
Asset Pricing with Omitted Factors

Stefano Giglio

Yale University, National Bureau of Economic Research,
and Center for Economic and Policy Research

Dacheng Xiu

University of Chicago

Standard estimators of risk premia in linear asset pricing models are
biased if some priced factors are omitted. We propose a three-pass
method to estimate the risk premium of an observable factor, which is
valid even when not all factors in the model are specified or observed.
The risk premium of the observable factor can be identified regardless
of the rotation of the other control factors if together they span the true
factor space. Our approach uses principal components of test asset re-
turns to recover the factor space and additional regressions to obtain
the risk premium of the observed factor.

I. Introduction

One of the central predictions of asset pricingmodels is that some risk fac-
tors—for example, intermediary capital or aggregate liquidity—should
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command a risk premium: investors should be compensated for their expo-
sure to those factors,holdingconstant theirexposure toallother sourcesof risk.
Sometimes, this prediction is easy to test in the data: when the factor

predicted by theory is itself a portfolio (what we refer to as a tradable fac-
tor), the risk premium can be directly computed as the average excess
return of the factor. For example, this is the case for the capital asset pric-
ing model, where the theory-predicted factor is the market portfolio.
Most theoretical models, however, predict that investors are concerned

about nontradable risks: risks that are not themselves portfolios, like con-
sumption, inflation, liquidity, and so on. Estimating the risk premium of
a nontradable factor requires the construction of a tradable portfolio that
isolates that risk, holding all other risks constant. While different estimators
have been proposed for risk premia (most prominently, two-pass cross-
sectional regressions, like Fama-MacBeth regressions and mimicking-
portfolio projections), they are all affected by one common potential is-
sue: omitted variable bias.
Omitted variable bias arises in standard risk premia estimators whenever

the model used in the estimation does not fully account for all priced
sources of risk in the economy. This is a fundamental concern when test-
ing asset pricing theories, because theoretical models are usually very styl-
ized and cannot possibly explicitly account for all the risks that are at play
in the economy.1 While the possibility of omitted variable bias is known in
the literature (see, e.g., Burmeister and McElroy 1988; Jagannathan and
Wang 1998), no systematic solution has been proposed so far; rather, this
problem is typically addressed in ad hoc ways that differ from case to case.
Studies using the two-pass cross-sectional regression approach typically
add somewhat arbitrarily chosen factors or characteristics as controls,
like the Fama-French three factors;2 studies using themimicking-portfolio

1 A symptom of this omission is the fact that the pricing ability of the models is often
poor when tested using only the factors explicitly predicted by the theory. This suggests
that other factors may be present in the data that are not accounted for by the model.

2 For example, in an early contribution to this literature, Burmeister and McElroy
(1988) propose choosing additional portfolios (like the market) to complement the set
of observable factors and represent unobservable factors. See a summary of this approach
and references to other related papers in Elton et al. (2014, 165–67).
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approach usually select a small set of portfolios (e.g., portfolios sorted by
size and book to market) on which to project the factor of interest. There
is, however, no theoretical guarantee that the controls or the spanning port-
folios are adequate to correct the omitted variable bias.
In this paper we propose a general solution to the omitted variable prob-

lem in linear asset pricing models. We introduce a new three-pass meth-
odology that exploits (1) the large dimensionality of available test assets
and (2) a rotation invariance result to correctly recover the risk premium
of any observable factor, even when not all true risk factors are observed
and included in the model.
The starting point of our procedure is a simple but general rotation in-

variance result that holds for risk premia in linear factor models. Suppose
that returns follow a linear factor model with p factors, and we wish to de-
termine the risk premiumof oneof them, gt.What we describe as a rotation
invariance result is the observation that the risk premium of gt is invariant
to how the p 2 1 control factors are rotated—any p 2 1 linear combina-
tions of the original p factors can serve as control factors as long as the ro-
tated factor model spans the same risks as the original model.3

This result implies that knowing the identities of all true factors is not
necessary to estimate the risk premium of one of them (gt). As long as the
entire factor space can be recovered, the risk premium of gt can be iden-
tified even when the other factors are neither observed nor known. A nat-
ural way to recover the factor space in this scenario is to extract principal
components (PCs) of the test asset returns. Our methodology therefore
combines the principal component analysis (PCA) with two-pass cross-
sectional regressions to provide consistent estimates of the risk premium
for any observed factor.
Our methodology proceeds in three steps. First, we use PCA to extract

factors and their loadings from a large panel of test asset returns, thus
recovering the factor space (i.e., some unknown rotation of the p fac-
tors). Second, we run a cross-sectional regression using only the PCs (with-
out the factor of interest gt) to find their risk premia. Third, we estimate a
time series regression of gt onto the PCs that uncovers the relation be-
tween gt and the latent factors and, in addition, removes potential mea-
surement error from gt. The risk premium of gt is then estimated as the
product of the loadings of gt on the PCs (estimated in the third step) and
their risk premia (estimated in the second step). The invariance result
discussed above is what guarantees the identification of the risk premium

3 The invariance result we derive is distinct from similar results that the literature has
explored in the past (e.g., Roll and Ross 1980; Huberman, Kandel, and Stambaugh 1987;
Cochrane 2009). This literature has explored the conditions under which rotations of a fac-
tor model retain the pricing ability of the original model. It has not, however, explored the
invariance properties for risk premia of individual factors within the model.
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of gt, regardless of the rotation of the true factors that occurs when ex-
tracting PCs.
A caveat worth mentioning is that one premise of our approach is that

all priced risks in the economy should be reflected in asset returns and
that these risk factors are pervasive, so that relevant and priced factors
can be recovered from the PCA step. This assumption—which is also be-
hind the arbitrage pricing theory of Ross (1976) and the approximate
factor model of Chamberlain and Rothschild (1983)—might not hold
exactly in practice, for example, if markets are less integrated or if large
subsets of test assets are not exposed to certain priced risk factors (i.e.,
the factors are weak). That said, recent empirical work in the asset pric-
ing literature (e.g., Kelly, Pruitt, and Su 2019) provides evidence in sup-
port of this assumption.4

Our three-pass procedure can be interpreted in light of the two stan-
dard methods for risk premium estimation. First, it can be viewed as a
PC-augmented two-pass cross-sectional regression. Rather than selecting
the control factors for gt arbitrarily, the PCs of the test asset returns are
used as controls; these stand in for the omitted factors and, thanks to the
rotation invariance result, fully correct the omitted variable bias. Sec-
ond, our procedure can be interpreted as a regularized version of the
mimicking-portfolio approach. The factor gt is projected onto the PCs
of returns (the PCs are themselves portfolios) rather than onto an arbi-
trarily chosen set of portfolios, which could lead to a bias, or onto the
entire set of test assets, which would be inefficient or even infeasible when
the number of test assets is larger than the sample size.
The fact that our procedure can be interpreted equivalently as an ex-

tension of both methods is particularly surprising because in standard
settings (when the number of test assets is fixed), the two estimators dif-
fer even in large samples because the risk premium of a factor (in pop-
ulation) is not the same as the expected excess return of its mimicking
portfolio, unless the factor itself is tradable. The former is a constant pa-
rameter that does not depend on the test assets, whereas the latter de-
pends on the test assets onto which the factor of interest is projected.
Our theoretical analysis, however, sheds light on the convergence of the
two methods as the number of test assets increases. Our three-pass proce-
dure reveals the numerical equivalence in this scenario between the exten-
sions of the two procedures, as long as PCA is used to span the entire factor
space and avoid the curse of dimensionality.
We then extend the theory of our estimator in two directions. First, we

explore the possibility that using mixed-frequency data may help the effi-
ciency of our estimator. Specifically, while the factors of interest (especially

4 We report an in-depth discussion and analysis of this issue in the online appendix.
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the nontradable ones that are the focus of the paper) are typically avail-
able only at low frequencies, the returns are often available at high fre-
quency. Perhaps surprisingly, we find that the use of mixed-frequency
data cannot improve the asymptotic efficiency of our procedure. As we
show in the paper, the reason is that to a first order, the limit to efficiency
is not the frequency of the data but the total span of the sample; intui-
tively, this is because the first-order estimation error for the risk premium
of a nontradable factor comes from the expected excess return of its mim-
icking portfolio, and it is well known that high-frequency data do not help
better pin down expected returns.
The second direction we explore focuses on the mimicking-portfolio

interpretation of our estimator. To the extent that one views our estima-
tor as a regularized mimicking-portfolio estimator on the basis of a large
set of test assets, it is interesting to ask whether other regularization tech-
niques might yield a similar result. We explore here in detail the ridge
regression approach: that is, a regularized projection (using ridge) of gt
onto all test assets. We derive new theoretical results showing that the
ridge estimator is indeed consistent, but in our setup the baseline PCA
approach is more efficient; intuitively, if there is a finite number of strong
factors underlying asset returns, PCA can efficiently separate signal (the
factors) from noise (idiosyncratic error), whereas a ridge regression relies
on both signal and noise and is therefore less efficient. Together, the ex-
ploration of these theoretical extensions confirms the good theoretical
properties of our baseline three-pass estimator.
We apply our methodology to a large set of 647 portfolios that include

equities sorted along many characteristics, bonds, and currencies. We esti-
mate and test the significance of the risk premia of tradable and nontrad-
able factors from a number of models proposed in the literature. We show
that the conclusions about the magnitude and significance of the risk
premia often depend dramatically on whether we account for omitted fac-
tors (usingourestimator)or ignore them(using standardmethods). In con-
trast with the existing literature, we find a risk premium of the market
portfolio that is positive, significant, and close to the time series average
ofmarket excess returns, even whenwe allow for an unrestricted zero-beta
rate following the Black (1972) version of the capital asset pricing model.
We also decompose the variance of each observed factor into the compo-
nents due to exposures to the latent factors as well as the component due
to measurement error. We find that several macroeconomic factors are
dominated by noise, and after we correct for it and for exposure to unob-
servable factors, they command a risk premium of essentially zero. We do,
however, find empirical support for the consumption growth of stockhold-
ers fromMalloy,Moskowitz, andVissing-Jorgensen (2009) aswell as for fac-
tors related to financial frictions (like the liquidity factor of Pástor and
Stambaugh 2003).
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Our paper derives several important econometric properties of the
three-pass estimator. We establish the consistency and derive the asymp-
totic distribution when both the number of test portfolios n and the
number of observations T are large.5 Our asymptotic theory allows for
heteroskedasticity and correlation across both the time series and the
cross-sectional dimensions while explicitly accounting for the propaga-
tion of estimation errors through the multiple estimation steps.
Moreover, the increasing dimensionality simplifies the asymptotic var-

iance of the risk premium estimates, for which we also provide an estima-
tor. In addition, we construct a consistent estimator for the number of
latent factors while also showing that even without it, the risk premium
estimates remain consistent. Finally, a notable advantage of our proce-
dure is that inference remains valid even when the observable factor gt
is spurious or even useless (i.e., totally uncorrelated with asset returns).
In the paper, we also provide a test of the null that the observed factor gt
is weak. Our methodology therefore provides a novel approach to infer-
ence in the presence of weak observable factors.
This paper sits at the confluence of several large strands of literature

combining empirical asset pricing with high-dimensional factor analysis.
Using two-pass regressions to estimate asset pricing models dates back to
Jensen, Black, and Scholes (1972) and Fama and Macbeth (1973). Over
the years, the econometricmethodologies have been refined and extended,
and some recent papers have also explored the large-n, large-T setting,
though not in the context of solving the omitted factor problem (e.g.,
Connor, Hagmann, and Linton 2012; Bai and Zhou 2015; Fan, Liao, and
Yao 2015; Gagliardini, Ossola, and Scaillet 2016, 2019). Our paper also re-
lates to the large literature that has explored pitfalls in estimating and test-
ing linear factor models, like model misspecification and the presence of
weak factors (e.g., Kan and Zhang 1999a, 1999b; Jagannathan and Wang
1998), and that has proposed methods that are more robust to misspecifi-
cation (e.g., Kleibergen 2009; Gospodinov, Kan, and Robotti 2013; Bryz-
galova 2015). Given the mimicking-portfolio interpretation of our esti-
mator, our paper naturally builds on a vast literature on theoretical and
empirical analysis using mimicking portfolios, dating back to Huberman,
Kandel, and Stambaugh (1987) and Breeden, Gibbons, and Litzenberger
(1989) and, more recently, Balduzzi and Robotti (2008) and Ang et al.
(2006), for example. Finally, we build on the literature that has explored
the use of PCs in asset pricing (e.g., Chamberlain and Rothschild 1983;
Connor and Korajczyk 1986, 1988; and, recently, Kozak, Nagel, and San-
tosh 2018).

