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Abstract

We survey recent methodological contributions in asset pricing using factor models and ma-

chine learning. We organize these results based on their primary objectives: estimating expected

returns, factors, risk exposures, risk premia, and the stochastic discount factor, as well as model

comparison and alpha testing. We also discuss a variety of asymptotic schemes for inference.

Our survey is a guide for financial economists interested in harnessing modern tools with rigor,

robustness, and power to make new asset pricing discoveries, and it highlights directions for future

research and methodological advances.
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1 INTRODUCTION

Factor models are natural workhorses for modeling equity returns because they offer a parsimonious

statistical description of returns’ cross-sectional dependence structure. Beyond their statistical rele-

vance, the arbitrage pricing theory (APT) of Ross (1976) provides a rigorous economic motivation

for factor models. The APT describes how statistical factor representations are directly tied to foun-

dational economic concepts, such as risk exposures and risk premia, which govern the risk-return

tradeoff at the core of asset pricing. In light of this, factor models have become the single most

widely adopted research paradigm for academics and practitioners alike.

Nevertheless, unobservable asset risk premia are notoriously difficult to pinpoint, because market

efficiency forces return variation to be dominated by unforecastable news that obscures expected

returns. In addition, the sample size of equity returns is small relative to the predictor count.

Structural breaks, regime switches, and non-stationarity in general further diminish the effective

sample size. Furthermore, the collection of candidate conditioning variables is large and they are often

close cousins and highly correlated. Further still, complicating the problem is ambiguity regarding

functional forms through which the high-dimensional predictor set enter into the expected returns.

All these issues result in a low signal-to-noise ratio environment that is in stark contrast to prediction

problems in computer science and other domains.

Certain aspects of the machine learning paradigms, such as variable selection and dimension

reduction, have been part of empirical asset pricing since the very beginning of this research field.

In early days, economic theories and parsimonious model specifications were adopted in order to

“regularize” learning problems in financial markets. Indeed, we have become accustomed to sorting

stocks by their characteristics, forming equal or value weighted portfolios, and selecting a small

number of portfolios as factor proxies. These choices have been made, either explicitly or implicitly,

to cope with nonlinearity, low signal-to-noise ratios, and the curse of dimensionality that are a

difficulty reality when studying asset returns.

Thankfully, recent decades have seen rapid growth of exploratory and predictive techniques pro-

posed by the statistics and machine learning communities. These tools complement economic theory

to provide a data-driven solution to the empirical challenges of asset pricing. Embracing these tools

enables economists to make rigorous, robust, and powerful empirical discoveries, about which eco-

nomic theory alone may not be a sufficient guide. Conversely, these new discoveries can offer new

insights from data that in turn lead to improved economic theories.

Our objectives in this article are twofold. First, we survey recent methodological contributions

in empirical asset pricing. We categorize these based on the methodologies’ primary purpose, which

range from estimating expected returns, factors and assets’ exposures to them, risk premia, and

stochastic discount factors, to comparing asset pricing models and testing alphas. Second, we discuss

the accompanying asymptotic theory, broken out by their focus time series asymptotics (large T ),

cross-sectional asymptotics (large N), or two-dimensional panel asymptotics (large T and N), to

help guide financial economists to methods most appropriate for their specific research needs. Along

the way we compare methodologies, highlight their strengths and limitations, and point out future
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directions for improvement.

Throughout the survey, we use (A : B) to denote the concatenation (by columns) of two matrices

A and B. ei is a vector with 1 in the ith entry and 0 elsewhere, whose dimension depends on the

context. ιk denotes a k-dimensional vector with all entries being 1, and IK denotes the K × K

identity matrix. For any time series of vectors {at}Tt=1, we denote ā = 1
T

∑T
t=1 at. In addition, we

write āt = at − ā. We use the capital letter A to denote the matrix (a1 : a2 : . . . : aT ), and write

Ā = A − āιᵀT correspondingly. We denote PA = A(AᵀA)−1Aᵀ and MA = IK − PA, for some K × T
matrix A. We use a∨ b to denote the max of a and b, and a∧ b as their min, for any scalars a and b.

We also use the notation a . b to denote a ≤ Cb for some constant C > 0. Similarly, we use x .P y

to denote x = OP(y) for two random variables x and y.

We use λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of A, and

use λi(A) to denote the i-th largest eigenvalue of A. Similarly, we use σi(A) to denote the ith

singular value of A. We use ‖A‖1, ‖A‖∞, ‖A‖, and ‖A‖F to denote the L1 norm, the L∞ norm, the

operator norm (or L2 norm), and the Frobenius norm of a matrix A = (aij), that is, maxj
∑

i |aij |,
maxi

∑
j |aij |,

√
λmax(AᵀA), and

√
Tr(AᵀA), respectively. We also use ‖A‖MAX = maxi,j |aij | to

denote the L∞ norm of A on the vector space. Finally, we use Diag(A) to denote the diagonal

matrix of A and A[I] a submatrix of A whose rows are indexed in I.

2 MODEL SPECIFICATIONS

We start by introducing a static factor model, which serves as a benchmark throughout the survey.

2.1 Static Factor Models

In its simplest form, a static factor model can be written as

rt = E(rt) + βvt + ut, (1)

where rt is an N × 1 vector of excess returns of test assets (e.g., size-value double-sorted portfolios),

β is an N ×K matrix of factor exposures, vt is a K × 1 vector of factor innovations, and ut is an

N × 1 vector of idiosyncratic errors.

The expected return can (always) be decomposed as:

E(rt) = α+ βγ, (2)

where γ is a K × 1 vector of risk premia and α is an N × 1 vector of pricing errors. This projection

always holds as the right-hand-side has more degrees of freedom than the left, but the APT of Ross

(1976) and follow up work by Huberman (1982), Ingersoll (1984), and Chamberlain & Rothschild

(1983) predict that no-asymptotic arbitrage implies αᵀΣ−1
u α < ∞ as N increases, where Σu is the

covariance matrix of ut.

The most common framework in academic finance literature assumes that factors are known and
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observable (an example would be industrial production growth, as in Chen et al., 1986). That is,

ft = µ+ vt, (3)

where µ is some unknown parameter of the (population) expectation of ft. If factors are tradable

portfolios (such as the Fama-French factors in Fama & French, 1993, 2015), then µ = γ.

A second framework, which has re-gained popularity recently but dates back to as early as

Connor & Korajczyk (1986), assumes that all factors and their exposures are latent, which relaxes

the somewhat restrictive assumption in the first setting that all factors are known and observable to

econometricians.

A third framework assumes factor exposures are observable but the factors are latent. This is

arguably the most prevalent framework for practitioners and is rooted in the MSCI Barra model

originally proposed by Rosenberg (1974). The popularity of this model stems from the fact that

it conveniently accommodates time-varying exposures of individual equity returns. We turn to the

topic of time-varying exposures next.

2.2 Conditional Factor Models

One might argue that the static model in 1 is suitable for certain portfolios of assets (though even

in this case the static assumption is dubious), but it is clearly inadequate for most individual assets.

For example, risk exposures of individual stocks very likely change over time as firms evolve. More

pointedly, assets with fixed maturities and nonlinear payoff structures (e.g., options and bonds)

experience mechanical variation in their risk exposures as their maturity rolls down or the value

of the underlying asset changes. In this case, a factor model should accommodate conditional risk

exposures. The conditional factor model can be specified as:

r̃t = αt−1 + βt−1γt−1 + βt−1vt + ũt, (4)

where r̃t and ũt are M × 1 vectors of excess returns and idiosyncratic errors of individual stocks.

Obviously, the right-hand side contains too many degrees of freedom and the model cannot be

identified without additional restrictions. Rosenberg (1974) imposes that βt−1 = bt−1β, where bt−1 is

an M×N matrix of observable characteristics and β is an N×K vector of parameters. Consequently,

the model becomes

r̃t = bt−1f̃t + ε̃t, (5)

where f̃t := β(γt−1 + vt) is a new N × 1 vector of latent factors, and ε̃t := αt−1 + ũt.
1 This is

the MSCI Barra model prototype which has been embraced by practitioners for its simplicity and

versatility in modeling individual equity returns.

Barra’s model includes several dozens of characteristics and industrial variables in bt−1. Their ad

hoc selection procedure is opaque and evidence suggests it is heavily overparameterized. When the

1This model also allows for additional approximation error, if any, of βt−1 using bt−1β, since such error can be
absorbed into ε̃t as well.
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number of firm characteristics N is large, the number of free parameters is {f̃t}, N × T , which can

be large compared to sample size and thus noisily estimated.

Kelly et al. (2019) suggest a new modeling approach known as instrumented principal compo-

nents analysis (or IPCA). IPCA inherits Barra’s versatility and tractability, yet avoids its statistical

inefficiency via a built-in dimension reduction:

r̃t = bt−1βft + ε̃t, (6)

where β and {ft} have N×K and K×T unknown parameters, respectively. This model of individual

asset returns has a direct link with the static model for portfolios in 1. If we project bt−1 on both

sides of 6 at each t, we obtain

rt := (bᵀt−1bt−1)−1bᵀt−1r̃t = βft + ut, where ut := (bᵀt−1bt−1)−1bᵀt−1ε̃t. (7)

This echos the static factor model 1 (which is why we use consistent notation, such as β,N,K, for

both models). Moreover, (bᵀt−1bt−1)−1bᵀt−1 can be interpreted as portfolio weights for characteristics-

“sorted” portfolio returns, (bᵀt−1bt−1)−1bᵀt−1r̃t. This derivation is consistent with the convention of

estimating (static) asset pricing models for characteristics-sorted portfolios. Indeed, IPCA incorpo-

rates stock-level and portfolio-level asset pricing in a single specification.

