
Optimal Technology Design∗

Daniel Garrett, George Georgiadis, Alex Smolin and Balázs Szentes†

October, 2020

Abstract

This paper considers a moral hazard model with (i) a risk-neutral agent and (ii)

agent limited liability. Prior to interacting with the principal, the agent designs the

production technology, which is a specification of the agent’s cost of generating each

output distribution with support contained in [0, 1]. After observing the production

technology, the principal offers a payment scheme and then the agent chooses a dis-

tribution over outputs. First, we show that there is an optimal design involving only

binary distributions on {0, 1}; that is, the cost of any other distribution is prohibitively

high. Then, we characterize the equilibrium technology defined on the binary distribu-

tions and show that the equilibrium payoff of both the principal and the agent is 1/e.

A notable feature of the equilibrium is that the principal is indifferent between offering

the equilibrium bonus rewarding output one and anything less than that. Finally, the

analysis of the model is shown to generalize to the case where the agent is risk averse.
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1 Introduction

A central result in contract theory is that agency rents are a key source of economic welfare.

When analyzing environments with asymmetric information, most microeconomic models

take the determinants of these agency frictions as given. In hidden-information models, for

example, the distribution of types, which determines information rents, is typically treated

as exogenous. Similarly, in principal-agent problems with hidden actions, the production

technology available to the agent, which governs the principal’s cost of implementing various

actions, is usually part of the model description. However, if an agent’s payoff depends on

agency frictions, then he is likely to pursue generating these frictions in a way that enhances

his payoff. The goal of this paper is to reconsider the standard limited-liability moral hazard

problem and understand how an agent might maximize rents by optimally designing the

production technology.

For a potential application where such a technology design problem may arise, consider

an entrepreneur who is starting a business, and will eventually need venture capital backing

to grow it. Prior to contracting with venture capitalists, he must make a host of choices

pertaining to the product, the business model, the product market strategy, and so on.1 If

the venture capitalist has strong bargaining power, the entrepreneur benefits from making

choices that exacerbate the moral hazard problem to increase agency rents. Even if there

were more profitable alternatives, they may not be considered in the contractual negotiations

if the venture capitalist is unaware of them.

In the baseline setup of this paper, we consider a risk-neutral agent who can choose

a production technology (or “project”) before interacting with a principal.2 A production

technology specifies the agent’s cost of each output distribution with support contained

in [0, 1]. That is, the only restriction on the available projects is that output is uniformly

bounded. Such a bound may represent a physical constraint and is normalized to one. After

observing the agent’s project, the principal offers a wage contract, which is a mapping from

output realizations to monetary compensation. We assume that the agent has limited

liability and hence the payment must be non-negative. Finally, the agent chooses an output
1A sizable literature on entrepreneurship examines the decisions of entrepreneurs when developing a

business. See Gans et al. (2019) for a recent review.
2We extend our analysis to environments where the agent is risk averse in the Online Appendix.
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distribution at a cost determined by his first-stage choice.

We emphasize that the agent in our model does not incur any costs in developing a

production technology. This assumption enables us to focus on the incentives to generate

agency rents and abstract from the cost-benefit analysis related to the technology design

stage. In applications, developing a project is likely to require a substantial amount of irre-

versible investment. In fact, the necessity of such investments may prevent the technology

from being renegotiated at the contracting stage. The reason is that, even if both parties

are aware of production technologies that are more profitable than the one put forward by

the agent, they would not be implemented if modifying the agent’s project is too expensive.3

Our first main result is that the optimal project involves only binary distributions on

{0, 1}.4 In other words, the cost of all other distributions can be assumed so high that

the principal never wants to implement them, and the agent would never choose them

irrespective of the payment scheme. This means that the equilibrium project can be thought

of as a task which yields a positive payoff only if completed. The production technology

specifies the cost of each probability of completion. The principal’s wage contract can be

viewed as a bonus paid for project completion, with payments set to zero otherwise.

Let us explain the optimality of binary projects. Just like in standard moral hazard

problems, the output plays a dual role in our model. On the one hand, it is the principal’s

revenue, and on the other hand, it is an informative signal about the output distribution

chosen by the agent, which is used by the principal to incentivize the agent. By the Infor-

mativeness Principle, if this signal is made less informative, incentivizing the agent becomes

more expensive. The key observation is that each binary distribution with support {0, 1}

can be viewed as a garbling of a distribution with the same mean. Consider now a trans-

formation of each project so that, if the agent incurs a cost of a distribution, output is

distributed according to the binary distribution with the same mean. This means that the

agent’s cost of inducing a given level of expected output remains the same in the trans-

formed project but the principal’s cost of implementing it goes up. In this sense, such a

transformation exacerbates the moral hazard problem. We show how this observation can
3Gans et al. (2019) argue that many of the decisions an entrepreneur takes during business development

cannot be revisited or renegotiated.
4While there is some multiplicity of optimal projects, we show below that all optimal projects share the

same essential attributes, so we write informally of “the” optimal project.
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be used to replace any project with a binary project for which the agent’s payoff is at least

as high.

Our second main result is a full characterization of the optimal binary project. In

this project, the cost of completing the task with probability 1/e is zero. That is, even

if the agent incurs no cost, project completion can be achieved with probability 1/e. In

equilibrium, the principal offers a bonus which induces the agent to complete the project

with probability one. Furthermore, the principal is indifferent between offering this bonus

and anything less than that. This indifference condition pins down the cost to the agent

of any probability of success between 1/e and one. Since the marginal cost of the success

probability is less than one and the maximal output is produced surely, the equilibrium

is ex-post efficient. That is, given the equilibrium production technology, the allocation is

efficient. It turns out that the optimal project yields an equal split of surplus: both the

principal and the agent earn payoff 1/e.

The first-best social surplus in our model is one since projects that can generate output

one at no cost are feasible. Of course, the agent does not choose such a project because

then the principal could achieve the maximal output without making any payment. To earn

rent, the agent designs the technology so that generating high expected output is artificially

costly. In fact, since the equilibrium output is one with probability one, the only source of

distortion induced by optimal design relates to this cost. This might be considered a form

of “cost padding”, different from others identified in the literature.5

As mentioned above, an identifying feature of the optimal project is that the princi-

pal is indifferent between implementing a large range of completion probabilities. Let us

explain the economic reasoning behind this feature. Note that, since the agent receives

the bonus offered by the principal with the probability of completion, her marginal bene-

fit at each completion probability is the bonus. Hence, at the agent’s optimal completion

probability, the marginal cost equals the bonus. This means that the principal’s expected

payment to implement a given completion probability is increasing in the marginal cost at

that probability, so lowering this marginal cost makes it more attractive to the principal to

implement the completion probability. However, if the principal strictly prefers to imple-
5For example, Averch and Johnson (1962) observe that a regulated firm has incentives to inflate capital

costs.
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ment the equilibrium probability of completion to implementing some smaller probabilities,

then the marginal costs at these smaller probabilities can be lowered without affecting the

principal’s equilibrium choice. Since the cost of a completion probability is the integral of

the marginal costs of smaller probabilities, such a modification of the project decreases the

agent’s total cost and thus increases his overall payoff (while the principal is still willing to

offer the same bonus that implements the equilibrium completion probability). The agent

can improve any project in this way unless the principal is indifferent between implementing

any completion probability which has a positive marginal cost.

We demonstrate that our main results remain valid even if the agent is risk averse.6

In particular, the search for an optimal project can still be restricted to the set of binary

projects. Moreover, the optimal binary project is still ex-post efficient, that is, the principal

implements completion probability one. Finally, the optimal binary project is still char-

acterized by the requirement that the principal must be indifferent between offering the

equilibrium bonus and anything less than that. Of course, the equilibrium payoffs of the

principal and the agent are no longer 1/e and they depend on the agent’s concave utility

function.

