS estimates of 0.802 and 0.047, respectively).16 Moreover,
one third of the variance of measured wedges is due to m.e.

4.2 The technology of R&D

Cost function. The parameter θ in Equation (7) captures the elasticity of a firm’s innovation cost to
its TFP. We calibrate this parameter by targeting the relative cross-sectional distribution of the R&D
cost-to-value added ratio. Formally, we target the ratio E [ψj |aj ] /E [ψi|ai], where ψ denotes the ratio
of innovation costs to value added and ai and aj denote TFP in the i’th and j’th percentile. This ratio
can be expressed analytically as

E [ψj |aj ]
E [ψi|ai]

= exp

(
1− η
η

(1− θ + b) (ai − aj)
)
. (15)

We use data on actual R&D costs and consider the R&D-to-value added ratio for firms in the top five
percent of the TFP distribution relative to firms in the 10th-49th percentile. Empirically, this ratio
declines with TFP, being 37% higher for low-TFP R&D firms (10-49th percentile) than for high-TFP
(hence, larger) firms (top five percentiles). The parameter b is adjusted for m.e. in line with Equation
(14). Equation (15) then implies an elasticity of θ ≈ 0.25. Appendix Figure A4 shows that this model
fits the slope of the relationship between R&D intensity and TFP percentiles in the data well.

Step size. In the model, firms that are successful in either innovating or imitating increase their log
productivity by a step size ã. The choice of ã has no appreciable effect on the model’s ability to fit
the cross-sectional data of Figure 2. However, it affects the estimate of the parameter c̄. The reason
is that, in the theory, profits are an increasing convex function of ã—see Equation (1). Because the
fraction of R&D firms is a target of the estimation, a larger ã induces a larger estimated value of c̄
(together with a lower estimate of p̄).

Ideally, one could estimate ã jointly with the other parameters of the model. However, this is
computationally infeasible. Instead, we set ã so as to target a realistic average cost of innovation as
a share of value added. In particular, we set ã = 0.78 which implies—conditional on the estimated
parameters—an average cost of innovation of 3.7% of the industrial value added in the benchmark
economy.17 This ratio is about twice the aggregate R&D-to-value added ratio in the Chinese data. We
view this as a realistic target in light of the innovation management literature documenting that formal
R&D is only a part of the costs incurred by firms pursuing innovation. The purchase of new equipment
often reflects the introduction of new technologies although it is recorded as capital investment. Hiring
STEM workers is another facet of an innovation-oriented strategy. Finally, in an innovative firm,
managers divert more of their attention to the introduction of new products or more efficient processes.18

16Note that the distribution of τi is by construction consistent with Equation (13). Hence the variance of τi depends
on both b, ετi , and the variance of A—something we return to in Section 7. When we simulate the model, the firm-
specific wedge τ is drawn each period in line with (13) and with an i.i.d. draw of ετit. Since firm-specific TFP is highly
autocorrelated and b 6= 0, the output wedges are positively autocorrelated.

17This calculation assumes a risk-adjusted discount rate of 10% which we view as reasonable given pervasive financial
and contractual imperfections in China and the high systematic risk of innovative activities.

18A coauthor of a study of 40 companies over 25 years (Colarelli O’Connor et al. (2018)) summarizes the findings
as follows: “Innovation is much bigger than R&D. It involves three distinct capabilities: Discovery, Incubation, and
Acceleration (DIA). R&D is just one part of the Discovery capability – invention.” The other activities “often require[s] as
much time and resources and deserves as much emphasis, as inventing the technologies themselves” (Colarelli O’Connor
(2019)).
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Productivity of innovation. We assume that firms draw p from an i.i.d. uniform probability
distribution with support [0, p̄], where p̄ is structurally estimated.

4.3 Simulated method of moments (SMM)

We estimate the remaining parameters using SMM (McFadden 1989). The estimated parameters min-
imize the distance between the target moments and the stationary distribution of the model. Analyti-
cally tractability is key for our procedure. We simulate the model under some parameter configuration,
add m.e. to the moments, and calculate the distance from the targeted empirical moments. Then, we
iterate on the parameter vector. The system of ordinary difference equations allows us to calculate
the stationary distribution efficiently. We could in principle have simulated the distribution of a large
number of firms for every trial of a parameter configuration. However, such alternative approach would
be computationally too demanding.

In all our trials, the numerical simulations converge to a unique stationary distribution irrespective
of initial conditions, provided that the learning parameter q is not too small. When this parameter is
sufficiently close to zero, there exists no ergodic distribution.

The sample is randomly generated by bootstrapping for K = 500 times. Denote by gm,k the mth
moment in the kth sample and by gm (φ) the vector of the corresponding moments in the model, where
φ is the vector of parameters that we estimate. We minimize the weighted sum of the distance between
the empirical and simulated moments:

φ̂ = arg min
φ
h (φ)′ W h (φ) ,

whereW is the moment weighting matrix and hm (φ) =
[
gm (φ)− 1

K

∑K
k gm,k

]
/gm (φ) is the percentage

deviation between the theoretical and empirical moments, averaged across K samples. We use the
identity matrix as the benchmark weighting matrix to avoid the potential small-sample bias—see
Altonji and Segal (1996).

5 Results

We first estimate a benchmark parsimonious model that reproduces the theoretical model without any
added new feature. Then, we consider some extensions. We keep the parameters θ and ã constant
across specifications at the level calibrated to the benchmark economy. We focus on China and study
Taiwan for comparison.

5.1 Parsimonious model

In the benchmark model—which we label the Parsimonious model, henceforth, PAM—we estimate five

parameters: q, c̄, p̄, δ, and vµa. The innovation cost is ci(t) = c̄ ·
(
Ai (t)θ Ā(t)1−θ

)η−1
. Before turning

to the results, we summarize the sources of identification of the structural parameters.

Identification. The parameter q is the probability of successful imitation conditional on meeting a
more productive firm. It is mostly pinned down by the TFP convergence rate across imitating firms
(Panel C of Figure 2) conditional on m.e. The parameter δ (passive imitation) is identified by the TFP
convergence rate across both imitating and innovating firms (Panels C and D of Figure 2). Lack of
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convergence within the set of innovating firms implies that δ is close to zero, while strong convergence
implies that δ is large. The parameter p̄ is pinned down by the extent to which, conditional on TFP,
innovating firms grow faster than imitating firms (Panel D of Figure 2). Given the other parameters,
the innovation cost parameter c̄ is disciplined by the total share of innovating firms. Finally, the
standard deviation of m.e. affects Panels A, B, and C in Figure 2. Measurement error flattens the
schedules in Panels A and B while steepening the schedule in Panel C. In other words, m.e. creates
the impression of a stronger convergence in the data than there is in reality. Thus, a larger estimate of
vµa implies a lower estimate of q.

Results. The estimation results are displayed in column (1) of Table 3. The estimated coefficient
q = 0.175 implies that there is significant convergence in TFP even after removing m.e. The estimated
δ is close to zero indicating that R&D has a high opportunity cost in terms of foregoing learning through
random interactions. The estimated average probability of p is about 4.8% (i.e., p̄/2 = 0.096/2.) Given
the costs and benefits of the two strategies, the model predicts that ca. 12% of the firms invest in R&D
which compares with 15% in the data. The estimated variance of m.e. in TFP is σ2

µa = 0.3. This
implies that m.e. accounts for 30% of the variance of log TFP and 92% of the variance of TFP growth.

Figure 4 shows that the PAM fits the data fairly accurately, matching well the convergence pattern
in Panel C and the differential growth between R&D and nonR&D firms in Panel D.19 However, the
model predicts too steep profiles for R&D-TFP (Panel A) and for revenue-TFP (Panel B).

5.2 Heterogeneous innovation costs

In this section, we allow for heterogeneity in the innovation cost parameter c̄. Heterogeneity could
arise from technological factors or from additional wedges that directly distort the imitation-innovation
decision. These range from R&D subsidies to government investments in local infrastructure, science
parks, to credit constraints—particularly severe for R&D investments.

Figure 4 shows that the models with heterogeneous innovation fit more accurately the target mo-
ments, especially Panel B. Intuitively, the imitation-innovation decision now depends also on the real-
ization of ci, thereby reducing the importance of TFP and size. This flattens the schedules in Panels
A and B that were too steep in the PAM.

We consider three specifications. In the first—that we label Flexible model, henceforth, FLM—
innovation wedges are i.i.d. across firms. In the second, we allow the wedges to be correlated with
observable firm characteristics, capturing the idea that local and central governments may target their
support to firms with certain characteristics. We label this specification the Industrial Policy model,
henceforth, IPM. Finally, we consider a specification where some firms can strategically misreport
innovation expenditures in order to attract subsidies without actually distorting their optimal imitation-
innovation decisions. We label this model the Fake R&D model, henceforth, FRM.

Flexible model: In the FLM, the effective innovation cost is given by

ci (t) =
[
c̄− exp

(
ξi(t)−

σc
2

)
+ 1
]
·
(
Ai (t)θ Ā(t)1−θ

)η−1
,

where ξi ∼ N
(
0, σ2

c

)
. Note that E [c̄− exp (ξi(t)− σc/2) + 1] = c̄, so σc is a mean-preserving spread.

Figure 5 shows that the fit of the FLM improves upon that of the PAM. This is reflected in a lower
residual sum of squares, mostly attained in Panel B. The estimated parameters are in the ballpark

19M.e. has a significant effect on the estimates. Ignoring it would increase the estimates for q and δ to q = 0.702 and
δ = 0.500, implying a faster convergence. The reason is that in the absence of m.e., Panel C—TFP growth conditional
on TFP for nonR&D firms—dictates a fast catching up rate for low-TFP firms, as discussed above.
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Table 3: Estimation, Chinese Firm Balanced Panel 2007–2012.

