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Abstract. We consider inference for high-dimensional exchangeable arrays where the dimension

may be much larger than the cluster sizes. Specifically, we consider separately and jointly exchange-

able arrays that correspond to multiway clustered and polyadic data, respectively. Such exchange-

able arrays have seen a surge of applications in empirical economics. However, both exchangeability

concepts induce highly complicated dependence structures, which poses a significant challenge for

inference in high dimensions. In this paper, we first derive high-dimensional central limit theorems

(CLTs) over the rectangles for the exchangeable arrays. Building on the high-dimensional CLTs, we

develop novel multiplier bootstraps for the exchangeable arrays and derive their finite sample error

bounds in high dimensions. The derivations of these theoretical results rely on new technical tools

such as Hoeffding-type decomposition and maximal inequalities for the degenerate components in

the Hoeffiding-type decomposition for the exchangeable arrays. We illustrate applications of our

bootstrap methods to robust inference in demand analysis, robust inference in extended gravity

analysis, uniform confidence bands for density estimation with network data, and penalty choice

for `1-penalized regression under multiway cluster sampling.

1. Introduction

In empirical studies in economics, we often employ data of volumes and attributes of flows of

resources and commodities that are affected by supply shocks from the origin of the flow and

demand shocks from the destination of the flow. Although supply and demand shocks are essential

in economic analysis, a proper treatment of data generated by these shocks requires non-standard

econometric methods due to the two-dimensional clustered dependence induced by these shocks.

When the set of agents generating the supply and the set of agents generating the demand are

different, the data is two-way clustered. Leading examples are market share data that is two-way

clustered by products and markets, where shares of a product are dependent across markets due to

a common supply shock by the identical producer and shares of multiple products within a market

are dependent due to a common demand shock by consumers in the identical market.

When the set of agents generating the supply and the set of agents generating the demand are the

same, the data is dyadic. Leading examples are international trade data, where volumes of exports

from an exporter are dependent across importers due to a common supply shock and volumes of

imports to an importer are dependent across exporters due to a common demand shock.

Both of these types of data naturally entail complex dependence structures through common

supply shocks by agents from an identical origin on agents across multiple destinations and common

demand shocks by agents from an identical destination on agents across multiple origins. As
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such, standard microeconometric methods that presume cross-sectional random sampling are not

applicable to either of these two types of data.

Starting with the seminal papers by Fafchamps and Gubert (2007) for dyadic data and Cameron

et al. (2011) for multiway clustering, the recent econometrics literature develops methods and the-

ories of how to deal with these types of dependent data – see below for a more comprehensive

literature review. The existing literature, however, does not cover a method of high-dimensional

inference, even though a number of robust identification strategies for structural economic models

entail high-dimensionality in inference – see the next paragraph for examples. In this light, we

develop a method of high-dimensional inference under general multiway clustering and polyadic

sampling in this paper. For two-way clustered data {(X1
ij , . . . , X

p
ij)

T : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} of

random vectors with high dimensions p� min{N1, N2}, we develop a method and theory for boot-

strap approximation of the distribution of the sample mean N−1
1 N−1

2

∑N1
i=1

∑N2
j=1(X1

ij , . . . , X
p
ij)

T .

Similarly, for dyadic data {(X1
ij , . . . , X

p
ij)

T : 1 ≤ i, j ≤ n, i 6= j} of random vectors with high

dimension p� n, we develop a method and theory for bootstrap approximation of the distribution

of the sample mean n−1(n − 1)−1
∑n

i=1

∑
j 6=i(X

1
ij , . . . , X

p
ij)

T . We also generalize our results for

these cases of two-way clustering and dyadic data to the cases of general multiway clustering and

polyadic data, respectively.

Our proposed method applies to a number of important robust identification approaches for

structural economic models. For demand analysis with a two-way clustered data consisting of N1

products and N2 markets, Gandhi et al. (2020) derive many moment inequalities of the of form

N−1
1 N−1

2

N1∑
i=1

N2∑
j=1

(X1
ij(θ), . . . , X

p
ij(θ))

T ≥ 0, (1.1)

where (X1
ij(θ), . . . , X

p
ij(θ))

T denotes a p-dimensional vector-valued random function of structural

parameters θ. While most existing studies on demand analyses do not account for statistical

dependence within a product i or within a market j, robust inference can be achieved by accounting

for the two-way dependence – see Chiang et al. (2019). Similarly, for extended gravity analysis with

a two-way clustered data consisting of N1 firms and N2 countries, Morales et al. (2019) derive many

moment inequalities of the form (1.1). With our theory of approximating the distribution of the

sample mean N−1
1 N−1

2

∑N1
i=1

∑N2
j=1(X1

ij(θ), . . . , X
p
ij(θ))

T , inverting the Kolmogorov-Smirnov test

allows for inference about the structural parameters θ similarly to Chernozhukov et al. (2019a).

Again, while existing studies do not account statistical dependence within an exporter i or within

an importer j, robust inference can be achieved by accounting for the two-way dependence. See

Sections 4.1 and 4.2 ahead for details of these two applications to demand analysis and extended

gravity analysis, respectively. As another useful application, our proposed technology allows for

drawing uniform confidence bands for “the densities of migration across states, trade across nations,

liabilities across banks, or minutes of telephone conversation among individuals” (Graham et al.,

2019, 2020). To our knowledge, this paper is the first to provide a valid method for construction

of simultaneous confidence intervals for kernel type estimator under dyadic clustering. In practice,

dyadic data often has a point mass at zero. Our proposed method also allows for such a mixture

distribution. See Section 4.3 for the application of dyadic kernel density estimation. Finally,

our proposed technology also allows for selection of theoretically valid choice of a penalty for

implementing `1-regularized regression (Lasso) under multiway clustering. To our knowledge, there
2



is no existing theoretically justified method for Lasso penalty selection under an exchangeable

sampling setting. See Section 4.4 for the application of Lasso penalty selection.

The two sampling frameworks of interest in this paper, namely multiway clustering and polyadic

sampling, can be formulated as exchangeable random arrays. Specifically, a natural stochastic

framework for modeling of mutliway clustering is that of separately exchangeable arrays (MacKin-

non et al., 2020). For network/dyadic data, on the other hand, Bickel and Chen (2009) propose

the use of jointly exchangeable arrays, which has since become a popular model for such data

structures, see Graham (2019) and Graham and de Paula (2019) for recent reviews as well as the

issue edited by Abbring and de Paula (2017). While formal definitions of these exchangeability

concepts are postponed until Sections 2 and 3, it is worth noting that the exchangeable structures

arise naturally in many economic applications. For example, in the context of modeling dynamic

oligopoly with investment, Athey and Schmutzler (2001) indicate that the assumption of firms’

profit functions being exchangeable is consistent with models of Cournot oligopoly, vertical prod-

uct differentiation, and differentiated product models where the firms have identical cross-price

effects. In these contexts, exchangeability imposes the symmetry in the identities of firms such

that each firm cares only about the actions and state variables of its rivals, but not about the

match between a competitor’s identity and actions/state variables. They also point out the close

link between exchangeability and the notation of anonymity in cooperative game theory and social

choice theory (e.g. Moulin, 1988). Another such example is from the analysis of supply and demand

in differentiated products markets. Berry et al. (1995) point out that both the demand and the

cost functions for a product are exchangeable in vectors of characteristics of all other products.

This emerges when the cost functions depend only on own-product characteristics, and is true for

differentiated products demand system in which the demand for a product is independent of the

ordering of competitors’ products but only on their characteristics. They also observe that a unique

Nash equilibrium implies several forms of exchangeability in the observed and unobserved random

variables in their demand model (Berry et al., 1995, Section 5.1). Furthermore, Menzel (2016)

observes that exchangeability of a certain form is a standard feature in almost all commonly used

empirical specification for game-theoretic models with more than two players.

1.1. Relation to the Literature. High-dimensional central limit theorems (CLTs) and boot-

straps over rectangles with the “p � n” regime are studied by Chernozhukov et al. (2013a, 2014,

2015, 2016, 2017a), Deng and Zhang (2020), Chernozhukov et al. (2019b), Kuchibhotla et al. (2020),

and Fang and Koike (2020) for the independent case, by Chen (2018), Chen and Kato (2020, 2019)

for U -statistics and processes, and by Zhang and Wu (2017), Zhang and Cheng (2018), Cher-

nozhukov et al. (2019a), Koike (2019) for time series dependence. To the best of our knowledge,

there is no result that considers extensions to exchangeable arrays in this literature. This paper

builds on and complements those references by providing high-dimensional CLTs and bootstrap

methods for exchangeable arrays.

Regression models with common shocks has been investigated by Andrews (2005) under ex-

changeability with one-dimensional index. Standard errors under multiway clustering (or sepa-

rately exchangeable arrays) are proposed by Cameron et al. (2011) for parametric models, such

as linear and nonlinear regression models – also see Cameron and Miller (2015, Section V) for a

survey. Uniform asymptotic theory under multiway clustering is studied by Menzel (2017), covering

both degenerate and non-degenerate cases. Focusing on the non-degenerate cases, Davezies et al.

(2018, 2020) develop functional limit theorems for Donsker classes under multiway clustering. See
3



also Chiang and Sasaki (2019), Chiang et al. (2019), MacKinnon (2019), and MacKinnon et al.

(2020) for some other extensions and applications. To our best knowledge, no existing theory in

this literature permits increasing or high-dimensional inference.

Theory of finite dimensional asymptotics (with fixed dimensions) for polyadic data (or jointly

exchangeable arrays) is well-studied, see, e.g., Silverman (1976) and Eagleson and Weber (1978).

Standard errors under dyadic data are first proposed by Fafchamps and Gubert (2007) and further

studied by Cameron and Miller (2014), Aronow et al. (2015), and Tabord-Meehan (2019). Davezies

et al. (2020) develop functional limit theorems for Donsker classes under polyadic sampling. To the

best of our knowledge, no existing theory in this literature permits increasing or high-dimensional

inference.

Methodologically, this paper is also related to the recent literature on high-dimensional U -

statistics, such as Chen (2018), Chen and Kato (2020, 2019), among others. Under suitable assump-

tions, the data of our interest can be written as U -statistic-like latent structure (in distribution)

via the Aldous-Hoover-Kallenberg representation (Aldous, 1981; Hoover, 1979; Kallenberg, 2006),

i.e. the data can be written as a kernel function of some latent independent random variables.

However, unlike the case with U -statistics, neither the kernel nor the latent independent random

variables is known to us. In addition, we need to cope with the existence of extra idiosyncratic

shocks in the latent structure. Both of these aspects present extra challenges.

The identification-robust inference applications considered in this paper are also related to the

extensive literature of testing conditional moment inequalities, which includes, but are not limited

to, Andrews and Shi (2013), Chernozhukov et al. (2013b), Lee et al. (2013), Armstrong (2014),

Armstrong and Chan (2016), Andrews and Shi (2017), Chetverikov (2018), Lee et al. (2018), Bai

et al. (2019) and Chernozhukov et al. (2019a). To the best of our knowledge, no theory that permits

multiway clustered or polyadic data has been developed in this literature.

Regarding our bootstraps, McCullagh (2000) shows that no resampling scheme for the raw data

is consistent for variance of a sample mean under multiway clustering. A Pigeonhole bootstrap

is subsequently proposed by Owen (2007) and its different variants are further investigated in

Owen and Eckles (2012), Menzel (2017) and Davezies et al. (2018, 2020). Whether the pigeonhole

bootstrap works for increasing or high-dimensional test statistics remains unknown to us. We

therefore develop a novel bootstrap method in this paper which we argue works for high-dimensional

data.

Finally, we develop novel Hoeffding-type decompositions for both separately and jointly ex-

changeable arrays and establish symmetrization inequalities for Hoeffding-type projection terms in

both cases. This allows us to obtain several new maximal inequalities that lead to sharp rates for

degenerate components in Hoeffding-type decompositions in both cases. Such symmetrization and

maximal inequalities play a crucial role in establishing the high-dimensional CLTs as well as the

validity of the bootstrap methods. These technical results are of independent interest and would

be useful for other analyses of multiway clustering and polyadic data. The proofs of these technical

results are highly nontrivial and indeed more involved than the U -statistic case due to the unknown

(and, in jointly exchangeable case, index-dependent) nature of kernel functions and the presence

of the extra unobserved shocks. For example, the proof of the symmetrization inequality for mul-

tiway clustering involves a careful induction argument (see Lemma 3 in the Appendix), combined

with a repeated conditioning argument. Also, the proof of the maximal inequality for polyadic

data involves a delicate conditioning argument, combined with the symmetrization inequalities for
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U -statistics with index-dependent kernels (cf. de la Peña and Giné, 1999). In comparison, the

empirical process results in Davezies et al. (2020) rely on substantially different symmetrization

inequalities. Specifically, symmetrization inequalities developed in Davezies et al. (2020) are ap-

plied to the whole empirical process and do not lead to correct orders for degenerate components

in Hoeffding-type decompositions (indeed, Davezies et al. (2020) do not derive Hoeffding-type de-

compositions), thereby not powerful enough to derive our results; see Remarks 10 and 11 in the

Appendix for details.

In the present paper, we focus on the case where the sample mean is non-degenerate, where the

approximating distribution is Gaussian. In the univariate case, Menzel (2017) develops inference

methods robust to degenerate situations, where the limit distribution may have a Gaussian chaos

component, similarly to U -statistics. In the high-dimensional case with p� n, existing techniques

used in the Gaussian approximation, such as a Slepian-Stein method and the anti-concentration

inequality (cf. Chernozhukov et al., 2013a, 2014, 2017a), can not be directly extended to non-

Gaussian approximating distributions such as Gaussian chaos distributions. Indeed, there have

been no results concerning high-dimensional non-Gaussian approximations (by high-dimension we

mean p � n), including a simpler setting of degenerate U -statistics. Extensions of the results of

the present paper to degenerate cases are left to future research. That said, non-degenerate sample

means are natural in multivariate applications. This is because non-constant coordinates of multi-

dimensional random vectors are often i-specific and j-specific as is the case in the aforementioned

applications (Gandhi et al., 2020; Morales et al., 2019), and these i- and j-specific non-constant

coordinates induce non-degeneracy. For this reason, we believe our focus on non-degenerate cases

in fact will not significantly narrow the scope of applicability.

1.2. Notations and Organization. Let N denote the set of positive integers. We use ‖·‖ , ‖·‖0 , ‖·‖1,

and ‖·‖∞ to denote the Euclidean, `0, `1, and `∞-norms for vectors, respectively (precisely, ‖·‖0
is not a norm but a seminorm). For two real vectors a = (a1, . . . , ap)

T and b = (b1, . . . , bp)
T ,

the notation a ≤ b means that aj ≤ bj for all 1 ≤ j ≤ p. Let supp(a) denote the support of

a = (a, . . . , ap)
T , i.e., supp(a) = {j : aj 6= 0}. We denote by � the Hadamard (element-wise)

product, i.e., for i = (i1, . . . , iK) and j = (j1, . . . , jK), i � j = (i1j1, . . . , iKjK). For any a, b ∈ R,

let a∨ b = max{a, b}. For 0 < β <∞, let ψβ be the function on [0,∞) defined by ψβ(x) = ex
β − 1.

Let ‖ · ‖ψβ denote the associated Orlicz norm, i.e., ‖ξ‖ψβ = inf{C > 0 : E[ψβ(|ξ|/C)] ≤ 1} for a

real-valued random variable ξ. For β ∈ (0, 1), ‖ · ‖ψβ is not a norm but a quasi-norm, i.e., there

exists a constant Cβ depending only on β such that ‖ξ1 + ξ2‖ψβ ≤ Cβ(‖ξ1‖ψβ + ‖ξ2‖ψβ ). Let U [0, 1]

denote the uniform distribution on [0, 1]. “Constants” refer to nonstochastic and finite positive

numbers.

The rest of the paper is organized as follows . In Section 2, we develop a high-dimensionl CLT

(over the rectangles) and a bootstrap method for multiway clustering (seperately exchangeable

arrays). In Section 3, we develop analogous results to polyadic sampling. We illustrate four

applications in Section 4, present simulation results in Section 5, and demonstrate an empirical

application in Section 6. We defer all the technical proofs to the Appendix.

2. Multiway Clustering

In this section, we consider separately exchangeable arrays that correspond to multiway clustered

data. Pick any K ∈ N. With i = (i1, . . . , iK) ∈ NK , we consider a K-array (Xi)i∈NK consisting

of random vectors in Rp. We denote by Xj
i the j-th coordinate of Xi: Xi = (X1

i , . . . , X
p
i )T . We

5



say that the array (Xi)i∈NK is separately exchangeable if the following condition is satisfied (cf.

Kallenberg, 2006, Section 3.1).

Definition 1 (Separate exchangeability). A K-array (Xi)i∈NK is called separately exchangeable

if for any K permutations π1, . . . , πK of N, the arrays (Xi)i∈NK and (X(π1(i1),...,πK(iK)))i∈NK are

identically distributed in the sense that their finite dimensional distributions agree.

From the Aldous-Hoover-Kallenberg representation (see Kallenberg, 2006, Corollary 7.23), any

separately exchangeable array (Xi)i∈NK is generated by the structure

Xi = f((Ui�e)e∈{0,1}K ), i ∈ NK , {Ui�e : i ∈ NK , e ∈ {0, 1}K} i.i.d.∼ U [0, 1]

for some Borel measurable map f : [0, 1]2
K → Rp. For example, when K = 2, then Xi is generated

as X(i1,i2) = f(U(0,0), U(i1,0), U(0,i2), U(i1,i2)).

The latent variable U0 appears commonly in all Xi’s. In the present paper, as in Andrews (2005)

and Menzel (2017), we consider inference conditional on U0 and treat it as fixed. In the rest of

Section 2, we will assume (without further mentioning) that the array (Xi)i∈NK has mean zero

(conditional on U0) and is generated by the structure

Xi = g((Ui�e)e∈{0,1}K\{0}), i ∈ NK , (2.1)

where g is now a map from [0, 1]2
K−1 into Rp.

Suppose that we observe {Xi : i ∈ [N ]} with N = (N1, . . . , NK) and [N ] =
∏K
k=1{1, . . . , Nk}.

We are interested in approximating the distribution of the sample mean

SN =
1∏K

k=1Nk

∑
i∈[N ]

Xi

in the high-dimensional setting where the dimension p is allowed to entail p� min{N1, . . . , NK}.

Example 1 (Empirical process indexed by function class with increasing cardinality). Our setting

covers the following situation: let {Yi : i ∈ NK} be random variables taking values in an abstract

measurable space (S,S), and suppose that they are generated as

Yi = ǧ((Ui�e)e∈{0,1}K\{0}).

Let fj : S → R for 1 ≤ j ≤ p be measurable functions, and define Xj
i = fj(Yi)− E[fj(Yi)]. In this

case, the sample mean SN can be regarded as the empirical process f 7→ (
∏K
k=1Nk)

−1
∑

i∈[N ](f(Yi)−
E[f(Yi)]) indexed by the function class F = {f1, . . . , fp}. Allowing p → ∞ as min1≤k≤K Nk → ∞
enables us to cover empirical processes indexed by function classes with increasing cardinality.

For later convenience, we fix some additional notations. Let n = min1≤k≤K Nk and N =

max1≤k≤K Nk denote the minimum and maximum cluster sizes, respectively. For 1 ≤ k ≤ K,

denote by Ek = {e = (e1, . . . , eK) ∈ {0, 1}K :
∑K

k=1 ek = k} the set of vectors in {0, 1}K whose

support has cardinality k. Let ek ∈ RK denote the vector such that the k-th coordinate of ek is 1

and the other coordinates are 0. For a given e ∈ {0, 1}K , define

Ie([N ]) = {i� e : i ∈ [N ]} ⊂ NK0 with N0 = N ∪ {0}.

The following decomposition of the sample mean SN will play a fundamental role in our analysis,

which is reminiscent of the Hoeffding decomposition for U -statistics (Lee, 1990; de la Peña and

Giné, 1999).
6



Lemma 1 (Hoeffding decomposition of separately exchangeable array). For any i ∈ NK , define

recursively

X̂i�ek = E[Xi | Ui�ek ], k = 1, . . . ,K,

X̂i�e = E[Xi | (Ui�e′)e′≤e]−
∑
e′≤e
e′ 6=e

X̂i�e′ , e ∈
K⋃
k=2

Ek.

Then, we have

Xi =
∑

e∈{0,1}K\{0}

X̂i�e.

Consequently, we can decompose the sample mean SN = (
∏K
k=1Nk)

−1
∑

i∈[N ]Xi as

SN =
K∑
k=1

∑
e∈Ek

1∏
k′∈supp(e)Nk′

∑
i∈Ie([N ])

X̂i. (2.2)

The proof of this lemma can be found in Appendix B.1.

Example 2 (K = 3 case). For instance, if K = 3, then for i = (i1, i2, i3) ∈ N3,

X̂(i1,0,0) = E[Xi | U(i1,0,0)], X̂(0,i2,0) = E[Xi | U(0,i2,0)], X̂(0,0,i3) = E[Xi | U(0,0,i3)],

X̂(i1,i2,0) = E[Xi | U(i1,0,0), U(0,i2,0), U(i1,i2,0)]− X̂(i1,0,0) − X̂(0,i2,0), etc.,

X̂(i1,i2,i3) = Xi − X̂(i1,i2,0) − X̂(0,i2,i3) − X̂(i1,0,i3) − X̂(i1,0,0) − X̂(0,i2,0) − X̂(0,0,i3).

