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Abstract

This paper considers estimation of a continuous linear regression functional that
can be written as a weighted population mean of observed outcome. A leading
example is the population average treatment effect under unconfoundedness and
overlap conditions, when the weight function is the product of binary treatment
and inverse propensity score. We propose a new plug-in estimator of the functional
when the weight function is approximated in series space. This estimator is near
optimal in the sense that its mean square remainder error is controlled as small as
possible in finite sample. We characterize its asymptotic distribution, allowing the
number of basis functions k to grow proportionally to sample size n. We compare
both finite sample and asymptotic performance of our estimator with doubly robust
(DR) estimators. We find DR estimators often do not have materially smaller mean
square remainder error in finite sample. DR estimators also do not improve the
asymptotic performance when the ratio of k to n is smaller than 1. When the ratio
is larger than 1, we propose a modified DR estimator to improve the asymptotic
performance of our plug-in estimator. We apply our method to the work of Ferraz
and Finan (2011) and conduct simulations to support theoretic findings.

∗The Institute for Fiscal Studies, 7 Ridgmount Street London WC1E 7AE. Email:
c.qiu.lse@gmail.com. This is a revision of my job market paper entitled Minimax Learning for Aver-
age Regression Functionals. I am indebted to Taisuke Otsu for patient and continuous guidance and
support. This draft benefits from useful discussions with Jaap Abbring, Debopam Bhattacharyam, Ben
Deaner, Rachael Meager, Francesca Molinari, Whitney Newey, Alexey Onatskiy, Jörg Stoye and Daniel
Sturm. I also thank numerous seminar and conference participants for helpful feedback.

1



1 Introduction

In many empirical problems, parameter of interest is a continuous linear functional of a
regression function in a Hilbert space. In this paper, we call this parameter an average
regression functional. One leading example is the population average treatment effect
under unconfoundedness and overlap conditions. As modern datasets are often high di-
mensional (for example, in an observational study, the number of pretreatment covariates
is possibly non negligible compared to sample size), it is important to find an estimator
with estimation error as small as possible.

One standard framework of evaluating estimators is based on the asymptotic order of
their remainder error terms (remainders) that arise from the asymptotic linear expansion.
If remainders vanish to zero asymptotically, the estimator is

√
n normal and usually also

semiparametrically efficient1. This observation motivates Newey and Robins (2018) to
find an estimator with remainders converging to zero asymptotically as fast as possible.
Their estimator relies on doubly robust (DR, or Neyman orthogonal) moment and cross
fitting (also see, among others, Farrell, 2015; Chernozhukov et al., 2016; Rothe and Firpo,
2016; Belloni et al., 2017; Chernozhukov et al., 2018a) to reduce the asymptotic bias. By
construction, the asymptotic impact of estimation error is minimal.

Another approach focuses on the finite sample performance. Since many linear func-
tionals are not

√
n estimable (for example, the value of regression function at a fixed

point), this approach directly controls finite sample error by linear minimax exercise (see
for example, Armstrong and Kolesár, 2018b; Imbens and Wager, 2018). The resulting es-
timator and confidence interval are by construction, optimal in the minimax sense among
a class of linear estimators. Armstrong and Kolesár (2018a) extend this approach to
conditional (or sample based) average treatment effect, and one advantage is they can
also deal with scenarios when

√
n inference is not possible (for example, when the overlap

condition is violated).
This paper complements previous two influential approaches. We propose a nearly

optimal procedure of estimating average regression functional when its semiparametric
efficiency bound is finite. We start by writing the average regression functional alter-
natively as a population weighted mean of observed outcome. For example, in the case
of population average treatment effect, the weight function is the product of the binary
treatment and inverse propensity score. This weight function plays a crucial role in semi-
parametric theory and is in fact the Riesz Representer (RR, also see Newey, 1990, 1994).
We consider a class of plug-in estimators where the weight function is approximated in a
series (linear sieve) space. These estimators are closely related to the balancing method in

1See, among others, Newey (1990); Van Der Vaart et al. (1991); Bickel et al. (1993); Andrews (1994);
Newey (1994); Newey and McFadden (1994) for a general treatment of semiparametric inference.
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statistics literature (for example, Hainmueller, 2012; Zubizarreta, 2015; Chan et al., 2016;
Kallus, 2016; Athey et al., 2018) and we call them balancing plug-in (BP) estimators.

Our idea is to find a BP estimator so that its remainders are as small as possible
in finite sample. This motivates a new performance benchmark called maximum mean
square remainder (MMSR, formally defined in Section 3.1) in a given sample. MMSR is
analogous to the notion of maximum mean square error but focuses on remainders. Since
RR is usually unknown, directly minimizing MMSR is infeasible in general. Instead, we
minimize a feasible upper bound of MMSR. The linear structure of series space offers
tractability: Our minimax exercise can be solved analytically by considering a minimum
distance criterion with a ridge style penalty, a form similar to the penalized sieve minimum
distance (PSMD) estimator in Chen and Pouzo (2012, 2015). Our derived estimator
is thus near optimal in the sense that it minimizes the MMSR bound among all BP
estimators in the series space. Building on a vast literature in series estimation2, we
characterize the asymptotic distribution of our estimator and allow the number of basis
functions k to grow proportionally to sample size n. We also compare the finite sample
as well as asymptotic performance of our estimator with DR approach.

Our estimator is also inspired by Wong and Chan (2018); Hirshberg and Wager (2018),
who investigate how to directly control remainders by minimax exercise. However, our
paper is different from theirs in several notable aspects: first, their minimax exercises are
embedded in infinite dimensional space while this paper focuses on series space; second,
their main analyses are centered around the asymptotic performance of DR estimators,
while this paper focuses on BP method; third, we formalize the minimax exercise as
a finite sample performance criterion regarding remainders, and compare finite sample
as well as asymptotic performance with DR estimators. Our paper is also related to
Chernozhukov et al. (2018b,c). One of their results show that DR moment and cross
fitting are also effective for regularized estimators of the RR in high dimensional cases,
and their estimators can achieve

√
n normality under weak conditions.

In terms of finite sample results, we show that DR estimators do not achieve smaller
MMSR bound unless the estimator for the regression function is precise enough in finite
sample. The improvement from DR estimators is also likely to be limited. When the
sample Gram matrix of basis functions is orthogonal, we derive a sharp lower bound
on the relative efficiency of DR estimators compared to our estimator. These theoretic
results are supported by simulations in Appendix E.3 where we compare finite sample
performance of our estimator with various DR estimators.

In terms of asymptotic results, our estimator can achieve
√
n normality without a

2See, among others, Newey (1997); Shen (1997); Huang (2003); Ai and Chen (2003); Newey and
Powell (2003); Chen (2007) and more recently, Belloni et al. (2015); Chen and Christensen (2015);
Hansen (2015).

3



consistent estimator of the weight function. The remainder of our estimator also con-
verges to zero asymptotically at a rate fast enough, in the sense that it achieves the
minimal condition for semiparametric efficiency in Robins et al. (2009) if the regression
function is smooth enough.3 One important implication is that, if k

n
< 1, the remainder

of DR estimator (without cross fitting) does not converge faster than that of our estima-
tor. Therefore, if our estimator does not attain semiparametric efficiency when k

n
< 1,

resorting to DR estimators alone will not help. In this scenario, cross fitting (with or
without DR structure) can improve the asymptotic remainder rate but does not have
the finite sample property established in this paper, to the best of my knowledge. As a
technical contribution, we also allow the minimum eigenvalue of the sample Gram matrix
to diminish to 0 at a fast rate for certain functionals.

When k
n
≥ 1, the remainder of our estimator is often growing asymptotically. In this

case, it is indeed possible to improve the asymptotic performance by a DR structure.
Based on this observation, we propose a modified minimum distance estimator for the
weight function with an elastic net style penalty. This modified estimator converges
at least as fast as its lasso counterpart. We also develop algorithms to choose penalty
coefficients in a data-driven way. With this modified estimator, we can build a DR
estimator, which achieves semiparametric efficiency when k

n
≥ 1 under conditions weaker

than those in Belloni et al. (2017); Chernozhukov et al. (2018a,c) and comparable to
Chernozhukov et al. (2018c).

Our procedure is computationally convenient, and is also of interest to applied re-
searchers who often encounter datasets large both in terms of sample size and controls.
As an empirical illustration, I revisit Ferraz and Finan (2011)’s work that studies the
effect of electoral accountability on corruption. With plausibly exogenous treatment, one
of their main empirical strategies is OLS with many controls. As a standard practice,
they sequentially add different sets of relevant controls to the regression. However, for
this dataset, point estimates do change considerably, jumping almost 50% from a plain
vanilla mean comparison to a full specification with the ratio k

n
= 0.14. While such coef-

ficient instability is usually interpreted as a bias correction, we show that there is another
probable interpretation of the results.4 Applying our estimator to the same dataset, es-
timated treatment effect behaves stably. Thus observed coefficient instability can also
be associated with sub optimal control of mean square remainders in the presence of
many controls. This is a deficiency of the estimation method itself. Ignoring such effect
could lead to misinterpretation of many empirical results. On the other hand, our esti-
mator tries to control remainders in an optimal manner and should be more robust for

3Recently, Bradic et al. (2019) also derive the minimax condition for
√
n consistent and efficient

estimation of some average regression functional under sparsity assumption.
4Also see Oster (2017) for a different reason why the common interpretation could be wrong.
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moderately high dimensional datasets.
The rest of the paper is organized as follows: Section 2 introduces the framework

and running example. Section 3 presents the main methodology and compares the finite
sample performance with DR estimators. Section 4 develops the asymptotic theory and
compares the asymptotic performance with DR estimators when k

n
< 1. Section 5 shows

that DR structure can improve the asymptotic performance of our estimator when k
n
≥ 1,

and proposes a modified elastic net style estimator of the weight function. Empirical
application is presented in Section 6. Additional technical results, examples, simulations,
tables and figures can be found in Appendices and Supplementary Materials.

2 Framework

2.1 Set-up

Our set-up is adapted from Newey and Robins (2018). Let Y ∈ R be a random outcome
variable and X ∈ X ⊆ RdX be a random vector. Suppose a random sample {(Yi, X ′i)′}

n
i=1

of size n is drawn from the distribution of (Y,X ′)′. Let E[· ] := EP[· ] be the expectation
operator under P, where P := Pn is the sampling distribution of {(Yi, X ′i)′}

n
i=1. Write

Yi = γ0(Xi) + ei, E[ei|Xi = x] = 0, i = 1 . . . n, (2.1)

where γ0(x) := E[Yi|Xi = x] is the conditional expectation (regression) function, γ0 ∈
LP,2 :=

{
f : X 7→ R,

∫
x∈X f

2(x)dP(x) <∞
}
and supx∈X E[e2

i |Xi = x] . 1. The object of
interest in this paper is the continuous linear functional E[m(Xi, ·)] : LP,2 7→ R evaluated
at γ0

5

θ0 := E[m(Xi, γ0(Xi))], (2.2)

where for each realization x of Xi, m(x, · ) is a known linear function such that for every
γ1, γ2 ∈ LP,2 and every constant r ∈ R

m(x, rγ1(x) + γ2(x)) = rm(x, γ1(x)) +m(x, γ2(x)). (2.3)

By Riesz representation theorem, there exists a unique α0 ∈ LP,2 such that for each
γ ∈ LP,2

E[m(Xi, γ(Xi))] = E[γ(Xi)α0(Xi)]. (2.4)
5We can also extend our method to functional E[m(Zi, ·)] where Xi ⊆ Zi at the expense of more

technicalities.
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Call α0 the Riesz Representer (RR) of E[m(Xi, ·)]. By (2.4), we can interpret θ0 as RR
weighted population average of a regression function (aka “average regression functional”)

θ0 = E[α0(Xi)︸ ︷︷ ︸
weight

γ0(Xi)︸ ︷︷ ︸
regression

]. (2.5)

2.2 A running example

Many economic problems fit into the average regression functional framework. One lead-
ing example is the missing data and average treatment effect model stated below, which is
also the workhorse of simulation and empirical application. Other well-known examples
include weighted average derivative and single index model, average effect after policy
intervention and average consumer surplus, etc. See Appendix A.2 for two additional
examples.

Example 2.1. Missing data and average treatment effect
Consider the framework of incomplete outcome data in Rubin (1974); Rosenbaum

and Rubin (1983). For each unit i = 1 . . . n in a random sample, we observe Ti ∈ {0, 1},
outcome variable Yi = TiY

∗
i (Yi = 0 means Y ∗i is missing), and covariate vector Xi. We

are concerned about the population mean θ0 := E[Y ∗i ]. Under the assumption that Y ∗i
and Ti are conditionally independent given Xi, θ0 can be identified as

θ0 = E[γ0(Xi, 1)],

where γ0(x, 1) := E[Yi|Xi = x, Ti = 1]. Define the inverse propensity score as ω(x) :=

1/P{Ti = 1|Xi = x}. Further under overlap assumption that 0 < P{Ti = 1|Xi = x} < 1

for all x ∈ X , we have for each g ∈ LP,2

E[ω(Xi)Tig(Xi)] = E[g(Xi)]. (2.6)

(2.6) identifies RR as α0(x, t) = ω(x)t. This framework can be extended to account for
average treatment effect (see for example Qiu and Otsu, 2018).

3 Methodology with a finite-sample motivation

Estimation of θ0 can be based on any of the following three moment equations

θ0 : = E[m(Xi, γ0(Xi))]; (DP) (3.1)

= E[α0(Xi)Yi]; (BP) (3.2)

= E[m(Xi, γ0(Xi)) + α0(Xi)(Yi − γ0(Xi))]. (DR) (3.3)

6



(3.1) is the original definition of θ0, which we call a “Direct Plug-in” (DP) approach. (3.2)
comes from (2.5) and Law of Iterated Expectations (LIE). We call it a “Balancing Plug-
in” (BP) approach, treating RR α0 as a balancing weight function for outcome. (3.3) is
the Doubly Robust (DR) moment condition.