5 Lewellen, Nagel, and Shanken (2010) highlight the danger of focusing on a small
cross section of assets with a strongly low-dimensional factor structure and suggest increas-
ing the number of assets used to test the model. We point to an additional reason to use a
large number of assets: to control properly for omitted factors.
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The paper is organized as follows. Section II discusses biases due to
omitted variables and measurement error in the standard risk premia
estimators. Section III introduces our three-pass estimation procedure
and discusses how it can be interpreted as an extension of both the
cross-sectional regression approach and themimicking-portfolio approach.
Section IV provides the asymptotic theory on inference with our estimator,
followed by an empirical study in section V. Appendixes A and B provide
technical details. The online appendix contains additional theoretical re-
sults, Monte Carlo simulations, additional empirical analysis, and supple-
mentary mathematical proofs.
Throughout the paper, we use (A∶B) to denote the concatenation (by

columns) of two matrices A and B. The term ei is a vector with 1 in the ith
entry and 0 elsewhere, whose dimension depends on the context. The
term ik denotes a k-dimensional vector with all entries being 1, and Id de-
notes the d � d identity matrix. For any time series of vectors fatgT

t51, we
denote �a 5 ð1=T ÞoT

t51at . In addition, we write �at 5 at 2 �a. We use the
capital letter A to denote the matrix (a1 : a2 : ::: : aT) and write �A 5
A 2 �ai⊺T correspondingly. We denote PA 5 AðA⊺AÞ21A⊺ and MA 5
Id 2 PA for some d � T matrix A. We use a ∨ b to denote the maximum
of a and b, and we use a ∧ b as their minimum for any scalars a and b.

II. Biases in Standard Risk Premia Estimators

In this section we illustrate how the standard risk premia estimators—the
two-pass regression approach (like Fama-MacBeth) and the mimicking-
portfolio approach—suffer from potential biases induced by omitted fac-
tors and measurement error. For illustration purposes, we show these re-
sults in a simple two-factor model, but all the results easily extend to
more general specifications.
Suppose that vt 5 ðv1t , v2tÞ⊺ is a vector of two potentially correlated fac-

tors. We assume that both have been demeaned, so we interpret v1t and
v2t as factor innovations.6 Assuming that the risk-free rate is observed, we
express the model in terms of excess returns:

rt 5 bg 1 bvt 1 ut ,

where ut is idiosyncratic risk, b 5 ðb1:b2Þ is a matrix of risk exposures,
and g 5 ðg1, g2Þ⊺ is the vector of risk premia for the two factors. In what
follows, we are interested in estimating the risk premium of a proxy for

6 As discussed in the introduction, the focus of this paper is on nontradable factors, whose
means have no direct relevance for the factors’ risk premia. This is why we write the model
directly in terms of factor innovations. Of course, if the factors are instead tradable, themean
of the factor itself—minus the risk-free rate—is the risk premium, in which case the methods
we discuss here are still valid as an alternative estimator of the risk premium.
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the first factor v1t, denoted as gt; its risk premium is therefore g1 in this
simple setting.
We begin with a brief review of the two standard estimators of g. Two-

pass regressions estimate the factor risk premia as follows. First, time se-
ries regressions of each test asset’s excess return onto the factors estimate
the assets’ risk exposures, b1 and b2. Second, a cross-sectional regression
of average returns onto the estimated b1 and b2 yields the risk premia
estimates of g1 and g2.
The mimicking-portfolio approach instead estimates the risk premium

of gt by projecting that factor onto a set of tradable asset returns, there-
fore constructing a tradable portfolio that is maximally correlated with
gt (which is why it is also referred to as the maximally correlated mimick-
ing portfolio). The risk premium of gt is then estimated as the average ex-
cess return of its mimicking portfolio.

A. Omitted Variable Bias

Consider first estimating the risk premium of gt 5 v1t using a two-pass
cross-sectional regression that omits v2t. It is easy to see that this omission
can induce a bias in each of the two steps of the procedure. The time
series step yields a biased estimate of b1, as long as the omitted factor
v2t is correlated with v1t (a standard omitted variable bias problem).
The magnitude of this bias depends on the time series correlation of
the factors. In the cross-sectional step of the procedure, a second omit-
ted variable bias occurs: rather than regressing average returns onto the
entire matrix of risk exposures with respect to both factors, b, only part
of it (b̂1) would be used, since the factor v2t is omitted. The magnitude of
this second bias depends on the cross-sectional correlation of risk expo-
sures, b1 and b2. Eventually, both biases (omission of v2t in the first step
and omission of b2 in the second step) affect the estimated risk premium
for gt using the two-pass regression approach.
In the mimicking-portfolio estimator, a related omitted variable bias

can instead arise from the omission of assets onto which gt is projected.
To see the potential for omitted variable bias in the mimicking-portfolio
approach, it is useful to write down explicitly the formula for the estima-
tor. Consider the projection of gt 5 v1t onto the excess returns of a cho-
sen set of test assets, r⌣t .7 This projection yields coefficients wg 5
Varðr⌣ tÞ21Covðr⌣ t , gtÞ; these are the weights of the mimicking portfolio
for gt, whose excess return is then r

g
t 5 ðwg Þ⊺r⌣ t . Therefore, we can write

the expected excess return of the mimicking portfolio as gMP
g 5

ðwg Þ⊺Eðr⌣tÞ : Since the test assets r⌣ t follow the same pricing model as the

7 We deliberately use r⌣ t instead of rt, which we reserve for the universe of available test
assets. The choice of assets for projection could be the entire universe of test assets rt or
some portfolios of rt.
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universe rt, we can write r⌣t 5 b
⌣
g 1 b

⌣
vt 1 u⌣ t . Substituting, we can write

the formula for the mimicking-portfolio estimator of the risk premium
of the first factor as gMP

g 5 fðb⌣Σvb
⌣⊺

1 Σ
⌣uÞ21ðb⌣Σve1Þg⊺

b
⌣
g, where e1 is a col-

umn vector (1, 0)⊺, Σv is the covariance matrix of the factors, and Σ
⌣u

is
the covariance matrix of the idiosyncratic risk of the assets used in the
projection.
The formula above shows that, in general, not all choices of the assets on

which to project gt will result in a consistent estimator of g1; that is, it is not
guaranteed that gMP

g 5 g1. There is one case in which these two population
quantities are identical: if the assets are chosen to be p portfolios that
(1) are well diversified (so that Σ

⌣u
≈ 0) and (2) fully span the true factors

vt, so that b
⌣
is invertible and vt 5 b

⌣21
r⌣ t ; if both conditions hold, we indeed

have gMP
g 5 g1.

When these conditions are not satisfied, however, the mimicking-
portfolio estimator will in general be biased. In particular, the mimicking-
portfolio estimator will be biased if the set of assets used in the projection
omits some portfolios that help span all risk factors in vt. The existing lit-
erature that has used the mimicking-portfolio approach has typically ig-
nored this bias. For example, when constructing a mimicking portfolio
for consumption growth, Malloy, Moskowitz, and Vissing-Jorgensen (2009)
project it onto four portfolios sorted by size and book to market. But nat-
urally there are other risks in the economy in addition to size and value
that may be correlated to consumption growth and that may not be cap-
tured by those four portfolios. In that case, the estimator may be affected
by omitted variable bias.

B. Measurement Error Bias

Wenow considermeasurement error in gt because this is often plausible in
practice. For nontradable factors, which are the primary focus of this paper,
there are oftenmany choices the researcher needs tomake to construct the
empirical counterpart of a theory-predicted factor. For example, there are
many ways to construct an aggregate liquidity factor in practice. The con-
struction of the empirical factor is likely to introduce some measurement
error, which we allow for in our specification. For tradable factors, measure-
ment error can capture exposure to unpriced risks or idiosyncratic risk that
is not fully diversified.
Suppose that the econometrician can observe only gt 5 v1t 1 zt , where zt

is measurement error orthogonal to the factors but potentially correlated
with ut.
Measurement error in gt adds another source of bias to the standard

estimators. Consider first the two-pass regression approach. Independently
of whether v2t is observed, measurement error in gt will induce an atten-
uation bias in the estimated b1 in the time series regression (since the
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regressor gt is measured with error). In turn, this first-stage bias affects
the second-step estimate, leading to a biased estimate of g1.
Measurement error affects the mimicking portfolio as well. In the pres-

ence of measurement error zt, the formula for gMP
g has an additional term:

gMP
g 5 fðb⌣Σvb

⌣⊺
1 Σ

⌣uÞ21ðb⌣Σve1 1 Σ
⌣z,uÞg⊺

b
⌣
g ≠ g1, where Σ

⌣z,u
5 Covðzt , u⌣tÞ.

Thus, measurement error zt can introduce a bias in themimicking-portfolio
estimator, unless idiosyncratic errors u⌣ t in the spanning assets are uncorre-
lated with zt.

III. Methodology

In this section we present our three-pass risk premia estimator, which
tackles both the omitted variable and themeasurement error biases in es-
timating risk premia in linear factor models.
Consider a general linear factor model with p factors:

rt 5 bg 1 bvt 1 ut , EðvtÞ 5 EðutÞ 5 0, and Covðut , vtÞ 5 0, (1)

where vt are innovations of the p factors (i.e., mean zero factors), rt are
excess returns on n assets, ut are idiosyncratic errors, b are factor load-
ings, and g is the vector of risk premia for the p factors.
The objective of this paper is to estimate the risk premia of one ormore

factors gt without necessarily observing all true factors vt. In the simple
two-factor model of section II, we assumed that gt was a proxy of the first
factor v1t. Here we introduce amore general specification for gt that nests
this case and also allows for measurement error.
Call gt a set of d observable (tradable or nontradable) factors whose

risk premia we aim to estimate. The term gt is related to the factors vt as
follows:

gt 5 d 1 hvt 1 zt , EðztÞ 5 0, and Covðzt , vtÞ 5 0, (2)

where h captures the relation between gt and the unobservable factors vt,
and zt is measurement error in gt. The risk premiumof gt—the objective of
our analysis—is defined as the expected excess return of a portfolio with
beta of 1 with respect to gt and beta of 0 with respect to all other factors
(including the unobservable ones), and in this model it corresponds to
gg 5 hg.8

From equations (1) and (2), it is clear that neither h (the loading of gt
on the unobservable fundamental factors) nor g (the risk premia of the
unobservable factors) can be identified if the factors vt are not observed. A
fundamental identification question then arises: under what conditions

8 This specification nests the case where gt is the first factor by choosing h to be the vector
(1, 0, 0, ..., 0) and setting d and zt to zero.
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can we identify the product hg even if we cannot separately identify h

and g?
The answer—upon which we build our methodology—lies in a simple

but powerful property of risk premia in linear factor models, which we
denote rotation invariance. It states that the product hg can be identified
even if one observes only an arbitrary full-rank rotation of the factors,
that is, if one just observes v̂t 5 Hvt , with H any full-rank p � p matrix,
but observes neither vt nor H.
To see that, rewrite the model as

rt 5 bH21Hg 1 bH21Hvt 1 ut ,

gt 5 d 1 hH21Hvt 1 zt :

Defining ĥ ≔ hH21, ĝ ≔ Hg, and b̂ ≔ bH21, we can write the model en-
tirely in terms of the rotated factors v̂t :

rt 5 b̂ĝ 1 b̂v̂t 1 ut , (3)

gt 5 d 1 ĥv̂t 1 zt : (4)

As long as v̂t is observed, we can then identify ĥ 5 hH21 (it is the vector
of regression coefficients of gt on v̂t) as well as ĝ 5 Hg (they are the risk
premia of v̂t , which can be obtained, e.g., via standard cross-sectional re-
gressions). While we clearly cannot recover h or g separately because we
do not know H, we can still identify the risk premium of gt because

ĥĝ 5 hH21Hg 5 hg 5 gg :

It is obvious that this so-called invariance property does not hold for the
other quantities in the model, like h, g, or b—it is a property that is spe-
cific to gg.
The methodology we propose in this paper combines this insight with

a well-known result from the econometric literature on latent factors
(e.g., Bai 2003): that if the factors in vt are sufficiently strong, PCA con-
sistently recovers a rotation of the factor space; that is, v̂t 5 Hvt for some
unobservable matrix H.
Following these arguments, our three-pass procedure (1) estimates the

rotated factors v̂t via PCA; (2) estimates via a two-pass cross-sectional re-
gression ĝ 5 Hg, that is, the risk premia of v̂t ; and (3) estimates ĥ 5
hH21 via a time series regression of gt onto the estimated v̂t . The risk
premia of gt, hg, can then be estimated by taking the product of the esti-
mates of ĥ and ĝ at steps 2 and 3.
Having presented the broad ideas behind ourmethodology, section III.A

delves deeper and more formally into our three-pass estimator; it discusses
in detail the role each step plays and addresses various implementation
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concerns. After that, section III.B discusses different interpretations of our
estimator, relating it specifically to the existing methodologies.

