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mensional panel data with missing observations. We propose an easy-to-use all-purpose estima-

tor for a latent factor model by applying principal component analysis to an adjusted covariance

matrix estimated from partially observed panel data. We derive the asymptotic distribution for

the estimated factors, loadings and the imputed values under an approximate factor model and

general missing patterns. The key application is to estimate counterfactual outcomes in causal

inference from panel data. The unobserved control group is modeled as missing values, which

are inferred from the latent factor model. The inferential theory for the imputed values allows

us to test for individual treatment effects at any time under general adoption patterns where
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1 Introduction

Large dimensional panel data with missing entries are prevalent. In causal panel data, the main

focus is to estimate the unobserved potential outcomes. In financial data, stock returns can be

missing before a company is listed, after its bankruptcy, or because of illiquidity. In macroeconomic

datasets, panel data might be collected at different frequencies or not for all geographical locations

resulting in missing entries. In the famous Netflix challenge, a majority of users’ ratings for films

are missing. Estimating missing entries in panel data is a fundamental problem with applications

in social science, statistics, and computer science.

This paper develops the inferential theory for latent factor models estimated from large di-

mensional panel data with missing observations. We propose a novel and easy-to-use approach to

estimate a latent factor model by applying principal component analysis (PCA) to an adjusted co-

variance matrix, which is estimated from partially observed panel data. We derive the asymptotic

normal distribution for the estimated factors, loadings, and imputed values. The key application is

to estimate counterfactual outcomes for causal inference. The unobserved control group is modeled

as missing values, which are inferred from the latent factor model. The inferential theory for the

imputed values allows us to test for individual treatment effects at a particular time. This granular

test is of practical relevance because we learn not only for whom but also when a treatment is

effective.

The inferential theory for latent factor models with missing data is important for a number of

reasons. First, we show how to consistently impute the missing observations in a large dimensional

panel data set, which can then be used as an input for other applications. Our confidence intervals

for the imputed values can serve as a decision criterion if the imputed data should be used. Second,

the distribution of the missing observations can actually be the object of interest itself. For example,

the imputed values serve as the synthetic control in causal inference for which we need an asymptotic

distribution theory. The inferential theory is key for deriving test statistics for treatment effects.

Last but not least, we provide the complete inferential theory for the latent factors themselves, which

is relevant when the factors are the object of interest and are used as input for other applications.

Our method is very simple to adopt and but works under general assumptions. We provide

an “all-purpose” estimator that performs well under all empirically relevant missing patterns and

only assumes a general approximate factor model. Our estimation consists of two simple steps,

where we first apply PCA to a re-weighted covariance matrix to obtain the loadings and, in a

second step, run a regression on these loadings using only the observed units to obtain the factors.

The missing entries are estimated by the common components of the factor model. Importantly,

our estimator does not require the estimation of the observation pattern itself. In some cases,

we might have additional information about the missing pattern. We provide a modification of

our estimator that can take advantage of a probabilistic model of the missing pattern and use

an inverse probability weight in the second step regression to obtain the factors. It is inspired

by the inverse propensity weighted regression from causal inference that enjoys the doubly-robust

property, meaning the estimator is consistent if either the outcome or propensity model is correctly
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specified. Our probability weighted estimator also has desirable robustness properties under model

misspecification, but it is generally less efficient than our all-purpose estimator.

Our framework stands out by the very general patterns of missing observations that it can

accommodate. We cover the common scenarios of missing at random or a simultaneous/staggered

treatment adoption, where the treatment cannot be removed once implemented. Importantly, the

missing pattern can depend in a general way on the unobserved factor loadings or unit-specific

features. Hence, the observations can be missing because of how the units are exposed to the latent

factors. Our simple all-purpose estimator does not require us to explicitly model this relationship,

but takes it automatically into account. In the case of the propensity weighted estimator, we

provide feasible estimators of the probability weights that result in the same distribution as the

population weights.

Deriving the inferential theory under these general conditions is a challenging problem. The

missing observations have a complex effect on the asymptotic covariance matrix of the imputed

entries. In particular, the asymptotic variance has an additional variance correction term compared

with the fully observed panel. This term results in a larger asymptotic variance than in the fully

observed case. The variance correction term arises because, in a panel with missing observations,

we take averages over a different number of time periods for the different entries in the estimated

covariance matrix. The variance correction term is larger if the observation pattern has many

missing entries, or if it deviates more from a missing at random scheme. The propensity weighted

estimator has a similar asymptotic distribution structure as our all-purpose estimator but in general

a larger variance.

Our work contributes to three distinct fields: large dimensional factor modeling, matrix com-

pletion, and causal inference. First, we extend the inferential theory of latent factors to large

dimensional data with general patterns in missing entries. Second, matrix completion methods im-

pute missing entries under the assumption of a low-rank structure, which is corrupted with noise.

We provide confidence intervals for the imputed values. Lastly, the key question in causal inference

is the estimation of counterfactual outcomes, i.e., what would have been the outcome if a unit

had not been treated or if a unit had been treated. The unobserved counterfactual outcome can

naturally be formulated as a missing observation problem. We are the first to provide a test for the

point-wise treatment effect that can be heterogeneous and time-dependent under general adoption

patterns where the units can be affected by unobserved factors:

This paper works under the framework of an approximate latent factor structure where both

the cross-section dimension and time-series dimension are large. When the data is fully observed,

Bai and Ng (2002) show that the factor model can be estimated with PCA applied to the covariance

matrix of the data. Bai (2003) and Fan, Liao, and Mincheva (2013) derive the consistency and

asymptotic normality of the estimated factors, loadings and common components.1 When a panel

1Extensions of latent factor models with fully observed data include adding observable factors in Bai (2009), sparse
and interpretable latent factors in Pelger and Xiong (2020b), time-varying loadings in Pelger and Xiong (2020c) and
Fan, Liao, and Wang (2016), high-frequency estimation in Pelger (2019) and including additional moments to estimate
weak factors as in Lettau and Pelger (2020).
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has missing entries, a common approach is to estimate the factor model from a subset of the data

for which a balanced panel is available. This approach has two drawbacks: First, it is, in general,

less efficient as our approach makes use of all the data. Second, it can lead to a biased estimate if

the data is not missing at random.

The inferential theory of large dimensional factor models with missing observations is an active

area of research. Our paper is most closely related to the recent papers by Jin, Miao, and Su

(2020), Bai and Ng (2020) and Chen, Fan, Ma, and Yan (2019) that provide entry-wise confidence

intervals. The papers differ in the algorithms to impute the missing observations, the generality of

the missing patterns, and the proportion of required observed entries relative to the missing entries.