To approximate γ0 and α0, let p(x) := (p1(x), p2(x) . . . pk(x))′ be a vector of k := k(n)

basis functions. As n→∞ and k →∞, we consider a series (linear sieve) space

Θn :=
{
g : X 7→ R, g(x) = a′p(x), a ∈ Rk

}
.

For some f ∈ LP,2, denote Lnf as the least square projection of f onto Θn. Thus write
Lnγ0 = β′lp, where βl := arg minβ∈Rk E[γ0(Xi) − β′p(Xi)]

2 is the projection coefficient.
Hence (2.1) can be rewritten as

Yi = β′lp(Xi) + uγ0i + ei, uγ0i = γ0(Xi)− β′lp(Xi), i = 1 . . . n.

To motivate the finite sample property of our estimator, assume for now

‖βl‖ = b, E[e2
i |Xi = x] = σ2, (3.4)

for some constants σ2 and b6. Parameter b reflects the “size” of Lnγ0. Thus define a small
ball Hb ⊆ Θn that contains Lnγ0

Hb :=
{
g : X 7→ R, g(x) = β′p(x), β ∈ Rk, ‖β‖ ≤ b

}
. (3.5)

3.1 Near optimal BP estimator in series space

Let En[f ] := En[f(W )] := 1
n

∑n
i=1[f(Wi)], Wi = (Yi, X

′
i)
′. Given {Wi}ni=1 and Θn, we

focus on a class of BP estimators θBP (α) := En[α(X)Y ], where α ∈ Θn is some balancing
weight. To find an “optimal” weight function in Θn, notice θBP (α) necessarily admits the
following asymptotic linear structure

√
n(θBP (α)− θ0) =

√
nEnφ+

√
nR1(α, γ0) +

√
nR2(α), (3.6)

where
√
nEnφ

d→ N(0,Eφ2
i ),

φi := φ(Xi, ei) := m(Xi, γ0(Xi)) + α0(Xi)ei − θ0. (3.7)

6By Lemma B.1(iv), b is finite if all eigenvalues of E[p(Xi)p(Xi)
′] are bounded away from 0

and E[u2γ0i] . 1. Also, if ei is conditionally heteroscedastic, σ2 can be alternatively interpreted as
supx∈X E[e2i |Xi = x].
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Remainder error terms R1(α, γ0) and R2(α) admit

R1(α, γ0) := En [α(X)γ0(X)−m(X, γ0(X))] , (3.8)

R2(α) := En [(α(X)− α0(X)) e] . (3.9)

Since Eφ2
i is also the semiparametric efficiency bound (Newey, 1994), ideally we hope to

select some α ∈ Θn such that
√
nR1 and

√
nR2 are as small as possible in a given sample.

With such motivation, one natural performance criterion is the maximum mean square
remainder (MMSR) for γ0 ∈ Hb

7 and conditional on Xn := {Xi}ni=1

MMSRHb(θBP (α)) := supγ0∈Hb E
[
(R1(α, γ0) +R2(α)) 2|Xn

]
= b2 supγ0∈H1

R2
1(α, γ0)︸ ︷︷ ︸

maximum square bias

+
σ2

n
En[(α(X)− α0(X))2]︸ ︷︷ ︸

variance

, (3.10)

where (3.10) follows since E[R2(α)|Xn] = 0 and supγ0∈Hb R
2
1(α, γ0) = b2 supγ0∈H1

R2
1(α, γ0).

In general, α0 is unknown8, so we replaceMMSRHb(θBP (α)) with a feasible MMSR upper
bound

MMSRHb(θBP (α)) := b2 supγ0∈H1
R2

1(α, γ0)︸ ︷︷ ︸
maximum square bias

+
2σ2

n

{
En[α2(X)] + En[α2

0(X)]
}︸ ︷︷ ︸

variance bound

.

Since MMSRHb(θBP (α)) depends on α only through supγ0∈H1
R2

1(α, γ0) and En[α2(X)],
it suffices to consider the following Lagrange problem

α̃ := α̃λ1 := arg minα∈Θn

{
supγ0∈H1

R2
1(α, γ0) + λ1En[α2(X)]

}
, (3.11)

where λ1 ≥ 0 is a penalty coefficient. (3.11) calibrates α0 in a penalized series space with
a minimax criterion. Our proposed BP estimator is then

θ̃BP := θBP (α̃) = En[α̃(X)Y ]. (3.12)

Notice the solution of (3.11) traces out the bias-variance frontier of MMSRHb(θBP (α)).
Thus, a practical way to select optimal λ1 is to pick one that minimizes MMSRHb(θ̃BP )

in a grid of possible values.9 Let λ∗1 := arg minλ1 MMSRHb(θBP (α̃λ1)) and θ̃∗BP :=

En[α̃λ∗1(X)Y ]. Then θ̃∗BP is near optimal in the sense that it minimizes the MMSR bound.
7This is a single optimality criterion. It would be interesting to extend our approach to a double

optimality criterion with respect to both γ0 and α0. We leave this for future research.
8If α0 is known, like the case of randomized control trials, our method can be applied to get a sharp

estimator. See Appendix A.5 for further discussions.
9Since in practice b and σ are unknown, we recommend conducting sensitivity analysis against a series

of possible values for the ratio σ2

nb2 .
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3.2 Implementation

Proposition 3.1. For each α ∈ Θn, supγ0∈H1
R2

1(α, γ0) = ‖En[m(X, p(X))− α(X)p(X)]‖2.

By Proposition 3.1, the solution of minimax exercise (3.11) can be found analytically
and α̃ has an equivalent minimum distance representation

α̃ = arg min
α∈Θn

‖En[m(X, p(X))− α(X)p(X)]‖2︸ ︷︷ ︸
minimum distance

+ λ1En[α2(X)]︸ ︷︷ ︸
ridge style penalty

 . (3.13)

The objective function in (3.13) is convex and continuously differentiable: the first half of
the objective function is a squared Euclidean distance, and the second half is a ridge style
penalty in series space.10 This quadratic optimization exercise has an analytic solution

α̃ = p′ã,

Ĝ := En[p(X)p(X)′],

ã := (ĜĜ+ λ1Ĝ)−ĜP̂ ,

P̂ := En[m(X, p(X))],
(3.14)

and (· )− denotes the Moore–Penrose inverse. By construction, α̃ is the unique solution
of (3.13) when Ĝ is invertible and a solution with minimum norm otherwise.

Remark 3.1. Focusing on BP estimators does not lose out DP estimators. In fact, for
each DP estimator θDP (γ) := En[m(X, γ(X))] where γ ∈ Θn, there exists at least one
αγ ∈ Θn such that θBP (αγ) = θDP (γ). For example, a DP estimator with standard series
estimator

γ̇(x) := p(x)′β̇, β̇ := Ĝ−En[p(X)Y ] (3.15)

is equivalent to the BP estimator using α̇(x) := p(x)′Ĝ−P̂ , the estimator for α0 pro-
posed in Newey and Robins (2018). We reserve further comparison between BP and DR
estimators in Sections 3.3 and 4.2.

3.3 Scope for finite sample improvement by DR estimators

In this section, we study whether a DR estimator can improve the finite sample perfor-
mance of θ̃∗BP , in the sense of achieving a substantively smaller MMSR bound. Consider
a class of DR estimator

θDR(α, γ) := En[m(X, γ(X)) + α(X)(Y − γ(X))],

where α ∈ Θn, γ = β′p ∈ Θn for some β ∈ Rk. Note the remainder of θDR(α, γ) shares a
similar structure with θBP (α):

10Such structure is similar to the PSMD estimator studied in Chen and Pouzo (2012, 2015) but with
a different motivation.
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√
n(θDR(α, γ)− θ0) =

√
nEnφ+

√
nR1(α, γ0 − γ) +

√
nR2(α). (3.16)

Since γ ∈ Θn, the MMSR bound for θDR(α, γ) conditional on Xn is

MMSRHb(θDR(α, γ)) = b2
γ supγ0∈H1

R2
1(α, γ0) +

2σ2

n

{
En[α2(X)] + En[α2

0(X)]
}
,

where bγ = ‖βl − β‖. Note MMSRHb(θDR(α, γ)) is different from MMSRHb(θBP (α))

only in the scale of the bias part b2
γ. So for each α ∈ Θn, MMSRHb(θDR(α, γ)) <

MMSRHb(θBP (α)) only when bγ < b. Moreover, irrespective of the magnitude of bγ,
α̃ also traces out the bias-variance frontier of MMSRHb(θDR(α, γ)). Thus let λ∗1,γ :=

arg minλ1 MMSRHb(θDR(α̃, γ)). Then θDR(α̃λ∗1,γ , γ) minimizesMMSRHb(θDR(α, γ)) and
is thus the near optimal DR estimator given γ.

Proposition 3.2. The relative efficiency of θDR(α̃λ∗1,γ , γ) compared to θ̃∗BP is

RE :=

√√√√MMSRHb(θDR(α̃λ∗1,γ , γ))

MMSRHb(θ̃
∗
BP )

.

If bγ < b, RE > bγ
b
; otherwise, RE ≥ 1. In particular, if Ĝ = I, RE >

√
1+2%

1+2%/
(
bγ
b

)2 ,

where % := σ2

nb2
is the variance-size ratio.

Remark 3.2. Proposition 3.2 implies two things. First, θDR(α̃λ∗1,γ , γ) will not improve finite
sample performance of θ̃∗BP in the minimax sense unless bγ < b. This is a demanding finite
sample requirement for the quality of estimator γ. Otherwise, if bγ ≥ b, θDR(α̃λ∗1,γ , γ) is
in fact no better and usually worse than θ̃∗BP . Thus, using DR estimator might actually
risk losing robustness in the minimax sense. Consider a simple example when Ĝ = I and
uγ0 = 0. If we use the series estimator γ̇(x) = p(x)′β̇ for γ0, it follows bγ̇ :=

∥∥∥βl − β̇∥∥∥ =

‖En[p(X)e]‖. By Markov inequality, P{bγ̇ > b|Xn} ≤ k%, small only when the product of
k and % is small. Second, even if bγ < b indeed holds true in a given sample, the scope for
improvement from using a DR estimator is likely limited. In fact, if bγ < b, the relative
efficiency of any optimal DR estimator is always larger than bγ

b
. An illustrative case is

when Ĝ = I, for which we are able to derive a sharp lower bound of RE. And the room
for finite sample improvement by any DR estimator can be quite small. See Figure 3.1.

4 Asymptotic properties of θ̃BP

This section studies asymptotic properties of θ̃BP for some λ1 ≥ 0. We first give a general
characterization of the asymptotic distribution when k

n
≤ 1, followed by discussions on
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Figure 3.1: Relative efficiency (RE) as a function of bγ
b . When bγ < b, RE of any near optimal DR

estimator always falls in the grey area. Assume Ĝ = I. The solid black line plots the lower bound of RE
when % = 0.005, corresponding to the case uγ0 = 0 and P{bγ̇ > b|Xn} ≤ 0.005k; The dashed line plots
the lower bound when % = 0.01 (uγ0 = 0 and P{bγ̇ > b|Xn} ≤ 0.01k); The dotted line plots the lower
bound when % = 0.05 (uγ0 = 0 and P{bγ̇ > b|Xn} ≤ 0.05k).

whether DR estimator can improve the asymptotic performance of θ̃BP . Then we look
at when semiparametric efficiency is achievable and conditions that further relax some
technical conditions in the general theorem.

4.1 General characterization

Assumption O.

1. Sample
{

(Yi, X
′
i)
′}n
i=1

are independently and identically distributed (iid) for each n.
Function m(x, · ) is linear in the sense of (2.3). RR α0 exists and satisfies (2.4).

2. E[ei|Xi = x] = 0, supx∈X E[e2
i |Xi = x] . 1, for each i = 1 . . . n.

3. For each γ ∈ Θn and i = 1 . . . n, E[m2(Xi, γ(Xi))] . E[γ2(Xi)], E[m2(Xi, uγ0i)] .

Eu2
γ0i
.

Assumption O(1) is a basic condition on data structure. Note the dimension of X can
be either fixed or growing.11 O(2) restricts the behavior of first two conditional moments

11If the dimension of X is growing as n→∞ , dX should be understood as dX,n.
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of ei. Exogeneity condition E[ei|Xi = x] = 0 is automatically satisfied by definition of γ0.
We also assume that ei has a finite conditional variance. O(3) imposes sufficient degree
of continuity on the structure of E[m2(Xi, · )] and is satisfied by Examples 2.1, A.1 and
A.2.12

Assumption L.

1. All eigenvalues of G := E[p(Xi)p(Xi)
′] are bounded from above and away from zero

uniformly for each n, k, and i;

2. There exist some vectors βb, ab ∈ Rk and finite constants rγ0 , rα0 such that

supx∈X |γ0(x)− β′bp(x)| = rγ0 ; supx∈X |α0(x)− a′bp(x)| = rα0 .

Assumption L is an essential condition on series approximation. L(1) requires that p
should not be too collinear or grow too quickly, similar to Assumption C.1(iii) in Chen and
Pouzo (2012) and Condition A.2 in Belloni et al. (2015).13 L(2) imposes mild restrictions
on the approximation quality of Θn. Under correct specification, rγ0 → 0 and rα0 → 0

as k → ∞ and n → ∞. When γ0 and α0 are within a Hölder class of smoothness order
s, rγ0 = k−ηγ , rα0 = k−ηα for some non negative constants ηγ and ηα depending on s, dX
and p. See, among others, DeVore and Lorentz (1993); Newey (1997); Chen (2007) for
more details on approximation results. Following Newey (1997), let ξk = supx∈X ‖p(x)‖ .

Assumption M.