In general, the risk premia associated with factors γt−1 := Et−1(ft) could also be time-varying,

but the time-series path of risk premia {γt−1} is not identifiable without additional restrictions. Only

E(γt−1) can be identified. To recover the path of risk premia, Gagliardini et al. (2016) employ a

parametric model of risk premia, as suggested by Harvey & Ferson (1999), γt−1 = zᵀt−1θ, where z

includes macro time-series such as the term spread and θ is an unknown parameter. Combined with

the assumption that factor loadings are linear functions of observed characteristics and macro time

series, one can rewrite the dynamics of individual stock returns as

r̃i,t = xi,tβ̃i + ε̃t, (8)

where {xi,t} are multi-dimensional regressors that depend on observable factors, macro variables,

and firm characteristics, and {β̃i} contain (functions of) unknown parameters.

In essence, IPCA and related model employ a linear approximation for risk exposures based on

observable characteristics data. But there are no obvious theoretical or intuitive justifications for the

linearity assumption beyond tractability. To the contrary, there are many reasons to expect that this

assumption is violated. Essentially all leading theoretical asset pricing models predict nonlinearities

in return dynamics as a function of state variables; Campbell & Cochrane (1999), Santos & Veronesi

(2004), Bansal & Yaron (2004), and He & Krishnamurthy (2013) are prominent examples.

To overcome this limitation, Connor et al. (2012) and Fan et al. (2016) replace the assumption

that factor betas are linear in characteristics with an assumption that factor betas are nonparametric

functions of characteristics (although these characteristics are assumed to not vary over time for

theoretical tractability). Kim et al. (2020) adopt this farmework to construct arbitrage portfolios.

6
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Gu et al. (2021) extend the Barra and IPCA models to a nonlinear setting using a conditional

autoencoder model, augmented with additional explanatory variables. It replaces the linear beta

specification in 6 with a more realistic and flexible beta function. The Gu et al. (2021) autoencoder

model is the first deep learning model of equity returns that explicitly accounts for the risk-return

tradeoff. Thanks to recent progress in algorithms and computing power, deep learning models like

this are readily available and increasingly popular among practitioners. Nevertheless, deep learning

models are often criticized for their black-box nature. Although these models are comprised of simple

composite functions (not much more complicated than a regression model), training them can be

tedious and is sometimes more art than science. Rigorous theoretical justification still lags far behind

the evolution of model architectures and training algorithms.

Continuous-time factor models can sometimes be preferable for modeling time-varying dynamics

of asset returns, particularly when high-frequency returns data are available. Return factors have

complex dynamics such as stochastic volatility and jumps, and individual asset returns respond to

these factors with time-varying risk exposures. High-frequency modeling is well suited for tackling

such complexities, though details are beyond the scope of this review. We refer interested readers to

Aı̈t-Sahalia et al. (2021).

3 METHODOLOGIES

The conventional methodologies for statistical inference of asset pricing models are designed for low-

dimensional settings, e.g., 25 test assets with a handful of factors over tens of years. Recently, the

set of explanatory variables (potentially) associated with equity returns has expanded rapidly (e.g.

Harvey et al., 2016), and researchers have begun using individual securities as test assets (e.g. Kelly

et al., 2019). With the transition to large scale sets of factors and test assets, high-dimensional

statistical methods are increasingly relevant for empirical asset pricing analysis. Our survey starts

with classical methods but places particular emphasis on statistical methodologies designed to cope

with a high-dimensional setting.

3.1 Measuring Expected Returns

A central objective of asset pricing is to understand the behavior of expected returns. But expected

returns are shrouded in noise in the form of unforecastable news that moves asset prices. This

makes expected returns difficult to measure. If we can improve measurement to see expected returns

more clearly, we can better devise economic theories to explain their behavior. In other words, return

prediction (i.e., the measurement of expected returns) is critical to developing a clearer understanding

of financial markets.

The empirical literature on stock return prediction has three basic strands. The first models

differences in expected returns across stocks as a function of a small list of stock-level characteristics,

and is exemplified by Fama & French (2008) and Lewellen (2015). It mostly approaches estimation

via cross-sectional regression of future returns on lagged stock characteristics.2 The second strand

2In addition to least squares regression, the literature often sorts assets into portfolios on the basis of characteristics
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estimates expected returns via time series regression of portfolio returns on a small number of predic-

tor variables (see surveys by Welch & Goyal, 2007; Koijen & Nieuwerburgh, 2011; Rapach & Zhou,

2013).

These traditional methods have potentially severe limitations that more advanced statistical tools

in machine learning can help overcome. Most important is that regressions and portfolio sorts are

ill-suited to handle the large numbers of predictor variables that the literature has accumulated over

five decades. The challenge is how to assess the incremental predictive content of a newly proposed

predictor while jointly controlling for the gamut of extant signals (or, relatedly, handling the problems

of overfit and multiple comparisons).

The third strand of stock return predictions is newly emerging and is rooted in the methods

of machine learning. With an emphasis on variable selection and dimension reduction techniques,

machine learning is well suited for such challenging prediction problems by reducing degrees of

freedom and condensing redundant variation among predictors. A first wave of high-dimensional

models used linear methods such as partial least squares (e.g. Kelly & Pruitt, 2013; Rapach et al.,

2013) and lasso (Chinco et al., 2017; Freyberger et al., 2020).

More recently, Gu et al. (2020) conduct a wide-ranging analysis of machine learning methods

for return prediction, considering not only regularized linear methods but also more cutting edge

nonlinear methods including random forest, boosted regression trees, and deep learning. Their

research illustrates the substantial gains of incorporating machine learning when estimating expected

returns. This translates into improvements in out-of-sample predictive R2, as well as large gains

for investment strategies that leverage machine learning predictions. The empirical analysis also

identifies the most informative predictor variables, which helps facilitate deeper investigation into

economic mechanisms of asset pricing.

Machine learning also makes it possible to improve expected return estimates using predictive

information in complex and unstructured data sets. For example, Ke et al. (2019) propose a new

supervised topic model for constructing return predictions from raw news text and demonstrate

its prowess for out-of-sample forecasting. Jiang et al. (2021) and Obaid & Pukthuanthong (2021)

demonstrate how to tap return predictive information in image data using machine learning models

from the computer vision literature. Both text and image data confer particularly strong return

forecasting gains at short horizons of days and weeks, and are likely underpinned by comparatively

fast-moving market sentiments, rather than fundamental information that arguably plays a dominant

role at forecast horizons of quarters or years. Indeed, sentiment and related behavioral economic

driving forces are becoming a core aspect of financial markets research. These are subtle phenomena

with circuitous transmission and feedback effects. As such, they are fertile ground for machine

learning methods, which offer an ability to capture approximate complex nonlinear associations by

exploiting rich and unwieldy data sets.

In general, the return prediction literature delves little into understanding the economic mecha-

nisms (such as risk-return tradeoffs, market frictions, or behavioral biases) that may be responsible

for observed predictability. Distinguishing, for example, between risk premia and mispricing requires

and studies portfolio averages—a form of nonparametric regression.
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a more structured modeling approach, and factor models are the dominant tool researchers have used

in this pursuit.

3.2 Estimating Factors and Exposures

In a factor model, the total variance of an asset can be decomposed into a systematic risk component

driven by covariances with the factors and a component that is idiosyncratic to the asset. There

are many factor modeling strategies available that differ in their assumptions about whether or

not factors and their exposures are assumed known, and whether the model uses a conditional or

unconditional risk decomposition.

3.2.1 TSR and CSR

For a static factor model given by 1, if factors are known, we can estimate factor exposures via

asset-by-asset time series regressions, which, in matrix form, can be written as:

TSR : β̂ = R̄F̄ ᵀ(F̄ F̄ ᵀ)−1. (9)

If asset returns are assumed to follow 8 as in Gagliardini et al. (2016), then asset-by-asset time-series

regressions yield estimates for β̃i, which in turn leads to estimates of parametrized factor loadings.

If factors are latent, but exposures are observable, then we can estimate factors by cross-sectional

regressions at each time point. In matrix form, we can write the estimator as:

CSR : F̂ = (βᵀβ)−1βᵀR. (10)

This approach is most commonly used for individual stocks, for which their loadings can be prox-

ied by firm characteristics. It is convenient for the CSR regression to accommodate time-varying

characteristics as in 5, in which case we can rewrite 10 accordingly, for each t, as

̂̃
f t = (bᵀt−1bt−1)−1bᵀt−1r̃t. (11)

3.2.2 PCA

If neither factors nor loadings are known, we can resort to PCA to extract latent factors and their

loadings. The use of PCA in asset pricing dates back to as early as Chamberlain & Rothschild (1983)

and Connor & Korajczyk (1986), and has become increasingly popular, see, e.g., Kozak et al. (2018),

Pukthuanthong et al. (2019), Kelly et al. (2019), and Giglio & Xiu (2021). For a static factor model,

1, PCA can identify factors and their loadings up to some unknown linear transformation. It is more

convenient to implement this via a singular value decomposition (SVD) of R̄:

R̄ =
K̂∑
j=1

σjςjξ
ᵀ
j + Û , (12)

9
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where {σj}, {ςj}, and {ξj} correspond to the first K̂ singular values, left and right singular vectors

of R̄, and K̂ can be any consistent estimator (e.g., Bai & Ng (2002)) of the number of factors in rt.

This decomposition yields a pair of estimates of factor innovations and exposures as

V̂ = T 1/2(ξ1 : ξ2 : . . . ξ
K̂

)ᵀ, β̂ = T−1/2(σ1ς1 : σ2ς2 : . . . : σ
K̂
ς
K̂

). (13)

Because of the fundamental indeterminacy of latent factor models, it is equivalent to use (β̂H−1, HV̂ )

as alternative estimates, for any invertible matrix H. Said differently, a rotation of factors and an

inverse rotation of betas leaves model fits exactly unchanged. While allowing for latent factors and

exposures can add great flexibility to a research project, this rotation indeterminacy makes it difficult

to interpret the factors in a latent factor model.