A. The Three-Pass Estimator

Our analysis is presented in the context of the model of equations (1)
and (2). Before we formally discuss the estimator, it is useful to add a few
notes on themodel.
First, themodel assumes constant loadings and risk premia. These assump-

tions are restrictive for individual stocks but applicable to characteristic-
sorted portfolios, which we will use in our empirical study. Our analysis is
still applicable to certain conditional models that allow for time-varying
risk premia and risk exposures by taking a stand on appropriate condi-
tioning information, (e.g., characteristics or state variables) at the cost
of greater statistical complexity.9 Second, we impose weak assumptions
on the structure of the errors. Most of our results hold for nonstationary
processes with heteroskedasticity and dependence in both the time se-
ries and the cross-sectional dimensions. For ease of presentation, we de-
fer the technical details to appendix A. Third, this baselinemodel imposes
that the zero-beta rate is equal to the observed treasury bill rate. Online
appendix I.2 examines a more general version of the model that allows
the zero-beta rate to be different and to be estimated.
We now present our three-pass estimator. We start by writing the model

inmatrix form for notational convenience. We denote R as the n � T ma-
trix of excess returns, V the p � T matrix of factors, G the d � T matrix of
observable factors, U the n � T matrix of idiosyncratic errors, and Z the
d � T matrix of measurement error. Our model (eqq. [1], [2]) can then
be written in matrix terms as

R 5 bgi⊺T 1 bV 1 U :

Writing (�R , �V , �G , �U , �Z) as the matrices of the demeaned variables, we
find that this equation then becomes

�R 5 b�V 1 �U : (5)

Next, we write the equation for gt in matrix form. Given that for nontrad-
able factors (like inflation or liquidity) the mean of gt, d, does not have a
meaningful interpretation or relevance for the purpose of estimating
the risk premium, we need only the demeaned version of equation (2):

�G 5 h�V 1 �Z : (6)

9 We discuss such extensions in greater detail in online app. III.9.
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Our estimator makes use of only excess returns R and the factors of
interest G. We do not require the true factors V to be known or observ-
able. As reported above, the procedure exploits an important result from
Bai andNg (2002) andBai (2003) that guarantees that by applying PCA to
the panel of observed return innovations �R , we can recover b and �V up to
some invertible matrix H as long as n, T →∞.
The three-pass estimator.—Given observable returns R and the factors of in-

terestG, we can write the three steps of our estimator for gg 5 hg as follows:

1. PCA step.—Extract the PCs of returns by conducting the PCA of the
matrix n21T21 �R ⊺ �R . Define the estimator for the factors and their
loadings as

V̂ 5 T 1=2ðy1 : y2 : ::: : yp̂Þ⊺ and b̂ 5 T21 �RV̂ ⊺, (7)

where y1, y2, ... , yp̂ are the normalized eigenvectors (of length 1) cor-
responding to the largest p̂ eigenvalues of thematrix n21T21 �R ⊺ �R and
p̂ is some consistent estimator of the number of factors.10

2. Cross-sectional regression step.—Run a cross-sectional ordinary least
squares (OLS) regression of average returns, �R , onto the estimated
factor loadings, b̂, to obtain the risk premia of the estimated latent
factors:

ĝ 5 ðb̂⊺b̂Þ21
b̂⊺�r :

3. Time series regression step.—Run a time series regression of gt onto
the extracted factors from step 1 and then obtain the estimator,
ĥ, and the fitted value of the observable factor, Ĝ :

ĥ 5 �GV̂ ⊺ðV̂ V̂ ⊺Þ21 and Ĝ 5 ĥV̂ :

As indicated before, the estimator of the risk premium for the observ-
able factor gt is obtained by combining the estimates of the second and
third steps:

ĝg 5 ĥĝ:

Our three-pass estimator also has a more compact form:

ĝg 5 �GV̂ ⊺ðV̂ V̂ ⊺Þ21ðb̂⊺b̂Þ21
b̂⊺�r : (8)

The estimator can be easily extended to the case in which the zero-beta
rate is allowed to differ from the observed risk-free rate. In that case,

10 There are various estimators of p available in the existing literature, which work under
similar but different assumptions. We propose one such estimator in online app. I.1 and
prove its consistency under assumptions of this paper. In what follows, we directly assume
the existence of a consistent estimator p̂.
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returns can be written as rt 5 g0in 1 bg 1 bvt 1 ut , and step 2 of the pro-
cedure can bemodified to yield an estimate for gg together with the zero-
beta rate g0. In compact form, the estimators are given by

ĝ0 5 i⊺nMb̂inð Þ21
i⊺nMb̂�r , ~gg 5 �GV̂ ⊺ðV̂ V̂ ⊺Þ21

b̂⊺Min b̂
� �21

b̂⊺Min�r , (9)

where Mb̂ 5 In 2 b̂ðb̂⊺b̂Þ21
b̂⊺ and Min 5 In 2 inði⊺ninÞ21

i⊺n. We discuss this
extension in online appendix I.2.
The first step of the three-pass procedure recovers the factors v (up to a

rotation: H �V for some unobserved invertible matrixH) by extracting the
PCs of returns and selecting the first p̂ of them. We propose to extract PCs
from the T � T matrix, n21T21 �R ⊺ �R , and normalize the estimated fac-
tors such that V̂ V̂ ⊺ 5 Ip̂ . Alternatively, one could consider extracting PCs
from the n � n matrix n21T21 �R �R ⊺, and the normalization takes a different
form: b̂⊺b̂ 5 Ip̂ . The two ways of normalization yield numerically identical
risk premia estimates.
Once the PCs are extracted in the first stage, the second stage estimates

their risk premia. The estimation of risk premia in the second step can be
done in different ways. We suggest using anOLS regression for its simplic-
ity. Either a generalized least squares (GLS) regression or a weighted least
squares (WLS) regression is possible, but either of the two would require
estimating a large number of parameters (e.g., the covariance matrix of ut

in GLS or its diagonal elements in WLS). As it turns out, these estimators
will not improve the asymptotic efficiency of the OLS to the first order.
This is different from the standard large T and fixed n case because in
the large n setting, the covariance matrix of ut matters only at the order
of Opðn21 1 T21Þ, whereas the leading term of ĝg is of OpðT21=2Þ.
The third step is a new addition to the standard two-pass procedure. It is

critical because it translates the uninterpretable risk premia of latent fac-
tors to those of factors that the economic theory predicts. This step also re-
moves the effect of measurement error, which the standard approaches
cannot accomplish.11 Even though gt can bemultidimensional, the estima-
tion for each observable factor is separate. Estimating the risk premium for
one factor does not affect the estimation for the others at all, another im-
portant property of our estimator.

B. Interpretations of the Three-Pass Estimator

In this section, we discuss various interpretations of our estimator. In par-
ticular, we show that our estimator can be interpreted both as an extension

11 The third step resembles similar regressions considered also in Bai and Ng (2006) to
test whether observable factors are spanned by latent ones rather than in combination with
the first two steps of our procedure (which allow us to estimate the risk premium of the
factors).

1960 journal of political economy



of the two-pass regressions and as an extension of themimicking-portfolio
estimator. As discussed above—and as we also review formally below—in
general, the two-pass regression and the mimicking-portfolio estimator
tend to give different estimates, even when the model is correctly speci-
fied. We show below that our estimator instead represents the convergence
of these two approaches: a case in which both estimators give exactly the
same answer. Finally, we introduce a third interpretation based on the sto-
chastic discount factor.

1. Two-Pass Regression Interpretation

The two-pass interpretation of our results derives directly from the rota-
tion invariance of risk premia. To begin, suppose that we know the entire
model, equations (1) and (2). Also, suppose for simplicity that gt is only
one factor (d 5 1; the results extend to any d), and there is no measure-
ment error.
We now construct a specific rotation of this model in which the factor

gt appears as the first of the p factors, together with p 2 1 additional con-
trol factors. To do so, construct a matrix H in which the first row is h and
the remaining p 2 1 rows are arbitrary (with the only condition that the
resultingH is full rank). The factors of the rotated model areHvt; since h
is the first row of H, the first factor in this rotation is hvt, which is just gt
(see eq. [2]). Similarly, the risk premia of the rotated factors areHg, and
the risk premium of the first factor, gt, is hg, again because the first row of
H is h.
Consider now applying a two-pass cross-sectional regression in this

particular rotation, assuming that all the rotated factors Hvt are ob-
served. Given that the model is correctly specified, the two-pass regres-
sion will recover all the risk premia Hg; therefore, it will also recover
hg as the risk premium for gt. But this result holds for any matrixH where
the first row is h, independently of the other rows ofH. This implies that a
two-pass estimation of a model where gt appears with p 2 1 arbitrary lin-
ear combinations of vt will deliver the correct estimate for the risk pre-
miumof gt independently of how the remaining p 2 1 controls are rotated.
The only requirement is that H is invertible: that is, that gt together with
the controls spans the same space as the original factors vt.
We can then interpret our three-pass estimator as a factor-augmented

cross-sectional regression estimator. Step 1 uses PCA to extract a rotation
of the original factors vt. Step 3 removes measurement error from gt and
identifies ĥ: this tells us how to rotate the estimated model so that gt ap-
pears as the first factor. We can then construct a rotated model with ĝt
together with p 2 1 PCs as controls. Risk premia for this model are esti-
mated via cross-sectional regressions (step 2) that will then deliver a risk
premium of hg for gt. While this cross-sectional regression interpretation
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of the estimator inverts the ordering of steps 2 and 3 of our procedure, it
gives numerically identical results.

2. Mimicking-Portfolio Interpretation

Our three-pass procedure can also be interpreted as amimicking-portfolio
estimator, in which the PCs themselves are the portfolios on which gt is
projected. This is an ideal choice of portfolios that ensures that the esti-
mator is consistent.
Suppose that, out of the universe of test assets, we construct p

⌣
port-

folios on which we project gt. We refer to w as the n � p
⌣
matrix of port-

folio weights that are used to construct these portfolios of rt : so the
returns of the portfolios we will use in the estimation will be r⌣ t 5 w⊺rt .
In section II.A, we showed that in general the mimicking-portfolio esti-
mator is not consistent. That said, it can be consistent if the returns of
the portfolios on which gt is projected (r⌣t) satisfy certain requirements.
In turn, this means that w needs to be chosen carefully so that the
mimicking-portfolio estimator that uses these p

⌣
portfolios,

gMP
g 5 hΣvb

⌣⊺
ðΣ⌣ rÞ21

b
⌣
g 1 Σ

⌣ z,uðΣ⌣ rÞ21
b
⌣
g, (10)

actually converges to gg 5 hg. This formula also shows clearly that unless
the returns of the assets r⌣ t are chosen appropriately, the mimicking-
portfolio approach will in general yield a different estimate than the
two-step cross-sectional estimator.
We now derive a novel property of mimicking-portfolio estimators

(not studied in the existing literature, to the best of our knowledge) that
helps us choose w appropriately when the number of test assets n is large.
In particular, we prove in proposition 1 that the difference between the
mimicking-portfolio based risk premia gMP

g and hg disappears as n→∞,
as long as the portfolios on which to project gt are constructed by choos-
ing w equal to b or some full-rank rotation of it.
Proposition 1. Suppose that assumptions A1–A3 hold. The risk pre-

mium of themimicking portfolio that is maximally correlated with gt, gMP
g ,

satisfies gMP
g 2 hg 5 opð1Þ as n→∞.

Intuitively, this choice of w is guaranteed to achieve asymptotically the
two criteria highlighted in section II.A: these portfolios manage to aver-
age out idiosyncratic errors while maintaining their exposure to the fac-
tors. The second part is important. Many portfolios can average out idi-
osyncratic errors, but they might also average out exposures to certain
factors, in which case the omitted variable bias discussed in this paper
would bias the estimates.
Our three-pass method corresponds exactly to a mimicking-portfolio

estimator where the portfolios onto which gt is projected are constructed
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using a particular choice for w: b̂ðb̂⊺b̂Þ21, that is, a full-rank rotation of
the estimated b. The resulting portfolio returns are exactly the PCs in
step 1 of our procedure, that is, V̂ 5 ðb̂⊺b̂Þ21

b̂⊺ �R . In addition, these port-
folios are (when n is large) free of idiosyncratic error. Step 3 projects gt
onto these portfolios, thus identifying the weights of themimicking port-
folio, ĥ. Our estimator of the risk premium of gt is then obtained by mul-
tiplying the portfolio weights ĥ by the risk premia of these portfolios (ĝ)
obtained in step 2.
Interestingly, as we prove in appendix A (see discussion following as-

sumption A3), another valid choice of w would be the identity matrix.
Therefore, the mimicking-portfolio estimator would also be unbiased if
the factor is projected onto the entire universe of potential test assets rt
as opposed to an appropriately chosen subset r⌣t , again as long as n→∞. In-
tuitively, when gt is projected onto a larger and larger set of test assets, the
mimicking portfolio will diversify the idiosyncratic errors while at the same
time spanning the factor space, thus reducing the bias. However, as n→∞,
the mimicking-portfolio estimator becomes increasingly inefficient, as the
number of right-hand-side regressors increases; when n is larger than T, it
actually becomes infeasible. Our three-pass procedure can therefore be in-
terpreted as a regularized mimicking-portfolio estimator that exploits the
benefits in terms of bias reduction that occur when n→∞ but preserves fea-
sibility and efficiency via PC regressions.
To sum up, in standard cases with fixed n, the two-pass cross-sectional

regression and mimicking-portfolio approaches tend to give different
answers about the risk premium of a factor gt. Our three-pass estimator
represents the convergence of these two approaches that occurs when PCs
are used to span the space of a large number of test assets.