(1) (2) (3) (4) (5) (6) (7) (8)
Higher R&D cutoff High & Low R&D

PAM FLM IPM FRD PAM IPM PAM IPM

Imitation prob. q 0.175 0.271 0.361 0.275 0.294 0.546 0.223 0.359
(0.031) (0.019) (0.019) (0.051) (0.058) (0.052) (0.026) (0.052)

Second chance δ 0.008 0.020 0.001 0.019 0.141 0.001 0.058 0.019
(0.011) (0.021) (0.027) (0.024) (0.106) (0.080) (0.027) (0.026)

Innov. prod. p̄ 0.096 0.114 0.113 0.237 0.107 0.111 0.103 0.107
(0.008) (0.006) (0.006) (0.016) (0.013) (0.010) (0.007) (0.012)

p̄l 0.076 0.115
(0.009) (0.010)

Innov. cost c̄ 1.627 3.374 1.318 9.480 3.601 8.393 3.015 2.075
(0.136) (0.174) (0.177) (1.363) (0.448) (2.403) (0.208) (0.791)

c̄l 0.094 0.612
(0.135) (0.979)

Std.dev. m.e. σµa 0.549 0.472 0.431 0.459 0.476 0.391 0.531 0.433
(0.014) (0.008) (0.005) (0.025) (0.022) (0.011) (0.015) (0.024)

Std.dev.innov. subs. σc 1.243 1.092 0.011 1.969 1.206
(0.038) (0.037) (0.036) (0.213) (0.113)

Policy inter. ca 1.888 -10.46 2.499 2.015
(0.159) (1.042) (0.356) (0.316)

Fake share Υ 0.099
(0.005)

High p̄ share 0.872 0.682
(0.029) (0.047)

J-Statistic 1.518 0.507 0.368 0.362 2.690 0.516 3.310 0.882

Note: The table shows the estimated parameters for the different models discussed in the text. Columns (1)–(4) are for
the Parsimonious (PAM), Flexible (FLM), Industrial Policy (IPM), and Fake R&D (FRD) model, respectively. Columns
(5)–(8) presents the results for extensions discussed in the text. Bootstrapped standard errors in parentheses.

of the PAM estimates with two noteworthy differences. First, the estimate of c̄ is larger than in the
PAM. The reason is selection: ceteris paribus, subsidized firms (some of them facing a negative effective
innovation cost) have a stronger incentive to pursue an innovation strategy. With and unchanged c̄
too many firms want to do R&D. To match the empirical share of R&D firms, the model requires
a larger average innovation cost. Second, the estimate of m.e. is now lower because the R&D cost
dispersion flattens the TFP-size profile in Panel D, mitigating the need for large m.e. The implied
lower observed TFP convergence is offset by a larger estimate of the q parameter. The ratio between
innovation expenditure and value added is 1.1% in the FLM. This calculation excludes both positive
and negative wedges from the cost paid by the firm.

Industrial Policy: Next, we allow the innovation wedges to be correlated with TFP. This captures
the possibility that the government engages in some form of industrial policy targeting firms with
particular characteristics (e.g., location) that are correlated with TFP. In the estimation, we do not
impose any sign on this correlation. We assume the effective innovation cost ci to be of the form

ci (t) =
[
c̄− exp

(
ξi(t)−

σc
2

)
+ 1 + ca (G(ai)− 1/2)

]
·
(
Ai (t)θ Ā(t)1−θ

)η−1
,

where G is the cumulative density of ai. ca > 0 means the industrial policy favors low-TFP firms, while
ca < 0 means the opposite. This specification ensures that the dispersion in innovation costs is again
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Figure 4: Parsimonious Model (PAM)
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Note: The figure shows the fit of the PAM. It plots the moment predicted by the model against their empirical counterpart
for China 2007–12. The X-axis in Panel A, C and D is the first-period TFP percentiles defined on four intervals: the
10th to 49th, the 50st to 79th, the 80th to 94th and the 95th to 99th. The X-axis in Panel B is the first-period value
added percentiles defined on the same four intervals. The solid lines in Panel A and B plot the first-period fraction of
R&D firms in each TFP and value added interval, respectively. Panel C plots the median annualized TFP growth among
nonR&D firms in each TFP interval in the data against the corresponding expected growth rate for firms in the model.
Panel D plots the difference between the median TFP growth between R&D and nonR&D firms in the data against the
corresponding difference in expected growth in the model. A firm’s TFP growth is the residual of the regression of TFP
growth on industry, age and province fixed effects.

a mean-preserving spread over c̄ so the parameter c̄ is comparable across specifications.20

Column (3) in Table 3 reports the estimation result for the IPM. The fit of the model further
improves relative to the FLM—the J-Statistic declines by 30%. Figure 5 shows the fit of the targeted
moments for the IPM along with the FLM. The estimated value of the new parameter ca is positive,
indicating a negative correlation between TFP and innovation wedges. In other words, more productive
firms are “taxed.” To understand the source of identification of this parameter, compare the results for
the two models in Panel A in Figure 5. In the estimated FLM, the schedule of Panel A is too steep. A
positive correlation between TFP and innovation wedges reduces the propensity of high-TFP firms to
innovate thereby flattening the schedule in Panel A. While increasing σc would attain the same result,
it would also flatten the schedule in Panel B (which is already flatter in the FLM than in the data)
compromising the fit of the relationship between size and TFP.

Fake R&D: Chen et al. (2021) suggests that many Chinese firms respond to subsidies by reclas-
sifying operational expenditure as R&D. To explore this hypothesis, we augment our theory with a
simple model of moral hazard. We assume that a positive proportion of firms can falsely report to be
investing in R&D in order to collect subsidies without suffering any punishment. Misreporting firms

20To see this, note that
∫ a
−∞G(a)g(a)da = [G(a)]2 /2, implying that E [G(ai)− 1/2] = 0.
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Figure 5: Flexible (FLM) and Industrial Policy (IPM) models
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Note: The figure shows the fit of the FLM and IPM. See Figure 4 for additional information.

are then incorrectly classified as R&D firms. More precisely, we assume that a share Υ of firms can
collect subsidies by just claiming to invest in R&D. After collecting the subsidy, each firm in this group
decides whether it is optimal for them to actually engage in R&D. Since the econometrician cannot
see which firms fudge R&D expenditure, misreporting biases the estimated productivity of innovation
investments toward zero. The share Υ of privileged firms is the only additional parameter in the
structural model.

Column (4) in Table 3 reports the results. According to our estimate, a share Υ = 9.9% of firms
can fake R&D (comprising 9.4% fudging nonR&D firms and 0.5% R&D firms.) Note that in our
specification the FRM nests the IPM as a particular case when Υ = 0. However, we obtain a very
small and statistically insignificant estimate of σc indicating that allowing for R&D fudgers makes
random heterogeneity in costs redundant. Therefore, the IPM and FRM accurately fit the data with
the same number of parameters.

While the fit of the two models is very similar (with the FRM performing marginally better),
the two specifications paint a somewhat different picture. On the one hand, two thirds of the R&D
firms in the data are fakers. This flattens the schedules in Panels A and B. On the other hand, in
the FRM the truthful R&D firms are highly positively selected as shown by the observation that the
industrial policy parameter ca switches sign relative to the IPM. In the FRM, high-TFP firms are
subsidized rather than taxed. Moreover, the productivity of innovation investments is substantially
higher: p̄ = 0.24 instead of p̄ = 0.11. When taking selection into account, this implies that for
high-TFP firms, the productivity growth difference between nonR&D and true R&D firms is as high
as 11.9%. This result is consistent with the casual observation that China has a number of highly
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innovative and internationally successful firms (e.g., Lenovo, Tencent). Figure A5 in the appendix
illustrates the quantitative results in detail. The figure highlights that high-TFP firms have a stronger
comparative advantage in pursuing innovation. Conversely, many low-TFP firms reporting spending
on R&D are fudgers.

Because both the IPM and the FRM fit the target moments so accurately, it is not possible to let
the data discriminate between the two models. One could possibly rely on some prior about the nature
of the industrial policy in China—i.e., whether the government supports or punish the more productive
firms.21 We leave the investigation of this issue to future research.

5.3 Intensive Margin

In Section 3, we noted a positive correlation between R&D expenditure and future productivity growth
among the R&D firms. Motivated by this empirical observation, we now perform robustness analysis
on the R&D intensity. We pursue two alternative exercises.

Higher R&D cutoff: First, we classify as innovative only those firms with R&D intensity above
the empirical median for R&D firms. We recalculate the target moments based on this alternative
classification. The results for the PAM and IPM are reported in columns (5)-(6) of Table 3. Treating
firms that make small investments in R&D as imitators does not alter the broad picture. The estimated
cost of R&D is larger in order to match the smaller proportion of R&D firms. The estimated diffusion
parameters q and δ are also larger. The findings are similar in the IPM. Appendix Figure A6 shows
the fit of the targeted moments for both the PAM and IPM.

High- and low-R&D firms: Next, we introduce a distinction between high- and low-R&D firms. In
the data, we assign a firm to the high-R&D group if its R&D expenditure-to-value added ratio is higher
than the median 1.73% ratio. Appendix Figure A7 displays the data moments (along with the fit of
the PAM and IPM.) For instance, Panels A1 and A2 are the analogues of Panel A in Figure 4 broken
down by high- and low-R&D firms. Two features of the data are noteworthy: First, future productivity
growth is higher for high-R&D firms. Second, the propensity to engage in R&D conditional on TFP
and size are similar for the two groups of firms. Then, we augment the theory with the assumption
that there exist two distinct technologies entailing different costs and success probabilities. More
formally, firms are randomly assigned to either of the technologies with parameters {c̄l, p̄l} and {c̄, p̄},
respectively. Each firm draws a probability of success p from the distribution to which it is assigned.
The distribution of wedges is assumed to be independent of the assignment.