There is a trade-off in terms of the generality of the model and required observations, where our

work allows for the most general patterns in missing observations with a general approximate factor

structure at the cost of observing entries at a higher rate than Chen, Fan, Ma, and Yan (2019). Our

main results are derived under the assumption that entries are observed at the same rate as missing

entries, but we show that this assumption can be considerably relaxed. Importantly, in contrast

to the other papers, our framework allows the missing pattern to depend on unit-specific features

and to test for an individual treatment effect at any time for any cross-section unit or a weighted

treatment effect. This is exactly what we need for the main application in causal inference. Jin,

Miao, and Su (2020) estimate the latent factor model with the expectation-maximization (EM)

algorithm under the assumption of randomly missing values.2 Independently and simultaneously,

Bai and Ng (2020) provide the inferential theory for the factor-based imputed values based on the

innovative idea of shuffling rows and columns such that there exist fully observed TALL and WIDE

blocks for estimating the factor model.3 Chen, Fan, Ma, and Yan (2019) approach the problem from

a matrix completion perspective, which can also be mapped into a factor model framework. They

solve a nuclear norm regularized optimization problem to estimate the missing entries and develop

2An important contribution of Jin, Miao, and Su (2020) is to show the inferential theory for an iterative esti-
mator based on randomly missing values. Stock and Watson (2002); Bańbura and Modugno (2014); Negahban and
Wainwright (2012) propose to use EM algorithms to estimate the factor model from the panel data with missing
observations. Giannone, Reichlin, and Small (2008); Doz, Giannone, and Reichlin (2011); Jungbacker, Koopman,
and Van der Wel (2011); Stock and Watson (2016) propose to use the state-space framework and Kalman Filtering
to estimate the factor model with missing observations. Gagliardini, Ossola, and Scaillet (2019) propose a simple
diagnostic criterion for an approximate factor structure in large (unbalanced) panel data sets. Other work to impute
missing values using EM algorithms includes Rubin (1976); Dempster, Laird, and Rubin (1977); Meng and Rubin
(1993) that study the problem under a different framework, i.e., on cross-sectional data (but not panel data).

3Our paper differs from Bai and Ng (2020) in three aspects: 1. We allow the observational pattern to depend
on the loadings or observed covariates. 2. Their re-shuffling of rows and columns imposes some restrictions on the
missing patterns and might result in using fewer observations for estimating missing entries. As we are generally using
more observed entries in the estimation, we have to deal with many local rotation matrices of the latent factors which
complicates the inferential theory. 3. We provide general tests for treatment effects, such as an individual treatment
effect at any time or a weighted treatment effect. The two approaches are conceptionally different and complementary
to each other. Depending on the structure of the missing pattern, either their approach or our approach can be better
in terms of convergence rates and asymptotic efficiency. In an extensive simulation study, we show that the estimator
of Bai and Ng (2020) performs well when the observation pattern has a block structure similar to a simultaneous
treatment adoption pattern, but is not suited for data missing at random or does not make use of all the observations
in the case of a staggered design. Our estimator has similar performance for a block structure, but better performance
for missing at random, a staggered design or when the missing pattern depends on the loadings as it takes advantage
of all observations.
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an inferential theory under the assumption of random sampling and i.i.d. noise. Each of those

estimators is designed for a specific observation pattern or factor model under which it performs

particularly well, but might not generalize to other patterns. In contrast, we view our estimator

as a simple all-purpose estimator that can reliably impute missing data and provide the correct

confidence intervals for general missing patterns and factor structures, which makes it appealing

for applied researchers in causal inference.

Our imputed values are point-wise consistent and have asymptotic normal distributions, which

is relevant for the matrix completion literature that studies a similar problem. Both our paper

and the matrix completion literature assume a low-rank structure in the panel data. In the matrix

completion literature, the most popular method is to estimate the low-rank matrix from a convex

optimization problem.4 The main results in the matrix completion literature are upper bounds for

the mean-squared estimation error for the estimated matrix. However, point-wise consistency does

not hold in general because the typically used nuclear norm regularization results in a bias in the

estimated matrix. In their path-breaking work, Chen, Fan, Ma, and Yan (2019) propose de-biased

estimators and provide an inferential theory under the assumption of i.i.d. sampling and i.i.d.

noise. Our paper contributes to the matrix completion literature by allowing general observation

patterns and dependent error structures, which is particularly relevant for applications in social

science.

Our paper allows for heterogeneous and time-dependent treatment effects of an intervention and

more general intervention adoption patterns compared with the synthetic control methods in causal

inference. Furthermore, our paper provides a flexible test for treatment effects. In comparative case

studies, a key question is to estimate the counterfactual outcomes for treated units. A valid control

unit is “close” to the treatment unit except for the treatment effect. Typically synthetic controls are

weighted averages of untreated units where the weights depend on unit-specific features. A popular

model assumption is that the potential outcome is linear in observed covariates and unobserved

common factors. Abadie, Diamond, and Hainmueller (2010, 2015), Doudchenko and Imbens (2016),

Li and Bell (2017) and Li (2019) propose to match each treated unit by weighted averages of all

control units using the pretreatment observations. Li and Bell (2017) and Li (2019) further show

the inferential theory for the average treatment effect over time.5 These methods rely on the

assumption that there is only one treated unit and the treatment effects are either constant or

stationary. Another method is to regress the post-treatment outcomes for the control units on

the pre-treatment outcomes and covariates and use the coefficients to predict the counterfactual

outcome for the treated/control units. Athey, Bayati, Doudchenko, Imbens, and Khosravi (2018)

4The conventional optimization problem is to minimize the mean squared error between the observations and the
corresponding entries in the estimated matrix while regularizing the nuclear norm of the estimated matrix (Mazumder,
Hastie, and Tibshirani, 2010; Negahban and Wainwright, 2011, 2012). The nuclear norm of a matrix is similar to
the `1 norm of a vector. The optimal solution tends to have a lower rank if the nuclear norm has more weight in the
objective function.

5Li and Bell (2017) propose using the LASSO method to select control units and Carvalho, Masini, and Medeiros
(2018) show the inferential theory for the LASSO method. Masini and Medeiros (2018) focus on the high-dimensional,
non-stationary data.
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proposes to use matrix completion methods to impute the control panel data and allow for more

general treatment adoption patterns: multiple treated units and staggered treatment adoption.