Finally, we apply our analysis to a problem which may be of independent interest: the

characterization of those payoff combinations which can arise in principal-agent models

with limited liability for some exogenously given production technology.7 The equilibrium

payoff profile when the agent instead chooses the technology corresponds to the point in

this set where the agent’s payoff is maximized. Our characterization of possible payoff

combinations follows by first identifying the largest payoff the agent can achieve as a function

of a given profit of the principal. The domain of this function is the interval [0, 1] because

the principal can always guarantee a nonnegative profit by offering zero wage and she cannot

get more than the maximal output. This function is shown to be strictly concave and zero

at the boundaries of its domain. We argue that a payoff profile can be generated by some

production technology if and only if it lies weakly below this curve.
6This is done in the Online Appendix.
7This is similar in spirit to Bergemann et al. (2015), who characterize the set of consumer and seller

payoffs in a model of third-degree price discrimination. See also Garrett (2020) for a related exercise in a
setting with moral hazard and adverse selection.
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Literature.— The limited liability model of moral hazard for a risk-neutral agent is

a staple of introductory courses on contract theory, where a restriction to binary output

(which emerges endogenously in our setting) is often made for tractability. A classic refer-

ence for limited-liability moral hazard is Innes (1990), who demonstrates the optimality of

simple debt contracts in a model with a continuum of outputs. More recent treatments of

moral hazard with limited liability include Poblete and Spulber (2012) for a model with a

continuum of outputs and Ollier and Thomas (2013) for a model with binary output, but

complicated by the presence of adverse selection.8

While the models discussed above feature a risk-neutral agent with limited liability, the

alternative friction commonly explored is risk aversion. Seminal work for the moral hazard

model with a risk-averse agent includes Mirrlees (1976), Holmström (1979), Grossman and

Hart (1983) and Rogerson (1985); see Bolton and Dewatripont (2005) and Holmström

(2017) for comprehensive treatments. The focus of the moral hazard literature, then, has

been on contract design taking the agent’s technology as given. Our paper departs from this

approach by viewing the production technology as a choice of the agent, raising the problem

of technology design. We are unaware of this kind of problem being posed elsewhere in the

moral hazard literature.

The question of project design is, however, related to work on how the primitive con-

tractual environment affects payoffs in moral hazard problems. A relevant example in our

context is the development of the Informativeness Principle by Holmström (1979), which was

later refined for instance by Chaigneau et al. (2019). These papers clarify how additional

information about the agent’s action can reduce agency costs for the principal.

Another related paper is Condorelli and Szentes (2020) who study the problem of op-

timally generating information rents in the context of a bilateral trade model. Before

interacting with the seller, the buyer can choose the distribution of her valuation for the

seller’s good. This choice is observed by the seller before she makes a take-it-or-leave-it offer.

It turns out that the equilibrium distribution generates a unit-elastic demand, that is, it

makes the seller indifferent between setting any price on its support. This is reminiscent of
8Also related are Carroll (2015) who studies a principal facing ambiguity with respect to the agent’s

technology, Laux (2001) who considers agents with multiple projects, and Jewitt et al. (2008) who explore
general bounds on payments beyond limited liability.
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our optimal binary project which makes the principal indifferent across a range of bonuses.9

This similarity might explain why, when the buyer is restricted to choose distributions with

support in the interval [0, 1], the equilibrium payoffs of the buyer and the seller are also

1/e.10

2 Model

We consider a game between a principal (she) and an agent (he), which proceeds as follows.

In the first stage, the agent chooses a cost function c : F → R+ ∪ {+∞}, where F denotes

the set of CDFs with support on [0, 1]. We refer to such a function c as a project. Then, after

observing c, the principal offers a payment scheme w : [0, 1]→ R+, which is restricted to be

Borel-measurable.11 Finally, after observing the offered payment scheme, the agent chooses

a distribution F ∈ F , and the output is realized according to F .12 If the realized output

is x then the agent’s and principal’s payoffs are w (x) − c (F ) and x − w (x), respectively.

Both parties are expected payoff maximizers.

Notation.— For each F ∈ F , let µF denote the expected value of F , that is, µF =∫ 1
0 xdF (x). The set of projects and the set of Borel-measurable payment schemes are

denoted by C and W, respectively. We refer to a triple (c, w, F ) ∈ C × W × F as an

outcome. Let U and Π denote the expected payoffs of the agent and the principal defined

on the outcomes; that is,

U (c, w, F ) =
∫ 1

0
w (x) dF (x)− c (F ) , and Π (w,F ) =

∫ 1

0
[x− w (x)] dF (x) .

Equilibrium in a Project.— We call a pair (w,F ) ∈ (W,F) an equilibrium in project

c ∈ C if it satisfies the following two requirements. First, the distribution F is incentive
9Such an indifference argument has appeared in the contexts of incentivizing monitoring (Ortner and

Chassang (2018)), optimal testing (Perez-Richet and Skreta (2018)) and monopoly pricing in the presence
of ambiguity (Bergemann and Schlag (2011)).

10Also related, Roesler and Szentes (2017) consider a setting where signals inform an otherwise uninformed
buyer of his value, and asks which signal structure yields the highest information rent.

11Non-negativity of payments encodes the limited-liability constraint.
12That the agent can choose any distribution on [0, 1] departs from much of the moral hazard literature,

where the output distribution is parameterized by a one-dimensional variable called “effort”. We view the
agent’s chosen distribution as synonymous with his action, an approach also taken for instance by Carroll
(2015).
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compatible (or a best response) for the agent given project c and the payment schedule w.

Second, the payment scheme w is incentive compatible for the principle given project c.

Formal statements of the incentive compatibility constraints are provided below.

Optimal Projects.— We define the project c to be optimal if there is an equilibrium

(w,F ) in c such that the agent’s payoff in outcome (c, w, F ) is larger than in any outcome

(c′, w′, F ′) such that (w′, F ′) is an equilibrium in c′. Thus, we assess the optimality of a

project c that induces multiple equilibria by considering those which give the highest payoff

to the agent. This is in line with the approach prevalent in mechanism design, where the

designer is permitted to pick the most favorable equilibrium.

Inventive Compatibility.— We say that choosing F is incentive compatible for the agent

in the subgame (c, w) if

U (c, w, F ) ≥ U
(
c, w, F ′

)
for all F ′ ∈ F . (1)

To describe the principal’s incentive constraint is harder because the agent may not have a

best response in a subgame generated by a pair (c, w). In turn, this can make it difficult

to assess the profitability of certain deviations. To circumvent this problem, we define the

value of the agent, u (c, w), in each subgame (c, w), by

u (c, w) ≡ sup
F∈F

U (c, w, F ) .

We aim to define the value of the principal in a subgame (c, w) by reference to sequences

of distributions along which the agent’s payoff converges to his value. In general, there

may be many such sequences, potentially generating different limit payoffs to the principal.

Let Fc,w denote the set of sequences of distributions (Fn) along which the agent’s payoff

converges to u (c, w). Formally, (Fn) ∈ Fc,w if and only if limn→∞ U (c, w, Fn) = u (c, w).

Then, the principal’s value in subgame (c, w) is given as

π (c, w) ≡ sup
{

lim sup
n→∞

Π (w,Fn) : (Fn) ∈ Fc,w
}
.

Evaluating the principal’s value by reference to the supremum is again in the spirit of the
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approach prevalent in mechanism design, where the principal is permitted to pick the most

favorable best response of the agent. The principal’s incentive compatibility constraint

guaranteeing that she offers payment schedule w in project c can be stated as follows: for

all w′ ∈ W,

π (c, w) ≥ π
(
c, w′

)
.

That is, the principal cannot gain by deviating to a payment schedule w′, whether or not

the agent has a best response to w′.