The targets of our estimation are now the empirical moments in Figure A7. In addition, we target
the ratio of R&D expenditure to value added for high- relative to low-R&D firms, which is a factor of
8.6 in the data. The proportion of high-R&D firms is an additional parameter that we estimate.

The estimates for the PAM and IPM are reported in Columns (7)-(8) of Table 3. In the PAM, firms
assigned to the {c̄l, p̄l} group face both a lower cost and a lower average probability of success if they
choose the innovation strategy.22 In the IPM, the estimated productivities p̄l and p̄ are very similar

21Technically, the estimation finds two local minima. One corresponds to column (4) in Table 3. The other is a corner
solution where no firms can fake R&D and the estimated parameters are as in column (3) of Table 3. In the calculation of
bootstrap standard errors, some simulations yield a lower J-Statistic in the former model, while others yields the opposite
result. When calculating the bootstrap standard errors of the estimates in column (4), we only consider draws where the
minimum is interior.

22The proportion of firms drawing from the {c̄l, p̄l} process is estimated to be 13%. Since the high-R&D firms are by
construction 50% of the total R&D firms, this implies that many firms assigned to the {c̄, p̄} process choose to imitate
because innovation is too costly. In contrast, a large proportion of firms assigned to the {c̄l, p̄l} process choose the
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(in fact, p̄l > p̄.) Still, selection guarantees that among the firms choosing the innovation strategy
TFP growth is significantly higher for high-R&D than for low-R&D firms, consistent with the data.
Intuitively, because of the high investment cost, only the very best firms (i.e., those drawing very high
p’s) assigned to the {c̄, p̄} process choose to innovate. Appendix Figure A7 shows that both the PAM
and IPM fit well the target moments.

We conclude that a simple extension of the model can capture the empirical relationship between
R&D intensity and future growth. The limitation of this extension is that it does not allow firms to
choose the project size. Endogenizing the intensive margin requires a more significant departure from
our discrete-choice model and is left to future research.

5.4 Nontargeted moments

In this section, we discuss predictions of the model for empirical moments we do not target in the
estimation.

5.4.1 Indirect inference

The estimation targets pairwise empirical correlations but not the joint correlation structure between
the variables. We now use indirect inference methods to investigate whether the model is consistent
with the empirical conditional correlations. To this aim, we consider a set of multiple linear regressions.
In the first ones, the dependent variable is the discrete choice of pursuing an innovation strategy, while
the right hand-side variables are TFP levels (in logarithms) and the wedges. Panel A of Table 4 shows
the results. Column (1) restates the empirical relationship in Panel A of Table 2: the probability for
a firm to invest in R&D is increasing in both TFP and output subsidies (i.e., a negative coefficient on
the output wedge τ). Running the same regression on the simulated model (including m.e.) yields the
same qualitative results for all models. In the PAM, the R&D decision is more elastic to TFP and
wedges than in the data, while the heterogeneous cost models provide a better quantitative match to
the data.23

Next, in Panel B of Table 4 we run linear regressions where the firms’ TFP growth is the dependent
variable while the initial TFP level and R&D decision (in the initial year) are the explanatory variables.
Column (1) restates the empirical relationship from Table 2 that TFP growth is falling in initial TFP
and that TFP growth is larger for R&D firms. Running the same regression on the simulated models
replicates the empirical correlations. Moreover, all models yield elasticities that are in the ballpark of
the empirical estimates. In conclusion, the indirect inference analysis shows that the model fits well the
(nontargeted) joint correlation structure between TFP growth, the R&D decision, initial TFP level,
and size (wedges).

5.4.2 Productivity distribution

The structural model features a traveling wave—a stationary productivity distribution—that evolves
at a constant endogenous speed. The distribution is tent-shaped with two Pareto tails—cf. Proposition
2. In this section, we compare the stationary TFP distribution and the growth rate predicted by the
theory with their empirical counterparts.

innovation strategy.
23The standard errors of the structurally estimated parameters are based on simulating a sample of the same size as

the empirical one and estimating the regression in the same way as on the empirical sample.
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Table 4: Indirect Inference, Balanced Panel of Chinese Firms, 2007–2012.

PANEL A

Dependent Variable: R&D decision in 2007

(1) (2) (3) (4) (5)
Data PAM FLM IPM FRM

log(TFP) 0.368*** 0.712*** 0.287*** 0.298*** 0.322***
(0.0284) (0.0145) (0.0167) (0.0181) (0.0167)

wedge -0.410*** -0.824*** -0.274*** -0.327*** -0.357***
(0.0357) (0.0177) (0.0202) (0.0214) (0.0203)

PANEL B

Dependent Variable: TFP Growth

(1) (2) (3) (4) (5)
Data PAM FLM IPM FRM

log(TFP) -0.062*** -0.094*** -0.104*** -0.112*** -0.081***
(0.0035) (0.0002) (0.0003) (0.0003) (0.0004)

R&Dd 0.036*** 0.034*** 0.033*** 0.028*** 0.053***
(0.0042) (0.0005) (0.0005) (0.0005) (0.0008)

Note: The first column reports the regression results from the data. All regressions include industry, age, and province
fixed effects. Columns (2)-(5) report the results from the simulated data. See Table 2 for variable definitions.

TFP dispersion: Figure 6 compares the predicted and empirical TFP distributions for the PAM,
FLM, IPM, and FRM. The estimated model has a lower dispersion than TFP in the data: the PAM
accounts for 72% of the empirical variance, while the three heterogeneous cost models account for
between 44% and 62% of it. The inability of the model to account for the full empirical dispersion can
be attributed to factors that are omitted in our stylized theory. For instance, firms could be subject to
exogenous i.i.d. shocks to TFP that do not affect the cost of innovation. These shocks would increase
the TFP dispersion without significantly altering firms’ imitation-innovation choice. We also note that
the dispersion of TFP is sensitive to the step-size parameter ã. A larger ã yields a higher dispersion.
In Panel A, we show that estimating the model under the assumption of ã = 1.12 yields a good match
of the empirical distribution. However, such a model overpredicts the empirical average R&D-to-value
added ratio.24

The model matches the upper tail better than the lower tail of the empirical distribution, whose
measurement is notoriously noisy. Nevertheless, our model makes some progress on understanding the
lower tail because most existing theories of random interactions between firms do not feature any lower
Pareto tail.

TFP growth: The model yields predictions about the speed of growth of the traveling wave. The
aggregate TFP growth in the data is 3%.25 The PAM implies a steady-state annualized productivity

24The step size ã does not affect the fit the targeted moments. In particular, Figure 4 would look essentially identical
for ã = 1.12.

25We calculate the aggregate growth rate in the data using the methodology of Hsieh and Klenow (2009). We first
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Figure 6: TFP Distribution
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Note: The dotted lines represent the log density of log TFP in the data. The solid and dashed lines are the steady-state
log density of log TFP for various models. Panel A shows two versions of the PAM–the benchmark model and the one
with smaller step size. Panel B: FLM, Panel C: IPM, and Panel D: FRM.

growth rate of 3.6%. The corresponding figure in the IPM is 5.1%.
In our model, the aggregate growth rate is determined by both innovation and knowledge diffusion.

To quantify the role of each channel we evaluate what aggregate growth would be if only one channel
were operating for one period while holding fixed the firms’ R&D decisions. In the PAM, innovation
and imitation account for 20% and 80% of TFP growth, respectively. The share accounted for by
passive imitation from innovating firms is negligible. Note that the decomposition would yield very
different results if innovation were shut down permanently. Absent innovation, the long-run growth
would be zero as long as the initial TFP distribution is bounded.

5.4.3 Patents

Our theory predicts that firms that are larger and more productive invest more in attempting to
innovate and should therefore innovate more. Moreover, among those trying, firms that are successful
at innovating should grow faster than those failing. In Section 3 we measured innovation investments
by R&D expenditures. Alternatively, we could try to measure the outcome of this investment activity.
A common empirical measure of successful innovation is patents. In this section, we show that the
predictions of our theory are broadly consistent with data on patents.

To this end, we collect data for all the patents approved by China’s State Intellectual Property
Office (SIPO). We match the SIPO data with the 2012 NBS data. In the 2007–12 balanced panel of
matched firms, there are 14,492 firms (out of ca. 123,000) that were granted one or more patent for

calculate TFP growth at the two-digit industry level and then aggregate up using industry deflators and value added
shares.
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which they applied in the period 2007–12. The total number of patents these firms applied for in that
period is 146,896. This implies that on average each NBS firm with a positive number of patents applied
for 10.1 patents.26 Note that, since the average time for granting a patent is about three years, a lot
of patents sought during 2007–12 have been granted after 2016. The magnitudes above are therefore a
lower bound to the actual number of patents.