However, they do not provide point-wise guarantees for the imputed values. In this paper, we do

not only allow for general treatment adoption patterns, but also provide the point-wise inferential

theory for the imputed counterfactual outcomes. Furthermore, we can test for treatment effects even

if they are heterogeneous and time-dependent. Our approach does not require a priori knowledge

about which covariates describe if treated and control units are a good match. Instead, our latent

loadings capture all unit-specific information in a data-driven way. The synthetic control, that

we impute, is a weighted average of the untreated units, that takes all unit-specific information

into account. In causal inference, we can either model the relationship between the covariates

and the outcome, or model the probabilities of missingness to estimate causal effects. Doubly

robust procedures, as discussed, for example, in Kang and Schafer (2007) combine both by using a

propensity weight in regressions to mitigate the selection bias. Our propensity weighted estimator

builds on this intuition. Interestingly, we prove that using the estimated feasible propensity instead

of the population weights does not affect the asymptotic distribution. This observation is aligned

with the classical inverse propensity weighted estimator (Hirano, Imbens, and Ridder, 2003).

We use our novel methodology in our companion paper Pelger and Xiong (2020a) to study the

effect of academic publications on the monthly stock returns of over 100 anomaly portfolios for

over 50 years. There is an ongoing debate in asset pricing on whether academic publications make

anomalies in equity returns disappear. An anomaly describes a pattern in average stock returns

that cannot be explained by a benchmark asset pricing model, for example, the Capital Asset

Pricing Model. Previous literature suggests that the mispricing of anomalies is reduced after their

publication, mainly because investors become aware of the effect and correct the mispricing. Our

novel methodology allows us to test the causal effect of publication on pricing errors. This question

requires us to test for a causal change in regression coefficients for a benchmark asset pricing

model. This is different from a simple average treatment effect and hence requires new tools. Our

methodology allows us to test for these weighted average treatment effects, while controlling for

omitted factors. We show that all“classical” anomalies have not been affected by publication, while

many “less standard” anomalies disappear after their publication.

The rest of the paper is organized as follows. Section 2 introduces the model and provides

the simple all-purpose estimator for factors, loadings, and common components. Section 3 states

the necessary assumptions for the asymptotic distribution results that are presented in Section 4.

Sections 5 and 6 extend the results to the propensity weighted estimator. Section 7 shows how to

apply our model to test treatment effects. We discuss the feasible estimation in Section 8 and how

to relax the rate conditions in Section 9. The extensive simulation in Section 10 shows the good

finite sample properties, the strong performance relative to other methods, and robustness results

under misspecification. The Internet Appendix collects additional simulation results and all proofs.
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2 Model and Estimation

2.1 Model

Assume we partially observe a panel data set Y with T time periods and N cross-sectional units.

Y ∈ RN×T has a factor structure with r common factors. We denote by Ft ∈ Rr the latent factors,

Λi ∈ Rr the factor loadings, Cit = Λ>i Ft the common component, and eit the idiosyncratic error:

Yit = Λ>i Ft + eit for i = 1, 2, · · · , N and t = 1, 2, · · · , T

or in vector notation,

Yt︸︷︷︸
N×1

= Λ︸︷︷︸
N×r

Ft︸︷︷︸
r×1

+ et︸︷︷︸
N×1

for t = 1, 2, · · · , T .

In an asymptotic setup where N and T are both large, we randomly observe some entries in Y .

Let Wit ∈ {0, 1} be a binary variable, where Wit = 1 indicates that the (i, t)-th entry is observed

and Wit = 0 otherwise. In this paper, we will estimate the latent factors F and loadings Λ from

the partially observed Y , impute the missing values, and provide the inferential theory for all

estimators.

2.2 Missing Observations

We allow for very general patterns in the missing observations. Figure 1 shows three important

examples widely seen in empirical applications. The first one is a randomly missing pattern, that is,

whether an entry is observed or not does not depend on other entries or observable covariates. For

example, the observational pattern of the Netflix challenge is usually modeled as entries missing at

random. The second and third ones are the observation patterns for control panels in simultaneous

and staggered treatment adoptions. Once a unit adopts the treatment, it stays treated afterward,

which will be modeled as missing values. These two patterns are widely assumed in the literature

on causal inference in panel data.6

Qij = {t : Wit = 1 and Wjt = 1} denotes the set of time periods t when both units i and j

are observed. |Qij | is the cardinality of the set Qij . Assumption S1 states the conditions on the

observation pattern.

Assumption S1 (Observational Pattern).

1. W is independent of F and e.

2. For a given observation matrix W ,
|Qij |
T ≥ q > 0 and there exist constants qij and qij,kl for all

i, j, k, l such that qij = limT→∞
|Qij |
T and qij,kl = limT→∞

|Qij∩Qkl|
T .

Assumption S1 allows very general observation patterns that can vary over time and depend

on unit-specific features. In particular, the observation pattern can depend on the factor loadings

6See (Candès and Recht, 2009; Zhou, Wilkinson, Schreiber, and Pan, 2008) for the Netflix challenge and (Athey,
Bayati, Doudchenko, Imbens, and Khosravi, 2018; Athey and Imbens, 2018) for missing patterns used in causal
inference.
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Figure 1: Examples of patterns for missing observations

(a) Randomly missing
(b) Simultaneous treatment
adoption

(c) Staggered treatment
adoption

These figures show examples of patterns of missing observations. The shaded entries indicate the missing entries.

that capture cross-sectional information. For the purpose of identification, we assume that the

observation pattern is independent of the factors. Note that the estimator of the common com-

ponents is “symmetric” in N and T , and therefore we could switch the roles of N and T in the

above assumptions. In that case, the observation pattern would be independent of the loadings

but can depend on the factors. The assumption that the observation pattern is independent of

the errors is closely related to the unconfoundedness assumption in Rosenbaum and Rubin (1983).

Assumption S1 implicitly assumes that for any two units, the number of time periods when both

are observed is proportional to T . This simplifies the presentation of our results and is sufficient

for most empirically relevant cases, but we will also discuss how this assumption can be relaxed.

Our framework allows for the following important examples:

1. Missing at random: P (Wit = 1) = p for all i and t. In this case all units and times are equally

likely to be observed.

2. Cross-section missing at random: P (Wit = 1) = pt. For each t each cross-sectional unit is

equally likely to miss.

3. Time-series missing at random: P (Wit = 1) = pi. For each i each time observation is equally

likely to miss.

4. Cross-section and time-series dependency: P (Wit = 1|Si) = pit which allows for different

probabilities for each unit and time.

5. Staggered treatment adoption: If Wit = 0 then Wit′ = 0 for all t′ ≥ t. This is a special case of

4. with P (Wit = 1) = pit. For the special case that the probability does not depend on i, the

staggered design is a special case of cross-section missing at random P (Wit = 1) = pt.