3. Stochastic Discount Factor Interpretation

We conclude with a third interpretation of the procedure in terms of the
stochastic discount factor. As discussed in Cochrane (2009), in linear fac-
tor models the risk premium of any factor gt is simply the negative of the
univariate covariance of gt with the stochastic discount factor mt. Formally,
in our setting, mt 5 1 2 g⊺Σ21

v vt , so that 2Covðgt ,mtÞ 5 hg. The first two
steps of the procedure effectively recover the stochastic discount factor mt

in the linear factor model (which is invariant to the rotation of the factors,
as discussed in the existing literature; see, e.g., Roll and Ross 1980; Hu-
berman, Kandel, and Stambaugh 1987). The requirement of spanning the
factor space is what allows to estimate the stochastic discount factor consis-
tently. Step 3 effectively computes the univariate covariance between gt and
the stochastic discount factormt estimated in the first two stages. The invar-
iance result is at play here because step 3 involves only a univariate covari-
ance with mt, which itself is invariant to the rotation of the factor space.
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IV. Asymptotic Theory

In this section, we present the large sample distribution of our estimator
as n, T →∞. For clarity of presentation, we leave the technical details of
all assumptions to appendix A. Our results hold under similar or weaker
assumptions compared with those in Bai (2003). This is because our
goals are different. Our main target is hg instead of the asymptotic dis-
tributions of factors and their loadings.
One notable assumption is the so-called pervasive condition for a fac-

tor model, that is, assumption A6. It requires the factors to be sufficiently
strong that most assets have nonnegligible exposures. This is a key iden-
tification condition, which dictates that the eigenvalues corresponding
to the factor components of the return covariance matrix grow rapidly
at a rate n, so that as n increases, they can be separated from the idiosyn-
cratic component whose eigenvalues grow at a lower rate. The pervasive-
ness assumption precludes weak but priced latent factors—though, as
will be clear later, it still allows for weak observable factors.12

A. Limiting Distribution of the Risk Premia Estimator

We now present the main theorem of the paper—the asymptotic distri-
bution of the estimator ĝg .
Theorem 1. Under assumptions A1, A2, and A4–A11, and if we sup-

pose that p̂ →
p
p, then as n, T →∞, we have

ĝ 2 Hg 5 H�v 1 Opðn21 1 T21Þ, 
ĥ 2 hH21 5 T21�Z �V ⊺H ⊺ 1 Opðn21 1 T21Þ,

for some matrix H that is invertible with probability approaching 1.
Moreover, if T 1=2n21 → 0,

T 1=2 ĝg 2 hg
� �

→
L N 0, Fð Þ,

where the asymptotic covariance matrix is given by

F 5 g⊺ Σvð Þ21 � Id
� �

P11 Σvð Þ21
g� Id

� �
1 g⊺ Σvð Þ21 � Id
� �

P12h
⊺

1 hP21 Σvð Þ21
g� Id

� �
1 hP22h

⊺,

(11)

and P11, P12, and P22 are defined in assumption A11.
Remarkably, F does not depend on the covariance matrix of the resid-

ual ut or the estimation error of b. Their impact on the asymptotic vari-
ance is of higher order because of the blessings of dimensionality (n→∞).

(11)

12 We defer a more detailed discussion of weak factors to online app. III.4.
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This is in sharp contrast to the classical fixed-n asymptotic results in
Cochrane (2009), in which both b and Σu enter the asymptotic variance
of the risk premia estimator and in which the time series estimation error
of b̂ contributes to an extra Shanken adjustment term in the asymptotic var-
iance (Shanken 1992). Consequently, to conduct inference on hg, there is
no need to estimate the large covariance matrix of ut. This also implies that
the usual GLS or WLS estimator would not improve the efficiency of the
OLS estimator to the first order.13

To illustrate the intuition behind this result, we compare the asymp-
totic variance expressions in a special case, where there is no measure-
ment error and all factors are known and observable (i.e., h 5 Ip).
The large-T fixed-n analysis yields

AvarOLSðĝÞ 5 ðb⊺bÞ21
b⊺Σubðb⊺bÞ21 1 1 g⊺ðΣvÞ21

g
� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Shanken adjustment for b̂

1 Σv,

AvarGLSðĝÞ 5 ðb⊺ðΣuÞ21
bÞ21 1 1 g⊺ðΣvÞ21

g
� �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Shanken adjustment for b̂

1 Σv:

Under the assumptions of our paper, we can show that kðb⊺bÞ21 k 5
Oðn21Þ, k b⊺Σub k 5 OðnÞ, and k ðb⊺ðΣuÞ21

bÞ21 k 5 Oðn21Þ: So it is easy
to see that the leading order of the asymptotic variances of both OLS
and GLS is Σv as n increases.14 In this special case, our equation (11) sim-
plifies to F 5 P22, which, under the stationarity of vt, is identical to Σv.
Also, if the factors are themselves tradable portfolios, the asymptotic var-
iance of their sample average returns is equal to Σv. In fact, Σv is theminimal
variance that an estimator could achieve in this setting. Our estimator
achieves this bound without the knowledge of factor identities.
In the general setting we consider (i.e., h ≠ Ip, zt ≠ 0), we can decompose

the estimation error of ĝg into its two components: the error due to esti-
mating ĝ and the error due to estimating ĥ. The dominating error term
in the former arises from the time series average of the factor innovation
vt, whereas in the latter the dominating error term arises from the time se-
ries regression of gt on vt. A direct application of the deltamethod on these
two leading terms yields the desired central limit result in theorem 1. The
remaining error terms are of the order Opðn21 1 T21Þ and are due to the

13 Indeed, to formally prove this, we can show our estimator is asymptotically equivalent
to the infeasible GLS estimator.

14 Without loss of generality, we can rewrite model (1) in terms of observable factors ft
instead of their innovations vt; i.e., rt 5 bg 1 bð ft 2 f Þ 1 ut . So our informal analysis of
this special case echos Gagliardini, Ossola, and Scaillet (2016), who formally show that
the estimation error of g 2 f is Opðn21=2T21=2Þ. Obviously, the estimation error of f is
OpðT21=2Þ, which dominates the estimation error of g 5 g 2 f 1 f .
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ignorance of the true factors, the error in variable bias in b̂, and the error
in the cross-sectional regression (cf. n. 13). Under the condition that
T 1=2n21 5 oð1Þ, these errors arenegligiblewith respect toOpðT21=2Þ, namely,
the convergence rate of the achieved central limit result. In particular,
thismeans that the asymptotic variance (11) is identical to that of the case
in which all factors are observable, so that asymptotically our estimator
behaves as if factors were fully observable. In a finite sample, however,
the asymptotic efficiency loss due to not observing the factors could be
large when n is relatively small. Also, p̂ is likely not identical to the true
number of factors, which further affects the finite sample performance.

B. Mixed-Frequency Data

In this section we explore the possibility of using mixed-frequency data
to improve the performance of our estimator. More specifically, even
though the factor gt may be available only at a low frequency (e.g., quar-
terly or monthly for macro factors), returns of test assets are available at a
higher frequency (e.g., daily). Let D 5 m21 be the sampling frequency of
high-frequency returns. Let ah

t1kD denote the high-frequency return from
t 1 ðk 2 1ÞD to t 1 kD for a 5 r , u, and v. We can recycle the old nota-
tion at and use it as the low-frequency cumulative return from t 2 1 to t,
that is, at ≔ om

k51ah
t211kD :We shall make assumptions on the high-frequency

dynamics of ah
t1kD, such that the corresponding low-frequency cumulative

return at satisfies the assumptions in appendix A and that we can evaluate
the efficiency gain, if any, achievable with high-frequency data. In partic-
ular, we assume that the high-frequency test asset returns follow a linear
factor model:

r ht1kD 5 bgD 1 bvh
t1kD 1 uh

t1kD (12)

for 1 ≤ k ≤ m and 1 ≤ t ≤ T .
We then revise our procedure to make use of high-frequency returns.

Specifically, in the first two steps of the three-pass procedure, we conduct
PCA and cross-sectional regressions using r ht1kD and obtain V̂ h, b̂h, and ĝh,
respectively, where the superscript h emphasizes the use of high-frequency
data. Note that V̂ h is a d � ðmT Þ matrix of the estimated high-frequency
factors. For the third and last step, we instead regress gt onto the low-
frequency cumulative returns of the high-frequency factors:

ĥl 5 �GV̂ l ⊺ðV̂ l V̂ l ⊺Þ21,

where V̂ l 5 V̂ hðim � IT Þ. Consequently, the new risk premia estimator is

ĝm
g 5 m � ĥl ĝh: (13)
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The multiplier m ensures that the risk premia estimates are in the same
unit as those based on low-frequency data.
The next theorem shows that this estimator is in fact asymptotically

equivalent toourbenchmark, ĝg , whichuses only low-frequencydata (cumu-
lative returns).
Theorem 2. Suppose that the high-frequency returns r ht1kD satisfies (12),

with its components b, vh
t1kD, and uh

t1kD satisfying the same conditions as
those given by assumptions A4–A7 and A9, except that the sample size
is replaced by mT and the variance Σv is replaced by ΣvD.15 In addition,
assumptions A2, A8, A10, and A11 hold for the low-frequency cumulative
returns, vt and ut. Suppose p̂→

p
p; then as n, T →∞, with probably ap-

proaching 1, there exists some invertible matrix Hh, such that

ĝh 2 HhgD 5 m21Hh�v 1 Opðn21 1 T21Þ,
 ĥl 2 hðHhÞ21 5 �Z �V ⊺ð�V �V ⊺Þ21ðHhÞ21 1 Opðn21 1 T21Þ:

Moreover, we have ĝm
g 5 ĝg 1 Opðn21 1 T21Þ.

Intuitively, gt is available only at a lower frequency, so that the efficiency
gain, if any, could arise only from part of the estimator that uses high-
frequency data: ĝh. But recall that the sample average return, �vh 5
ðmTÞ21PT

t51

Pm
k51v

h
t211k , is the leading term of ĝh 2 HhgD. And the sample

average remains the same regardless of the sampling frequency of the ob-
served returns: �vh 5 m21�v. As a result, there is no efficiency gain to the
first order when using (13) with high-frequency test asset returns.

C. Using the Ridge Estimator

In section III.B, we pointed out that our three-pass estimator can be re-
garded as the average excess return of a regularized mimicking portfolio,
which uses PCs as basis assets onto which the factor of interest is projected.
Effectively, we construct this mimicking portfolio using the PC regression
(see, e.g., Friedman, Hastie, and Tibshirani 2009). In this section, we con-
sider an alternative ridge regression approach to the construction of mim-
icking portfolios.
Ridge regression is a shrinkagemethod originally motivated to improve

estimation and prediction in a linear regression problem (see Hoerl and
Kennard 2000). Compared with the best linear unbiased OLS estimator,
the ridge estimator is biased, but its variancemay be smaller; thus, it poten-
tially achieves a better trade-off in terms of mean squared error.
As discussed in section III.B, one approach to mimicking-portfolio con-

struction is to regress gt onto the entire set of test asset returns. However,

15 The scaling factor D ensures that the variance of vt 5 om
k51vh

t211kD remains Σv. Note that
we consider only the case of a fixed D, so we do not keep track of D on the right-hand-side
bounds in assumptions A4, A7, and A9.
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this estimator is rather inefficient when n is comparable to T and becomes
infeasiblewhenn is larger thanT. Using the ridge regression for estimating
themimicking-portfolio weights solves this issue. Specifically, the portfolio
weights are given by ŵm

g 5 ð�R �R ⊺ 1 mInÞ21 �R �G ⊺, where m is a tuning param-
eter. With m > 0, the matrix �R �R ⊺ 1 mIn is always invertible. Moreover, via
singular value decomposition of �R , that is, �R 5 ςDy⊺, the ridge estimator
can be written as ŵm

g 5 ςðDD⊺ 1 mInÞ21Dy⊺ �G ⊺, where ς is an n � nmatrix of
left singular vectors, D is an n � T diagonal matrix of singular values of �R ,
and y is a T � T matrix of right singular vectors. Clearly, the ridge estima-
tor tends to result in more stable portfolio weights by shrinking the singu-
lar values of �R . The larger m is, the larger the shrinkage effect is.
The ridge regression version of our risk premia estimator will then be

ĝm
g 5 ðŵm

g Þ⊺�r 5 �G �R ⊺ð�R �R ⊺ 1 mInÞ21�r 5 �GyDðDD⊺ 1 mInÞ21ς⊺�r : (14)

To compare this estimator with our PCA-based three-pass procedure, we
can rewrite (8) as

ĝg 5 �GV̂ ⊺ðV̂ V̂ ⊺Þ21ðb̂⊺b̂Þ21
b̂⊺�r 5 �Gy1 : p̂D

21
1 : p̂ς

⊺
1 : p̂�r ,

where y1 : p̂ and ς1 : p̂ are submatrices of y and ς, respectively, including only
their first p̂ columns, and D1 : p̂ is the p̂ � p̂ submatrix on the top left cor-
ner of D. Clearly, the difference between ĝ

m
g and ĝg is that the latter de-

pends on only the first p̂ singular values and singular vectors, whereas the
former relies on all of them.
With an appropriate choice of m, the next theorem establishes the con-

sistency of the ridge estimator.
Theorem 3. Suppose that assumptions A1, A2, and A4–A11 hold,

p̂→
p
p, and m is chosen such that mn21T21 → 0 and m21ðnT 1=4 1 n1=4T Þ 0;

then we have ĝ
m
g 2 ĝg 5 opð1Þ:

This theorem shows that using ridge regression in place of PCA in our
analysis yields an alternative consistent estimator of risk premia. However,
note that in general when the true number of factors is finite, the ridge re-
gression is not as efficient as the three-pass estimator. Intuitively, the reason
is that the ridge estimator puts weight on all assets without trying to distin-
guish latent factors fromnoise; since each of the spanning portfolios loads
on the factors but also contains noise (idiosyncratic or unpriced risk), the
ridge estimator will reflect some of that noise. Instead, the PCA analysis ex-
plicitly separates the latent factors from the noise and is asymptotically as
efficient as if factors were observable (under the assumption that all latent
factors are pervasive). In our empirical analysis, we therefore focus on the
PCA-based three-pass estimator, but we also report for robustness the re-
sults obtained using the ridge regression approach.16