Binary Projects and Linear Contracts.— As mentioned in the Introduction, binary

projects play an important role in our analysis. Next, we formally define these projects. We

call a distribution in F binary if its support is contained in {0, 1}. For each µ ∈ [0, 1], let

Bµ denote the binary CDF which specifies an atom of size µ at one. Note that the mean

of Bµ is also µ. Let B denote the set of binary distributions; that is, B = {Bµ : µ ∈ [0, 1]}.

We call a project c binary if c (F ) = +∞ whenever F /∈ B.

In each binary project, the principal always finds it optimal to offer a compensation

scheme which pays zero if the output is zero. So, the optimal payment scheme can be

summarized by a single bonus, b, which is paid to the agent if the output is one. If the

project is binary, the wage at output x /∈ {0, 1} is irrelevant, so such a wage contract can

be assumed to be linear, denoted by wb, so that wb (x) = bx for all x.

If the principal offers a linear contract, wb, the output distribution affects the payoffs of

the agent and the principal only through its mean. That is, whether or not the project is

binary,

U (c, wb, F ) = µF b− c (F ) , and Π (w,F ) = µF (1− b) . (2)

This implies that, if the principal offers a linear contract to which the agent has a best

response, this best response must involve a distribution which is the least costly among

those with the same mean.
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3 Main Results

This section is devoted to our two main results. In the next section, we show that it suffices

to restrict attention to binary projects and, in Section 3.2, we fully characterize an optimal

binary project. Finally, Section 3.3 argues that the optimal project is close to being uniquely

determined.

3.1 Binary Projects

In this section, we fix a project c∗ and an equilibrium (w∗, F ∗) in c∗. Our aim is to construct

a binary project c̃ and an equilibrium (w̃, F̃ ) in c̃ so that the outcome (c̃, w̃, F̃ ) Pareto

dominates the outcome (c∗, w∗, F ∗). Since c∗ can be an optimal project, this result implies

that there exists an optimal project in the class of binary projects.

As explained in the Introduction, the key observation for this result is that an output

realization not only determines the principal’s payoff, but also serves as an informative signal

about the agent’s action. If this signal is made less informative in the sense of Blackwell,

incentivizing the agent becomes harder for the principal. To see how an output distribution

can be made less informative, consider the following garbling: instead of observing output

x, the principal observes output one with probability x and output zero otherwise. That

is, the garbling of each F ∈ F is BµF , so the expected output is unaffected. In fact, BµF
is the least informative garbling of F , as the same transformation can be applied to any

other garbling of F which would again result in BµF . So, if the principal could contract

only on the realization of BµF but not on that of F , her wage cost of implementing F would

increase. We next explain how this observation can be used to transform the project c∗ to

a binary one which is more beneficial for the agent.

The idea behind the construction of the binary project, c̃, is as follows. First, define the

agent’s cost of any binary distribution to be the cost of the cheapest distribution in project

c∗ with the same mean. In this binary project, the principal’s wage cost of attaining any

level of expected output is higher than in project c∗. In fact, the wage cost of generating

µF ∗ may be so high that the principal prefers to implement a distribution with a lower

mean, thus saving on payments to the agent. In this case, the payoffs of both parties can
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be lower. Therefore, we further modify the binary project by reducing the agent’s cost of

BµF∗ so that the principal can implement it at exactly the same wage cost as that of F ∗ in

c∗.

Before stating the main result of this section, let us introduce an additional piece of

notation. Note that the expected payment in outcome (c∗, w∗, F ∗) is EF ∗ [w∗]. If µF ∗ > 0

(as must be the case if the outcome is optimal for the agent), we can define b∗ to equal

EF ∗ [w∗] /µF ∗ . We can then observe that13

EF ∗ [w∗] = µF ∗b
∗ = EF ∗ [wb∗ ] = EBµF∗ [wb∗ ] . (3)

That is, the expected payment induced by the pair (w∗, F ∗) is the same as that induced by(
wb∗ , BµF∗

)
.

Proposition 1. Suppose that (w∗, F ∗) is an equilibrium in project c∗ with µF ∗ > 0. Then

there exists a binary project, c̃, such that

(i)
(
wb∗ , BµF∗

)
is an equilibrium in c̃,

(ii) U (c∗, w∗, F ∗) ≤ U
(
c̃, wb∗ , BµF∗

)
, and

(iii) Π (w∗, F ∗) = Π
(
wb∗ , BµF∗

)
.

Let us describe the binary project c̃ and the main arguments in the proof of the proposi-

tion. It turns out that, in this binary project, the agent’s rent can be ensured by making it

hard for the principal to dissuade the agent from deviating downwards (i.e., to distributions

with lower means). Upwards deviations need not play a role, so we specify the agent’s cost

of each Bµ with µ > µF ∗ to be infinity throughout the construction. We now explain the

two steps of constructing c̃ from c∗ in more detail. In the first step, we take the agent’s

cost of BµF∗ to also be infinite. For each µ < µF ∗ , we specify the cost of Bµ to be the

cost of the cheapest distribution in project c∗ with expectation µ.14 We then prove that, in

order to achieve any expected output, the principal must make a higher expected payment

in this binary project than in c∗. In the second step, we redefine the agent’s cost of BµF∗ so

that the principal’s wage cost of implementing BµF∗ is exactly EF ∗ [w∗] = EBµF∗ [wb∗ ], thus

13Recall that wb∗ (x) = b∗x for all x.
14We take the infimum in case no cheapest distribution exists.
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obtaining the project c̃. We show that the agent’s cost of BµF∗ in c̃ is less than c∗ (F ∗).

This means that, by Equation (3), Parts (ii) and (iii) of the proposition are satisfied.

We now explain how to obtain Part (i). Note that, by our choice of the agent’s cost of the

distribution BµF∗ in project c̃, the agent best responds to wb∗ by choosing BµF∗ . Therefore,

to prove that
(
wb∗ , BµF∗

)
is an equilibrium in this project, we need to demonstrate only

that offering wb∗ is incentive compatible for the principal. By construction, if the principal

wants to implement BµF∗ , she offers payment schedule wb∗ . She therefore receives a payoff

of Π (w∗, F ∗). As explained, attaining any other expected output µ (µ 6= µF ∗) is more

expensive for the principal in c̃ than in c∗. Therefore, since the principal found it optimal

to implement F ∗ in c∗, she optimally chooses to implement BµF∗ in c̃ by offering wb∗ ; that

is, wb∗ is incentive compatible in c̃.

Towards the first step described above, let us define the binary project, ĉ, as follows:

ĉ (Bµ) =


inf {c∗ (F ) : µF = µ} if µ < µF ∗ ,

∞ otherwise.

We next formalize the aforementioned implication of the Informativeness Principle; in par-

ticular, we demonstrate that the principal is worse off in ĉ than in c∗. In fact, we show that,

from the principal’s point of view, the transformed project ĉ is worse than being restricted

to linear contracts in c∗ in the sense that each contract wb generates weakly more profit to

the principal in project c∗ than in ĉ.

Lemma 1. For all b ∈ [0, 1], π (ĉ, wb) ≤ π (c∗, wb).

Proof. See the Appendix. QED

Let us illustrate the argument behind the proof of this lemma for the case where the

principal’s value in subgame (c∗, wb), π (c∗, wb), is generated by a best response of the agent.

Since the agent’s expected payment generated by the linear contract wb depends only on

the expected output, he chooses a distribution only if it is the cheapest among those with

the same mean. Therefore, the agent’s value in subgame (c∗, wb) is

sup
µ∈[0,1]

{µb− inf {c∗ (F ) : F ∈ F , µF = µ}} . (4)
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This is the same problem as the one which determines the agent’s value in the subgame

(ĉ, wb), except that in the latter, the domain is effectively restricted to be [0, µF ∗). Suppose

now that F is incentive compatible in (c∗, wb) and generates the principal’s value. That is,

µF solves the problem in (4) and π (c∗, wb) = Π (wb, F ). If µF < µF ∗ , then µF also solves

the agent’s problem with the restricted domain, implying that BµF is incentive compatible

in (ĉ, wb). In this case, π (ĉ, wb) = µF (1− b) = π (c∗, wb). If µF ≥ µF ∗ , then the principal’s

value is at least µF ∗ (1− b) in the subgame (c∗, wb), so π (c∗, wb) ≥ µF ∗ (1− b) ≥ π (ĉ, wb),

where the second inequality holds because, in project ĉ, the agent never chooses a distribu-

tion which has mean larger than µF ∗ .