Remark 1 (Hoeffding decomposition). The reason that we call (2.2) the Hoeffding decomposition

comes from the fact that if the dimension p is fixed, for each fixed k = 1, . . . ,K and e ∈ Ek, the

component
1∏

k′∈supp(e)Nk′

∑
i∈Ie([N ])

X̂i

scales as (
∏
k′∈supp(e)Nk′)

−1/2 = O(n−k/2) with n = min1≤k′≤K Nk′ under moment conditions.

See Corollary 3 in Appendix A. This is completely analogous to the Hoeffiding decomposition of

U -statistics and from this analogy we shall call (2.2) the Hoeffding decomposition.

The leading term in the decomposition (2.2) is∑
e∈E1

1∏
k′∈supp(e)Nk′

∑
i∈Ie([N ])

X̂i =
K∑
k=1

N−1
k

Nk∑
ik=1

E[Xi | U(0,...,0,ik,0,...,0)],

which we call the Hájek projection of SN . Define

Wk,ik = E[Xi | U(0,...,0,ik,0,...,0)], k = 1, . . . ,K,

SWN =
K∑
k=1

N−1
k

Nk∑
ik=1

Wk,ik , and ΣWk
= E[Wk,1W

T
k,1], k = 1, . . . ,K.

Since SWN is the sum of independent random vectors, it is expected that the distribution of
√
nSN

can be approximated by N(0,Σ), where

Σ =
K∑
k=1

(n/Nk)ΣWk
,

7



as long as the remainder term is negligible. This suggests the following multiplier bootstrap for

multiway clustering.

2.1. Multiplier bootstrap for multiway clustering. Let {ξ1,i1}
N1
i1=1, . . . , {ξK,iK}

NK
iK=1 be inde-

pendent N(0, 1) random variables independent of the data. Ideally, we want to make use of the

bootstrap statistic

n∑
k=1

N−1
k

Nk∑
ik=1

ξk,ik(Wk,ik − SN ).

However, this bootstrap is infeasible as Wk,ik = E[Xi | U(0,...,ik,...,0)] are unknown to us. Estimation

of Wk,ik is nontrivial as U(0,...,ik,...,0) is a latent variable. To gain an insight into how to estimate

Wk,ik , consider the case where K = 2. Then W1,i1 = E[X(i1,i2) | U(i1,0)] = E[g(U(i1,0), V(i1,i2)) |
U(i1,0)] with V(i1,i2) = (U(0,i2), U(i1,i2)). Since U(i1,0) and V(i1,i2) are independent and the latter

variable is independent across i2, we see that W1,i1 can be estimated by taking the average of

X(i1,i2) over i2.

Building on this intuition, in general, we propose to estimate each Wk,ik by

Xk,ik =
1∏

k′ 6=kNk′

∑
i1,...,ik−1,ik+1,...,iK

Xi, ik = 1, . . . , Nk; k = 1, . . . ,K,

i.e., the sample mean taken over all indices but ik. Then, we apply the multiplier bootstrap to

Xk,ik in place of Wk,ik

SMB
N =

K∑
k=1

N−1
k

Nk∑
ik=1

ξk,ik(Xk,ik − SN ).

To the best of our knowledge, this multiplier bootstrap for multiway clustering is new in the

literature. We will formally study the validity of this multiplier bootstrap for high-dimensional

multiway clustered data with p� n in the next two subsections.

2.2. High-dimensional CLT for multiway clustering. We first establish a high-dimensional

CLT for SN over the class of rectangles,

R =


p∏
j=1

[aj , bj ] : −∞ ≤ aj ≤ bj ≤ ∞, 1 ≤ j ≤ p

 .

This high-dimensional CLT will be a building block for establishing the validity of the multiplier

bootstrap considered in the preceding section.

We start with discussing regularity conditions. Denote by 1 = (1, . . . , 1) the vector of ones. Let

DN ≥ 1 be a given constant that may depend on the cluster sizes N , and let σ > 0 be another

given constant independent of the cluster sizes N . We will assume either of the following moment

conditions.

max
1≤j≤p

‖Xj
1‖ψ1 ≤ DN , or (2.3)

E[‖X1‖q∞] ≤ Dq
N for some q ∈ (4,∞). (2.4)

8



We will also assume both of the following conditions.

max
1≤j≤p;1≤k≤K

E[|W j
k,1|

2+κ] ≤ Dκ
N , κ = 1, 2, (2.5)

min
1≤j≤p;1≤k≤K

E[|W j
k,1|

2] ≥ σ2. (2.6)

Condition (2.3) requires that each coordinate of X1 is sub-exponential. By Jensen’s inequality,

Condition (2.3) implies that

max
1≤j≤p;1≤k≤K

‖W j
k,1‖ψ1 ≤ DN .

Condition (2.4) is an alternative moment condition on X1. Condition (2.4) is satisfied for example

under the following situation: Suppose that Xi is given by Xi = εiZi where εi is a scalar “error”

variable while Z is a vector of “covariates”. If each coordinate of Zi is bounded by a constant DN

(that may depend on N) and εi has finite q-th moment, then E[‖Xi‖q∞] ≤ D
q
NE[|εi|q]. Again, by

Jensen’s inequality, Condition (2.4) implies that

max
1≤k≤K

E[‖Wk,1‖q∞] ≤ Dq
N .

Condition (2.5) requires the maximum of third (respectively, fourth) moment across coordinates

to be increasing at speed no faster than the first (respectively, second) power of DN . By Jensen’s

inequality, Condition (2.5) is satisfied if max1≤j≤p E[|Xj
1|2+κ] ≤ Dκ

N for κ = 1, 2. Condition (2.6)

guarantees that the Hájek projection is nondegenerate.

Let γ = N(0,Σ).

Theorem 1 (High-dimensional CLT for multiway clustering). Suppose that either Condition (2.3)

or (2.4) holds, and further that both Conditions (2.5) and (2.6) hold. Then, there exists a constant

C such that

sup
R∈R
|P(
√
nSN ∈ R)− γΣ(R)|

≤


C
(
D2

N log7(pN)
n

)1/6

if Condition (2.3) holds,

C

[(
D2

N log7(pN)
n

)1/6

+
(
D2

N log3(pN)

n1−2/q

)1/3
]

if Condition (2.4) holds,

where the constant C depends only on σ and K if Condition (2.3) holds, while C depends only on

q, σ, and K if Condition (2.4) holds.

Remark 2 (Refinement under subgaussianity). The recent paper of Chernozhukov et al. (2019b)

provides some improvements on convergence rate of Gaussian approximation under the subgaussian

tail assumption for the sample mean of independent random vectors. With this new technique, if

we strengthen Condition (2.3) by replacing the ψ1-norm ‖ · ‖ψ1 with the ψ2-norm ‖ · ‖ψ2 (i.e., each

coordinate X1 is sub-Gaussian), the bound C
(
n−1D2

N log7(pN)
)1/6

in Theorem 1 can be improved

to C
(
n−1D2

N log5(pN)
)1/4

.

2.3. Validity of multiplier bootstrap for multiway clustering. We are now in position to

establish the validity of the proposed multiplier bootstrap for multiway clustered data. Let P|X[N ]

denote the law conditional on the data X[N ] = (Xi)i∈[N ]. Define

∆̂W = max
1≤j≤p;1≤k≤K

1

Nk

Nk∑
ik=1

(X
j
k,ik
−W j

k,ik
)2,

9



which accounts for the estimation error ofXk,ik forWk,ik . Also, let σ = max1≤j≤p;1≤k≤K

√
E[|W j

k,1|2].

The following theorem shows that as soon as ∆̂W is sufficiently small (i.e, σ2∆̂W log4 p = oP (1)),

then the multiplier bootstrap is consistent over the rectangles under mild conditions on the dimen-

sion p.

Theorem 2 (Validity of multiplier bootstrap for multiway clustering). Consider the following two

cases.

(i). Conditions (2.3), (2.5), and (2.6) hold, and there exist constants C1 and ζ1, ζ2 ∈ (0, 1)

such that

P
(
σ2∆̂W log4 p > C1n

−ζ2
)
≤ C1n

−1 and (2.7)

D2
N (log2 n) log5(pN)

n
≤ C1n

−ζ1 . (2.8)

(ii). Conditions (2.4), (2.5), and (2.6) hold, and there exist constants C1 and ζ1, ζ2 ∈ (0, 1)

such that Condition (2.7) holds and

D2
N log5(pn)

n

∨(
D2

N log3 p

n1−4/q

)2

≤ C1n
−ζ1 . (2.9)

Then, under either Case (i) or (ii), there exists a constant C such that

sup
R∈R

∣∣∣P|X[N ]
(
√
nSMB

N ∈ R)− γΣ(R)
∣∣∣ ≤ Cn−(ζ1∧ζ2)/4

with probability at least 1−Cn−1, where the constant C depends only on σ,K, and C1 under Case

(i), while C depends only on q, σ,K, and C1 under Case (ii).

Remark 3 (Discussion on Conditions (2.7)–(2.9)). Conditions (2.7)–(2.9) are placed to guarantee

that the error bound for our multiplier bootstrap decreases at a polynomial rate in n. If we are to

show a weaker result, namely,

sup
R∈R
|P|X[N ]

(
√
nSMB

N ∈ R)− γΣ(R)| = oP (1) (2.10)

as n → ∞ (with the understanding that p, σ,DN , and N are functions of n), then Conditions

(2.7)–(2.9) can be weakened to σ∆̂W log4 p = oP (1), D2
N log5(pN) = o(n), and (n−1D2

N log5(pn))∨
(n1−2/qD2

N log3 p) = o(1), respectively. (The critical case q = 4 is allowed for (2.10); note that the

high-dimensional CLT (Theorem 1) also holds with q = 4.)

Condition (2.7) is a high-level condition on the estimation accuracy of Xk,ik for Wk,ik . We

provide primitive sufficient conditions for Condition (2.7) to hold in the following proposition.

Proposition 1 (Primitive sufficient conditions for Condition (2.7)). Consider the following two

cases.

(i’) Conditions (2.3), (2.5), and (2.6) hold, and there exist constants C1 and ζ ∈ (0, 1) such

that

σ2D2
N log7 p

n
≤ C1n

−ζ . (2.11)

10



(ii’) Conditions (2.4), (2.5), and (2.6) hold, and there exist constants C1 and ζ ∈ (2/q, 1) such

that

σ2D2
N log5 p

n
≤ C1n

−ζ . (2.12)

Under Case (i’), for any ν ∈ (1/ζ,∞), there exists a constant C depending only on ν,K, and C1

such that

P
(
σ2∆̂W log4 p > Cn−ζ+1/ν

)
≤ Cn−1.

Under Case (ii’), there exists a constant C depending only on q,K, and C1 such that

P
(
σ2∆̂W log4 p > Cn−ζ+2/q

)
≤ Cn−1.

Remark 4 (Discussion on Conditions (2.11) and (2.12)). If we are to follow Remark 3 and to show

a sufficient condition for σ∆̂W log4 p = oP (1), then Conditions (2.11) and (2.12) can be weakened

to σ2D2
N log7 p = o(n) and σ2D2

N log5 p = o(n1−2/q), respectively.

In practice, we often normalize the coordinates of the sample mean by estimates of the standard

deviations, so that each coordinate is approximately distributed as N(0, 1). In view of the high-

dimensional CLT, the approximate variance of the j-th coordinate of
√
nSN is given by σ2

j =

Var(
√
nSW,jN ), where SW,jN is the j-th coordinate of SWN . This can be estimated by

σ̂2
j =

K∑
k=1

n

N2
k

Nk∑
ik=1

(X
j
k,ik
− SjN )2.

Let Λ = diag{σ2
1, . . . , σ

2
p} and Λ̂ = diag{σ̂2

1, . . . , σ̂
2
p}. We consider to approximate the distribution

of
√
nΛ̂−1/2SN by

√
nΛ̂−1/2SMB

N .

Corollary 1. Consider Cases (i) and (ii) in Theorem 2. In Case (i), assume further that

D2
N log7(pN)

n
≤ C1n

−3(ζ1∧ζ2)/2,

while in Case (ii) assume further that

D2
N log7(pN)

n

∨(
D2

N log3(pN)

n1−2/q

)2

≤ C1n
−3(ζ1∧ζ2)/2.

Then, there exists a constant C such that for Y ∼ N(0,Σ),

sup
R∈R

∣∣∣P(
√
nΛ̂−1/2SN ∈ R)− P(Λ−1/2Y ∈ R)

∣∣∣ ≤ Cn−(ζ1∧ζ2)/4 and

P
{

sup
R∈R

∣∣∣P|X[N ]
(
√
nΛ̂−1/2SMB

N ∈ R)− P(Λ−1/2Y ∈ R)
∣∣∣ ≤ Cn−(ζ1∧ζ2)/4

}
≥ 1− Cn−1,

where the same convention on the constant C as in Theorem 2 applies.
11



3. Polyadic Data

In this section, we consider another class of exchangeable arrays, namely, jointly exchangeable

arrays, which correspond to polyadic data. The notations in the current section are independent

from those in Section 2 unless otherwise noted. Joint exchangeability induces a more complex

dependence structure on arrays than separate exchangeability, but still we are able to develop

analogous results to the preceding section for jointly exchangeable arrays as well. It should be

noted, however, that we do require a different bootstrap and technical tools (cf. Appendix C) to

accommodate a specific dependence structure induced from joint exchangeability.

Pick any K ∈ N. For a given positive integer n ≥ K, let In,K = {(i1, . . . , iK) : 1 ≤ i1, . . . , iK ≤
n and i1, . . . , iK are distinct}. Also let I∞,K =

⋃∞
n=K In,K . For any i = (i1, . . . , iK) ∈ NK , let {i}+

denote the set of distinct nonzero elements of (i1, . . . , iK). For example, {(2, 0, 1, 2)}+ = {1, 2}.
In this section, we consider a K-array (Xi)i∈I∞,K consisting of random vectors in Rp. We say that

the array (Xi)i∈I∞,K is jointly exchangeable if the following condition is satisfied (cf. Kallenberg,

2006, Section 3.1).

Definition 2 (Joint exchangeability). A K-array (Xi)i∈I∞,K is called jointly exchangeable if for

any permutation π of N, the arrays (Xi)i∈I∞,K and (X(π(i1),...,π(iK)))i∈I∞,K are identically dis-

tributed.

From the Aldous-Hoover-Kallenberg representation (see Kallenberg, 2006, Theorem 7.22), any

jointly exchangeable array (Xi)i∈I∞,K is generated by the structure

Xi = f((U{i�e}+)e∈{0,1}K ), i ∈ I∞,K , {U{i�e}+ : i ∈ I∞,K , e ∈ {0, 1}K}
i.i.d.∼ U [0, 1]

for some Borel measurable map f : [0, 1]2
K → Rp. For example, when K = 2, then X(i1,i2) is

generated as X(i1,i2) = f(U∅, Ui1 , Ui2 , U{i1,i2}). (We will write Uik = U{ik} for the notational conve-

nience.) Here the coordinates of the vector (U{i�e}+)e∈{0,1}K are understood to be properly ordered,

so that, e.g., when K = 2, X(i1,i2) = f(U∅, Ui1 , Ui2 , U{i1,i2}) and X(i2,i1) = f(U∅, Ui2 , Ui1 , U{i1,i2})

differ (although they have the identical distribution).

As in the separately exchangeable case, we consider inference conditional on U∅, and in what fol-

lows, we will assume that the array (Xi)i∈I∞,K has mean zero (conditional on U∅) and is generated

by the structure

Xi = g((U{i�e}+)e∈{0,1}K\{0}), i ∈ I∞,K , (3.1)

where g is now a map from [0, 1]2
K−1 into Rp.

Suppose that we observe {Xi : i ∈ In,K} with n ≥ K and are interested in distributional

approximation of the polyadic sample mean

Sn :=
(n−K)!

n!

∑
i∈In,K

Xi.

in the high-dimensional setting where the dimension p is allowed to entail p� n.
12



As in Section 2, define Ek = {e = (e1, . . . , eK) ∈ {0, 1}K :
∑K

k=1 ek = k} for 1 ≤ k ≤ K. The

analysis of the polyadic sample mean relies on the following decomposition of Xi:

Xi =

K∑
k=1

E[Xi | Uik ] +

(
E[Xi | Ui1 , . . . , UiK ]−

K∑
k=1

E[Xi | Uik ]

)

+
K∑
k=2

(
E[Xi | (U{i�e}+)e∈∪kr=1Er

]− E[Xi | (U{i�e}+)e∈∪k−1
r=1Er

]
)
.

This leads to the decomposition

Sn =
1

n

n∑
j=1

E

(n−K)!

(n− 1)!

K∑
k=1

∑
i∈In,K :ik=j

Xi

∣∣∣ Uj


+
(n−K)!

n!

∑
i∈In,K

(
E[Xi | Ui1 , . . . , UiK ]−

K∑
k=1

E[Xi | Uik ]

)

+
K∑
k=2

(n−K)!

n!

∑
i∈In,K

(
E[Xi | (U{i�e}+)e∈∪kr=1Er

]− E[Xi | (U{i�e}+)e∈∪k−1
r=1Er

]
)
.

(3.2)

The second term on the right-hand side of (3.2) is a degenerate U -statistic and thus negligible

compared with the first term under moment conditions (this term can be expanded into K − 1

terms each of which scales as O(n−k/2) if p is fixed for k = 2, . . . ,K). The analysis of the third

term is more complicated but it will be shown that the k-th term inside the first summation scales

as O(n−k/2) if the dimension p is fixed, so that the third term on the right-hand side of (3.2) is

also negligible compared with the first term. See Appendix C for details. Applying the Hoeffding

decomposition to the second term on the right-hand side of (3.2), combining it with the third term

on the right-hand side of (3.2), and aligning the terms according to their orders, we can obtain a

Hoeffding-type decomposition for jointly exchangeable arrays. As in the multiway clustering case,

we call the first term on the right-hand side of (3.2) the Hájek projection of Sn.

Defining hk(u) = E[X(1,...,K) | Uk = u] for k = 1, . . . ,K, we can simplify the Hájek projection

into

SWn =
1

n

n∑
j=1

Wj , with Wj =

K∑
k=1

hk(Uj).

Since {Wj}nj=1 are i.i.d., we can expect that
√
nSWn can be approximated (in distribution) by

N(0,Σ), where

Σ = E
[
W1W

T
1

]
.

This suggests the following version of multiplier bootstrap for polyadic data.

3.1. Multiplier bootstrap for polyadic data. Let {ξj}nj=1 be independent N(0, 1) random

variables independent of the data. Ideally, we want to make use of the multiplier bootstrap statistic

1

n

n∑
j=1

ξj(Wj −KSn).

13



This is infeasible, however, as the projections Wj are unknown. As an alternative, we replace each

Wj by its estimate

Ŵj =
(n−K)!

(n− 1)!

K∑
k=1

∑
i∈In,K :ik=j

Xi,

and apply the multiplier bootstrap to Ŵj , i.e.,

SMB
n :=

1

n

n∑
j=1

ξj(Ŵj −KSn)

For example, when K = 2 (dyadic), this mulitplier bootstrap simplifies into

SMB
n =

1

n

n∑
j=1

ξj

 1

(n− 1)

n∑
i′=1;i′ 6=j

(X(i′,j) +X(j,i′))− 2Sn

 ,

which coincides with the multiplier bootstrap statistic considered in Section 3.2 of Davezies et al.

(2020). However, Davezies et al. (2020) do not consider the extension to general K arrays, and

focus on the empirical process indexed by a Donsker class, which excludes the high-dimensional

sample mean. We will study the validity of this multiplier bootstrap for general polyadic data in

the following two subsections.

3.2. High-dimensional CLT for polyadic data. We consider to approximate the distribution

of
√
nSn by a Gaussian distribution on the set of rectangles R as defined in Section 2.

Let Dn ≥ 1 be a given constant that may depend on n, and σ > 0 be another given constant

independent of n. We will assume either of the following moment conditions.

max
1≤`≤p

‖X`
(1,...,K)‖ψ1 ≤ Dn, or (3.3)

E[‖X(1,...,K)‖q∞] ≤ Dq
n for some q ∈ (4,∞). (3.4)

We will also assume both of the following conditions.

max
1≤`≤p

E[|W `
1 |2+k] ≤ Dk

n, κ = 1, 2, (3.5)

min
1≤`≤p

E[|W `
1 |2] ≥ σ2. (3.6)

The conditions required here are similar to those in the case of multiway clustering in Section 2.

The main difference is that Conditions (3.5) and (3.6) are now imposed on W1.

Let γΣ = N(0,Σ).