6. Mixed frequency observations: Each cross-section unit has a fixed known observation pattern

over time. This can be modeled as one random draw for each cross-section unit to assign it to

a specific pattern. A feasible model approach uses P (Wit = 1) = pt as this is another special

case of cross-section missing at random.

The approach of Jin, Miao, and Su (2020) is a special case of our estimator for data missing at

random, but cannot accommodate a staggered design or different cross-sectional probabilities for
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missing data. In contrast, Bai and Ng (2020) is well suited for a simultaneous treatment adoption

pattern, but cannot be used for data missing at random or does not make use of all the observations

in the case of a staggered design.

We provide an “all-purpose” estimator without the need to explicitly model the probability

distribution P (Wit = 1). However, in some cases, we might have additional information about the

missing pattern. In Section 5, we provide a modification of our estimator that can take advantage

of a model for P (Wit = 1). More specifically, we allow the cross-sectional observation pattern

P (Wit = 1|Si) to depend on observed cross-sectional features S = [Si] ∈ RN×K . These covariates

Si are assumed to be time-invariant. They can be discrete, for example, an indicator variable

for gender in the evaluation of a drug treatment or continuous, for example, standardized past

test scores in the evaluation of an educational policy change. The cross-sectional features Si can

actually be the estimated latent loadings Λi themselves. We discuss how the observation probability

P (Wit = 1|Si) = pt(Si) can be estimated with parametric or non-parametric estimators. While this

modified estimator requires some changes to Assumption S1, it provides the same level of generality

for the missing pattern, as discussed in Section 5.

2.3 Estimator

There are two steps to estimate the latent factor model from the partially observed panel data:

First, we need to estimate the covariance matrix of the data, and second we estimate the latent

factors and loadings based on the eigenvectors of the estimated covariance matrix. The conventional

latent factor estimator without missing values applies principal component analysis to the sample

covariance matrix. A natural way to deal with the missing values is to set these entries to zero.

However, the conventional PCA estimator will then be biased. Our estimator correctly re-weights

the entries in the covariance matrix before applying PCA.

We first impute the missing entries by 0 and denote the imputed matrix as Ỹ :7

Ỹit = YitWit, for i = 1, 2, · · · , N and t = 1, 2, · · · , T.

When some entries in Y are missing, the conventional sample covariance estimator 1
T Ỹ Ỹ

> is biased

because the actual realizations of the missing values are not equal to zero. We propose a natural

estimator of the covariance matrix, where for each entry we only use the time periods when both

units are observed. This is equivalent to estimating the sample covariance matrix with Ỹ , but

reweighting the entries. Figure 1 is a simple example to illustrate the covariance matrix estimation

if the entries are partly missing in the second half of the data. More generally, our sample covariance

matrix estimator equals

Σ̃ij =
1

|Qij |
∑
t∈Qij

YitYjt. (1)

7In matrix notation, we have Ỹ = X �W , where � denotes the Hadamard product.
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Table 1: Example of covariance matrix estimation with missing entries

Y1,1 · · · Y1,T0 Y1,T0+1 · · · Y1,T

Y2,1 · · · Y2,T0 Y2,T0+1 · · · Y2,T

(a) Observation pattern for Y : Shaded entries are
missing.

1
T0

∑T0
t=1 Y1,tY

>
1,t

1
T0

∑T0
t=1 Y1,tY2,t

1
T0

∑T0
t=1 Y2,tY

>
1,t

1
T

∑T
t=1 Y2,tY

>
2,t

(b) Sample covariance matrix Σ̃: Shaded entries
are estimated using observations up to time T0

This tables show an illustrative example for the covariance matrix estimation for Y with missing entries. The
missing entries follow a simultaneous treatment adoption pattern. For t = T0 + 1, ..., T the first N0 cross section
units are missing, while the elements N0 + 1, ..., N are observed for all t, i.e. Y1,t =

(
Y1,t · · · YN0,t

)
and

Y2,t =
(
YN0+1,t · · · YN,t

)
.

When the data is fully observed, we can apply PCA to 1
NT Y Y

> to estimate the loadings. Up

to rescaling, the eigenvectors of the largest eigenvalues estimate the loadings. Then, we regress

Y on the estimated loadings to obtain an estimate of the factors.8 Similarly, for the partially

observed data, we apply PCA to 1
N Σ̃ to estimate the loadings.9 Under the standard identification

assumption Λ̃>Λ̃/N = Ir, we estimate the loadings Λ̃ as
√
N times the eigenvectors of the r largest

eigenvalues of the sample covariance matrix, that is

1

N
Σ̃Λ̃ = Λ̃Ṽ , (2)

where Ṽ is a diagonal matrix. Then, for every time period t, we regress the observed Yt on Λ̃ to

estimate the factors:

F̃t =

(
N∑
i=1

WitΛ̃iΛ̃
>
i

)−1( N∑
i=1

WitΛ̃iYit

)
. (3)

Interestingly, this very simple estimator automatically corrects for the impact of general observation

patterns. If we have additional information that allows us to model the observation pattern as

P (Wit = 1|Si), we propose an alternative weighted regression:

F̃St =

(
N∑
i=1

Wit

P (Wit = 1|Si)
Λ̃iΛ̃

>
i

)−1( N∑
i=1

Wit

P (Wit = 1|Si)
Λ̃iYit

)
. (4)

This conditional estimator uses the weights 1
P (Wit=1|Si) in the cross-sectional regression. The es-

timator for F̃St is motivated by the inverse propensity score estimator, which is widely used in

8Alternatively, we can apply PCA to 1
NT

Y Y > to estimate the loadings and then regress Y > on the estimated
loadings to estimate the factors. The estimators are consistent and asymptotic normal. Bai and Ng (2002) and Bai
(2003) develop the inferential theory, i.e., the consistency and asymptotic normality, for the factors and loadings
estimated from PCA without missing observations.

9We assume that the true number of factors is r and has been consistently estimated as in Bai (2003). The
estimation of the number of factors could be based on an eigenvalue ratio argument as in Ahn and Horenstein (2013)
and or an information criterion as in Bai and Ng (2002).
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causal inference. The rationale is that the re-weighted observations correspond to a model where

the data is cross-sectionally missing at random. More specifically, after re-weighting the observed

data, the loadings should follow the same distribution as in the complete panel without missing

observations. This could be relevant if units, that are exposed to specific factors, are more likely

to miss. In the special case for cross-sectional missing at random, i.e., P (Wit = 1) = pt, the two

estimators coincide. We will first study the simple all-purpose estimator F̃t and extend it to the

propensity weighted estimator F̃St in Section 5. We show that both estimators are consistent and

asymptotically normal. In most cases, F̃t is more efficient than the propensity score estimator,

but F̃St can have desirable robustness properties under miss-specification. The last step is to esti-

mate the common component Cit = Λ>i Ft. We use the plug-in estimator, C̃it = Λ̃>i F̃t respectively

C̃Sit = Λ̃>i F̃
S
t . If Yit is not observed, we impute the missing values with C̃it or C̃Sit .