1. ξ2
k log k

n
≤ 1;

2. All eigenvalues of Ĝ are bounded away from zero with probability approaching one
(wpa1).

Assumption M(1) allows k to grow proportionally to sample size. As a result, α̃ could
be inconsistent. M(2) guarantees that Ĝ−1 = Op(1) and can be satisfied if the ratio k

n

is small enough. For example, by Lemma C.7, if G = I and Assumptions O and L hold
true, a sufficient condition for M(2) is that ξ2

k

n
converges to a constant strictly smaller

than 0.38 (up to log terms). M(2) can be further relaxed for some special structures of
m(x, ·). See Section 4.4 for details.

12If O(3) is not satisfied, we can modify it such that E[m2(Xi, γ(Xi))] ≤ dkE[γ2(Xi)] for γ ∈ Θn and
E[m2(Xi, uγ0i)] . dkEu2γ0i, for some dk growing as a function of k, similar to Assumption 6 in Newey
and Robins (2018).

13For example, it will be satisfied if p is orthonormal with respect to Lebesgue measure and the density
of Xi is bounded away from zero and from above.
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For f ∈ Θf ⊆ LP,2, define `k := sup
(
‖Lnf‖P,∞
‖f‖P,∞

: ‖f‖P,∞ 6= 0, f ∈ Θf

)
, where ‖f‖P,∞ :=

supx∈X |f(x)|.14 Also let ‖f‖2
P,2 :=

∫
x∈X f

2(x)dP(x). Denote δn :=

(√
ξ2
k

n
∧
√
‖α0‖P,∞k

n

)
+

rα0 .

Theorem 4.1. Suppose Assumptions O, L and M hold true and rα0 = O(1). In addition,
(i)
√
nrα0rγ0 = o(1); (ii) δnrγ0`k

(√
k log ξk + kξk log ξk√

n

)
∧ δnrγ0

√
n = o(1); (iii) (‖α0‖P,∞∧

`k)rγ0 = o(1); (iv) λ1 = o( 1
n
); (v) maxi|α̃(Xi)|/√n = op(1), supx∈X E

[
|ei|3 |Xi = x

]
. 1

and infx∈X E [e2
i |Xi = x] is bounded away from zero for each i = 1 . . . n, ‖α0‖2

P,2 − r2
α0

is
bounded away from zero uniformly for each k and n. Then:

√
n
(
θ̃BP − θ0

)
d→ σα̃,nZ1 + σmZ2, (4.1)

where σ2
α̃,n := En [α̃2(X)E[e2|X]], σ2

m := E[m2(Xi, γ0(Xi))] − θ2
0, and Z1 and Z2 are two

iid standard normal random variables independent of {Xi, ei}ni=1. If in addition σ2
α̃,n

p→
V > 0, then

√
n
(
θ̃BP − θ0

)
d→ N(0,V + σ2

m). (4.2)

Theorem 4.1 establishes
√
n consistency and the asymptotic distribution of θ̃BP with-

out imposing strong convergence conditions for nuisance parameters, cross fitting or DR
moment conditions. In general, the asymptotic distribution of θ̃BP is a weighted sum of
two iid standard normal random variables. If σ2

α̃,n converges to some constant V in large
sample, θ̃BP is

√
n normal. Condition (i) is a basic requirement on approximation quality.

(ii) is an additional model complexity term from controlling a stochastic equicontinuity
term by a maximal inequality (Giné and Koltchinskii 2006, Theorem 3.1; Belloni et al.
2015, Theorem 6.1). (iii) is a regularity condition that permits ‖α0‖P,∞ to be unbounded.

If ξ
2
k log k

n
9 0, conditions (i)-(iii) can be satisfied when rα0 = O(1) and rγ0 = o( 1√

n
). Thus

we allow α0 to be misspecified as long as γ0 is correctly specified and smooth enough. (iv)
says asymptotically λ1 should decay fast at rate o( 1

n
). Condition maxi|α̃(Xi)|/√n = op(1)

is needed to invoke Berry–Esseen inequality, and is satisfied under mild conditions that
Assumption L(1) holds true and ‖ã‖ = Op(1) by an argument from Borel-Cantelli lemma.
Also see Lemma C.8.

4.2 Scope for asymptotic improvement by DR estimators

Let Rn and Rγ
n be the asymptotic orders of the remainders of θ̃BP and θDR(α̃, γ), re-

spectively. By Theorem 4.1, we can compare the magnitudes of Rn and Rγ
n and address

whether it possible to improve the asymptotic performance of θ̃BP by a DR structure.
14For certain basis functions, `k exploits stability relations of projection and allows weaker conditions

on the growth rate of k (see also Huang, 2003; Belloni et al., 2015; Chen and Christensen, 2015).
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Corollary 4.1. Suppose Assumptions O, L and M hold true, rγ0 = O(1), rα0 = O(1)

and λ1 = o( 1
n
). Then, Rγ

n ≥ Rn. Moreover, Rn 9 0 as n→∞ implies Rγ
n 9 0.

By Corollary 4.1, under the asymptotic framework of k
n
< 1, we can not improve the

asymptotic performance of θ̃BP simply by resorting to a DR estimator. If θ̃BP can not
achieve semiparametric efficiency (i.e., Rn 9 0), neither can θDR(α̃, γ). The reason is
intuitive. Comparing (3.6) with (3.16), the only difference between the remainders of
θDR(α̃, γ) and θ̃BP is in the R1 part: for θ̃BP , it writes R1(α̃, γ0) and for θDR(α̃, γ), it is
R1(α̃, γ0 − γ). Since γ ∈ Θn, θDR(α̃, γ) only has chance to improve the order of a part
in R1(α̃, γ0) where θ̃BP already controls very well. Another implication of Corollary 4.1
is that if k

n
≥ 1, DR estimator can improve the asymptotic performance of θ̃BP . We

continue the discussion for the case when k
n
≥ 1 in Section 5.

4.3 Attainability of semiparametric efficiency

Corollary 4.2. Suppose ξ2
k log k

n
= o(1) and rα0 = o(1). Moreover, Assumptions O, L and

conditions (i)-(iv) of Theorem 4.1 hold true. Then,
√
n(θ̃BP − θ0)

d→ N(0,E[φ2
i ]). Let

Ω̂ =
∣∣∣En [m(X, γ̇(X)) + α̃(X)(Y − γ̇(X))]2 − θ̃2

BP

∣∣∣ , (4.3)

where γ̇(x) is defined in (3.15). If in addition, E[m2(Xi, γ0(Xi))] . E[γ2
0(Xi)], ‖γ̇ − γ0‖P,∞ =

op(1), and for some q > 0, E
[
|ei|2+q] <∞ and ξ

2+q
q

k

√
log k
n

= o(1), then Ω̂
p→ E[φ2

i ].

If ξ2
k log k

n
= o(1) and rα0 = o(1), α̃ becomes consistent and θ̃BP can be semiparametri-

cally efficient. As semiparametric efficiency bound is defined in terms of true RR α0, the
requirement on the consistency of α̃ seems unavoidable. It’s useful to compare Corollary
4.2 with other similar results in the literature. Suppose we choose spline or wavelet series
as basis functions. Then ξk =

√
k (Newey, 1997) and `k = O(1) (Huang, 2003; Chen and

Christensen, 2015). Assume rγ0 = k−η for some η > 0 and ignore log terms:

1. If γ0 is smooth enough such that η > 1/2, model complexity condition (ii) in The-
orem 4.1 is trivially satisfied as long as

√
nrγ0rα0 → 0. Obtaining semiparametric

efficiency requires

k

n
= o(1),

√
nrα0rγ0 = o(1), rγ0 = o(1), rα0 = o(1), (4.4)

currently the weakest possible condition in the literature.

2. If γ0 is not smooth enough in the sense that η ≤ 1
2
, then in addition to (4.4), we

require rγ0

k2

n
= o(1).15

15Under this case, cross fitted DP and doubly cross fitted DR estimators in Newey and Robins (2018)
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Corollary 4.2 also proposes a consistent estimator for the asymptotic variance. Uni-
form consistency condition ‖γ̇ − γ0‖P,∞ = op(1) can be verified by more preliminary
conditions.16 Moreover, we see a trade-off between existence of higher moments for ei
and growth rate restrictions on k. For example, if E[e4

i ] < ∞, we additionally need

ξ2
k

√
log k
n
→ 0. Thus consistent estimation of variance demands slower growth rate of k.

Notice sup norm consistency of α̃ is not required.

4.4 Relaxation of Assumption M(2)

For some special linear structure of m(x, · ), we can relax Assumption M(2) which may
be deemed restrictive in some situations.

Assumption M’.

1. Function m(x, · ) is degenerate: m(x, p(x)) = p(x);

2. All eigenvalues of Ĝ are positive wpa1 and λ−1
min(Ĝ) = Op (n2).

Assumption M’ exploits a simple degenerate structure of m(x, · ) to leverage nice
properties of empirical projection. Such a structure allows λmin(Ĝ) to diminish at an
asymptotic rate no faster than 1

n2 , and is in fact met by Examples 2.1, A.1 and A.2.

Corollary 4.3. Let Assumptions O, L, M(1), M’ and condition (v) in Theorem 4.1 hold
true. In addition, rα0 = O(1), rγ0 = o

(
1√
n

)
, (‖α0‖P,∞ ∧ `k)rγ0 = o(1) and λ1 = o( 1

n
).

Then (4.1) and (4.2) still hold true.

5 Asymptotic improvement when k
n ≥ 1

Although θ̃BP and θ̃∗BP are well defined even when k
n
≥ 1 and their finite sample property

still holds, the key remainder term
√
nR1(α̃λ1 , γ0)

p9 0 and in fact is usually growing
asymptotically. Following Corollary 4.1, this less satisfactory asymptotic behavior can
be resolved by considering a DR estimator θ̂DR := θDR(α̂, γ̂), where γ̂ and α̂ are some
estimators for γ0 and α0, respectively.17 In this section, we first present a general theorem

can meet the minimal requirement (4.4) only in special cases when the Holder orders of α0 and γ0 are small
enough and p is Haar basis function. Doubly cross fitted DR estimator can also meet minimal requirement
if the functional is expected conditional covariance. In general, doubly cross fitted DR estimator has
smaller additional term of order rγ0

k2

n3/2 and cross fitted DP estimator has smaller additional term of
order rγ0

k√
n
.

16For example, Belloni et al. (2015, Theorem 4.3) and Chen and Christensen (2015, Lemma 2.4) both
establish optimal sup norm convergence for γ̇, allowing k

n → 0 up to log terms. It is also possible to
relax this uniform consistency requirement by imposing higher moment conditions for basis functions,
see Hansen (2015).

17Another potential remedy could be considering minimax exercise in a small ball in terms l1 norm:
H̃b :=

{
g = β′p : β ∈ Rk, ‖β‖1 ≤ b

}
for some constant b. I leave this for future research.
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that establishes semiparametric efficiency of θ̂DR. Then we propose a modified estimator
for α0 based on (3.13), which converges at least as fast as its lasso counterpart and can
be used to construct θ̂DR.

5.1 Semiparametric efficiency of θ̂DR

We first impose some assumptions on series space Θn suitable when k
n
≥ 1.

Assumption H. For each n, k and i:

1. E[pj(Xi)
2] . 1 for all j = 1 . . . k;

2. There exists some α∗ := p′a∗, a∗ ∈ Rk, and some finite constant µ∗ > 0 such that
E[α0(Xi)− α∗(Xi)]

2 ≤ µ2
∗.

Assumption H is the high dimensional counterpart of Assumption L. H(1) only re-
quires second moments of all basis functions bounded from above uniformly, weaker than
Assumption L(1). H(2) imposes a basic approximation condition for α0. Note α∗ is not
necessarily sparse. Following Belloni et al. (2017); Qiu and Otsu (2018); Chernozhukov
et al. (2018c), let Λn := supx∈X (max1≤j≤k |pj(x)|), more useful in high dimensional sit-
uations compared to ξk. For f ∈ LP,2, denote ‖f‖n = {En[f 2]}1/2 as its empirical L2

norm.

Theorem 5.1. Let Assumptions O and H hold true. In addition: (i) Λn

√
log k
n

= o(1); (ii)
γ̂ is estimated from a random sample S independent of {(Yi, X ′i)′}

n
i=1, E[m2(Xi, γ̂(Xi)−

γ0(Xi))|S] . E[(γ̂(Xi)−γ0(Xi))
2|S]; (iii) ‖α̂− α∗‖n µ∗ = op(

1√
n
), ‖γ̂ − γ0‖P,2 ‖α̂− α∗‖n =

op(
1√
n
), ‖α̂− α∗‖n = op(1); (iv) either ‖α0‖P,∞ . 1 and ‖γ̂ − γ0‖P,2 = op(1), or ‖γ̂ − γ0‖P,∞ =

op(1). Then
√
n
(
θ̂DR − θ0

)
d→ N(0,E[φ2

i ]).

Theorem 5.1 establishes semiparametric efficiency of θ̂DR under a set of general as-
sumptions. Condition (i) in Theorem 5.1 allows k to grow faster than n, up to factor Λn

and log term. The role of (ii) is twofold. First, it is a simplifying device that can handle
any generic estimator γ̂ (possibly derived from machine learning methods)18, similar to
recent literature advocating cross fitting (for example, Robins et al., 2009; Newey and
Robins, 2018; Chernozhukov et al., 2018b,c); Second, it also imposes a mild continuity
condition on the functional form of m(x, · ). However, we do not require α̂ to be esti-
mated from a different random sample, different from the double cross fitting scheme in
the literature. (iii) lists key conditions on the quality of γ̂ and α̂. A trade-off between

18Otherwise, we need to study the asymptotic order of
√
nR1(α0, γ0 − γ̂) by empirical process theory

on a case-by-case basis, depending on the form of γ̂. For example, if γ̂ is estimated by lasso, Belloni
et al. (2017, Lemma C.1) can be invoked as long as γ̂ is sufficiently sparse.
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the convergence rates of γ̂ and α̂ exists, so that their product rate shall achieve op( 1√
n
).

This accommodates a broader scenario when one of them is estimated relatively at a
faster rate while the other converges possibly slower than op(n−1/4). We also only require
convergence of α̂ under the weak empirical norm ‖α̂− α∗‖n. Stronger l1 convergence rate
is not needed per se. Finally (iv) is a regularity condition allowing unbounded α0 as long
as γ̂ is consistent in sup norm.