16 The comparison between these estimators in the case of an infinite number of factors or
in the case of weak factors is beyond the scope of the paper, and we leave it for future work.
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D. Testing the Strength of an Observed Factor

As discussed in the introduction, a recent literature has explored the issues
that arise when making inference on risk premia in the presence of weak
factors (i.e., factors that are only weakly reflected in the cross section of test
assets). Our methodology is in fact robust to the case in which observable
factors gt are weak. In particular, whether gt is strong or weak can be cap-
tured by the signal-to-noise ratio of its relationship with the underlying fac-
tors vt (from eq. [2]). If either h 5 0 (gt is not a pervasive factor) or h→ 0
(measurement error zt dominates the gt variation), then gtwill be weak, and
returns exposures to gt will be small.
Our procedure estimates equation (2) in the third pass and is there-

fore able to detect whether an observable factor gt has zero or low expo-
sure to the fundamental factors (h is small) or whether it is noisy (zt is
large) and corrects for it when estimating the risk premium. To measure
the signal-to-noise ratio of each observable factor, we define the time se-
ries R 2 for each observable factor g ð1 � T Þ in the time series regression
of gt on the latent factors, R 2

g 5 hΣvh⊺=ðΣvh⊺ 1 ΣzÞ, as well as its estimator,
R
⌢2
g 5 ĥV̂ V̂ ⊺ĥ⊺=�G �G ⊺, which we show to be consistent in theorem I.4 of the

online appendix. This R 2
g reveals how noisy g is, which, as we report in

our empirical analysis, varies substantially across factor proxies. In this
section, we provide a Wald test for the null hypothesis that a factor g is
weak.
Without loss of generality, it is sufficient to consider the d 5 1 case. To

do so, we formulate the hypotheses H0 : h 5 0 versus H1 : h ≠ 0 and con-
struct a Wald test. Our test statistic is given by

Ŵ 5 T ĥ ðΣ̂vÞ21
P̂11ðΣ̂vÞ21

� �21
ĥ⊺,

where P̂11 and Σ̂v are constructed in section IV.E.
The next theorem establishes the desired size control and consistency

of the test as well as its convergence property under a sequence of local
alternatives HT : h 5 h0T21=2.
Theorem 4. Suppose d 5 1, p̂→

p
p, and P̂11→

p
HP11H ⊺ for the same

H matrix in theorem 1. Under assumptions A2 and A4–A11, as n,
T →∞, T 1=2n21 → 0, we have

lim
n,T →∞

P Ŵ > x2
p̂ð1 2 a0ÞjH0

� �
5 a0 and  lim

n,T →∞
P Ŵ > x2

p̂ð1 2 a0ÞjH1

� �
5 1,

where x2
p̂ð1 2 a0Þ is the (1 2 a0) quantile of the x2 distribution with p̂ de-

gree of freedom. Moreover, Ŵ follows a noncentral x2 distribution with p̂
degrees of freedom and noncentrality parameter h0ΣvP21

11 Σvh⊺
0 under the

sequence of local alternative hypotheses HT .
Note that our assumption that the latent factors are pervasive while

observable factors can potentially be weak is not in conflict with existing
empirical evidence. It is known from the literature (e.g., Bernanke and
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Kuttner 2005; Lucca and Moench 2015) that the stock market and the
bond market strongly react to Federal Reserve and government policies
and that macroeconomic risks affect equity premia; fundamental macro-
economic shocks seem to be pervasive. At the same time, we do not ob-
serve all fundamental economic shocks directly and have instead to rely
on observable proxies; these are known to be weak in some cases, like in
the case of industrial production (see Gospodinov, Kan, and Robotti 2014;
Bryzgalova 2015).

E. Asymptotic Variances Estimation

Wedevelopconsistentestimatorsof theasymptotic covariances in theorem1:

F̂ 5 ĝ⊺ðΣ̂vÞ21 � Id
� �

P̂11 ðΣ̂vÞ21
ĝ� Id

� �
1 ĝ⊺ðΣ̂vÞ21 � Id
� �

P̂12ĥ
⊺

1 ĥP̂21 ðΣ̂vÞ21
ĝ� Id

� �
1 ĥP̂22ĥ

⊺,

where P̂11, P̂12, and P̂22 are the heteroskedasticity and autocorrelation
consistent type estimators of Newey and West (1987), defined as

P̂11 5
1

T o
T

t51

vecðẑt v̂⊺
t Þvecðẑt v̂⊺

t Þ⊺

  1
1

T o
q

m51
o
T

t5m11

12
m

q 1 1

� �
vecðẑt2mv̂

⊺
t2mÞvecðẑt v̂⊺

t Þ⊺ 1 vecðẑt v̂⊺
t Þvecðẑt2mv̂

⊺
t2mÞ⊺

� �
,

P̂12 5
1

T o
T

t51

vecðẑt v̂⊺
t Þv̂⊺

t 1
1

T o
q

m51
o
T

t5m11

1 2
m

q 1 1

� �
vecðẑt2mv̂

⊺
t2mÞv̂⊺

t 1 vecðẑt v̂⊺
t Þv̂⊺

t2mð Þ,

P̂22 5
1

T o
T

t51

v̂t v̂
⊺
t 1

1

T o
q

m51
o
T

t5m11

1 2
m

q 1 1

� �
v̂t2mv̂

⊺
t 1 v̂t v̂

⊺
t2mð Þ,

where Ẑ 5 �G 2 ĥV̂ , Σ̂b 5 n21b̂⊺b̂, Σ̂v 5 T21V̂ V̂ ⊺, and q is the usual lag
parameter in Newey-West type of estimators. Theorem I.6 in the online
appendix establishes the desired consistency of these estimators.

V. Empirical Analysis

In this section we apply our three-pass methodology to the data. We es-
timate the risk premia of several factors, both traded and not traded, and
show how our results differ from those obtained using standard two-pass
cross-sectional regressions and mimicking portfolios.

A. Data

We conduct our empirical analysis on a large set of 647 portfolios that in-
cludeUS equities sorted by a large number of characteristics as well as trea-
sury bonds, corporate bonds, and currencies (for a detailed description
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of the test portfolios and the data sources for the empirical analysis, see
online app. III). Note that our methodology is designed to work specif-
ically in large-n environments, so there is no cost in adding test port-
folios. Because of limited data availability for the nonequity portfolios,
the sample covers the period 1976–2010. We perform the analysis at the
monthly frequency and work with factors that are available at the monthly
frequency.
Although the asset pricing literature has proposed an extremely large

number of factors (Harvey, Liu, and Zhu 2016; McLean and Pontiff
2016), we focus here on a few representative ones. Recall that the observ-
able factors gt in the three-pass methodology can be either an individual
factor or groups of factors. We consider here both cases to illustrate the
methodology; importantly, the risk premia estimates for any factors using
our three-pass methodology do not depend on whether other factors are
included in gt (though this does matter for the two-pass cross-sectional
estimator).
The factors we consider include both tradable and nontradable fac-

tors. The tradable factors are market (in excess of the risk-free rate), size
(SMB), value (HML), profitability (RMW), investment (CMA), momen-
tum (MOM), betting against beta (BAB; from Frazzini and Pedersen 2014),
and quality minus junk (QMJ; from Asness, Frazzini, and Pedersen 2013).
The nontradable factors are AR(1) innovations in industrial production
growth (IP), VAR(1) innovations in thefirst three PCs of 279macrofinance
variables from Ludvigson and Ng (2010), the liquidity factor of Pástor and
Stambaugh (2003), two intermediary capital factors (one from He, Kelly,
and Manela [2017] and one from Adrian, Etula, and Muir [2014]), four
factors from Novy-Marx (2014; high monthly temperature in Manhattan,
global land surface temperature anomaly, quasiperiodic Pacific Ocean
temperature anomaly [El Niño], and the number of sunspots), and two
consumption-based factors fromMalloy,Moskowitz, andVissing-Jorgensen
(2009), which include both an aggregate consumption series and a stock-
holder’s consumption series.17

B. Factors from the Large Panel of Returns

The first step for estimating the observable factor risk premia is to deter-
mine the dimension of the latent factor model, p. In the online appendix,
figure III.3 (left panel) reports the first 20 eigenvalues of the covariance
matrix of returns for our panel of 647 portfolios. As typical for large panels,

17 These time series have been proposed by Novy-Marx (2014) as examples of variables
that appear to predict returns in standard predictive regressions but whose economic link
to the stock market seems weak. We use AR(1) innovations in these series as factors and test
whether our procedure identifies the weak link to the economy and reveals the series as
weak or unpriced in the cross section of returns.
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the first eigenvalue tends to be much larger than the others. In the right
panel, we zoom in on the eigenvalues 5–20. We observe a noticeable de-
crease in the eigenvalues after the seventh one, suggesting p̂ 5 7. This is
also the number suggested by our estimator given by online appendix I.1.
The discussion therein (theorem I.2) also suggests that our estimator
is consistent as long as the number of factors we use (e.g., p⌣) is at least
as large as the true dimension p. Indeed, the additional analysis in online
appendix III.2 shows the robustness of our empirical results with respect to
the choice of p

⌣
.18

The model with seven PCs has a cross-sectional R 2 of 59%, indicating
that it accounts for a significant fraction of the cross-sectional variation
in expected returns for the 647 test portfolios but leaving some unex-
plained variation. This number is comparable with the 73% cross-
sectional R 2 that one obtains using the Fama-French three-factor model
on the cross section of 25 portfolios sorted by size and book tomarket, yet
we obtain it for a cross section 26 times as large and using a model with
just four more factors. Using 10 and 13 factors (as we do in the online ap-
pendix) raises this cross-sectional R 2 to 66% and 68%, respectively.

C. Risk Premia Estimates

We now present the estimates for the risk premia of observable factors
using excess returns under the assumption that the zero-beta rate is equal
to the observed risk-free (treasury bill) rate. For each factor (or group of
factors) gt that we consider, table B1 reports risk premia estimated using
different methodologies.19 Column 1 reports the time series average ex-
cess return of the factor when the factor is tradable. This represents a
model-free estimator of the factor risk premium; however, this is possible
only for tradable factors.
Columns 3–14 of table B1 consider three implementations of the two-

pass cross-sectional estimator, two implementations of the mimicking-
portfolio estimator, and our three-pass estimator. For each set of results,
we report the risk premium estimate and its standard error.
Using the two-pass cross-sectional regression, we estimate the risk pre-

mium of each observable factor gt without any additional control factors
(first set of results), controlling for the market return (second set of

18 Figure III.4 in the online appendix further shows that with seven factors eliminated,
the correlation matrix of the residuals appears more sparse, which is consistent with the
implications of a factor model.

19 As a side note, the asymptotic variance of risk premia estimators based on the two-pass
cross-sectional regression with observable factors, vt, simplifies to Σv in the case of large n
and large T regime, as we have pointed out in sec. IV.A. We thereby use P̂22 above (with v̂t
replaced by vt since they are observable) throughout simulations and empirical studies for
their inference.
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results), and controlling for the Fama-French three factors (market,
SMB, HML; third set of results).20 Next, using the mimicking-portfolio
approach, we project the factor gt onto the market portfolio alone (first
set of results) and onto the Fama-French three factors (second set of re-
sults). In theory, one could also project gtonto the entire universe of 647 test
assets. Note that the latter version of the mimicking-portfolio approach
(that projects onto all the available assets) is rarely applied in the liter-
ature, as it is at best inefficient because n is often large relative toT. In our
case, it is actually infeasible, since the number of test assets is greater than
the number of time periods used in the estimation (n > T )—so themim-
icking portfolio cannot be computed. Finally, we report our three-pass esti-
mator in columns 13 and 14 of table B1 using p

⌣
5 7, as suggested by our

estimator.
Tohelpwith the interpretationof table B1,wefirst examine one example

in detail. Consider the momentum factor (MOM). The time series average
excess return is 69 basis points (bps) per month, with a 24-bp standard er-
ror. Since this factor is traded, we would expect any consistent estimator to
recover a risk premium close to 69 bps. Estimating the momentum risk
premium in a two-pass cross-sectional regression with no controls yields a
strongly significant estimate of 2201 bps per month. Adding the market
as a control in the cross-sectional regression gives 20 bps but is statistically
insignificant, and further adding SMB and HML gives 71 bps. Clearly, the
results strongly depend on which factors are used as controls in the es-
timation. Similarly, consider the two implementations of the mimicking-
portfolio approach. When we project MOMonto themarket alone or onto
the Fama-French three factors (the latter being a typical choice of portfolios
for the projection in the empirical literature), we obtain negative risk
premia estimates, small in the first case (25 bps) and larger and significant
in the second case (221bps).Not only are themimicking-portfolio estimates
at odds with the observed average excess return of the momentum portfo-
lio (69 bps per month), but also they vary significantly with the choice of
portfolios on which the factor is projected. Finally, our estimator provides
a statistically significant 49-bp estimate for the risk premium of this factor.
We now summarize the main patterns of results obtained using differ-

ent estimators in table B1.

1. Two-Pass Cross-Sectional Estimator

Two-pass cross-sectional estimators are subject to two potential biases: omit-
ted controls and measurement error. Both are clearly visible in table B1.