2.4 Illustration

We illustrate in a simple example how missing observations change the conventional PCA estimator

with fully observed data. Assume that we have only one factor, and the factor, loading and

residual component are i.i.d. normally distributed with Ft
i.i.d.∼ N (0, σ2

F ), Λi
i.i.d.∼ N (0, 1) and

eit
i.i.d.∼ N (0, σ2

e). We assume that the observations for units 1, ..., N0 and for the times T0 + 1, ..., T

are missing according to the simultaneous adoption pattern of Table 1. We separate the vector of

factor realizations into its first F1 =
(
F1 · · · FT0

)>
and second part F2 =

(
FT0+1 · · · FT

)>
and similarly for the loadings Λ1 =

(
Λ1 · · · ΛN0

)>
and Λ2 =

(
ΛN+0+1 · · · ΛN

)>
. Note that

in this simple example F̃ and F̃S coincide.

We start with the simplest case without error terms et to illustrate the logic of reweighting

entries. In this case the conventional covariance matrix equals

1

T
Ỹ Ỹ > =

1

T

(
Λ1F

>
1 0

Λ2F
>
1 Λ2F

>
2

)(
F1Λ

>
1 F1Λ

>
2

0 F2Λ
>
2

)
=

√T0
T Λ1

Λ2

(σ2
F + oP (1)

) (√
T0
T Λ>1 Λ>2

)
.

Obviously, the eigenvector of this matrix is a biased estimate of the loadings. In contrast, the

eigenvector of the correctly weighted sample covariance matrix consistently estimates the loadings:

Σ̃ =

(
Λ1

F>1 F1

T0
Λ>1 Λ1

F>1 F1

T0
Λ>2

Λ2
F>1 F1

T0
Λ>1 Λ2

F>1 F1+F>2 F2

T Λ>2

)
=

(
Λ1

Λ2

)(
σ2
F + oP (1)

) (
Λ>1 Λ>2

)
.

The same logic carries over to the estimator of the factors. Assume that we know the population

loadings which we use here instead of the estimated loadings in the regression to estimate the

factors:

Ỹ >Λ

N

(
Λ>Λ

N

)−1

=
1

N

(
F1Λ

>
1 F2Λ

>
2

0 F2Λ
>
2

)(
Λ1

Λ2

)
+ oP (1) =

(
F1

F2
N−N0
N

)
+ oP (1),

10



which is a biased estimator for the second time period. The regression in Equation (3) corresponds

to a weighted least square regression which provides the correct estimator:

F̃ =

(
F1

Λ>1 Λ1+Λ>2 Λ2

N

F2
Λ>2 Λ2

N−N0

)(
Λ>1 Λ1+Λ>2 Λ2

N 0

0
Λ>2 Λ2

N−N0

)−1

=

(
F1

F2

)
+ oP (1).

The proper reweighting in the loading and factor estimation leads to an additional correction term

in the asymptotic variance of the estimator. As an illustration of this additional challenge, we add

the i.i.d. error term eit to our example. In our simplified setup our consistent estimator for the

loadings Λ̃ has the following expansion for i = 1, ..., N0:10

√
T
(

Λ̃i − Λi

)
=

√
T

T0

(
F̃>F̃

T

)−1
1√
T0

T0∑
t=1

Fteit +
√
T

(
F̃>F̃

T

)−1(
F>1 F1

T0
− F>F

T

)
Λi + oP (1),

which results in the asymptotic normal distribution

√
T
(

Λ̃i − Λi

)
d→ N

(
0,
T

T0

σ2
e

σ2
F

+ 2
T − T0

T0
Λ2
i

)
for i = 1, ..., N0.

The second term in the asymptotic expansion is due to averaging over different number of units for

different elements of the loadings. This additional variance correction term vanishes for T0 → T .

Similar terms appear in the distribution of the estimators of the factors and common components.

We show under general conditions how these correction terms arise in the asymptotic distribution

and how to take them into account for the inferential theory.

3 Assumptions

We assume an approximate factor structure at the same level of generality as in Bai (2003). The

factors and loadings have non-trivial time-series and cross-sectional dependency. We allow the

errors to be weakly correlated in the time-series and cross-sectional dimension. The asymptotic

distributions are based on general martingale central limit theorems. The general Assumptions

G2 and G3 are collected in the Appendix. In the main text, we present a simplified factor model

with the stronger Assumptions S2 and S3, which substantially simplifies the notation but conveys

the main conceptional insights of the general model. It allows us to highlight the effect of missing

observations.

The consistency results are based on Assumption S2 that assumes that all observations are i.i.d.

The key elements are that the factors and loadings are systematic in the sense that they lead to

exploding eigenvalues, while the error terms are non-systematic with bounded eigenvalues in the

10The results are similar for i > N0 with the expansion
√
T
(

Λ̃i − Λi
)

=
√
T
(
F̃>F̃
T

)−1
1
N

[
Λ>1 Λ1

1
T0

∑T0
t=1 Fteit

+Λ>2 Λ2
1
T

∑T
t=1 Fteit

]
+
√
T
(
F̃>F̃
T

)−1
1
N

Λ>1 Λ1

(
F>

1 F1

T0
− F>F

T

)
Λi + oP (1) and asymptotic distribution

√
T
(

Λ̃i − Λi
)

d→ N
(

0,
(
T−T0
T0

N2
0

N2 + 1
)
σ2
e

σ2
F

+ 2
N2

0
N2

T−T0
T0

Λ2
i

)
.
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covariance matrix of Y . These are standard factor model assumptions. The asymptotic distribution

results require additional restrictions on the missing patterns, as stated in Assumption S3.

Assumption S2 (Simplified Factor Model).

1. Factors: Ft
iid∼ (0,ΣF ) and E[‖Ft‖4] ≤ F̄ <∞ exist.

2. Factor loadings: Λi
iid∼ (0,ΣΛ) and E[‖Λi‖4] ≤ Λ̄ <∞.

3. Errors: eit
iid∼ (0, σ2

e), E[e8
it] ≤M .

4. Independence: F , Λ and e are independent.

5. Eigenvalues: The eigenvalues of ΣΛΣF are distinct.

Assumption S3 (Moments of Simplified Factor Model).

1. Systematic loadings: 1
N

∑N
i=1 ΛiΛ

>
i Wit

P→ ΣΛ,t for some positive definite matrix ΣΛ,t for any t.