5.2 A modified minimum distance estimator for α0

By Theorem 5.1, semiparametric efficiency of θ̂DR requires at least a consistent estimator
for α0 in empirical L2 norm. In this section we modify the original problem (3.13)
and derive a new estimator whose asymptotic behavior is simple to characterize when
k
n
≥ 1. Note for α = a′p ∈ Θn, the minimum distance criterion in (3.13) also reads

a′ Ĝ︸︷︷︸ Ĝa − 2a′ Ĝ︸︷︷︸ P̂ + P̂ ′P̂ , which has an additional weight matrix Ĝ in the curly

bracket adversely affecting estimation when k
n
≥ 1. Thus, replacing this bracketed Ĝ

with a k × k identity matrix and omitting P̂ ′P̂ , we propose to estimate α0 by α̃ := p′ã,
where

ã := ã(λ1, λ2) = arg mina∈Rk

 a′Ĝa− 2a′P̂︸ ︷︷ ︸
modified minimum distance

+ λ1a
′Γka+ λ2 ‖a‖1︸ ︷︷ ︸

elastic net style penalty

 , (5.1)

Γk is a k × k symmetric and positive semidefinite matrix, and λ1 ≥ 0 and λ2 ≥ 0 are
penalty coefficients19, selected practically by algorithms developed in Appendix D.3. The
penalty term in (5.1) is a sum of a weighted l2 (Tikhonov) penalty and an l1 penalty,
similar to an elastic net regularization.

To describe the asymptotic property of α̃, let A∗ be an index set of nonzero elements
of a∗. Denote S∗ := |A∗| as the cardinality of A∗. For each a = (a1, . . . , ak)

′ ∈ Rk, define
aA∗ := (a1,A∗ , . . . aj,A∗ . . . , ak,A∗)

′ ∈ Rk, where for each j = 1 . . . k, aj,A∗ := aj1{j ∈ A∗}.
Similarly, define aAc∗ := (a1,Ac∗ , . . . aj,Ac∗ . . . , ak,Ac∗)

′, where aj,Ac∗ := aj1{j /∈ A∗} for each
j = 1 . . . k. In other words, aA∗ and aAc∗ have non-zero elements only in A∗ and its
complement set Ac∗, respectively. Furthermore, write Ĝ := (Ĝ + λ1Γk), a generalized

19We can alternatively consider a weighted minimum distance problem ã :=

arg mina∈Rk
{

(Ĝa− P̂ )′Wn(Ĝa− P̂ ) + λ1a
′Γka+ λ2 ‖a‖1

}
with some k × k positive semidefinite

matrix Wn. Its asymptotic property can be analyzed in a similar way but with more technicalities. See
the JMP version of this paper.
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Gram matrix whose role is similar to that of Ĝ in a lasso regression. Let

εmn := ‖Enm(X, p(X))− Em(Xi, p(Xi))‖∞ , εΓ
n := ‖Γka∗‖∞ ,

∆n :=εmn +

√
log k

n
Λn + µ∗ + λ1ε

Γ
n, λ0 :=2

∥∥∥P̂ − Ĝa∗∥∥∥
∞
.

Theorem 5.2. Let Assumptions O, H hold true and ∆n = op(1). Then λ0 = Op(∆n). If
λ2 = λ0 and ∆n ‖a∗‖1 = op(1), it follows ‖α̃− α∗‖n = Op(

√
∆n ‖a∗‖1). If in addition,

(i) for every a ∈ Rk such that
∥∥aAc∗∥∥1

≤ 3 ‖aA∗‖1, it holds ‖aA∗‖
2
1 ≤

(a′Ĝa)S∗
κn

, where
κn := κn(Γk, λ1) is a sequence of positive numbers; (ii) λ2 ≥ 2λ0. Then ‖α̃− α∗‖n =

Op

(
∆n

√
S∗
κn

)
, ‖ã− a∗‖1 = Op

(
∆n

S∗
κn

)
.

Theorem 5.2 characterizes the convergence rate of α̃ and provides low level support
for Theorem 5.1 when θ̂DR is constructed with α̃. In particular, consistency of α̃ does
not require sparsity condition as long as ∆n ‖a∗‖1 → 0, which gives a convergence rate of
at least Op(

√
∆n ‖a∗‖1) in empirical L2 norm. If additional conditions (i)(ii) in Theorem

5.2 are satisfied, then α̃ admits faster convergence rates of Op

(
∆n

√
S∗
κn

)
in empirical L2

norm and Op

(
∆n

S∗
κn

)
for l1 norm, respectively. The magnitude of εmn can be well studied

by Bernstein or Hoeffding inequalities. See Lemma D.4 for details. The rate of εΓ
n shall

be studied on a case by case basis. If Γk = I, εΓ
n = ‖a∗‖∞; If Γk = Ĝ, εΓ

n = Op (1) by
Lemma D.5.

Because of the additional Tikhonov penalty, α̃ can converge faster than a pure lasso
estimator (λ1 = 0). This is due to condition (ii) in Theorem 5.2, which is a modified
compatibility condition in Van de Geer (2007); Van De Geer et al. (2009).20 Compatibility
number κn affects the performance of α̃, as a smaller κn leads to slower convergence.
Because of the additional penalty λ1a

′Γka, the compatibility number of α̃ is always larger
than its pure lasso counterpart. Hence, α̃ could perform better with a positive λ1 if
κ0,n := κn(Γk, 0) is very small. Let α̃0 := ã′0p be the solution of (5.1) when λ1 = 0 and

∆0,n := εmn +
√

log k
n

Λn + µ∗.

Case 1: κ0,n is bounded away from zero. Then ‖α̃0 − α∗‖n = Op

(
∆0,n

√
S∗
)
. If

λ1 is small enough so that λ1ε
Γ
n is negligible compared to leading term ∆0,n, we have

‖α̃− α∗‖n = Op

(
∆0,n

√
S∗
)
as well. Thus α̃ is as good as α̃0 asymptotically.

20Intuitively we can interpret κn as the restricted minimum eigenvalue, cf. Bickel et al. (2009). For
discussions on compatibility and restricted eigenvalues of matrices, see Bühlmann and Van De Geer
(2011, Sections 6.12 and 6.13).
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Case 2: κ0,n is diminishing. Then the convergence rate of α̃0 is

‖α̃0 − α∗‖n = Op

(
∆0,n

√
S∗
κ0,n

)
, ‖ã0 − a∗‖1 = Op

(
∆0,nS∗
κ0,n

)
, (5.2)

slower than case 1. Note ‖ã0 − a∗‖1 might not even converge if κ0,n → 0 fast, for example,
at rate O(∆0,nS∗). If this happens, it pays to have a larger λ1 > 0. Since λ1Γk is positive
semidefinite, κn(Γk, λ1) ≥ κ0,n. If λ1 is large enough so that λ1ε

Γ
n dominates ∆0,n, it

follows

‖α̃− α∗‖n = Op

(
λ1ε

Γ
n

√
S∗

κn(Γk, λ1)

)
, ‖ã− a∗‖1 = Op

(
λ1ε

Γ
nS∗

κn(Γk, λ1)

)
. (5.3)

(5.3) is slower than the rate derived in case 1 but improves (5.2) in terms of l1 norm if
κn(Γk,λ1)

κ0,n
> λ1εΓn

∆0,n
and in terms of empirical L2 norm if κn(Γk,λ1)

κ0,n
>
(
λ1εΓn
∆0,n

)2

.

6 Application: electoral accountability and corruption

This section applies our method to the work of Ferraz and Finan (2011) that studies the
effect of electoral accountability on corruption. They collect a municipality-level dataset
from a Brazilian anti-corruption campaign where treatment is plausibly close to random
assignment. Hence one of their main empirical strategies is OLS with controls of many
mayoral and municipal characteristics. They find in municipalities where mayors are
serving first term, the share of resources involving corruption is significantly lower than
in municipalities with second-term mayors.

Within this context, the objective of this exercise is to investigate the performance of
the near optimal BP estimator (and its high dimensional variant) with OLS and other
popular methods in the literature. I find the main conclusion of Ferraz and Finan (2011)
very robust. However, OLS estimates change considerably when more controls are se-
quentially added to the regression. Such coefficient instability is commonly interpreted as
a bias correction (i.e., alleviated omitted variable bias by adding more confounders). On
the other hand, for the same dataset near optimal BP estimator performs stably. This
implies coefficient instability is also likely associated with sub optimal control of mean
square remainders, especially in the presence of many controls. By controlling remainders
near optimally, our method should be more robust. The estimates of other off-the-shelf
shrinkage methods, including DR estimators with lasso selection, are less volatile than
OLS. But when there are many technical controls, performance of DR estimators with
(post) lasso selected propensity scores appears less satisfactory.
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6.1 Main empirical framework

Ferraz and Finan (2011) use controlled regression as one of the main empirical strategies

Yi = θ0Ti +X ′iβ + Z ′iγ + εi, (6.1)

where Ti = 1 if mayor i’s term limit is not binding (with reelection incentives), and
Ti = 0 if the mayor’s term limit is binding (without reelection incentives); Yi stands
for the share of resources related to corrupt activities in the mayor’s municipality; θ0 is
the object of interest21; εi is the error term; Xi and Zi are controls of municipal and
mayor characteristics, respectively. We deviate from (6.1) and adopt a more flexible
semiparametric framework. Denote Yi(1) as the level of corruption when Ti = 1, and
denote Yi(0) as the level of corruption when Ti = 0. The object of interest is then defined
as θ0 := E[Yi(1)] − E[Yi(0)], the expected effect of reelection incentives on corruption.
Example 2.1 applies. Under conditional independence and overlap assumptions, θ0 is
identified as

θ0 = E [E[Yi|Xi, Zi, Ti = 1]]− E[E[Yi|Xi, Zi, Ti = 0]] . (6.2)

Similar to (2.6), RR can be found for E[Yi(1)] and E[Yi(0)], respectively.

6.2 Baseline results: near optimal BP with fixed penalty

As one of their primary empirical analyses, Ferraz and Finan (2011) explore how estimate
of θ0 in (6.1) changes when different sets of controls are sequentially included in the
specification. They start with a plain vanilla mean comparison, and sequentially add
five sets of relevant controls. A full specification includes a total of 67 regressors versus a
sample size of 476. This is moderately high dimensional with k

n
= 0.14. Table 1 compares

estimates from OLS, near optimal BP estimator with fixed penalty λ1 = 0.001 and eight
other popular methods in the literature.22

From Table 1 we see OLS estimates are quite unstable, sensitive to which controls are
included. A simple mean comparison yields a point estimate of -0.0188, meaning lame
duck mayors on average steal 1.88% points more resources. As we add more regressors,
magnitude of the estimate gradually increases. Once all 67 regressors are included, the
point estimate becomes -0.0275, an increase of almost 50%. On the other hand, near op-
timal BP estimator produces quantitatively stable estimates at around -0.018 throughout

21It can be interpreted as the average treatment effect of reelection incentives on corruption if individual
treatment effect is a constant, see Angrist (1998).

22Specifically, controlled ridge regression based on (6.1) with fixed penalty 0.001 and penalty selected
by cross validation, respectively; DP method based on (6.2) where conditional expectation function
is estimated by ridge with fixed penalty 0.001 and cross validation, respectively; linear partialling out
based on (6.1) with post lasso selection; double selection for (6.1) with post lasso selection; doubly robust
methods based on (6.2) with lasso and post lasso selected propensity scores, respectively.
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six specifications, and all of them are statistically significant at at least 10% level. The
majority of the other off-the-shelf shrinkage methods do not perform as stably as the near
optimal BP estimator, except the DP approach with cross validated ridge. In Supple-
mentary Materials S4, we also conduct robustness checks by using alternative measures
of corruption, and by controlling ability and experience.

6.3 Sensitivity analysis with λ1 optimally selected

To optimally choose λ1 for the near optimal BP estimator, we need to know the variance-
size ratio % = σ2

nb2
for both E[Yi|Xi, Zi, Ti = 1] and E[Yi|Xi, Zi, Ti = 0]. Since n is known,

we can gauge the magnitude of % by σ̂2 and b̂2, where b̂ is the norm of the estimated
coefficient of the conditional expectation function, and σ̂2 is the empirical average of the
associated square residuals. In a full specification with 67 regressors, σ̂2

1/̂b21 = 0.021 for
E[Yi|Xi, Zi, Ti = 1] and σ̂2

0/̂b20 = 0.019 for E[Yi|Xi, Zi, Ti = 0]. Therefore, as a sensitivity
analysis, we implement the optimal penalty selection procedure in Section 3.1 against
a range of σ2/b2 ∈ (0, 100), assuming this ratio is the same for E[Yi|Xi, Zi, Ti = 1] and
E[Yi|Xi, Zi, Ti = 0]. Results are illustrated in Figure 6.1.
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Figure 6.1: Near optimal BP estimator with λ1 optimally selected against a range of σ2

b2
∈

(0, 100). The first line at the above is when all controls are added with k = 67. The second line
below is when only mayor characteristics are included with k = 21. Both curves are smoothed
with local polynomials.
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6.4 Accounting for many more controls

Finally we explore a scenario with many more technical controls. B-splines are first
created based on 11 continuous regressors in Table 1. By adding interaction and second
order terms, we get four specifications with number of controls ranging from 67 to 254.23

We construct θ̂DR with γ̂ estimated using “rlasso” in “hdm” R package, and α̃ calibrated
with Γk = Ĝ, λ1 fixed and λ2 selected by Algorithm 2 in Appendix D.3.24 Table 2
compares our estimates with four other popular high dimensional methods involving
(post) lasso selected propensity scores.25

We find θ̂DR behaves very well. The estimates are stable and significant across the four
high dimensional specifications. The choice of λ1 has a small impact on point estimates.
Doubly robust estimators with (post) lasso selected propensity scores do not behave
well when k becomes too large. This might signal erratic behavior of the inverse of
estimated propensity score with selection under high dimensions. Linear partialling out
and linear double selection methods on the other hand, behave relatively stably and
produce significant estimates throughout four specifications. Nevertheless, these exercises
under many technical controls further support the view that Ferraz and Finan (2011)’s
data are close to random assignment. Their main conclusion stays robust.