20 When the factor of interest is also in the set of controls—e.g., when we estimate the
risk premium for the market in cols. 5–12, in which controls are Rm or Fama-French three
factors—we exclude it from the set of controls.
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First, for most factors, there are extreme differences in the estimates ob-
tainedusingdifferent control factors (i.e., no controls,market, Fama-French
three factors), like in the case of MOM described above. This shows how
sensitive this estimator is to the control factors and illustrates the potential
for quantitativelymeaningful biases that could arise if the wrong set of con-
trols is specified.
The second potential source of bias is due tomeasurement error. As dis-

cussed in section II.B, measurement error induces a bias in risk premia es-
timates. In addition, two-pass cross-sectional regressions have well-known
biases due to the presence of weak factors in the model (factors that are
dominated by noise). Looking at table B1, measurement error appears
to be the reason for the often extreme risk premia estimates obtained us-
ing the two-pass regression for what appear to be weak or noisy factors. For
example, three of the four pure-noise factors of Novy-Marx (2014) are es-
timated to have huge magnitudes and statistical significance by the cross-
sectional estimator. As described in section IV.D, our three-pass procedure
is immune to the problem of weak or noisy observable factors, and it esti-
mates that the Novy-Marx factor risk premia are statistically indistinguish-
able from zero.

2. Mimicking-Portfolio Estimator

The mimicking-portfolio estimator is similarly sensitive to the choice of
portfolios on which factors are projected. In several cases, in fact, the esti-
mator yields opposite signs across the different sets of projection portfolios.
For example, BAB and CMA are estimated to have a negative risk premium
when projected onto the market and a positive one when projected onto
the Fama-French three-factor model portfolios. In addition, in many
cases, the mimicking-portfolio estimator yields estimates of risk premia
that have the wrong sign relative to the average excess return for traded fac-
tors, which suggests that the estimator is biased (omitted variable bias). Fi-
nally, as discussed above, themimicking-portfolio approach becomes infea-
sible when gt is projected on all available assets (since n > T ), highlighting
the need to select a subset of the assets for the estimator to be feasible,
which in turn can induce a bias if the set of projection assets chosen by
the econometrician does not span the right space (see sec. II.A). Overall,
table B1 shows that, like the two-step cross-sectional estimator, the mimick-
ing-portfolio estimator is subject to a quantitatively meaningful bias that
can arise if important portfolios are omitted from the projection.

3. Three-Pass Estimator

Columns 13 and 14 of table B1 reports the results using our three-pass
estimator, using seven PCs. For the case of tradable factors, the estimator
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produces results that are generally close (economically and statistically)
to the average excess returns of the factors, contrary to the alternative
estimators discussed above.
Among the nontradable factors, our estimator finds that several of them

carry economically and statistically significant risk premia: the liquidity fac-
tor of Pástor and Stambaugh (2003), both intermediary factors of He,
Kelly, and Manela (2017) and Adrian, Etula, and Muir (2014), the first
macro PC from Ludvigson and Ng (2010), and also stockholders’ con-
sumption growth from Malloy, Moskowitz, and Vissing-Jorgensen (2009).
Instead, several other nontradable factors do not appear to have statisti-
cally significant risk premia, for example, the Novy-Marx (2014) factors.
IP growth appears marginally statistically different from zero but ex-
tremely small in magnitude (21 bps).
To conclude, for the tradable factors we study, the three-pass estimator

produces results that are broadly consistent with the time series average
returns of those factors; for the nontradable factors, they produce esti-
mates that have economically reasonable magnitudes. The results are of-
ten noticeably different from those produced by the other estimators,
which vary substantially across implementations.

4. Measurement Error in Factors and a
Test for Weak Factors

Column 15 of table B1 reports the R2 of the time series regression of each
observed factor gt onto the p⌣ latent factors; we refer to this as R 2

g . The R 2
g

will be lower than 100% when measurement error is present in the factor
gt. In the data, we find great heterogeneity among factors in terms of their
measurement error. For some of them (like the market or SMB), this R 2

g is
extremely high, suggesting that the factor is measured essentially without
error. Formany other factors, and especially so for nontradable factors, the
R 2

g is much lower (e.g., for IP, it is around 2%), indicating that these fac-
tors are dominated by noise.21 Online appendix III.8 explores this result
in greater detail, showing how our procedure can be used to de-noise the
factors.
Finally, column 16 of table B1 reports the p-value for the test of the null

that each factor gt is weak, described in section IV.D. A rejection of the null
indicates that gt is a strong factor for the cross section of test portfolios. For
several—but not all—of the nontradable factors, we fail to reject that the
factor is weak.

21 Of course, the low R 2 could instead be due to the test assets not spanning the factor or
the selected number of PCs being too small. Recall, however, that our empirical results are
obtained using a large cross section that includes the most important dimensions of risk in
the equity market, treasury and corporate bonds, and currency markets. Online app. III.2
further illustrates the robustness with respect to using more PCs.
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5. The Zero-Beta Rate and the Sign of the Market
Risk Premium

Our estimator can also be applied in the case the zero-beta rate is estimated
(instead of being set equal to the treasury bill rate). Results (reported in
table III.9 of the online appendix) are broadly similar to the baseline case
in which the zero-beta rate is restricted, though of course the exact esti-
mates of the risk premia are different. There is, however, one interesting
result that is worth remarking and that applies specifically to the case in
which the zero-beta rate is estimated. A well-known fact in the empirical
asset pricing literature is that in standard factor models (like the Fama-
French three-factor model), the market risk premium is estimated to
be negative in the cross section of equity portfolios when using Fama-
MacBeth regressions with an unrestricted zero-beta rate. We confirm this
pattern in our data as well (we obtain a zero-beta rate estimate of 129 bps
per month and a market risk premium of 224 bps using the Fama-
MacBeth estimator). If this puzzling result is due to the omission of impor-
tant controls (measurement error bias is unlikely because of the large R 2

g ),
we expect our three-pass estimator to correct for it. Indeed, our estimator
yields a positive estimate of the market risk premium in all cases.

D. Additional Empirical Results and Robustness Tests

The online appendix presents several additional empirical results and ro-
bustness tests. Among them, it reports the results obtained when estimat-
ing the zero-beta rate, when using a greater number of factors as controls
(specifically, 10 and 13), and when using only equity portfolios to per-
form the estimation. The online appendix also shows robustness with re-
spect to the choice of test portfolios and time periods.
Finally, the online appendix also explores alternatives to standard PCA

for reducing the dimensionality of the returns space. First, we show that
the results are similar when changing the penalty function used to esti-
mate the factors in a way that emphasizes not only the covariation among
returns but also the ability of the factors to explain the cross section of risk
premia (similar to Connor and Korajczyk [1986] and Lettau and Pelger
[2018]). Second, we show that using the ridge regression (see sec. IV.C)
instead of PCA yields similar results.

VI. Conclusion

We propose a three-pass methodology to estimate the risk premium of
observable factors in a linear asset pricing model that is consistent even
when not all factors in the model are specified and observed. The meth-
odology builds on a simple invariance result that states that to correct
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the omitted variable problem in cases where not all factors are observed,
it is sufficient to control for arbitrarily rotated factors that span the en-
tire factor space. In this case, the risk premia for observable factors are
consistently estimated even though the risk exposures cannot be identi-
fied. We propose to employ PCA to recover the factor space and effec-
tively use the PCs as controls in the cross-sectional regressions together
with the observable factors.
Our three-pass procedure can be viewed as an extension of both the

standard two-pass cross-sectional regression approach and the mimicking-
portfolio estimator of risk premia. In particular, it can be thought of as a
factor-augmented two-pass cross-sectional estimator, where themodel adds
PCs of returns as controls in the two-pass regressions, completing the fac-
tor space. It can also be thought of as a regularizedmimicking-portfolio es-
timator, in which the factor of interest is projected onto the PCs of returns
(themselves portfolios). As we discuss in the paper, ourmethod represents
the convergence of the two methods, which occurs as n→∞.
The main advantage of our methodology is that it provides a systematic

way to tackle the concern that the model predicted by theory is mis-
specified because of omitted factors. Rather than relying on arbitrarily cho-
sen control factors or computing risk premia only on subsets of the test
assets, our methodology utilizes the large dimension of testing assets avail-
able to span the factor space. It also explicitly takes into account the possi-
bility of measurement error in any observed factor.
An application of our estimator to several nontradable factors yields

interesting empirical results. In our main application, we show that while
many standard macroeconomic factors (e.g., industrial production and
PCs of macroeconomic series) appear to have insignificant risk premia,
nontradable factors related to various market frictions (like liquidity and
intermediary leverage) have in fact robustly strong and significant risk
premia when considered as part of richer linear pricing models that in-
clude additional factors extracted from the cross section of returns. Our
methodology can therefore help discriminate which macroeconomic
(or other nontradable) factors are priced by investors.

Appendix A

Assumptions and Technical Details

We need more notation. We use lj(A), lmin(A), and lmax(A) to denote the jth,
the minimum, and the maximum eigenvalues of a matrix A. By convention,
l1ðAÞ 5 lmaxðAÞ. In addition, we use kAk1, kAk∞, kAk, and kAkF to denote the
L1 norm, the L∞ norm, the operator norm (or L2 norm), and the Frobenius norm
of a matrix A 5 ðaijÞ, that is, maxjoi jaij j, maxioj jaij j, ðlmaxðA⊺AÞÞ1=2, and
ðTrðA⊺AÞÞ1=2, respectively. We also use k A kMAX 5 maxi,j jaij j to denote the L∞

asset pricing with omitted factors 1977



norm of A on the vector space. The term K is a generic constant that may change
from line to line.

For clarity, we restate the assumptions on the dynamics of returns and factors,
that is, (1) and (2):

Assumption A1. Suppose that ft is a p � 1 vector of asset pricing factors and
that rt denotes an n � 1 vector of excess returns of the testing assets. The pricing
model satisfies

rt 5 bg 1 bvt 1 ut , ft 5 f 1 vt , EðvtÞ 5 EðutÞ 5 0, and Covðut , vtÞ 5 0,

where vt is a p � 1 vector of innovations of ft, ut is an n � 1 vector of idiosyncratic
components, b is an n � p factor loading matrix, and g is the p � 1 risk premia
vector.

Assumption A2. There is an observable d � 1 vector, gt, of factor proxies that
satisfies

gt 5 d 1 hvt 1 zt , EðztÞ 5 0, and Covðzt , vtÞ 5 0,

where h, the loading of g on v, is a d � p matrix, d is a d � 1 constant, and zt is a
d � 1 measurement-error vector.

Next, we impose one restrictive assumption, which is used only in proposi-
tion 1 and section III.B to illustrate the intuition of our result and the connec-
tion between the two-pass cross-sectional regression and the factor mimicking
portfolios. Our asymptotic analysis below does not rely on this assumption.

Assumption A3. Suppose that vt, zt, and ut in (1) are stationary time series
independent of b, respectively, and that the weights of the spanning portfolios,
r⌣ t , are given by the n � p

⌣
matrix w, with p

⌣
≥ p. The covariance matrices of vt and

ut (i.e., Σv and Σu) and the loading of zt on u⌣ t : 5 w⊺rt (i.e., b
⌣z,u

) satisfy the following
conditions: l21

minðΣvÞ 5 Opð1Þ, k b
⌣ z,u

b
⌣
kMAX 5 Opð1Þ, l21

minðb⌣⊺b
⌣Þ 5 Opð1Þ, and

lmaxðΣ⌣uÞ 5 Opðsnn21Þ, where b
⌣
: 5 w⊺b, sn 5 opðnÞ.

The condition on lmin(Σv) requires the set of factors in (1) to have a full rank
covariance matrix; the second condition on b

⌣z,u
b
⌣
restricts the exposure of gt to

the idiosyncratic errors u⌣ t ; the condition on b
⌣⊺
b
⌣
resembles the usual pervasive-

ness assumption that guarantees nontrivial exposure of spanning portfolios to
factors; the last restriction on Σ

⌣ u
ensures that the idiosyncratic errors of span-

ning portfolios are diversifiable. These conditions turn out sufficient for the dif-
ference between the risk premium of gt and that of its factor-mimicking portfo-
lios to diminish, as shown in proposition 1.

There are two notable choices of w that are relevant for our study. The first case
setsw 5 n21=2In ; that is, gt is projected onto the entire set of test assets rt. In this case,
the conditions in assumption A3 are similar to the identification conditions of the
approximate factor models. In particular, the last condition is more general than
the bounded eigenvalue assumption introduced in Chamberlain and Rothschild
(1983). The second choice sets w 5 n21bH for any invertible matrix H. That
is, the base portfolios are constructed using weights proportional to the expo-
sure of the test assets. Because b is unknown, this case is not feasible. However, it
is precisely what motivates the (feasible) construction of the three-pass estimator:
w 5 b̂ðb̂⊺b̂Þ21.
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The following assumptions are more general, which we rely on to derive the
asymptotic results in the paper. These high-level assumptions can be justified us-
ing stronger and more primitive conditions, such as those in assumption A3.

