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Abstract

We study a decision maker’s learning behavior when she receives recommendations

from a black box, i.e., the decision maker does not understand how the recommenda-

tions are generated. We introduce four reasonable axioms and show that they cannot

be satisfied simultaneously. We analyze various relaxations of the axioms. In one re-

laxation, we introduce and characterize an updating rule, the contraction rule, which

has two parameters that map each recommendation to a recommended belief and the

trustworthiness of the recommendation, respectively. The decision maker’s posterior

is formed by mixing her prior with the recommended belief according to the trustwor-

thiness measure.
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1 Introduction

It is becoming increasingly common that people make decisions with the help of complex ma-

chine learning algorithms. For example, we often make decisions based on recommendations

from online marketplaces and online content platforms. After Deepmind’s AlphaGo became

the first computer program to defeat professional Go players, many Go players started to

take recommendations from machine learning computer programs such as KataGo and Leela

when playing or practicing.

Such recommendations are often generated based on datasets with hundreds of billions of

variables and algorithms with hundreds of millions of parameters, and it is nearly impossible

for people to understand how the recommendations are generated. Indeed, not even the

programmers of the algorithms themselves understand what the algorithm has learned from

the data, what the internal logic of the mapping from the input to the output is, and how

exactly the algorithm manages to make good recommendations. Even if a programmer claims

to understand how the algorithm works, it is unlikely that she can explain the rationale or

theory behind the recommendations to the decision makers who will make choices based on

those recommendations.1

For these reasons, a complex machine learning algorithm is often called a black box

(BB). In this paper, we will use this terminology more broadly. If the decision maker does

not understand how a recommender generates its recommendations, we will call such a

recommender a BB. For example, if a decision maker receives recommendations from an

expert, but the decision maker does not understand (probabilistically) how the expert comes

up with the recommendations, we will call the expert a BB.

We are interested in studying a decision maker’s learning behavior when she receives rec-

ommendations from a BB whose recommendations are typically, though not always, quite

accurate and whose ability to make recommendations does not change in a predictable way

1A growing literature studies how to make complex machine learning algorithms more interpretable and
explainable. See Guidotti, Monreale, Ruggieri, Turini, Giannotti, and Pedreschi (2018) for a recent survey.
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over time. For example, such a BB may be a complex machine learning computer pro-

gram whose training dataset is fixed but sufficiently large to generate good (but imperfect)

recommendations.

Specifically, in each period, the decision maker faces a set of actions to choose from, and

the BB recommends one. The decision maker has a prior belief over states of the world, but

she does not understand how the BB’s recommendations are generated. That is, she does

not know the conditional distribution of the recommendation given each state to perform

Bayesian updating.

If not Bayesian updating, how does the decision maker process the BB’s recommendation?

Recall that the BB’s recommendation is often correct. When it is correct, it means that the

recommended action is the best for the decision maker. Therefore, from the decision maker’s

point of view, the BB essentially recommends the set of beliefs over states of the world under

which the recommended action is optimal. The primitive of our theory, the decision maker’s

updating rule, takes the decision maker’s prior belief and a set of recommended beliefs and

maps them to a posterior belief.

We introduce four axioms imposed on the updating rule. Below, we describe them in a

special case in which there are only two states, the high state and the low state. The first

axiom is monotonicity. It says that if a prior p puts more weight on the high state than

another prior q does, p’s posterior should still put more weight on the high state than q’s

posterior upon receiving the same recommendation. The second axiom is partial obedience.

It is based on the assumption that the BB is often accurate. It states that for any recommen-

dation, there is always some prior belief such that the decision maker will follow the BB’s

recommendation, even though her prior does not agree with the recommendation. The third

axiom, sensitivity to repetition, stems from the assumption that the BB’s recommendation is

imperfect. It requires that if the decision maker’s prior is inconsistent with the BB’s recom-

mendation, she should be convinced gradually as the BB repeats this recommendation. The

idea of the last axiom, regularity, is taken from Bayes’ rule. Roughly speaking, it assumes
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that the decision maker complies with the black box in the long run upon receiving repeated

recommendations.

Our first main result shows that there does not exist any updating rule that satisfies

the four axioms simultaneously; every updating rule must violate at least one of the four

axioms. Therefore, our approach follows the spirit of the classic impossibility theorem by

Arrow (1951). We introduce a set of reasonable axioms to characterize how the decision

maker incorporates the new information BB provides to update her belief. Each individual

axiom is plausible, reflecting the strengths of the BB in often offering good, albeit imperfect,

recommendations. Collectively, however, these axioms generate a negative result, mean-

ing that the decision maker is bound to face a trade-off between some desirable properties

when she does not understand how the recommendations are generated. This points to an

challenging question–how can a decision maker utilizes the often-correct recommendations

that are developed from enormous data and advanced algorithms, yet still eventually reach

the truth in an internally coherent way (see a related discussion in Kahneman, Sibony, and

Sunstein (2021))?

Similar to how the rich literature expands Arrow’s (1951) pioneering theorem, our model

moves beyond identifying the negative result, as our ultimate objective is to understand how

to mitigate the trade-off caused by using the BB. We investigate whether we should modify

the axioms so that we can find avenues to mitigate the trade-off—that is, the decision makers

can both leverage BB’s strengths while avoiding its limitations, as much as possible.

Therefore, we analyze several relaxations of the axioms. We first focus on regularity.

Regularity requires that if the BB recommends several sets of beliefs I1, I2, . . . , In repeatedly

in some alternating way, the decision maker’s asympototic belief should be sufficiently close

to the intersection of I1, I2, . . . , In. We weaken it by requiring that her asymptotic belief be

sufficiently close to one recommended set of beliefs I when the BB recommends I and only

I repeatedly. We show that this weakening, together with sensitivity of repetition and an

appropriate version of monotonicity, characterizes an updating rule called the contraction
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rule.

The contraction rule has two parameters. One is a function that maps each recommen-

dation to one recommended belief. The other is a function that maps each recommendation

to a measure of how much the decision maker trusts the recommendation. The decision

maker’s posterior is given by mixing her prior with the recommended belief, weighted by the

measure of trustworthiness.

Finally, we relax some assumptions of our theory to incorporate the idea of bounded

memory. The fact that the updating rule does not directly depend on past recommendations

is not an issue in the Bayesian benchmark. The joint prior in the Bayesian benchmark is

a sufficient statistic of past information. However, this assumption may be restrictive in

our learning problem. Therefore, we assume that the updating rule may depend on past

recommendations. This leads to natural weakening of our axioms except for regularity. We

find that in contrast to the case in which we relax regularity and characterize the contraction

rule, weakening the other axioms by introducing some history dependence does not help us

bypass the negative results.

1.1 Related Literature

It is well recognized in the machine learning literature that relying on BBs to make decisions

may cause biases (Pedreshi, Ruggieri, and Turini (2008); Barocas and Selbst (2016)); legal

liability issues (Kingston (2016); Bathaee (2018)); and severe consequences (Wexler (2017);

Nunes, Reimer, and Coughlin (2018)). To open the BB, the literature follows two directions:

(i) ex ante designing interpretable models to make predictions (see, for example, Doshi-Velez

and Kim (2017) and, in an economic context, Ke, Zhao, Wang, and Hsieh (2021)); (ii) ex

post seeking to explain the predictions made by BBs (see, for example, Ribeiro, Singh, and

Guestrin (2016) and Guidotti et al. (2018)). In this paper, we keep the BB closed but

investigate how a decision maker incorporates its recommendations into her beliefs. Our

results add to the literature by highlighting the general difficulty of learning from BBs:
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The decision maker faces a trade-off between some desirable properties since she does not

understand how the recommendations are generated.

In our setup, new information comes in as a set of beliefs that are consistent with the

BB’s recommendation. Thus, our updating rule takes the decision maker’s prior and a subset

of probability measures as input and returns a posterior. In the decision theory literature,

Zhao (2021) and Dominiak, Kovach, and Tserenjigmid (2021) consider similar primitives

and propose updating rules that select, from the given set of distributions, the posterior

belief closest to her prior according to some subjective divergence measure. Both papers

interpret the subset of probability measures as a constraint with which the decision maker’s

posterior must be consistent. In information theory, there is also a literature that considers

belief updating when new information imposes constraints on the probability distribution;

see, for example, Shore and Johnson (1980); Skilling (1988); and Caticha (2004). In contrast

to all the papers above, we allow the decision maker to not fully trust the BB, and thus her

posterior may be outside the set of distributions consistent with its recommendation.

Chambers and Hayashi (2010) and Damiano (2006) model how a decision maker selects

her subjective belief from a set of objectively possible probability measures. In these studies,

the decision maker does not have a prior to begin with, and thus the selection rule only

depends on the probability-possibility set. Ahn (2008) and Gajdos, Hayashi, Tallon, and

Vergnaud (2008) take probability-possiblity sets as the primitive to generate ambiguity.

There is a much larger literature on non-Bayesian updating with standard information,

i.e., the occurrence of an event. For behavioral models, see, for example, Rabin and Schrag

(1999); Rabin (2002); Mullainathan, Schwartzstein, and Shleifer (2008); and Gennaioli and

Shleifer (2010). For decision-theoretic models, see, for example, Epstein (2006); Ortoleva

(2012); Zhao (2020); and Kovach (2021). Of these studies, Epstein (2006) and Kovach

(2021) characterize the prior-biased updating rule: The decision maker’s behavioral posterior

is a convex combination of her prior and the Bayesian posterior. Our contraction rule also

features a convex combination between the decision maker’s prior and the recommended
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belief, but is defined on a completely different primitive.