The PCA approach is also applicable if some but not all factors are observable. In such a case,

Giglio et al. (2021a) suggest conducting PCA on residuals from time-series regressions of returns

onto observable factors. They show that the estimated betas of observable and latent factors are,

again, consistent with respect to the true betas only up to some unknown linear transformation.

3.2.3 Risk Premia PCA

The PCA-based approach extracts information about latent factors solely from realized return co-

variances. To see this, the SVD in 12 is applied to R̄, which eliminates the average return from each

column of R. In fact, if we assume α = 0 in 2, the expected return is also spanned by β, so that it

is possible to exploit the information in average returns (r̄) for more efficient recovery of factors.

Lettau & Pelger (2020b) exploit this intuition and propose a so-called risk-premia PCA estimator

for factors. Instead of using T−1R̄R̄ᵀ = T−1RRᵀ− r̄r̄ᵀ, they conduct PCA on T−1RRᵀ+λr̄r̄ᵀ, where

λ is a tuning parameter. Risk-premia PCA generalizes the proposal of Connor & Korajczyk (1986),

which corresponds to the special case of λ = 0. Lettau & Pelger (2020a) further prove that the

risk-premia PCA could achieve a smaller asymptotic variance for factor loadings than the standard

PCA if all factors are pervasive; and they outperform PCA empirically when factors are weak. We

defer more detailed discussion on weak factors to Section 3.3.4.

3.2.4 Instrumented PCA

A limitation of PCA is that it only applies to static factor models. It also lacks the flexibility

to incorporate other data beyond returns. To address both issues, Kelly et al. (2019) estimate the

conditional factor model, 6, by solving the optimization problem minβ,{ft}
∑T

t=2 ‖r̃t − bt−1βft‖2. The

estimates satisfy first-order conditions:

f̂t =
(
β̂ᵀbᵀt−1bt−1β̂

)−1
β̂ᵀbᵀt−1r̃t, (14)

vec(β̂ᵀ) =

(
T∑
t=2

bᵀt−1bt−1 ⊗ f̂tf̂ᵀt

)−1( T∑
t=2

(bt−1 ⊗ f̂ᵀt )ᵀr̃t

)
. (15)

10
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Consistent with the discussion in Section 3.2.1, equation 14 shows that, given conditional betas,

factors are estimated from cross section regressions of returns on betas. Equation 14 resembles 11,

but the former accommodates a potentially large number of characteristics because of the built-in

dimension reduction assumption. Equation 15 shows that conditional betas can be recovered from

panel regressions of returns onto characteristics interacted with factors. The authors recommend

an ALS algorithm to iteratively update β̂ and f̂t until convergence. Kelly et al. (2020) develop the

accompanying asymptotic inference for the extracted factors and loadings.

Kelly et al. (2021) apply this IPCA framework to explain momentum and long-term reversal

phenomenon in equity returns. The general framework of IPCA also extends beyond equity into

other asset classes, such as corporate bonds (Kelly et al., Forthcoming) and options (Büchner &

Kelly, Forthcoming).

3.2.5 Autoencoder Learning

Gu et al. (2021) introduce deep learning to return factor models by proposing a conditional au-

toencoder to explicitly account for the risk-return tradeoff. The machine learning literature has

long recognized the close connection between autoencoders and PCA (e.g., Baldi & Hornik, 1989).

However, unlike PCA, Gu et al. (2021) introduce additional conditioning information into the au-

toencoder specification (in the spirit of IPCA). The autoencoder allows betas to depend on stock

characteristics in a more realistic, nonlinear way than IPCA’s linear beta specification. Figure 1

illustrates the model’s basic structure. At a high level, the mathematical representation of the model

...

Beta Output Layer
          (MxK)

Input Layer 1 

        (MxN)

Hidden Layer (s)

...

(factor)(beta)

(Nx1)

Factor Output Layer
               (Kx1)

Dot Product

Output Layer 

        (Mx1)

...

...

...
...

...g g g g

g g g g
...g g g g

...
...

...

M

N

M

K

... (Mx1)

OR

Input Layer 2


Figure 1: Conditional Autoencoder Model

is identical to equation 4. On the left side of the network, factor loadings are a nonlinear function of

covariates (e.g., firm characteristics), while the right side of the network models factors as portfolios

of individual stock returns.

In particular, the K × 1 vector βi,t−1 is specified as a neural network model of lagged firm

characteristics, bi,t−1. The recursive formulation for the nonlinear beta function is:

b
(0)
i,t−1 = bi,t−1, (16)
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b
(l)
i,t−1 = g

(
b(l−1) +W (l−1)b

(l−1)
i,t−1

)
, l = 1, ..., Lβ, (17)

βi,t−1 = b(Lβ) +W (Lβ)b
(Lβ)
i,t−1. (18)

Equation 16 initializes the network as a function of the baseline characteristic data, bi,t−1. The

equations in 17 describe the nonlinear (and interactive) transformation of characteristics as they

propagate through hidden layer neurons. Equation 18 describes how a set of K-dimensional factor

betas emerge from the terminal output layer.

On the right side of Figure 1, we see an otherwise standard autoencoder for the factor specification.

The recursive mathematical formulation of the factors is:

r
(0)
t = (bᵀt−1bt−1)−1bᵀt−1rt, (19)

r
(l)
t = g̃

(
b̃(l−1) + W̃ (l−1)r

(l−1)
t

)
, l = 1, ..., Lf , (20)

ft = b̃(Lf ) + W̃ (Lf )r
(Lf )
t . (21)

Equation 19 initializes the network with characteristics-sorted portfolios of individual asset returns,

as defined by 7. This sidesteps the incompleteness issue of the panel of individual stock returns and

in the meantime performs a preliminary reduction of data. Equations in 20 transform and compress

the dimensionality of returns as they propagate through hidden layers. Equation 21 describes the

final set of K factors at the output layer. If a single linear layer is included on the factor network,

that is, Lf = 1, this structure maintains the economic interpretation of factors: they are themselves

portfolios (linear combination of returns).

At last, the “dotted operation” multiplies the M ×K matrix output from the beta network with

the K × 1 output from the factor network to produce the final model fit for each individual asset

return.

When the autoencoder has one hidden layer and a linear activation function, it is equivalent to

the PCA estimator for linear factor models described above. Just like the autoencoder model nests

the static linear factor model, the augmented autoencoder nests the IPCA factor model as a special

case. The high capacity of a neural network model enhances its flexibility to construct the most

informative features from data. With enhanced flexibility, however, comes a higher propensity to

overfit. We discuss several generic algorithms likely applicable to any deep learning models.

Training, Validation, and Testing To curb overfitting, the entire sample is typically divided into

three disjoint subsamples that maintain the temporal ordering of the data. The first, or “training,”

subsample is used to estimate the model subject to a specific set of tuning hyperparameter values.

The second, or “validation,” subsample is used for tuning the hyperparameters. Fitted values are

constructed for data points in the validation sample based on the estimated model from the training

sample. Next, the objective function is calculated based on errors from the validation sample, and

hyperparameters are then selected to optimize the validation objective.

The validation sample fits are of course not truly out-of-sample because they are used for tuning,
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which is in turn an input to the estimation. Thus the third, or “testing,” subsample is used for

neither estimation nor tuning. It is thus used to evaluate a method’s out-of-sample performance.

Regularization Techniques The most common machine learning device for guarding against

overfitting is to append a penalty to the objective function in order to favor more parsimonious spec-

ifications. This regularization approach mechanically deteriorates a model’s in-sample performance

in the hope of improving its stability out-of-sample. This will be the case when penalization manages

to reduce the model’s fit of noise while preserving its fit of the signal.

Gu et al. (2021) define the estimation objective to be

L(θ; ·) =
1

NT

T∑
t=1

N∑
i=1

∥∥r̃i,t − β′i,t−1ft
∥∥2

+ φ(θ; ·), (22)

where θ summarizes the weight parameters in the loading and factor networks of 16 through 21, φ(θ)

is a penalty function, such as lasso (or l1) penalization, which takes the form φ(θ;λ) = λ
∑

j |θj |.
In addition to l1-penalization, Gu et al. (2021) employ a second machine learning regularization

tool known as “early stopping.” By ending the parameter search early (as soon as the validation

sample error begins to increase), parameters are shrunken toward the initial guess, for which par-

simonious parameterization is often imposed. It is a popular substitute to “l2”-penalization of θ

parameters because of its convenience in implementation and effectiveness in combatting overfit.

As a third regularization technique, Gu et al. (2021) adopt an ensemble approach in training

neural networks. In particular, they use multiple random seeds to initialize neural network estimation

and construct model predictions by averaging estimates from all networks. This enhances the stability

of the results because the stochastic nature of the optimization can cause different seeds to settle at

different optima.

Optimization Algorithms The high degree of nonlinearity and nonconvexity in neural networks,

together with their rich parameterization, make brute force optimization highly computationally

intensive (often to the point of infeasibility). Gu et al. (2021) adopt the adaptive moment estimation

algorithm (Adam), an efficient version of stochastic gradient descent introduced by Kingma & Ba

(2014) that computes adaptive learning rates for individual parameters using estimates of first and

second moments of the gradients.

Gu et al. (2021) also adopt “batch normalization” (Ioffe & Szegedy, 2015), to control the variabil-

ity of predictors across different regions of the network and across different datasets. It is motivated

by the phenomenon of internal covariate shift in which inputs of hidden layers follow different dis-

tributions than their counterparts in the validation sample.