Theorem 3 (High-dimensional CLT for polyadic data). Suppose that either Condition (3.3) or

(3.4) holds, and further both Conditions (3.5) and (3.6) hold. Then, there exists a constant C such

that

sup
R∈R

∣∣P(
√
nSn ∈ R)− γΣ(R)

∣∣
≤


C
(
D2
n log7(pn)

n

)1/6
if Condition (3.3) holds,

C

[(
D2
n log7(pn)

n

)1/6
+
(
D2
n log3(pn)

n1−2/q

)1/3
]

if Condition (3.4) holds,

where the constant C depends only on σ and K if Condition (3.3) holds, while C depends only on

q, σ, and K if Condition (3.4) holds.
14



Remark 5 (Comparison with Silverman (1976)). Theorem 3 is a high-dimensional extension of

Theorem A in Silverman (1976) that establishes a CLT for jointly exchangeable arrays with fixed

p. The covariance matrix of the limiting Gaussian distribution in Silverman (1976) has a different

expression than our Σ, but we will verify below that two expressions are indeed the same. The

covariance matrix given in Corollary to Theorem A in Silverman (1976) reads as follows: Let

X̌(i1,...,iK) be the symmetrized version of X(i1,...,iK), i.e., X̌(i1,...,iK) = (K!)−1
∑

(i′1,...,i
′
K)X(i′1,...,i

′
K)

where the summation is taken over all permutations of (i1, . . . , iK). The covariance matix given in

Silverman (1976) is ΣS = K2E[X̌(1,...,K)X̌(1,K+1,...,2K)]. On the other hand,

K∑
k=1

E[X(1,...,K) | Uk = u] =
K∑
k=1

E[X̌(1,...,K) | Uk = u] = KE[X̌(1,...,K) | U1 = u],

so that

Σ = K2E
[
E[X̌(1,...,K) | U1]E[X̌(1,...,K) | U1]

]
= K2E[X̌(1,...,K)X̌(1,K+1,...,2K)] = ΣS ,

as claimed.

3.3. Validity of multiplier bootstrap for polyadic data. Let P|XIn,K
denote the law condi-

tional on the data (Xi)i∈In,K . Define

∆̂W,1 = max
1≤`≤p

1

n

n∑
j=1

(Ŵ `
j −W `

j )2.

In addition, let σ = max1≤`≤p

√
E[|W `

1 |2].

Theorem 4 (Validity of multiplier bootstrap for polyadic data). Consider the following two cases.

(i). Conditions (3.3), (3.5), and (3.6) hold, and there exist constants C1 and ζ1, ζ2 ∈ (0, 1)

such that

P
(
σ2∆̂W,1 log4 p > C1n

−ζ2
)
≤ C1n

−1 and (3.7)

D2
n(log2 n) log5(pn)

n
≤ C1n

−ζ1 . (3.8)

(ii). Conditions (3.4), (3.5), and (3.6) hold, and there exist constants C1 and ζ1, ζ2 ∈ (0, 1)

such that Condition (3.7) holds and

D2
n log5(pn)

n

∨(
D2
n log3 p

n1−4/q

)2

≤ C1n
−ζ1 . (3.9)

Then, under either Case (i) or (ii), there exists a constant C such that

sup
R∈R

∣∣∣P|XIn,K
(
√
nSMB

n ∈ R)− γΣ(R)
∣∣∣ ≤ Cn−(ζ1∧ζ2)/4.

with probability at least 1−Cn−1, where the constant C depends only on σ,K, and C1 under Case

(i), while C depends only on q, σ,K, and C1 under Case (ii).

The following proposition provides primitive sufficient conditions for Condition (3.7) to hold.

Proposition 2 (Primitive sufficient conditions for Condition (3.7)). Consider the following two

cases.
15



(i’) Conditions (3.3), (3.5), and (3.6) hold, and there exist constants C1 and ζ ∈ (0, 1) such

that
σ2D2

n log7 p

n
≤ C1n

−ζ .

(ii’) Conditions (3.4), (3.5), and (3.6) hold, and there exist constants C1 and ζ ∈ (2/q, 1) such

that
σ2D2

n log5 p

n
≤ C1n

−ζ .

Under Case (i’), for any ν ∈ (1/ζ,∞), there exists a constant C depending only on ν,K, and C1

such that

P
(
σ2∆̂W,1 log4 p > Cn−ζ+1/ν

)
≤ Cn−1.

Under Case (ii’), there exists a constant C depending only on q,K, and C1 such that

P
(
σ2∆̂W,1 log4 p > Cn−ζ+2/q

)
≤ Cn−1.

Finally, we consider normalized sample means for polyadic data. In light of the high-dimensional

CLT for polyadic data, the approximate variance of the `-th coordinate of
√
nSn is given by

σ2
` = Var(W `

1), which can be estimated by

σ̂2
` =

1

n

n∑
k=1

(Ŵ `
k −KS`n)2.

Let Λ = diag{σ2
1, . . . , σ

2
p} and Λ̂ = diag{σ̂2

1, . . . , σ̂
2
p}. We consider to approximate the distribution

of
√
nΛ̂−1/2Sn by

√
nΛ̂−1/2SMB

n .

Corollary 2. Consider Cases (i) and (ii) in Theorem 4. In Case (i), assume further that

D2
n log7(pn)

n
≤ C1n

−3(ζ1∧ζ2)/2,

while in Case (ii) assume further that

D2
n log7(pn)

n

∨(
D2
n log3(pn)

n1−2/q

)2

≤ C1n
−3(ζ1∧ζ2)/2.

Then, there exists a constant C such that for Y ∼ N(0,Σ),

sup
R∈R

∣∣∣P(
√
nΛ̂−1/2Sn ∈ R)− P(Λ−1/2Y ∈ R)

∣∣∣ ≤ Cn−(ζ1∧ζ2)/4 and

P
{

sup
R∈R

∣∣∣P|XIn,K
(
√
nΛ̂−1/2SMB

n ∈ R)− P(Λ−1/2Y ∈ R)
∣∣∣ ≤ Cn−(ζ1∧ζ2)/4

}
≥ 1− Cn−1,

where the same convention on the constant C as in Theorem 4 applies.

The proof is analogous to Corollary 1 and thus omitted.

Remark 6 (Discussion on rate conditions for polyadic data). Similar to Remark 3 and 4, if one is

interested only in bootstrap consistency, Conditions (3.7)–(3.9 can be weakened to σ∆̂W log4 p =

oP (1), D2
n log5(pn) = o(n), and (n−1D2

n log5(pn)) ∨ (n1−2/qD2
n log3 p) = o(1), respectively. In ad-

dition, to show σ∆̂W log4 p = oP (1), the two rate conditions in Proposition 2 can be weakened to

σ2D2
n log7 p = o(n) and σ2D2

n log5 p = o(n1−2/q), respectively.
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4. Applications

In this section, we illustrate four applications of our proposed methods and theories. Section 4.1

presents robust inference in demand analysis under differentiated products markets with market

share data. Section 4.2 presents robust inference in extended gravity analysis with trade data.

Section 4.3 presents how to construct confidence bands for densities of flows in polyadic data.

Section 4.4 presents penalty choice for the Lasso and the performance of its corresponding estimate.

4.1. Robust inference in demand analysis with market share data. Market share data used

for demand analysis under differentiated products markets naturally exhibit two-way clustering due

to the economic structure of supply and demand. Typical market share data are double-indexed by

products i and markets j. Observations are generally dependent across markets j due to a common

supply shock generated by the producer of product i. Observations are also generally dependent

across products i due to a common demand shock in market j. We illustrate an application of our

proposed theory to the frontier approach of robust identification for demand models using this type

of data.

Following Berry (1994) and Berry et al. (1995), consider a model of demand for N1 products

indexed by i = 1, . . . , N1 with an outside option i = 0 in N2 markets. Consumer c derives utility

ucij = δij+εcij for product i in market j, where δij is the mean utility and εcij denotes idiosyncratic

shock with the type-I extreme value distribution. The mean utility is in turn modeled by δij =

XT
ijθ + ηij , where Xij is a vector of observed product and market characteristics and ηij denotes

unobserved characteristics. Suppose that each consumer c in market j chooses the product i yielding

the highest utility, i.e., scij = 1{uij ≥ ui′j for all i = 0, 1, . . . , N1}. Aggregation yields the product

share πij = E[scij | δ1j , . . . , δN1j ]. The standard market share inversion in turn yields the mean

utility δij = log πij − log π0j . Suppose that we obtain instrumental variables zij that is mean

orthogonal to the unobserved characteristics ηij .

In this setup, the standard econometric approach uses the generalized method of moments

(GMM) with the mean orthogonality condition E[ηij | zij ] = 0. However, due to zero and/or

near-zero market shares in actual market share data, this standard approach is known to suffer

from unbounded moments of moment functions. In this light, Gandhi et al. (2020) propose a

robust identification approach. Specifically, they derive upper and lower bounds of mean utility

functions, denoted by δuij and δ`ij , respectively, and propose a family of moment inequalities of the

form

H0(θ) :

{
E[(XT

ijθ − δuij)g(zij)] ≤ 0

E[−(XT
ijθ − δ`ij)g(zij)] ≤ 0

for all g ∈ G in an infinite set G of non-negative instrumental functions – see Gandhi et al. (2020).

While most existing studies (including Gandhi et al., 2020) on demand analyses do not account for

statistical dependence within a product i or within a market j, robust inference can be achieved

by accounting for the two-way dependence – see Chiang et al. (2019).

Applying our proposed method in Section 2, we may conduct inference for the utility parameters

θ under two-way clustered market share data in the following manner. Define the p-dimensional

random vector Xij(θ) by

Xij(θ) =
(
(XT

ijθ− δuij)g1(zij), (δ
`
ij −XT

ijθ)g1(zij), . . . , (X
T
ijθ− δuij)gp/2(zij), (δ

`
ij −XT

ijθ)gp/2(zij)
)T
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for an increasing number p/2 of instrumental functions {g1, . . . , gp/2} ⊂ G. Define the test statistic

TN (θ) = max{SN (θ)} (or its normalized version), where SN (θ) = (N1N2)−1
∑

(i,j)∈[N ]Xij(θ). To

approximate the distribution of TN (θ), let Ŵ1,i(θ) = N−1
2

∑N2
j=1Xij(θ) − SN (θ) and Ŵ2,j(θ) =

N−1
1

∑N1
i=1Xij(θ) − SN (θ). Construct the multiplier process SMB

N (θ) = N−1
1

∑N1
i=1 ξ1,iŴ1,i(θ) +

N−1
2

∑N2
j=1 ξ2,jŴ2,j(θ), where {ξ1,i} and {ξ2,j} are independent N(0, 1) random variables indepen-

dent of the data. Let c(1−α;θ) denote the conditional (1−α)-quantile of max{SMB
N (θ)}. Our test

rejects the null hypothesis H0(θ) if TN (θ) > c(1 − α;θ). Inverting this test provides a confidence

region for the utility parameters θ.

4.2. Robust inference in extended gravity analysis with trade data. Trade data used for

gravity analysis naturally exhibit two-way clustering due to the economic structure of supply and

demand. Typical trade data are double-indexed by exporters i and importers j. Observations are

generally dependent across importers j due to a common supply shock generated by the exporter

i. Observations are also generally dependent across importers i due to a common demand shock in

the destination j. We illustrate an application of our proposed theory to the frontier approach of

robust identification in extended gravity analysis using this type of data.

Morales et al. (2019) introduces an extended gravity model with an implied static profit random

function πijt(·) that firm i receives from exporting to country j in year t, where πijt(·) takes

structural parameters θ as arguments. Write πijj′t(θ) = πijt(θ) − πij′t(θ). We assumed to know

the set Aijt of all the countries j′ that share the same cost structure with country j from the

viewpoint of firm i in year t. Let dijt denote the indicator that firm i exports to country j in year

t, let zijt denote a vector of variables including components of costs that depend on gravity and

extended gravity variables, and let δ denote the rate of future discounting. In this setting and with

these notations, Morales et al. (2019) propose a family of moment inequalities of the form

H0(θ) : E

 ∑
j′∈Aijt

g(zijt, zij′t)dijt(1− dijt)(πijj′t(θ) + δπijj′(t+1)(θ))

 ≥ 0

for all g ∈ G of non-negative functions satisfying certain restrictions – see Morales et al. (2019).

Define the p-dimensional random vector Xij(θ) by

Xij(θ) =

 −
∑

j′∈Aijt g1(zijt, zij′t)dijt(1− dijt)(πijj′t(θ) + δπijj′(t+1)(θ))
...

−
∑

j′∈Aijt gp(zijt, zij′t)dijt(1− dijt)(πijj′t(θ) + δπijj′(t+1)(θ))


for an increasing number p of instrumental functions {g1, . . . , gp} ⊂ G. Define the test statistic

TN (θ) = max{SN (θ)} (or its normalized version), where SN (θ) = (N1N2)−1
∑

(i,j)∈[N ]Xij(θ).

Then, confidence regions for θ can be constructed as in the preceding section.

4.3. Confidence bands for truncated densities of flows in dyadic data. Researchers are

often interested in “the densities of migration across states, trade across nations, liabilities across

banks, or minutes of telephone conversation among individuals” (Graham et al., 2019). Densities

of these flow measures use polyadic data. We illustrate an application of our proposed theory in

Section 3 to constructing a confidence band for such density functions.
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Following Graham et al. (2019), we suppose we observe the dyadic data {Yij : 1 ≤ i 6= j ≤ n}
that admits the structure

Yij = g(Ui, Uj , U{i,j}) (4.1)

where g is symmetric in the first two arguments and hence Yij = Yji. We are interested in inference

on the density of Yij . However, in certain empirical applications, such as international trade (see

Head and Mayer, 2014)), a proportion of the variable of interest is zero. Hence we assume that

Yij has a probability mass at zero, i.e. Yij is such that P(Yij 6= 0) = a ∈ (0, 1], and Yij ∼ f when

Yij 6= 0, where f is a density function on R. Let b(y) = af(y) denote the scaled density. We may

estimate f(·) = b(·)/a by f̂(·) = b̂(·)/â, where

â =
1(
n
2

) ∑
1≤i<j≤n

1(Yij 6= 0), b̂(y) =
1(
n
2

) ∑
1≤i<j≤n

Kh(y − Yij)1(Yij 6= 0).

Here K : R→ R is a kernel function (a function that integrates to one), Kh(·) := h−1K(·/h), and

h = hn → 0 is a bandwidth.

We consider to construct simultaneous confidence intervals (bands) for f over the set of design

points y1, . . . , yp, where p = pn →∞ is allowed. Define

X̂`
ij =

{
Kh(y` − Yij)

â
− b̂(y`)

â2

}
1(Yij 6= 0), 1 ≤ i < j ≤ n, X̂`

ij = X̂`
ji, 1 ≤ j < i ≤ n,

for ` = 1, . . . , p. Then, the multiplier bootstrap statistic is given by

SMB
n =

1

n

n∑
i=1

ξj(Ŵj − 2Sn), where Sn =
1(
n
2

) ∑
1≤i<j≤n

X̂ij and Ŵ `
i =

1

n− 1

∑
j∈{1,...,n}\{i}

2X̂`
ij .

For a given α ∈ (0, 1), consider the (1− α)-simultaneous confidence intervals defined by

I(1− α) :=

p∏
`=1

[
f̂(y`)±

ĉ(1− α)√
n

]
and IN (1− α) :=

p∏
`=1

[
f̂(y`)±

σ̂`ĉ
N (1− α)√

n

]
,

where σ̂2
` = n−1

∑n
k=1(Ŵ `

k−2S`n)2, Λ̂ = diag(σ̂2
1, . . . , σ̂

2
p), ĉ(1−α) is the conditional (1−α)-quantile

of ‖
√
nSMB

n ‖∞, and ĉN (1− α) is the conditional (1− α)-quantile of ‖
√
nΛ̂−1/2SMB

n ‖∞. The first

method I(1 − α) is a constant-length confidence band, while the second method IN (1 − α) is a

variable-length confidence band based on Studentization.

The following proposition establishes asymptotic validity of the confidence bands. We will assume

that there exists a conditional density of Yi,j given Ui, denoted by fY12|U1
(y | u). Let fh(y) =∫

Kh(y − z)f(z)dz denote the surrogate density. Recall that a kernel K is an r-th order kernel for

some r ≥ 2 if
∫
ytK(y)dy = 0 for t = 1, . . . , r − 1 and

∫
|yrK(y)|dy <∞.

Proposition 3. Suppose that: (i) the data is generated following Equation (4.1) with point mass

at zero, P(Yij 6= 0) = a ∈ (0, 1] and Yij ∼ f with probability (1 − a), and a is independent of

n; (ii) the conditional density fY12|U1
is bounded by some constant independent of n; (iii) for the

set of non-zero design points {y1, . . . , yp} ⊂ R, min1≤`≤p Var(fY12|U1
(y` | U1)) is greater than some

positive constant independent of n; (iv) the kernel K is a bounded r-th order kernel for some r ≥ 2;

(iv) the bandwidth satisfies h→ 0, nh2 →∞ as n→∞ and log7(pn) = o(nh2). Then we have

P
((
fh(y`)

)p
`=1
∈ I(1− α)

)
→ (1− α) and P

((
fh(y`)

)p
`=1
∈ IN (1− α)

)
→ (1− α).
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In addition, if f is at least r-continuously differentiable, ‖f (r)‖∞ <∞, and nh2r log p = o(1), then

P
(
(f(y`))

p
`=1 ∈ I(1− α)

)
→ (1− α) and P

(
(f(y`))

p
`=1 ∈ I

N (1− α)
)
→ (1− α).

Some comments on the proposition are in order.

Remark 7. (i) The assumption that g in Equation (4.1) being symmetric in its first two arguments

can in fact be relaxed. In such case, the conclusions in Proposition 3 continue to hold under the

additional assumption that fY12|U2
is bounded by a constant that is independent of n. Also, when

a = 1 and r = 2, the proposed dyadic kernel density estimator reduces to the estimator of Graham

et al. (2020). The proposition complements Graham et al. (2020) by providing valid simultaneous

confidence intervals for their dyadic kernel density estimator.

(ii) In some applications, such as in our empirical illustration in Section 6, the object of interest

is b(·). For such case, one can simply omit the estimation of a by setting â = 1 while keeping b̂(·)
unaltered. The conclusions in Proposition 3 continue to hold with this modification.

(iii) The proof of Proposition 3 does not follow directly from the results of Section 3, as we have

to handle the estimation errors of â and b̂(·), which involves additional substantial work.

4.4. Penalty choice for Lasso under multiway clustering. Consider a regression model

Yi = f(Zi) + εi, E[εi | Zi] = 0, i ∈ [N ],

where Yi is a scalar outcome variable, Zi ∈ Rd is a d-dimensional vector of covariates, f : Rd → R
is an unknown regression function of interest, and εi is an error term. We approximate f by a

linear combination of technical controls Xi = P (Zi) for some transformation P : Rd → Rp, i.e.,

f(Zi) = XT
i β0 + ri, i ∈ [N ],

where ri is a bias term. The dimension p can be much larger than the cluster sizes N , but we

assume that the vector β0 ∈ Rp is sparse in the sense that ‖β0‖0 = s� n. Suppose that the array(
(Yi,Z

T
i )T

)
i∈NK is separately exchangeable and generated as

(Yi,Z
T
i )T = g((Ui�e)e∈{0,1}K\{0}), i ∈ NK , {Ui�e : i ∈ NK , e ∈ {0, 1}K \ {0}} i.i.d.∼ U [0, 1],

for some Borel measurable map g : [0, 1]2
K−1 → R1+d.

Arguably, one of the most popular estimation methods for such a high-dimensional regression

problem is the Lasso (Tibshirani, 1996); we refer to Bühlmann and van de Geer (2011); Giraud

(2015); Wainwright (2019) as standard references on high-dimensional statistics. Let N =
∏K
k=1Nk

denote the total sample size. The Lasso estimate for β0 is defined by

β̂λ = arg min
β∈Rp

 1

N

∑
i∈[N ]

(Yi −XT
i β)2 + λ‖β‖1

 ,

where λ > 0 is a penalty level. We estimate the vector f = (fi)i∈[N ] = (f(Zi))i∈[N ] by f̂λ =

(XT
i β̂

λ)i∈[N ]. Let ‖t‖2N,2 = N−1
∑

i∈[N ] t
2
i for t = (ti)i∈[N ].

In what follows, we discuss the statistical performance of the Lasso estimate. Following Bickel

et al. (2009), we say that Condition RE(s, c0) holds (RE refers to “restricted eigenvalue”) if, for a

given positive constant c0 ≥ 1, the inequality

κ(s, c0) = min
J⊂{1,...,p}
1≤|J |≤s

inf
θ∈Rp, θ 6=0

‖θJc‖1≤c0‖θJ‖1

√
sN−1

∑
i∈[N ](θ

TXi)2

‖θJ‖1
> 0
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holds with Jc = {1, . . . , p} \ J . Here for θ = (θ1, . . . , θp)
T and J ⊂ {1, . . . , p}, θJ = (θj)j∈J . Keep

in mind that as the covariates are random, the restricted eigenvalue κ(s, c0) is random as well.

Theorem 1 of Belloni and Chernozhukov (2013) implies that if, for a given c > 1,

• λ ≥ 2c‖SN‖∞ with SN = N−1
∑

i∈[N ] εiXi and

• Condition RE(s, c0) holds with c0 = (c+ 1)/(c− 1),

then the following nonasymptotic bounds hold with κ = κ(s, c0):

‖f̂λ − f‖N,2 ≤ 3‖r‖N,2 +

(
1 +

1

c

)
λ
√
s

κ
.