23See footnote of Table 2 for details on how these controls are constructed.
24Since in this exercise estimated effect barely changes as λ1 changes, I decided not to report results

when λ1 is optimally chosen via Algorithm 1.
25See also Table S5 for the performance of the near optimal BP estimator with a series of small

penalties.
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Table 1: Effect of reelection incentives on corruption: baseline results
Specification (1) (2) (3) (4) (5) (6)

k 1 21 28 32 41 67

n 476 476 476 476 476 476

Controlled OLS
Effect -0.0188** -0.0198** -0.0200** -0.0235** -0.0261** -0.0275**

S.E. (0.0095) (0.0096) (0.0099) (0.0108) (0.0106) (0.0113)

Near optimal BP Effect -0.0187** -0.0186** -0.0162* -0.0182* -0.0182* -0.0182**

(λ = 0.001) S.E. (0.0094) (0.0087) (0.0088) (0.0097) (0.0095) (0.0092)

Controlled ridge Effect -0.0195** -0.0197** -0.0233** -0.0256** -0.0263**

w. ridge, λ = 0.001 S.E. (0.0096) (0.0099) (0.0108) (0.0106) (0.0113)

Controlled ridge Effect -0.0070 -0.0078 -0.0010 -0.0076 -0.0053

w. ridge, 10 fold CV S.E. (0.0097) (0.0100) (0.0110) (0.0109) (0.0119)

Plug-in ridge Effect -0.0186** -0.0191** -0.0235** -0.0250** -0.0272***

λ = 0.001 S.E. (0.0089) (0.0095) (0.0102) (0.0101) (0.0101)

Plug-in ridge Effect -0.0188** -0.0188* -0.0188* -0.0188* -0.0188*

10 fold CV S.E. (0.0092) (0.0098) (0.0107) (0.0108) (0.0113)

Doubly robust Effect -0.0180* -0.0177* -0.0252** -0.0252** -0.0214*

post lasso selected p.s.† S.E. (0.0094) (0.0096) (0.0111) (0.0111) (0.0110)

Doubly robust Effect -0.0188** -0.0181* -0.0225** -0.0225** -0.0219**

lasso selected p.s. S.E. (0.0095) (0.0095) (0.0100) (0.0100) (0.0100)

Linear partialling out Effect -0.0177* -0.0198** -0.0248*** -0.0259*** -0.0216**

post lasso selection S.E. (0.0093) (0.0093) (0.0096) (0.0095) (0.0096)

Linear double selection Effect -0.0180* -0.0200** -0.0248** -0.0260** -0.0224**

post lasso selection S.E. (0.0096) (0.0095) (0.0104) (0.0103) (0.0105)

Mayor characteristics No Yes Yes Yes Yes Yes

Municipal characteristics No No Yes Yes Yes Yes

Political and judicial characteristics No No No Yes Yes Yes

Lottery dummy No No No No Yes Yes

State dummy No No No No No Yes

Note: k is the number of regressors and n is the sample size. Numbers in parentheses are computed standard
errors. (1)-(6) use the same controls as those in Table 4 of Ferraz and Finan (2011). Ridge methods use
R package “glmnet”; Four lasso based methods use R package “hdm”. For controlled (cross validated) ridge
regression, standard error is calculated using sandwich formula with residuals derived from ridge regression;
For plug-in (cross validated) ridge, standard error is calculated with α0 estimated by the estimator in Newey
and Robins (2018).
*** Significant at 1%. ** Significant at 5 %. * Significant at 10%.
† propensity score.
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Table 2: Effect of reelection incentives on corruption: many technical controls

Specification (1) (2) (3) (4)

k 67 122 188 254

n 476 476 476 476

θ̂DR w. rlasso Effect -0.0187** -0.0195** -0.0201** -0.0176*

and α̃(λ1 = 0) S.E. (0.0090) (0.0089) (0.0090) (0.0091)

θ̂DR w. rlasso Effect -0.0187** -0.0196** -0.0201** -0.0176**

and α̃(λ1 = 0.03) S.E. (0.0089) (0.0087) (0.0087) (0.0088)

θ̂DR w. rlasso Effect -0.0187** -0.0196** -0.0202** -0.0178**

α̃(λ1 = 0.06) S.E. (0.0085) (0.0084) (0.0085) (0.0086)

θ̂DR w. rlasso Effect -0.0187** -0.0196** -0.0202** -0.0178**

α̃(λ1 = 0.1) S.E. (0.0082) (0.0081) (0.0082) (0.0083)

Doubly robust Effect -0.0214* -0.0225* 0.0409 0.0012

post lasso selected p.s.† S.E. (0.0110) (0.0125) (0.1052) (0.0240)

Doubly robust Effect -0.0219** -0.0223** -0.0203 -0.0157

lasso selected p.s. S.E. (0.0100) (0.0101) (0.0140) (0.0110)

linear partialling out Effect -0.0216** -0.0211** -0.0198** -0.0192*

post lasso selection S.E. (0.0096) (0.0095) (0.0096) (0.0097)

linear double selection Effect -0.0224* -0.0221** -0.0205* -0.0197**

post lasso selection S.E. (0.0105) (0.0104) (0.0106) (0.0106)

Note: k is the number of regressors and n is the sample size. Numbers in parentheses are
computed standard errors. Controls in each specification are constructed as follows:
56 dummy variables in specification (6) from Table 1 are directly used in all specifications. In
addition, we collect all 11 continuous regressors used in specification (6) from Table 1. Based
on these 11 continuous regressors, we generate B-splines in the following way: (1), degree of
freedom 1 and order 1; (2), degree of freedom 1 and order 1, with all interactions; (3) degree of
freedom 2 and order 2, with all same degree interactions; (4), degree of freedom 3 and order 2,
with all same degree interactions. α̃ is calculated with fixed λ1 and λ2 selected by Algorithm
2. Consistent with other l1 penalization methods, we do not include the intercept for the l1
penalization. Standard errors of θ̂DR are calculated using simple plug-in method.
*** Significant at 1%.
** Significant at 5 %.
* Significant at 10%.
† propensity score. 24



A Preliminary Results

A.1 Overall notations

This paper works with triangular array {(Yi, X ′i)′}
n
i=1 generated from probability measure

P := Pn indexed by sample size n. Thus E[· ] = EP[· ] is the expectation operator under
P. For a vector a = (a1, a2 · · · , ak)′ ∈ Rk, m(x, a) = [m(x, a1),m(x, a2) · · · ,m(x, ak)]

′

is a k−dimensional column vector. Let ‖a‖ := (
∑k

j=1 a
2
j)

1/2, ‖a‖1 :=
∑k

j=1 |aj| and
‖a‖∞ := max1≤j≤k |aj| denote the l2, l1 and sup norms of vector a, respectively. For
a function f : X 7→ R, let ‖f‖P,q :=

[∫
|f(x)|q dP(x)

]1/q
, 1 ≤ q ≤ ∞ denote its

Lq(P) norm. In particular, ‖f‖P,∞ := supx∈X |f(x)|. For a generic function f , de-
note En[f ] := En[f(W )] := 1

n

∑n
i=1[f(Wi)], and ‖f‖n := {En[f ]2}1/2. For a square

matrix A = {aij}ki,j=1, let λmax(A), λmin(A) and tr(A) be its largest eigenvalue, small-
est eigenvalue and trace, respectively. Thence let ‖A‖ :=

√
λmax(A′A) be its spec-

tral norm. If A is symmetric, ‖A‖ = maxi |λi(A)|. Write ‖A‖max := max1≤i,j≤k |aij|,
‖A‖∞ := max1≤i≤k

∑k
j=1 |aij|. For a set A, |A| denotes its cardinality. 1{· } is the in-

dicator function. For two sequences of numbers an and bn, an ∨ bn := max{an, bn},
an∧ bn := min{an, bn}; an . bn means an ≤ cbn for some constant c that does not depend
on n. Bold 0 denotes a k dimensional vector of 0s.

A.2 Additional examples

Example A.1. Regression discontinuity design away from cut-off
Slightly modify Example 2.1 but keep notation (Yi, Ti, Xi). In addition, researchers

understand that Ti is determined by a running variable Ri ∈ R at cut-off point 0: t :=

1{r ≥ 0} for each realization t of Ti and r of Ri. Fix a known boundary point b > 0.
Object of interest is defined as

θb := E[Y ∗i | − b ≤ Ri ≤ b].

This object is helpful for external validity reasons, for example, when we are interested
in the population group away from cut-off (say, inframarginal applicants) instead of a
group at the immediate neighborhood of cut-off. One way to identify θb is by assuming
Y ∗i and Ri are independent conditional on Xi and −b ≤ Ri ≤ b, similar to Angrist and
Rokkanen (2015). Then it can be shown

θb = E[γb(Xi, 0)| − b ≤ Ri ≤ b], (A.1)

where γb(x, 0) = E[Yi|Xi = x, 0 ≤ Ri ≤ b]. RR is found in a fashion similar to (2.6) under
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suitable overlap assumption

αb(x, r) = ωb(x)1{r ≥ 0}, (A.2)

where ωb(x) := 1/E [1{Ri ≥ 0}|Xi = x,−b ≤ Ri ≤ b] is the (Ri-linked) inverse propensity
score.

Example A.2. Measurement error with auxiliary data
This example is inspired by Chen et al. (2005). To simplify presentation suppose we

are interested in
θ0 := E[X∗i ], i = 1 . . . n,

where the latent variable X∗i is not directly observable. However, we have access to a
primary dataset of random variable {Xi}ni=1 (possibly mismeasured) and an auxiliary
dataset of random variables {X∗Ai, XAi}ni=1. Under strong ignorability assumption that
conditional densities fX∗A|XA=x = fX∗|X=x for all x ∈ X , θ0 can be expressed as

θ0 = E[γ0(Xi)] = E[γA0 (Xi)],

where γ0(x) := E[X∗i |Xi = x] and γA0 (x) := EA[X∗Ai|XAi = x], with EA[· ] denoting the
expectation operator for auxiliary dataset. Let fX and fXA be the marginal densities of
X and XA, respectively. We can further write θ0 = EA

[
γA0 (Xi)

fX(Xi)
fXA (Xi)

]
, so that RR is

identified as α0(x) = fX(x)
fXA (x)

.

A.3 Proof of Proposition 3.1

Let (I) = supγ0∈H1
R2

1(α, γ0), (II) = ‖En[m(X, p(X))− α(X)p(X)]‖2. By linearity of
m(x, ·), Cauchy-Schwarz inequality and definition of H1

(I) = supγ0∈H1
{En[α(X)γ0(X)−m(X, γ0(X))]}2 ≤ sup‖β‖≤1 ‖β‖

2 ‖En[α(X)p(X)−m(X, p(X))]‖2

≤ ‖En[α(X)p(X)−m(X, p(X))]‖2 = (II). (A.3)

Next, let Eα,n = En[α(X)p(X)−m(X, p(X))]. Then

(I) = sup‖β‖≤1 β
′Eα,nE ′α,nβ ≥ sup‖β‖=1 β

′Eα,nE ′α,nβ = λmax(Eα,nE ′α,n) ≥ ‖Eα,n‖2 = (II),
(A.4)

where the last inequality follows since ‖Eα,n‖2 is one of the eigenvalues of Eα,nE ′α,n. To
see this, suppose Eα,nE ′α,nv = λv for some λ ≥ and v ∈ Rk. Premultiplying both sides
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by Eα,n yields
(
‖Eα,n‖2 − λ

)
E ′α,nv = 0. Therefore ‖Eα,n‖2 must be one of the eigenvalues

of Eα,nE ′α,n. Combining (A.3) and (A.4) yields the conclusion.

A.4 Proof of Proposition 3.2

Note bγ < b implies RE2 >
b2γ
b2
R̃, where R̃ = (1)

(2)
, (1) = supγ0∈H1

R2
1(α̃λ∗1,γ , γ0) +

2σ2

b2γn
En[α̃2

λ∗1,γ
(X)], and (2) = supγ0∈H1

R2
1(α̃λ∗1 , γ0)+ 2σ2

b2n
En[α̃2

λ∗1
(X)]. And bγ < b also implies

for each λ1, supγ0∈H1
R2

1(α̃λ1 , γ0)+ 2σ2

b2γn
En[α̃2

λ1
(X)] > supγ0∈H1

R2
1(α̃λ1 , γ0)+ 2σ2

b2n
En[α̃2

λ1
(X)].

By definition,

λ∗1,γ = arg min
λ1

{supγ0∈H1
R2

1(α̃λ1 , γ0) +
2σ2

b2
γn

En[α̃2
λ1

(X)]},

λ∗1 = arg min
λ1

{supγ0∈H1
R2

1(α̃λ1 , γ0) +
2σ2

b2n
En[α̃2

λ1
(X)]}.

It follows R̃ > 1 and RE > bγ
b
. If bγ ≥ b, RE ≥ 1 follows from MMSRHb(θDR(α̃λ1 , γ)) ≥

MMSRHb(θBP (α̃λ1)) for each λ1. If Ĝ = I, the lower bound can be deduced directly
since first order conditions yield λ∗1 = 2σ2

b2n
and λ∗1,γ = 2σ2

b2γn
.

A.5 Optimal estimator when α0 is known

If α0 is known, consider the following problem

α̃ := α̃λ1 = arg minα∈Θn

{
supγ0∈H1

R2
1(α, γ0) + λ1En[(α(X)− α0(X))2]

}
,

which has an analytic solution: α̃ = ã′p, where ã = (ĜĜ+λ1Ĝ)−
{
ĜP̂ + λ1En[α0(X)p(X)]

}
.