Figure 7: Patents of Chinese Firms, Balanced Panel 2007–12

10-49 50-79 80-94 95-99

percentiles by TFP

0

0.05

0.1

0.15

0.2

 Panel A: Proportion of Firms
 with Patent

10-49 50-79 80-94 95-99

percentiles by TFP

0

25

50
 Panel B: Average Patent Numbers

R&D Firms
Non-R&D Firms

10-49 50-79 80-94 95-99

percentiles by TFP

0

0.2

0.4

0.6

 Panel C: Conditional Proportion
of Firms with Patent

R&D Firms
Non-R&D Firms

10-49 50-79 80-94 95-99

percentiles by TFP

-0.05

0

0.05

0.1

0.15

 Panel D: Conditional TFP Growth
Difference

R&D Firms with Patent
R&D Firms w/o Patent

Note: All patents in the figure refer to invention patents applied during 2007–12. We group all firms in the 2007–12
balanced panel into percentiles by their initial TFP. Panel A plots the proportion of firms with patents in each percentile.
Panel B plots the average number of patents among R&D firms (solid line) and among nonR&D firms (dotted line) in
each percentile. Panel C plots the proportion of R&D firms with one or more patents (solid line) and the proportion for
nonR&D firms (solid line). The solid line in Panel D plots the TFP growth difference between R&D firms with patents
and nonR&D firms. The dotted line plots the TFP growth difference between R&D firms without patents and nonR&D
firms.

Panel A of Figure 7 shows that the propensity for patenting innovations is increasing in the TFP
level, consistent with Panel A of Figure 2. Panel B plots the average number of patents as a function of
TFP broken down by R&D and nonR&D firms. Essentially all patents are sourced from firms reporting
some R&D activity. The same pattern emerges from Panel C, which plots the proportion of R&D firms
and the proportion for nonR&D firms with one or more patent. Clearly, R&D is strongly correlated
with patenting. This evidence shows that the data on R&D expenditures well captures innovation
investments. Panel D displays the most interesting finding. Firms with a positive number of patents
experience larger TFP growth than R&D firms without a patent. The gap increases with TFP, being

26In the unbalanced panel, 28,081 NBS firms (out of a total of ca. 275,000) have one or more patent for which they
applied in the period 2007–12. The total number of patents these NBS firms applied for during that period is 228,634.
This implies that on average each NBS firm with a positive number of patents applied for 8.1 patents.

28



largest for the top two deciles of the TFP distribution. This is consistent with our model, where R&D
firms that are successful at innovation grow faster than those that are not able to innovate, and this
difference is increasing in TFP.

This evidence is also suggestive of the hypothesis that some firms that report R&D but do not
patent innovations may be fudgers–consistent with the Fake R&D model we estimated. Clearly, this
evidence is only suggestive. Non-patenting R&D firms could simply be firms that invested in R&D but
had bad luck. However, it is interesting to observe that the number of patents per firm increases sharply
from the second-highest TFP quantile to the highest quantile (top five percent) in Panel B, precisely
consistent with the prediction of the FRM that it is mostly low-TFP firms that have an incentive to
opportunistically report R&D expenditure without actually engaging in it.

6 Estimating the model on different samples

In this section we re-estimate the model using data for Taiwan and for China in an earlier period (2001–
07). The goal of this analysis is twofold. First, we want to assess the extent to which the estimates
are robust across different samples.27 Second, we would like to learn about the productivity of R&D
investments in other economies or periods. We focus on Taiwan both because similar data are available
and because it is an export-oriented economy with an important role of manufacturing industry that
has commonalities with China.

China 2001–07: We first consider data for China in the earlier period of 2001–07. Table 5 shows the
results.28 Similar to the results for the 2007–12 period, our model also matches the earlier period very
well: if anything, the J-Statistic is lower than in the later period. Appendix Figure A8 displays the fit
of the targeted moments for the PAM and IPM.

The estimated parameters are qualitatively in line with those for 2007–12, although there are some
quantitative differences. The estimated m.e. is larger, while the estimated productivity of R&D, p̄, is
about a third of the estimates for 2007–12. The technology diffusion parameter q is also substantially
lower than in the benchmark sample.29

In summary, the results for China in the earlier period 2001–07 indicate a less important role for
R&D investments as a driver of productivity growth compared to the 2007–12 period. The results
are consistent with a technological interpretation: the productivity of R&D was intrinsically lower
in the earlier period, and the difference between R&D firms and nonR&D firms was smaller. This
interpretation is in line with the argument of Acemoglu et al. (2006) that the importance of R&D
investment increases as an economy approaches the world technology frontier.

Taiwan: Consider now the data for Taiwan. The results are summarized in columns (4)–(6) of Table
5. Appendix Figure A9 displays the fit of the targeted moments for the PAM and IPM. The J-Statistic
of the PAM is lower for Taiwan than in both Chinese samples.

27To ensure that the estimates are comparable across data samples, we estimate all models with the same step size on
the TFP ladder as in the benchmark model, 0.78.

28We do not report the FRM because the best fit is attained by setting the proportion of fudging firms equal to zero.
(For the same reason, we do not report the FRM for the case of Taiwan discussed below). This result is consistent with
the observation that subsidy policy in China only became pervasive since 2007.

29Part of the reason why the productivity of R&D is lower may be related to the fact that a large proportion of R&D
firms make very small R&D investments. In regressions analogous to columns (4) and (5) in Panel B of Table 2, we find
that R&D has a significant positive effects on future TFP growth only for firms in the upper tercile of the distribution of
R&D-to-value added.
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Table 5: Estimation for alternative samples.

(1) (2) (3) (4) (5) (6)
China: Balanced Panel 2001–2007 Taiwan: Balanced Panel 1999–2004
PAM FLM IPM PAM FLM IPM

Imitation prob. q 0.036 0.090 0.093 0.286 0.501 0.371
(0.032) (0.046) (0.039) (0.086) (0.129) (0.120)

Second chance δ 0.033 0.164 0.069 0.027 0.002 0.001
(0.071) (0.084) (0.117) (0.023) (0.058) (0.047)

Innov. prod. p̄ 0.034 0.046 0.045 0.184 0.207 0.206
(0.011) (0.013) (0.012) (0.026) (0.031) (0.032)

Innov. cost c̄ 0.530 1.174 -0.095 3.301 4.669 4.247
(0.159) (0.325) (0.198) (0.475) (0.717) (0.089)

Std.dev. m.e. σµa 0.682 0.575 0.580 0.722 0.538 0.622
(0.038) (0.025) (0.026) (0.074) (0.073) (0.112)

Std.dev. innov. subs. σc 0.644 0.559 1.371 1.378
(0.145) (0.119) (0.146) (0.108)

Policy inter. ca 0.513 -2.385
(0.163) (0.792)

J-Statistic 1.085 0.703 0.371 0.861 0.570 0.503

Note: Estimated parameters of various models using the Chinese 2001–2007 sample and the Taiwanese 1999-2004 sample.
Bootstrapped standard errors in parentheses.

The estimated parameter are qualitatively in line with those for China. However, there are some
noteworthy quantitative differences. First, the productivity of innovation is larger in Taiwan: the
estimated average probability of success in innovation is around 9%, while it was only 5% in the 2007–
12 China sample. However, the cost parameter c̄ is also larger in the Taiwanese sample (we return to
this finding in the following section.) Second, the productivity of imitation is higher, implying a faster
technological convergence among Taiwanese firms than among Chinese firms. The point estimates for
q are substantially larger than for China, ranging between 0.29 and 0.5. Conversely, we estimate a
larger variance of the m.e. than in the Chinese data.

The estimated parameters are very stable across different specifications. Interestingly, the parameter
estimates for the R&D technology in Taiwan are in the ballpark of the estimates of p̄ and q in the FRM
for China. One interpretation of this finding is that the FRM might best capture the true R&D
technology in China.

7 Counterfactuals

In this section, we report the results of some counterfactual policy experiments we performed based on
the estimated model. We discuss the PAM as the main case because its economic mechanism is very
transparent. The results and figures of the IPM are similar and are deferred to the appendix.

Reducing misallocation: Our main counterfactual experiment is an exogenous reduction in misal-
location. Hsieh and Klenow (2009) document large static efficiency gains from reducing misallocation
in China. In our model there are additional dynamic effects through the R&D investments. Output
wedges make R&D decisions depend more on firm size and less on TFP, flattening the schedule of Panel
A in Figure 4 relative to Panel B in the same figure. If misallocation were removed altogether, the
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Figure 8: Transition after Lowering Wedges
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Note: The graph displays the transition following a 50% reduction in the variance of wedges. Panel A plots the growth
rate of cross-sectional average TFP. Panel B plots the growth rate of aggregate TFP. Panel C plots the share of R&D
firms, and Panel D plots the cross-sectional variance of log TFP.

correlation between size and R&D would be driven by TFP differences only, in which case the schedules
in Panels A and B would be identical.

We study the dynamic effects of an unanticipated instant reduction in the variance of the logarithm
of output wedge log (1− τi). We engineer this reduction by halving both b2 and var (ετi ).30 Our
experiment is not directly comparable with that performed by Hsieh and Klenow (2009) because they
assume wedges and TFP to follow bivariate lognormal distribution, implying that the the variance of
log TFPR is a sufficient statistic for the static effect of distortions on aggregate TFP. In our model, the
correlation matters and is inferred from the data. This is quantitatively important, especially for the
dynamic effects: in our counterfactual, the decrease in the parameter b is actually the main source of
dynamic gains. The reason is that the wedge on high-TFP firms—that efficiency considerations would
require to invest in R&D—is the main distortion on R&D decisions.

Figures 8 and A10 display the transition of the economy from the initial to the counterfactual steady
state for the PAM and IPM, respectively.31 The two upper panels show the evolution of the growth
rates in the cross-sectional average TFP and in aggregate TFP, respectively. Note that—to ease the
visualization—Panel B does not display the initial jump in TFP arising from the static effect. In steady
state, the two statistics are identical because the higher-order moments of the TFP distribution are
constant over time. However, along the transition changes in higher-order moments also affect growth.