2 The Binary Case

There is a binary state θ ∈ Θ = {0, 1}, and the set of all possible actions is A. In each

period (of finitely or infinitely many periods), the decision maker faces a nonempty finite set

of actions, which is a subset of A denoted by A,B,C. Facing a finite set of actions A, the

decision maker needs to choose an action a ∈ A. The decision maker never observes θ, but she

has a subjective probabilistic assessment of θ = 1, denoted by p, q, r. If her belief about θ = 1

is p ∈ ∆(Θ) = [0, 1], her expected utility of action a is U(a, p) = pU(a, 1) + (1− p)U(a, 0).

The decision maker receives a recommendation in each period, but the recommendation

does not come from a Bayesian expert. If it comes from a Bayesian expert, the decision maker

will learn the true state in the long run under standard assumptions with no difficulty.2 In

our model, first, the decision maker does not know how the recommendation is generated.

In other words, the decision maker does not know the conditional distribution of the rec-

ommendation given each state, which means that she does not have a joint prior needed to

perform Bayesian updating after receiving the recommendation. Second, the decision maker

understands that the recommendation is quite accurate, although not always correct, and

the quality of the recommendation is not changing over time. These assumptions will be-

come important as we interpret the axioms to be imposed on the decision maker’s learning

behavior. We call such a recommender a BB.

The BB may, for instance, be a complex machine learning algorithm. It is often the case

that no one, including the designer of the algorithm, understands how the input is translated

into the recommendation exactly. In the meantime, the decision maker understands that the

algorithm often, though not always, makes correct recommendations given enough data.

Note that we focus on the case in which the quality of the recommendation is constant over

2For example, the Bayesian expert has the same objective function as the decision maker, and reveals a
signal that correlates with the true state in each period, and the decision maker knows the joint distribution
of the state and the signals.
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time. In this example, this means that we consider the situation in which the algorithm’s

training data remain unchanged over time.

Then how does the decision maker interpret a BB’s recommendation? Recall that the BB

often makes correct recommendations. When a recommendation a ∈ A is correct, it means

that the decision maker’s utility of a is higher than any b ∈ A, or equivalently, the probability

that θ = 1 should be in the set I(a,A) = {p ∈ [0, 1]|U(a, p) ≥ U(b, p) for any b ∈ A}. Note

that this does not suggest that the BB consciously knows what the decision maker’s utility

function is. It is merely the consequence of assuming that the BB’s recommendation is

correct.

Because U is an expected utility function, it must be the case that I(a,A) is a closed

interval in [0, 1] for any a ∈ A ∈ A. Let I = {[α, β] ( [0, 1]|α < β} be the set of all

nontrivial closed intervals that are not [0, 1]. For simplicity, we exclude situations in which

the recommendation is uninformative or decisive. Let a(p,A) denote the set of optimal

actions in A if the decision maker believes that θ = 1 with probability p. In other words,

a(p,A) = {a ∈ A|U(a, p) ≥ U(b, p) for any b ∈ A}.

The Updating Rule. In each period, given her current belief about θ = 1 and what the

BB suggests from her point of view (I(a,A) if the BB recommends a from A), the decision

maker forms a new belief about θ = 1. Therefore, the decision maker’s updating rule is a

function π : [0, 1]× I → [0, 1].

This definition allows the decision maker to not fully trust the BB, because π(p, I) may

not be in I. Second, it assumes that in each period, the decision maker applies new infor-

mation I ∈ I to her current belief using the same π. Last, the decision maker’s posterior

belief about θ = 1 only depends on the current belief and the current new information, and

does not depend on past information. The last assumption will be relaxed in Section 5.

To simplify notation, we write pI instead of π(p, I). Recursively, we define pI1I2...In =

π(pI1I2...In−1 , In). In other words, pI1I2...In is the decision maker’s posterior after learning

I1, I2, . . . , In sequentially. For any I ∈ I and n ∈ N, let In denote a string of n consecutive
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I’s. Then, for example, pI2 = pII , pI3 = pIII . Furthermore, (ImJn)k denotes a string of k

consecutive ImJn’s. For example, p(I2J)2 = pIIJIIJ .

Richness. We assume that the pair (U,A) is rich: For any α, β ∈ [−1, 1], there exists an

action a ∈ A such that U(a, 0) = α and U(a, 1) = β.

Richness immediately implies that for any I ∈ I, there exists some a ∈ A ∈ A such

that I(a,A) = I. In other words, for any nontrivial closed interval I that is not [0, 1],

there exist some set of actions and a recommended action such that the information sug-

gested by the recommendation is exactly I. Henceforth, every element of I will be called a

recommendation.

Axioms. We do not make specific functional-form assumptions about the updating rule.

Rather, we impose some reasonable axioms on it. The first axiom is monotonicity, which

says that fixing any recommendation I, the decision maker’s posterior belief about θ = 1 is

increasing in her prior belief.

Axiom 1 (Monotonicity). For any p, q ∈ ∆(Θ) and I ∈ I, p ≥ q implies pI ≥ qI .

The next axiom relies on the implicit assumption that the BB’s recommendation is quite

accurate.

Axiom 2 (Partial Obedience). For any I ∈ I, there exists p 6∈ I such that pI ∈ I.

This axiom says that at least under some prior belief, the decision maker will simply

follow the BB’s recommendation. We can equivalently describe this axiom in terms of rec-

ommended actions: For any a ∈ A ∈ A, there exists some p ∈ [0, 1] such that a 6∈ a(p,A) but

a ∈ a(pI(a,A), A). In other words, there are always some cases in which the decision maker’s

optimal action before receiving the BB’s recommendation differs from the BB’s recommen-

dation, but after receiving the recommendation the decision maker changes her mind and

follows the recommendation.
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Note that partial obedience allows the decision maker to always be indifferent between

the recommended action and some other actions. In other words, the decision maker does

not have to believe that the recommended action is strictly the best.

Our next axiom is based on the following observation. Recall that the BB often makes

accurate recommendations but not always. Therefore, one would expect that if the BB

makes the same recommendation repeatedly, the decision maker’s posterior would respond

to the repetition. For example, suppose that the decision maker’s initial belief about θ = 1

is .1, but the BB suggests [.5, 1]. The first time she sees this recommendation, the decision

maker may move her belief toward the interval to some extent—but if she receives this

recommendation repeatedly, she may eventually move her belief to somewhere close to .75.3

In other words, seeing the recommendation once and seeing it many times should lead to

different posteriors, especially when the decision maker’s initial belief is inconsistent with

the BB’s recommendation.

Axiom 3 (Sensitivity to Repetition). For any p ∈ ∆(Θ) and I ∈ I, if p 6∈ I then there exist

m,n ≥ 1 such that m 6= n and pIm 6= pIn.

To state our last axiom, we first define a special sequence of recommendations.

Definition 1. A sequence of recommendations {In}∞n=1 is reinforcing if there exists N ≥ 1

and I, J ∈ I with I ∩ J 6= Ø such that I2kN+i = I and I(2k+1)N+i = J for any k ≥ 0 and

1 ≤ i ≤ N .

Consider an example in which the decision maker faces the set of actions A = {a1, a2, a3}

in all odd periods and B = {b1, b2} in all even periods. Suppose that the BB always

recommends a2 from A and b1 from B, and I(a2, A) = [.8, 1] and I(b1, B) = [.7, .9]. This is

a reinforcing sequence of recommendations. One way to interpret it is that perhaps what

the BB really wants to recommend is the intersection of those intervals, [.8, .9], but the sets

of actions do not allow the BB to do that. Therefore, it seems reasonable to require that in

3By contrast, if the BB is always correct, the decision maker’s belief may move to .75 the first time she
receives the recommendation [.5, 1] and stay there, as the BB recommends [.5, 1] repeatedly.
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this case, the decision maker’s long-run belief will be arbitrarily close to [.8, .9]. The axiom

below captures this idea.

Axiom 4 (Regularity). For any p ∈ ∆(Θ), if {In}∞n=1 is reinforcing then each accumulation

point of {pI1I2...In}∞n=1 is in
⋂∞
n=1 In.

Note that in each period, the decision maker’s posterior only depends on her prior and

the current recommendation. It may appear that the decision maker should not be able

understand how to combine all the recommendations that she has received. This is not true,

because the decision maker’s prior could represent her summary of the past recommendations

if the updating rule satisfies certain invertibility conditions, which may allow her to combine

all recommendations indirectly.

Before introducing our first main result, let us consider several natural updating rules

and discuss which axioms they satisfy. Let d(·, ·) be the Euclidean metric.

1. Consider the updating rule

π(p, I) = argmin
q∈I

d(p, q).

This updating rule is often used in misspecified learning models. Under this updating

rule, the decision maker fully trusts the BB, because whatever her prior is, her posterior

is always consistent with the BB’s recommendation. This updating rule satisfies all

the axioms except sensitivity to repetition.

2. Consider the updating rule

π(p, I) = εp+ (1− ε) argmin
q∈I

d(p, q)

with ε ∈ (0, 1). Recall that sensitivity to repetition captures the idea that the BB is

not always correct. Therefore, a natural attempt to fix the previous updating rule so
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that all the axioms may hold is to allow the decision maker to not fully trust the BB.

The parameter ε is introduced to capture this. However, this updating rule satisfies all

the axioms except partial obedience. The violation of partial obedience is descriptively

unrealistic, because it implies that there can be some recommendation such that no

matter how close the decision maker’s prior is to the recommendation, she never takes

the recommended action.

3. Consider the updating rule

π(p, [α, β]) = εp+ (1− ε)α + β

2

with ε ∈ (0, 1). One issue with the previous updating rule is that given a recommenda-

tion I, conditional on its being correct, the decision maker is only willing to move her

posterior to the closest boundary of I. Therefore, the fact that the decision maker does

not believe that the BB is always correct brings her posterior out of I. This updating

rule fixes this issue, because conditional on the recommendation I being correct, the

decision maker moves her posterior to the center of I. However, it can be verified that

this updating rule satisfies all the axioms except regularity.