3.2.6 Matrix Completion

It is not uncommon in finance applications to deal with unbalanced panels. Giglio et al. (2021a)

adopt a matrix completion algorithm to handle missing data when extracting factors and loadings

of a factor model.
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The matrix completion approach relies on an assumption that the full matrix can be written as

a noisy low-rank matrix. This assumption is naturally justified for 1 (assuming α = 0) which, in

matrix form, can be rewritten as R = β(V + γιᵀT ) + U and thus clearly satisfies the assumption.

The goal is to recover an N×T low-rank matrix X := β(V + γιᵀT ). Suppose R (the “noisy version”

of X) is not fully observed and Ω is an N × T matrix whose (i, t)-th element ωit = 1{rit is observed}.

Using this notation, econometricians can only observe R ◦Ω and Ω, where ◦ represents the element-

wise matrix product.

The following nuclear-norm penalized regression approach can be employed to recover X:

X̂ = arg min
X
‖(R−X) ◦ Ω‖2 + λNT ‖X‖n, 3 (23)

where ‖X‖n denotes the matrix nuclear norm and λNT > 0 is a tuning parameter. By penalizing

the singular values of X, the algorithm achieves a low-rank matrix as the output. The latent factors

and betas can then be estimated via the corresponding singular vectors of X̂.

3.3 Estimating Risk Premia

The risk premium of a factor is informative about the equilibrium compensation investors demand

to hold risk associated with that factor. One of the central predictions of asset pricing models is

that some risk factors for example, intermediary capital or aggregate liquidity should command a

risk premium: investors should be compensated for their exposure to those factors, holding constant

their exposure to all other sources of risk.

For tradable factors—such as the market portfolio in the CAPM—estimating risk premia reduces

to calculating the sample average return of the factor. This estimate is simple, robust, and requires

minimal modeling assumptions.

However, many theoretical models are formulated with regard to non-tradable factors—factors

that are not themselves portfolios—such as consumption, inflation, liquidity, and so on. To estimate

risk premia of such factors it is necessary to construct their tradable incarnations. Such a tradable

factor is a portfolio that isolates the non-tradable factor while holding all other risks constant. There

are two standard approaches to constructing tradable counterparts of a non-tradable factors: two-

pass regressions and factor mimicking portfolios.

3.3.1 Classical Two-pass Regressions

The classical two-pass (or Fama-MacBeth) regressions requires a model like 1 with all factors observ-

able. The first time-series (TS) pass yields estimates of β using regressions in 9. Then the second

cross-sectional (CS) pass estimates risk premia via an ordinary least squares (OLS) regression of

average returns on the estimated β:

γ̂ = (β̂ᵀβ̂)−1β̂ᵀr̄. (24)

3The nuclear-norm ‖X‖n :=
∑min{N,T}
i=1 ψi(X), where ψ1(X) ≥ ψ2(X) ≥ ... are the sorted singular values of X.
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The generalized least squares (GLS) version of 24 replaces the OLS in the CS pass by

γ̂GLS = (β̂ᵀΣ̂−1
u β̂)−1β̂ᵀΣ̂−1

u r̄, (25)

where Σ̂u = T−1R̄MV̄ R̄
ᵀ is the sample covariance matrix of the residuals.

Lewellen et al. (2010) advocate the GLS approach and suggest reporting GLS R2, partially

because their simulations suggest obtaining a high GLS R2 appears to be a more rigorous hurdle

than obtaining a high OLS R2. In our view, this benefit of GLS is perhaps overshadowed by its

disastrous finite sample performance due to the poor estimates of Σ̂u, in particular when N is large.

In Section 4.2, we will also show that the OLS and the infeasible GLS (which assumes perfect

knowledge of Σu) are asymptotically equivalent when both N and T are large, so that there is no

asymptotic efficiency gain from using GLS.

3.3.2 Factor Mimicking Portfolios

In contrast to equation 24, Fama & Macbeth (1973) propose an inference procedure that regresses

realized returns at each time t onto β̂:

γ̂t = (β̂ᵀβ̂)−1β̂ᵀrt. (26)

Note that γ̂t is itself a portfolio return, corresponding the portfolio weights (β̂ᵀβ̂)−1β̂ᵀ. In other

words, Fama-MacBeth regression is itself an approach to building factor-mimicking portfolios. Fama

& Macbeth (1973) then recommend estimating the risk premium as the time series average of γ̂t.

Regularity conditions in Giglio & Xiu (2021) imply

γ̂t = (β̂ᵀβ̂)−1β̂ᵀ(β(γ + vt) + ut) ≈ γ + vt.

and thus the Fama-MacBeth procedure is an effective approach to estimating risk premia.

Now, suppose we are interested in mimicking a risk proxy, gt, say, a climate risk measure that is

not tradable, that satisfies

gt = ξ + ηvt + zt. (27)

Obviously, the risk premium of gt is γg = ηγ. The Fama-MacBeth procedure readily yields its factor

mimicking portfolio, η̂γ̂t, where η̂ is simply the vector of coefficients of a time-series regression 27,

whose risk premium is precisely η̂γ̂.

Another standard approach to tracking a non-traded factor is the maximal-correlation factor-

mimicking approach (e.g. Huberman et al., 1987; Lamont, 2001). This directly projects gt onto a set

of basis assets, yt, which yields weights of the mimicking portfolio:

wg = Var(yt)
−1Cov(yt, gt),

whose returns and expected returns are given by wᵀ
gyt and wᵀ

gE(yt).

How do we reconcile these two approaches? Is γg the same as wᵀ
gE(yt), for some choice of yt? How
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do we select such yt? Under data generating processes given by 1, 2, and 27, if we select yt = Aft

(recall that ft = µ+ vt), for any invertible matrix A, then wg = (Aᵀ)−1η, and wᵀ
gE(y) = ηγ. In this

scenario, both approaches are equivalent, suggesting that we should use the same factors we use in

Fama-MacBeth regressions to build a mimicking portfolio for gt. Obviously, this is only possible if

ft is a vector of tradable portfolios. If not, we can use mimicking portfolios of ft, γ̂t, but this goes

back to the Fama-MacBeth approach described above.

Perhaps a more interesting proposal is to use rt directly as basis assets when building a mimicking

portfolio for gt. In this case, wg = Σ−1βΣvη
ᵀ, and wᵀ

gE(rt) = ηΣvβ
ᵀ(Σ)−1βγ. This appears to

give a different risk premium parameter in population. Nevertheless, Giglio & Xiu (2021) prove

that as N → ∞, wᵀ
gE(rt) converges to ηγ. This result suggests that in the limit the maximal-

correlation mimicking portfolio approach targets the same risk premium parameter as Fama-MacBeth

regressions.

What makes the second approach more appealing is the fact that it does not require a fully

specified factor model, since all it needs are the factor of interest, gt, and the cross-section of test

assets, rt, suggesting that estimating a factor’s risk premium does not require knowledge about

identities of factors driving asset returns, so it avoids the omitted factor problem. The potential

issue with this approach is the curse of dimensionality—it requires a large cross-section of assets

(N →∞), which may exceed the sample size, T , to the extent that a projection of gt on rt becomes

infeasible. We now turn to a three-pass estimator that adopts PCA regression to resolve this high-

dimensionality issue.

3.3.3 Three-pass Regressions

Giglio & Xiu (2021) suggest a principal component regression (PCR) when building the factor mim-

icking portfolios for gt using rt as basis assets. The PCR approach is a natural choice among

high-dimensional regressions in that rt follows a factor model according to 1. The three-pass method

proceeds as follows:

1. The first-pass is an SVD of R̄ to obtain β̂ and V̂ as in 13.

2. The second pass runs a cross-sectional OLS, 24, to obtain risk premia of V̂ .

3. Finally, the third pass projects gt onto V̂ :

η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1,

thus recovering the weights of the mimicking portfolio.

The three-pass estimator of the risk premium of gt is then obtained by multiplying the portfolio

weights η̂ by the risk premia of these portfolios γ̂. In a compact form, it is given by:

γ̂g = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1(β̂ᵀβ̂)−1β̂ᵀr̄. (28)
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As we discuss in Section 4.2, this estimator has asymptotic guarantees in the large N , large T

setting, but only if all factors are pervasive. Since this estimator does not rely on any pre-specified

asset pricing model for risk premia estimation, it provides a solution to the omitted variable bias.

Relatedly, Gagliardini et al. (2019) propose a diagnostic criterion for detecting the number of omitted

factors.

3.3.4 Weak Factors

Beside the omitted factor bias, another severe issue that plagues the classical two-pass regression

is weak identification. Kan & Zhang (1999) first note that the inference on risk premia from two-

pass regression becomes distorted when a “useless” factor – a factor to which test assets have zero

exposure – is included in the model. Kleibergen (2009) further points out that standard inference

fails if betas are relatively small. This issue is quite relevant in practice because many test assets

are not very sensitive to macroeconomic shocks. Moreover, the same rank-deficiency problem arises

when betas are collinear albeit strong, that is, some factors are redundant in terms of explaining

the variation of expected returns. This is again a relevant issue in practice due to the existence of

hundreds of factors discovered in the literature, many of which are close cousins and do not add any

explanatory power.

When β is close to zero, its estimation error dominates the true signal, resulting in an error-

in-variables problem. Kleibergen (2009) proposes several test statistics for risk premia that are

uniformly valid over all values of β. The beneficial robustness of these tests come at the cost of

a lack of power when weak factors exist. These tests are also designed for testing risk premia of

all factors jointly, but are often not informative about the risk premium on any particular factor.