30Recall that log (1− τi) = b · log(Ai) + ετi , see eq. (13). Thus, var (log (1− τ)) = b2 · var (log (A)) + var (ετi ).
31It would be a formidable task to calculate numeric transitions in which the cost of R&D changes with the growth rate

every period in line with Equation 7. For this reason, we approximate the path of the innovation cost using the constant
steady-state growth.
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Figure 9: Steady-State Moments in the Counterfactual Model
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Note: The dashed lines display the moments in steady state for the counterfactual experiment where we reduce the
variance of wedges by 50%. The dotted line displays the moments predicted by the benchmark estimated PAM.

In our experiment, the cross-sectional variance of log TFP increases over time (Panel D) because the
upper tail of the TFP distribution becomes fatter.

The increase in the cross-sectional average lifts the growth rate from the initial 3.6% to 4.7% in
the new PAM steady state (see column (1) in Table 6). The transition is hump shaped: the aggregate
growth rate first increases sharply and then slowly declines to the new steady state. In the earlier
part of the transition, the main driver for aggregate TFP growth is changes in higher-order moments.
Eventually, the variance of log(TFP ) stabilizes and so does the aggregate growth rate—see Panel B.

Panel C shows the evolution of the share of R&D firms. This share increases by 50% upon impact
because the reduction in the dispersion of output wedges incentivates high-TFP firms to invest in
R&D. This effect is dampened over time because the increase in TFP dispersion implies an endogenous
increase in misallocation that partially offsets the initial decline. Still, in the new steady state, the
share of R&D firms (16%) is higher than in the initial steady state. Finally, Panel D shows the increase
over time in the variance of log TFP driven by high-TFP firms pulling ahead in the distribution.

Figures 9 and A11 show how the steady-state predicted target moments change after the reduction in
misallocation.32 The main changes are in Panels A and B. Panel A shows that reducing misallocation
increases the correlation between R&D and TFP. In the counterfactual PAM economy, 95% of the
firms in the top five TFP percentiles and 54% of the 80th–94th TFP percentiles invest in R&D—
the corresponding numbers for the IPM are 66% and 30%. In contrast, hardly any firm with TFP

32Since these figures show simulated results, we do not add m.e. This is different from Figure 4 where we add m.e. to
the simulations in order to make the results comparable with the data.
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below median invests in R&D. Moreover, the size-R&D profile in Panel B is now much more similar
to the TFP-R&D profile. Panel D shows that the TFP growth difference between R&D and nonR&D
firms is slightly smaller in the counterfactual. This is due to a selection effect: wedges deter firms
from investing in R&D, except for those drawing a very high p. This implies positive selection on p.
Lowering distortions reduces the positive selection.

The main conclusion of this experiment is that misallocation has large quantitative effects on pro-
ductivity growth. Moreover, it widens the dispersion in the stationary TFP distribution. In our model,
firms’ heterogeneity has no effect on wage inequality because the labor market is competitive. However,
in a model with realistic labor market frictions (e.g., search and ex-post rent sharing) and assortative
matching between workers and firms (Lindenlaub (2017)), reducing wedges and misallocation would
also increase wage inequality.

International spillovers: The permanent growth effect of a reduction of misallocation (about 1.1%
increase in the PAM) is arguably overly optimistic, even though it results from a large change in
misallocation. Many economists believe that the fast growth of China stems, at least in part, from
technological convergence due to international spillovers. According to this view, as China approaches
the world economic frontier, this source of growth is going to dry up.

In this section, we embed our model in a model of technological convergence where growth arises
from both random interactions and international spillovers, which we assume to increase with the
distance to the world frontier as in Acemoglu et al. (2006). More formally, we assume that aggregate
TFP growth in the nonfrontier economy j equals gjt = Γ(MISj ,Πjt) + ∆(TFPft/TFPjt), where Γ
is the outcome of our benchmark model, Π stands for the TFP distribution, and ∆ captures learning
from the frontier economy. Note that Γ is a decreasing function of the level of misallocation MISj . In
turn, MISj is parameterized as above by b2 and var (ετi ).33

We assume ∆(x) = ζ × log(x) − d, where ζ is a convergence parameter and d captures knowledge
depreciation. In the long run, all countries grow at the same constant rate g which is set by the frontier
economy, while the productivity gap between the frontier and nonfrontier economies is determined by
the relative misallocation. More formally, if we denote the steady state expression of Γj by Γ̃(MISj) ≡
Γ (MISj ,Π(MISj)), the steady-state TFP difference between a generic economy k and the frontier

economy f is given by: log(TFPf/TFPk) =
(

Γ̃(MISf )− Γ̃(MISk)
)
/ζ.

We calibrate ζ = 2% consistent with standard measures of the cross-country convergence rate. We
set d = 0.0312 so that the model matches the aggregate growth rate of TFP in Chinese manufacturing
in our sample (3%). Finally, we set the TFP growth rate for the frontier economy (i.e., Γ̃(MISf )− x)
to 2%. Given this calibration, the current level of misallocation of China implies that its GDP per
capita converges in the long run to 46% of the frontier economy’s level.

Next, we counterfactually reduce misallocation by 50%. We assume an initial TFP gap between
China and the frontier economy of 3.6 in line with the China-US gap estimated by Shen et al. (2015).
Figure 10 shows the results for the PAM (the IPM yields similar results). The TFP gap relative to
the frontier economy falls on impact and keeps shrinking thereafter, both because of the international
spillover and the transitional dynamics of the random interaction model. In the long run, TFP converges
to 81% of the frontier level (as opposed to 46% in the status quo). While part of this gain accrues from
the static effect of reducing misallocation, Figure 10 shows that the additional dynamic gains arising
from the mechanism of our model are quantitatively large: the static effect instantaneously cuts the gap
from 3.68 to 2.13 while the ensuing dynamic effect further decreases it to 1.23. Throughout transition,

33Recall also that while during transition growth depends on the evolving TFP distribution Πjt, the long-run distribution
is pinned down by the level of misallocation, i.e., Πj = Π(MISj).
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Figure 10: TFP Gap During Transition with International Spillovers
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Note: Evolution over time of the ratio between the TFP of the frontier economy and that of the benchmark economy
(China) in the model with international spillovers. The dotted and solid lines display simulated transitions in the estimated
model and in the counterfactual where output wedges are reduced by 50%, respectively.

growth is hump-shaped, being faster than in the benchmark economy for decades. The hump results
from the joint effects of the random interaction model and the declining international spillover.34

In conclusion, this section shows that in a model with international spillovers a reduction in misal-
location has a significant effects on the speed of transition and on the long-run GDP level even in an
experiment in which China does not become the permanent world leader.

The innovation technology: In this section, we perform additional counterfactuals where we change
parameters of the technology of innovation. Table 6 summarizes the results for the PAM. Appendix
Table A4 shows the corresponding results for the IPM. Column (1) reports the fraction of R&D firms
and steady state growth rate in the estimated model. Column (2) summarizes the long-run effect of
the reduction in misallocation discussed above. In columns (3), (4), and (5), we change the structural
parameters q , p̄, and c̄ to the estimated level in Taiwan while keeping the other parameters and
misallocation unchanged. In columns (6) and (7), we consider uniform taxes or subsidies on R&D that
change the baseline cost of innovation c̄ so that, respectively, 5% and 20% of the Chinese firms invest
in R&D. Finally, in column (8) we consider a drastic policy inducing (e.g., through arbitrarily large
R&D subsidies) all firms to pursue the innovation strategy. Although this case features no stationary
distribution (namely, the variance of TFP increases perpetually) it is possible to calculate analytically
the (approximate) growth rate when setting δ ≈ 0 (recall that the estimates of δ are always very
small). Consider first setting the parameters to the Taiwanese estimated level. In the PAM, we observe
a significant increase in steady-state TFP growth in all three scenarios, driven by the faster rate of both
innovation and imitation. When we set only the parameter q to the Taiwanese level, the proportion of
R&D firms falls. When we reset p̄ and c̄, it increases. Finally, when we set q, c̄, and p̄ to their respective
Taiwanese estimated levels, the R&D share is the about the same as in the estimated model.

In columns (2)–(4) of Table A4, we report the results of the same counterfactuals in the IPM. The
results of Appendix Table A4 echo the results for the PAM. For instance, simultaneously setting q, c̄,

34In this experiment, China temporarily becomes the world leader during transition, although eventually it stops being
the leader. The simulation takes into full account the consequences of these shifts.
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and p̄ to the respective Taiwanese levels increases TFP growth (from 5.1% to 5.8%), although it reduces
the share of R&D firms (from 15% to 8%). In conclusion, the counterfactuals show that R&D is more
productive in Taiwan than in China. At a constant misallocation, China would grow faster if it had
access to the same innovation technology as Taiwan.

Finally, we study the effect of policies affecting the private cost of R&D. Columns (6) and (7)
show that aggregate growth increases when we reduce the cost of innovation and decreases when we
increase it. Therefore, fostering innovation through a moderate R&D subsidy across the board yields
the standard positive growth effect as in models of endogenous technical change (e.g., Aghion and
Howitt (1992)). However, the effect is nonmonotonic and turns around for sufficiently large subsidies.
This is illustrated by the extreme case of column (8). There, subsidies are so large that all firms
choose the innovation strategy. The long-run growth rate in the counterfactual economy is lower than
the growth rate when the policy induces 20% of the firms to perform R&D. In the IPM, the growth
rate of the economy where all firms pursue innovation is actually lower than in the baseline estimated
economy—see column (8) of Appendix Table A4. This “too much of a good thing” result hinges on
the opportunity cost of forgoing the benefit of random interactions.