4. One may wonder if there is any updating rule that satisfies all the axioms except

monotonicity. Here is one such example:

π(p, I) = εp+ (1− ε) argmin
q∈I

d(p, q)

with ε ∈ (−1, 0). This is an updating rule in which the decision maker seems to overly

trust the BB, and it satisfies all the axioms except monotonicity.

From these examples, one can see that it seems difficult to find an updating rule that

satisfies all the axioms simultaneously. Our first main result below shows that this is indeed

true in general.
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Theorem 1. There does not exist any updating rule that satisfies monotonicity, partial

obedience, sensitivity to repetition, and regularity.

The theorem shows that learning from a BB must violate at least one of the axioms

introduced previously. In fact, as will be shown in Proposition 2 in Section 4, such violation

does not depend on the decision maker’s initial prior.

To illustrate the proof idea, suppose the decision maker has prior p with p < α < 1. Let

I = [α, 1] and J = [0, α]. The goal is to construct a belief q such that starting from q, if

the decision maker learns a reinforcing sequence of I, J ’s, her belief does not converge to α.

First, the interaction of partial obedience, regularity, and monotonicity ensures that after

learning I a number of times, the decision maker’s posterior must go strictly beyond α. This

is because regularity requires that the decision maker’s belief be higher than the “obedient”

prior (i.e., the prior described in partial obedience) if she learns a long enough sequence

of I’s. Therefore, by monotonicity, her belief has to jump into I if she learns I one more

time. Then sensitivity to repetition implies that the decision maker’s belief cannot stay at α

forever, and thus must eventually jump to some level r > α. Let q be the belief right before

the jump from [0, α] into (α, 1]. The second step is to let the decision maker learn I and

J alternately starting from belief q. Suppose that after one iteration of I, J , the decision

maker’s belief, qIJ , is weakly higher than q. Then, by monotonicity, if she learns one more

I, her belief will be weakly higher than r. In fact, monotonicity can be applied inductively

to show that every time the decision maker learns I, her belief will be weakly higher than

r. Now suppose that after one iteration of I, J , the decision maker’s belief, qIJ , is strictly

lower than q. Similarly, by applying monotonicity inductively, one can show that every time

the decision maker learns J , her belief will be weakly lower than qIJ . Hence, in both cases,

the decision maker’s belief cannot converge to α, which establishes the impossibility result.
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3 The General Case

The impossibility result in the binary case can be generalized. Let the state space Θ be a

compact metric space, and Σ be the Borel σ-algebra defined on Θ. Let ∆(Θ) be the set of

all Borel probability measures defined on Θ. We endow ∆(Θ) with the topology of weak

convergence. Again, let p, q, r be generic elements of ∆(Θ).

For any a ∈ A, the decision maker’s expected utility of a is U(a, p) =
∫

Θ
u(a, θ)p(dθ). To

ensure that the expected utility function is well defined, we assume that u(a, ·) is continuous

and bounded for each a ∈ A.

Define I(a,A) in the same way for any nonempty finite A ⊆ A and a ∈ A. It is clear

that I(a,A) ⊆ ∆(Θ) is defined by |A| − 1 linear inequalities: Each inequality is given by

U(a, p) ≥ U(b, p) for some b ∈ A. Thus, I(a,A) must be convex.

We call a subset H ⊆ ∆(Θ) a probabilistic half-space if there exists a continuous and

bounded function ũ such that

H =

{
p ∈ ∆(Θ)

∣∣∣∣∫
Θ

ũdp ≥ 0

}
.

We call a subset I ⊆ ∆(Θ) a probabilistic polytope if it is the intersection of a finite set

of probabilistic half-spaces. We say that a probabilistic polytope I is nontrivial if int(I) is

neither Ø nor ∆(Θ). Let I denote the set of all nontrivial probabilistic polytopes. In other

words, we assume that each recommendation provided by BB is neither uninformative nor

good enough to point to a zero-measure set of beliefs.

This setup has several interesting special cases.

1. The state space Θ = {1, 2, . . . , n} is finite. In this case, the decision maker’s belief is

one point in the simplex of Rn and a recommendation I(a,A) is a convex polytope,

with each point in it denoting one belief in the simplex of Rn the decision maker may

take into account when updating her belief.
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2. The state space is Θ = ∆({0, 1}). In this case, the decision maker holds a second-order

belief over two actual states, 0 and 1. In other words, her belief is a distribution over

all possible probabilities that the state is 1. The decision maker understands that her

prior second-order belief may be incorrect. When she updates, she takes into account

other second-order beliefs that are suggested by the BB’s recommendation.

Remark 1. In the second special case, note that if the BB’s recommendation is something

the decision maker understands probabilistically, as in some Bayesian benchmark, the BB’s

recommendation should be an event rather than a set of beliefs. This is the key ingredient of

our setup that makes the recommender a BB.

Richness. We assume that the pair (U,A) is rich: For any continuous and bounded function

f : Θ→ [−1, 1], there exists an action a ∈ A such that u(a, ·) = f .

As before, this richness assumption implies that for any probabilistic polytope I ∈ I,

there exist some set of actions and a recommended action such that the information sug-

gested by the recommendation is exactly I. Again, every element of I will be called a

recommendation henceforth.

Lemma 1. If (U,A) is rich, then for any I ∈ I there exists some a ∈ A ⊆ A such that

I(a,A) = I.

The Updating Rule. In each period, given her current belief p ∈ ∆(Θ) and what the

BB suggests from her point of view (I(a,A) if the BB recommends a from A), the decision

maker forms a new belief in ∆(Θ). Therefore, the decision maker’s updating rule is a function

π : ∆(Θ)× I → ∆(Θ).

While partial obedience and regularity in the binary case continue to work in the general

case, monotonicity and sensitivity to repetition require more work. In the binary case, the

space of probability measures is [0, 1]. It is linearly ordered so that we may state inequalities

such as p ≥ q. The space of probability measures in the general case is not necessarily

linearly ordered. Therefore, monotonicity cannot be applied directly here.
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In addition, sensitivity to repetition becomes too weak to be desirable in the general

case. To see this, suppose the decision maker initially believes that action b is strictly

better than action a. Then she receives the recommendation I(a, {a, b}) repeatedly. Note

that in the general case, there are many distinct beliefs that make a and b equally good.

Therefore, sensitivity to repetition can be satisfied in an uninteresting way: After receiving

the recommendations, the decision maker always believes that a and b are equally good, but

she keeps changing her posteriors from one belief that implies that a is indifferent to b to

another such belief.

To adapt monotonicity and sensitivity to repetition to the general case, we first introduce

a preorder (reflexive and transitive binary relation) on ∆(Θ).

Definition 2. For any actions a, b ∈ A, we say that p ∈ ∆(Θ) is less confident than

q ∈ ∆(Θ) about a being better than b if αp+ (1− α)r ∈ I(a, {a, b}) implies αq + (1− α)r ∈

I(a, {a, b}) for any α ∈ [0, 1] and r ∈ ∆(Θ). We denote this by p @a
b q.

The following proposition shows that if I(a, {a, b}) is nontrivial, then p @a
b q has a simple

cardinal representation.

Proposition 1. For any p, q ∈ ∆(Θ) and a, b ∈ A with I(a, {a, b}) ∈ I,

p @a
b q ⇔ U(a, p)− U(b, p) ≤ U(a, q)− U(b, q).

Note that U(·, p) and U(·, q) share the same Bernoulli index; they only differ by the belief.

Below are two notions of monotonicity that extend the one in the binary case to the general

case.

Axiom 5 (Weak Monotonicity). For any I ∈ I, p @a
b q and I ⊆ I(a, {a, b}) implies pI @a

b qI .

Axiom 6 (Strong Monotonicity). For any I ∈ I, p @a
b q implies pI @a

b qI .

The idea behind these notions of monotonicity is simple. If a prior is more confident

than another prior about action a being better than action b, upon receiving the same
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recommendation, the former prior should still be more confident than the latter prior about

action a being better than action b. Strong monotonicity applies to any recommendation,

while weak monotonicity only applies to recommendations that imply a is better than b.

We only need the weak version for the impossibility result below. Strong monotonicity will

become useful when we analyze how to bypass the impossibility result.

Similarly, we extend the notion of sensitivity to repetition to the general case as follows.

Axiom 7 (Sensitivity to Repetition∗). For any p ∈ ∆(Θ) and I ∈ I, if p 6∈ I(a, {a, b}) ⊇ I

then there exist m,n ≥ 1 such that m 6= n and pIm 6@a
b pIn.

Thus, if the decision maker initially believes that action b is strictly better than action

a, then upon repeatedly receiving recommendation I, which implies that a is better than b,

her confidence about a being better than b does not always stay the same.

Theorem 2. There does not exist any updating rule that satisfies weak monotonicity, partial

obedience, sensitivity to repetition∗, and regularity.

On the one hand, this negative result illustrates the tension between several desirable

properties of learning from a BB. On the other hand, one may wonder whether the assump-

tions can be relaxed in a reasonable way to bypass this negative result. Below, we discuss

several such attempts.

4 The Contraction Rule

In this section, we explore how weakening regularity could help us avoid the negative results.

First, note that the main idea behind regularity comes from Bayes’ rule. If a Bayesian

decision maker knows that several events have happened, the support of her belief should

be equal to the intersection of those events.4 When the decision maker is learning from a

BB, however, such a normatively appealing axiom could be too demanding. Nonetheless,

4Regularity per se is not satisfied by Bayes’ rule, because our setup is different from a standard Bayesian
learning setup. See Remark 1.
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the following weakening of regularity does seem like a minimum requirement we want the

updating rule to satisfy.