To ensure that λ ≥ 2c‖SN‖∞ with high probability, say 1 − η for some small η > 0, we will

chose λ to be an estimate of the (1 − η)-quantile of 2c‖SN‖∞. To this end, we first estimate

the error terms εi by pre-estimating β0 by the preliminary Lasso estimate β̃ = β̂λ0 with penalty

λ0 = τn(n−1 log p)1/2 for some slowing growing sequence τn → ∞. In the following, we take

τn = log n for the sake of simplicity but other choices also work. We apply the multiplier bootstrap

to S̃N = N−1
∑

i∈[N ] ε̃iXi instead of SN .

We note that Hájek projection to SN is given by
∑K

k=1N
−1
k

∑Nk
k=1 Vk,ik , where

Vk,ik = E[ε(1,...,1,ik,1,...,1)X(1,...,1,ik,1,...,1) | U(0,...,0,ik,0,...,0)].

We estimate Vk,ik by

Ṽk,ik =
( ∏
k′ 6=k

Nk′
)−1

∑
i1,...,ik−1,ik+1,...,iK

ε̃iXi.

Let {ξ1,i1}
N1
i1=1, . . . , {ξK,iK}

NK
iK=1 be i.i.d. N(0, 1) variables independent of the data, and consider

ΛξN =

∥∥∥∥∥∥
K∑
k=1

1

Nk

Nk∑
ik=1

ξk,ik(Ṽk,ik − S̃N )

∥∥∥∥∥∥
∞

.

We propose to choose λ as

λ = λ(η) = 2cΛξN (1− η),

where ΛξN (1 − η) denotes the conditional (1 − η)-quantile of ΛξN . We allow η to decrease with n,

i.e, η = ηn → 0.

The following proposition establishes the asymptotic validity of our choice of λ (as n → ∞)

under multiway clustering. In what follows, we understand that s, p,N , η are functions of n while

other parameters such as c, q, κ are independent of n.

Proposition 4 (Penalty choice for the Lasso under multiway clustering). Suppose that: (i) there

exist some constants q ∈ [4,∞) independent of n and DN that may depend on N (and thus on n)

such that E[|ε1|2q]∨E[‖X1‖2q∞] ≤ Dq
N and max1≤j≤p max1≤k≤K E[|V j

k,1|
2+`] ≤ D`

N for ` = 1, 2; (ii)

E[|V j
k,1|

2] is bounded and bounded away from zero uniformly in 1 ≤ j ≤ p and 1 ≤ k ≤ K; (iii)

there exists a positive constant κ independent of n such that κ(s, c0) ≥ κ with probability 1− o(1);

(iv) as n→∞, ‖r‖N,2 = O(
√

(s log p)/n) and

sN
1/q
D3

N log7(pN)

n

∨ D2
N log5(pn)

n1−2/q
= o(1).
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Then, we have λ ≥ 2c‖SN‖∞ with probability 1− η − o(1). Further, we have

λ = OP

(√
log p

n

∨√
log(1/η)

n

)
.

Consequently, if we take η = ηn → 0, we have

‖f̂λ − f‖N,2 = OP

(√
s log p

n

∨√
s log(1/η)

n

)
.

The proof of Proposition 4 does not follow directly from the results of Section 2, as we have to

take care of the estimation error of the preliminary Lasso estimate β̃, which requires extra work.

Condition (iii) in the preceding proposition is a high-level condition on the sample gram matrix.

The following proposition provides primitive sufficient conditions for Condition (iii) to hold in the

two-way clustering case, i.e., K = 2.

Proposition 5 (RE condition under two-way clustering K = 2). Consider K = 2 and let BN =√
E[maxi∈[N ] ‖Xi‖2∞]. Suppose that the eigenvalues of E[X1X

T
1 ] are bounded and bounded away

from zero, and sB2
N log4(pN) = o(n). Then, there exists a positive constant κ independent of n

such that κ(s, c0) ≥ κ with probability 1− o(1).

Under Condition (i) of Proposition 4, BN ≤ N
1/q
DN , so that sB2

N log4(pN) = o(n) reduces to

sN
1/q
DN log4(pN) = o(n), which is implied by Condition (iv) of Proposition 4.

The proof of Proposition 5 relies on Lemma 2.7 in Lecué and Mendelson (2017) and an extension

of Lemma P.1 in Belloni et al. (2018), whose proof in turn relies on the techniques in Rudelson and

Vershynin (2008), from the i.i.d. case to two-way clustering.

Remark 8 (Column standardization). For intepretability of the Lasso estimate, in practice, we

often rescale the penalty by the weighted `1-norm (as in Belloni and Chernozhukov (2011) in the

quantile regression case) to make sure that the coefficients are penalized in a comparable manner.

All the results in this section continue to hold under this practice as the conditions assumed in

Proposition 4 guarantee the sample second moment of each covariate is consistent uniformly over

the coordinates.

5. Simulation Studies

5.1. Uniform Coverage under Multiway Clustering. In this section, we present simulation

studies to evaluate finite sample performance of the proposed multiplier bootstrap method for

multiway clustering. For simulation designs, we use two-way and three-way clustered sampling.

With ΣZ denoting the p × p covariance matrix consisting of elements of the form 4−|r−c| in its

(r, c)-th position, two-way clustered samples are generated according to

Xi =
1

4

(
Z(i1,0) +Z(0,i2)

)
+

1

2
Z(i1,i2).

where (i) Zi�e ∼ N(0,ΣZ) independently for i ∈ {(i1, i2) ∈ N2 : 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2} and

e ∈ {0, 1}2 in one design, and (ii) Zi�e ∼ BN(0,ΣZ) + (1−B)N(0, 2ΣZ) and B ∼ Bernoulli(0.5)

independently for i ∈ {(i1, i2) ∈ N2 : 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2} and e ∈ {0, 1}2 in the other design.

Likewise, three-way clustered samples are generated according to

Xi =
1

12

(
Z(i1,0,0) +Z(0,i2,0) +Z(0,0,i3) +Z(i1,i2,0) +Z(i1,0,i3) +Z(0,i2,i3)

)
+

1

2
Z(i1,i2,i3),
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where (i) Zi�e ∼ N(0,ΣZ) independently for i ∈ {(i1, i2, i3) ∈ N3 : 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2, 1 ≤
i3 ≤ N3} and e ∈ {0, 1}3 in one design, and (ii) Zi�e ∼ BN(0,ΣZ) + (1 − B)N(0, 2ΣZ) and

B ∼ Bernoulli(0.5) independently for i ∈ {(i1, i2, i3) ∈ N3 : 1 ≤ i1 ≤ N1, 1 ≤ i2 ≤ N2, 1 ≤ i3 ≤ N3}
and e ∈ {0, 1}3 in the other design. For each of these data generating designs, we run 2,500 Monte

Carlo iterations to compute the uniform coverage frequencies of E[Xi] for the nominal probabilities

of 80%, 90% and 95% using our proposed multiplier bootstrap for multiway clustering with 2,500

bootstrap iterations.

Tables 1 and 2 show simulation results for two-way cluster sampled data and three-way cluster

sampled data, respectively. The columns consist of the dimension p of X, and the two-way sam-

ple size (N1, N2) or the three-way sample size (N1, N2, N3). The displayed numbers indicate the

simulated uniform coverage frequencies for the nominal probabilities of 80%, 90% and 95%. For

each dimension p ∈ {25, 50, 100}, sample sizes vary as (N1, N2) ∈ {(25, 25), (50, 50), (100, 100)} in

Table 1, and sample sizes vary as (N1, N2, N3) ∈ {(25, 25, 25), (50, 50, 50), (100, 100, 100)} in Ta-

ble 2. Observe that, for each nominal probability, the uniform coverage frequencies approach the

nominal probability as the sample size increases. These results support the theoretical property of

our multiplier bootstrap method. We ran many other sets of simulations with various designs and

sample sizes not presented here, but this observed pattern to support our theory remains invariant

across all the different sets of simulations.

5.2. Uniform Coverage under Polyadic Data. In this section, we present simulation studies

to evaluate finite sample performance of the proposed multiplier bootstrap method for polyadic

data. We shall focus on the the most common case in practice, the dyadic data, i.e. K = 2. With

ΣZ denoting the p × p covariance matrix consisting of elements of the form 4−|r−c| in its (r, c)-th

position, dyadic samples are generated according to

Xi,j =
1

4

(
Z(i,0) +Z(j,0)

)
+

1

2
Z(i,j),

where (i) Zi�e ∼ N(0,ΣZ) independently for i ∈ {(i, j) ∈ N2 : 1 ≤ i, j ≤ n, i 6= j} and e ∈
{1}×{0, 1} in one design, and (ii) Zi�e ∼ BN(0,ΣZ) + (1−B)N(0, 2ΣZ) and B ∼ Bernoulli(0.5)

independently for i ∈ {(i, j) ∈ N2 : 1 ≤ i, j ≤ n, i 6= j} and e ∈ {1} × {0, 1} in the other design.

We run 2,500 Monte Carlo iterations to compute the uniform coverage frequencies of Sn for the

nominal probabilities of 80%, 90% and 95% using our proposed multiplier bootstrap for multiway

clustering with 2,500 bootstrap iterations.

Table 3 shows simulation results. The columns consist of the dimension p of X, and the polyadic

sample size N . The displayed numbers indicate the simulated uniform coverage frequencies for

the nominal probabilities of 80%, 90% and 95%. For each dimension p ∈ {25, 50, 100}, sample

sizes vary as n ∈ {50, 100, 200}. Observe that, for each nominal probability, the uniform coverage

frequencies approach the nominal probability as the sample size increases. These results support

the theoretical property of our multiplier bootstrap method. We ran many other sets of simulations

with various designs and sample sizes not presented here, but this observed pattern to support our

theory remains invariant across all the different sets of simulations.

5.3. Uniform Confidence Band for Densities of Dyadic Data. In this section, we present

simulation studies to evaluate finite sample performance of the proposed uniform confidence bands

for probability density functions of dyadic data that is presented in Section 4.3. Dyadic data are
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Distribution of Zi�e (i) Gaussian

Normalization No

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2 25 50 100 25 50 100 25 50 100

80% Coverage 0.834 0.834 0.807 0.838 0.829 0.794 0.864 0.815 0.813

90% Coverage 0.928 0.921 0.909 0.935 0.925 0.906 0.943 0.916 0.910

95% Coverage 0.973 0.964 0.955 0.973 0.963 0.954 0.976 0.962 0.960

Normalization Yes

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2 25 50 100 25 50 100 25 50 100

80% Coverage 0.753 0.776 0.788 0.740 0.783 0.793 0.698 0.758 0.791

90% Coverage 0.876 0.889 0.895 0.860 0.882 0.900 0.834 0.876 0.896

95% Coverage 0.933 0.943 0.947 0.921 0.938 0.947 0.902 0.936 0.948

Distribution of Zi�e (ii) Mixture

Normalization No

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2 25 50 100 25 50 100 25 50 100

80% Coverage 0.824 0.817 0.803 0.859 0.841 0.814 0.864 0.828 0.814

90% Coverage 0.927 0.908 0.905 0.942 0.931 0.919 0.943 0.910 0.917

95% Coverage 0.967 0.954 0.956 0.976 0.968 0.960 0.973 0.957 0.962

Normalization Yes

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2 25 50 100 25 50 100 25 50 100

80% Coverage 0.747 0.772 0.785 0.716 0.768 0.783 0.711 0.776 0.789

90% Coverage 0.861 0.882 0.891 0.848 0.878 0.887 0.841 0.884 0.888

95% Coverage 0.925 0.939 0.940 0.912 0.938 0.944 0.914 0.941 0.942

Table 1. Simulation results for two-way (K = 2) cluster sampled data. Displayed

are the dimension p of X, the two-way sample size (N1, N2) with N1 = N2, and the

simulated uniform coverage frequencies for the nominal probabilities of 80%, 90%

and 95%.

generated according to

Yi,j =
1

4
(Ui,0 + Uj,0) +

1

2
Ui,j ,

where (i) Ui�e ∼ N(0, 1) independently for i ∈ {(i, j) ∈ N2 : 1 ≤ i, j ≤ n, i 6= j} and e ∈ {1}×{0, 1}
in one design, and (ii) Ui�e ∼ Logistic(0, 1) independently for i ∈ {(i, j) ∈ N2 : 1 ≤ i, j ≤ n, i 6= j}
and e ∈ {1} × {0, 1} in the other design.

We use the Epanechnikov kernel function K for estimation and inference for the probability

density functions f of Yi,j . We use the n1/5-undersmoothed version of two Silverman’s rules of

thumb, i.e., (a) h1
n = 1.06σ̂Yi,jn

−2/5 and (b) h2
n = 0.9 min

{
σ̂Yi,j , ÎQRYi,j/1.34

}
n−2/5 where σ̂Yi,j

and ÎQRYi,j are the sample standard deviation and the sample interquartile range of Yi,j , respec-

tively. Confidence bands for f are constructed on the interval [−2, 2] with the grid size of 201. We

run 2,500 Monte Carlo iterations to compute the uniform coverage frequencies of f on this grid
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Distribution of Zi�e (i) Gaussian

Normalization No

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2, N3 25 50 100 25 50 100 25 50 100

80% Coverage 0.819 0.808 0.805 0.834 0.812 0.808 0.843 0.817 0.813

90% Coverage 0.912 0.912 0.910 0.932 0.914 0.908 0.929 0.918 0.902

95% Coverage 0.952 0.958 0.951 0.971 0.958 0.956 0.973 0.962 0.956

Normalization Yes

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2, N3 25 50 100 25 50 100 25 50 100

80% Coverage 0.777 0.780 0.792 0.768 0.789 0.785 0.732 0.768 0.797

90% Coverage 0.879 0.884 0.892 0.874 0.890 0.888 0.852 0.878 0.898

95% Coverage 0.938 0.936 0.953 0.939 0.944 0.935 0.925 0.935 0.945

Distribution of Zi�e (ii) Mixture

Normalization No

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

Sample Sizes: N1, N2, N3 25 50 100 25 50 100 25 50 100

80% Coverage 0.829 0.823 0.810 0.824 0.822 0.810 0.852 0.818 0.803

90% Coverage 0.921 0.916 0.904 0.923 0.915 0.908 0.946 0.913 0.908

95% Coverage 0.964 0.958 0.952 0.960 0.958 0.956 0.974 0.959 0.958

Normalization Yes

Dimension of Xi: p 25 25 25 50 50 50 100 100 100

80% Coverage 0.777 0.786 0.776 0.779 0.767 0.789 0.741 0.763 0.796

90% Coverage 0.887 0.891 0.890 0.885 0.880 0.895 0.859 0.878 0.894

95% Coverage 0.940 0.943 0.940 0.939 0.938 0.943 0.924 0.939 0.946

Table 2. Simulation results for three-way (K = 3) cluster sampled data. Displayed

are the dimension p of X, the three-way sample size (N1, N2, N3) with N1 = N2 =

N3, and the simulated uniform coverage frequencies for the nominal probabilities of

80%, 90% and 95%.

for the nominal probabilities of 80%, 90% and 95% using our proposed multiplier bootstrap for

inference about the probability density functions of dyadic data with 2,500 bootstrap iterations.

Table 4 shows simulation results. The columns consist of the dyadic sample sizes n ∈ {250, 500}.
The displayed numbers indicate the simulated uniform coverage frequencies for the nominal prob-

abilities of 80%, 95% and 95%. Observe that, for each nominal probability and for each data

generating design, the uniform coverage frequencies approach the nominal probability as the sam-

ple size increases. These results support the theoretical property of our multiplier bootstrap method

for constructing uniform confidence bands for probability density functions of dyadic data.

6. Empirical Illustration

In this section, we present an empirical application of our proposed method in Section 4.3 to

constructing uniform confidence bands for the density functions of bilateral trade volumes in the

international trade, with a similar motivation to that stated in Graham et al. (2019, 2020). Recall
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Distribution of Zi�e (i) Gaussian

Normalization No

Dimension of Xi,j : p 25 25 25 50 50 50 100 100 100

Sample Size: n 50 100 200 50 100 200 50 100 200

80% Coverage 0.791 0.782 0.800 0.792 0.798 0.795 0.803 0.805 0.801

90% Coverage 0.902 0.898 0.901 0.909 0.898 0.905 0.909 0.906 0.912

95% Coverage 0.953 0.954 0.950 0.958 0.951 0.956 0.956 0.954 0.957

Normalization Yes

Dimension of Xi,j : p 25 25 25 50 50 50 100 100 100

Sample Size: n 50 100 200 50 100 200 50 100 200

80% Coverage 0.713 0.744 0.780 0.664 0.736 0.770 0.621 0.718 0.768

90% Coverage 0.837 0.869 0.889 0.806 0.854 0.886 0.780 0.845 0.876

95% Coverage 0.918 0.928 0.946 0.887 0.923 0.943 0.867 0.915 0.942

Distribution of Zi�e (ii) Mixture

Normalization No

Dimension of Xi,j : p 25 25 25 50 50 50 100 100 100

Sample Size: n 50 100 200 50 100 200 50 100 200

80% Coverage 0.777 0.781 0.786 0.778 0.798 0.786 0.794 0.801 0.797

90% Coverage 0.884 0.902 0.894 0.904 0.908 0.892 0.911 0.899 0.899

95% Coverage 0.948 0.953 0.952 0.960 0.958 0.950 0.957 0.953 0.954

Normalization Yes

Dimension of Xi,j : p 25 25 25 50 50 50 100 100 100

Sample Size: n 50 100 200 50 100 200 50 100 200

80% Coverage 0.697 0.762 0.763 0.659 0.734 0.756 0.615 0.720 0.746

90% Coverage 0.824 0.870 0.878 0.807 0.863 0.870 0.773 0.857 0.870

95% Coverage 0.901 0.927 0.941 0.884 0.928 0.925 0.870 0.921 0.933

Table 3. Simulation results for dyadic data. Displayed are the dimension p of X,

the dyadic sample size n, and the simulated uniform coverage frequencies for the

nominal probabilities of 80%, 90% and 95%.

that our method extends those by Graham et al. (2019) in that we can draw uniform confidence

bands as opposed to point-wise confidence intervals. From this analysis, we can learn about the

evolution of the distributions of international trade volumes over time.

We employ the international trade data used in Head and Mayer (2014), that come from the

Direction of Trade Statistics (DoTS). This data set contains information about bilateral trade flows

among 208 economies for 59 years from 1948 to 2006. In this analysis, we will focus on the relatively

recent years, 1990, 1995, 2000 and 2005. Our measure of the bilateral trade volume Yij is defined

as the logarithm of the sum of the trade flow from economy i to economy j and the trade flow from

economy j to economy i. We use the same software code as that used for our simulation analysis

presented in Section 5.3 to draw confidence bands of the probability density function of Yij . Since

there is a probability mass at zero in the international trade volumes, what we estimate is precisely

the Lebesgue-Radon-Nikodym derivative of the continuous part of the distribution, rather than

the probability density function. Specifically, we use b̂(y) defined in Section 4.3 for estimation,
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Distribution of Ui�e (i) Gaussian

Bandwidth Rule (a) h1
n (b) h2

n

Sample Sizes: n 250 500 1000 250 500 1000

80% Coverage 0.712 0.788 0.790 0.678 0.778 0.787

90% Coverage 0.835 0.908 0.906 0.813 0.889 0.913

95% Coverage 0.902 0.953 0.962 0.880 0.949 0.959

Distribution of Ui�e (ii) Logistic

Bandwidth Rule (a) h1
n (b) h2

n

Sample Sizes: n 250 500 1000 250 500 1000

80% Coverage 0.792 0.817 0.799 0.781 0.809 0.794

90% Coverage 0.906 0.916 0.914 0.899 0.914 0.908

95% Coverage 0.955 0.962 0.962 0.951 0.958 0.961

Table 4. Simulation results for uniform confidence bands on [−2, 2] of probability

density functions of dyadic data. Displayed are the dyadic sample sizes n and the

simulated uniform coverage frequencies for the nominal probabilities of 80%, 90%

and 95%.

and confidence bands are constructed by setting â = 1. That said, we shall call it a density for

conciseness.

Figures 1 and 2 illustrate estimates and confidence bands of the density functions of Yij in each

of the years 1990, 1995, 2000 and 2005. Each panel of these figures displays the kernel density

estimates in a solid curve and the 95% uniform confidence bands in a gray shade. In addition, we

also display the proportion of zero bilateral trade volumes to the left of the kernel density plots so

we can get an idea of the complementary proportion that consists the density of the continuously

distributed part of the distribution. Although we treat Yij as the logarithm of the bilateral trade

volumes in estimation and inference, we use the original scale (as opposed to the logarithm) on the

horizontal axis for ease of reading the graphs.

Observe that the proportion of the zero trade volume is decreasing over time, and the density

function is accordingly moving upward over time. Despite this pattern of the changes over time,

the shapes of the density functions are rather similar in the middle of the distribution across time.

This observation entails a high level of confidence given the reasonably tight confidence bands.

However, notice that the right tail of the distribution becomes fatter as time progresses, implying

that there is an increasing number of bilateral pairs with very large trade volumes. Again, this

observation entails a high level of confidence given the tight confidence bands.