We are now ready to define project c̃. Our aim is to modify ĉ at BµF∗ so that
(
wb∗ , BµF∗

)
is an equilibrium in project c̃. On the one hand, this requires the cost of BµF∗ to be

sufficiently small to guarantee that BµF∗ is a best response to wb∗ . On the other hand,

this cost cannot be too small, for otherwise BµF∗ could be implemented with a bonus

smaller than b∗. Therefore, we specify the cost of BµF∗ to be the largest cost at which

the agent still best responds to wb∗ by choosing BµF∗ . This cost, denoted by c, satisfies

µF ∗b
∗ − c = sup {µb∗ − ĉ (Bµ)}. The binary project c̃ is defined as follows:

c̃ (F ) =

 c if F = BµF∗ ,

ĉ (F ) if F 6= BµF∗ .

Next, we demonstrate that the outcome
(
c̃, wb∗ , BµF∗

)
Pareto dominates (c∗, w∗, F ∗).

To this end, we first argue that the cost of BµF∗ in project c̃ is weakly smaller than c∗ (F ∗).

Suppose, for a contradiction, that c > c∗ (F ∗). Then,

µF ∗b
∗−c∗ (F ∗) > µF ∗b

∗−c = sup {µb∗ − ĉ (Bµ)} = sup {µF b∗ − c∗ (F ) : F ∈ F , µF < µF ∗} ,

where the two equalities follow from the definitions of c and ĉ, respectively. By continuity,

this chain implies the existence of b < b∗ such that

µF ∗b− c∗ (F ∗) > sup {µF b− c∗ (F ) : F ∈ F , µF < µF ∗} .

13



This means that offering the linear contract wb in project c∗ provides the principal with a

value at least µF ∗ (1− b), which is strictly more than her equilibrium payoff, Π (w∗, F ∗) =

µF ∗ (1− b∗). This contradicts the incentive compatibility of w∗ in c∗.

We are now ready to show that the agent is weakly better off in the outcome
(
c̃, wb∗ , BµF∗

)
than in (c∗, w∗, F ∗). Indeed,

U (c∗, w∗, F ∗) = µF ∗b
∗ − c∗ (F ∗) ≤ µF ∗b∗ − c̃

(
BµF∗

)
= U

(
c̃, wb∗ , BµF∗

)
, (5)

where the equalities follow from (3) and the inequality follows from c̃
(
BµF∗

)
= c ≤ c∗ (F ∗).

Also note that (3) implies that the principal’s payoffs are the same in these two outcomes:

Π (w∗, F ∗) = µF ∗ − EF ∗ [w∗] = µF ∗ (1− b∗) = Π
(
wb∗ , BµF∗

)
. (6)

We defined c̃
(
BµF∗

)
so that the payment schedule wb∗ implements BµF∗ in project c̃.

Next, we confirm that the principal cannot implement BµF∗ in project c̃ with any payment

schedule wb such that b < b∗. This means that the principal’s value from offering wb in

project c̃ is the same as in project ĉ.

Lemma 2. For all b ∈ [0, b∗), π (c̃, wb) = π (ĉ, wb).

Proof. See the Appendix. QED

Let us illustrate the argument of the proof for the case where the agent has a best re-

sponse to wb∗ in project ĉ, sayBµ′ (with µ′ < µF ∗); that is, µ′b∗−ĉ
(
Bµ′

)
= sup {µb∗ − ĉ (Bµ)}.

By the definition of c̃, this means that µ′b∗ − c̃
(
Bµ′

)
= µF ∗b

∗ − c̃
(
BµF∗

)
. Since µ′ < µF ∗ ,

this equality implies that, for all b ∈ [0, b∗), µ′b− c̃
(
Bµ′

)
> µF ∗b− c̃

(
BµF∗

)
, implying that

BµF∗ is not incentive compatible in (c̃, wb). Since the projects c̃ and ĉ are identical on the

rest of their domains, the statement of the lemma follows.

Finally, we are ready to prove Proposition 1.

Proof of Proposition 1. Observe that the outcome
(
c̃, wb∗ , BµF∗

)
satisfies Parts (ii)

and (iii) of the proposition by Equations (5) and (6), respectively. Therefore, we only need

to establish Part (i); that is, we need to argue that
(
wb∗ , BµF∗

)
is an equilibrium in project

14



c̃. By the definition of c, BµF∗ is incentive compatible in the subgame (c̃, wb∗). Next, we

prove that wb∗ is incentive compatible in c̃.

If b > b∗, then

π (c̃, wb) ≤ µF ∗ (1− b) < µF ∗ (1− b∗) = Π
(
wb∗ , BµF∗

)
,

where the first inequality follows from c̃ (Bµ) =∞ for all µ > µF ∗ , and the second inequality

is implied by b > b∗.

If b < b∗, then

π (c̃, wb) ≤ π (c∗, wb) ≤ Π (w∗, F ∗) = Π
(
wb∗ , BµF∗

)
where the first inequality follows from Lemmas 1 and 2, the second one follows from (w∗, F ∗)

being an equilibrium outcome in project c∗, and the equality is implied by the definition of

b∗. QED

3.2 Optimal Project

Each binary project, c, can be described by specifying the cost of each probability of success

through a function C : [0, 1] → R+. In particular, we set C (µ) = c (Bµ) for all µ, and we

keep in mind that the cost of a non-binary distribution is infinity. Recall that, in binary

projects, it is without loss of generality to restrict attention to bonus contracts, wb, where

the agent is paid b if the output is one. Finally, the agent’s choice of distribution Bµ can be

identified by its mean, µ (equivalently, by its “completion probability”). In what follows,

we describe each binary outcome (c, wb, Bµ) by a triple (C, b, µ).

We are ready to state the main result of this section.

Proposition 2. There is an optimal binary project, C∗, and an agent-optimal equilibrium

in C∗, (b∗, µ∗), such that

(i) C∗′ (µ) = 1− 1/ (eµ) if µ ≥ 1/e and zero otherwise,

(ii) b∗ = 1− 1/e, and

(iii) µ∗ = 1.
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Proposition 2 describes an optimal binary project in terms of the marginal costs of

the possible completion probabilities. Of course, adding a fixed cost has no impact on

incentives, so C∗ (0) = 0. We explain below that the functional form of the marginal cost in

Part (i) is pinned down by the requirement that the principal must be indifferent between

implementing a large range of completion probabilities. To this end, we sketch an argument

for Proposition 2 that restricts the agent to choose cost functions C that are non-decreasing,

differentiable, and such that equilibrium can be determined using the first-order approach.

The formal proof in the Appendix uses an envelope type argument to determine the agent’s

payoff and does not rely on any such restrictions.

We view the agent’s problem of finding an optimal binary project as a maximization

problem subject to incentive compatibility constraints. Our argument can be understood in

terms of backward induction. We first determine a condition relating the principal’s choice

of bonus b to the agent’s optimal choice of completion probability µ. We can then determine

a condition on the project C for the principal to implement a given completion probability

µ. Finally, we consider optimizing the agent’s payoff over the project C and the completion

probability µ to be implemented by the principal, subject to the constraints determined in

the previous steps.