Axiom 8 (Weak Regularity). For any p ∈ ∆(Θ) and I ∈ I, each accumulation point of

{pIn}∞n=1 is in I.

To illustrate what is lost from weakening regularity, consider the following type of rec-

ommendation sequence.

Definition 3. A sequence of recommendations {In}∞n=1 reveals the equivalence of a, b ∈ A if

it is a reinforcing sequence consisting of I(a, {a, b}) and I(b, {a, b}).

The following proposition shows that with weak regularity, it is generally hard to learn

the equivalence between actions a and b even if BB recommends each of them alternately

from the binary menu {a, b}. In addition, the proposition implies that the negative result in

Theorem 2 holds regardless of the decision maker’s initial prior.

Proposition 2. Given any updating rule that satisfies weak monotonicity, partial obedience,

sensitivity to repetition∗, and weak regularity, for any p ∈ ∆(Θ) and any a, b ∈ A such

that I(a, {a, b}), I(b, {a, b}) ∈ I, there exists {In}∞n=1 that reveals the equivalence of a, b but

U(a, pI1I2...In)− U(b, pI1I2...In) does not converge to 0.

Next, we define a generalization of the updating rule introduced in Example 3 in Section

2. An updating rule π : ∆(Θ) × I → ∆(Θ) is a contraction rule if there exists a mapping

ρ : I → ∆(Θ) such that ρ(I) ⊆ I for all I ∈ I, and a functional ε : I → (0, 1), such that

π(p, I) = ε(I) · p+ (1− ε(I)) · ρ(I)

for any p ∈ ∆(Θ) and I ∈ I.

A contraction rule says that from the decision maker’s point of view, each recommenda-

tion I can be reduced to one belief in I, ρ(I), and a measure of how much the decision maker
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trusts this recommendation, ε(I). The decision maker’s posterior is formed by mixing her

prior with ρ(I) with probability ε(I).

The next result shows that weak regularity helps us avoid the impossibility results and

obtain the contraction rule as a representation of the updating rule.

Theorem 3. Suppose |Θ| ≥ 3. An updating rule satisfies strong monotonicity, sensitivity

to repetition∗, and weak regularity if and only if it is a contraction rule. Furthermore, a

contraction rule (ρ, ε) satisfies partial obedience if ρ(I) ∈ int(I) for all I ∈ I.

The key step in the proof is to exploit strong monotonicity to show that the difference

between the posteriors, as a finite signed measure, has to be a scalar multiple of the difference

between the priors. In other words, in the vector space of finite signed measures (denoted

as ∆∗), for any two priors p and q, the line connecting them must be parallel to the line

connecting their posteriors pI and qI . Thus, the role of strong monotonicity in our theory is

analogous to that of the independence axiom in expected utility theory, which only exerts its

full power when there are at least three states. Furthermore, the parallel property implies

that the updating rule is weakly continuous. This, together with the compactness of Θ, the

properties of ∆∗, and the other axioms, allows us to apply the Schauder–Tychonoff fixed

point theorem and show that the updating rule has a fixed point in I (denoted as r). Thus,

for any p, the line connecting p and r must be parallel to the line connecting pI and r. Then

sensitivity to repetition∗ ensures that the updating rule is indeed a contraction rule.

5 Bounded Memory

In our setup, the decision maker’s posterior only depends on the current prior and recom-

mendation but not on past recommendations. To put this differently, we assume that the

decision maker treats her prior as a sufficient statistic of what she has learned in the past. In

Bayesian updating, the decision maker’s joint prior indeed summarizes all the information

needed to interpret the new signal, including what she learned from the past. However,
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since our decision maker does not have a joint prior to perform Bayesian updating, one may

suspect that allowing her posterior to depend on past recommendations could be useful.

To investigate this issue, we assume that the decision maker can remember the last

M ≥ 1 recommendations—that is, the decision maker has a bounded memory. We do not

consider the case in which M = +∞ because it is not realistic and the updating rule that

can accommodate memories with arbitrary length is so flexible that some of our previous

results would make little sense in that setup.5

The result in this section can be extended to the general case with the techniques in

Section 3, but for ease of presentation, we present it in the binary case. Given her current

belief and the M most recent recommendations, the decision maker forms a new belief.

The set of all possible recommendations is I = {[α, β] ( [0, 1]|0 ≤ α < β ≤ 1]} ∪ {Ø},

with Ø (no recommendation) used only when the decision maker has received fewer than M

recommendations. Thus, her information set before updating is an element of

I = {(I1, I2, . . . , IM) ∈ IM |IM 6= Ø and if IN = Ø then In = Ø for all n ≤ N}.

Then the decision maker’s updating rule is a function π : [0, 1]× I→ [0, 1].

Let p〈I1...IM−1〉IM := π(p, I1, I2, . . . , IM) with p being the current belief and IM being the

current recommendation. Let p〈I1I2...IM−1〉IM IM+1...IN denote the decision maker’s posterior if

she has belief p and updates based on (I1, . . . , IM), (I2, . . . , IM+1), . . . , (IN−M+1, . . . , IN),

sequentially.

Now we turn to the axioms. Note that monotonicity, in its original form, seems too strong

in the bounded memory setting. Consider two situations. In the first, the decision maker’s

current belief is .5, which is the consequence of learning from the recommendation [0, .5] for

several times. In the second, the decision maker’s current belief is also .5, but this is the

consequence of learning from the recommendation [.5, 1] for several times. Of course, the

5For example, Proposition 2 may fail trivially. This is because when the updating rule can depend on
any history of recommendations, if we fix an initial prior and a sequence of recommendations, most of our
axioms, such as weak monotonicity, impose few restrictions on the sequence of posteriors.
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decision maker’s initial priors before receiving these recommendations are different in the two

situations. Now, suppose the decision maker receives [.5, 1]. It seems natural that the decision

maker’s posteriors should be different in these two situations. However, monotonicity is then

violated, because in the last period of both situations, the decision maker’s beliefs and the

recommendations are identical. The direct translation of monotonicity into the bounded

memory setting implies that the decision maker’s posteriors should also be identical in both

situations, but our discussion appears to suggest otherwise.

Similar examples can be constructed for partial obedience and sensitivity to repetition.

Therefore, we extend the main axioms from the previous sections to this new setup with

bounded memory by accounting for the possibility that past recommendations may affect

current updating.

Axiom 9 (Monotonicity†). For any p, q ∈ [0, 1] and (I1, I2, . . . , IM) ∈ I, p ≥ q implies

p〈I1I2...IM−1〉IM ≥ q〈I1I2...IM−1〉IM .

Monotonicity† states that given the same history (I1, I2, . . . , IM−1), the decision maker’s

posterior belief after receiving a new recommendation is increasing in her current belief.

Under the new monotonicity condition, we cannot conclude that the decision maker’s pos-

teriors should be identical in both situations in the previous example, since the history of

recommendations are different across the two situations. Therefore, monotonicity† is weaker

than in previous sections.

Similarly, partial obedience† and sensitivity† to repetition are weaker than their counter-

parts in previous sections.

Axiom 10 (Partial Obedience†). For any (I1, I2, . . . , IM) ∈ I, there exists some p 6∈ IM such

that p〈I1I2...IM−1〉IM ∈ IM .

Axiom 11 (Sensitivity to Repetition†). For any (I1, I2, . . . , IM) ∈ I and p 6∈ IM , there exist

1 ≤ m,n ∈ N such that m 6= n and p〈I1I2...IM−1〉ImM 6= p〈I1I2...IM−1〉InM .
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Since regularity is asymptotic property that is not unaffected by bounded memory,

Regularity† is essentially equivalent to the one in the previous sections.

Axiom 12 (Regularity†). For any p ∈ [0, 1], if {In}∞n=1 is reinforcing then each accumulation

point of {p〈I1I2...IM−1〉IM IM+1...In}∞n=M is in
⋂∞
n=1 In.

The next result shows that even if the decision maker can take past recommendations

into consideration, the same negative result applies.

Theorem 4. There does not exist any updating rule that satisfies monotonicity†, partial

obedience†, sensitivity to repetition†, and regularity†.

6 Conclusion

In this paper, we study a decision maker’s learning behavior when she learns from a BB. A

BB may be a complicated machine learning algorithm using high-dimensional datasets, or

an expert whose process for generating recommendations is not understood by the decision

maker. Specifically, the decision maker does not know the conditional distribution of the

recommendations given each state, and therefore cannot perform Bayesian updating.

We introduce several reasonable axioms imposed on the decision maker’s updating rule,

and show that every updating rule must violate at least one of the axioms. Hence, learning

from a BB is bound to face a trade-off between the desirable properties described in the

axioms.

We examine how we may avoid the negative result. In one of our attempts, we relax

an axiom called regularity and find that the weakened regularity, together with some other

axioms, lead to an updating rule we call the contraction rule. In the contraction rule, the

decision maker reduces each recommendation from the BB to a single recommended belief,

and assesses the trustworthiness of each recommendation. When she receives a recommen-

dation, which induces a recommended belief and a measure of trustworthiness, she forms
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a posterior by mixing her prior with the recommended belief, weighted by the measure of

trustworthiness.

We also use the idea of bounded memory to relax the setup of our theory. That is, we

allow the updating rule to depend on past recommendations. Note that Bayes’ rule does not

rely on past information directly. The joint prior in Bayes’ rule is a summary statistic of all

past information. Nonetheless, we wonder if past recommendations will play an important

role when the decision maker learns from a BB and hence cannot be Bayesian. Allowing the

updating rule to depend on past recommendations naturally weakens all the axioms except

regularity. In contrast to the case above, in which regularity is relaxed, we find that relaxing

the other axioms by allowing them to be more history dependent does not help us bypass

the negative result.
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Appendix

Proof of Theorem 1

Proof. By way of contradiction suppose monotonicity, partial obedience, sensitivity to rep-

etition, and regularity hold.