7. Summary

Empirical data in use for economic analysis are often clustered in two or more ways, where

one source of dependence across units of demand is the common supply shock, and the the other

source of dependence across units of supply is the common demand shock. When the set of agents

generating the supply and the set of agents generating the demand are different, then such data is

separately exchangeable or two-way clustered. Examples include market share data. When the set
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Figure 1. The kernel density estimates (solid curve) and the 95% uniform confi-

dence bands (gray shade) of the bilateral trade volumes in 1990 and 1995.
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Figure 2. The kernel density estimates (solid curve) and the 95% uniform confi-

dence bands (gray shade) of the bilateral trade volumes in 2000 and 2005.
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of agents generating the supply and the set of agents generating the demand are the same, then

such data is jointly exchangeable or dyadic. Examples include international trade data.

In this paper, for both separately exchangeable data and jointly exchangeable data, we de-

velop methods and theories for inference about multi-dimensional, increasing-dimensional and high-

dimensional parameters. Based on non-asymptotic Gaussian approximation error bounds for the

test-statistic on hyper-rectangles, we propose bootstrap methods and establish their finite sample

validity. Simulation studies support the theoretical properties of the method.

Four applications of the proposed method are illustrated. For demand analysis with a two-

way clustered data consisting of N1 products and N2 markets, Gandhi et al. (2020) derive high-

dimensional moment inequalities. Similarly, for extended gravity analysis with a two-way clustered

data consisting of N1 firms and N2 countries, Morales et al. (2019) derive high-dimensional moment

inequalities. With our theory of approximating the distribution of a multiway sample mean of a

high-dimensional random vector, inverting the Kolmogorov-Smirnov test allows for inference about

the structural parameters in these two settings. Third, extending Graham et al. (2019), our method

was demonstrated to apply to construction of uniform confidence bands for probability density

functions of dyadic data. Finally, we also demonstrate an application of our proposed method to

penalty tuning parameter choice for `1-penalized regression under multiway cluster sampling. As

such, our basic theory paves the way for a variety of applications to analyses of multiway-clustered

and dyadic/polyadic data in econometrics.

Appendix

Appendix A. Maximal Inequalities for Multiway Clustering

In this section, we shall develop maximal inequalities for separately exchangeable arrays. As in

Section 2, let (Xi)i∈NK be a K-array consisting of random vectors in Rp with mean zero generated

by the structure (2.1), i.e., Xi = g((Ui�e)e∈{0,1}K\{0}) for i ∈ NK . We will follow the notations

used in Section 2. The following theorem is fundamental.

Theorem 5. Pick any 1 ≤ k ≤ K and e ∈ Ek. Then, for any q ∈ [1,∞), we haveE

∥∥∥∥∥∥
∑

i∈Ie([N ])

X̂i

∥∥∥∥∥∥
q

∞

1/q

≤ C(log p)k/2

E

max
1≤j≤p

 ∑
i∈Ie([N ])

|X̂j
i |

2

q/2



1/q

,

where C is a constant that depends only on q and K.

The following corollary is immediate from Jensen’s inequality.

Corollary 3 (Global maximal inequality). For any 1 ≤ k ≤ K, e ∈ Ek, and q ∈ [1,∞), we haveE

∥∥∥∥∥∥
∑

i∈Ie([N ])

X̂i

∥∥∥∥∥∥
q

∞

1/q

≤ C(log p)k/2
√ ∏
k′∈supp(e)

Nk′(E[‖X̂1�e‖q∨2
∞ ])1/(q∨2), (A.1)

where C is a constant that depends only on q and K.

Remark 9. By Jensen’s inequality, E[‖X̂1�e‖q∨2
∞ ] on the right-hand side of (A.1) can be replaced

by E[‖X1‖q∨2
∞ ] by adjusting the constant C.
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The proof of Theorem 5 relies on the following symmetrization inequality. Recall that a Rademacher

random variable is a random variable taking ±1 with equal probability.

Lemma 2 (Symmetrization). Pick any 1 ≤ k ≤ K. Let {ε1,i1}, . . . , {εk,ik} be independent Rademacher

random variables independent of the U -variables. Then, for any nondecreasing convex function

Φ : [0,∞)→ [0,∞), we have

E

Φ

∥∥∥∥∥∥
∑
i1,...,ik

X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 ≤ E

Φ

2k

∥∥∥∥∥∥
∑
i1,...,ik

ε1,i1 · · · εk,ikX̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 .
The proof of Lemma 2 in turn relies on the following result.

Lemma 3. Let i ∈ NK . Pick any 1 ≤ k ≤ K and let e ∈ Ek. Then, for any ` ∈ supp(e),

conditionally on (Ui�e′)e′≤e−e`, the vector X̂i�e has mean zero.

Proof of Lemma 3. For illustration, consider first the K = 3 case and e = (1, 1, 1). Then

X̂i = Xi − X̂(i1,i2,0) − X̂(0,i2,i3) − X̂(i1,0,i3) − X̂(i1,0,0) − X̂(0,i2,0) − X̂(0,0,i3).

Given (U(i1,0,0), U(0,i2,0), U(i1,i2,0)), we have

E[X̂(0,i2,i3) | U(i1,0,0), U(0,i2,0), U(i1,i2,0)] = E[Xi | U(0,i2,0)]− E[Xi | U(0,i2,0)] = 0,

E[X̂(i1,0,i3) | U(i1,0,0), U(0,i2,0), U(i1,i2,0)] = E[Xi | U(i1,0,0)]− E[Xi | U(i1,0,0)] = 0.

Conclude that

E[X̂i | U(i1,0,0), U(0,i2,0), U(i1,i2,0)] = E[Xi | U(i1,0,0), U(0,i2,0), U(i1,i2,0)]

− (X̂(i1,i2,0) + X̂(i1,0,0) + X̂(0,i2,0))

= 0.

The proof for the general case is by induction on k. The conclusion is trivial when k = 1.

Suppose that the lemma is true up to k − 1. Then,

E[X̂i�e | (Ui�e′)e′≤e−e` ]

= E[Xi | (Ui�e′)e′≤e−e` ]− X̂i�(e−e`)

−
∑
e′≤e

e′ 6=e,e−e`

E[X̂i�e′ | (Ui�e′′)e′′≤e−e` ] (by the definition of X̂i�e)

=
∑

e′≤e−e`
e′ 6=e−e`

X̂i�e′ −
∑
e′≤e

e′ 6=e,e−e`

E[X̂i�e′ | (Ui�e′′)e′′≤e−e` ] (by plugging in the expansion of X̂i�(e−e`))

=
∑

e′≤e−e`
e′ 6=e−e`

E[X̂i�e′ | (Ui�e′′)e′′≤e−e` ]−
∑
e′≤e

e′ 6=e,e−e`

E[X̂i�e′ | (Ui�e′′)e′′≤e−e` ]

= −
∑

e′≤e−e`′ ,`′ 6=`
`∈supp(e′),`′∈supp(e)

E
[
X̂i�e′ | (Ui�e′′)e′′≤e−e`

]
.

Here, we have used the fact that X̂i�e′ is σ((Ui�e′′)e′′≤e′)-measurable, so that E[X̂i�e′ | (Ui�e′′)e′′≤e−e` ] =

X̂i�e′ as long as supp(e′) ⊂ supp(e − e`). For any e′ ≤ e − e`′ with `′ 6= `, ` ∈ supp(e′), and
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`′ ∈ supp(e), we have

E
[
X̂i�e′ | (Ui�e′′)e′′≤e−e`

]
= E

[
X̂i�e′ | (Ui�e′′)e′′≤e′−e`

]
= 0

by the induction hypothesis. Conclude that E[X̂i�e | (Ui�e′)e′≤e−e` ] = 0. �

Proof of Lemma 2. Let e = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0). Given (Ui�e′)i∈[N ],e′≤e−e1 , {
∑

i2,...,ik
X̂(i1,i2...,ik,0,...,0) :

i1 = 1, . . . , N1} are independent with mean zero (the latter follows from Lemma 3). Hence, apply-

ing the symmetrization inequality (van der Vaart and Wellner (1996), Lemma 2.3.6) conditionally

on (Ui�e′)i∈[N ],e′≤e−e1 , we have

E

Φ

∥∥∥∥∥∥
∑
i1,...,ik

X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 | (Ui�e′)i∈[N ],e′≤e−e1


= E

Φ

∥∥∥∥∥∥
∑
i1

 ∑
i2,...,ik

X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 | (Ui�e′)i∈[N ],e′≤e−e1


≤ E

Φ

2

∥∥∥∥∥∥
∑
i1

ε1,i1

 ∑
i2,...,ik

X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 | (Ui�e′)i∈[N ],e′≤e−e1


= E

Φ

2

∥∥∥∥∥∥
∑
i1,...,ik

ε1,i1X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 | (Ui�e′)i∈[N ],e′≤e−e1


By Fubini’s theorem, we have

E

Φ

∥∥∥∥∥∥
∑
i1,...,ik

X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 ≤ E

Φ

2

∥∥∥∥∥∥
∑
i1,...,ik

ε1,i1X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 .
Next, given {ε1,i1} ∪ {Ui�e′}i∈[N ],e′≤e−e2 , {

∑
i1,i3,...,iK

ε1,i1X̂(i1,i2...,iK ,0,...,0) : i2 = 1, . . . , N2} are

independent with mean zero, so that by the symmetrization inequality and Fubini’s theorem, we

have

E

Φ

2

∥∥∥∥∥∥
∑
i1,...,ik

ε1,i1X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞


= E

Φ

2

∥∥∥∥∥∥
∑
i2

 ∑
i1,i3...,ik

ε1,i1X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞


≤ E

Φ

4

∥∥∥∥∥∥
∑
i2

ε2,i2

 ∑
i1,i3...,ik

ε1,i1X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞


= E

Φ

4

∥∥∥∥∥∥
∑
i1,...,ik

ε1,i1ε2,i2X̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
∞

 .
The conclusion of the lemma follows from repeating this procedure. �

We are now in position to prove Theorem 5.
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Proof of Theorem 5. In this proof, the notation . means that the left-hand side is less than the

right-hand side up to a constant that depends only on q and K. We may assume without loss of

generality e = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0). In view of Lemma 2, it suffices to show that

E

∥∥∥∥∥∥
∑
i1,...,ik

ε1,i1 · · · εk,ikX̂(i1,...,ik,0,...,0)

∥∥∥∥∥∥
q

∞

 . (log p)qk/2E

max
1≤j≤p

 ∑
i1,...,ik

|X̂j
(i1,...,ik,0,...,0)|

2

q/2
 .

By conditioning and Lemma 2.2.2 in van der Vaart and Wellner (1996), together with the fact that

that the Lq-norm is bounded from above by the ψ2/k-norm up to some constant that depends only

on (q, k), the problem boils down to proving that, for any constants ai1,...,ik ,∥∥∥∥∥∥
∑
i1,...,ik

ε1,i1 · · · εk,ikai1,...,ik

∥∥∥∥∥∥
ψ2/k

.
√ ∑
i1,...,ik

a2
i1,...,ik

,

but this follows from Corollary 3.2.6 in de la Peña and Giné (1999). Indeed, let

(ε′1, ε
′
2, . . . ) = (ε1,1, . . . , ε1,N1 , ε2,1, . . . , εK,NK ),

and define correspondingly

bj1...jK =

{
ai1...iK if j1 = i1, j2 = N1 + i2, . . . , jK =

∏K−1
k=1 Nk + iK ,

0 otherwise

for ik = 1, . . . , Nk, k = 1, . . . ,K. Then,∑
i1,...,iK

ε1,i1 · · · εK,iKai1...iK =
∑

j1<···<jK

ε′j1 . . . ε
′
jK
bj1...jK .

Corollary 3.2.6 in de la Peña and Giné (1999) implies that the ψ2/k-norm of the right-hand side is

.
√∑

j1<···<jK b
2
j1...jK

=
√∑

i1,...,iK
a2
i1...iK

. �

Remark 10 (Comparison with Davezies et al. (2020)). Lemma S2 of Davezies et al. (2020) derives

a symmetrization inequality for the empirical process of an separately exchangeable array. Their

symmetrization inequality is substantially different from the maximal inequalities developed in this

section, in the sense that their symmetrization inequality is applied to the whole sample mean and

does not lead to correct orders to degenerate components of the Hoeffding decomposition. Indeed,

Davezies et al. (2020) do not derive a Hoeffding-type decomposition for separately exchangeable

arrays.

Appendix B. Proofs for Section 2

B.1. Proof of Lemma 1. The lemma follows from the fact that E[Xi | (Ui�e)e≤1] = Xi, so that

Xi = X̂i +
∑

e≤1,e6=1 X̂i�e =
∑

e∈{0,1}K\{0} X̂i�e. �
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B.2. Proof of Theorem 1. We will assume Condition (2.3). The proof under Condition (2.4) is

similar and thus omitted. In this proof, let C denote a generic constant that depends only on σ

and K. We divide the proof into two steps.

Step 1. We first prove the following bound for the Hájek projection

sup
R∈R
|P(
√
nSWN ∈ R)− γΣ(R)| ≤ C

(
D2

N log7(pN)

n

)1/6

.

For the notational convenience, we assume K = 2; the proof for the general case is completely

analogous. Let W k = N−1
k

∑
ik
Wk,ik . By Proposition 2.1 in Chernozhukov et al. (2017a), we have

sup
R∈R
|P(
√
NkW k ∈ R)− γΣWk

(R)| ≤ C
(
D2

N log7(pN)

n

)1/6

, k = 1, 2.

For any rectangle R =
∏p
j=1[aj , bj ], vector w = (w1, . . . , wp)

T ∈ RP , and scalar c > 0., we use the

notation [cR+w] =
∏p
j=1[caj +wj , cbj +wj ], which is still a rectangle. With this in mind, observe

that for any rectangle R ∈ R,

P(
√
n(W 1 +W 2) ∈ R) = E

[
P
(√

N1W 1 ∈ [
√
N1/nR−

√
N1W 2] |W 2

)]
Since W 1 and W 2 are independent, the right-hand side is bounded by

E
[
γΣW1

([
√
N1/nR−

√
N1W 2])

]
+ C

(
D2

N log7(pN)

n

)1/6

.

For Y1 ∼ N(0,ΣW1) independent of W 2, we have

γΣW1
([
√
N1/nR−

√
N1W 2]) = P(Y1 ∈ [

√
N1/nR−

√
N1W 2] |W 2),

so that

E
[
γΣW1

([
√
N1/nR−

√
N1W 2])

]
= P(Y1 ∈ [

√
N1/nR−

√
N1W 2])

= P(
√
N2W 2 ∈ [

√
N2/nR−

√
N2/N1Y1])

= E
[
P(
√
N1W 2 ∈ [

√
N2/nR−

√
N2/N2Y1] | Y1)

]
.

Since Y1 and W 2 are independent, the far right-hand side is bounded by

E
[
γΣW2

([
√
N2/nR−

√
N2/N2Y1])

]
+ C

(
D2

N log7(pN)

n

)1/6

.

For Y2 ∼ N(0,ΣW2) independent of Y1, the first term can be written as P(
√
n/N1Y1 +

√
n/N2Y2 ∈

R) = γΣ(R). Conclude that

P(
√
n(W 1 +W 2) ∈ R) ≤ γΣ(R) + C

(
D2

N log7(pN)

n

)1/6

.

The reverse inequality follows similarly.

Step 2. We will prove the conclusion of the theorem. Recall the decomposition:

SN = SWN +RN with RN =

K∑
k=2

∑
e∈Ek

1∏
k′∈supp(e)Nk′

∑
i∈Ie([N ])

X̂i.
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By Corollary 3, we have

E[‖RN‖∞] ≤ C
K∑
k=2

n−k/2(log p)k/2+1DN ≤ Cn−1DN (log p)2.

For R =
∏p
j=1[aj , bj ] with a = (a1, . . . , ap)

T and b = (b1, . . . , bp)
T , we have

P(
√
nSN ∈ R) = P({−

√
nSN ≤ −a} ∩ {

√
nSN ≤ b})

≤ P({−
√
nSN ≤ −a} ∩ {

√
nSN ≤ b} ∩ {‖

√
nRN‖∞ ≤ t}) + P(‖

√
nRN‖∞ > t)

≤ P({−
√
nSWN ≤ −a− t} ∩ {

√
nSWN ≤ b+ t}) + Ct−1n−1/2DN (log p)2

≤ γΣ({y ∈ Rp : −y ≤ −a+ t,y ≤ b+ t})

+ C

(
D2

N log7(pN)

n

)1/6

+ Ct−1n−1/2DN (log p)2

≤ γΣ(R) + Ct
√

log p+ C

(
D2

N log7(pN)

n

)1/6

+ Ct−1n−1/2DN (log p)2,

where the last line follows from Nazarov’s inequality – see Lemma 7 in Appendix F. Choosing

t = n−1/4D
1/2
N (log3 p)1/4, we have

P(
√
nSN ∈ R) ≤ γΣ(R) + C

(
D2

N log7(pN)

n

)1/6

+ C

(
D2

N log5 p

n

)1/4

≤ γΣ(R) + C

(
D2

N log7(pN)

n

)1/6

.

The reverse inequality follows similarly. �

B.3. Proof of Theorem 2. We separately prove the theorem under Cases (i) and (ii).

Case (i). Let C denote a generic constant that depends only on σ,K, and C1. Also the notation

. means that the left-hand side is bounded by the right-hand side up to a constant that depends

only on σ,K, and C1.

Conditionally on X[N ], we have
√
nSMB

N ∼ N(0, Σ̂), where

Σ̂ =
K∑
k=1

n

N2
k

Nk∑
ik=1

(Xk,ik − SN )(Xk,ik − SN )T .

Hence, to obtain a bound on supR∈R |P|X[N ]
(
√
nSMB

N ∈ R)−γΣ(R)|, it suffices to bound ‖Σ̂−Σ‖∞
in view of Lemma 8 in Appendix F. We note that

‖Σ̂− Σ‖∞ ≤
K∑
k=1

max
1≤j,`≤p

∣∣∣ n
N2
k

Nk∑
ik=1

X
j
k,ik

X
`
k,ik
− n

Nk
SjNS

`
N −

n

Nk
E[W j

k,1W
`
k,1]
∣∣∣︸ ︷︷ ︸

=:∆̂W,k

.

We will focus on bounding ∆̂W,1 as similar bounds hold for ∆̂W,k with k ∈ {2, . . . ,K}.
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Observe that

n

N2
1

N1∑
i1=1

X
j
1,i1X

`
1,i1 =

n

N2
1

N1∑
i1=1

(X
j
1,i1 −W

j
1,i1

)(X
`
1,i1 −W

`
1,i1) +

n

N2
1

N1∑
i1=1

(X
j
1,i1 −W

j
1,i1

)W `
1,i1

+
n

N2
1

N1∑
i1=1

W j
1,i1

(X
`
1,i1 −W

`
1,i1) +

n

N2
1

N1∑
i1=1

W j
1,i1
W `

1,i1 .

By the Cauchy-Schwarz inequality and the definition of n, we obtain

∆̂W,1 ≤ max
1≤`≤p

1

N1

N1∑
i1=1

(X
`
1,i1 −W

`
1,i1)2

︸ ︷︷ ︸
=:∆̂W,1,1

+2∆̂
1/2
W,1,1

√√√√max
1≤`≤p

1

N1

N1∑
i1=1

|W `
1,i1
|2

+ max
1≤j,`≤p

∣∣∣ 1

N1

N1∑
i1

(W j
1,i1
W `

1,i1 − E[W j
1,1W

`
1,1])

∣∣∣︸ ︷︷ ︸
=:∆̂W,1,2

+ max
1≤`≤p

|S`N |2.

(B.1)

For the second term on the right-hand side, we have

1

N1

N1∑
i1=1

|W `
1,i1 |

2 ≤ E[|W `
1,i1 |

2] +
1

N1

N1∑
i1=1

(|W `
1,i1 |

2 − E[|W `
1,i1 |

2]) ≤ σ2 + ∆̂W,1,2. (B.2)

Further, since S`N = N−1
1

∑N1
i1=1(X

`
1,i1 −W

`
1,i1

) +N−1
1

∑N1
i1=1W

`
1,i1

, we have

max
1≤`≤p

|S`N |2 . ∆̂W,1,1 + ∆̂2
W,1,3, (B.3)

where ∆̂W,1,3 = max1≤`≤p |N−1
1

∑N1
i1=1W

`
1,i1
|. Combining (B.1)–(B.3), we have

∆̂W,1 . ∆̂W,1,1 + σ∆̂
1/2
W,1,1 + ∆̂W,1,2 + ∆̂2

W,1,3.

It remains to find bounds on the four terms on the right-hand side.

First, by Condition (2.7), we have ∆̂W,1,1 log4 p ≤ C1n
−ζ1 and σ∆̂

1/2
W,1,1 log2 p ≤ Cn−ζ2/2 with

probability at least 1− Cn−1. Second, we note that

E
[

max
1≤i1≤N1

max
1≤`≤p

|W `
1,i1 |

4

]
. (log pN)4 max

1≤`≤p
‖|W `

1,1|4‖ψ1/4
= (log pN)4 max

1≤`≤p
‖W `

1,1‖4ψ1︸ ︷︷ ︸
≤D4

N

.