Bryzgalova (2015) suggests eliminating weak factors via a penalized two-pass regression, so as to

improve the power for detecting strong factors. However, eliminating weaker factors can lead to

invalid inference and potentially large biases in the risk premia estimates of the remaining factors.

Jegadeesh et al. (2019) propose a sample-splitting and instrumental variable estimator to correct

the error-in-variables bias. In the same spirit and perhaps more rigorously, Anatolyev & Mikusheva

(2021) propose a four-split approach that addresses the issues of weak factors and omitted factors.

They assume that part of vt in equation 1, call it v1t, is observable though potentially weak. Also

assume that its beta, namely β1, fully spans the space of expected returns. The other part of vt, call

it v2t, is latent (hence omitted by econometricians) and unpriced. The four-split estimator aims for

valid inference on the risk premia of v1t. Note that omitted factors in their setup must be unpriced

to achieve valid inference. But in reality it is the omitted priced factors that are most concerning.

Giglio et al. (2021b) argue that the weak factor problem is fundamentally an issue of test asset

selection. They argue that factor strength is not an inherent property of a factor, instead it is

dictated by the selection of test assets. Weaker factors may still be priced, so just eliminating them

is an undesirable solution. Instead, Giglio et al. (2021b) suggest actively selecting test assets to

guarantee that the selected assets have sufficient exposure to the factors of interest. To also address

the omitted factor problem, they propose an iterative supervised PCA procedure that integrates

correlation screening with the three-pass estimator. This estimator is robust to both omitted variable
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bias and the weak factor problem, as well as to measurement error in observed factors.

Which Test Assets? Test assets are an important component of empirical asset pricing, yet

little work has been dedicated to rigorously and systematically investigating how they should be

selected. When a model is comprised of tradable factors, many important asset pricing analyses are

independent of the test assets. For example, risk premia of tradable factors are best calculated as

simple averages of factor returns, the maximum Sharpe ratio portfolio in the model economy can be

inferred from the tradable factors alone, and model comparison can be conducted without test assets

(Barillas & Shanken, 2017). In contrast, test assets are central to the study of non-tradable factors

because they are used to construct the necessary factor-mimicking portfolios that in turn are inputs

to most asset pricing analyses.

The choice of test assets in the literature has mainly followed one of three approaches. The first

approach, adopted by the vast majority of the literature, uses a “standard” set of portfolios sorted

on a few characteristics, such as size and value, following the seminal work of Fama & French (1993).

Lewellen et al. (2010) argue that this approach sets a rather low hurdle for a factor pricing model.

They suggest augmenting the set of test assets with industry portfolios. Giglio et al. (2021b) argue

that using the standard cross-section likely creates a weak factor problem, because these assets may

not have exposure to the factor of interest. Alternatively, Ahn et al. (2009) suggest forming portfolios

as test assets by clustering individual securities based on their correlations so that securities within

clusters are similar and those across clusters are different. There is not a clear theoretical rationale

behind this proposal however.

A second approach that has gained traction more recently expands the set of test assets to include

portfolios sorted on a much larger set of characteristics discovered in the last decades, on the order

of hundreds of portfolios (e.g. Kozak et al., 2020; Bryzgalova et al., 2020b). Along these lines, an

attractive property of IPCA is that it can be viewed and assessed from the perspective of individual

stocks or characteristic-managed portfolios as test assets. Kelly et al. (2019) argue that this has the

attractive property of reducing researcher discretion over test asset selection.

A third approach curates test assets that are targeted for a specific factor of interest (see e.g. Ang

et al., 2006). A common approach is to estimate stock-level betas on a given factor, then sort assets

into portfolios based on the estimated exposure. A small cross section of these sorted portfolios is

expected to be particularly informative about the factor of interest, but it is affected by the omitted

factor problem since it tends to focus only on univariate exposures.

3.4 Estimating the SDF and its Loadings

A factor’s risk premium is equal to its (negative) covariance with the stochastic discount factor

(SDF). In the setup of 1, an SDF can be written as:

mt = 1− bᵀvt, (29)
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where b = Σ−1
v γ and Σv is the covariance matrix of factor innovations. The SDF is central to the field

of asset pricing because, in the absence of arbitrage, covariances with the SDF unilaterally explain

cross-sectional differences in expected returns.

As shown in 29, the vector of SDF loadings, b, is related to mean-variance optimal portfolio

weights. SDF loadings b and risk premia γ are directly related through the covariance matrix of

the factors, but they differ substantially in their interpretation. The SDF loading of a factor tells

us whether that factor is useful in pricing the cross section of returns. For example, a factor could

command a nonzero risk premium without appearing in the SDF simply because it is correlated with

the true factors driving the SDF. It is thereby not surprising to see many factors with significant risk

premia. For this reason, it makes more sense to tame the factor zoo by testing if a new factor has

a non-zero SDF loading (or has a non-zero weight in the mean-variance efficient portfolio), rather

than testing if it has a significant risk premium.

3.4.1 Generalized Method of Moments

The classical approach to estimating SDF loadings is the generalized method of moments (GMM).

In light of 3 and 29 and the definition of the SDF, we can formulate a set of moment conditions:

E(mtrt) = 0N×1, E(vt) = 0K×1.

Since there are in total K +N moments with 2K parameters (µ and b) in general, we need N ≥ K
to ensure the system is identified.

The GMM estimator is thereby defined as the solution to the optimization problem:

min
b,µ

ĝT (b, µ)ᵀŴ ĝT (b, µ), (30)

where the sample moments are given by

ĝT (b, µ) =

(
1
T

∑T
t=1 rt(1− bᵀ(ft − µ))

1
T

∑T
t=1 ft − µ

)
(N+K)×1

.

The inference procedure follows the usual GMM formulation (Hansen, 1982). For efficiency reasons, it

is customary to choose the optimal weighting matrix, Ŵopt = Ω̂−1, where Ω̂ is a consistent estimator

of Ω in Section 4.1. As an alternative, we discuss a special class of weighting matrices for which a

closed form solution to 30 is available:

b̂ = (ĈᵀŴ11Ĉ)−1(ĈᵀŴ11r̄), µ̂ = f̄ , (31)

where Ŵ11 is the top N×N sub-matrix of Ŵ , and Ĉ is the N×K sample covariance matrix between

rt and vt. Recall that b = Σ−1
v γ and note also that β̂Σ̂v = Ĉ. It follows that b̂ = Σ̂−1

v γ̂, where γ̂

is given by 24 (Ŵ11 = IN ) or 25 (Ŵ11 = Σ̂−1
u ). In other words, 31 amounts to running two-pass

cross-sectional regressions with (univariate) covariances in place of β̂. This is not surprising, because
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according to 2 we have

E(rt) = α+ βγ = α+ Cb, (32)

where C = βΣv is the covariance between rt and vt. The two-pass procedure thereby achieves an

estimate of b.

3.4.2 PCA-based Methods

Kozak et al. (2018) argue that the absence of near-arbitrage opportunities forces expected returns

to (approximately) align with common factor covariances, even in a world where belief distortions

can affect asset prices. The strong covariation among asset returns suggests that the SDF can

be represented as a function of a few dominant sources of return variation. PCA of asset returns

recovers the common components that dominate return variation. Specifically, the first two passes

of the three-pass procedure in Section 3.3.3 yields an SDF estimator without relying on knowledge

of factor identities:

m̂t = 1− γ̂ᵀv̂t, (33)

where v̂t is the t-th column of V̂ .

3.4.3 Penalized Regressions

In the PCA approach, the SDF is essentially parametrized as a small number of linear combinations

of factors, as shown in 29. Kozak et al. (2020) consider an SDF represented in terms of a set of

tradable test asset returns:

mt = 1− bᵀ(rt − E(rt)), (34)

where b satisfies E(rt) = Σb, and Σ is the covariance matrix of rt. Giglio et al. (2021b) show

that the relationship between the two SDFs (29 and 34) depends on the degree of completeness of

markets. Assuming that rt follows 1 and some regularity conditions hold, these two forms of SDF

are asymptotically equivalent as N →∞ in the sense that

1

T

T∑
t=1

|mt −mt|2 .
1

λmin(βᵀβ)
.

Since the right-hand side diminishes as N → ∞ even for relatively weak factors, there is generally

no theoretical difference between estimands.

To estimate the SDF (34), Kozak et al. (2020) suggest solving an optimization problem, which

amounts to a regression of r̄ onto Σ̂:

b̂ = arg min
b

{
(r̄ − Σ̂b)ᵀΣ̂−1(r̄ − Σ̂b) + pλ(b)

}
, (35)
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with which the estimated pricing kernel is given by

m̂t = 1− b̂
ᵀ
(rt − r̄). (36)

In the above, Σ̂ is the sample covariance matrix of rt and pλ(b) is a penalty term (such as ridge,

lasso, or elastic net) through which economic priors are imposed. Relatedly, Korsaye et al. (2019)

provide a rigorous framework for regularization techniques in the recovery of the SDF in economies

with frictions or ambiguity.

The objective function in 35 appears to require the inverse of the sample covariance matrix Σ̂−1,

which is not well-defined when N > T . Instead, it is equivalent to optimizing a different form of 35:

b̂ = arg min
b

{
bᵀΣ̂b− 2bᵀr̄ + bᵀΣ̂b+ pλ(b)

}
, (37)

which avoids calculating Σ̂−1.

3.4.4 Double Machine Learning

A fundamental task facing the asset pricing field today is to bring more discipline to the proliferation

of factors. In particular, a question that remains open is: how to judge whether a new factor adds

explanatory power for asset pricing, relative to the hundreds of factors the literature has so far

produced? Feng et al. (2020) attempt to address this question by systematically evaluating the

contribution of individual factors relative to existing factors as well as for conducting appropriate

statistical inference in this high-dimensional setting. While machine learning methods discussed

in the previous section perform well by employing regularization to tradeoff bias with variance,

both regularization and overfitting cause a bias that distorts inference. Chernozhukov et al. (2018)

introduce a general double machine learning (DML) framework to mitigate bias and restore valid

inference on a low-dimensional parameter of interest in the presence of high-dimensional nuisance

parameters. Feng et al. (2020) make use of this framework to test the SDF loading of a newly

proposed factor.