First, we show that for any p < α < 1, there exists N ∈ N such that p[α,1]N > α. If

p[α,1] ≤ p, then applying monotonicity inductively yields p[α,1]n ≤ p[α,1]n−1 ≤ · · · ≤ p < α

for any n > 1. It follows that p[α,1]n is a decreasing sequence that converges to some point

p∗ < α. This violates regularity since [α, 1], [α, 1], . . . is an reinforcing sequence. Hence,

p[α,1] > p. Applying monotonicity inductively yields p[α,1]n ≥ p[α,1]n−1 ≥ · · · ≥ p. Thus,

p[α,1]n is an increasing sequence that converges to some p∗ ∈ [0, 1]. By regularity, p∗ ≥ α. To

establish the claim, it suffices to show that p∗ > α. Suppose p∗ = α. By partial obedience,

there exists q < α such that q[α,1] ≥ α. Since p[α,1]n converges to α, there exists M ∈ N

such that p[α,1]M ≥ q. Then monotonicity implies that p[α,1]M+1 ≥ q[α,1] ≥ α. Let M0 ≤ M

be a positive interger such that p[α,1]M0−1 < α and p[α,1]M0 ≥ α. Since p[α,1]n is an increasing

sequence that converges to α, we have p[α,1]n = α for any n ≥ M0. Let r = p[α,1]M0−1 . Then

we have r < α and r[α,1]n = α for any n ≥ 1, which violates sensitivity to repetition. Hence,

p∗ > α and the claim is established.

Now, fix any p < α < 1. Let I := [α, 1], J := [0, α], and N ∈ N be such that pIN > α.

Without loss of generality assume that q := pIN−1 ≤ α. There are two cases: qIJ ≥ q or

qIJ < q.

Suppose qIJ ≥ q. Applying monotonicity inductively yields qIJI ≥ qI , q(IJ)2 ≥ qIJ ,

q(IJ)2I ≥ qIJI , . . . It follows that q(IJ)nI ≥ q(IJ)n−1I ≥ · · · ≥ qIJI ≥ qI > α for any n > 1.

Thus, q(IJ)nI does not converge to α, which contradicts regularity.

Suppose qIJ < q. Applying monotonicity inductively yields qIJI ≤ qI , q(IJ)2 ≤ qIJ ,

q(IJ)2I ≤ qIJI , . . . It follows that q(IJ)n ≤ q(IJ)n−1 ≤ · · · ≤ qIJ < q ≤ α for any n > 1. Thus,

q(IJ)n does not converge to α, which contradicts regularity.
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Proof of Lemma 1

Proof. Let a0 be such that u(a0, θ) = 0 for all θ ∈ Θ. Consider any I ∈ I defined by

continuous and bounded functions u1, u2, . . . , uk. Let L be such that |ui(θ)| < L for all i.

By richness, there exists ai ∈ A such that u(ai, ·) = −ui
L

for each i, which implies that

I(a0, {a0, . . . , ak}) = I.

Proof of Proposition 1

Proof. Let W (r) := U(a, r)− U(b, r) =
∫

Θ
(u(a, θ)− u(b, θ))r(dθ) for any r ∈ ∆(Θ). Clearly

W is a linear function; i.e., W (αr+ (1−α)r′) = αW (r) + (1−α)W (r′) for any r, r′ ∈ ∆(Θ).

We prove the “if” part first. Suppose W (p) ≤ W (q) and αp+ (1− α)r ∈ I(a, {a, b}) for

some α ∈ [0, 1] and r ∈ ∆(Θ). Then W (αp+ (1− α)r) ≥ 0. Thus,

W (αq + (1− α)r) = αW (q) + (1− α)W (r)

≥ αW (p) + (1− α)W (r)

= W (αp+ (1− α)r) ≥ 0.

Therefore, αq + (1− α)r ∈ I(a, {a, b}).

Now we show the “only if” part. Suppose αp+ (1− α)r ∈ I(a, {a, b}) implies αq + (1−

α)r ∈ I(a, {a, b}) for any α ∈ [0, 1] and r ∈ ∆(Θ). By way of contradiction, assume that

W (p) > W (q).

Since I(a, {a, b}) ∈ I, its interior is neither Ø nor ∆(Θ). Hence, there exists r ∈ ∆(Θ)

such that W (r) < 0. We show that there also exists r′ ∈ ∆(Θ) such that W (r′) > 0. Suppose

not. Then there exists r0 ∈ int(I(a, {a, b}) such that W (r0) = 0. Consider rn = n−1
n
r0 + 1

n
r.

It is clear that rn converges to r0 weakly. However, rn 6∈ I(a, {a, b}) for each n, which

contradicts r0 ∈ int(I(a, {a, b}).

Suppose W (p) = 0. Then W (q) < 0 and we obtain a contradiction to p @a
b q. Suppose
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W (p) < 0; then linearity of W implies that there exists α ∈ (0, 1) such that

W (αp+ (1− α)r) > 0 > W (αq + (1− α)r),

which contradicts p @a
b q. Suppose W (p) > 0; then linearity of W implies that there exists

α ∈ (0, 1) such that

W (αp+ (1− α)r′) > 0 > W (αq + (1− α)r′),

which again contradicts p @a
b q. Hence, W (p) ≤ W (q).

Proof of Theorem 2 and Proposition 2

Proof. We will only prove Proposition 2, since it implies Theorem 2. To see that, suppose

the sequence of recommendations {In}∞n=1 reveals the equivalence of a, b. For simplicity of

exposition let pn := pI1I2...In . Regularity requires that each accumulation point of {pn}∞n=1

be in I(a, {a, b})∩ I(b, {a, b}). We show that in this case U(a, pn)−U(b, pn) converges to 0.

Suppose there exists ε > 0 and a subsequence {pnj
}∞j=1 such that |U(a, pnj

)−U(b, pnj
)| ≥

ε for any j. Clearly K := {p ∈ ∆(Θ) |
∣∣∫

Θ
(u(a, θ)− u(b, θ))p(dθ)

∣∣ ≥ ε} is closed, since

u(a, ·) − u(b, ·) is bounded and continuous. Furthermore, since Θ is compact, ∆(Θ) is also

compact (see Varadarajan (1958), Theorem 3.4). Hence K is also compact (and sequentially

compact, since ∆(Θ) with the topology of weak convergence is metrizable). Thus, {pnj
}∞j=1

has a subsequence that converges weakly to some point in K. It follows that {pn}∞n=1 has an

accumulation point in K, which contradicts regularity since K∩I(a, {a, b})∩I(b, {a, b}) = Ø.

Thus, Proposition 2 implies Theorem 2.

Now we proceed to prove Proposition 2. We first prove a useful lemma.

Lemma 2. Suppose weak monotonicity, partial obedience, sensitivity to repetition∗, and weak

regularity hold. Then for any a, b ∈ A such that I(a, {a, b}) ∈ I and p ∈ I(b, {a, b}), there

exists some N ≥ 1 such that U(a, pI(a,{a,b})N ) > U(b, pI(a,{a,b})N ).
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Proof. Let I := I(a, {a, b}) and J := I(b, {a, b}). LetW (r) := U(a, r)−U(b, r) =
∫

Θ
(u(a, θ)−

u(b, θ))r(dθ) for any r ∈ ∆(Θ). Suppose p ∈ J , i.e., W (p) ≤ 0. By partial obedience, there

exists some q 6∈ I such that qI ∈ I. In other words, W (q) < 0 and W (qI) ≥ 0.

We first show that there exists M ∈ N such that W (pIM ) ≥ W (q). If W (p) ≥ W (q),

set M = 0 and we are done. If W (p) < W (q), then p 6∈ I. By weak regularity (and the

sequential compactness of ∆(Θ)), {pIk}∞k=1 has a subsequence that converges to some r ∈ I

weakly. Since u(a, ·)− u(b, ·) is continuous and bounded, W (p) < W (q) < 0, and W (r) ≥ 0,

there exists M ∈ N such that W (pIM ) ≥ W (q).

Now we show that if W (p) ≤ 0, then there exists N ≥ 1 such that W (pIN ) > 0. Let

M ∈ N be such that W (pIM ) ≥ W (q). Suppose W (qI) > 0. Then by weak monotonicity and

Proposition 1, W (pIM ) ≥ W (q) implies W (pIM+1) ≥ W (qI) > 0 and we are done. Suppose

W (qI) = 0. By weak monotonicity and Proposition 1, since W (q) < 0 = W (qI), we have

W (q) ≤ W (qI) ≤ W (qI2) ≤ . . . . Thus, W (qIn) ≥ 0 for any n ≥ 1. By sensitivity to

repetition∗, there exists N0 ≥ 1 such that W (qIN0 ) > 0. Applying weak monotonicity and

Propsition 1 inductively, W (pIM+N0 ) ≥ W (qIN0 ) > 0.

Now we are ready to prove Proposition 2. Consider any a, b ∈ A such that I(a, {a, b}),

I(b, {a, b}) ∈ I. For simplicity of exposition, let I := I(a, {a, b}), J := I(b, {a, b}), and

define W (r) := U(a, r)− U(b, r) for any r ∈ ∆(Θ). For any p ∈ ∆(Θ), since I ∪ J = ∆(Θ),

we have either p ∈ I or p ∈ J . We will only prove the case in which p ∈ J , since the other

case is symmetric.

By Lemma 2, since p ∈ J (and thus W (p) ≤ 0), there exists N ≥ 1 such that W (pIN ) > 0.

Consider pINJN . There are two cases: W (pINJN ) ≥ W (p) or W (pINJN ) < W (p).