This solution traces out the bias-variance frontier of MMSRHb(θBP (α)) when α0 is
known. The optimal BP estimator can be derived accordingly by selecting an λ1 that min-
imizes MMSRHb(θBP (α̃)). Properties of this estimator can be established analogously
and we leave this for future research.

B Basic lemmas

This section provides some basic tools regarding series approximation, minimax calibra-
tion, and asymptotic distributions of BP estimators. Recall γ0 = Lnγ0 + uγ0 , where
Lnγ0 = β′lp is the least square projection of γ0 onto Θn, βl is the coefficient and uγ0 is the
projection error. Similarly write α0 = Lnα0 + uα0 , where Lnα0 = a′lp is the least square
projection of α0 onto Θn, al is the projection coefficient and uα0 is the projection error.
To simplify presentation, let uγ0i := γ0i − β′lpi, uα0i := α0i − a′lpi, where pi := p(Xi),
γ0i := γ0(Xi), α0i := α0(Xi), i = 1 . . . n.
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Lemma B.1. If Assumptions O and L hold true, it holds that

(i) E[uα0ipi] = 0, E[uγ0ipi] = 0;

(ii) ‖uα0‖P,2 ≤ rα0 , ‖uγ0‖P,2 ≤ rγ0 ;

(iii) ‖uα0‖P,∞ ≤ (`k + 1)rα0 , ‖uγ0‖P,∞ ≤ (`k + 1)rγ0 ;

(iv) al = O(1 + rα0), βl = O(1 + rγ0).

Proof. We only prove results related to α0. Those related to γ0 can be shown in the same
fashion. By definition

al = arg mina∈Rk E[α0i − a′pi]2. (B.1)

(i) follows from the first order condition of al. (ii) directly follows from (B.1): ‖uα0‖P,2 =

E[u2
α0i

] ≤ E[(α0i − a′bpi)2] ≤ r2
α0
. For (iii), note uα0 = α0 − a′bp+ a′bp− a′lp, where

a′bp− a′lp = p′E[pip
′
i]
−1E[pip

′
i]ab − p′E[pip

′
i]
−1E[piα0i]

= p′E[pip
′
i]
−1E [pi(p

′
iab − α0i)] = Ln(p′ab − α0).

Then (iii) follows from triangle inequality and definition of `k. Finally to see (iv), note

‖Lnα0‖2
P,2 = a′lE[pip

′
i]al ≥ ‖al‖

2 λmin {E[pip
′
i]} .

By Assumption L, E[pip
′
i] has all eigenvalues bounded away from zero. It follows

‖al‖2 . ‖Lnα0‖2
P,2 ≤ ‖α0‖2

P,2 + ‖uα0‖
2
P,2 = O(1 + r2

γ0
),

where the second inequality is by triangle inequality, and final relation follows from
‖α0‖P,2 = O(1) by Assumption O and ‖uα0‖P,2 ≤ rγ0 by Lemma B.1(ii).

The next lemma presents an effective way of controlling R2
1(α̃, γ0) when Ĝ is invertible.

Lemma B.2. If Assumptions O and L hold true, it holds

(i) R2
1(α̃, γ0) . T1 + T2, where

T1 := {En[α̃(X)Lnγ0(X)−m(X,Lnγ0(X)]}2 , T2 := {En[α̃(X)uγ0 −m(X, uγ0)]}2 .

(ii) T2 = {En [α̃(X)− α0(X))uγ0 ]}2 +Op

[
(`2k∧‖α0‖2P,∞)r2

γ0/n
]
.

(iii) For every α ∈ Θn,

T1 .
{
‖En[m(X, p(X))− α(X)p(X)]‖2 + λ1Enα2(X)

}
‖βl‖2

2 , (B.2)

λ1Enα̃2(X) ≤‖En[m(X, p(X))− α(X)p(X)]‖2 + λ1Enα2(X). (B.3)
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Proof. Statement (i) follows from linearity of m(x, ·) and triangle inequality. Note T2 .

T21+T22, where T21 := {En[(α̃(X)− α0(X))uγ0 ]}2 and T22 := {En [α0(X)uγ0 −m(X, uγ0)]}2.
By Assumption O and note E[α0iuγ0i −m(Xi, uγ0i)] = 0:

ET22 =
1

n
E [α0iuγ0i −m(Xi, uγ0i)]

2 .
1

n
E [α0iuγ0i]

2 +
1

n
E[m2(Xi, uγ0i)] .

1

n
E
[
α2

0iu
2
γ0i

]
,

where either E
[
α2

0iu
2
γ0i

]
. ‖uγ0‖

2
P,∞ . `2

kr
2
γ0

by E [α2
0i] < ∞ and Lemma B.1(iii), or

E
[
α2

0iu
2
γ0i

]
≤ ‖α0‖2

P,∞ ‖uγ0‖
2
P,2 ≤ ‖α0‖2

P,∞ r2
γ0

by Lemma B.1(ii). Then statement (ii)
follows by Markov inequality. Finally, (B.2) follows from linearity of m(x, · ), Cauchy-
Schwarz inequality and definition of α̃. (B.3) follows from definition of α̃ as well.

Lemma B.3 can be invoked to establish the asymptotic distribution of θ̃BP when k
n
≤ 1.

Lemma B.3. Suppose Assumption O holds true and (i) infx∈X E [e2
i |Xi = x] is bounded

away from zero, supx∈X E
[
|ei|3 |Xi = x

]
. 1; (ii) maxi|α̃(Xi)|/√n = op(1); (iii) [Enα̃2(X)]

−1
=

Op(1). Then
√
nEn[α̃(X)e+m(X, γ0(X))−θ0]

d→ σα̃,nZ1+σmZ2, where σ2
α̃,n = En [α̃2(X)E[e2|X]],

σ2
m = E[m2(Xi, γ0(Xi))]−θ2

0, and Z1 and Z2 are two iid standard normal random variables
independent of {Xi, ei}ni=1.

Proof. Recall Xn := {Xi}ni=1. Let Ui = n−1/2σ−1
α̃,nα̃(Xi)ei. We split the proof into three

steps.

Step 1: show supt∈R

∣∣∣∣P( n∑
i=1

Ui ≤ t|Xn

)
− P(Z1 ≤ t)

∣∣∣∣ = op(1). Note E[Ui|Xn] = 0

for each i = 1 . . . n and
n∑
i=1

V ar (Ui|Xn) = 1. Thus conditional on Xn, {Ui}ni=1 are mean

zero and independent. It follows:

supt∈R

∣∣∣∣∣P
(

n∑
i=1

Ui ≤ t|Xn

)
− P(Z1 ≤ t)

∣∣∣∣∣ .
n∑
i=1

E
[
|Ui|3 |Xn

]
. σ−3

α̃,nn
−3/2

n∑
i=1

|α̃(Xi)|3

.

[
1

n

n∑
i=1

α̃2(Xi)

]−3/2

n−3/2
n∑
i=1

|α̃(Xi)|3 =
maxi |α̃(Xi)|√

n

[
1

n

n∑
i=1

α̃2(Xi)

]−1/2

= op(1),

where the first inequality is by Berry-Esseen inequality, the second inequality is by
supx∈X E

[
|ei|3 |Xi = x

]
. 1, the third inequality is by infx∈X E [e2

i |Xi = x] bounded away
from zero, and the final relation uses assumptions (ii) and (iii) in Lemma B.3.

Step 2: show for each t ∈ R, |P (
√
nEn[α̃(X)e] ≤ t|Xn)− P(σα̃,nZ1 ≤ t)| = op(1).

This follows from P (
√
nEn[α̃(X)e] ≤ t|Xn) = P

(
n∑
i=1

Ui ≤ σ−1
α̃,nt|Xn

)
, P(σα̃,nZ1 ≤ t) =

P(Z1 ≤ σ−1
α̃,nt) for each t ∈ R and conclusion from step 1.

Step 3: show Gn
d→ G∗, where Gn :=

√
nEn[α̃(X)e + m(X, γ0(X)) − θ0], G∗ :=

σα̃,nZ1 + σmZ2. Let φGn(t) and φG∗(t) be the characteristic functions of Gn and G∗,
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respectively and i2 = −1. It suffices to show φGn(t) → φG∗(t) for each t. By triangle
inequality

|φGn(t)− φG∗(t)| = |E exp{itGn} − E exp{itG∗}|

≤|E exp{itGn} − E exp{it{σα̃,nZ1 +
√
nEn[m(X, γ0(X))− θ0]}}| (B.4)

+|E exp{it{σα̃,nZ1 +
√
nEn[m(X, γ0(X))− θ0]}} − E exp{itG∗}|. (B.5)

Note

(B.4) =
∣∣E exp

{
it
(√
nEn[m(X, γ0(X))− θ0]

)} {
exp

{
it
√
nEnα̃(X)e

}
− exp{itσα̃,nZ1}

}∣∣
≤E

∣∣exp
{
it
(√
nEn[m(X, γ0(X))− θ0]

)}∣∣ ∣∣E [exp
{
it
√
nEnα̃(X)e

}
− exp {itσα̃,nZ1} |Xn

]∣∣
≤E

∣∣E [exp
{
it
√
nEnα̃(X)e

}
− exp {itσα̃,nZ1} |Xn

]∣∣ ,
where the first inequality is by LIE and second inequality follows from property of char-
acteristic function. Then by dominated convergence theorem and conclusion from step
2, (B.4) = o(1). Next,

(B.5) = |E exp {itσα̃,nZ1} {exp {it (En[m(X, γ0(X))− θ0])} − exp {itσmZ2}}|

=
∣∣E{E [exp {itσα̃,nZ1} |Xn]E

[{
exp

{
it
(√
nEn[m(X, γ0(X))− θ0]

)}
− exp {itσmZ2}

}
|Xn

]}∣∣
≤
∣∣E [exp

{
it
(√
nEn[m(X, γ0(X))− θ0]

)}
− exp {itσmZ2}

]∣∣ = o(1),

where the second relation is by LIE and conditional independence, the third relation
is because E [exp {itσα̃,nZ1} |Xn] = exp

{
−1

2
σ2
α̃,nt

2
}
≤ 1 and final relation follows from

√
nEn[m(X, γ0(X)) − θ0]

d→ σmZ2 by Lindeberg-Lévy central limit theorem. This com-
pletes proof for the third step and the conclusion follows.

C Technical results for Section 4

Additional Notations. Let eRi := m(Xi, p(Xi)) − α0(Xi)p(Xi). Recall α̇ = p′ȧ, ȧ :=

Ĝ−P̂ .

C.1 Proofs for main results in Section 4

Proof of Theorem 4.1

Since
√
nEn[θ̃BP − θ0] =

√
nEn[α̃(X)e + m(X, γ0(X))− θ0] +

√
nR1(α̃, γ0), display (4.1)

follows by Theorems C.1. If in addition, σ2
α̃,n

p→ V > 0, display (4.2) follows from (4.1)
and Slutsky’s theorem.
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Proof of Corollary 4.1

By Theorem C.1, Rn = εn + rn where rn = δn`krγ0

(√
k log ξk + kξk log ξk√

n

)
∧
√
nδnrγ0 +

√
nrγ0rα0+(`k∧‖α0‖P,∞)rγ0+δn and εn = o(rn). On the other hand, let ‖βl − β‖ = Op(δ

β
n)

for some δβn ≥ 0. Then Rγ
n = εnδ

β
n + rn. If δβn → 0, rn is still the leading term for Rγ

n.
Thus Rn = Rγ

n = rn. Otherwise, δβn 9 0 implies Rγ
n ≥ Rn. So in either case, Rγ

n ≥ Rn.
Finally, if Rn 9 0, then rn 9 0. Hence Rγ

n 9 0 as well.

Proof of Corollary 4.2

First note by Tropp (2015, Theorem 5.1.1), P{λmin(Ĝ) ≤ 0.5λmin(G)} ≤ exp{log k[1 −
0.25λmin(G)

2ξ2
k log k/n

]} → 0 since ξ2
k log k

n
→ 0 and λmin(G) is bounded away from zero. Thus As-

sumption M is satisfied. So Lemmas C.1-C.4 and Theorem C.1 still hold true. Second,
√
nEn

[
θ̃BP − θ0

]
=
√
nEnφ +

√
nR1(α̃, γ0) +

√
nR2(α̃), where

√
nR1(α̃, γ0) = op(1) by

Theorem C.1,
√
nR2(α̃) = op(1) by Lemma C.3(iii), ξ2

k log k

n
= o(1) and rα0 = o(1). Then

√
n
[
θ̃BP − θ0

]
d→ N(0,E[φ2

i ]) by Lindeberg–Lévy central limit theorem. Finally Ω̂
p→ Ω

follows by Lemma C.5(iv).

Proof of Corollary 4.3

The proof is similar to that of Theorem 4.1 by using conclusions from Theorem C.2, so
details are omitted.

C.2 Additional results

Lemma C.1 concerns a basic matrix law of large numbers. Lemmas C.2 and C.3 provide
tools to establish asymptotic properties of α̃ and its associated remainder terms. Lemma
C.4 is useful for verifying primitive conditions of Lemma B.3.

Lemma C.1. If Assumptions O, L and M(1) hold true, then E
[∥∥∥Ĝ−G∥∥∥] . ξ2

k log k

n
+√

ξ2
k log k

n
,
∥∥∥Ĝ−G∥∥∥ = Op

(√
ξ2
k log k

n

)
,
∥∥∥Ĝ∥∥∥ = Op(1).

Lemma C.2. If Assumptions O, L and M hold true and λ1 = o( 1
n
), then

(i) Ĝ−1EneR = Op

(√
ξ2
k

n
∧
√
‖α0‖P,∞k

n

)
;

(ii) Ĝ−1En[uα0p(X)] = Op(rα0);

(iii) ‖ȧ− al‖ = Op(δn), ‖ȧ‖ = Op(1 + δn);

(iv) ‖ã− al‖ = Op(δn), ‖ã‖ = Op(1 + δn);
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(v) Enα̃2(X) = Op((1 + δn)2), Enα̇2(X) = Op((1 + δn)2).