2. Dependency in missing pattern: 1
N2

∑N
i=1

∑N
l=1

qij,lj
qijqlj

P→ ωjj, limN→∞
1
N3

∑N
i=1

∑N
l=1

∑N
k=1

qli,kj
qliqkj

P→
ωj and limN→∞

1
N4

∑N
i=1

∑N
l=1

∑N
j=1

∑N
k=1

qli,kj
qliqkj

P→ ω for all j and some constants ωjj , ωj , ω.

Assumption S3 has two key elements. First, the full rank assumption of ΣΛ,t captures that the

factor loadings are systematic for the observed entries. Second, the number of observed units at

every time period t is proportional to N and different units share a number of observed entries

that is proportional to T . The impact of the missing pattern on the asymptotic variances of the

estimators is captured by the three key parameters ω, ωj and ωjj . Note that by construction these

constants satisfy ωjj , ωj , ω ≥ 1. If the observations are missing at random with probability p, then

ωjj = 1
p , ωj = 1 and ω = 1. The following proposition shows that the simplified model is just a

special case of the general approximate factor model specified by Assumptions G2 and G3.

Proposition 1. The simplified Assumptions S2 and S3 are special cases of the general Assumptions

G2 and G3. Specifically,

1. Assumptions S1 and S2 imply Assumption G2 and GC2.

2. Assumptions S1, S2 and S3 imply Assumption GC3.

4 Asymptotic Results

4.1 Consistency

We first show the consistency of our estimators. Our analysis starts with plugging Ỹ = (Λ>F +

e)�W into Equation (2) which yields the following decomposition:

Λ̃j =
1

NT
D̃−1

N∑
i=1

Λ̃iΛ
>
i F
>diag(Wi �Wj)FΛj/qij︸ ︷︷ ︸
HjΛj

+
1

NT
D̃−1

N∑
i=1

Λ̃ie
>
i diag(Wi �Wj)FΛj/qij︸ ︷︷ ︸

(a)

+
1

NT
D̃−1

N∑
i=1

Λ̃iΛ
>
i F
>diag(Wi �Wj)ej/qij︸ ︷︷ ︸
(b)

+
1

NT
D̃−1

N∑
i=1

Λ̃ie
>
i diag(Wi �Wj)ej/qij︸ ︷︷ ︸

(c)

.
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Similar to Bai and Ng (2002) this decomposition relates the estimated loadings to the population

loadings, Λ̃j = HjΛj+(a)+(b)+(c), up to a rotation matrix Hj = 1
NT D̃

−1
∑N

i=1 Λ̃iΛ
>
i F
>diag(Wi�

Wj)F/qij . The key difference to factor analysis with fully observed data is that this rotation matrix

can be different for different units j. However, the estimation of the factors is based on a projection

on the loading space and hence implicitly requires the same rotation matrix for all loadings.

We consider for all units a unified rotation matrix defined as H = 1
NT D̃

−1Λ̃>ΛF>F which

is essentially the same conventional rotation matrix as in Bai and Ng (2002). This yields the

decomposition

Λ̃j −HΛj = Λ̃j −HjΛj + (Hj −H)Λj = (a) + (b) + (c) + (Hj −H)Λj .

We show in the Appendix that the cross-section averages of the square of (a), (b) and (c) converge to

0 at the rate OP
(
min

(
1
N ,

1
T

))
. The key difference compared with the fully observed factor analysis

is the last term. If 1
T F
>F

P−→ ΣF and 1
|Qij |

∑
t∈Qij FtF

>
t

P−→ ΣF , we can show that Hj − H =

OP

(
min

(
1√
N
, 1√

T

))
. This rate is sufficiently fast to obtain consistency but will contribute to the

asymptotic normal distribution. Note that the correction term Hj −H is a fundamental problem

for any estimator that makes use of all observations. The estimator in Bai and Ng (2020) can avoid

this term by neglecting partially observed entries, which means that in general, they are using less

information.11

The next theorem shows the consistency of the estimated loadings.

Theorem 1. Define δ = min(N,T ). Under Assumptions S1 and G2 it holds that

δ

 1

N

N∑
j=1

∥∥∥Λ̃j −HΛj

∥∥∥2

 = OP (1), (5)

where H = 1
NT D̃

−1Λ̃>ΛF>F .

Theorem 1 states that the complete loading matrix can be consistently estimated up to an

appropriate rotation as N,T → ∞ even if we only observe an incomplete panel matrix. The

convergence rate is the same rate as for the fully observed panel in Bai and Ng (2002). Theorem

1 is based on the assumption that the observed entries are representative of the missing entries

and hence provide a consistent estimation. Theorem 1 is a critical intermediate step to show the

asymptotic normality of the estimated factor model in the next section.

11The estimator of Bai and Ng (2020) is optimized for the block structure of a simultaneous adoption pattern.
It runs two PCA estimates for the block with full cross-sectional observations and the block with full time-series
observations. Hence, they can infer the “local’ rotation matrices for each block and rotate the estimates to avoid
the correction term Hj − H. However, this comes at the cost of neglecting all partially observed entries that are
not in one of the two fully observed blocks, which can result in a loss of efficiency by using fewer observations. If
the observation pattern is more complex, for example, a staggered adoption design, the only way to use all data and
avoid the variance correction term is to estimate multiple “local” rotation matrices, which is in general not feasible
as the “local blocks” are generally not large enough.
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4.2 Asymptotic Normality

The factors, loadings, and common components are asymptotically normally distributed. Indeed,

Theorem 2 states that the asymptotic distributions have two parts: First, we recover the asymptotic

variance that is identical to the conventional PCA in Bai (2003) under the same rate conditions.

These are the expression when we set the additional correction terms Γmiss
Λ,j and Γmiss

F,t to zero.

However, in the presence of missing values, these correction terms are necessary to capture the

additional uncertainty. Theorem 2 also includes the asymptotic expansions that lead to normal

distributions. As stated in the previous section, the difference between the unit-specific rotation

Hj and the “global” rotation matrix H contributes to the distribution and leads to the variance

correction terms Γmiss
Λ,j and Γmiss

F,t . As expected, this variance correction is increasing in the number

of missing observations. We want to emphasize again that this type of variance correction is a

conceptional issue that cannot be avoided when making use of all observed entries.12

Theorem 2. Under Assumptions S1, G2 and G3 and for N,T →∞ we have for each j and t:

1. For
√
T/N → 0 the asymptotic distribution of the loadings is

√
T (H−1Λ̃j − Λj) =

(
1

T
F>F

)−1( 1

N
Λ>Λ

)−1
[(

1

N

N∑
i=1

ΛiΛ
>
i

√
T

|Qij |
1√
|Qij |

∑
t∈Qij

Ftejt

)

+

(
1

N

N∑
i=1

ΛiΛ
>
i

√
T
( 1

|Qij |
∑
t∈Qij

FtF
>
t −

1

T
F>F

))
Λj

]
+ oP (1)

d−→ N
(

0,Σ−1
F Σ−1

Λ

[
Γobs

Λ,j + Γmiss
Λ,j

]
Σ−1

Λ Σ−1
F

)
, (6)

where Γobs
Λ,j is defined in Assumption G3.3, Γmiss

Λ,j = (Λ>j ⊗ Ir)Φj(Λj ⊗ Ir), and Φj is defined in

Assumption G3.5.