Suppose W (pINJN ) ≥ W (p). We show that W (p(INJN )n) ≥ W (p) and W (p(INJN )nIN ) ≥

W (pIN ) for any n ≥ 1. By weak monotonicity and Lemma 1, we have W (pINJN I) ≥

W (pI), W (pINJN I2) ≥ W (pI2), . . . ,W (pINJN IN ) ≥ W (pIN ), and thus the claim holds for

n = 1. Suppose W (p(INJN )k) ≥ W (p) and W (p(INJN )kIN ) ≥ W (pIN ) for some k ≥ 1.
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Since J ∈ I, by Lemma 1, q @b
a r if and only if W (q) ≥ W (r) for any q, r ∈ ∆(Θ).

Then, W (p(INJN )kIN ) ≥ W (pIN ) and weak monotonicity with respect to J together yield

W (p(INJN )k+1) ≥ W (pINJN ) ≥ W (p). Then, applying weak monotonicity with respect to

I yields W (p(INJN )k+1IN ) ≥ W (pINJN IN ) ≥ W (pIN ), which establishes the claim. Since

W (p(INJN )nIN ) ≥ W (pIN ) > 0 for any n ≥ 1, W (p(INJN )nIN ) does not converge to 0 as

n→∞.

Now suppose W (pINJN ) < W (p). Since W (p) ≤ 0, we have W (pINJN ) < 0. We show

that W (p(INJN )n) ≤ W (pINJN ) and W (p(INJN )nIN ) ≤ W (pIN ) for any n ≥ 1. It is clear

that by weak monotonicity and Lemma 1, W (pINJN IN ) ≤ W (pIN ), and thus the claim

holds for n = 1. Suppose W (p(INJN )k) ≤ W (pINJN ) < 0 and W (p(INJN )kIN ) ≤ W (pIN )

for some k ≥ 1. Since J ∈ I, by Lemma 1, q @b
a r if and only if W (r) ≤ W (q) for any

q, r ∈ ∆(Θ). Then, W (p(INJN )kIN ) ≤ W (pIN ) and weak monotonicity with respect to J

together yield W (p(INJN )k+1) ≤ W (pINJN ). Then, applying weak monotonicity with respect

to I yields W (p(INJN )k+1IN ) ≤ W (pINJN IN ) ≤ W (pIN ), which establishes the claim. Since

W (p(INJN )n) ≤ W (pINJN ) < 0 for any n ≥ 1, W (p(INJN )n) does not converge to 0 as n→∞.

Hence, in both cases, the conclusion of Proposition 2 holds.

Proof of Theorem 3

Proof. We will first prove the “only if” part. The proof is broken into a series of lemmas.

Let the set of finite signed measures on (Θ,Σ) be ∆∗. It is clear that ∆∗ is a real vector

space.

The following lemma regarding ∆∗ will be useful.

Lemma 3. For any p, q ∈ ∆∗, if p(S) = q(S) for any open subset S ∈ Σ, then p = q.

Proof. Clearly the collection of all open sets, denoted as O, is a π-system—it is closed under

finite intersections. Let E := {S ∈ Σ|p(S) = q(S)}. We know that O ⊆ E . Now we show

that E is a λ-system. First, it is clear that Ω ∈ O ⊆ E . Second, if S ∈ E , then since Ω ∈ E ,
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and p, q are finite and additive, Ω\S ∈ E . By the countable additivity of p, q, if Sn ∈ E for

each n and Si ∩ Sj = Ø, then

p

(
∞⋃
n=1

Sn

)
=
∞∑
n=1

p(Sn) =
∞∑
n=1

q(Sn) = q

(
∞⋃
n=1

Sn

)
.

Thus,
⋃∞
n=1 Sn ∈ E . By Dynkin’s π-λ theorem, the σ-algebra generated by O is a subset of

E , i.e., Σ ⊆ E . Thus, p(S) = q(S) for any S ∈ Σ.

Lemma 4. If (U,A) is rich, for any continuous and bounded function ũ, there exist a, b ∈ A

and λ > 0 such that u(a, ·)− u(b, ·) = λũ.

Proof. Suppose |ũ(θ)| < L for any θ ∈ Θ. Let λ = 1
L

. Then |λũ| < 1. Thus, by the richness

condition, there exists a ∈ A such that u(a, ·) = λũ. Let b ∈ A be such that u(b, ·) = 0 and

we are done.

A function ũ : Θ→ R is indefinite if there exist θ, θ′ ∈ Θ such that ũ(θ) > 0 > ũ(θ′).

Lemma 5. Suppose strong monotonicity holds. Then for any continuous and bounded func-

tion ũ, p, q ∈ ∆(Θ), and I ∈ I,
∫

Θ
ũdp ≤

∫
Θ
ũdq implies

∫
Θ
ũdpI ≤

∫
Θ
ũdqI .

Proof. Let ũ be a continuous and bounded function. If ũ is constant, then the condition

in the lemma holds trivially. Suppose there exists θ, θ′ ∈ Θ such that ũ(θ) 6= ũ(θ′). Then

clearly there exists δ ∈ R such that ũ + δ is indefinite. By Lemma 4, there exist a, b ∈ A

and λ > 0 such that u(a, ·)−u(b, ·) = λ(ũ+ δ). Since ũ+ δ is indefinite, there exist θ, θ′ ∈ Θ

such that u(a, θ) − u(b, θ) > 0 > u(a, θ′) − u(b, θ′). Clearly, there exists p1, p2 ∈ ∆(Θ) such

that U(a, p1) > U(b, p1) and U(a, p2) < U(b, p2) (taking the corresponding Dirac measures

will suffice). Hence, I(a, {a, b}) is nontrivial. By Proposition 1 and strong monotonicity,

U(a, p) − U(b, p) ≤ U(a, q) − U(b, q) implies U(a, pI) − U(b, pI) ≤ U(a, qI) − U(b, qI). It

follows that
∫

Θ
ũdp ≤

∫
Θ
ũdq implies

∫
Θ
ũdpI ≤

∫
Θ
ũdqI .
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A function û : Θ → R is a simple function if there exists k ∈ N, S1, S2, . . . , Sk ∈ Σ,

and α1, α2, . . . , αk ∈ R such that û =
∑k

i=1 αi1Si
. A function û : Θ → R is a step function

if there exists k ∈ N, open subsets S1, S2, . . . , Sk ∈ Σ, and α1, α2, . . . , αk ∈ R such that

û =
∑k

i=1 αi1Si
.

Lemma 6. Suppose strong monotonicity holds. Then for any step function û and p, q ∈

∆(Θ),
(∫

Θ
ûdp−

∫
Θ
ûdq
) (∫

Θ
ûdpI −

∫
Θ
ûdqI

)
≥ 0.

Proof. First, note that Θ is compact metric space. Therefore, we may, without loss of

generality, assume that d(θ, θ′) ≤ 1 for any θ, θ′ ∈ Θ. For any θ ∈ Θ and any nonempty

subset S ⊆ Θ, let d(θ, S) = infθ′∈S d(θ, θ′) and d(θ,Ø) = 1. The first step is to show that

d(·, S) is continuous for any S ⊆ Θ. If S = Ø there is nothing to prove. If S 6= Ø, for any

θ0 ∈ S and θ, θ′ ∈ Θ, we have

d(θ, S) ≤ d(θ, θ0) ≤ d(θ, θ′) + d(θ′, θ0),

which implies that d(θ, S) ≤ d(θ, θ′) + d(θ′, S). It follows that |d(θ, S)− d(θ′, S)| ≤ d(θ, θ′),

and thus, d(·, S) is continuous.

For any open subset S ⊆ Θ, let Sn := {θ ∈ Θ|d(θ,Θ\S) ≥ 1
n
}. It is clear that Sn ⊆ Sn+1

for all n, and S =
⋃∞
n=1 S

n. Define un : Θ→ R as follows:

un(θ) =
d(θ,Θ\S)

d(θ,Θ\S) + d(θ, Sn)
.

Clearly un is continuous and bounded. In particular, un(θ) = 0 if θ 6∈ S; un(θ) = 1 if θ ∈ Sn;

un(θ) ∈ [0, 1] if θ ∈ S\Sn. Furthermore, un converges pointwise to 1S and |un(θ)| ≤ 1S(θ)

for any θ ∈ Θ.

Consider any step function û =
∑k

i=1 αi1Si
. Approximate each 1Si

with ui,n as above.
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For each n,
∑k

i=1 αiui,n is continuous and bounded. Thus, by Lemma 5, for each n,

(∫
Θ

k∑
i=1

αiui,ndp−
∫

Θ

k∑
i=1

αiui,ndq

)(∫
Θ

k∑
i=1

αiui,ndpI −
∫

Θ

k∑
i=1

αiui,ndqI

)
≥ 0.

Then Lebesgue’s dominated convergence theorem completes the proof.

Lemma 7. Suppose strong monotonicity holds. Then for any p, q ∈ ∆(Θ) ⊆ ∆∗, and I ∈ I,

there exists ε ≥ 0 such that pI − qI = ε(p− q).

Proof. If p = q there is nothing to prove. Suppose p 6= q. Then by Lemma 3 there exists an

open subset S such that p(S) 6= q(S). Let ε := pI(S)−qI(S)
p(S)−q(S)

. Again by Lemma 3, to show that

pI − qI = ε(p− q), since pI − qI and ε(p− q) are both elements of ∆∗, it suffices to show that

pI(T )− qI(T ) = ε(p(T )− q(T )) for any open subset T ∈ Σ.