Applying Lemma 8 in Chernozhukov et al. (2015), we have

E[∆̂W,1,2] . N−1
1

√√√√(log p) max
1≤j,`≤p

N1∑
i1=1

E[|W j
1,i1
W `

1,i1
|2] +N−1

1

√
E
[

max
1≤i1≤N1

max
1≤`≤p

|W `
1,i1
|4
]

log p

. N−1/2
1 DN log1/2 p+N−1

1 D2
N (log p) log2(pN)

. n−1/2DN log1/2 p+ n−1D2
N log3(pN).
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Now, applying Lemma E.2 in Chernozhukov et al. (2017a) with η = 1 and β = 1/2, together with

the fact that∥∥∥∥ max
1≤i1≤N1

max
1≤`≤p

|W `
1,i1 |

2

∥∥∥∥
ψ1/2

=

∥∥∥∥ max
1≤i1≤N1

max
1≤`≤p

|W `
1,i1 |
∥∥∥∥2

ψ1

. (log pN1)2D2
N ,

we have

P
(

∆̂W,1,2 ≥ 2E[∆̂W,1,2] + t
)
≤ exp

(
− nt2

3D2
N

)
+ 3 exp

−
(

nt

CD2
N log2(pN)

)1/2
 .

Setting t = {Cn−1D2
N log n}1/2 ∨ {Cn−1D2

N (log2 n) log3(pN)}, we conclude that

P
(

∆̂W,1,2 ≥ C{(n−1D2
N log1/2(pn) + n−1D2

N (log n)2 log3(pN)}
)
≤ Cn−1.

Condition (2.8) then guarantees that ∆̂W,1,2 log2 p ≤ Cn−ζ1/2 with probability at least 1− Cn−1.

Finally, since σ2 ≤ (max1≤`≤p E[|W `
1,1|3])2/3 ≤ 1 + max1≤`≤p E[|W `

1,1|3] . DN , using Lemma 8 in

Chernozhukov et al. (2015), we have

E[∆̂W,1,3] . (n−1DN log p)1/2 + n−1DN log(pN).

Applying Lemma E.2 in Chernozhukov et al. (2017a) with η = 1 and β = 1, we have

∆̂2
W,1,3 log2 p ≤ C{n−1DN (log2 p) log(pn) + n−2D2

N (log2 n)(log2 p) log2(pN)}︸ ︷︷ ︸
≤Cn−ζ1

with probability at least 1 − Cn−1. Conclude that ∆̂W,1 log2 p ≤ Cn−(ζ1∧ζ2)/2 with probability at

least 1− Cn−1. The desired result then follows from Lemma 8 in Appendix F.

Case (ii). The proof is similar to the previous case. We only point out required modifications.

Let C denote a generic constant that depends only on q, σ,K, and C1. The similar modification

applies to .. In view of the previous case, we only have to find bounds on ∆̂W,1,2 and ∆̂W,1,3.

Applying Lemma 8 in Chernozhukov et al. (2015), we have

E[∆̂W,1,2] . N−1
1

√√√√(log p) max
1≤j,`≤p

N1∑
i1=1

E[|W j
1,i1
W `

1,i1
|2] +N−1

1

√
E
[

max
1≤i1≤N1

max
1≤`≤p

|W `
1,i1
|4
]

log p

. N−1/2
1 DN log1/2 p+N

−1+2/q
1 D2

N log p

. n−1/2DN log1/2 p+ n−1+2/qD2
N log p.

Applying the Fuk-Nagaev inequality (Lemma E.2 in Chernozhukov et al. (2017a)) with s = q/2,

we have

P
(

∆̂W,1,2 ≥ 2E[∆̂W,1,2] + t
)
≤ exp

(
−N1t

2

3D2
N

)
+
CN1D

q
N

N
q/2
1 tq/2

≤ exp

(
− nt2

3D2
N

)
+

CDq
N

nq/2−1tq/2
.

Setting t = (Cn−1D2
N log n)1/2

∨
(Cn−1+4/qD2

N ), we have

P
(

∆̂W,1,2 ≥ C{(n−1D2
N log(pn))1/2 + n−1+4/qD2

N log p}
)
≤ Cn−1.
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Condition (2.9) then guarantees that ∆̂W,1,2 log2 p ≤ Cn−ζ1/2 with probability at least 1 − Cn−1.

A bound for ∆̂W,1,3 can be obtained similarly. Using Lemma 8 in Chernozhukov et al. (2015), we

have

E[∆̂W,1,3] .(n−1DN log p)1/2 + n−1+1/qDN log p.

Applying Lemma E.2 in Chernozhukov et al. (2017a) with s = q, we have

P
(

∆̂W,1,3 ≥ 2E[∆̂W,1,3] + t
)
≤ exp

(
− nt2

3DN

)
+
CDq

N

nq−1tq
.

Setting t = (Cn−1DN log n)1/2
∨

(Cn−1+2/qDN ), we conclude that

∆̂2
W,1,3 log2 p ≤ C{n−1DN (log2 p) log(pn) + n−2+4/q log4 p}︸ ︷︷ ︸

≤Cn−ζ1

with probability at least 1− Cn−1. �

B.4. Proof of Proposition 1. We separately prove the theorem under Cases (i’) and (ii’).

Case (i’). Let the notation . mean that the left-hand side is bounded by the right-hand side up

to a constant that depends only on ν,K, and C1. We will show that P(σ2∆̂W,1,1 log4 p > n−ζ+1/ν) .
n−1, where

∆̂W,1,1 = max
1≤`≤p

1

N1

N1∑
i1=1

(X
`
1,i1 −W

`
1,i1)2.

Similar bounds hold for max1≤`≤pN
−1
k

∑Nk
ik=1(X

`
k,ik
−W `

k,ik
)2 with k ∈ {2, . . . ,K}.

We first note that

∆̂W,1,1 = max
1≤`≤p

1

N1

N1∑
i1=1

(X
`
1,i1 −W

`
1,i1)2 ≤ 1

N1

N1∑
i1=1

‖X1,i1 −W1,i1‖2∞.

Pick any i1 ∈ N. For each i−1 = (i2, . . . , iK) ∈ NK−1 and e ∈ {0, 1}K−1, define the vector

Vi−1�e = (U(0,i−1�e), U(i1,i−1�e)).

With this notation, we can rewrite Xi with i = (i1, i−1) as

Xi = g
(
U(i1,0,...,0), (Vi−1�e)e∈{0,1}K−1\{0}

)
.

From this expression, we see that, conditionally on U(i1,0,...,0), the (K−1)-array (X(i1,i−1))i−1∈NK−1

is separately exchangeable with mean vector W1,i1 generated by {Vi−1�e : iK−1 ∈ NK−1, e ∈
{0, 1}K−1 \ {0}}. Applying Corollary 3 conditionally on U(i1,0,...,0) (the fact that Ui�e are uniform

on [0, 1] is not crucial in the proof of Corollary 3) combined with Jensen’s inequality, we have

E[‖X1,i1 −W1,i1‖2ν∞ | U(i1,0...,0)] .

(
K−1∑
k=1

n−k/2(log p)k/2

)2ν

︸ ︷︷ ︸
.(n−1 log p)ν

E[‖X(i1,1,...,1)‖2ν∞ | U(i1,...,0)],

so that by Fubini’s theorem

E[‖X1,i1 −W1,i1‖2ν∞ ] . (n−1 log p)νE[‖X(i1,1,...,1)‖2ν∞ ] . (n−1D2
N log3 p)ν .
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This implies that E[(σ2∆̂W,1,1 log4 p)ν ] . n−ζν under our assumption. By Markov’s inequality, we

conclude that

P
(
σ2∆̂W,1,1 log4 p > n−ζ+1/ν

)
. n−1.

This completes the proof.

Case (ii’). The proof is similar to the previous case. We only point out required modifications.

Set ν = q/2 in the previous case.Under Case (ii’), we have

E[‖X1,i1 −W1,i1‖q∞] . (n−1 log p)ν E[‖X(i1,1,...,1)‖q∞]︸ ︷︷ ︸
≤DqN

,

which implies that E[(σ2∆̂W,1,1 log4 p)q/2] . n−ζq/2. Markov’s inequality yields the desired result.

�

B.5. Proof of Corollary 1. We only prove the corollary under Case (i). The proof for Case (ii)

is similar. Let C denote a generic constant that depends only on σ,K, and C1. We first note that

from the proof of Theorem 2, we have

max
1≤j≤p

∣∣σ2
j /σ̂

2
j − 1

∣∣ ≤ Cn−(ζ1∧ζ2)/2/ log2 p

with probability at least 1− Cn−1. By Theorem 1, we have

sup
R∈R

∣∣∣P(
√
nΛ−1/2SN ∈ R)− P(Λ−1/2Y ∈ R)

∣∣∣ ≤ Cn−(ζ1∧ζ2)/4.

By the Borell-Sudakov-Tsirel’son inequality and the fact E[‖Λ−1/2Y ‖∞] ≤ C
√

log p, which is im-

plied by the Gaussianity of Λ−1/2Y , we have

P
(
‖Λ−1/2Y ‖∞ > C

√
log(pn)

)
≤ n−1,

Combining the high-dimensional CLT, we see that

P
(
‖
√
nΛ−1/2SN‖∞ > C

√
log(pn)

)
≤ Cn−(ζ1∧ζ2)/4.

Since n−(ζ1∧ζ2)/2

log2 p
×
√

log(pn) ≤ Cn−(ζ1∧ζ2)/4

log3/2 p
, we have

P
(
‖
√
n(Λ̂−1/2 − Λ−1/2)SN‖∞ > tn

)
≤ Cn−(ζ1∧ζ2)/4.

with tn = Cn−(ζ1∧ζ2)/4

log3/2 p
.

Now, for R =
∏p
j=1[aj , bj ] with a = (a1, . . . , ap)

T and b = (b1, . . . , bp)
T , we have

P
(√

nΛ̂−1/2SN ∈ R
)
≤P
(
{−
√
nΛ−1/2SN ≤ −a+ tn} ∩ {

√
nΛ−1/2SN ≤ b+ tn}

)
+ P

(
‖
√
n(Λ̂−1/2 − Λ−1/2)SN‖∞ > tn

)
≤P
(
{−Λ−1/2Y ≤ −a+ tn} ∩ {Λ−1/2Y ≤ b+ tn}

)
+ Cn−(ζ1∧ζ2)/4

≤P(Λ−1/2Y ∈ R) + Cn−(ζ1∧ζ2)/4,

where the last inequality follows from Lemma 7 together with the fact that

tn
√

log p ≤ Cn−(ζ1∧ζ2)/4/ log p ≤ Cn−(ζ1∧ζ2)/4.
39



Thus, we have

P(
√
nΛ̂−1/2SN ∈ R) ≤ P(Λ−1/2Y ∈ R) + Cn−(ζ1∧ζ2)/4.

Likewise, we have

P(
√
nΛ̂−1/2SN ∈ R) ≥ P(Λ−1/2Y ∈ R)− Cn−(ζ1∧ζ2)/4.

Conclude that

sup
R∈R

∣∣∣P(
√
nΛ̂−1/2SN ∈ R)− P(Λ−1/2Y ∈ R)

∣∣∣ ≤ Cn−(ζ1∧ζ2)/4.

Similarly, using Theorem 2 and following similar arguments, we conclude that

sup
R∈R

∣∣∣P|X[N ]
(
√
nΛ̂−1/2SMB

N ∈ R)− P(Λ−1/2Y ∈ R)
∣∣∣ ≤ Cn−(ζ1∧ζ2)/4

with probability at least 1− Cn−1. �

Appendix C. Maximal Inequalities for Polyadic Data

In this section, we shall develop maximal inequalities for jointly exchangeable arrays. As in

Section 3, let (Xi)i∈I∞,K be a K-array consisting of random vectors in Rp with mean zero generated

by the structure (3.1), i.e., Xi = g((U{i�e}+)e∈{0,1}K\{0}). We will follow the notations used in

Section 3. Recall that In,K = {(i1, . . . , iK) : 1 ≤ i1, . . . , iK ≤ n and i1, . . . , iK are distinct}.
We first point out that when analyzing the sample mean Sn, it is without loss of generality to

assume that Xi is symmetric in the components of i, i.e.,

X(i1,...,iK) = X(i′1,...,i
′
K) (C.1)

for any permutation (i′1, . . . , i
′
K) of (i1, . . . , iK). This is because even if Xi is not symmetric in the

components of i, we can instead work with its symmetrized version

X̌(i1,...,iK) =
1

K!

∑
(i′1,...,i

′
K)

X(i′1,...,i
′
K),

where the summation is taken over all permutations of (i1, . . . , iK). It is not difficult to see that

the array (X̌i)i∈I∞,K continues to be jointly exchangeable and satisfies that

Sn =
(n−K)!

n!

∑
i∈In,K

X̌i =

(
n

K

)−1 ∑
1≤i1<···<iK≤n

X̌i.

Henceforth, in this section, we will maintain Condition (C.1).

In the decomposition (3.2), the second term on the right-hand side

Un =

(
n

K

)−1 ∑
1≤i1<···<iK≤n

(
E[Xi | Ui1 , . . . , UiK ]−

K∑
k=1

E[Xi | Uik ]

)
is a degenerate U -statistic (with a symmetric kernel) of degreeK. Indeed, if we define t(u1, . . . , uK) =

E[X(1,...,K) | U1 = u1, . . . , UK = uK ]−
∑K

k=1 E[X(1,...,K) | Uk = uk], then t is symmetric and

Un =

(
n

K

)−1 ∑
1≤i1<···<iK≤n

t(Ui1 , . . . , UiK ).
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The kernel t is degenerate as

E[t(u, U2, . . . , UK)] = E[X(1....,K) | U1 = u]− E[X(1,...,K) | U1 = u] = 0.

Applying Corollary 5.6 in Chen and Kato (2020), we obtain the following lemma.

Lemma 4. For any q ∈ [1,∞), we have

(E[‖Un‖q∞])1/q ≤ C
K∑
k=2

n−k/2(log p)k/2(E[‖X(1,...,K)‖q∨2
∞ ])1/(q∨2),

where C is a constant that depends only on q and K.

We turn to the analysis of the third term on the right-hand side of (3.2)

K∑
k=2

(n−K)!

n!

∑
i∈In,K

(
E[Xi | (U{i�e}+)e∈∪kr=1Er

]− E[Xi | (U{i�e}+)e∈∪k−1
r=1Er

]
)

=
K∑
k=2

(
n

K

)−1 ∑
1≤i1<···<iK≤n

(
E[Xi | (U{i�e}+)e∈∪kr=1Er

]− E[Xi | (U{i�e}+)e∈∪k−1
r=1Er

]
)

where the quality follows from Condition (C.1).

Lemma 5. For any k = 2, . . . ,K and q ∈ [1,∞), we haveE

∥∥∥∥∥∥
(
n

K

)−1 ∑
1≤i1<···<iK≤n

(
E[Xi | (U{i�e}+)e∈∪kr=1Er

]− E[Xi | (U{i�e}+)e∈∪k−1
r=1Er

]
)∥∥∥∥∥∥

q

∞

1/q

≤ Cn−k/2(log p)1/2(E[‖X(1,...,K)‖q∨2
∞ ]1/(q∨2),

where C is a constant that depends only on q and K.

Before the formal proof of Lemma 5, which is somewhat involved, we shall look at the case with

k = K = 2 to understand the bound. If k = K = 2, then the term in question is(
n

2

)−1 ∑
1≤i<j≤n

(E[X(i,j) | Ui, Uj , U{i,j}]− E[X(i,j) | Ui, Uj ]).

Conditionally on Ui’s, this is the sum of independent random vectors with mean zero, so the bound

in the lemma can be deduced from applying the symmetrization inequality (van der Vaart and

Wellner, 1996, Lemma 2.3.6) conditionally on Ui’s and then Lemma 2.2.2 in van der Vaart and

Wellner (1996) to the weighted sum of Rademacher variables conditionally on all U -variables. The

general case is more involved and we will apply the symmetrization inequality for U -statistics with

index-dependent kernels; cf. Theorem 3.5.3 in de la Peña and Giné (1999) and the remark after

the theorem.

Proof of Lemma 5. In this proof, the notation . means that the left-hand side is bounded by the

right-hand side up to a constant that depends only on q and K. Fix any k = 2, . . . ,K. Conditionally

on Uk−1 = {U{i�e}+ : e ∈ ∪k−1
r=1Er, i ∈ I∞,K}, the component

E[Xi | (U{i�e}+)e∈∪kr=1Er
]− E[Xi | (U{i�e}+)e∈∪k−1

r=1Er
]

is a function of (U{i�e}+)e∈Ek with mean zero

E[Xi | (U{i�e}+)e∈∪kr=1Er
]− E[Xi | (U{i�e}+)e∈∪k−1

r=1Er
] = h({i�e}+)e∈Ek

((U{i�e}+)e∈Ek).
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The function h({i�e}+)e∈Ek
implicitly depends on (U{i�e}+)e∈∪k−1

r=1Er
, so that it is indexed by ({i�

e}+)e∈Ek (the vector ({i� e}+)e∪k−1
r=1Er

is uniquely determined by ({i� e}+)e∈Ek so it is enough to

index the function by ({i� e}+)e∈Ek). Define

Jn,k = {({i� e}+)e∈Ek : 1 ≤ i1 < · · · < iK ≤ n}.

This is a collection of vectors of sets where each vector contains mk =
(
K
k

)
sets. We denote a

generic element of Jn,k by J = (J1, . . . , Jmk) by ordering the elements of Ek. We will also write

UJ = (UJ1 , . . . , UJmk ). Then we arrive at the expression∑
1≤i1<···<iK≤n

(
E[Xi | (U{i�e}+)e∈∪kr=1Er

]− E[Xi | (U{i�e}+)e∈∪k−1
r=1Er

]
)

=
∑

J∈Jn,k

hJ(UJ).

We will apply Theorem 3.5.3 in de la Peña and Giné (1999) to bound the q-th moment of the

`∞-norm of the right-hand side. Let {ε{i�e}+ : e ∈ Ek, 1 ≤ i1 < · · · < iK ≤ n} be independent

Rademacher random variables independent of everything else. We first note that conditionally on

Uk−1,
∑

J∈Jn,k hJ(UJ) can be seen as a U -statistic with index-dependent kernels by adding zero

kernels. In view of Remark 3.5.4 ii) in de la Peña and Giné (1999), to apply their Theorem 3.5.3,

we need to verify that hJ = h(J1,...,Jmk ) is symmetric in the sense that

h(J1,...,Jmk )(uJ1 , . . . , uJmk ) = h(J ′1,...,J
′
mk

)(uJ ′1 , . . . , uJ ′mk
)

for any permutation (J ′1, . . . , J
′
mk

) of (J1, . . . , Jmk). But this follows from the definition of hJ and

Condition (C.1). Now, applying Theorem 3.5.3 in de la Peña and Giné (1999), we have

E

∥∥∥∥∥∥
∑

J∈Jn,k

hJ(UJ)

∥∥∥∥∥∥
q

∞

| Uk−1

 . E

∥∥∥∥∥∥
∑

J∈Jn,k

εJ1hJ(UJ)

∥∥∥∥∥∥
q

∞

| Uk−1


= E

∥∥∥∥∥∥
∑
J1

εJ1

 ∑
J2,...,Jmk

hJ(UJ)

∥∥∥∥∥∥
q

∞

| Uk−1

 .
Here the summation

∑
J1

∑
J2,...,Jmk

is understood as∑
J1:∃(J2,...,Jmk )

such that (J1,J2,...,Jmk )∈Jn,k

∑
(J2,...,Jmk ):(J1,J2,...,Jmk )∈Jn,k

.

Conditioning on UJ ’s and applying Lemma 2.2.2 in van der Vaart and Wellner (1996), we have

E

∥∥∥∥∥∥
∑
J1

εJ1

 ∑
J2,...,Jmk

hJ(UJ)

∥∥∥∥∥∥
q

∞

| Uk−1

 . (log p)q/2E


∑

J1

∥∥∥∥∥∥
∑

J2,...,Jmk

hJ(UJ)

∥∥∥∥∥∥
2

∞

q/2

| Uk−1

 .
Observe that given J1, the number of (J2, . . . , Jmk) such that (J1, J2, . . . , Jmk) ∈ Jn,k is(

n− k
K − k

)
= O(nK−k).

To see this, observe that J = (J1, . . . , Jmk) ∈ Jn,k is of the form J = ({i � e}+)e∈Ek for some

(i1, . . . , iK) such that 1 ≤ i1 < · · · < iK ≤ n. Fixing J1 corresponds to fixing k elements of

i1, . . . , iK , so the number of possible (J2, . . . , Jmk) coincides with the number of ways to choose

remaining K − k elements from n− k integers.
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Thus, by the Cauchy-Schwarz inequality, we have

∑
J1

∥∥∥∥∥∥
∑

J2,...,Jmk

hJ(UJ)

∥∥∥∥∥∥
2

∞

. nK−k
∑
J

‖hJ(UJ)‖2∞.