Let us then describe the agent’s incentive constraint in a subgame (C, b). Note that, at

this stage, the agent’s problem is to solve maxµ̂∈[0,1] {µ̂b− C (µ̂)}. Then the requirement on

the reward b ensuring the agent chooses a given completion probability µ can be described

by the first-order condition

b = C ′ (µ) . (7)

We now turn to the incentive constraint of the principal. In project C, the principal’s

problem is

max
µ∈[0,1],b∈R+

µ (1− b)

subject to the constraint that µ and b satisfy Equation (7). Plugging the constraint into

the maximand, the principal’s problem can be expressed solely in terms of the completion

probability she wants to implement; that is, maxµ∈[0,1] µ (1− C ′ (µ)). So, in project C, the
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principal’s choice of µ must satisfy

µ
(
1− C ′ (µ)

)
≥ µ̃

(
1− C ′ (µ̃)

)
, (8)

for all µ̃ ∈ [0, 1].

We are now ready to state the project selection problem. As anticipated above, we

include the completion probability µ as a choice variable alongside the cost function C.

This is important because the principal may be indifferent between implementing various

completion probabilities, generating different payoffs for the agent. The interpretation of

including µ as a choice is that, after designing the project, the agent makes a recommenda-

tion to the principal regarding which µ to implement. The agent’s first-stage problem can

be written

max
C,µ,b

µb− C (µ)

s.t. (7) and (8).

Alternatively, plugging the constraint (7) into the maximand, it can be written as

max
C,µ

µC ′ (µ)− C (µ) (9)

s.t. (8).

Now let us explain that, if (Ĉ, µ̂) solves this problem, the constraint (8) must bind at

each µ̃ < µ̂ such that Ĉ ′ (µ̃) > 0. To understand this observation, notice first that the

agent’s cost of µ̂ must be given by Ĉ (µ̂) =
∫ µ̂

0 Ĉ
′ (µ̃) dµ̃, since Ĉ (0) = 0.15 Hence, reducing

the marginal cost Ĉ ′ (µ̃) for any µ̃ < µ̂ implies a reduction in the cost Ĉ (µ̂). However, the

possibility to reduce the marginal costs Ĉ ′ (µ̃) is restricted by the constraint (8) evaluated

at (C, µ) = (Ĉ, µ̂). We can conclude that, for the optimum (Ĉ, µ̂), the constraint (8) binds

for all µ̃ < µ̂ as long as Ĉ ′ (µ̃) > 0, implying that the principal is indifferent between

implementing any completion probability below µ̂ which has a strictly positive marginal
15Note that Ĉ (0) = 0 follows because, if Ĉ (0) > 0, we could reduce all costs by this amount, keeping the

players’ incentives unchanged, but increasing the agent’s equilibrium payoff.
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cost.

Our next aim is to use this indifference condition to reduce the agent’s problem in (9) to

a two-dimensional problem by replacing the domain of projects by the principal’s possible

equilibrium payoffs. To this end, note that if (Ĉ, µ̂) solves (9), then Ĉ ′ can be expressed

in terms of the principal’s equilibrium payoff, π̂ ≡ µ̂
(
1− Ĉ ′ (µ̂)

)
. Indeed, the binding

constraint (8) evaluated at (C, µ) = (Ĉ, µ̂) can be written as

Ĉ ′ (µ̃) =

 0 if µ̃ < π̂

1− π̂
µ̃

if µ̃ ∈ [π̂, µ̂] .
(10)

Consequently, the agent’s problem in (9) can be rewritten as

max
µ̂,π̂∈[0,1]

µ̂

(
1− π̂

µ̂

)
−
∫ µ̂

π̂

(
1− π̂

µ̃

)
dµ̃. (11)

To conclude Proposition 2, observe that

µ̂

(
1− π̂

µ̂

)
−
∫ µ̂

π̂

(
1− π̂

µ̃

)
dµ̃ =

∫ µ̂

π̂

π̂

µ̃
dµ̃ = π̂ [log µ̂− log π̂] , (12)

which is maximized at µ̂ = 1 and π̂ = 1/e. This explains how we obtain Parts (ii) and

(iii) of the proposition. In particular, the principal’s profit in an optimal outcome is π∗ =

µ∗ (1− b∗) = 1/e, and since µ∗ = 1, we have b∗ = 1− 1/e. Finally, note that evaluating the

right-hand side of (10) at µ̂ = 1 and π̂ = 1/e yields Part (i) of the proposition.

Finally, we compute the payoffs of the agent and the principal in the outcome (C∗, b∗, µ∗).

As mentioned above, the principal’s equilibrium payoff is µ∗ (1− b∗) = 1/e. The agent’s

payoff is pinned down by evaluating (12) at (µ∗, π∗) = (1, 1/e) , also yielding 1/e.

3.3 Uniqueness

The optimal project, C∗, described in Proposition 2 is not unique. To see this, note that C∗

can be arbitrarily modified at completion probabilities strictly below 1/e. Since C∗ (1/e) =

0, the agent finds choosing any probability below 1/e weakly dominated by choosing 1/e,

so the modified project is still optimal. The goal of this section is to argue that optimal
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projects differ only in non-essential ways.

Uniqueness of the Optimal Binary Project.— Recall that the optimal project C∗ in

Proposition 2 is determined via the principal’s incentive constraint, (8), evaluated now at

(C, µ) = (C∗, µ∗) and taken to hold with equality for completion probabilities µ̃ above π∗.

This means that the principal can also generate her equilibrium payoff by setting any bonus

smaller than b∗. In the Appendix, we show that these conclusions are valid for each optimal

binary project. We also show that, in any optimal binary project, the agent’s optimal payoff

is determined by an equilibrium which satisfies Parts (ii) and (iii) of the proposition. Next,

we state formally these observations. We abuse notation and write the players’ values, u

and π, as functions of a binary outcome.

Remark 1. In any optimal binary project C,

(i) (b∗, µ∗) = (1− 1/e, 1) is the agent-optimal equilibrium,

(ii) for all b ∈ [0, 1− 1/e] , u (C, b) =
∫ b

0 1/ [e (1− z)] dz, and

(iii) for all b ∈ [0, 1− 1/e] , π (C, b) = 1/e.

We now argue that Remark 1 implies optimal binary projects are “close” to uniquely

determined. We begin with a remark (proved in the Appendix) which compares any optimal

binary project to the project C∗ of Proposition 2.

Remark 2. In any optimal binary project C,

(i) for all µ ∈ [0, 1], C (µ) ≥ C∗ (µ), and

(ii) for all µ ∈ [1/e, 1], there is a sequence (µn) with µn → µ and C (µn)→ C∗ (µ).

We argue that, in spite of possible differences between any optimal binary project C and

the project C∗ of Proposition 2, such projects can be viewed almost equivalently from the

agent’s perspective. First, note that Remark 2 admits that some completion probabilities

in [1/e, 1] may be more costly under C than C∗. In this case, however, there are arbitrarily

close probabilities which are as affordable to the agent as in C∗, or for which the difference

in costs is negligible (this follows by Part (ii) of Remark 2). In addition, it turns out

that, for any optimal binary project C, the specification of costs for probabilities below

1/e is irrelevant. The reason is that, using Part (ii) of Remark 2, the agent can generate
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a completion probability at least 1/e at negligible cost.16 Hence, the agent’s value can be

approached by completion probabilities at least 1/e irrespective of the bonus.

We now formalize further the equivalence of optimal binary projects C on [1/e, 1]. Note

first that if C is restricted to be continuous, then C is unique on [1/e, 1] and equal to C∗

on this interval by Part (ii) of Remark 2. For cost functions C that are not continuous,

we now demonstrate formally that the completion probabilities µ that are relevant for the

agent’s problem are only those for which the cost is close to the one given by C∗.

To achieve our goal we let, for any ε > 0,

P (ε) ≡ {(µ,C (µ)) : µ ∈ [1/e, 1] , C (µ)− C∗ (µ) ≤ ε} .

Suppose the agent can choose only probabilities µ with (µ,C (µ)) ∈ P (ε), and suppose

the associated costs are C (µ). Then P (ε) describes the agent’s technology in project C

but after removing his ability to choose probabilities µ that we anticipate being redundant,

either because they are less than 1/e or because their costs exceed C∗ (µ) by more than ε.