2. For
√
N/T → 0 the asymptotic distribution of the factors is

√
δ(H>F̃t − Ft) =

(
1

N

N∑
i=1

WitΛiΛ
>
i

)−1(√ δ

N

1√
N

N∑
i=1

WitΛieit

)

+

(
1

N

N∑
i=1

WitΛiΛ
>
i

)−1(√δ
N

N∑
i=1

Wit

(
H−1Λ̃i − Λi

)
Λ>i Ft

)
+ oP (1)

d−→ N
(

0,Σ−1
Λ,t

[ δ
N

Γobs
F,t +

δ

T
Γmiss
F,t

]
Σ−1

Λ,t

)
, (7)

where Γobs
F,t is defined in Assumption G3.4, Γmiss

F,t =
(
Ir ⊗ (F>t Σ−1

F Σ−1
Λ )
)
Φt

(
Ir ⊗ (Σ−1

Λ Σ−1
F Ft)

)
,

and Φt is defined in Assumption G3.5.

12In the asymptotic distribution, we apply the rotation matrices to the estimated loadings and factors instead
of their population values as in Bai (2003). Obviously, these two representations are equivalent and can be easily
transformed into each other, but the asymptotic results seem to be more intuitive with our representation.
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3. The asymptotic distribution of the common component is

√
δ(C̃jt − Cjt) =

√
δ
(
H−1Λ̃j − Λj

)>
Ft +

√
δΛ>j

(
H>F̃t − Ft

)
+ oP (1)

d−→ N
(

0,
δ

T
F>t Σ−1

F Σ−1
Λ

(
Γobs

Λ,j + Γmiss
Λ,j

)
Σ−1

Λ Σ−1
F Ft − 2 · δ

T
Λ>j Σ−1

Λ,tΓ
miss, cov
Λ,F,j,t Σ−1

Λ Σ−1
F Ft

+
δ

T
Λ>j Σ−1

Λ,tΓ
miss
F,t Σ−1

Λ,tΛj +
δ

N
Λ>j Σ−1

Λ,tΓ
obs
F,tΣ

−1
Λ,tΛj

)
, (8)

where Γmiss, cov
Λ,F,j,t =

(
Ir ⊗ (F>t Σ−1

F Σ−1
Λ )
)
Φcov
j,t (Λj ⊗ Ir) and Φcov

j,t is defined in Assumption G3.5.

Importantly, the estimator for the factors has a different convergence rate compared to the con-

ventional estimator on fully observed data. The asymptotic distribution of the factors is determined

by two terms with different convergence rates, δ
NΓobs

F,t + δ
T Γmiss

F,t . With a fully observed panel Γmiss
F,t

would disappear, and the factors would converge at a rate of
√
N . However, with observations that

are not missing at random, the difference between Hj and H, that appears in the loading expansion

H−1Λ̃j − Λj and has a convergence rate of
√
T , also contributes to the asymptotic distribution of

estimated factors, which results in the overall rate
√
δ.

The asymptotic distribution of common components depends on the estimation error of the

estimated loadings and factors. In the asymptotic distribution of the estimated loadings and factors,

the conventional part with asymptotic variances Γobs
Λ,j and Γobs

F,t is asymptotically independent as

argued in Bai (2003). However, the second part with the asymptotic variances Γmiss
Λ,j and Γmiss

F,t

that captures the difference between Hj and H is in general correlated, and hence their covariance

Γmiss, cov
Λ,F,j,t contributes to the asymptotic variance of common components as stated in Equation (8).

Under Assumptions S2 and S3, the distribution results of Theorem 2 simplify and we can provide

explicit expressions for the asymptotic variances as stated in the following corollary.

Corollary 1. Suppose Assumptions S1, S2 and S3 hold and N,T → ∞. With the weights ω, ωj

and ωjj defined in Assumption S3, it holds for every j and t:

1. For
√
T/N → 0, the distribution of the loadings in formula (6) simplifies to

√
T (H−1Λ̃j − Λj)

d−→ N
(

0, ωjj · Σobs
Λ + (ωjj − 1)Σmiss

Λ,j

)
,

Σobs
Λ = Σ−1

F σ2
e , Σmiss

Λ,j = Σ−1
F Σ−1

Λ

(
Λ>j ⊗ΣΛ

)
ΞF
(
Λj⊗ΣΛ

)
Σ−1

Λ Σ−1
F , ΞF = E[vec(FtF

>
t )vec(FtF

>
t )>].

2. For
√
N/T → 0, the distribution of the factors in formula (7) simplifies to

√
δ(H>F̃t − Ft) d−→ N

(
0,
δ

N
Σobs
F,t +

δ

T
(ω − 1)Σmiss

F,t

)
,

Σobs
F,t = Σ−1

Λ,tσ
2
e , Σmiss

F,t = Σ−1
Λ,t

(
Ir⊗(F>t Σ−1

F Σ−1
Λ )
)
(ΣΛ,t⊗ΣΛ)ΞF (ΣΛ,t⊗ΣΛ)

(
Ir⊗(Σ−1

Λ Σ−1
F Ft)

)
Σ−1

Λ,t.
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3. The distribution of the common components in formula (8) simplifies to

√
δ(C̃jt − Cjt) d−→ N

(
0,
δ

T

[
F>t
(
ωjj · Σobs

Λ + (ωjj − 1) · Σmiss
Λ,j

)
Ft + (ω − 1)Λ>j Σmiss

F,t Λj

− 2(ωj − 1)Λ>j Σmiss, cov
Λ,F,j,t Ft

]
+

δ

N
Λ>j Σobs

F,tΛj

)
,

Σmiss, cov
Λ,F,j,t = Σ−1

Λ,t

(
Ir ⊗ (F>t Σ−1

F Σ−1
Λ )
)
(ΣΛ,t ⊗ ΣΛ)ΞF (Λj ⊗ ΣΛ)Σ−1

Λ Σ−1
F .