Suppose that gt is the factor of interest and ht a vector of potentially confounding factors such

that vt = (gᵀt : hᵀt )
ᵀ. To test if gt contributes to expected returns beyond variables in ht, we should

conduct inference on bg, while controlling bh, where b = (bg : bh) satisfies E(rt) = Cb = Cgbg + Chbh

and C = βΣv is the covariance between rt and vt. If the number of factors in vt, K, is finite, then

the GMM approach introduced in Section 3.4.1 is adequate. When it comes to a large K setting, the

classical inference procedure is no longer valid. This is certainly a relevant case in practice, since T

is typically in the hundreds, roughly of the same scale as the number of factors studied.

In the spirit of DML, Feng et al. (2020) select controls from {Ĉh} via two respective lasso

regressions: r̄ onto Ĉh and Ĉg onto Ĉh. The selected controls, denoted by Ĉh[I], along with Ĉg, serve

as regressors in another cross-sectional regression of r̄. The resulting estimator of bg,

b̂g = (Ĉᵀ
gMĈh[I]

Ĉg)
−1(Ĉᵀ

gMĈh[I]
r̄),

21

Electronic copy available at: https://ssrn.com/abstract=3943284



is a desirable candidate for inference because the regularization biases in lasso diminish at a faster

rate than
√
T after partialing out the effect of Ĉh from Ĉg.

3.4.5 Parametric Portfolios and Deep Learning SDFs

Since the SDF (when projected onto tradable assets) is spanned by optimal portfolio returns, es-

timating the SDF is effectively a problem of optimal portfolio formation. A fundamental obstacle

to the conventional mean-variance analysis is the low signal-to-noise ratio: Expected returns and

covariances of a large cross-section of investable assets cannot be learned with high precision. In the

previous sections, we have discussed factor-based approaches that either exploit economic intuition

and theory, or rely on statistical machine learning methods, to “regularize” this learning problem.

With better estimates of expected returns and covariances come improved portfolio performance.

Brandt et al. (2009) propose an innovative solution to the portfolio optimization problem by

directly parametrizing portfolio weights as functions of asset characteristics, then estimate the pa-

rameters by solving a utility optimization problem:

max
θ

1

T

T∑
t=2

U

(
Nt∑
i=1

w(θ, bi,t−1)r̃i,t

)
,

where w(θ, bi,t−1) is a parametric function of stock characteristics, and U(·) is some pre-specified

utility function. Cong et al. (2021) extend this framework to a more flexible neural network model

and optimize the Sharpe ratio of the portfolio (SDF) via reinforcement learning, with more than 50

features plus their lagged values. Chen et al. (2019) parametrize the SDF loadings and weights of

test asset portfolios as two separate neural networks, and adopt an adversarial minimax approach

to estimate the SDF. Both adopt Long-Short-Term-Memory (LSTM) models to incorporate lagged

time series information from macro variables, firm characteristics, or past returns.

3.5 Model Specification Tests and Model Comparison

Although financial economists suggest using economic theory to winnow the best model, their ef-

forts, unfortunately, have led to a zoo of factors and numerous candidate models. Some recent and

prominent models with observable portfolios as factors include Fama & French (2015), Hou et al.

(2015), Stambaugh & Yuan (2017), He et al. (2017), and Daniel et al. (2020). On the other hand,

purely statistical tests are often powerless because the sample size is too limited to tease out the true

model.

3.5.1 GRS Test and Extensions

Specifically, assessments of factor pricing models can be formalized as statistical hypothesis testing

problems. Such tests most commonly focus on the zero alpha condition: If the factor model reflects

the true SDF, then it should price all test assets with zero alpha (up to sampling variation). A
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standard formulation for the null hypothesis is

H0 : α1 = α2 = . . . = αN = 0. (38)

In a simple setting where all factors are observable and tradable, the model given by 1 and 2 can be

written as rt = α+ βft + ut, so that alphas can be estimated via asset-wise time-series regressions:

α̂TS = (RMF ιT )(ιᵀTMF ιT )−1. (39)

Gibbons et al. (1989) construct a quadratic test statistic:

F̂ =
T −N −K

N

α̂ᵀ
TSΣ̂−1

u α̂TS

(1 + f̄ᵀΣ̂−1
v f̄)

, (40)

and developed its exact finite sample distribution, a non-central F -distribution, under the assumption

of Gaussian errors.

An important limitation of this result is that it requires that T > N +K. In practice, N can be

much larger than T . Even in the case of N < T , the power of the GRS test may be compromised

because it employs an unrestricted sample covariance matrix, Σ̂u, that is known to perform badly even

for moderate N . When asset returns follow an approximate factor model (Chamberlain & Rothschild,

1983), the idiosyncratic errors may be weakly correlated and thus it is possible to enhance the power

of the GRS test by imposing structure on Σu.

Pesaran & Yamagata (2017) suggest a simple quadratic test statistic that ignores off-diagonal

elements of Σu:4

Ĵ1 =
T α̂ᵀ

TSDiag(Σ̂u)−1α̂TS(1 + f̄ᵀΣ̂−1
v f̄)−1 −N√

2N(1 + (N − 1)ρ̂2
N,T )

,

where ρ̂N,T is a correction term related to the sparsity of Σu. This term can be omitted if Σu is

assumed diagonal which in turn leads to a simpler test statistic.

Alternatively, Fan et al. (2015) suggest imposing a sparsity structure on Σu. They exploit this

sparsity to achieve a consistent estimator of Σu, denoted as Σ̂Tu , following Fan et al. (2011). The

resulting test statistic is

Ĵ2 =
T α̂ᵀ

TS(Σ̂Tu )−1α̂TS(1 + f̄ᵀΣ̂−1
v f̄)−1 −N√

2N
.

They propose other enhancements to improve the power of their test against sparse alternatives.

These extensions remedy some of the drawbacks of GRS and have asymptotic guarantees as

N,T →∞, which represent an important step forward for tests of asset pricing models. Tests in this

section all rely on models entirely composed of tradable factors, but in light of 46 below, the same

test statistics and asymptotic inference should be directly applicable to models with non-tradable

4We omit finite-sample adjustment terms from the original construction of their test statistic for simplicity and
clarity.
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and latent factors via 44.

3.5.2 Model Comparison Tests

Testing models is perhaps less informative than comparing models. After all, all models are wrong,

but some are more useful than others. As Gibbons et al. (1989) emphasize, the factor model given

in 1 directly implies the following equality for the GRS test statistic:

αᵀΣ−1
u α ≡

(
(α+ βγ)ᵀ, γᵀ

)( βΣvβ
ᵀ + Σu βΣv

Σvβ
ᵀ Σv

)−1(
α+ βγ

γ

)
− γᵀΣ−1

v γ. (41)

Going one step further, αᵀΣ−1
u α = SR2({rt, vt + γ}) − SR2({vt + γ}), where SR({at}) denotes the

optimal Sharpe ratio of a portfolio using assets at. In other words, the classical GRS test statistic

can be interpreted as a test of whether the factors achieve the maximal Sharpe ratio, or whether one

can improve on that Sharpe ratio by trading the test assets in addition to the factors. Intuitively, if

{vt + γ} already span the optimal portfolio (i.e., the asset pricing model is correctly specified), the

Sharpe ratio gains from augmenting this portfolio with additional test assets rt should be zero.

Indeed we can compare models using the left-hand side of 41 as a criterion. Specifically, consider

two models with tradable factor sets {f (1)
t } and {f (2)

t } respectively. Barillas & Shanken (2017) advo-

cate comparing these models on their ability to price all returns, both test assets and traded factors.

With this perspective comes an insight that test assets tell us nothing about model comparison be-

yond what we learn from each model’s ability to price factors of the other models! This observation

is verified from 41, since

α(1)ᵀ
(

Σ(1)
u

)−1
α(1) < α(2)ᵀ

(
Σ(2)
u

)−1
α(2) ⇐⇒ SR2({f (1)

t }) > SR2({f (2)
t }). (42)

Barillas et al. (2020) exploit this insight and build asymptotically valid tests of model comparison

using differences of squared Sharpe ratios. Their analysis allows for pairwise comparison between

non-nested models and accounts for estimation error in factor-mimicking portfolio weights for non-

tradable factors. Alternative criteria for model comparison also include the Hansen-Jagannathan

distance by Hansen & Jagannathan (1997) (see, e.g. Kan & Robotti, 2009; Gospodinov et al., 2013)

and the cross-sectional R2 (see Kan et al., 2013).

3.5.3 Bayesian Approach

As the set of candidate models expands, model comparison via pairwise asymptotic tests becomes a

daunting task. And pairwise model comparison may not unambiguously isolate the best performing

model. Moreover, multiple testing issues can arise. To find the best factor pricing model, Barillas

& Shanken (2018) develop a Bayesian procedure that computes model probabilities for a collection

of asset pricing models with tradable factors. They adopt off-the-shelf Jeffreys prior on betas and
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residual covariances, following the earlier work of Harvey & Zhou (1990):

P(β,Σu) ∝ |Σu|−(N+1)/2.

Under the null hypothesis of no alpha, alpha follows a delta function concentrated at 0. Under the

alternative, alpha is distributed as

P(α|β,Σu) = N (0, kΣu), for some k > 0.