By Parts (i) and (ii) of Remark 2, for a fixed bonus payment b, the agent’s value is the same

for the restricted technology P (ε) as if the agent could choose any completion probability

with a cost specified by C. In fact, the feature of P (ε) that is relevant in determining the

agent’s value is the lower boundary of its closure. For any ε > 0, any µ ∈ [1/e, 1], we have

min {y : (µ, y) ∈ cl(P (ε))} = C∗ (µ) ,

which again can be seen directly from Parts (i) and (ii) of Remark 2.17 This demonstrates

a further sense of equivalence between C and C∗.

Uniqueness beyond binary projects.— The above discussion describes a qualified sense

in which optimal binary projects are uniquely determined. Still, the possibility of optimal

but non-binary projects may also be a source of non-uniqueness. Nonetheless, we show that

properties analogous to those described above continue to hold, even among non-binary

projects.
16Formally, there is a sequence (µn) that approaches 1/e from above, and for which C (µn) → 0. This

follows from Part (ii) of Remark 2 and the continuity of C∗.
17Here, “cl(·)” refers to the closure of the set.

20



We first explain that the output is one in any agent-optimal equilibrium of any optimal

project. To this end, let c∗ be an optimal project and (w∗, F ∗) an agent-optimal equi-

librium in c∗. Proposition 1 applied to the optimal outcome (c∗, w∗, F ∗) implies that the

corresponding binary outcome
(
c̃, wb∗ , BµF∗

)
is also optimal. Then, Part (i) of Remark 1

implies that we must have µF ∗ = 1, and hence F ∗ = B1.

Next we argue that output realizations in (0, 1) are redundant in the sense that replacing

these realizations by output zero has no impact on equilibrium behavior. To this end, we

first show that it can be assumed that w∗ (x) = 0 for all x < 1. The intuition is that if the

principal wants to implement output one, she should not reward the agent for any other

output realization by offering a positive payment. To state it formally, let us define the

payments scheme, ρb, for each b such that ρb (1) = b and ρb (x) = 0 for x 6= 1. Observe that

replacing w∗ by ρw∗(1) makes choosing B1 no less attractive to the agent, so
(
ρw∗(1), B1

)
is

also an agent-optimal equilibrium in c∗.

Provided that the compensation scheme is ρw∗(1), when the agent is contemplating

choosing a distribution, all that matters is the probability that the output is one. So,

moving all the probability mass from (0, 1) to zero has no impact on the agent’s choice of

a distribution. Moreover, these new distributions generate smaller expected outputs, hence

the principal still prefers to implement B1. To make these claims precise, let us define a

binary project C̃ such that C̃ (µ) = inf {c∗ (F ) : ∆ (F ) = µ}, where ∆ (F ) denotes the atom

at one specified by F .18 Given the payment schedule ρw∗(1), the change in cost function from

c∗ to C̃ does not affect the agent’s willingness to choose completion probability one. We

conclude that the binary project C̃ is optimal and (w∗ (1) , 1) is an agent-optimal equilibrium

in C̃.

To give a further sense in which the results in the previous section are robust to the

considerations of non-binary projects, we state the following.

Remark 3. If c∗ is an optimal project and (w∗, F ∗) is an agent-optimal equilibrium in c∗,

then

(i) F ∗ = B1,

(ii) Π (w∗, F ∗) = U (c∗, w∗, F ∗) = 1/e,
18That is, ∆ (F ) = F (1)− limx↗1 F (x) .
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(iii) u (c∗, ρb) =
∫ b

0 1/ [e (1− z)] dz for all b ∈ [0, 1− 1/e], and

(iv) π (c∗, ρb) = 1/e for all b ∈ [0, 1− 1/e].

We have already established Part (i) and that the binary outcome (C̃, w∗ (1) , 1) is agent-

optimal. So, by Part (iii) of Remark 1, w∗ (1) = 1−1/e, and the principal’s payoff in project

c∗ must be 1/e, establishing Part (ii). By the construction of C̃, u(c∗, ρb) is equal to u(C̃, b)

for all b. Optimality of C̃ and Part (ii) of Remark 1 then imply Part (iii) of Remark 3. Part

(iii) of Remark 1 implies π(C̃, b) = 1/e for any b ∈ [0, 1− 1/e] and hence π (c∗, ρb) ≥ 1/e.

Part (ii) of Remark 3 then implies π (c∗, ρb) = 1/e for all b ∈ [0, 1− 1/e] establishing Part

(iv).

An interpretation of Remark 3 is that the conclusions reached in Remark 1 remain valid

even when projects are not restricted to be binary. For instance, consider any optimal

project c∗ and an optimal binary project C. The players’ values are the same across both

projects for any payment schedule ρb, b ∈ [0, 1− 1/e], as follows from Parts (iii) and (iv) of

Remark 3. This can be compared to Parts (ii) and (iii) of Remark 1.

4 Discussion

Payoff Possibility Set.—We can use our results to characterize the set of possible payoff

combinations which can arise in principal-agent models for some production technology. To

be more specific, we still consider an environment where the agent is risk neutral and has

limited liability. However, the production technology is exogenously given and satisfies the

constraint that the largest output cannot exceed one. Moreover, the agent has an outside

option we take to be zero. We wish to characterize those payoff profiles which can arise in

equilibrium for some production technology. We next show that there exists a production

technology where the principal receives π̂ and the agent receives û if and only if π̂ ∈ [0, 1]

and û ∈ [0,−π̂ log π̂]; see Figure 1 for illustration.

First note that the principal’s payoff, π̂, must be between zero and one. The reason is

that the contract w0 guarantees at least zero profit. Since output is less than one, limited

liability implies that the profit cannot exceed one. Next, we identify the frontier of the

payoff possibility set. That is, we compute the largest payoff the agent can get if the
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Figure 1: The shaded area represents the set of payoffs for the principal and the agent
that arise for some technology of the agent. The players’ payoffs under the optimal project
characterized in Proposition 2 are illustrated by the red dot.

principal’s payoff is π̂. By Proposition 1, we know that this largest payoff is achieved in a

binary project. Furthermore, recall that in Section 3.2 we rewrote the problem of designing

the optimal binary project as a maximization problem with respect to the equilibrium

probability of success, µ̂, and the principal’s equilibrium profit, π̂; see (11). So the problem

of designing the agent-optimal binary technology which generates π̂ can be reduced to a

similar maximization problem except π̂ is treated as a parameter instead of a choice variable.

By Equation (12), the agent’s maximal payoff is −π̂ log π̂.

Since the agent’s outside option is zero, his equilibrium payoff cannot be negative. It

remains to argue that given the principal’s payoff, π̂, for each û ∈ [0,−π̂ log π̂), there is a

production technology so that the equilibrium payoff profile is (π̂, û). To do so, consider the

production technology generating (π̂,−π̂ log π̂) and add a fixed cost of −π̂ log π̂ − û. That

is, the agent’s cost of each distribution is increased by this quantity. Adding this fixed cost

does not change the agent’s incentives, but it lowers his payoff to û.

Competition Among Agents.— As is standard in the literature, we maintained the as-

sumption that the principal has full bargaining power and gives a take-it-or-leave-it offer to

the agent. The principal’s strong bargaining power is often motivated by fierce competition

among the agents, which is usually left unmodeled. At first glance, such a justification might
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be questioned in our setting because competition could limit the rent an agent can earn

from contracting with any principal. It is therefore of interest to examine which projects

may arise in markets with imperfect competition among agents.