Consider any step function of the form û = α1S + 1T . By Lemma 6, for any α ∈ R, we

have

(α(p(S)− q(S)) + p(T )− q(T ))(α(pI(S)− qI(S)) + pI(T )− qI(T )) ≥ 0. (1)

Suppose for some α ∈ R, α(p(S)− q(S)) + p(T )− q(T ) = 0 but α(pI(S)− qI(S)) + pI(T )−

qI(T ) 6= 0. Then, since p(S) 6= q(S), there always exists α′ which is close to α such that

(α′(p(S)− q(S)) + p(T )− q(T ))(α′(pI(S)− qI(S)) + pI(T )− qI(T )) < 0,

which is a contraction. Hence, for any α ∈ R, if α(p(S) − q(S)) + p(T ) − q(T ) = 0, then

α(pI(S)− qI(S)) + pI(T )− qI(T ) = 0.

Since p(S) 6= q(S), α(p(S)− q(S)) + p(T )− q(T ) = 0 if and only if

α = −p(T )− q(T )

p(S)− q(S)
.
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Thus, it must be the case that

−(p(T )− q(T ))
pI(S)− qI(S)

p(S)− q(S)
+ pI(T )− qI(T ) = 0

which implies

pI(T )− qI(T ) = ε(p(T )− q(T )). (2)

Furthermore, equations (1) and (2) imply that

ε(α(p(S)− q(S)) + p(T )− q(T ))2 ≥ 0

for any α ∈ R. Since p(S) 6= q(S), it is clear that ε ≥ 0.

Lemma 8. Suppose strong monotonicity holds and |Θ| ≥ 3. Then for any I ∈ I, there

exists ε ≥ 0 such that pI − qI = ε(p− q) for any p, q ∈ ∆(Θ) ⊆ ∆∗.

Proof. Consider any p, q, r ∈ ∆(Θ) ⊆ ∆∗ that are linearly independent. Since |Θ| ≥ 3, such

p, q, r exist. By the previous lemma, suppose that pI − qI = ε1(p − q), qI − rI = ε2(q − r),

and rI − pI = ε3(r − p). It follows that

0 = ε1(p− q) + ε2(q − r) + ε3(r − p),

which, since p, q, r are linearly independent, implies that ε1 = ε2 = ε3 := ε.

Now let p′, q′ ∈ ∆(Θ) ⊆ ∆∗ with p′ 6= q′. By the previous lemma, there exists ε′ ≥ 0 such

that p′I − q′I = ε′(p′ − q′). We now show that ε′ = ε.

First, we show that there must exist p̃ ∈ {p, q, r} such that p̃, p′, q′ are linearly inde-

pendent. By way of contradiction, suppose that p̃, p′, q′ are linearly dependent for each

p̃ ∈ {p, q, r}. In other words, for each p̃ ∈ {p, q, r}, there exists α, β, γ ∈ R such that at least
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one of them is nonzero, and that

αp̃+ βp′ + γq′ = 0.

Note that p′, q′ ∈ ∆(Θ) and p′ 6= q′ together imply that p′, q′ are linearly independent. Since

p′, q′ are linearly independent, α 6= 0. Thus, for each p̃ ∈ {p, q, r}, there exists α̃, β̃ ∈ R such

that p̃ = α̃p′ + β̃q′, which contradicts the fact that p, q, r are linearly independent.

Without loss of generality, assume that p̃ = p, and thus p, p′, q′ are linearly independent.

By the same argument as in the first paragraph, it follows that pI − p′I = ε′(p− p′). The last

step is to show that there must exist q̃ ∈ {q, r} such that p, q̃, p′ are linearly independent.

Suppose not. Since p, p′ are linearly independent, there exist α1, α2, β1, β2 ∈ R such that

q = α1p+ β1p
′

r = α2p+ β2p
′,

which contradicts the fact that p, q, r are linearly dependent.

Without loss of generality, assume that q̃ = q, and thus p, q, p′ are linearly independent.

Again by the same argument as in the first paragraph, pI − qI = ε′(p − q). Then p 6= q

implies that ε = ε′, which establishes the lemma.

Lemma 9. Suppose strong monotonicity holds and |Θ| ≥ 3. Then for any I ∈ I, pn

converges to p weakly implies that (pn)I converges to pI weakly.

Proof. By the previous lemma we know that there exists ε ≥ 0 such that, for any n,

(pn)I − pI = ε(pn − p).
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To establish the lemma, it suffices to show that for any bounded continuous function f ,

∫
Θ

fd(pn)I −
∫

Θ

fdpI = ε

(∫
Θ

fdpn −
∫

Θ

fdp

)
. (3)

By the definition of Lebesgue integral, we only need to show (3) if f is nonnegative, bounded,

and continuous.

Consider any simple function

g =
n∑
i=1

αi1Si

in which αi ≥ 0, Si ∈ Σ, and Si ∩ Sj = Ø for all i, j. It is clear that

∫
Θ

gd(pn)I −
∫

Θ

gdpI =
n∑
i=1

αi[(pn)I(Si)− pI(Si)]

= ε
n∑
i=1

αi[pn(Si)− p(Si)]

= ε

(∫
Θ

gdpn −
∫

Θ

gdp

)
.

Let gk be a sequence of simple functions such that gk converges pointwise to f , and 0 ≤

gk(θ) ≤ gk+1(θ) for all k and θ ∈ Θ. Then

∫
Θ

gkd(pn)I −
∫

Θ

gkdpI = ε

(∫
Θ

gkdpn −
∫

Θ

gkdp

)
.

By Beppo Levi’s monotone convergence theorem, letting k →∞, we obtain

∫
Θ

fd(pn)I −
∫

Θ

fdpI = ε

(∫
Θ

fdpn −
∫

Θ

fdp

)

and the lemma is established.

Lemma 10. Suppose strong monotonicity holds and |Θ| ≥ 3. Then for any I ∈ I, there

exists q ∈ ∆(Θ) such that qI = q. Thus, for any I ∈ I, there exists q ∈ ∆(Θ) and ε ∈ [0, 1]
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such that

pI = εp+ (1− ε)q

for any p ∈ ∆(Θ).

Proof. Let C(Θ) be the set of continuous real-valued functions defined on Θ. Since Θ is

compact, each f ∈ C(Θ) is also bounded and uniformly contiuous. We equip ∆∗ with the

weak topology σ(∆∗, C(Θ)), i.e., the topology of weak convergence. It is well known that (i)

∆(Θ) is compact (see Varadarajan (1958), Theorem 3.4); (ii) σ(∆∗, C(Θ)) is locally convex

(see Bourbaki (1987), page II.40-42); (iii) σ(∆∗, C(Θ)) is Hausdorff (see Bourbaki (1987),

page II.41, Proposition 1; page II.43, Proposition 2; and Varadarajan (1958), Lemma 2.3).

Thus, ∆∗ is a Hausdorff locally convex topological vector space, and ∆(Θ) is a convex

and compact subset of ∆∗. By the previous lemma, for each I ∈ I, the mapping π(·, I) :

∆(Θ) → ∆(Θ) is continuous. By the Schauder–Tychonoff fixed point theorem (see Cobzas

(2006), Theorem 2.3 for the exact version of the theorem and a proof), there exists q ∈ ∆(Θ)

such that qI = q. Then by Lemma 8, for any I ∈ I, there exists q ∈ ∆(Θ) and ε ≥ 0 such

that

pI = εp+ (1− ε)q

for any p ∈ ∆(Θ). It follows that

pIn = εnp+ (1− εn)q

for any n ∈ N and p ∈ ∆(Θ).

Suppose ε > 1. Pick any p 6= q. Then there exists S ∈ Σ such that p(S) − q(S) < 0.

It follows that there exists n large enough such that pIn(S) = q(S) + εn(p(S) − q(S)) < 0,

which contradicts the definition of an updating rule. Hence, we conclude that ε ∈ [0, 1].

Lemma 11. Suppose strong monotonicity, weak regularity, and sensitivity to repetition∗
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hold, and |Θ| ≥ 3. Then for any I ∈ I, there exists q ∈ I and ε ∈ (0, 1) such that

pI = εp+ (1− ε)q

for any p ∈ ∆(Θ).

Proof. Fix I ∈ I. By the previous lemma, there exists q ∈ ∆(Θ) such that qI = q. If q 6∈ I,

then the sequence qIn does not have any accumulation point in I, which contradicts weak

regularity. Hence, any fixed point of the mapping π(·, I) must be in I. Hence, there exist

q ∈ I and ε ∈ [0, 1] such that

pI = εp+ (1− ε)q

for any p ∈ ∆(Θ).

Let I = I(a1, {a1, a2, . . . , ak}). By richness, such a1, a2, . . . , ak exist for any I ∈ I. Since

I 6= ∆(Θ), there exist 1 < i ≤ k and p ∈ ∆(Θ) such that p 6∈ I(a1, {a1, ai}). In addition, it

is clear that I ⊆ I(a1, {a1, ai}). Since I is nontrivial and p 6∈ I(a1, {a1, ai}), I(a1, {a1, ai}) is

also nontrivial. By sensitivity to repetition∗ and Proposition 1, there exists m,n ≥ 1 such

that m 6= n and U(a1, pIm)− U(ai, pIm) > U(a1, pIn)− U(ai, pIn). It follows that ε ∈ (0, 1),

and we are done.

Now we show the “if” part. It is easy to see that any contraction rule will satisfy weak

regularity.

To show strong monotonicity, we first show that for any continuous and bounded function

f and I ∈ I,

∫
Θ

fdp ≥
∫

Θ

fdq ⇒
∫

Θ

fdpI ≥
∫

Θ

fdqI . (4)

Note that any contraction rule satisfies

pI − qI = ε(I)(p− q)
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for any p, q ∈ ∆(Θ). Using the same argument as the one for (3), we have

∫
Θ

fdpI −
∫

Θ

fdqI = ε(I)

(∫
Θ

fdp−
∫

Θ

fdq

)
,

which implies (4).