The benefit of this prior is its convenience and economic sensibility: It imposes that the expected

Sharpe ratio of the “arbitrage portfolio”, αᵀΣ−1α, is kN , which does not take implausibly large

values. Having an otherwise diffuse prior on α would force the Bayes factor to favor the null (Kass &

Raftery (1995)). Barillas & Shanken (2018) provide closed-form expressions of the Bayes factor for

testing zero alpha and, more importantly, of the marginal likelihood of each model. In light of Barillas

& Shanken (2017), the model comparison in Barillas & Shanken (2018) is based on an aggregation

of evidence from all possible multivariate regressions of excluded factors on factor subsets—i.e., it

takes test assets out of the picture. Chib et al. (2020) show that the use of the standard Jeffreys

priors on model-specific nuisance parameters is unsound for Bayes factors and propose a new class

of improper priors for nuisance parameters based on invertible maps, which lead to valid marginal

likelihoods and model comparisons.

Bryzgalova et al. (2020a) further extend the Bayesian framework for model selection in the

presence of potentially weak and non-tradable factors. They re-parametrize the expected returns

using equation 32, and propose a spike-and-slab prior on b to encourage model selection and ensure

the validity of Bayes factors (because a flat prior would otherwise inflate Bayes factors for models

that contain weak factors).

More specifically, they introduce a vector of binary latent variables δ = (δ1, δ2, . . . , δK)ᵀ, where

δj ∈ {0, 1}. δ indexes 2K possible models. The jth variable, bj , (with associated loadings Cj) is

included if and only if δj = 1. Their prior on b has the following spike-and-slab form:

P(b|δ, σ2) =

K∏
j=1

(1− δj)Dirac(bj) + δjP(bj |σ2), P(bj |σ2) ∼ N (0, σ2ψj);

P(δ|w) =

K∏
j=1

wδj (1− w)1−δj , w ∼ P(w); P(σ2) ∼ σ−2.

The Gaussian prior is used to model the non-negligible entries (the slab), and the Dirac mass at zero

is used to model the negligible entries (the spike), which could be replaced by a continuous density

heavily concentrated around zero. This prior, originally proposed by Mitchell & Beauchamp (1988),

is known to favor parsimonious models in high dimensions, avoiding the curse of dimensionality.

Another crucial component of this prior lies in their choice of ψj :

ψj = ψρᵀjρj ,
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where ρj is an N ×1 vector of correlation coefficients between factor j and the test assets, and ψ > 0

is a tuning parameter that controls the degree of shrinkage over all factors. If ρj is close to zero, the

prior discourages it from being selected. This prior, however, does not seem to guard against models

with highly correlated factors that cause a similar rank deficiency issue of weak factors.

Taking test assets as given, Bryzgalova et al. (2020a) aim for selecting an SDF that does not

contain weak factors. The weak factors are defined in terms of C, which is similar but distinct from

the definition in Section 3.3.4, in which the weak factor problem is with respect to β.5

3.6 Alphas and Multiple Testing

Alphas are the portion of expected returns that cannot be explained by risk exposures. Thus, a

portfolio with significant alpha relative to a status quo model (e.g., the CAPM or Fama-French

three-factor model) is dubbed an “anomaly.” Harvey et al. (2016) collate more than 300 anomalies

and argues that many of these anomalies are statistical artifacts due to data snooping or multiple

testing (MT).

The literature in asset pricing has long been aware of data-snooping concerns and MT issues in

alpha tests, and has taken various approaches to address it over the years. Leading examples include

Lo & MacKinlay (1990) and Sullivan et al. (1999), among many others.

Early proposals suggest replacing a multitude of null hypotheses with one single null hypothesis

H0 : maxi αi ≤ 0 or H0 : E(αi) = 0 (see e.g. White, 2000; Kosowski et al., 2006; Fama & French, 2010).

While these are interesting null hypotheses for testing, more relevant and informative hypotheses for

alpha testing are perhaps

Hi
0 : αi = 0, i = 1, . . . , N. (43)

This collection of hypotheses is fundamentally different from the single null hypothesis of GRS in 38.

Suppose ti is a test statistic for the null Hi
0 (often taken as the t-statistic) and that a corresponding

test rejects the null whenever ti > ci for some pre-specified cutoff ci. Let H0 ⊂ {1, ..., N} denote the

set of indices for which the corresponding null hypotheses are true. In addition, let R be the total

number of rejections in a sample, and let F be the number of false rejections in that sample:

F =
N∑
i=1

1{i ≤ N : ti > ci and i ∈ H0}, R =
N∑
i=1

1{i ≤ N : ti > ci}.

Both F and R are random variables. Note that, in a specific sample, we can obviously observe R,

but we cannot observe F . Nonetheless, we can design procedures to effectively limit F relative to R
in expectation.

More formally, the MT literature often works with false discoveries proportion (defined as FDP =

F/max{R, 1}) and seeks procedures to control its expectation, known as the false discover rate

(defined as FDR = E(FDP)). Other objects that some MT approaches seek to control are the

per-test error rate, E(F)/N , and the family-wise error rate (defined as FWER = P(F ≥ 1)).

5In related work, Gospodinov et al. (2014) take a frequentist approach to this problem.
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A näıve procedure that tests each individual hypothesis at a predetermined level τ ∈ (0, 1)

guarantees that E(F)/N ≤ τ . Alternatively, the Bonferroni procedure tests each hypothesis at a

level τ/N , which translates into a higher t-statistic hurdle. This guarantees that P(F ≥ 1) ≤ τ

and keeps the FDR below τ . Naturally, raising the hurdle for a discovery reduces the incidence of

false discovery, but this also mechanically reduces the rate of true positives. In other words, false

discovery control sacrifices power. FDR control procedures of Benjamini & Hochberg (1995) and

Benjamini & Yekutieli (2001) attempt to strike a better balance between false discovery and power.

By accepting a certain number of false discoveries, we pay a lesser price in power and thus have fewer

missed discoveries. Barras et al. (2010), Bajgrowicz & Scaillet (2012), and Harvey et al. (2016) are

among the first to import these statistical methods into asset pricing contexts.6

More recently, to obtain valid p-values and t-statistics for alphas in this context, Giglio et al.

(2021a) develop a rigorous framework with asymptotic guarantees to conduct inference on alphas in

linear factor models, accounting for high-dimensionality of test assets, missing data, and potentially

omitted factors. Factor model presentations up to this point have imposed that alphas are zero,

which makes risk premia identifiable. Giglio et al. (2021a) relax the zero-alpha assumption and

impose an assumption that α is cross-sectionally independent of β (and accompany this with a large

N asymptotic scheme). Their alpha estimator is given by:

α̂ = r̄ − β̂γ̂?, γ̂? = (β̂ᵀMιN β̂)−1(β̂ᵀMιN r̄), (44)

where β̂ is given by 9 if all factors are observable, or 13 if factors are latent. Including an intercept

term in the cross-sectional regression 44 allows for a possibly non-zero cross-sectional mean for alpha.

Then p-values of α̂ can be constructed using 46 below, which serve as inputs for FDR control.

The aforementioned frequentist MT corrections tend to be very conservative to limit false dis-

coveries. Generally speaking, they widen confidence intervals and raise p-values, but do not alter the

underlying point estimate. Jensen et al. (2021) take an empirical Bayes approach to understanding

alphas in the high-dimensional context of the factor zoo, including addressing concerns about false

anomaly discoveries. They propose a Bayesian hierarchical model to accomplish their MT correc-

tion, which leverages two key model attributes. First is a zero alpha prior, which imposes statistical

conservatism in analogy to frequentist MT methods. It anchors alpha estimates to a sensible null in

case the data are insufficiently informative about the parameters of interest. Bayesian false discov-

ery control comes from shrinking estimates toward this prior. A benefit of the Bayesian approach,

however, is the degree of FDR control decreases as data accumulates. Eventually, with enough data,

the prior gets zero weight and there is no MT correction. This is justified: In the large data limit

there are no false discoveries! In other words, Bayesian modeling flexibly decides on the severity of

MT correction based on how much information there is in the data.

Second, the hierarchical structure in the Jensen et al. (2021) model leverages joint behavior of

factors, allowing factors’ alpha estimates to borrow strength from one another. As a result, alphas

for different factors are shrunk not only toward zero, but also toward each other. The frequentist

6Harvey & Liu (2020) also propose an innovative double-bootstrap method to control FDR, while also considering
false negative rate and odds ratio.
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corrections above typically treat factors in isolation, making those corrections even more conservative

in some cases, and those corrections always widen confidence intervals and reduce discoveries. A

fascinating feature of the Bayesian hierarchical model is that jointly modeling factors can in some

cases narrow confidence intervals. If increased precision of alphas estimates from joint estimation

overshadows the discovery-reducing effect of shrinkage, the Bayesian MT approach can in fact enhance

statistical power. In fact, Jensen et al. (2021) show in global factor return data, conservative shrinkage

to the prior and improved alpha estimate precision almost exactly net out, and the number of

discoveries is roughly the same as in the frequentist analysis without an MT correction.

In related work, Chen (2021) argues that it would require an absurd amount of hacking attempts

for p-hacking to explain the anomaly alpha discoveries documented in the literature. More explicitly,

these anomalies are broadly speaking replicable, as demonstrated by Chen & Zimmermann (2021)

and Jensen et al. (2021).

4 ASYMPTOTIC THEORY

Three main asymptotic schemes have emerged in the literature for characterizing the statistical

properties of factor models, risk premia, and alphas. Classical inference relies on the usual large T

fixed N asymptotics. This remains the most common setup in asset pricing. The second scheme

allows both N and T to increase to ∞ (with some rate restrictions). The third scheme adopts a

large N fixed T design. There are pros and cons with each scheme that should be considered when

conducting inference. We will illustrate this point with several examples below.