Table 6: Counterfactuals, Parsimonious model

(1) (2) (3) (4) (5) (6) (7) (8)

PAM
estim.
model

50%
lower

output
wedges

Taiwan’s
q

Taiwan’s
p̄ and c̄

Taiwan’s
p̄, c̄,

and q

Increase
c̄ so share
R&D firms

= 5%

Decrease
c̄ so share
R&D firms

= 20%

All firms
do R&D

Fraction of
R&D Firms (%)

12.2 15.8 10.7 14.1 12.2 5 20 100

Steady State
TFP Growth (%)

3.56 4.70 4.49 4.92 6.03 2.41 4.42 3.80

Note: The table reports statistics for the counterfactual experiments for the PAM discussed in the text. Column (1)
reports the predicted moments of the estimated PAM for comparison.

8 Conclusion

In this paper, we construct and structurally estimate a theory of productivity growth driven by in-
novation and technology diffusion through random interactions. In the theory, both the TFP level
and firm-specific distortions are sources of comparative advantages: firms with high TFP and firms
with negative output wedges have a stronger incentive to invest in R&D. The theory bears testable
predictions about the evolution of the aggregate productivity distribution. We estimate the model to
earn new insights about the nature and effects of the R&D expenditure boom in China in recent years.
R&D investments appear to have contributed to the aggregate productivity growth of China. However,
the return to R&D investments is lower in China than in Taiwan. Moreover, pervasive output wedges
often induce the wrong firms (and, conversely, deter the right ones) from investing in R&D, thereby
reducing the aggregate productivity of R&D investments.

Relative to earlier Schumpeterian growth theory, our study incorporates both innovation and tech-
nology diffusion into a common framework. Moreover, it shifts the focus from the overall investment in
innovation to the efficient assignment of firms to innovation and imitation activities. While innovation
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is the ultimate engine of growth, an excessive (or ill-targeted) policy emphasis on innovation can actu-
ally backfire. The reason is that less productive firms have a high growth potential through imitation
which they forgo when they focus on innovation. Like innovation, successful imitation carries positive
externalities to less productive firms. Another important message of the paper is that misallocation
has significant dynamic effects. To the extent to which larger firms have stronger incentives (and fewer
constraints) to pursue R&D investments, misallocation distorts the natural comparative advantage of
firms in leading the innovation process, and ultimately slows down economic growth. The study has
some limitations that can be addressed in future research. In our estimation, we focus on the bal-
anced panel of firms that are in the sample both in 2007 and 2012, abstracting from entry and exit.
While churning and the formation of new firms are important features of the Chinese data, we believe
that a study focusing on the R&D investments of incumbent firms is no less important. In 2007, our
balanced sample captures 71% of the R&D investments (which is the focal point of our study) and
63% of the value added of firms in the total sample. Because we have no data on R&D expenditure
after 2007, it would be difficult to study the imitation-innovation behavior of firms entering the sample
after that date. We leave it to future research to integrate entry-exit decisions and innovation and
random interactions among incumbent firms into a common framework. For instance, one could add
a statistical model of entry and exit accounting for the TFP growth stemming from churning. While
this would affect the dynamics, we conjecture that it would likely not alter significantly the estimated
parameters that are based on cross-sectional moments. Future work should also explore in more depth
firm dynamics and the role of an intensive margin of R&D.
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Supplementary Appendix

A Theory

In this section, we provide the proof of Proposition 1.

Proof of Proposition 1. From the monotonicity of Q (a, τ ; Π) in a it follows that there exists a
threshold function a∗ (τ ; Π) such that35

Q (a, τ ; Π) ≥ p if a ≤ a∗ (τ ; Π) ,

Q (a, τ ; Π) < p if a > a∗ (τ ; Π) . (16)

All firms with a ≤ a∗ (τ ; Π) imitate, while some firms with a > a∗ (τ ; Π) (i.e., those with a sufficiently
large p) innovate. To simplify notation, we write a∗ (t) = a∗ (τ ; Π) and Q (a) = Q (a, τ ; Π) when this is
no source of confusion.

The difference equation governing the evolution of the log-productivity distribution can then be
broken down as follows:

Πa(t+ 1)−Πa(t)

=



q [(1− Fa−1(t)) Πa−1(t)− (1− Fa(t))Πa (t)] if a < a∗ (t) , q (1− Fa−1(t)) Πa−1(t)
−G (Q (a)) [q(1− Fa(t))Πa (t)]

−
∫ p
Q(a) [(p+ (1− p) δq (1− Fa(t))) Πa (t)] dG (p)

 if a = a∗ (t) + 1,


G (Q (a− 1))× q (1− Fa−1(t)) Πa−1(t)

+
∫ p
Q(a−1) [(p+ (1− p) δq (1− Fa−1(t))) Πa−1(t)] dG (p)

−G (Q (a))× q (1− Fa(t)) Πa (t)

−
∫ p
Q(a) [(p+ (1− p) δq (1− Fa(t))) Πa (t)] dG (p)

 if a > a∗ (t) + 1.

(17)

To understand this law of motion, note that (i) if a < a∗ (t) , all firms with productivity a and a − 1
imitate; (ii) if a > a∗ (t) + 1, all firms with productivity a facing a realization p > Q (a) and all
firms with productivity a − 1 facing a realization p > Q (a− 1) innovate, while all other firms with
productivity a and a− 1 imitate; (iii) if a = a∗ (t) + 1, all firms with productivity a facing a realization
p > Q (a) innovate, and all other firms with productivity a and a− 1 imitate. Going from the p.m.f to
the corresponding c.d.f. yields:

Fa(t+ 1)− Fa(t) =

a∑
b=1

Πb(t+ 1)−Πb(t)

=


−q (1− Fa (t)) (Fa (t)− Fa−1 (t)) if a ≤ a∗ (t) −G (Q (a)) q (1− Fa (t)) (Fa (t)− Fa−1 (t))

−
∫ p
Q(a)

[
(p+ (1− p) δq (1− Fa(t)))×

(Fa (t)− Fa−1 (t))

]
dG (p)

 if a > a∗ (t)
(18)

35Note that this notation involves a slight abuse of notation relative to the function a∗ in the text.
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Define the complementary cumulative distribution function Ha (t) = 1− Fa (t) . Equation (18) can
be rewritten as:

Ha(t+ 1)−Ha(t) = −
a∑
b=1

(Πb(t+ 1)−Πb(t))

=


qHa(t) (Ha−1 (t)−Ha (t)) if a ≤ a∗(t) G (Q (a)) qHa (t) (Ha−1 (t)−Ha (t))

+
∫ p
Q(a)

[
(p+ (1− p) δqHa (t))×

(Ha−1 (t)−Ha (t))

]
dG (p)

 if a > a∗(t)
(19)

Note that Fa(t+1) ≤ Fa(t) (and conversely, Ha(t+1) ≥ Ha(t). Since the probability mass is conserved
to one (and lima→+∞ Fa = 1), the fact that Fa is decreasing over time t for every a implies that the
distribution must shift to the right (i.e. towards higher values of a). A distribution that is shifted in
this way is called a traveling wave (Bramson, 1983). We now prove that there exists a traveling wave
solution of the form Fa(t) = f̃(a − νt) (or, equivalently Ha(t) = h̃(a − νt)) with velocity ν > 0. The
formal argument follows Bramson (1983) and König et al. (2016) . The traveling wave solution above
implies that Fa(t + 1) − Fa(t) = f̃(x − ν) − f̃(x), where x ≡ a − νt. For ν ≈ 0, we can take the first
order approximation f̃(x− ν)− f̃(x) ≈ −νf̃ ′(x), and thus Fa(t+ 1)− Fa(t) ≈ −νf̃ ′(x). Therefore, we
can rewrite (18) as:

− νf̃ ′ (x) =



−q
(

1− f̃(x)
)(

f̃(x)− f̃(x− 1)
)

if x ≤ x∗


−G (Q (x))

[
q(1− f̃(x))

(
f̃(x)− f̃(x− 1)

)]
−
∫ p
Q(x)

 (p+ (1− p) δq
(

1− f̃(x)
))
×(

f̃(x)− f̃(x− 1)
)  dG (p)

 if x > x∗
(20)

or, identically,

− νh̃′ (x) =



qh̃ (x)
(
h̃ (x− 1)− h̃(x)

)
if x ≤ x∗


G (Q (x))

[
qh̃ (x)

(
h̃ (x− 1)− h̃(x)

)]
+
∫ p
Q(x)

 (p+ (1− p) δqh̃ (x)
)
×(

h̃ (x− 1)− h̃ (x)
)  dG (p)

 if x > x∗
(21)

Consider, first, the range x ≤ x∗. Using the upper part of (20) yields the following Delay Differential
Equation (DDE):36

− νf̃ ′ (x) = −q
(

1− f̃ (x)
)(

f̃ (x)− f̃ (x− 1)
)
. (22)

This equation allows us to characterize the (asymptotic) left tail of the distribution. Taking the limit
for x→ −∞, we can take the following first-order (i.e., linear) approximation:

νf̃ ′ (x) ' q
(
f̃ (x)− f̃ (x− 1)

)
.

36See also Asl and Ulsoy (2003), Bellman and Cooke (1963), and Smith (2011).
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Next, we guess that this linear DDE has a solution of the form f̃(x) = c1e
λx for x → −∞. Replacing

f̃ (x) by its guess and f̃ ′ (x) by its derivative, and simplifying terms, allows us to verify the guess as
long as the following transcendental equation in λ is satisfied:

λν ' q(1− e−λ). (23)

The solution to this transcendental equation is given by

λ =

νW

(
− qe−

q
ν

ν

)
+ q

ν
,

where W denotes the Lambert W-function, and we require that qe−
q
ν

ν ≤ 1
e .