Lemma C.3. If Assumptions O, L and M hold true and λ1 = o( 1
n
), then

(i)
√
nEn [(ã− al)′p(X)uγ0 ] = Op

[
δnrγ0`k

(√
k log ξk + kξk log ξk√

n

)
∧ δnrγ0

√
n
]
.

(ii)
√
nEn [(ã− al)′p(X)e] = Op(δn);

(iii)
√
nR2(α̃) = Op(δn).

Lemma C.4. If Assumptions O, L and M(1) hold true, all eigenvalues of Ĝ are positive
wpa1, λ1 = o( 1

n
) and ‖α0‖2

P,2 − r2
α0

is bounded away from zero uniformly for each k and
n, then

(i)
∥∥∥P̂∥∥∥−1

= Op(1);

(ii) {En [α̃2(X)]}−1
= Op(1) + op

(
1

n2λmin(Ĝ)

)
.

Theorem C.1. If conditions for Theorem 4.1 hold true, then

(i)
√
nR1(α̃, γ0) = op(1);

(ii)
√
nEn[α̃(X)e+m(X, γ0(X))− θ0]

d→ σα̃,nZ1 + σmZ2.

Lemma C.5. If conditions of Corollary 4.2 hold true, then

(i) En[m2(X, γ̇(X)− γ0(X))] = op(1);

(ii) En [α̃(X)2(γ̇(X)− γ0(X))2] = op(1);

(iii) En [(α̃(X)− α0(X))2e2] = op(1);

(iv) Ω̂
p→ E[φ2

i ].

Lemma C.6. If conditions of Corollary 4.3 hold true, then

(i) Enα̇2(X) = Op(1);

(ii) Enα̃2(X) = Op(1);

(iii) [Enα̃2(X)]
−1

= Op(1).

Theorem C.2. If conditions of Corollary 4.3 hold true, then

(i)
√
nR1(α̃, γ0) = op(1);
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(ii)
√
nEn[α̃(X)e+m(X, γ0(X))− θ0]

d→ σα̃,nZ1 + σmZ2.

The following lemmas present some sufficient conditions for main assumptions made in
Section 4.

Lemma C.7. Let G = I and Assumptions O and L hold true. In addition,
√

2ξ2
k log 2k

n
+

ξ2
k log 2k

3n
→ c1, where c1 is a constant strictly smaller than 1. Then there exists a constant

c2 < 1− c1 strictly positive such that λmin(Ĝ) ≥ c2 wpa1.

Lemma C.8. If Assumption L(1) holds true and ‖ã‖ = Op(1), then maxi|α̃(Xi)|/√n = op(1).

D Technical results for Section 5

Additional Notations. Let u∗i := α0(Xi)− α∗(Xi), α∗(Xi) = p′(Xi)a
∗.

D.1 Proofs for main results in Section 5

Proof of Theorem 5.1

Since
√
n(θ̂DR − θ0) =

√
nEnφ +

√
nR1(α̂, γ0 − γ̂) +

√
nR2(α̂), conclusion follows from

Theorem D.1 and Lindeberg–Lévy central limit theorem.

Proof of Theorem 5.2

By Lemma D.3(iii), λ0 = Op(∆n). If λ2 = λ0, Lemma D.3(iv) and triangle inequality
yields (ã−a∗)′Ĝ(ã−a∗) ≤ 2λ0 ‖a∗‖1. Since Ĝ − Ĝ is positive semidefinite, first conclusion
follows as

En[α̃(X)− α∗(X)]2 = (ã− a∗)′Ĝ(ã− a∗) ≤ (ã− a∗)′Ĝ(ã− a∗) ≤ 2λ0 ‖a∗‖1 .

If conditions (i)(ii) of Theorem 5.2 also hold true, then

2(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ã− a∗‖1 = 2(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ãA∗ − a∗A∗‖1 + λ2

∥∥ãAc∗∥∥1

≤ 3λ2 ‖ãA∗ − a∗A∗‖1 + λ2 ‖ãA∗ − a∗A∗‖1 = 4λ2 ‖ãA∗ − a∗A∗‖1 ,

where the second relation follows wpa1 by Theorem D.2. Since a∗Ac∗ = 0, Theorem D.2
also implies that

∥∥ãAc∗ − a∗Ac∗∥∥1
≤ 3 ‖ãA∗ − a∗A∗‖1 wpa1. So by condition (i) of Theorem
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5.2, it holds wpa1 that

2(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ã− a∗‖1 ≤ 4
[
(ã− a∗)′Ĝ(ã− a∗)

]1/2

λ2

√
S∗
κn

≤ (ã− a∗)′Ĝ(ã− a∗) +
4λ2

2S∗
κn

,

where the second inequality is due to 4ab ≤ a2 +4b2 for any number a and b. Rearranging
above inequality yields (ã− a∗)′Ĝ(ã− a∗) = Op

(
λ2

2S∗
κn

)
and ‖ã− a∗‖1 = Op

(
λ2S∗
κn

)
. Since

(Ĝ − Ĝ) is positive semidefinite it follows En[α̃(X) − α∗(X)]2 ≤ (ã − a∗)
′Ĝ(ã − a∗) =

Op

(
λ2

2S∗
κn

)
as well.

D.2 Additional results

Lemma D.1 is concerned with matrix convergence in max norm.

Lemma D.1. If Assumptions O and H hold true and Λn

√
log k
n
→ 0, then

E
[∥∥∥Ĝ−G∥∥∥

max

]
= O

(
Λn

√
log k

n

)
,
∥∥∥Ĝ−G∥∥∥

max
= Op

(
Λn

√
log k

n

)
,
∥∥∥Ĝ∥∥∥

max
= Op(1).

Theorem D.1. If conditions for Theorem 5.1 hold true, then

(i)
√
nR1(α̂, γ0 − γ̂) = op(1);

(ii)
√
nR2(α̂) = op(1).

Lemma D.2. If Assumptions O and H hold true and ∆n = op(1), then

(i) ‖En[p(X)u∗]− E[p(Xi)u∗i]‖∞ = Op

(√
log k
n

Λnµ∗

)
;

(ii) ‖En[p(X)α0(X)]− E[p(Xi)α0(Xi)]‖∞ = Op

(√
log k
n

Λn

)
;

(iii) ‖En[p(X)α∗(X)]− E[p(Xi)α∗(Xi)]‖∞ = Op

(√
log k
n

Λn

)
.

Lemma D.3. If Assumptions O and H hold true and ∆n = op(1), then wpa1

(i) ‖En[m(X, p(X))− p(X)α0(X)]‖∞ . εmn +
√

log k
n

Λn;

(ii)
∥∥∥P̂ − Ĝa∗∥∥∥

∞
. εmn +

√
log k
n

Λn + µ∗;

(iii) 2(ã− a∗)′(P̂ − Ĝa∗) ≤ ‖ã− a∗‖1 λ0, where λ0 = Op(∆n);
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(iv) (ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ã‖1 ≤ λ0 ‖ã− a∗‖1 + λ2 ‖a∗‖1.

Theorem D.2. If all conditions of Theorem 5.2 hold true, then wpa1 2(ã − a∗)′Ĝ(ã −
a∗) + λ2

∥∥ãAc∗∥∥1
≤ 3λ2 ‖ãA∗ − a∗A∗‖1.

The following lemmas present some sufficient conditions for main assumptions made in
Section 5.

Lemma D.4. Suppose Assumptions O and H hold true.

(i) If there exists a sequence of numbers ρ1n such that |m(x, pj(x))| ≤ ρ1nΛn for each

j = 1 . . . k, then εmn = ρ1nΛn log k
n

+
√

log k
n

;

(ii) If there exists a sequence of number ρ2n and sub-gaussian h(Xi) such that |m(Xi, pj(Xi))| ≤
ρ2nh(Xi) for each j = 1 . . . k and i = 1 . . . n, then εmn = ρ2n

√
log k
n

.

Lemma D.5. Suppose Assumption O and H hold true,
√

log k
n

Λn → 0 and µ∗ → 0. Then∥∥∥Ĝa∗∥∥∥
∞

= Op(1).

D.3 Algorithms for selecting penalties

To implement (5.1), we need to specify Γk, λ1 and λ2. Suppose Γk = Ĝ, we propose the
following procedure: for each λ1, first select λ2 conservatively such that α̃ can achieve
the fast convergence rate, and then select λ1 so that its associated DR or BP estimator
has a smaller MMSRHb given some b > 0 (thus more robust in the minimax sense).

Algorithm 1. [Practical selection of λ1 and λ2]
Step 1: For each λ1 in a grid of possible values, set λ̂2 = 2λ̂0, where λ̂0 = λ̂0(λ1) is

an approximation of λ0 given λ1. Let α̃(λ1, λ̂2) be the solution of (5.1) with λ1 and λ̂2.
Step 2: Calculate MMSRHb

[
θ̃BP (α̃(λ1, λ̂2))

]
with some pre-specified b2 and σ2, or

calculate MMSRHb

(
θDR(α̃(λ1, λ̂2), γ)

)
for some γ, and pre-specified b2

γ and σ2.26

Step 3: Pick λ̂1 as the minimizer ofMMSRHb

[
θ̃BP (α̃(λ1, λ̂2))

]
orMMSRHb

[
θDR(α̃(λ1, λ̂2), γ)

]
.

Step 1 of Algorithm 1 requires an estimate of λ0. Note eRi = (eR1i, . . . , e
R
ki)
′, where eRji :=

m(Xi, pj(Xi))−α0(Xi)pj(Xi) for j = 1 . . . k, i = 1 . . . n. Thus let Ψ := diag[ψ1, ψ2, . . . , ψk]

be a k × k diagonal matrix where ψj :=
{
En
[
eRji
]2}1/2

for j = 1 . . . k. When Γk = Ĝ, we
suggest to set λ0 as

λ̂0 = 2ĉ(λ1+1)‖Ψ̂‖∞Φ−1(1− t̂
2k)/

√
n + 2λ1

∥∥∥P̂∥∥∥
∞
, (D.1)

26In practice, none of b, σ2 or bγ is known. We recommend conducting sensitivity analysis against
different ratios of σ2

/nb2 or σ2
/nb2γ .
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where Ψ̂ is an iterative estimate of Ψ stated in Algorithm 2 at the end of this sec-
tion, Φ(· ) is the distribution function of a standard normal random variable, and ĉ > 1

is a slack constant and 0 < t̂ ≤ 1 is a confidence level.27 The idea behind (D.1) is
as follows: since usually ‖En[p(X)(α0(X)− α∗(X))]‖∞ converges faster than

∥∥EneR∥∥∞,
we can expect λ0 ≤ λ̄0 wpa1, where λ̄0 := 2(1 + λ1)ĉ

∥∥EneR∥∥∞ + 2λ1

∥∥∥P̂∥∥∥
∞

for some

ĉ > 1. Therefore, we estimate the conservative upper bound λ̄0 which only contains
one unknown object

∥∥EneR∥∥∞. Further note EeRi = 0 and
∥∥EneR∥∥∞ ≤ ‖Ψ‖∞ ∥∥∥S̃∥∥∥∞ ,

where
∥∥∥S̃∥∥∥

∞
:= max1≤j≤k

∣∣∣EneRjiψj

∣∣∣. By Belloni et al. (2012, Lemma 5), we can expect

P
[√

n
∥∥∥S̃∥∥∥

∞
> Φ−1

(
1− t̂

2k

)]
≤ t̂− o(1) for confidence level t̂. (D.1) reflects the idea to

bound term
∥∥∥S̃∥∥∥

∞
with a large probability.

Algorithm 2. [Iterative estimation of Ψ ]
Step 0: For each λ1, fix ĉ and t̂. Let L = 15 be the number of iterations.
Step 1: Let Ψ̂ 1 := diag[ψ̂1

1, ψ̂
1
2, . . . ψ̂

1
k], where ψ̂1

j =:
{
En [m(X, pj(X))− Enm(X, pj(X))]2

}1/2

for each j = 1 . . . k. Find λ̂1
2 according to (D.1) and parameters in step 0. Compute

α̃1(λ1, λ̂
1
2) according to (5.1) with penalty loadings λ1 and λ̂1

2.
Step 2: For l = 2 . . . L, update λ̂l2 according to Ψ̂ l := diag[ψ̂l1, ψ̂

l
2, . . . ψ̂

l
k], where

ψ̂lj :=

{
En
[
m(X, pj(X))− α̃(l−1)(λ1, λ̂

l−1
2 )pj(X)

]2
}1/2

for each j = 1 . . . k,

and α̃(l−1)(λ1, λ̂
l−1
2 ) is calibrated in iteration l − 1 according to (5.1). Repeat the process

for L times.
Step 3: Use Ψ̂ := diag[ψ̂L+1

1 , ψ̂L+1
2 , . . . ψ̂L+1

k ] as the final estimate for Ψ , where

ψ̂L+1
j :=

{
En
[
m(X, pj(X))− α̃L(λ1, λ̂

L
2 )pj(X)

]2
}1/2

for each j = 1 . . . k.

E Simulation

This section assesses finite sample performance of θ̃BP with a small fixed penalty when
k < n. The set-up follows Example 2.1 and is in line with Kang et al. (2007). Let
U := {U1, U2, U3, U4}′ be a vector of four random variables from multivariate standard
normal distribution N(0, I4). Outcome variable Y ∗ is generated as

Y ∗ = 210 + 27.4U1 + 13.7U2 + 13.7U3 + 13.7U4 + e,

27In practice, we set ĉ = 1.1, t̂ = 0.1/ log(k ∨ n), in line with recommendations in Belloni et al. (2011,
2012, 2014, 2017).
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where e follows a standard normal distribution and is independent of U . The target
parameter is E[Y ∗] = 210. The true propensity score is

π(u) = P {T = 1|U = u} = Λ(−u1 + 0.5u2−0.25u3−0.1u4),

where Λ(· ) := exp(·)
1+exp(·) . This mechanism generates a mean response rate of 0.5. Observed

outcome is Y = TY ∗. We do not observe U directly but only its transformed version
X := {X1, X2, X3, X4}′, where

X1 := exp

(
U1

2

)
, X2 :=

U2

1 + exp(U1)
+ 10, X3 :=

(
U1U3

25
+ 0.6

)3

, X4 := (U2 + U4 + 20)2.