4.1 Fixed N , Large T

Under the classical scheme, Shanken (1992) developed the central limit theorem of the two-pass

estimator (9 and 24). The asymptotic variances of the OLS and GLS two-pass risk premia estimators

are given by

OLS : Avar(γ̂) =
1

T

(βᵀβ)−1βᵀΣuβ(βᵀβ)−1
(
1 + γᵀ(Σv)−1γ

)︸ ︷︷ ︸
Shanken adjustment for β̂

+Σv

 ,

GLS : Avar(γ̂) =
1

T

(βᵀ(Σu)−1β)−1
(
1 + γᵀ(Σv)

−1γ
)︸ ︷︷ ︸

Shanken adjustment for β̂

+Σv

 .
In the same vein, the GMM estimator of SDF loadings, b̂, given by 30, has an asymptotic variance:

Avar(̂b) =
1

T
(GᵀWG)−1GᵀWΩWG(GᵀWG)−1,
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where

W = plimT→∞Ŵ , G = plimT→∞∇(b,µ)ĝT (b, µ), Ω = limT→∞Var
(√

T ĝT (b, µ)
)
.

4.2 Large N , Large T

Suppose that N is allowed to increase with T . Additionally, suppose that betas satisfy a “perva-

siveness” assumption
∥∥N−1βᵀβ − Σβ

∥∥ = oP(1) for some Σβ > 0 as well as a bounded eigenvalue

assumption ‖Σu‖ . 1. Then we have

‖(βᵀβ)−1‖ . N−1, ‖βᵀΣuβ‖ . N, ‖(βᵀ(Σu)−1β)−1‖ . N−1.

As a result, it is straightforward to show that the asymptotic variances of both OLS and (infeasible)

GLS share the form:

Avar(γ̂) = T−1Σv +O
(
N−1T−1

)
. (45)

Heuristically, we see that when N is large, there is no need to worry about estimating a large

covariance matrix Σu or making a Shaken adjustment. Moreover, both OLS and infeasible GLS are

asymptotically equivalent to the sample mean estimator f̄ regardless of wether f is tradable or not.

All these estimators achieve the same asymptotic variance, Σv/T . In this regard, adopting the large

N large T scheme greatly simplifies the inference on γ!

Similarly, in light of the aforementioned relationship between γ̂ (equation 24) and b̂ (equation 31,

so that b̂ = Σ̂−1
v γ̂), as well as 45, we can heuristically derive the asymptotic variance of b̂ for both

OLS and (infeasible) GLS in the large N large T setting. Simply applying “Delta” method to the

joint distribution of v̄ and Σv, we have

Avar(̂b) =
1

T

[
(Σv)

−1 − 2E
((

(Σv)
−1vtv

ᵀ
t (Σv)

−1
) (
γᵀ(Σv)

−1vt
))

+ Var
(
(Σv)

−1vtv
ᵀ
t (Σv)

−1γ
)]
.

Again, both infeasible GLS and OLS estimates of b̂ are asymptotically equivalent when N and T

are large. But OLS is simpler, since GLS requires (Σ̂u)−1, which would be poorly estimated without

additional restrictions on Σu.

Another blessing of high dimensionality (N → ∞) is that econometricians need not know the

factors’ identities. Latent factors and factor exposures can be consistently recovered via SVD in 12,

up to some invertible matrix H. Consequently, factor risk premia, γ, are also recoverable up to this

transformation. Formally, Giglio & Xiu (2021) establish that

γ̂ −Hγ = Hv̄ +OP(N−1 + T−1).

Even though these estimated factors cannot be interpreted, which is a major drawback of any latent

factor model, Giglio & Xiu (2021) show that these factors serve as “controls”, which facilitate the

inference on γg = ηγ, which can be identified and hence interpreted, for any factor of interest, gt.
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With respect to alphas, Giglio et al. (2021a) show that alpha estimates satisfy

σ−1
i,NT (α̂i − αi)

d−→ N (0, 1),

σ2
i,NT =

1

T
Var(uit(1− vᵀt Σ−1

v γ)) +
1

N
Var(αi)

1

N
βᵀi S

−1
β βi, (46)

for each i ≤ N as N,T → ∞. Here we have Sβ = 1
N β

ᵀM1Nβ. The second term is OP(N−1),

suggesting that α̂ is inconsistent if N is finite. This formula holds whether factors are observable or

latent. If T logN = o(N), the second term diminishes sufficiently fast that one only needs the first

term in (46) to construct p-values for each individual alpha.

A critical assumption behind the above analysis is that all factors are pervasive. While this

assumption is widely adopted in modern factor analysis (e.g. Bai, 2003) due to its simplicity and

convenience, it is often in conflict with empirical evidence. If this assumption is violated, factors and

their risk exposures may not be discovered by PCA.

There is a growing strand of econometrics literature on weak factor models. Bai & Ng (2008)

argue that the properties of idiosyncratic errors should be considered when constructing principal

components. Dropping some data, if they are noisy, may improve the forecasting. They compare

the empirical performance of hard thresholding, lasso, elastic net, and least angle regressions for the

selection of subsets for factor estimation (without theoretical analysis). Huang et al. (2021) propose

a scaled PCA approach which incorporates information from the forecasting target into the factor

extraction procedure. Bailey et al. (2020) assume a sparse structure on the loading matrix of factor

exposure. Under this assumption, they propose a measure of factor strength. Freyaldenhoven (2019)

proposes an estimator of the number of factors in the presence of weak factors, though the notion of

“weak” factors is somewhat strong because PCA in that setting can still recover such “weak” factors

consistently. Pesaran & Smith (2019) investigate the impact of factor strength and pricing error on

risk premium estimation. They point out that the conventional two-pass risk premium estimator

converges at a lower rate as the factors become weaker.

Lettau & Pelger (2020a) compare their risk premia PCA with the standard PCA estimator in a

setting where all factors are extremely weak, so much so that they are not statistically distinguishable

from idiosyncratic noise. In that case, no estimator can be consistent for either risk premia or the

SDF. They show that risk premia PCA does not consistently recover the SDF, but it correlates with

the SDF more so than the SDF obtained from standard PCA. Rather than focusing on this extreme

case of weak factors, Giglio et al. (2021b) develop asymptotic theory covering a whole range of factor

weaknesses, which permits consistent estimation of factors, risk premia, and the SDF. Formally, they

allow for the case where the minimum eigenvalues of the factor component in the covariance matrix

of returns diverges whereas the largest eigenvalue due to the idiosyncratic errors is bounded. In this

general setup, a weak factor problem arises if and only if N/(λmin(βᵀβ)T ) 9 0, in which case, the

three-pass estimator, ridge, or PLS estimators, and the risk premia PCA estimator all give a biased

risk premium estimate, but supervised PCA still works.
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4.3 Large N , Fixed T

Raponi et al. (2020) propose a different asymptotic framework to estimate and test linear asset

pricing models. In their setup, T is fixed yet N increases. As explained by Shanken (1992), when T

is fixed, it is impossible to have a consistent estimator of risk premia. Raponi et al. (2020) therefore

focuses on the so-called ex-post risk premia, defined as, γp = γ + f̄ −E(ft), and establishes that the

two-pass OLS estimator, after some bias-correction, converges to γp at the rate of N−1/2.

Not surprisingly, their CLT provides a more accurate finite sample description of the two-pass

estimator when T is small. The caveat, nonetheless, is that the estimand is dominated by factor

innovations. This is because f̄−E(ft) ∼ OP(T−1/2) is typically large relative to γ, as γ/std(f̄−E(ft))

is effectively the t-statistic for testing factor risk premium, which is small or insignificant unless T is

large.

Zaffaroni (2019) extends this framework to allow for latent factors, providing new asymptotic

analysis on PCA-based estimators of ex-post risk premia and the associated ex-post SDF. The

strength of this set up is that it naturally handles time-varying factor models, where every feature

is allowed to be time-varying including loadings, idiosyncratic risk and the number of risk factors.

5 CONCLUSION

Factor models have historically been the workhorse framework for empirical analysis in asset pricing.

In this review, we survey the next generation of factor models with an emphasis on high-dimensional

settings and the concomitant statistical tools of machine learning. Our recapitulation highlights a

recent revival of (highly sophisticated) methodological research into factor modeling in asset markets.

The advances and insights that have come with this revival ensure that factor models will continue

to be central to empirical asset pricing in coming years.

Machine learning is neither an empirical panacea nor a substitute for economic theory and the

structure it lends to empirical work. In other words, finance domain knowledge remains an indis-

pensable component of statistical learning problems in asset markets. Indeed, our view is that the

most promising direction for future empirical asset pricing research is developing a genuine fusion

of economic theory and machine learning. It is a natural marriage, as asset pricing theory revolves

around price formation through aggregation of investor beliefs, which undoubtedly enter prices in

subtle, complex, and sometimes surprising ways. At the same time, machine learning constitutes

a sophisticated quiver of statistical models that flexibly adapt to settings with rich and complex

information sets.

Machine learning factor models are one such example of this fusion. Almost all leading theoretical

asset pricing models predict a low-dimensional factor structure in asset prices. Where these models

differ is in their predictions regarding the identity of the common factors. Much of the frontier work

in empirical asset pricing can be viewed as using the (widely agreed upon) factor structure skeleton

as a theory-based construct within which various machine learning schemes are injected to conduct

an open-minded investigation into the economic nature of the common factors.

Our survey is inevitably selective and disproportionally influenced by our own research on these
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topics. We have mainly focused on methodological contributions, leaving a detailed review of em-

pirical discoveries via these methodologies for future work. This area of research is evolving quickly

and there are myriad opportunities for improvements and new directions.
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