One way to understand competition among agents is to consider embedding our model

into a standard search and matching framework in which one-to-one matches occur over

time. Each steady state equilibrium in such a model is associated with a continuation value

of an unmatched principal. So, when an agent designs a project, he must bear in mind

that any principal prefers to remain unmatched whenever her value from contracting with

the agent is less than the continuation value from further search. As before, the agent’s

problem of designing his equilibrium project can be understood in terms of maximizing the

expression in Equation (12) by choice of the completion probability and principal expected

profits. The difference, however, is that the principal profit, π̂, is bounded from below

by a constant which makes a principal indifferent between contracting with the agent and

remaining unmatched. The solution to that problem has features similar to those of the

optimal project described by Proposition 2. In particular, the equilibrium completion prob-

ability is one and the principal is indifferent between offering the equilibrium bonus and

anything less than that.

Risk Aversion.—Our results can be generalized to the case where the agent is risk averse.

To explain it more formally, let us modify our model so that, if the agent receives payment

w and chooses F at cost c (F ), then his payoff is v (w) − c (F ), where v is an increasing,

concave and continuously differentiable function. It can be shown that, even in this case,

binary projects remain optimal. More precisely, the following version of the statement of

Proposition 1 remains valid. For each project c∗ and any equilibrium (w∗, F ∗) in c∗, there

is a binary project c̃ with an equilibrium (w̃, B1) such that the outcome (c̃, w̃, B1) Pareto

dominates (c∗, w∗, F ∗). The characterization of optimal binary projects follows the same

steps as for the risk-neutral case. The marginal cost of any completion probability µ > π∗ is

v (1− [π∗/µ]), where π∗ is the equilibrium payoff of the principal. These claims are proved

in the Online Appendix.
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5 Appendix: Omitted proofs

5.1 Proofs of results in Section 3.1

Proof of Lemma 1. Consider a sequence (µn), with µn ∈ [0, µF ∗) for all n, such that

u (ĉ, wb) = lim
n→∞

U (ĉ, wb, Bµn) and π (ĉ, wb) = lim
n→∞

Π (wb, Bµn) .

For each k ∈ N, there exists nk such that, for all µ ∈ [0, 1],

µnkb− ĉ
(
Bµnk

)
+ 1
k
≥ µb− ĉ (Bµ) .

Equivalently, for all k, and all µ ∈ [0, µF ∗),

µnkb− inf {c∗ (F ) : µF = µnk}+ 1
k
≥ µb− inf {c∗ (F ) : µF = µ} .

For each k, we can pick a distribution Fnk with mean µnk such that

c∗ (Fnk) < inf {c∗ (F ) : µF = µnk}+ 1
k
.

Then, for all k and all F ∈ F with mean µF ∈ [0, µF ∗),

µnkb− c
∗ (Fnk) + 2

k
> µF b− c∗ (F ) . (13)

There are then two cases. In the first, the inequality (13) holds for all k and all F ∈ F

(not only those F with µF < µF ∗). Then

u (c∗, wb) = lim
k→∞

U (c∗, wb, Fnk)

and hence

π (c∗, wb) ≥ lim
k→∞

Π (wb, Fnk) = lim
k→∞

Π
(
wb, Bµnk

)
= π (ĉ, wb)

as desired. In the second, the inequality (13) fails to hold for some k and some F ∈ F with
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µF ≥ µF ∗ , which implies

u (c∗, wb) = sup {µF b− c∗ (F ) : F ∈ F} > sup {µF b− c∗ (F ) : F ∈ F , µF < µF ∗} .

This means that there is a sequence of distributions in F along which the agent’s payoff

converges to his value u (c∗, wb) and for which every distribution has mean at least µF ∗ . By

the definition of the principal’s value, we have

π (c∗, wb) ≥ µF ∗ (1− b) ≥ π (ĉ, wb) ,

where the second inequality follows because any distribution with mean at least µF ∗ is

assigned an infinite cost in the project ĉ. QED

Proof of Lemma 2. Let us fix b ∈ [0, b∗). We first show that wb does not imple-

ment BµF∗ in (c̃, wb). Suppose for a contradiction that BµF∗ satisfies the agent’s incentive

constraint in (c̃, wb), that is,

µF ∗b− c ≥ sup
µ<µF∗

{µb− c̃ (Bµ)} . (14)

Therefore,

c ≤ − sup
µ<µF∗

{(µ− µF ∗) b− c̃ (Bµ)} ≤ − sup
µ<µF∗

{(µ− µF ∗) b∗ − c̃ (Bµ)} = c,

where the first inequality is just the previous displayed inequality rearranged, the second

inequality follows from b < b∗, and the equality is the definition of c. Since the farthest

left term and the farthest right term are equal in the previous chain, all inequalities must

be equalities. Note that the second inequality is an equality only if the supremum in

Equation (14) is approached along a sequence of µ’s converging to µF ∗ . Since c̃ (Bµ) = ĉ (Bµ)

whenever µ 6= µF ∗ , and since ĉ (Bµ) = ∞ for µ ≥ µF ∗ , it follows that the supremum of

µb − ĉ (Bµ) is approached by the same sequence. Hence, π (ĉ, wb) = µF ∗ (1− b). We can

conclude that

π (c∗, wb) ≥ π (ĉ, wb) = µF ∗ (1− b) > µF ∗ (1− b∗) = Π (w∗, F ∗) ,
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where the first inequality follows from Lemma 1, the strict inequality is implied by b < b∗

and the second equality follows from the definition of b∗. This inequality implies that w∗ is

not incentive compatible in project c∗, a contradiction.

Since wb does not implement BµF∗ in c̃, U
(
c̃, wb, BµF∗

)
< u (c̃, wb). We next show that

Fc̃,wb = Fĉ,wb .19 Note that, for each (Fn) ∈ Fc̃,wb ∪ Fĉ,wb , there exists K ∈ N such that

Fk 6= BµF∗ if k > K. If (Fn) ∈ Fĉ,wb , it follows from ĉ
(
BµF∗

)
= ∞. If (Fn) ∈ Fc̃,wb , it is

implied by U
(
c̃, wb, BµF∗

)
< u (c̃, wb). Since c̃ (F ) = ĉ (F ) whenever F 6= BµF∗ , this means

that, for each (Fn) ∈ Fc̃,wb ∪ Fĉ,wb ,

lim
n→∞

U (c̃, wb, Fn) = lim
n→∞

U (ĉ, wb, Fn) ,

implying that Fc̃,wb = Fĉ,wb . Consequently,

π (c̃, wb) ≡ sup
{

lim sup
n→∞

Π (wb, Fn) : (Fn) ∈ Fc̃,wb

}
= sup

{
lim sup
n→∞

Π (wb, Fn) : (Fn) ∈ Fĉ,wb

}
= π (ĉ, wb) .

QED

5.2 Proof of Proposition 2 and Remarks 1 and 2

This section first proves Proposition 2, and then also establishes Remarks 1 and 2 (note that

Remark 3 is established in the main text). We begin by considering an arbitrary binary

project C. Let us drop the dependence on C and write the value for the agent when the

bonus is b as u (b). The value is given by

u (b) = sup
µ∈[0,1]

{bµ− C (µ)} .

Note that u is non-decreasing. Moreover, as the upper envelope of linear functions, it is

convex and hence continuous.

Let Γ (b) be the set of values µ such that there is a sequence (µn) with µn → µ and

bµn − C (µn) → u (b). Take µ̄ (b) = max Γ (b), and note that the maximum is attained.
19Recall that (Fn) ∈ Fc,w if and only if limn→∞ U (c, w, Fn) = u (c, w).
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Similarly, let µ (b) be the minimum of Γ (b) (also attained). Note that, if the principal offers

a bonus b ∈ [0, 1] in project C, then she obtains value µ̄ (b) (1− b).

For any b ≥ 0, let u′+ (b) be the right derivative of u at b. For any b > 0, let u′− (b)

be the left derivative of u at b. We next show a result that is analogous to Theorem 1 of

Milgrom and Segal (2002), but adjusted for the possibility that the agent’s payoff u (b) is

not attained by values µ ∈ Γ (b).