Consider, next, the range of large x where the solution for x > x∗ applies in (21). Then, we can
write the following DDE

− νh̃′ (x) =


G (Q (x))

[
qh̃ (x)

(
h̃ (x− 1)− h̃(x)

)]
+
∫ p
Q(x)

 (p+ (1− p) δqh̃ (x)
)
×(

h̃ (x− 1)− h̃ (x)
)  dG (p)

 . (24)

We use this DDE to characterize the right tail of the distribution as x→ +∞. Again, we take a linear
approximation:

νh̃′ (x) ' p̂
(
h̃ (x)− h̃ (x− 1)

)
,

where p̂ =
∫ p

0 p dG (p). For the latter, note that limx→∞Q (x) = 0 since as we take x to be arbitrarily
large, imitation becomes totally ineffective and firms choose to innovate almost surely. We guess a
solution of the DDE of the form h̃(x) = c2e

−ρx for x → +∞. The guess is verified as long as the
following transcendental equation holds:

ρν ' p̂(eρ − 1).

The solution to the transcendental equation satisfies

ρ =

−νW
(
− p̂e−

p̂
ν

ν

)
− p̂

ν
, (25)

where W denotes the Lambert W-function, and we require that p̂e−
ρ
ν

ν ≤ 1
e . This concludes the proof.

B Data and descriptive statics

In this section we provide some details of the analysis in Section 3.
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Alternative TFP estimation method based on Brandt et al. (2017)

We estimate firm-level TFPs using the methodology of Hsieh and Klenow (2009). This is consistent
with our theoretical model and allows us to directly compare our results with those in the literature on
misallocation. However, this approach has been criticized in the empirical industrial organization liter-
ature. If firms optimally choose the inputs in the production process to solve a dynamic maximization
problem, then the estimation may suffer from an endogeneity problem. The error term of the model
can contain determinants of production decisions (e.g., productivity) that are observed by the firm but
not by the econometrician, leading to inconsistent estimates of TFP.

In this section, we show that the target moments of our estimation are essentially unchanged if
we estimate TFP using the methodology of Ackerberg et al. (2015) that addresses an endogeneity
problem in the estimation of production functions. We follow the implementation of Ackerberg et al.
(2015) proposed by Brandt et al. (2017), which is also related to De Loecker and Warzynski (2012).
Because Brandt et al. (2017) postulate a gross production function while we estimate TFP using a
value added approach, we perform an adjustment for the two methods to be consistent. The details
of the estimation are deferred to the web appendix. The results are shown in Figure A1. The data
moments are indistinguishable from those used targets in our estimation. We conclude that our results
are robust to using this alternative estimation method for TFP.

Figure A1: China 2007–12 Sample with Alternative TFP Measurement
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Note: The figure shows the equivalent moments to Appendix Figure A3 when TFP is estimated using the methodology
of Brandt et al. (2017) based on Ackerberg et al. (2015).

Regression with firm fixed effects 2001–07

In this section, we present the result of regression similar to those in Table 2 although for an earlier
sample in China, 2001-2007. Since this sample has R&D data for more than one year, this sample
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allows to us to also run regressions with firm fixed effects. Note that the regressions in Table A1 are
all on annual data, the reason being that we only have R&D data for 2001-2003 and 2005-2007. The
regressions in columns (1)-(3) are pooled regressions while columns (4)-(5) are firm fixed effects (FE)
regressions. All pooled regressions include dummies for year, province, industry, and age effects while
the FE regressions have year and firm effects. In the FE regressions the dummies for province, industry,
and age, as well as the dummies for export firms and state ownership are all subsumed in the firm fixed
effects.

Table A1: Regressions with Firm Fixed Effects, 2001–07.

Dependent variable: R&D dummy

(1) (2) (3) (4) (5)

Pooled regressions FE regressions
R&Dd R&Dd R&Dd R&Dd R&Dd

log(TFP)t 0.059*** 0.377*** 0.323*** 0.003*** 0.186***
(0.0049) (0.0235) (0.0191) (0.0007) (0.0054)

wedge -0.432*** -0.361*** -0.225***
(0.0297) (0.0240) (0.0066)

exportd 0.045***
(0.0118)

SOEd 0.124***
(0.0148)

Firm effects - - - + +
Year effects + + + + +
Industry effects + + + - -
Age effects + + + - -
Province effects + + + - -

R-squared 0.396 0.449 0.456 0.581 0.582

Note: The table shows regressions of an indicator of R&D on annual data for China 2001-2007. The independent variable
is R&Dd, a dummy variable for R&D that equals one if firm R&D expenditure is positive and zero otherwise. log(TFP)
is the logarithm of TFP. Wedge refers to the calibrated firm output wedge (see Section 2 for details). exportd is a dummy
variable for exports. SOEd is a dummy variable for state-owned firms. Standard errors are reported in parenthesis.
The number of observations are 441,039 in columns (1)-(3) and 70,273 in columns (4)-(5). Observations are weighted by
employment and standard errors are clustered by industry. Regressions in columns (4)-(5) include firm and year fixed
effects. Regressions in columns (1)-(3) include year, industry, age, and province fixed effects. We drop firms with TFP in
the bottom 10 percentiles.

The results in Table A1 show that, first, all the results from our main sample (2007-2012) in Table
2 hold up for the earlier sample, see the pooled regressions in Table A1. Second, the qualitative results
hold up (significantly so) even when controlling for firm fixed effects. When comparing columns (2) and
(5), we observe that the coefficients in the FE regressions are about half the size in magnitude but still
highly significant. Moreover, the coefficients have always the same sign as in the pooled regressions.
We conclude that our main empirical findings on the drivers of firms doing R&D—namely that R&D
is positively associated with TFP and negatively associated with output wedges—holds true both in
the cross section and within firms over time.

Alternative classification of innovative firms

In our main analysis, we classify all firms that report doing some R&D as innovative. However, many
firms invest a very small amount of resources in R&D raising questions to whether innovation is truly
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a salient strategy for these firms. In this appendix, we propose an alternative classification where firms
are deemed innovative only if they invest more than 1.73% of their value added. This threshold is the
median R&D intensity among R&D firms in our balanced sample. Conversely, firms investing less than
1.73% are regarded as imitators. Figure A2 shows the data moments corresponding to Figure 2 when
applying this more stringent definition of innovators. As one would expect, the percentage of R&D
firms is now lower. Moreover, the elasticity of R&D to TFP and size is lower than for the main sample.
However, the qualitative patterns are the same in Figures 2 and A2.

Figure A2: More stringent classification of innovative firms.
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Note: The figure shows the equivalent moments to Figure 2 if only firms with R&D expenditure above 1.73% are classified
as R&D firms.

Regression results for Taiwan

In Table A2 we report the regression results discussed in the text for Taiwan. By comparing Table A2
with Table 2, it is clear that all qualitative results are the same for Taiwan as for our 2007-12 China
data. However, R&D in Taiwan are more highly correlated with TFP and more negatively correlated
with wedges, and TFP growth is more strongly related to R&D. In particular, the coefficients on TFP
and wedges in Panel A (explaining the R&D decision) of Table A2 are about twice as large in magnitude
as in Table 2. Morever, the coefficient on R&D in Panel B (explaining TFP growth) of Table A2 are
about three times as large in magnitude as in Table 2.

Target moments of the empirical distribution

Figure A3 displays the empirical moments that we target in the estimation. Each observation represents
a quantile of the distribution based on Figure 2.
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Figure A3: Chinese Firms in the Balanced Panel 2007–12
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Note: The figure shows the empirical moments of the balanced panel for China 2007–12. See also Figure 4. The dotted
lines represents standard errors.
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Table A2: Balanced Panel of Taiwanese Firms, 1999–2004.

PANEL A: Correlations between firm characteristics and R&D decision.

(1) (2) (3)
R&Dd R&Dd R&Dd

log(TFP) 0.087*** 0.614*** 0.573***
(0.0078) (0.0184) (0.0189)

wedge -0.720*** -0.673***
(0.0234) (0.0236)

exportd 0.088***
(0.0227)

Industry effects + + +
Age effects + + +
Year effects + + +

Observations 44,326 44,326 44,326
R-squared 0.219 0.396 0.404

PANEL B: Correlations between firm initial characteristics and TFP growth.

(1) (2) (3)
TFP growth TFP growth TFP growth

log(TFP) -0.064*** -0.066*** -0.066***
(0.0046) (0.0047) (0.0055)

R&Dd 0.103*** 0.093***
(0.0162) (0.0168)

exportd 0.039*** 0.039***
(0.0063) (0.0063)

R&D intensityh 0.072**
(0.0262)

R&D intensitym 0.106***
(0.0278)

R&D intensityl 0.097***
(0.0150)

Industry effects + + +
Age effects + + +

Observations 9,996 9,996 9,996
R-squared 0.081 0.083 0.084

Note: The table reports the analogues of the regression results in Table 2 for the Taiwanese firms. There are two
differences relative to Table 2: (1) Panel A reports pooled regressions with year fixed effects (for Taiwan, data for R&D
expenditure is available for multiple years); and (2) there is no province dummy for Taiwan.
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C Estimation

Measurement error: Mapping

This appendix describes how we incorporate measurement error when calculating the theoretical mo-
ments. We provide an analytical mapping from the theoretical distribution of a variable x to the
observed distribution of true x plus m.e. This analytical mapping is critical to speed up the structural
estimation avoiding a computational curse that would arise if we had to rely on simulations.