Combining Fubini and the fact that the size of Jn,k is
(
n
K

)
= O(nK), we have

E

∥∥∥∥∥∥
∑

J∈Jn,k

hJ(UJ)

∥∥∥∥∥∥
q

∞

 . n(K−k/2)q(log p)q/2E

(|Jn,k|−1
∑
J

‖hJ(UJ)‖2∞

)q/2 .
Using Jensen’s inequality and the definition of hJ , we conclude thatE

∥∥∥∥∥∥
∑

J∈Jn,k

hJ(UJ)

∥∥∥∥∥∥
q

∞

1/q

. nK−k/2(log p)1/2(E[‖X(1,...,K)‖q∨2
∞ ])1/(q∨2).

This completes the proof. �

Remark 11 (Comparison with Davezies et al. (2020)). Lemma A.1 in Davezies et al. (2020) derives

a symmetrization inequality for the empirical process of a jointly exchangeable array. Essentially,

the same comparison made in Remark 10 applies to the comparison of their Lemma A.1 with the

maximal inequalities developed in this section. Lemma S3 in Davezies et al. (2020) covers the

degenerate case but focuses only on the K = 2 case. As seen in the proof of Lemma 5 above,

however, handling the degenerate components in K > 2 cases is highly nontrivial.

Appendix D. Proofs for Section 3

D.1. Proof of Theorem 3. Given Lemmas 4 and 5, the proof is almost identical to that of

Theorem 1. We omit the details for brevity. �

D.2. Proof of Theorem 4. Conditionally on (Xi)i∈In,K , we have
√
nSMB

n ∼ N(0, Σ̂), where

Σ̂ =
1

n

n∑
j=1

(Ŵj −KSn)(Ŵj −KSn)T

As in the proof of Theorem 2, the desired result follows from bounding ∆̂W = ‖Σ̂− Σ‖∞.

We first note that

∆̂W = max
1≤`,`′≤p

∣∣∣∣∣∣ 1n
n∑
j=1

(Ŵ `
j −KS`n)(Ŵ `′

j −KS`
′
n )− E[W `

1W
`′
1 ]

∣∣∣∣∣∣ .
For every `, `′ ∈ {1, . . . , p},

1

n

n∑
j=1

(Ŵ `
j −KS`n)(Ŵ `′

j −KS`
′
n ) =

1

n

n∑
j=1

Ŵ `
j Ŵ

`′
j −K2S`nS

`′
n

=
1

n

n∑
j=1

(Ŵ `
j −W `

j )(Ŵ `′
j −W `′

j ) +
1

n

n∑
j=1

(Ŵ `
j −W `

j )W `′
j

+
1

n

n∑
j=1

W `
j (Ŵ `′

j −W `′
j ) +

1

n

n∑
k=1

W `
jW

`′
j −K2S`nS

`′
n .
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Using the Cauchy-Schwarz inequality, we have

∆̂W ≤ max
1≤`≤p

1

n

n∑
j=1

(Ŵ `
j −W `

j )2

︸ ︷︷ ︸
=:∆W,1

+2∆̂
1/2
W,1

√√√√max
1≤`≤p

1

n

n∑
j=1

|W `
j |2

+ max
1≤`,`′≤p

∣∣∣∣∣∣ 1n
n∑
j=1

(W `
jW

`′
j − E[W `

1W
`′
1 ])

∣∣∣∣∣∣︸ ︷︷ ︸
=∆̂W,2

+K2 max
1≤`≤p

|S`n|2.

For the second term on the right-hand side, we have

1

n

n∑
k=1

|W `
j |2 ≤ E

 1

n

n∑
j=1

|W `
j |2
+

1

n

n∑
j=1

(|W `
j |2 − E[|W `

1 |2]) ≤ σ2 + ∆̂W,2.

Further, since KS`n = n−1
∑n

j=1(Ŵ `
j −W `

j ) + n−1
∑n

j=1W
`
j , we have

K2 max
1≤`≤p

|S`n|2 ≤ 2∆̂W,1 + 2∆̂2
W,3,

where ∆̂W,3 = max1≤`≤p |n−1
∑n

j=1W
`
j |. Conclude that

∆̂W . ∆̂W,1 + σ∆̂
1/2
W,1 + ∆̂W,2 + ∆̂W,3

up to a universal constant. The rest is completely analogous to the latter part of the proof of

Theorem 2. We omit the details for brevity. �

D.3. Proof of Proposition 2. We only prove the proposition under Case (i’). The proof for

Case (ii’) is similar (cf. the proof of Proposition 1). In this proof, the notation . means that the

left-hand side is bounded by the right-hand side up to a constant that depends only on ν,K, and

C1. Recall that Wj can can be written as

Wj = E

(n−K)!

(n− 1)!

K∑
k=1

∑
i∈In,K :ik=j

Xi

∣∣∣ Uj
 .

We have

∆̂W,1 = max
1≤`≤p

1

n

n∑
j=1

(Ŵ `
j −W `

j )2 ≤ 1

n

n∑
j=1

‖Ŵj −Wj‖2∞

.
K∑
k=1

1

n

n∑
j=1

∥∥∥∥∥∥(n−K)!

(n− 1)!

∑
i∈In,K :ik=j

(Xi − E[Xi | Uj ])

∥∥∥∥∥∥
2

∞

.

Consider the k = 1 term. Pick any j ∈ N. Let I−j∞,K−1 = {(i2, . . . , iK) ∈ (N \ {j})K−1 :

i2, . . . , iK are distinct}. Given Uj , for each i−1 = (i2, . . . , iK) ∈ I−j∞,K and e ∈ {0, 1}K−1, define the

vector

V{i−1�e}+ = (U{i−1�e}+ , U{(j,i−1�e)}+).
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With this notation, we can rewrite Xi with i = (j, i−1) as

Xi = g
(
Uj , (V{i−1�e}+)e∈{0,1}K−1\{0}

)
.

From this expression, we see that, conditionally on Uj , the array (X(j,i−1))i−1∈I−j∞,K−1
is jointly

exchangeable with mean vector E[Xi | Uj ]. Applying Lemmas 4 and 5 conditionally on Uj (the

fact that U -variables are uniform on (0, 1) is not crucial in the proofs), we have

E

∥∥∥∥∥∥(n−K)!

(n− 1)!

∑
i∈In,K :ik=j

(Xi − E[Xi | Uj ])

∥∥∥∥∥∥
2ν

∞

| Uj

 . (K−1∑
k=1

n−k/2(log p)k/2

)2ν

︸ ︷︷ ︸
.(n−1 log p)ν

E[‖X(j,i−1)‖2ν∞ | Uj ],

where i−1 ∈ I−j∞,K−1 is arbitrary. By Fubini’s theorem, the expectation of the left-hand side can be

bounded as

. (n−1 log p)νE[‖X(j,i−1)‖2ν∞ ] . (n−1D2
n log3 p)ν .

Similar bounds hold for other k. Conclude that E[(σ2∆̂W,1 log4 p)ν ] . n−ζν under our assumption.

Together with Markov’s inequality, we obtain

P
(
σ2∆̂W,1 log4 p > n−ζ+1/ν

)
. n−1.

This completes the proof. �

Appendix E. Proof for Section 4

E.1. Proof of Proposition 3.

Proof. In this proof, the notation . means that the left-hand side is less than the right-hand side

up to an n independent constant. Also,
∑

j 6=i is understood as
∑

j∈{1,...,n}\{i}. We will establish

the validity of multiplier bootstrap for the non-normalized test statistic as it implies the result for

normalized test statistic in view of Corollary 2 under the rate condition of this proposition.

First, let us derive the Hájek projection for the test statistic. Observe that

E[Kh(y − Yij)1(Yij 6= 0) | Ui] = a

∫
K(z)fY12|U1

(y + zh | Ui)dz = O(1),

E[|Kh(y − Yij)|1(Yij 6= 0) | Ui, Uj ] ∨ E[K2
h(y − Yij)1(Yij 6= 0)] = O(h−1)

E[b̂(y)] = E[Kh(y − Yij)1(Yij 6= 0)] = a

∫
Kh(y − z)f(z)dz = afh(y) =: bh(y).

Then the Hoeffding type decomposition (3.2) along with Lemma 5 yield |â − a| = OP (n−1/2)

and max1≤`≤p |b̂(y`) − bh(y`)| = OP

(√
n−1 log p

)
. Linearization yields that uniformly over y ∈

{y1, . . . , yp},

√
n

(
b̂(y)

â
− bh(y)

a

)
=
√
n

[
b̂(y)− bh(y)

a
− (â− a)bh(y)

a2

]
+OP

(
log p√
n

)
.

The leading term on the right-hand side can be written as
√
n

n(n− 1)

∑
1≤i<j≤n

2

{
Kh(y − Yij)

a
− bh(y)

a2

}
1(Yij 6= 0).
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Note that the summands are centered. Let us define

X`
ij = 2

{
Kh(y − Yij)

a
− bh(y)

a2

}
1(Yij 6= 0),

then we can write
√
n(f̂(y`)− fh(y`)) =

√
n(S`n − E[S`n]) +OP (log p/

√
n)

uniformly over `. Note a term of the leading component’s Hájek projection is given by

W `
i = E

[
X`
ij | Ui

]
= 2

{
fh(y` | Ui)

a
− bh(y)

a2

}
P (Yij 6= 0 | Ui) .

Let us now show the first statement in the proposition. Denote by c̃(1 − α) the conditional

(1− α)-th quantile of ‖
√
nS̃MB

n ‖∞, where

S̃MB
n =

1

n

n∑
i=1

ξj(W̃j − 2S̃n), W̃ `
i =

1

n− 1

∑
j 6=i

2

{
Kh(y` − Yij)

a
− bh(y`)

a2

}
1(Yij 6= 0),

and S̃n = (n(n − 1))−1
∑

1≤i<j≤nXij . In addition, denote by Ĩ(1 − α) the infeasible confidence

interval

Ĩ(1− α) =

p∏
`=1

[
f̂(y`)±

c̃(1− α)√
n

]
Observe that ‖Xij‖∞ . h−1 and thus for Dn = Ch−1 with some appropriate constant C > 0, once

h is small enough, max1≤`≤p ‖X`
12‖ψ1 ≤ Dn, max1≤`≤p E[|X`

12|2+κ] . h−(1+κ) . Dκ
n for κ = 1, 2.

This verifies the conditions required for Theorem 3 and Corollary 2 under Condition (3.3) and

Remark 6. For Y ∼ N(0,Σ) with Σ = 2E[W1W
T
1 ], we now have

sup
R∈R

∣∣∣P|XIn,2

(√
nS̃MB

n ∈ R
)
− γΣ(R)

∣∣∣ = oP (1).

Observe that conditional on XIn,2 , we have

SMB
n ∼ N(0, Σ̂), where Σ̂ =

1

n

n∑
i=1

(Ŵi − Sn)(Ŵi − Sn)T .

In view of Lemma 8, it suffices to show ‖Σ̂− Σ‖∞ = oP ((log p)−2), as this implies

sup
R∈R

∣∣∣P|XIn,2

(√
nŜMB

n ∈ R
)
− γΣ(R)

∣∣∣ = oP (1),

which in turn gives the desired result. Now, using a similar decomposition as in the proof of

Theorem 4, it holds that

max
1≤`,`′≤p

∣∣∣∣∣ 1n
n∑
i=1

{
(Ŵ `

i − 2S`n)(Ŵ `′
i − 2S`

′
n )− (W̃ `

i − 2S̃`n)(W̃ `′
i − 2S̃`

′
n )
}∣∣∣∣∣

= max
1≤`,`′≤p

∣∣∣∣∣ 1n
n∑
i=1

(Ŵ `
i Ŵ

`′
i − W̃ `

i W̃
`′
i )

∣∣∣∣∣+ 4 max
1≤`,`′≤p

∣∣∣(S̃`nS̃`′n − S`nS`′n )
∣∣∣ = I + II.

First let us consider I. Using the algebraic fact that

1

n

n∑
i=1

(Ŵ `
i Ŵ

`′
i − W̃ `

i W̃
`′
i ) =

1

n

n∑
i=1

{
(Ŵ `

i − W̃ `
i )(Ŵ `′

i − W̃ `′
i ) + (Ŵ `

i − W̃ `
i )W̃ `′

i + W̃ `
i (Ŵ `′

i − W̃ `′
i )
}
,
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we have

I ≤ max
1≤`≤p

1

n

n∑
i=1

(Ŵ `
i − W̃ `

i )2

︸ ︷︷ ︸
=:III

+ 2∆
1/2
1

√√√√max
1≤`≤p

1

n

n∑
i=1

|W̃ `
i |2︸ ︷︷ ︸

=:IV

.

Now let us consider III. Note that as a is bounded away from zero, with probability 1 − o(1), it

holds for all i that

|Ŵ `
i − W̃ `

i |2 =

∣∣∣∣∣∣ 2

n− 1

∑
j 6=i

{
a− â
aâ

Kh(y` − Yij) +
â2bh(y`)− a2b̂(y`)

a2â2

}∣∣∣∣∣∣
2

.(a− â)2

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i

Kh(y` − Yij)

∣∣∣∣∣∣
2

+ (â− a)2 ∨ |bh(y`)− b̂(y`)|2.

To obtain a bound for the first term on the right-hand side, note that for any j 6= i,

max
1≤`≤p

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i

Kh(y` − Yij)

∣∣∣∣∣∣
2

. max
1≤`≤p

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i
{Kh(y` − Yij)− E[Kh(y` − Yij) | Ui]}

∣∣∣∣∣∣
2

+ max
1≤`≤p

|E[Kh(y` − Yij) | Ui]|2 .

Conditional on Ui, Theorem 2.14.1 in van der Vaart and Wellner (1996) with p = 2 yields

E

max
1≤`≤p

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i
{Kh(y` − Yij)− E[Kh(y` − Yij) | Ui]}

∣∣∣∣∣∣
2

| Ui


.

log p

n
· E
[

max
1≤`≤p

(Kh(y` − Yij))2 | Ui
]
. (E.1)

Thus by Fubini, we have

E

max
1≤`≤p

∣∣∣∣∣∣ 1

n− 1

∑
j 6=i
{Kh(y` − Yij)− E[Kh(y` − Yij) | Ui]}

∣∣∣∣∣∣
2 = O

(
log p

nh2

)
= o(1).

On the other hand, max1≤`≤p |E[Kh(y` − Yij) | Ui]| = O(1) as fY12|U1
and K are bounded. Hence

III ≤ 1

n

n∑
i=1

max
1≤`≤p

|Ŵ `
i − W̃ `

i |2

=OP

E

max
1≤`≤p

∣∣∣∣∣∣(a− â)

n− 1

∑
j 6=i

Kh(y` − Yij)

∣∣∣∣∣∣
2+ (â− a)2 ∨ max

1≤`≤p
|bh(y`)− b̂(y`)|2


=OP

(
1

n
∨ log p

n

)
= OP

(
log p

n

)
.

Next let us consider IV . Observe that

max
1≤`≤p

1

n

n∑
i=1

|W̃ `
i |2 .

1

n

n∑
i=1

max
1≤`≤p

∣∣∣W̃ `
i − E[W̃ `

i | Ui]
∣∣∣2 +

1

n

n∑
i=1

max
1≤`≤p

∣∣∣E[W̃ `
i | Ui]

∣∣∣2 = OP (1)
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To see this, observe that since E[W̃i | Ui] = E[X12 | U1] for all i, by Fubini,

E

[
1

n

n∑
i=1

max
1≤`≤p

∣∣∣E[W̃ `
i | Ui]

∣∣∣2] ≤E [max
1≤`≤p

∣∣∣E[X`
12 | U1]

∣∣∣2] = O(1).

Furthermore, conditional on Ui,

E
[

max
1≤`≤p

∣∣∣W̃ `
i − E[W̃ `

i | Ui]
∣∣∣2 | Ui] =E

[
max

1≤`≤p

∣∣∣W̃ `
i − E[Xij | Ui]

∣∣∣2 | Ui] .
Similar to Equation (E.1), conditional on Ui,

E
[

max
1≤`≤p

∣∣∣W̃ `
i − E[Xij | Ui]

∣∣∣2 | Ui] . log p

n
E[‖X12‖2∞ | U1].

By Fubini, we have

E
[

max
1≤`≤p

∣∣∣W̃ `
i − E[Xij | Ui]

∣∣∣2] . log p

nh2
= o(1).

Thus we have,

IV = OP (III1/2) ·OP (1) = OP

(√
log p

n

)
.

Now, for II, since ‖S̃n‖∞ = OP (
√

log p/n) following the Gaussian approximation of Theorem 3,

using the fact that

Ŝ`nŜ
`′
n − S̃`nS̃`

′
n = (Ŝ`n − S̃`n)(Ŝ`

′
n − S̃`

′
n ) + S̃`n(Ŝ`

′
n − S̃`

′
n ) + (Ŝ`n − S̃`n)S̃`

′
n ,

we have II = Op

(
|â− a| ∨max1≤`≤p |b̂(y`)− bh(y`)|

)
= OP ((n−1 log p)1/2). Combining the results,

we have

‖Σ̂− Σ‖∞ log2 p = OP

√ log5 p

n

 = oP (1).

For the second statement of this proposition, note that the bias can be controlled uniformly over

y ∈ {y1, . . . , yp} by

|fh(y)− f(y)| ≤ hr

r!
‖f (r)‖∞

∫
|zrK(z)|dz = O(hr).

Thus, by Lemma 7, we have∣∣∣P((fh(y`)
)p
`=1
∈ I(1− α)

)
− P

(
(f(y`)))

p
`=1 ∈ I(1− α)

)∣∣∣
.
√
n log p · max

1≤`≤p
|fh(y`)− f(y`)| = O(hr

√
n log p).

The argument here follows similar steps as in Corollary 3 in Kato and Sasaki (2018). We omit the

detail for brevity. �
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E.2. Proof of Proposition 4. In this proof, the notation . means that the left-hand side is

bounded by the right-hand side up to a constant independent of n.

By Theorem 1 (use Condition (2.4)), we have

sup
t∈R
|P(‖
√
nSN‖∞ ≤ t)− P(‖G‖∞ ≤ t)| → 0,

where G ∼ N(0,Σ) with Σ =
∑K

k=1(n/Nk)E[Vk,1V
T
k,1]. Conditionally on ((Yi,Z

T
i )T )i∈[N ], we have

K∑
k=1

√
n

Nk

Nk∑
ik=1

ξk,ik(Ṽk,ik − S̃N ) ∼ N(0, Σ̃), where Σ̃ =

K∑
k=1

(n/N2
k )

Nk∑
ik=1

(Ṽk,ik − S̃N )(Ṽk,ik − S̃N )T .

Thus, in view of Lemma 8, it suffices to show that ‖Σ̃−Σ‖∞ log2 p = oP (1) (the bound on λ follows

from the Gaussian concentration). Further, Proposition 1 and the proof of Theorem 2 under poly-

nomial moment conditions (see also Remark 3) imply that ‖Σ̂− Σ‖∞ = oP ((log p)−2), where Σ̂ =∑K
k=1(n/N2

k )
∑Nk

ik=1(V̂k,ik −SN )(V̂k,ik −SN )T and V̂k,ik = (
∏
k′ 6=kNk′)

−1
∑

i1,...,ik−1,ik+1,...,iK
εiXi.

Thus, it suffices to show that ‖Σ̃− Σ̂‖∞ = oP ((log p)−2).

Recall that λ0 = (log n)(n−1 log p)1/2. We note that

E[‖G‖∞] . max
j,k

√
E[(V j

k,1)2] log p .
√

log p,

so that λ0 ≥ 2c‖SN‖∞ with probability 1 − o(1). By assumption, κ(s, c0) is bounded away from

zero with probability 1− o(1). Thus, Theorem 1 in Belloni and Chernozhukov (2013) implies that√√√√ 1

N

∑
i∈[N ]

(XT
i (β̃ − β0))2 = OP

√s log3(pN)

n

 .

Observe that

‖Σ̃− Σ̂‖∞ ≤
K∑
k=1

max
1≤j,`≤p

∣∣∣∣∣∣ 1

Nk

Nk∑
ik=1

(Ṽ j
k,ik

Ṽ `
k,ik
− V̂ j

k,ik
V̂ `
k,ik

)

∣∣∣∣∣∣︸ ︷︷ ︸
=:(Ik)

+K max
1≤j,`≤p

∣∣∣S̃jN S̃`N − SjNS`N ∣∣∣︸ ︷︷ ︸
=:(II)

.

We first consider the term (Ik). We shall focus on k = 1 as similar bounds hold for other k. Observe

that

1

N1

N1∑
i1=1

(Ṽ j
1,i1
Ṽ `

1,i1 − V̂
j

1,i1
V̂ `

1,i1) =
1

N1

N1∑
i1=1

(Ṽ j
1,i1
− V̂ j

1,i1
)(Ṽ `

1,i1 − V̂
`

1,i1) +
1

N1

N1∑
i1=1

(Ṽ j
1,i1
− V̂ j

1,i1
)V̂ `

1,i1

+
1

N1

N1∑
i1=1

V̂ j
1,i1

(Ṽ `
1,i1 − V̂

`
1,i1).