Now suppose p @a
b q. If I(a, {a, b}) ∈ I, then by Proposition 1 and equation (4) we

are done. If int(I(a, {a, b})) = ∆(Θ), then I(a, {a, b}) = ∆(Θ), and thus r @a
b s for any

r, s ∈ ∆(Θ) and we are done. If int(I(a, {a, b})) = Ø, then I(b, {a, b}) = ∆(Θ), i.e., U(a, s)−

U(b, s) ≤ 0 for any s ∈ ∆(Θ). Thus, s ∈ I(a, {a, b}) implies U(a, s)− U(b, s) = 0. Consider

r ∈ ∆(Θ) and α ∈ [0, 1] such that αpI + (1 − α)r ∈ I(a, {a, b}). If pI 6∈ I(a, {a, b}),

then α = 0 and r ∈ I(a, {a, b}). Therefore, αqI + (1 − α)r = r ∈ I(a, {a, b}) and we are

done. If pI ∈ I(a, {a, b}), then U(a, pI) − U(b, pI) = 0. Since ε(I) ∈ (0, 1), we must have

U(a, p) − U(b, p) = U(a, ρ(I)) − U(b, ρ(I)) = 0. Since p ∈ I(a, {a, b}) and p @a
b q, we have

1
2
q + 1

2
p ∈ I(a, {a, b}), which implies that q ∈ I(a, {a, b}). Therefore, qI ∈ I(a, {a, b}) and

U(a, qI)−U(b, qI) = 0 = U(a, pI)−U(b, pI). Then it is clear that αqI+(1−α)r ∈ I(a, {a, b}).

To show sensitivity to repetition∗, let a, b ∈ A, p 6∈ I(a, {a, b}), and I ∈ I with I ⊆

I(a, {a, b}). Since p 6∈ I(a, {a, b}) and ρ(I) ∈ I ⊆ I(a, {a, b}), we have U(a, p)− U(b, p) < 0

and U(a, ρ(I))− U(b, ρ(I)) ≥ 0. Thus

U(a, pIn)− U(b, pIn) = εn(U(a, p)− U(b, p)) + (1− εn)(U(a, ρ(I))− U(b, ρ(I))).

Since ε ∈ (0, 1), it is clear that there exists m,n ≥ 1 such that U(a, pIm) − U(b, pIm) >

U(a, pIn) − U(b, pIn). Note that since p 6∈ I(a, {a, b}) and I ⊆ I(a, {a, b}), I(a, {a, b}) is

nontrivial. Hence, by Proposition 1, pIm 6@a
b pIn . Thus, sensitivity to repetition∗ holds.

Next, we show that if ρ(I) ∈ int(I) for any I ∈ I, then partial obedience is satisfied.

Clearly, under the topology of weak convergence, each I ∈ I is closed and has nonempty

interior. For any p 6∈ I, we know that pIn converges weakly to ρ(I) ∈ int(I). Then there

exists m ∈ N such that pIm 6∈ I and (pIm)I = pIm+1 ∈ I, establishing partial obedience.
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Proof of Theorem 4

Proof. We first prove a useful lemma. We say that the updating rule satisfies weak regularity†

if for any p ∈ [0, 1], each accumulation point of {p〈IM−1〉In−M+1}∞n=M is in I.

Lemma 12. Suppose α ∈ (0, 1), and monotonicity†, partial obedience†, sensitivity to repetition†,

and weak regularity† hold. For any p ≤ α, there exists some n ∈ N such that p〈[α,1]M−1〉[α,1]n >

α. For any p ≥ α, there exists some n ∈ N such that p〈[0,α]M−1〉[0,α]n < α.

Proof. We only prove the first statement with p ≤ α, since the other one is symmetric.

By partial obedience†, there exists some β < α such that β〈[α,1]M−1〉[α,1] ≥ α. Suppose

β〈[α,1]M−1〉[α,1] > α. By weak regularity†, for some sufficiently large N ∈ N, p〈[α,1]M−1〉[α,1]N > β.

Therefore, by monotonicity†, p〈[α,1]M−1〉[α,1]N+1 ≥ β〈[α,1]M−1〉[α,1] > α. Note that monotonicity†

is applicable, since p〈[α,1]M−1〉[α,1]N+1 and β〈[α,1]M−1〉[α,1] share the same history of M − 1 rec-

ommendations before updating on [α, 1].

Suppose β〈[α,1]M−1〉[α,1] = α. By definition, β〈[α,1]M−1〉[α,1]2 = α〈[α,1]M−1〉[α,1]. If α〈[α,1]M−1〉[α,1] ≤

α, by applying monotonicity† inductively, we have α〈[α,1]M−1〉[α,1] ≥ α〈[α,1]M−1〉[α,1]2 ≥ . . . . It

then follows from weak regularity† that α〈[α,1]M−1〉[α,1]n = α for any n, which violates sensi-

tivity to repetition†.

Therefore, we must have α〈[α,1]M−1〉[α,1] > α. By weak regularity†, for some sufficiently

largeN ∈ N, p〈[α,1]M−1〉[α,1]N > β. Therefore, by monotonicity†, p〈[α,1]M−1〉[α,1]N+1 ≥ β〈[α,1]M−1〉[α,1].

Again by monotonicity†, p〈[α,1]M−1〉[α,1]N+2 ≥ β〈[α,1]M−1〉[α,1]2 = α〈[α,1]M−1〉[α,1] > α.

Now we are ready to show the impossibility result. Suppose that monotonicity†, partial

obedience†, sensitivity to repetition†, and regularity† hold. Fix α ∈ (0, 1) and p ≤ α.

Let I := [α, 1], J := [0, α], and N ≥ M be such that p〈IM−1〉IN−M+1 > α. Consider

p〈IM−1〉IN−M+1JN IM−1 . We have either p〈IM−1〉IN−M+1JN IM−1 ≥ p or p〈IM−1〉IN−M+1JN IM−1 < p.

Suppose p〈IM−1〉IN−M+1JN IM−1 ≥ p. We show that p〈IM−1〉IN−M+1JN (INJN )n−1IM−1 ≥ p and

p〈IM−1〉IN−M+1JN (INJN )n−1IN ≥ p〈IM−1〉IN−M+1 for any n ≥ 1. By p〈IM−1〉IN−M+1JN IM−1 ≥
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p and monotonicity†, we have p〈IM−1〉IN−M+1JN IM−1I ≥ p〈IM−1〉I , p〈IM−1〉IN−M+1JN IM−1I2 ≥

p〈IM−1〉I2 , . . . , p〈IM−1〉IN−M+1JN IN ≥ p〈IM−1〉IN−M+1 . Note that monotonicity† is applicable in

each step since the decision maker’s memory is always full of I’s in both sides of each inequal-

ity. Hence the claim holds for n = 1. Suppose that p〈IM−1〉IN−M+1JN (INJN )k−1IM−1 ≥ p and

p〈IM−1〉IN−M+1JN (INJN )k−1IN ≥ p〈IM−1〉IN−M+1 for k ≥ 1. Note that p〈IM−1〉IN−M+1JN (INJN )k−1IN

and p〈IM−1〉IN−M+1 share the same memory of M−1 I’s before learning the last I. Then, if we

let the decision maker learns J N times and then I N times, in each step, monotonicity† is ap-

plicable. Thus, it follows from p〈IM−1〉IN−M+1JN (INJN )k−1IN ≥ p〈IM−1〉IN−M+1 and monotonicity†

that p〈IM−1〉IN−M+1JN (INJN )kIM−1 ≥ p〈IM−1〉IN−M+1JN IM−1 ≥ p and p〈IM−1〉IN−M+1JN (INJN )kIN ≥

p〈IM−1〉IN−M+1JN IN ≥ p〈IM−1〉IN−M+1 , which establishes the claim. Note that regularity† is

violated, since p〈IM−1〉IN−M+1JN (INJN )n−1IN ≥ p〈IM−1〉IN−M+1 > α for any n ≥ 1.

Suppose p〈IM−1〉IN−M+1JN IM−1 < p. Since p ≤ α, p〈IM−1〉IN−M+1JN IM−1 < α. We show

that p〈IM−1〉IN−M+1JN (INJN )n−1IM−1 ≤ p〈IM−1〉IN−M+1JN IM−1 and p〈IM−1〉IN−M+1JN (INJN )n−1IN ≤

p〈IM−1〉IN−M+1 for any n ≥ 1. Similarly to the previous case, by p〈IM−1〉IN−M+1JN IM−1 < p

and monotonicity†, we have p〈IM−1〉IN−M+1JN IN ≤ p〈IM−1〉IN−M+1 . Hence the claim holds for

n = 1. Suppose that the claim holds for n = k ≥ 1, i.e. p〈IM−1〉IN−M+1JN (INJN )k−1IM−1 ≤

p〈IM−1〉IN−M+1JN IM−1 and p〈IM−1〉IN−M+1JN (INJN )k−1IN ≤ p〈IM−1〉IN−M+1 . Similarly to the previ-

ous case, it follows from p〈IM−1〉IN−M+1JN (INJN )k−1IN ≤ p〈IM−1〉IN−M+1 and monotonicity† that

p〈IM−1〉IN−M+1JN (INJN )kIM−1 ≤ p〈IM−1〉IN−M+1JN IM−1 , and that p〈IM−1〉IN−M+1JN (INJN )kIN ≤

p〈IM−1〉IN−M+1JN IN ≤ p〈IM−1〉IN−M+1 , which establishes the claim. Note that regularity† is

violated, since p〈IM−1〉IN−M+1JN (INJN )n−1IM−1 ≤ p〈IM−1〉IN−M+1JN IM−1 < α for any n ≥ 1.
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