The presentation focuses on TFP. The approach for adding m.e. to the theoretical (true) distribution
of value added is equivalent, replacing a and µ with y and µy below.

Denote by â and a the observed and true log TFP: â = a+µ, where µ is m.e. Consider the following
discrete state space: a ∈ {δ, · · · , Nδ}, â ∈ {δ, · · · , Nδ}, and µ ∈ {−Nµδ, · · · ,−δ, 0, δ, · · · , Nµδ}. We
set Nµ = 4.

Let the theoretical distribution of a be denoted by Π (a). The first task is to convert Π (a) to Π (â)
– i.e., the distribution of observed TFP with m.e., which can be compared with the data. To this end,
we first derive the transition matrix Π (â|a). For j ∈ {2, · · · , N − 1}, we have

Π (â = aj |a = ai) = Π (µ = (j − i) δ) . (26)

For j = 1 orN , we have Π (â = a1|a = ai) =
∑

k≥i−1 Π (µ = −kδ) and Π (â = aN |a = ai) =
∑

k≥N−i Π (µ = kδ).
So, the unconditional probability of â is

Π (â = aj) =
∑
i

Π (â = aj |a = ai) Π (a = ai) . (27)

Note that when Π (â) is observable while Π (a) is unknown, one can use Π (â = aj |a = ai) in (26) to
back out Π (a) by solving the system of equations in (27).

We now derive the conditional TFP growth. Let us start with observed TFP growth of imitating
firms.

EIM [∆â|â] = EIM [∆a+ ∆µ|â] (28)

= E [q (1− F (a)) |â]− E [µ|â]

=
∑
i

q (1− F (a)) Π (a = ai|â = aj)−
∑
k

kδΠ (µ = kδ|â = aj) .

To go from the theoretical (conditional) distribution of true TFP growth conditional on true a to
TFP growth with m.e. conditional on â, we need conditional probabilities of Π (a = ai|â = aj) and
Π (µ = kδ|â = aj).

The posterior distribution of a follows

Π (a = ai|â = aj) =
Π (â = aj |a = ai) Π (a = ai)

Π (â = aj)
, (29)

To obtain the posterior distribution of µ, first notice that

Π (â = aj ∩ µ = kδ) = Π (â = aj |µ = kδ) Π (µ = kδ)

= Π (a = aj−k) Π (µ = kδ) .
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for j ∈ {2, · · · , N − 1}. Note that for j = 1 or N , we have the following boundary cases:

Π (â = a1|µ = −iδ) Π (µ = −iδ) =
∑
k≤i+1

Π (a = ak) Π (µ = −iδ) ,

Π (â = aN |µ = iδ) Π (µ = iδ) =
∑

k≥N−i
Π (a = ak) Π (µ = iδ) .

Then, the posterior distribution of µ follows

Π (µ = kδ|â = aj) =
Π (â = aj |µ = kδ) Π (µ = kδ)

Π (â = aj)
(30)

=
Π (â = aj ∩ µ = kδ)

Π (â = aj)
.

We can thus use (28), together with (29) and (30), to generate TFP growth of imitating firms with
measurement errors.

Measurement error: Moments

Table A3 reports the empirical moments we use to derive the moments involving measurement error.

Table A3: Measurement Error Moments

Empirical variances
Implied m.e.

variance
var(∆Y ) var(∆I) cov(∆Y,∆I) var(TFP ) v̂µy v̂µI v̂µa

2007-2012
China

0.456 0.328 0.156 1.059 0.150 0.086 0.320

2001-2007
China

0.470 0.098 0.043 1.269 0.214 0.027 0.361

1999-2004
Taiwan

1.128 0.124 -0.005 2.363 0.567 0.065 0.950

Note: The first four columns refer to variances of growth in revenue, inputs, and TFP, respectively. Y , I and TFP
represent log(PitYit), log(Kα

itL
(1−α)
it ), and log(Ait), respectively. The fourth column is cross-sectional dispersion in TFP.

We use the full sample (i.e., keeping the firms with initial TFP in the bottom ten percentiles). The results in the trimmed
sample are similar. The implied variance of measurement error is derived from equations (11)-(12) and the expression for
m.e. in TFP.

Calibration of θ

Figure A4 displays how the ratio of R&D intensity for R&D firms changes with TFP in the data (solid
line) and in the benchmark PAM model. The figure shows R&D intensity for each quantile relative to
the intensity for firms in the lowest quantile, normalized to unity. The technological parameter θ is
calibrated to match the slope between the first and last quantile in Figure A4.

D Results

In this section we report robustness estimation results referred to in the text.
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Figure A4: Ratio of R&D to Value Added, PAM vs. Data
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Note: The figure shows the average ratio of R&D to value added for R&D firms in the data (solid line) and the
Parsimonious model (dotted line) for four quantiles of the TFP distribution.

Estimation of the Fake R&D model

Figure A5 shows the fit of the Fake R&D model (FRM). The blue line in each panel represents moments
from simulated data based on firms claiming to do (or not to do) R&D. The corresponding moments
for a true classification of R&D investments are represented by red lines in the figure.

Intensive Margin

In this section, we document the fit of the two models estimated in Section 5.3.
Figure A6 is the equivalent of Figure A3 and shows how the 16 target moments are affected by

applying the more stringent classification of innovation, based on Figure A2. Figure A6 also shows the
fit of the PAM when reestimated based on these adjusted moments. The estimated coefficients for this
version of the PAM model are reported in columns (5)–(6) of Table 3.

Figure A7 shows the fit of the PAM with two R&D technologies (small and large R&D projects).
The estimated coefficients for the PAM model with two R&D technologies are reported in columns
(7)–(8) of Table 3. The empirical moments for the high- and low-intensive R&D firms are illustrated
by black dotted lines in Figure A7.

E Estimating the Model on Different Samples

Figures A8 and A9 show the fit of the PAM and IPM for China in the earlier sample (2001–07) and
for Taiwan.
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Figure A5: China: Fake R&D Model
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Note: Each panel of Figure A5 displays three schedules: (i) the dotted line shows the moments in the data, (ii) the
dashed line shows the fit of the model (which refers to measured R&D), and (iii) the solid line shows results restricted to
the firm which, according to the model predictions, truly perform R&D. See also Figure 4.

F Counterfactuals

This section provides robustness analysis for the counterfactuals.

Models with heterogeneity in innovation costs

Figures A10–A11 are the analogues of Figures 8–9 in the manuscript for the IPM that we estimated
on the benchmark balanced sample for China, 2007–12. Table A4 is the analogue of Table 6 in the
manuscript for the IPM.
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Figure A6: Models with Higher R&D Cutoff
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Note: The models are estimated to match empirical moments where only firms with R&D intensity exceeding (1.73% of
value added are classified as innovative firms. See Figure 4 for additional information.

Table A4: Counterfactuals, Industrial Policy Model

(1) (2) (3) (4) (5) (6) (7) (8)

IPM
estim.
model

50%
lower

output
wedges

Taiwan’s
q

Taiwan’s
p̄ and c̄

Taiwan’s
p̄, c̄,

and q

Increase
c̄ so share
R&D firms

= 5%

Decrease
c̄ so share
R&D firms

= 20%

All firms
do R&D

Fraction of
R&D Firms (%)

14.9 16.0 14.8 8.24 8.17 5 20 100

Steady State
TFP Growth (%)

5.05 6.20 5.11 5.71 5.78 3.64 5.39 4.41

Note: The table reports statistics for the counterfactual experiments for the IPM discussed in the text. Column (1)
reports the predicted moments of the estimated IPM for comparison.
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Figure A7: High- and low-R&D firms

10-49 50-79 80-94 95-99

TFP Percentiles

0

0.1

0.2

0.3

 Panel A1: Fraction of R&D Firms
(High Intensity) by TFP

 data
fitted PAM
fitted IPM

10-49 50-79 80-94 95-99

TFP Percentiles

0

0.1

0.2

0.3

 Panel A2: Fraction of R&D Firms
(Low Intensity) by TFP

10-49 50-79 80-94 95-99

Revenue Percentiles

0

0.1

0.2

0.3

 Panel B1: Fraction of R&D Firms
(High Intensity) by Value Added

10-49 50-79 80-94 95-99

Revenue Percentiles

0

0.1

0.2

0.3

 Panel B2: Fraction of R&D Firms
(Low Intensity) by Value Added

10-49 50-79 80-94 95-99

TFP Percentiles

-0.2

-0.1

0

0.1
 Panel C: TFP Growth of Non-R&D Firms

10-49 50-79 80-94 95-99

TFP Percentiles

0

0.05

0.1

 Panel D: TFP Growth Difference
 between R&D and non-R&D Firms

 data, high intensity
 PAM, high intensity
 IPM, high intensity
 data, low intensity
 PAM, low intensity
 IPM, low intensity

Note: The figure shows empirical and theoretical moments for the extension to two R&D technologies (Section 5.3).
Panels A1-A2 and B1-B2 correspond to Panels A and B in Figure 4, reported separately for firms with high- versus
low-cost R&D technology. Panels C and D correspond to their counterparts in Figure 4,
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Figure A8: China 2001–07: PAM and IPM
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Note: See Figure 4.

Figure A9: Taiwan 1999–2004: PAM and IPM
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Note: See Figure 4.
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Figure A10: Transition: Lower Wedges in IPM
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Note: This figure is the IPM analogue of Figure 8.
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Figure A11: Steady-State: Lower Wedges in IPM
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Note: This figure is the IPM analogue of Figure 9.
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