We proceed with the idiosyncratic component ut and define, for any t, t 0 ≤ T :

gn,tt 0 5 E n21o
n

i51

uituit 0

� �
:

Assumption A4. There exists a positive constant K, such that for all n and T,

ðiÞ T21o
T

t51
o
T

t 051

gn,tt 0j j ≤ K , max
1≤t≤T

gn,tt ≤ K ,

ðiiÞ T22o
T

s51
o
T

t51

E o
n

j51

ðujsujt 2 EðujsujtÞÞ
 !2

≤ Kn:

Assumption A4 is similar to part of assumption C in Bai (2003), which imposes
restrictions on the cross-sectional dependence and heteroskedasticity of ut.

Assumption A5. The factor innovation V satisfies

k �v kMAX 5 OpðT21=2Þ, k T21VV ⊺ 2 Σv kMAX 5 OpðT21=2Þ,

where Σv is a p � p positive-definite matrix and 0 < K1 < lminðΣvÞ ≤ lmaxðΣvÞ <
K2 < ∞.

Assumption A5 imposes rather weak conditions on the time series behavior of
the factors. It holds if factors are stationary, strong mixing, and satisfy some mo-
ment conditions.

Assumption A6. The factor loadings matrix b satisfies

k n21b⊺b 2 Σb k 5 opð1Þ
as n→∞, where Σb is a p � p positive-definite matrix and 0 < K1 < lminðΣbÞ ≤
lmaxðΣbÞ < K2 < ∞.

This is the key identifying assumption that imposes all factors to be pervasive
and hence excludes weaker ones. Onatski (2012) develops the inference meth-
odology in a framework that allows for weak factors using a Pitman-drift-like as-
ymptotic device.

Assumption A7. The factor loadings matrix b and the idiosyncratic error ut

satisfy the following moment conditions for all 1 ≤ j ≤ p and for all n and T:

ðiÞ Eo
T

t51
o
n

i51

bijuit

� �2

≤ KnT ,

ðiiÞ E o
T

t51
o
n

i51

bijuit

� �2

≤ KnT :

The above assumption can be derived from a stronger cross-sectional indepen-
dence assumption between b and ut as well as some moment conditions on b,
which are imposed by Bai (2003).
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Assumption A8. The residual innovation Z satisfies

k�z kMAX 5 OpðT21=2Þ, k T21ZZ ⊺ 2 Σz kMAX 5 OpðT21=2Þ,

where Σz is positive definite and 0 < K1 < lminðΣzÞ ≤ lmaxðΣzÞ < K2 < ∞. In
addition,

k ZV ⊺ kMAX 5 OpðT 1=2Þ:

Similar to assumption A5, assumption A8 holds if zt is stationary, strong mix-
ing, and satisfies some moment condition. It is more general than the indepen-
dently and identically distributed assumption on zt, which also applies to non-
tradable factor proxies in the empirical applications.

Assumption A9. For all n and T and i, j ≤ p, l ≤ d, the following moment
conditions hold:

ðiÞ Eo
n

k51
o
T

t51

vjtukt

� �2

≤ KnT ,

ðiiÞ E o
T

t51
o
n

k51

vituktbkj

� �2

≤ KnT :

Assumption A9 resembles assumption D in Bai (2003). The variables in each
summation have zero means, so that the required rate can be justified under
more primitive assumptions. In fact, it holds trivially if vt and ut are independent.

Assumption A10. For all n and T and l ≤ d, j ≤ p, the following moment
conditions hold:

ðiÞ Eo
n

k51
o
T

t51

zltukt

� �2

≤ KnT ,

ðiiÞ E o
T

t51
o
n

k51

zltuktbkj

� �2

≤ KnT :

Similar to assumption A9, assumption A10 restricts the dependence between
the idiosyncratic component ut and the projection residual zt. If zt, ut, and b are
independent, conditions i and ii are easy to verify. For a tradable portfolio factor
in gt, we can interpret its corresponding zt as certain undiversified idiosyncratic
risk, since zt is a portfolio of ut, as implied from assumptions A1 and A2. It is
thereby reasonable to allow for dependence between zt and ut. For nontradable
factors, zt’s can also be correlated with ut in general.

Assumption A11. As T →∞, the following joint central limit theorem holds:

T 1=2
T21vecðZV ⊺Þ

�v

 !
→
L N

0

0

 !
,

P11 P12

P⊺
12 P22

 ! !
,

where P11, P12, and P22 are dp � dp, dp � p, and p � p matrices, respectively, de-
fined as
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P11 5 lim
T →∞

1

T
E vecðZV ⊺ÞvecðZV ⊺Þ⊺� �

,

P12 5 lim
T →∞

1

T
E vecðZV ⊺Þi⊺TV ⊺ð Þ,

P22 5 lim
T →∞

1

T
E V iT i

⊺
TV

⊺ð Þ:

Assumption A11 describes the joint asymptotic distribution of ZV ⊺ and ViT. Be-
cause the dimensions of these random processes are finite, this assumption is a
fairly standard result of some central limit theorem for mixing processes, for ex-
ample, theorem 5.20 of White (2000). Needless to say, it is stronger than assump-
tion A5, which is sufficient for identification and consistency.

Appendix B

Mathematical Proofs

We provide here the proofs of all theorems in the main text and leave proofs of
the technical lemmas used below to the online appendix.

B1. Proofs of Main Theorems

B1.1. Proof of Proposition 1

Given the weights of the mimicking portfolios, and by assumption A1, these port-
folio returns (i.e., r⌣ t 5 w⊺rt) satisfy the following factor model:

r⌣ t 5 b
⌣
g 1 b

⌣
vt 1 u⌣ t , (B1)

where b
⌣
5 w⊺b and u⌣ t 5 w⊺ut . Using assumption A2, conditioning on b, the bias

of the factor mimicking-portfolio estimator is

gMP
g 2 hg 5 hΣvb

⌣⊺ðΣ⌣ r Þ21
b
⌣
g 2 hg 1 Σ

⌣ z,uðΣ⌣ r Þ21
b
⌣
g,

where Σ
⌣z,u

5 Σz,uw and Σ
⌣r

5 w⊺Σrw.
Because of (B1), we have Σ

⌣ r
5 b

⌣
Σvb

⌣ ⊺
1 Σ

⌣u
, so that by Woodbury matrix

identity

ðΣ⌣r Þ21 5 ðΣ⌣uÞ21 2 ðΣ⌣uÞ21
b
⌣

b
⌣⊺ðΣ⌣uÞ21

b
⌣
1 ðΣvÞ21

� �21

b
⌣⊺ðΣ⌣uÞ21,

b
⌣⊺ðΣ⌣r Þ21

b
⌣
5 b

⌣⊺ðΣ⌣uÞ21
b
⌣
2 b

⌣⊺ðΣ⌣uÞ21
b
⌣

b
⌣⊺ðΣ⌣uÞ21

b
⌣
1 ðΣvÞ21

� �21

b
⌣⊺ðΣ⌣uÞ21

b
⌣
:

This further implies that

b
⌣⊺ðΣ⌣r Þ21

b
⌣

� �21

5 b
⌣⊺ðΣ⌣uÞ21

b
⌣

� �21

1 Σv ,

where we use the fact that p
⌣
≥ p.
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Using this equation and by direct calculations, we obtain

hΣvb
⌣⊺ðΣ⌣r Þ21

b
⌣
g 2 hg 5 h Ip 1 b

⌣⊺ðΣ⌣uÞ21
b
⌣

� �21

ðΣvÞ21
� �21

2 Ip
� �

g

5 2h Ip 1 A
� �21

Ag,

where A 5 ðb⌣⊺ðΣ⌣uÞ21
b
⌣Þ21ðΣvÞ21. We can then show that the maximum eigenvalue

of A goes to zero as n→∞, so the bias disappears asymptotically.
In fact, under assumption A3, lmaxðΣ⌣uÞ 5 Opðsnn21Þ, then

lmaxðAÞ 5 l21
minðΣvb

⌣⊺ðΣ⌣uÞ21
b
⌣Þ ≤ l21

minðΣvÞl21
minðb

⌣⊺
b
⌣ÞlmaxðΣ

⌣uÞ 5 Opðsnn21Þ:
By Weyl’s inequality, for any fixed e > 0, with probability approaching 1

lminðIp 1 AÞ ≥ lminðIpÞ 1 lminðAÞ > 1 2 e:

It then follows that

k hΣvb
⌣⊺ðΣ⌣r Þ21

b
⌣
g 2 hg k ≤ k h k k g k lmaxðAÞl21

minðIp 1 AÞ 5 Opðsnn21Þ:
On the other hand, we have

Σ
⌣z,uðΣ⌣r Þ21

b
⌣
5 Σ

⌣z,uðΣ⌣uÞ21
b
⌣
2 Σ

⌣z,uðΣ⌣uÞ21
b
⌣

b
⌣⊺ðΣ⌣uÞ21

b
⌣
1 ðΣvÞ21

� �21

b
⌣⊺ðΣ⌣uÞ21

b
⌣

5 Σ
⌣z,uðΣ⌣uÞ21

b
⌣
Ip 1 A
� �21

A:

Using a similar analysis as above, we have

k Σ
⌣z,uðΣ⌣r Þ21

b
⌣
g k ≤ Kk b

⌣z,u
b
⌣
kMAX k g k lmaxðAÞl21

minðIp 1 AÞ 5 Opðsnn21Þ,
which concludes the proof. QED

B1.2. Proof of Theorem 1

By a simple conditioning argument, we can assume that p̂ 5 p when developing
the limiting distributions of the estimators (see Bai 2003). In the remainder of
the proofs, we assume that p̂ 5 p. That said, the consistency of p̂ with respect
to p cannot guarantee the recovery of the true number of factors in any finite
sample. We leave the discussion on this issue to online appendix I.1.

Let L̂ be the p � p diagonal matrix of the p largest eigenvalues of n21T21 �R ⊺ �R .
We define a p � p matrix:

H 5 n21T21L̂21V̂ �V ⊺b⊺b: (B2)

We have the following decomposition:

ĝ 2 Hg 5 b̂⊺b̂
� �21

b̂⊺ b 2 b̂H
� �

g 1 b�v 1 �u
� �

5 H �v 1 n b̂⊺b̂
� �21

n21 H2 ⊺b⊺�u 1 H2 ⊺b⊺ðb 2 b̂H Þg�
  1 ðb̂ 2 bH21Þ⊺�u 1H2 ⊺b⊺ðb 2 b̂H Þ�v 1 ðb̂⊺ 2H2 ⊺b⊺Þðb2 b̂H Þðg1 �vÞÞ:
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On the one hand, by lemma 4b and 4e, we have

n21 k b̂⊺b̂ 2 H2 ⊺b⊺bH21 kMAX

≤k n21 b̂⊺ 2 H2 ⊺b⊺� �
b̂ 2 bH21
� �

kMAX 1 n21kH2 ⊺b⊺ b̂ 2 bH21
� �

kMAX

1 n21k b̂ 2 bH21
� �⊺

bH21 kMAX

5 Opðn21 1 T21Þ:

(B3)

Therefore, by assumption A6 and lemma 4a, 4c, and 4d, we have

ĝ 2 Hg 5 H �v 1 Opðn21 1 T21Þ: (B4)

On the other hand, we note that

ĥ 2 hH21 5 hH21 H �V 2 V̂
� �

V̂ ⊺ðV̂ V̂ ⊺Þ21 1 �ZV̂ ⊺ðV̂ V̂ ⊺Þ21,

and by lemma 5a and 5b, we have

ĥ 2 hH21 5 T21�Z �V ⊺H ⊺ 1 Opðn21 1 T21Þ: (B5)

Moreover, by lemma 5c, it follows that

k ĥ 2 hH21 k 5 Opðn21 1 T21=2Þ: (B6)

Combining (B4), (B5), and lemma 2, we obtain

ĝg 2 hg 5 h�v 1 T21�Z �V ⊺ðΣvÞ21
g 1 Opðn21 1 T21Þ:

Since

vec T21�Z �V ⊺ Σvð Þ21
g

� �
5 g⊺ Σvð Þ21 � Id
� �

vecðT21ZV ⊺Þ 1 vecð�z�v⊺Þ� �
5 g⊺ Σvð Þ21 � Id
� �

vecðT21ZV ⊺Þ 1 OpðT21Þ,
it follows from assumption A11 that

 T 1=2
T21�Z �V ⊺ Σvð Þ21

g

h�v

 !