Lemma 3. For all b ≥ 0, u′+ (b) ≥ µ̄ (b). For all b > 0, u′− (b) ≤ µ (b).

Proof. Consider a sequence (µn) with µn → µ̄ (b) and bµn − C (µn)→ u (b). Then, for any

b′ > b, we have

(
b′ − b

)
µ̄ (b) = lim

n→∞

{
b′µn − C (µn)

}
− lim
n→∞

{bµn − C (µn)} ≤ u
(
b′
)
− u (b) .

Dividing by b′ − b and taking limits as b′ approaches b from above yields u′+ (b) ≥ µ̄ (b).

Let b > 0 and consider a sequence (µn) with µn → µ (b) and bµn − C (µn)→ u (b). For

any b′ < b, we have

(
b− b′

)
µ (b) = lim

n→∞
{bµn − C (µn)} − lim

n→∞

{
b′µn − C (µn)

}
≥ u (b)− u

(
b′
)
.

Dividing by b − b′ and taking limits as b′ approaches b from below yields u′− (b) ≤ µ (b).

QED

We can further use the convexity of u to determine its right derivative in terms of the

completion probability attainable with a given bonus.

Lemma 4. For all b ≥ 0, u′+ (b) = µ̄ (b).

Proof. Fix b ≥ 0 and suppose for a contradiction that u′+ (b) > µ̄ (b). By convexity of u and

the previous lemma

µ̄ (b) < u′+ (b) ≤ u′−
(
b′
)
≤ µ

(
b′
)

for all b′ > b. For each n ∈ N, let

bn ∈
(
b, b+ 1

n

)
28



and let µn ∈
[
µ̄(b)+u′+(b)

2 , 1
]
and such that

bnµn − C (µn) > u (bn)− 1
n

(that such a choice is possible follows because µ̄(b)+u′+(b)
2 < u′− (bn) ≤ µ (bn) for all n).

Consider a subsequence (bnk) such that µnk → µ∗ ≥ µ̄(b)+u′+(b)
2 for some µ∗. We have

lim {bµnk − C (µnk)} = lim {bnkµnk − C (µnk)} = lim u (bnk) = u (b)

where the final equality follows by continuity of u. The fact that µ∗ > µ̄ (b) contradicts the

definition of µ̄ (b). QED

Note now that, because u is convex, it is absolutely continuous and hence differentiable

almost everywhere. This means that

u (b) = u (0) +
∫ b

0
µ̄ (s) ds. (15)

It is immediate from the agent’s problem that we must have u (0) ≤ 0; i.e., the agent cannot

obtain a strictly positive payoff if the bonus is set to zero.

Consider now a project C with an equilibrium in which the principal offers bonus b̂ for

project completion, the agent chooses completion probability µ̂, and therefore the principal’s

payoff is given by π̂ = µ̂(1− b̂). Note that, if
(
C, b̂, µ̂

)
is an optimal outcome for the agent,

then we must have µ̂ > 0. Incentive compatibility of the principal offering bonus b̂ requires

that, for all b,

π̂ ≥ µ̄ (b) (1− b)

= u′+ (b) (1− b) . (16)

Hence, if the agent is to get positive rent in outcome
(
C, b̂, µ̂

)
, we must have also π̂ > 0.

Assume from now on that µ̂, π̂ > 0.

Now let us determine the highest agent value, across projects C, that can occur for

an equilibrium in which the principal offers bonus b̂ for completion and the agent chooses
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completion probability µ̂. Consider then the problem of maximizing the agent’s equilibrium

payoff

u(b̂) = u (0) +
∫ b̂

0
u′+ (b) db

by choice of convex function u : R+ → R satisfying (i) u (0) ≤ 0, and (ii) π̂ ≥ u′+ (b) (1− b)

for all b. The first requirement reflects the above observation that the agent cannot obtain

a positive payoff if the bonus is zero. The second condition is a re-statement of Condition

(16). Any solution to this problem involves u (0) = 0 and

u′+ (b) = π̂

1− b

for all b ∈ [0, b̂]. In other words, the constraint (ii), or equivalently (16), holds with equality

over b ∈ [0, b̂] (in which case, the principal must obtain payoff π̂ from all such bonuses b).

The agent’s value function is therefore given on [0, b̂] by

u (b) =
∫ b

0

π̂

1− z dz. (17)

Now, recall that π̂ = µ̂(1− b̂), or b̂ = 1− π̂
µ̂
. The agent’s equilibrium payoff can then be

written as ∫ 1− π̂
µ̂

0

π̂

1− z dz = [−π̂ log (1− z)]
1− π̂

µ̂

0 = π̂ (log (µ̂)− log (π̂)) (18)

which is the expression given in Equation (12) (hence establishing also the one in Equation

(11)). As explained in the main text, this payoff is maximized across feasible equilibrium

values of µ̂ and π̂ by µ̂ = 1 and π̂ = 1
e . The corresponding equilibrium bonus must be

b̂ = 1− 1/e.

Note then that, if the project is C∗ as given in the proposition (with C∗ (0) = 0, as

explained in the main text), and the principal offers any b ∈ [0, 1− 1/e], the agent best

responds by choosing µ such that

b = 1− 1
eµ
,

i.e. µ = 1
e(1−b) . All such bonuses therefore generate profit 1/e for the principal. Hence, it

is indeed an equilibrium of project C∗ for the principal to offer bonus b∗ = 1− 1/e, and the
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agent to choose completion probability equal to µ∗ = 1. This completes the proof of the

proposition.

Proof of Remark 1. Now consider Remark 1. Part (i) of the remark follows because

the expression in Equation (18) represents the agent’s highest possible expected payoff in

any project in which the completion probability is µ̂ and the principal’s expected payoff

is π̂. Moreover, it is uniquely maximized by µ̂ = µ∗ = 1 and π̂ = π∗ = 1/e. Part (ii)

of Remark 1 then follows from Equation (17). Part (iii) of Remark 1 follows because the

constraint (16) holds with equality in an optimal binary project over the relevant range of

bonus payments. That is, because

π∗ = µ̄ (b) (1− b)

for all b ∈ [0, 1− 1/e], where recall µ̄ (b) (1− b) coincides with the principal’s value π (C, b)

in any subgame (C, b). QED

Proof of Remark 2. To show Part (i) of Remark 2, consider the optimal project C∗

in Proposition 2. Notice that, as we reduce the bonus b from b∗ to zero, the agent’s best

response in the subgame (C∗, b) decreases continuously from one to zero. Suppose now that

C is a project with C (µ′) < C∗ (µ′) for some µ′, and let b′ ∈ (0, b∗] be the bonus that

implements µ′ in project C∗. Then we have

u
(
C, b′

)
≥ b′µ′ − C

(
µ′
)
> b′µ′ − C∗

(
µ′
)

= u
(
C∗, b′

)
=
∫ b′

0
1/ [e (1− z)] dz.

The first equality follows because µ′ is a best response in the subgame (C∗, b′). The second

equality follows because C∗ is an optimal project, and by Part (ii) of Remark 1. Hence, by

Part (ii) of Remark 1, C is not an optimal project.

To show Part (ii) of Remark 2, fix an optimal binary project C and consider a completion

probability µ ∈ [1/e, 1]. By Part (iii) of Remark 1, it can be attained by a bonus b =

1 − 1/ (µe) ∈ [0, 1− 1/e]. Formally, we mean that there exists a sequence (µn) convergent

to µ with µnb−C (µn)→ u (C, b). Note that the bonus b also implements µ in project C∗.

By Part (ii) of Remark 1, the agent’s value in subgame (C, b) is the same as in subgame

(C∗, b); that is, u(C, b) = u(C∗, b). In particular, considering the aforementioned sequence
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(µn), we have

µnb− C (µn)→ u (C∗, b) = µb− C∗ (µ) ,

implying limn→∞C (µn) = C∗ (µ), which is what we wanted to show. QED
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