By Cauchy-Schwarz, we have

(I1) ≤ max
1≤j≤p

1

N1

N1∑
i1=1

(Ṽ j
1,i1
− V̂ j

1,i1
)2

︸ ︷︷ ︸
=:(III)

+2(III)1/2

√√√√√√√max
1≤`≤p

1

N1

N1∑
i1=1

|V̂ `
1,i1 |

2

︸ ︷︷ ︸
=:(IV )

.
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To bound (IV ), we note that

max
1≤`≤p

1

N1

N1∑
i1=1

|V̂ `
1,i1 |

2 ≤ 1

N1

N1∑
i1=1

∥∥∥V̂1,i1 − E[V̂1,i1 | U(i1,0,...,0)]
∥∥∥2

∞
+

1

N1

N1∑
i1=1

∥∥∥E[V̂1,i1 | U(i1,0,...,0)]
∥∥∥2

∞

Since E[V̂1,i1 | U(i1,0,...,0)] = E[
¯
ε1X1 | U(1,0,...,0)] for all i1, by Fubini and Jensen’s inequality, we have

E

[
1

N1

N1∑
i1=1

∥∥∥E[V̂1,i1 | U(i1,0,...,0)]
∥∥∥2

∞

]
≤
(
E
[∥∥∥E[ε1X

`
1 | U(1,0,...,0)]

∥∥∥q
∞

])2/q

≤
(
E
[

max
1≤`≤p

|ε1X`
1|q
])2/q

≤ D2
N .

Conditionally on U(i1,0,...,0),

E
[∥∥∥V̂1,i1 − E[V̂1,i1 | U(i1,0,...,0)]

∥∥∥2

∞
| U(i1,0,...,0)

]
≤
(
E
[∥∥∥V̂1,i1 − E[εiXi | U(i1,0,...,0)]

∥∥∥q
∞
| U(i1,0,...,0)

])2/q
.

As in the proof of Proposition 1, conditionally on U(i1,0,...,0), the array (ε(i1,i−1)X(i1,i−1))i−1∈NK−1

is separately exchangeable with mean vector E[εiXi | U(i1,0,...,0)]. By Corollary 3, we have

E
[∥∥∥V̂1,i1 − E[εiXi | U(i1,0,...,0)]

∥∥∥q
∞
| U(i1,0,...,0)

]
.n−q/2(log p)q/2E[‖εiXi‖q∞ | U(i1,0,...,0)].

By Fubini, we have

E
[∥∥∥V̂1,i1 − E[εiXi | U(i1,0,...,0)]

∥∥∥q
∞

]
.n−q/2(log p)q/2Dq

N .

Conclude that |(IV )| = OP (D2
N ).

Next, we shall bound the term (III). Observe that by Cauchy-Schwarz,

|Ṽ j
1,i1
− V̂ j

1,i1
| =

∣∣∣∣∣∣ 1∏
k 6=1Nk

∑
i2,...,iK

Xj
i (XT

i (β̃ − β0) + ri)

∣∣∣∣∣∣
≤
√

1∏
k 6=1Nk

∑
i2,...,iK

(Xj
i )2

√ 1∏
k 6=1Nk

∑
i2,...,iK

(XT
i (β̃ − β0))2 +

√
1∏

k 6=1Nk

∑
i2,...,iK

r2
i

 ,

so that the term (III) is bounded as

. max
j

1

N

N1∑
i1=1

 1∏
k 6=1Nk

∑
i2,...,iK

(Xj
i )2

 1∏
k 6=1Nk

∑
i2,...,iK

(XT
i (β̃ − β0))2 +

1∏
k 6=1Nk

∑
i2,...,iK

r2
i


≤

max
j,i1

1∏
k 6=1Nk

∑
i2,...,iK

(Xj
i )2

 1

N

∑
i∈[N ]

(XT
i (β̃ − β0))2 +

1

N

∑
i∈[N ]

r2
i


︸ ︷︷ ︸

=OP

(
s log3(pN)

n

)
.
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Observe that

E

max
j,i1

1∏
k 6=1Nk

∑
i2,...,iK

(Xj
i )2


≤ E

max
j,i1

∣∣∣∣∣∣ 1∏
k 6=1Nk

∑
i2,...,iK

{(Xj
i )2 − E[(Xj

(i1,1,...,1))
2 | U(i1,0,...,0)]}

∣∣∣∣∣∣


+ E
[
max
j,i1

E[(Xj
(i1,1,...,1))

2 | U(i1,0,...,0)]

]
.

By Hölder’s inequality, we have

E
[
max
j,i1

E[(Xj
(i1,1,...,1))

2 | U(i1,0,...,0)]

]
≤ E

[
max
i1

E[‖X(i1,1,...,1)‖2∞ | U(i1,0,...,0)]

]
≤ E

[
max
i1

(
E[‖X(i1,1,...,1)‖2q∞ | U(i1,0,...,0)]

)1/q]

≤

(
E

[∑
i1

E[‖X(i1,1,...,1)‖2q∞ | U(i1,0,...,0)]

])1/q

≤ N1/q
DN .

Applying Corollary 3 conditionally on U(i1,0,...,0) (cf. the proof of Proposition 1), we have

E

max
j

∣∣∣∣∣∣ 1∏
k 6=1Nk

∑
i2,...,iK

{(Xj
i )2 − E[(Xj

(i1,1,...,1))
2 | U(i1,0,...,0)]}

∣∣∣∣∣∣
q

| U(i1,0,...,0)


. n−q/2(log p)q/2E[‖X(i1,1,...,1)‖2q∞ | U(i1,0,...,0)].

Thus, we have

E

max
j,i1

∣∣∣∣∣∣ 1∏
k 6=1Nk

∑
i2,...,iK

{(Xj
i )2 − E[(Xj

(i1,1,...,1))
2 | U(i1,0,...,0)]}

∣∣∣∣∣∣


≤

∑
i1

E

max
j

∣∣∣∣∣∣ 1∏
k 6=1Nk

∑
i2,...,iK

{(Xj
i )2 − E[(Xj

(i1,1,...,1))
2 | U(i1,0,...,0)]}

∣∣∣∣∣∣
q1/q

. N
1/q
n−1/2(log p)1/2DN .

Conclude that (III) = OP

(
{n−1sN

1/q
DN log3(pN)}1/2

)
and consequently

|(I1)| = OP

(
{n−1sN

1/q
D3

N log3(pN)}1/2
)
.

Finally, to bound |(II)|, observe that

S̃jN S̃
`
N − S

j
NS

`
N = (S̃jN − S

j
N )(S̃`N − S`N ) + SjN (S̃`N − S`N )

+ (S̃jN − S
j
N )S`N .
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Then, we have

|(II)| ≤ max
1≤j≤p

∣∣∣∣∣∣ 1

N

∑
i∈[N ]

(ε̃i − εi)Xj
i

∣∣∣∣∣∣
2

+ 2‖SN‖∞ · max
1≤j≤p

∣∣∣∣∣∣ 1

N

∑
i∈[N ]

(ε̃i − εi)Xj
i

∣∣∣∣∣∣ .
By Cauchy-Schwarz, we have

max
1≤j≤p

∣∣∣∣∣∣ 1

N

∑
i∈[N ]

(ε̃i − εi)Xj
i

∣∣∣∣∣∣ ≤ max
1≤j≤p

√√√√ 1

N

∑
i∈[N ]

(Xj
i )2

√√√√ 1

N

∑
i∈[N ]

(XT
i (β0 − β̃))2 + ‖r‖N,2


= OP

√sDN log3(Np)

n

 ,

so that |(II)| = OP
(
n−1sD3

N log3(pN) + {n−2sDN (log p)(log3(pN))}1/2
)
.

Combining the above bounds, we have ‖Σ̃ − Σ̂‖∞ = OP

(
{n−1sN

1/q
D3

N log3(pN)}1/2
)
. This

implies that ‖Σ̃− Σ̂‖∞ log2 p = oP (1), as required. �

E.3. Proof of Proposition 5. Recall that K = 2. We write Xi,j instead of X(i,j) for the nota-

tional simplicity. Define the N × p matrix X = (X1,1, . . . ,XN1,1,X2,1, . . . ,XN1,N2)T . The s-sparse

eigenvalue with 1 ≤ s ≤ p for X is defined by

φmin(s) = min
‖θ‖0≤s,‖θ‖=1

‖Xθ‖N,2.

By Lecué and Mendelson (2017, Lemma 2.7), if φmin(s) ≥ φ1, then for 2 ≤ s ≤ p, we have

‖Xθ‖2N,2 ≥ φ2
1‖θ‖2 −

‖θ‖21
s− 1

× max
1≤`≤p

∑
(i,j)∈[N ]

(X`
i,j)

2/N

︸ ︷︷ ︸
=:ρ̂

for all θ ∈ Rp. We can then deduce that for s1 ≤ (s− 1)φ2
1/(2(1 + c0)2ρ̂), we have

κ(s1, c0) ≥ φ1/
√

2.

Lemma 6 below implies that φmin(s) is bounded away from zero with probability 1− o(1). Further,

observe that

ρ̂ ≤ max
1≤`≤p

E[(X`
1,1)2] + max

1≤`≤p

∣∣∣∣∣∣N−1
∑

(i,j)∈[N ]

{(X`
i,j)

2 − E[(X`
1,1)2]}

∣∣∣∣∣∣ .
The first term on the right-hand side is O(1), while the second term is oP (1) (which follows from

Lemma 6 below with s = 1), so that ρ̂ = OP (1). The conclusion of the proposition follows from

rescaling s. �

Lemma 6 (Sparse eigenvalues for two-way clustering). Suppose that (Xi,j)(i,j)∈[N ] with [N ] =

{1, . . . , N1} × {1, . . . , N2} is sampled from a separately exchangeable array (Xi,j)(i,j)∈N2 generated

as Xi,j = g(Ui,0, U0,j , Ui,j) for some Borel measurable map g : [0, 1]3 → Rp and i.i.d. U [0, 1]
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variables Ui,0, Uj,0, Ui,j. Pick any 1 ≤ s ≤ p∧n. Let B =
√
E[M2] with M = max(i,j)∈[N ] ‖Xi,j‖∞.

Define

δN =
√
sB

(
1√
n

{
log1/2 p+ (log s)(log1/2N)(log1/2 p)

}∨ 1√
N

{
log p+ (logN)(log p)

})
.

Then, we have

E

 sup
‖θ‖0≤s,‖θ‖=1

∣∣∣∣∣∣ 1

N

∑
(i,j)∈[N ]

{(θTXi,j)
2 − E[(θTX1,1)2]}

∣∣∣∣∣∣
 . δ2

N + δN sup
‖θ‖0≤s, ‖θ‖=1

√
E[(θTX1,1)2]

up to a universal constant. In addition, we have δN . {n−1sB2 log4(pN)}1/2 up to a universal

constant.

Proof of Lemma 6. In this proof, the notation . means that the left-hand side is bounded by the

right-hand side up to a universal constant.

Let Θs = ∪|T |=s{θ ∈ Rp : ‖θ‖ = 1, supp(θ) ⊂ T}. Further, let Zi,j(θ) = (θTXi,j)
2−E[(θTX1,1)2].

Then, for each θ, Zi,j(θ) is a centered random variable. Consider the decomposition

Zi,j(θ) = E[Zi,1(θ) | Ui,0] + E[Z1,j(θ) | U0,j ] + Zi,j(θ)− E[Zi,1(θ) | Ui,0]− E[Z1,j(θ) | U0,j ]︸ ︷︷ ︸
=:Ẑi,j(θ)

.

We divide the rest of the proof into two steps.

Step 1. Consider first the term
∑

i,j E[Zi,j(θ) | Ui,0] = N2
∑N1

i=1 E[Zi,1(θ) | Ui,0], which consists

of i.i.d. variables. Observe that E[Zi,1(θ) | Ui,0] has mean 0 and by symmetrization

E

[
sup
θ∈Θs

∣∣∣∣∣
N1∑
i=1

E[Zi,1(θ) | Ui,0]

∣∣∣∣∣
]

= E

[
sup
θ∈Θs

∣∣∣∣∣
N1∑
i=1

(
θTE[Xi,1X

T
i,1 | Ui,0]θ − E[(θTX1,1)2]

)∣∣∣∣∣
]

≤ 2E

[
E

[
sup
θ∈Θs

∣∣∣∣∣
N1∑
i=1

εi
(
θTE[Xi,1X

T
i,1 | Ui,0]θ

)∣∣∣∣∣ |X[N ]

]]

≤ 2E

[
E

[
sup
θ∈Θs

∣∣∣∣∣
N1∑
i=1

εi(θ
TXi,1)2

∣∣∣∣∣ |X[N ]

]]
,

where (εi)
N1
i=1 is a sequence of independent Rademacher random variables that are independent of

(Xi,j)(i,j)∈[N ], and the second inequality follows from Jensen’s inequality. Now, the following bound

can be obtained by following the proof of Lemma P.1. in Belloni et al. (2018) with U set to be a

singleton set:

E

[
sup
θ∈Θs

∣∣∣∣∣
N1∑
i=1

εi(θ
TXi,1)2

∣∣∣∣∣ |X[N ]

]
.
√
sMR1(log1/2 p+ (log s)(log1/2N)(log1/2 p)),

where R1 = supθ∈Θs

(∑N1
i=1(θTXi,1)2

)1/2
.
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Choosing δN ,1 = BN
−1/2
1

√
s{log1/2 p+ (log s)(log1/2N)(log1/2 p)}, by Cauchy-Schwarz, we have

I := E

[
sup
θ∈Θs

∣∣∣∣∣
N1∑
i=1

εi(θ
TXi,1)2

∣∣∣∣∣
]
.
δN ,1E[MR1]

B
√
N1

≤
(
δN ,1

B

)(
E[M2]E[R2

1]

N1

)1/2

≤ δN ,1(E[R2
1/N1])1/2 . δN ,1

(
I + sup

θ∈Θs

E[(θTX1,1)2]

)1/2

.

Using the algebraic fact that a2 ≤ δ2a+ δ2b implies a ≤ δ2 + a−1δ2b, we have

I . δ2
N ,1 + δN ,1

√
sup
θ∈Θs

E[(θTX1,1)2].

The same bound holds for E
[
supθ∈Θs

∣∣∣N−1
2

∑N2
j=1 E[Z1,j(θ) | U0,j ]

∣∣∣]. Conclude that

E

 sup
θ∈Θs

∣∣∣∣∣∣ 1

N

∑
i,j

(E[Zi,j(θ) | Ui,0] + E[Zi,j(θ) | U0,j ])

∣∣∣∣∣∣
 . δ2

N ,2 + δN ,2

√
sup
θ∈Θs

E[(θTX1,1)2],

where δN ,2 = Bn−1/2√s{log1/2 p+ (log s)(log1/2N)(log1/2 p)} . Bn−1/2√s log2(pN).

Step 2. Now, to obtain a bound on E[supθ∈Θs |N
−1
∑

i,j Ẑi,j(θ)|], by Lemma 2, we have the

following symmetrization inequality

E

 sup
θ∈Θs

∣∣∣∣∣∣
∑
i,j

Ẑi,j(θ)

∣∣∣∣∣∣
 ≤ 4E

E
 sup
θ∈Θs

∣∣∣∣∣∣
∑
i,j

εiε
′
jẐi,j(θ)

∣∣∣∣∣∣ |X[N ]


. E

E
 sup
θ∈Θs

∣∣∣∣∣∣
∑
i,j

εiε
′
j(θ

TXi,j)
2

∣∣∣∣∣∣ |X[N ]

 ,
where (εi) and (ε′i) are independent copies of Rademacher random variables independent of (Xi,j)(i,j)∈[N ],

and the second inequality follows from Jensen’s inequality. Conditionally on (Xi,j)(i,j)∈[N ],
∑

i,j εiε
′
j(θ

TXi,j)
2

is a Rademacher chaos of degree 2 (cf. the proof of Theorem 5). Hence, Corollary 5.1.8 in de la

Peña and Giné (1999) yields that

II := E

 sup
θ∈Θs

∣∣∣∣∣∣
∑
i,j

εiε
′
j(θ

TXi,j)
2

∣∣∣∣∣∣ |X[N ]

 .
∥∥∥∥∥∥ sup
θ∈Θs

∣∣∣∣∣∣
∑
i,j

εiε
′
j(θ

TXi,j)
2

∣∣∣∣∣∣
∥∥∥∥∥∥
ψ1|X

.
∫ diam(Θs)

0
logN(Θs, ρX , t)dt,

where ‖·‖ψ1|X is the ψ1-norm evaluated conditionally on (Xi,j)(i,j)∈[N ], ρX is a pseudometric on Θs

defined by ρX(θ, θ) =
(∑N1

i=1

∑N2
j=1{(θTXi,j)

2 − (θ
T
Xi,j)

2}2
)1/2

, and diam(Θs) is the ρX -diameter
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of Θs. Now, for any two θ, θ̄ ∈ Θs,

ρX(θ, θ̄) =

 N1∑
i=1

N2∑
j=1

{
(θTXi,j)

2 − (θ̄TXi,j)
2
}2

1/2

≤

 N1∑
i=1

N2∑
j=1

{
(θTXi,j) + (θ̄TXi,j)

}2

1/2

max
(i,j)∈[N ]

|(θ − θ̄)TXi,j |

≤
√

2R2‖θ − θ̄‖X ,

where R2 = supθ∈Θs

(∑
(i,j)∈[N ](θ

TXi,j)
2
)1/2

and ‖θ‖X = max(i,j)∈[N ] |θTXi,j |. Thus, we have∫ diam(Θs)

0
logN(Θs, ρX , t)dt ≤

∫ 2
√

2sMR2

0
logN

(
Θs/
√
s, ‖ · ‖X , t/(

√
2sR2)

)
dt

= 2
√

2sR2

∫ M

0
logN

(
Θs/
√
s, ‖ · ‖X , t

)
dt.

Lemma 3.9 and Equation (3.10) in Rudelson and Vershynin (2008) yield that for some universal

constant A,∫ M

0
logN

(
Θs/
√
s, ‖ · ‖X , t

)
dt

≤
∫ M/

√
s

0
log

((
p

s

)
(1 + 2M/t)s

)
dt+

∫ M

M/
√
s

log
(

(2p)At
−2M2 logN

)
dt

≤ M√
s

log

(
p

s

)
+
√
s

∫ M/
√
s

0
log(1 + 2M/t)dt+AM2(logN)(log(2p))

∫ M

M/
√
s

dt

t2

.M
√
s log p+M(1 + 2

√
s) log

(
1 +

1

2
√
s

)
+A
√
sM(logN)(log(2p))

.
√
sM

(
log p+ (logN)(log p)

)
,

where the second term follows from integration by parts

√
s

∫ M/
√
s

0
log(1 + 2M/t)dt ≤

√
st log

(
1 +

2M

t

) ∣∣∣M/
√
s

0
+
√
s2M log(t+ 2M)

∣∣∣M/
√
s

0

.M(1 + 2
√
s) log

(
1 +

1

2
√
s

)
.

Hence, we have II . sR2M
{

log p+ (logN)(log p)
}

.

Setting δN ,3 = sN−1/2B
(
log p+ (logN)(log p)

)
, we have

III := E

 sup
θ∈Θs

∣∣∣∣∣∣
∑
i,j

εiε
′
j(θ

TXi,j)
2

∣∣∣∣∣∣
 . δN ,3E[MR2]

B
√
N

≤
(
δN ,3

B

)(
E[M2]E[R2

2]

N

)1/2

≤ δN ,3

(
E[R2

2]

N

)1/2

. δN ,3

(
III + sup

θ∈Θs

E[(θTX1,1)2]

)1/2

.

Using the same algebraic fact as in Step 1 yields that III . δ2
N ,3 + δN ,3

√
supθ∈Θs E[(θTX1,1)2].
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Finally, since n ≤
√
N and s ≤ n, we have

sB√
N

(
log p+ (logN)(log p)

)
.
sB

n

(
log p+ (logN)(log p)

)
.

√
sB√
n

log2(pN).

This completes the proof. �

Appendix F. Technical Tools

Lemma 7 (Nazarov’s inequality). Let Y = (Y 1, . . . , Y p)T be a centered Gaussian random vector

in Rp such that E[|Y j |2] ≥ σ2 for all 1 ≤ j ≤ p and some constant σ > 0. Then for every y ∈ Rp
and δ > 0,

P(Y ≤ y + δ)− P(Y ≤ y) ≤ δ

σ
(
√

2 log p+ 2).

Proof. This is Lemma A.1 in Chernozhukov et al. (2017a); see Chernozhukov et al. (2017b) for its

proof. �

Lemma 8 (Gaussian comparison over rectangles). Let Y and W be centered Gaussian random

vectors in Rd with covariance matrices ΣY = (ΣY
j,k)1≤j,k≤d and ΣW = (ΣW

j,k)1≤j,k≤d, respectively,

and let ∆ = ‖ΣY − ΣW ‖∞. Suppose that min1≤j≤d ΣY
j,j

∨
min1≤j≤d ΣW

j,j ≥ σ2 for some constant

σ > 0. Then

sup
R∈R
|P(Y ∈ R)− P(W ∈ R)| ≤ C(∆ log2 d)1/2,

where C is a constant that depends only on σ.

Proof. See Corollary 5.1 in Chernozhukov et al. (2019b). �
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