An iid sample of size n = 200 is drawn from observables {Y, T,X1, X2, X3, X4}. Cali-
brated RR is α̃(x, t) = tã′p(x), where

ã =
[
ĜT ĜT + λ1ĜT

]−
ĜT P̂ , where ĜT := En[Tp(X)p′(X)], P̂ = En[p(X)]. (E.1)

E.1 Baseline results with mild selection bias

First we look at a situation with mild selection bias, where all relevant regressors are
included even when k is small. We choose B-splines as basis functions, and k ranges
from 5 to 121, covering 11 cases with k

n
growing from 0.025 to 0.605. We compare

the performance of the following three BP estimators: (1) Near Optimal BP estimator
with small penalty: RR is computed via (E.1) and small coefficient λ1 = 0.002; (2) NR
estimator: RR is computed with coefficient ãNR = Ĝ−T P̂ , proposed in Newey and Robins
(2018) and numerically equivalent to a plug-in OLS estimator; (3) “Simple Ridge” (SR)
estimator: RR is computed with coefficient ãSR = (ĜT ĜT +λ1I)−ĜT P̂ , with λ1 = 0.002.
Performance of a simple sample average estimator when α0 is known is also reported.
Bias and RMSE after 10000 experiments are collected in Figure E.1. Empirical coverage
probabilities of these estimators when the variance is estimated by equation (4.3) are
reported in Tables S6 and S7.

E.2 Robustness check

Considerable selection bias We consider a situation with considerable bias. At
the beginning only X4 is used to construct B-splines. So, severe selection bias exists
in the specification. But researchers gradually add more and more relevant regressors
(X3, X2, X1 and their interactive terms) to alleviate bias. This creates a total of 10 cases
with k growing from 5 to 121. Bias and RMSE after 10000 experiments are collected
Figure E.2.
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Sensitivity to choice of basis functions. Instead of using B-splines, we also con-
struct basis functions with orthogonal polynomials. As the dimensional restriction on
polynomials is stricter, we only consider 9 possible scenarios: k grows from 5 to 70, and
k
n
increases from 0.025 to 0.35. Results are reported in Figure E.3.

Sensitivity to choice of λ1 Finally, I check sensitivity of θ̃BP to the choice of λ1.
Set-up is the same with baseline results using B-splines, but λ1 ranges from 0 to 0.005.
Results after 10000 experiments are collected in Figure E.4.

E.3 Comparison with doubly robust method

In this section we compare the finite sample performance of θ̃BP with that of various
DR estimators. I focus on three popular doubly robust methods involving estimation
of propensity scores: (1) regression function and propensity score are estimated using
(generalized) linear methods without selection; (2) regression function and propensity
score are estimated using post lasso. (3) regression function and propensity score are
estimated using lasso. Basis functions and simulation specifications follow Section E.1
and Table E.1. We only look at cases with smaller k

n
ratios, where we know these DR

estimators would perform relatively well.28 Results are reported in Figure E.5. As we
can see clearly, the RMSE of DR estimators either perform strictly worse than θ̃BP , or in
the case it does achieve a smaller RMSE, the improvement is not significant. Note these
observations hold even though the penalty level for θ̃BP is fixed and not optimally chosen
in our simulation.

28Otherwise, when k
n is too large, fitted propensity scores of numerically 0 or 1 would occur for the

DR methods without selection, and convergence is also not guaranteed for the algorithm of lasso even
after maximum iterations.
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Figure E.1: Bias and RMSE using B-splines, 10000 Monte Carlo, λ1 = 0.002, mild
selection bias
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Figure E.2: Bias and RMSE using B-splines, 10000 Monte Carlo, λ1 = 0.002, considerable
selection bias
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Figure E.3: Bias and RMSE using orthogonal polynomials, 10000 Monte Carlo, λ1 =
0.001, mild selection bias
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Figure E.4: Sensitivity of θ̃BP to λ1 using B-splines, mild selection bias
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Figure E.5: Bias and RMSE using B-splines and DR methods, mild selection bias, 10000
simulations

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
2

4
6

8
10

12

Absolute bias, B−splines

k n

A
bs

ol
ut

e 
B

ia
s

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

0
5

10
15

20
25

30

RMSE, B−splines

k n

R
M

S
E

DR w. lasso selected p.s.
Near Optimal BP, λ1=0.001

DR w. post lasso selected p.s.
DR w. p.s. no selection

References

Ai, C. and Chen, X. (2003). Efficient estimation of models with conditional moment
restrictions containing unknown functions. Econometrica, 71(6):1795–1843.

Andrews, D. W. (1994). Asymptotics for semiparametric econometric models via stochas-
tic equicontinuity. Econometrica: Journal of the Econometric Society, pages 43–72.

Angrist, J. D. (1998). Estimating the labor market impact of voluntary military service
using social security data on military applicants. Econometrica, pages 249–288.

Angrist, J. D. and Rokkanen, M. (2015). Wanna get away? regression discontinuity esti-
mation of exam school effects away from the cutoff. Journal of the American Statistical
Association, 110(512):1331–1344.

Armstrong, T. and Kolesár, M. (2018a). Finite-sample optimal estimation and inference
on average treatment effects under unconfoundedness.

Armstrong, T. B. and Kolesár, M. (2018b). Optimal inference in a class of regression
models. Econometrica, 86(2):655–683.

Athey, S., Imbens, G. W., and Wager, S. (2018). Approximate residual balancing: de-
biased inference of average treatment effects in high dimensions. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 80(4):597–623.

41



Belloni, A., Chen, D., Chernozhukov, V., and Hansen, C. (2012). Sparse models and
methods for optimal instruments with an application to eminent domain. Econometrica,
80(6):2369–2429.

Belloni, A., Chernozhukov, V., Chetverikov, D., and Kato, K. (2015). Some new asymp-
totic theory for least squares series: Pointwise and uniform results. Journal of Econo-
metrics, 186(2):345–366.

Belloni, A., Chernozhukov, V., Fernández-Val, I., and Hansen, C. (2017). Program eval-
uation and causal inference with high-dimensional data. Econometrica, 85(1):233–298.

Belloni, A., Chernozhukov, V., and Hansen, C. (2014). Inference on treatment effects
after selection among high-dimensional controls. The Review of Economic Studies,
81(2):608–650.

Belloni, A., Chernozhukov, V., and Wang, L. (2011). Square-root lasso: pivotal recovery
of sparse signals via conic programming. Biometrika, 98(4):791–806.

Bickel, P. J., Klaassen, C. A., Bickel, P. J., Ritov, Y., Klaassen, J., Wellner, J. A., and
Ritov, Y. (1993). Efficient and adaptive estimation for semiparametric models. Johns
Hopkins University Press Baltimore.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009). Simultaneous analysis of lasso and
dantzig selector. Annals of Statistics, 37(4):1705–1732.

Bradic, J., Chernozhukov, V., Newey, W. K., and Zhu, Y. (2019). Minimax semipara-
metric learning with approximate sparsity. arXiv preprint arXiv:1912.12213.

Bühlmann, P. and Van De Geer, S. (2011). Statistics for high-dimensional data: methods,
theory and applications. Springer Science and Business Media.

Chan, K. C. G., Yam, S. C. P., and Zhang, Z. (2016). Globally efficient non-parametric
inference of average treatment effects by empirical balancing calibration weighting.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78(3):673–
700.

Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models. Handbook
of econometrics, 6:5549–5632.

Chen, X. and Christensen, T. M. (2015). Optimal uniform convergence rates and asymp-
totic normality for series estimators under weak dependence and weak conditions. Jour-
nal of Econometrics, 188(2):447–465.

Chen, X., Hong, H., and Tamer, E. (2005). Measurement error models with auxiliary
data. The Review of Economic Studies, 72(2):343–366.

Chen, X. and Pouzo, D. (2012). Estimation of nonparametric conditional moment models
with possibly nonsmooth generalized residuals. Econometrica, 80(1):277–321.

Chen, X. and Pouzo, D. (2015). Sieve wald and qlr inferences on semi/nonparametric
conditional moment models. Econometrica, 83(3):1013–1079.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and

42



Robins, J. (2018a). Double/debiased machine learning for treatment and structural
parameters. The Econometrics Journal, 21(1):C1–C68.

Chernozhukov, V., Escanciano, J. C., Ichimura, H., and Newey, W. K. (2016). Locally
Robust Semiparametric Estimation. pages 1–42.

Chernozhukov, V., Newey, W., and Robins, J. (2018b). Double/De-Biased Machine
Learning Using Regularized Riesz Representers. pages 1–15.

Chernozhukov, V., Newey, W. K., and Singh, R. (2018c). Learning Continuous Regression
Functionals via Regularized Riesz Representers.

DeVore, R. A. and Lorentz, G. G. (1993). Constructive approximation, volume 303.
Springer Science and Business Media.

Farrell, M. H. (2015). Robust inference on average treatment effects with possibly more
covariates than observations. Journal of Econometrics, 189(1):1–23.

Ferraz, C. and Finan, F. (2011). Electoral accountability and corruption: Evidence from
the audits of local governments. American Economic Review, 101(4):1274–1311.

Giné, E. and Koltchinskii, V. (2006). Concentration inequalities and asymptotic results
for ratio type empirical processes. Annals of Probability, 34(3):1143–1216.

Hainmueller, J. (2012). Entropy balancing for causal effects: A multivariate reweight-
ing method to produce balanced samples in observational studies. Political Analysis,
20(1):25–46.

Hansen, B. E. (2015). A unified asymptotic distribution theory for parametric and non-
parametric least squares. Technical report, Working paper.

Hirshberg, D. A. and Wager, S. (2018). Augmented Minimax Linear Estimation. pages
1–49.

Huang, J. Z. (2003). Local asymptotics for polynomial spline regression. Annals of
Statistics, 31(5):1600–1635.

Imbens, G. and Wager, S. (2018). Optimized regression discontinuity designs. Review of
Economics and Statistics, (0).

Kallus, N. (2016). Generalized optimal matching methods for causal inference. arXiv
preprint arXiv:1612.08321.

Kang, J. D., Schafer, J. L., et al. (2007). Demystifying double robustness: A compari-
son of alternative strategies for estimating a population mean from incomplete data.
Statistical science, 22(4):523–539.

Newey, W. K. (1990). Semiparametric efficiency bounds. Journal of applied econometrics,
5(2):99–135.

Newey, W. K. (1994). The asymptotic variance of semiparametric estimators. Economet-
rica: Journal of the Econometric Society, pages 1349–1382.

Newey, W. K. (1997). Convergence rates and asymptotic normality for series estimators.
Journal of Econometrics, 79(1):147–168.

43



Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing.
Handbook of econometrics, 4:2111–2245.

Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of nonparametric
models. Econometrica, 71(5):1565–1578.

Newey, W. K. and Robins, J. R. (2018). Cross-fitting and fast remainder rates for semi-
parametric estimation. arXiv preprint arXiv:1801.09138.

Oster, E. (2017). Unobservable selection and coefficient stability: Theory and evidence.
Journal of Business & Economic Statistics, pages 1–18.

Qiu, C. and Otsu, T. (2018). Information theoretic approach to high dimensional multi-
plicative models: Stochastic discount factor and treatment effect.

Robins, J., Tchetgen, E. T., Li, L., and van der Vaart, A. (2009). Semiparametric minimax
rates. Electronic journal of statistics, 3:1305.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in
observational studies for causal effects. Biometrika, 70(1):41–55.

Rothe, C. and Firpo, S. (2016). Properties of doubly robust estimators when nuisance
functions are estimated nonparametrically. Technical report, Working paper.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonran-
domized studies. Journal of educational Psychology, 66(5):688.

Shen, X. (1997). On methods of sieves and penalization. Annals of Statistics, 25(6):2555–
2591.

Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Foundations
and Trends® in Machine Learning, 8(1-2):1–230.

Van de Geer, S. (2007). The deterministic lasso. Seminar für Statistik, Eidgenössische
Technische Hochschule (ETH) Zürich.

Van De Geer, S. A., Bühlmann, P., et al. (2009). On the conditions used to prove oracle
results for the lasso. Electronic Journal of Statistics, 3:1360–1392.

Van Der Vaart, A. et al. (1991). On differentiable functionals. The Annals of Statistics,
19(1):178–204.

Wong, R. K. and Chan, K. C. G. (2018). Kernel-based covariate functional balancing for
observational studies. Biometrika, 105(1):199–213.

Zubizarreta, J. R. (2015). Stable weights that balance covariates for estimation with in-
complete outcome data. Journal of the American Statistical Association, 110(511):910–
922.

44


	Introduction
	Framework
	Set-up
	A running example

	Methodology with a finite-sample motivation
	Near optimal BP estimator in series space
	Implementation
	Scope for finite sample improvement by DR estimators

	Asymptotic properties of BP
	General characterization
	Scope for asymptotic improvement by DR estimators
	Attainability of semiparametric efficiency
	Relaxation of Assumption M(2)

	Asymptotic improvement when kn1
	Semiparametric efficiency of DR
	A modified minimum distance estimator for 0

	Application: electoral accountability and corruption
	Main empirical framework
	Baseline results: near optimal BP with fixed penalty
	Sensitivity analysis with 1 optimally selected
	Accounting for many more controls

	Preliminary Results
	Overall notations
	Additional examples
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Optimal estimator when 0 is known

	Basic lemmas
	Technical results for Section 4
	Proofs for main results in Section 4
	Additional results

	Technical results for Section 5
	Proofs for main results in Section 5
	Additional results
	Algorithms for selecting penalties

	Simulation
	Baseline results with mild selection bias
	Robustness check
	Comparison with doubly robust method