→
L N

0

0

 !
,

g⊺ Σvð Þ21 � Id
� �

P11 Σvð Þ21
g� Id

� �
g⊺ Σvð Þ21 � Id
� �

P12h
⊺

� hP22h
⊺

 ! !
:

Therefore, by the delta method and imposing T 1=2n21 → 0, we obtain

T 1=2 T21�Z �V ⊺ Σvð Þ21
g 1 h�v

� �
→
L N 0, Fð Þ,

where F is given in the main text. This concludes the proof. QED

B1.3. Proof of Theorem 2

Following the proof of theorem 1, we can define

Hh 5 m21T21ðL̂hÞ21V̂ h �V h ⊺b⊺b, (B7)
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where L̂h is the p � p diagonal matrix of the p largest eigenvalues of
n21m21T21 �Rh ⊺ �Rh . By assumptions A4, A5, A6, A7, and A9, we can establish the
high-frequency version of (B4):

ĝh 2 HhgD 5 Hh�vh 1 Opðn21 1 T21Þ,
where �vh 5 ðmT Þ21oT

t51om
k51vh

t211kD 5 ðmT Þ21oT
t51vt 5 m21�v. This leads to the first

result of the theorem.
On the other hand, we note that by assumption A2,

ĥl 2 hðHhÞ21 5 hðHhÞ21 Hh �V 2 V̂ l
� �

V̂ l ⊺ðV̂ l V̂ l ⊺Þ21 1 �ZV̂ l ⊺ðV̂ l V̂ l ⊺Þ21:

By a similar proof of lemma 1, we can establish

kV̂ h 2 Hh �V hkF 5 Opðn21=2T 1=2 1 1Þ,
and hence by �V 5 �V hðim � IT Þ and V̂ l 5 V̂ hðim � IT Þ, we obtain

k V̂ l 2 Hh �V kF ≤ K k V̂ h 2 Hh �V h k k im � IT k 5 Opðn21=2T 1=2 1 1Þ: (B8)

Additionally, using the following decomposition,

2ðV̂ l 2 Hh �V Þ�V ⊺ 5 m21n21T21ðL̂hÞ21 V̂ h �U h ⊺b�V �V ⊺ 1 V̂ h �V h ⊺b⊺ �U �V ⊺ 1 V̂ h �U h ⊺ �U �V ⊺� �
,

and by a similar proof of lemma 3a, we can show that

k Hh �V 2 V̂ l
� �

�V ⊺ kMAX 5 Opðn21T 1 1Þ: (B9)

Combining (B8) and (B9), we have

kðHh �V 2 V̂ lÞV̂ l ⊺ kMAX ≤ Kk V̂ l 2 Hh �V k2
F 1 Kk Hh �V 2 V̂ l

� �
�V ⊺ kMAXkH

h kMAX

5 Opðn21T 1 1Þ:
Moreover, by (B8), we have

T21 kHh �V �V ⊺Hh ⊺ 2 V̂ l V̂ l ⊺ k ≤ T21 k V̂ l 2 Hh �V k k V̂ l k1T21 kHh k k �V k k V̂ l

2 Hh �V k

5 Opðn21=2 1 T21=2Þ,
which, combined with Weyl’s inequalities, implies that

lminðT21Hh �V �V ⊺Hh ⊺Þ 2 lminðT21V̂ l V̂ l ⊺Þ		 		 5 opð1Þ:

Therefore, we have l21
minðT21V̂ l V̂ l ⊺Þ 5 Opð1Þ. Now using the above inequalities

and a similar result of lemma 5b, we obtain

k ĥl 2 hðHhÞ21 2 �Z �V ⊺ð�V �V ⊺Þ21ðHhÞ21 kMAX

≤ k h k k ðHhÞ21 k kðHh �V 2 V̂ lÞV̂ l ⊺ kMAX k ðV̂ l V̂ l ⊺Þ21 k

1 k �Z �V ⊺Hh ⊺ k k ðHh �V �V ⊺Hh ⊺Þ21 2 ðV̂ l V̂ l ⊺Þ21 k

1 k �Z ðHh �V 2 V̂ lÞ⊺ k k ðV̂ l V̂ l ⊺Þ21 k

5 Opðn21 1 T21Þ:
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This establishes the second result of the theorem.
Finally, combining these two results, we have

m � ĥl ĝh 2 hg 5 h�v 1 T21�Z �V ⊺ðT21 �V �V ⊺Þ21
g 1 Opðn21 1 T21Þ,

which concludes the proof. QED

B1.4. Proof of Theorem 3

Consider the singular value decomposition of �R :

�R 5 o
minðn,T21Þ

i51

lið�R ⊺ �RÞ1=2ςiy⊺
i , (B10)

where ςi and yi are n � 1 and T � 1 singular vectors, respectively. We use ς and y

to denote the n � n and T � T matrices of singular vectors.
By simple calculations, we can rewrite the ridge estimator as

ĝm
g 5 o

minðn,T21Þ

i51

lið�R ⊺ �RÞ1=2ðlið�R ⊺ �RÞ 1 mÞ21 �Gyiς
⊺
i �r :

Notice that by (7), we have

V̂ 5 T 1=2ðy1 : y2 : ::: : ypÞ⊺, b̂ 5 n1=2ðς1 : ς2 : :::ςpÞL̂1=2:

So it follows that

ĝm
g 5 ĝg 1 R1 1 R2,

where, writing E as a p � p diagonal matrix with 2mlið�R ⊺ �RÞ21ðlið�R ⊺ �RÞ 1 mÞ21 on
the (i, i)th entry,

R1 5 �GV̂ ⊺E b̂⊺�r , R2 5 o
minðn,T21Þ

i5p11

lið�R ⊺ �RÞ1=2
lið�R ⊺ �RÞ 1 m

�Gyiς
⊺
i �r :

By the definitions of ĝ and ĥ, (B3), (B6), and (B4), we have

k �GV̂ ⊺ k 5 T k ĥ k 5 OpðT Þ,  k b̂⊺�r k ≤ k b̂⊺b̂ k k ĝ k 5 OpðnÞ:

Moreover, by (V.39), as mn21T21 → 0,

k E k ≤ mkL21 k2n22T22 5 Opðmn22T22Þ,

which leads to kR1 k 5 Opðmn21T21Þ 5 opð1Þ.
On the other hand, writing y2ð1 : pÞ 5 ðyp11 : yp12 : ::: : yminðn,T21ÞÞ and ς2ð1 : pÞ 5

ðςp11 : ςp12 : ::: : ςminðn,T21ÞÞ, we have

kR2 k ≤ max
p11≤i≤minðn,T21Þ

lið�R ⊺ �RÞ1=2
lið�R ⊺ �RÞ 1 m

k �Gy2ð1 : pÞ k k ς
⊺
2ð1 : pÞ�r k t:

Note also that by lemmas 1 and 3b, equation (V.27), and the fact that k �Z k 5
OpðT 1=2Þ, k y k 5 1, and k ς k 5 1, we have
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k �Gy2ð1:pÞ k ≤ k h�V y2ð1:pÞ k1 k �Zy2ð1:pÞ k

≤ k h k k �V 2 H21V̂ k k y k1 k �Z k k y k 5 OpðT 1=2Þ,
k ς⊺2ð1:pÞ�r k ≤ k ς⊺2ð1:pÞbðg 1 �vÞ k1 k ς⊺2ð1:pÞ�u k

≤ k ς k k b̂H 2 b k k g 1 �v k1 k ς k k �u k 5 Opð1 1 n1=2T21=2Þ:
By (V.41), we have

max
p11≤i≤minðn,T21Þ

lið�R ⊺ �RÞ1=2
lið�R ⊺ �RÞ 1 m

≤ m21 max
p11≤i≤minðn,T21Þ

lið�R ⊺ �RÞ1=2

5 Opðm21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nT 1=2 1 n1=2T

p
Þ:

It thereby follows that

kR2 k 5 Opðm21ðnT 1=4 1 n1=4T ÞÞ 5 opð1Þ,
which concludes the proof. QED

B1.5. Proof of Theorem 4

By (B5), we have

ĥ 2 hH21 5 T21�Z �V ⊺H ⊺ 1 Opðn21 1 T21Þ:
Therefore, when n22T 5 oð1Þ, we can rewrite

bW 5 T hH21 1 T21�Z �V ⊺H ⊺� � ðΣ̂vÞ21
P̂11ðΣ̂vÞ21

� �21
hH21 1 T21�Z �V ⊺H ⊺� �⊺

1 opð1Þ:
Under H0 :h 5 0, we have

bW 5 T21=2�Z �V ⊺� �
H21ðΣ̂vÞ21

P̂11ðΣ̂vÞ21H2 ⊺� �21
T21=2�Z �V ⊺� �⊺

1 opð1Þ:
By assumption A11, to show Ŵ→Lx2

p under H0, it is sufficient to establish that

H21ðΣ̂vÞ21
P̂11ðΣ̂vÞ21H2 ⊺→

p
P11:

This holds by assumption as well as the fact that Σ̂v 5 Id , which leads to the first
claim. The second claim is straightforward because H is invertible with probabil-
ity approaching 1, kH k 5 Opð1Þ by lemma 2, and T21�Z �V ⊺ 5 OpðT21=2Þ by as-
sumption A8, which is dominated by hH21 under H1. Finally, under HT :h 5
h0T21=2, we have

Ŵ 5 h0H
21 1 T21=2�Z �V ⊺H ⊺� � ðΣ̂vÞ21

P̂11ðΣ̂vÞ21
� �21

h0H
21 1 T21=2�Z �V ⊺H ⊺� �⊺

1 opð1Þ:
By lemma 2 and the same derivation as above, we have

H ⊺ðΣ̂vÞ21
P̂11ðΣ̂vÞ21H 5 H ⊺HP11H

⊺H 1 opð1Þ 5 Σvð Þ21
P11 Σvð Þ21 1 opð1Þ,

so it follows that

Ŵ 5 h0Σ
v 1 T21=2�Z �V ⊺� �

P21
11 h0Σ

v 1 T21=2�Z �V ⊺� �⊺
1 opð1Þ,

which yields the desired result. QED
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B2. Empirical Results

TABLE B1
Three-Pass Regression: Empirical Results

Factors

Average

Return

Two-Pass Regression Mimicking Portfolio

Three-Pass

Regression

R 2
g

(15)
p (g Weak)

(16)

No Controls With Rm With FF3 With Rm With FF3

g
(1)

SE
(2)

g
(3)

SE
(4)

g
(5)

SE
(6)

g
(7)

SE
(8)

g
(9)

SE
(10)

g
(11)

SE
(12)

g
(13)

SE
(14)

Market .51** .23 .56** .23 .56** .23 .51** .22 .51** .22 .51** .22 .51** .23 99.57 .00
SMB .25 .15 .82** .34 .07 .16 .10 .16 .08** .04 .25 .16 .20 .16 97.24 .00
HML .35** .17 2.85** .38 .30* .18 .35** .17 2.13** .06 .35** .15 .20 .15 83.03 .00
MOM .69*** .24 22.01** .88 .20 .26 .71*** .24 2.05 .05 2.21* .11 .49** .23 89.82 .00
RMW .38*** .13 .04 .16 2.00 .17 .27** .13 2.07** .03 2.09 .06 .22* .11 71.48 .00
CMA .32*** .11 2.59** .24 .34** .14 .42*** .12 2.10** .05 .12 .08 .14 .10 59.03 .00
BAB .94*** .22 21.59* .85 1.10*** .29 1.21*** .27 2.06 .05 .23** .11 .57*** .15 47.43 .00
QMJ .44*** .14 2.50** .21 .01 .16 .25* .14 2.15** .07 2.29*** .09 .06 .13 84.29 .00
Liquidity 2.26** .90 3.44*** 1.09 .57 .68 .21* .11 .32** .14 .37** .16 12.11 .00
Intermediary (He) 1.01** .45 .19 .49 .43 .45 .57** .25 .78*** .27 .60** .31 69.05 .00
Intermediary (Adrian) 1.37*** .30 1.52*** .28 1.58*** .27 .10* .06 .61*** .15 .72*** .16 51.99 .00
New York temperature 2319.01 255.73 125.89 152.76 2277.96** 124.08 22.35 5.42 10.71 10.94 2.69 13.90 .76 .84
Global temperature 26.65 4.85 25.29 4.92 23.33 2.07 2.01 .09 .11 .17 .05 .21 2.21 .09
El Niño 56.85*** 17.42 19.23* 11.08 215.34** 7.11 .39 .33 .94 .59 .41 .82 1.58 .43
Sunspots 2409.37 937.73 1,637.60*** 467.40 882.89** 405.40 219.30 19.49 24.33 30.42 4.01 35.63 .86 .72
IP growth 2.36** .14 2.27*** .07 2.14*** .05 2.00 .00 2.01 .01 2.01* .00 2.25 .21
Macro PC 1 84.90*** 24.76 87.26*** 20.95 39.96*** 13.57 1.22 .75 2.49* 1.43 3.26** 1.58 2.34 .29
Macro PC 2 9.35 15.93 9.28 16.34 23.91*** 8.97 2.91 .59 22.05** 1.03 2.88 1.27 4.05 .09
Macro PC 3 25.94 14.30 26.70 12.11 231.24*** 9.74 2.99 .64 2.61 1.21 21.25 1.51 6.60 .01
Consumption growth .26* .16 2.03 .11 .07 .05 2.00 .00 2.00 .01 .00 .01 4.07 .07
Stockholder

consumption 6.26*** 2.14 2.48** 1.20 1.08* .58 .05 .04 .03 .06 .17** .08 2.50 .32

Note.—For each factor, the table reports the risk premia estimates using different methods, with the restriction that the zero-beta rate is equal to the ob-
served treasury bill rate: the time series average return of the factor, available when the factor is tradable; three versions of the two-pass cross-sectional regression
using no control factors in the model, using the market, and using the Fama-French three factors (FF3), respectively; two versions of the mimicking-portfolio
estimator, projecting factors onto the market portfolio and the FF3 (given that we have more portfolios than observations, it is not feasible to use the
mimicking-portfolio approach with all test portfolios); the three-pass estimator we propose in this paper, using �p 5 7 latent factors; the R 2 of the projection
of gt onto the latent factors; and the p -value of the test that factor gt is weak. SE 5 standard error; He5 He, Kelly, and Manela (2017); Adrian 5 Adrian, Etula,
and Muir (2014).
* p < :10.
** p < :05.
*** p < :01.
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