The simplified model provides a clear interpretation of the effect of missing data. Importantly,

the parameters ω, ωj and ωjj , that depend only on the missing pattern, but not on the factor

model, determine the weights of correction terms. The asymptotic covariance of the loadings is a

weighted combination of the variance of an OLS regression of the population factors F on Yj and

the correction term. The weight ωjj ≥ 1 depends on the number of the observed entries and the

similarities in observation patterns for different units. Without missing data, it equals ωjj = 1 and

the correction term disappears. If the data is observed uniformly at random with probability p,

the weight equals ωjj = 1/p which is increasing in the proportion of missing observations.

Similarly, the asymptotic variance of the factors has two components: the variance of an OLS

regression of the population loadings on Yt using only observed entries, and the correction term.

The weight ω ≥ 1 increases the scale of the correction term. When all entries are observed, or all

entries are observed cross-sectionally at random (with either the same or different probabilities),

then ω = 1, the correction term vanishes, and the asymptotic variance only depends on Σobs
F,t . If the

missing pattern does not depend on the loadings then ΣΛ,t = ptΣΛ and Σobs
F,t simplifies to 1

pt
Σ−1

Λ σ2
e

which is the variance of an OLS regression of the population loadings on Yt scaled by the inverse

proportion of observed entries at time t.

The distribution of the common component depends on all three parameters ω, ωj and ωjj . If

all entries are observed at random, then ωj = 1 and the contribution of the loading and factor

distribution to the common component are separated similar to the conventional PCA setup in

Bai (2003). In this case, only the two terms ωjjF
>
t Σobs

Λ Ft and Λ>j Σobs
F,tΛj remain in the asymptotic

variance.

5 Propensity Weighted Estimator

We provide the assumptions and general distribution theory for the propensity weighted estimator

for the factors F̃St in Equation (4). This conditional estimator uses the weights 1
P (Wit=1|Si) in the

cross-sectional regression to obtain the factors. We allow the observation probability to depend on

observed cross-sectional features S = [Si] ∈ RN×K that explain why certain units are more likely

to be observed than other units. This conditional setup requires some modifications of the previous

assumptions. In addition to Assumption S1 we require the following assumption:

Assumption C1 (Conditional Observational Pattern).
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1. W is independent of Λ conditional on S.

2. For any i and j satisfying i 6= j, and for any t and s, Wit is independent of Wjs conditional on

Si and Sj where t and s can be the same. The probability of Wit = 1 depends on Si and satisfies

P (Wit = 1|Si) ≥ p > 0.

We assume S contains all the information in Λ that is predictive for the observation pattern. In

other words, W is independent of Λ conditional on S, as stated in Assumption C1.1. This is closely

related to the unconfoundedness assumption in causal inference. It also assumes that the conditional

probability P (Wit = 1|Si) is bounded away from 0, which implies that the number of observed

cross-sectional and time-series entries is proportional to N respectively T . This corresponds to the

overlap assumption in causal inference.13 Note that it is straightforward to include the covariates

of “neighbor units” in Si to allow for network effects.

We replace Assumptions G2 and G3 by their conditional counterpart Assumptions GC2 and

GC3 which have a similar level of generality. These are required for the asymptotic normality of

F̃St and C̃Sit . As before, we collect the Assumptions GC2 and GC3 for a general approximate factor

model in the Appendix and present the assumptions for a simplified factor model in the main text

which are sufficient to convey all conceptional insights.

Assumption C2 (Conditional Factor Model).

1. S is independent of F and e.

2. For any i, Λi is independent of Sj conditional on Si for j 6= i. Moreover, for any i and j

satisfying i 6= j, Λi is independent of Λj conditional on Si and Sj.

Assumption C3 (Moments of Conditional Factor Model).

1. E[‖Λi‖8 |S] ≤ Λ <∞.

2. Systematic loadings: limN→∞
1
N

∑N
i=1

1
P (Wit=1|Si)E[ΛiΛ

>
i |Si]

P−→ ΣΛ,S,t for every t for some pos-

itive definite matrix ΣΛ,S,t.

Under Assumption C2, 1
N

∑N
i=1

Wit
P (Wit=1|Si) Λ̃iΛ̃

>
i converges in probability to an identity matrix

which is the same limit as the loading estimates in conventional PCA without missing data. The

assumption that S is independent of F and e is conceptionally similar to the assumption that Λ is

independent of F and e, where the latter is standard in the literature on large dimensional factor

modeling. The additional moment conditions in Assumption C3 are required for the asymptotic

distribution, where ΣΛ,S,t appears in the asymptotic covariances of F̃St and C̃Sit . The following

proposition is the conditional version of Proposition 1:

Proposition 2. The simplified Assumptions C2 and C3 are special cases of the general Assumptions

GC2 and GC3. Specifically,

1. Assumptions S1, C1, S2 and C2 imply GC2.

2. Assumptions S1, C1, S2, S3.2, C2 and C3 imply Assumption GC3.
13See (Rosenbaum and Rubin, 1983) for the connection to unconfoundedness and the overlap assumption. We

assume P (Wit = 1|S) is bounded away from 0, such that 1
P (Wit=1|S) does not diverge, which is equivalent to the

overlap assumption in causal inference.
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5.1 Asymptotic Normality

The propensity weighted estimator only differs in the distribution of the factors and common

components. Both F̃St and C̃Sit follow a normal distribution, but in most cases have a larger

asymptotic variance than the estimators F̃t and C̃it. The loadings are not affected by the propensity

score weighting.

Theorem 3. Under Assumptions S1, C1, G2, GC2 and GC3 and for N,T →∞ we have for each

j and t:

1. The asymptotic distribution of the loadings is the same as in Theorem 2.

2. For
√
N/T → 0 the asymptotic distribution of the factors is

√
δ(H>F̃St − Ft)

d−→ N
(

0,Σ−1
Λ

[ δ
N

Γobs,S
F,t +

δ

T
Γmiss,S
F,t

]
Σ−1

Λ

)
, (9)

where Γobs,S
F,t is defined in Assumption GC3.4, Γmiss,S

F,t =
(
Ir⊗(F>t Σ−1

F Σ−1
Λ )
)
ΦS
t

(
Ir⊗(Σ−1

Λ Σ−1
F Ft)

)
,

and ΦS
t is defined in Assumption GC3.5.

3. The asymptotic distribution of the common components is

√
δ(C̃Sjt − Cjt)

d−→N
(

0,
δ

T
F>t Σ−1

F Σ−1
Λ (Γobs

Λ,j + Γmiss
Λ,j )Σ−1

Λ Σ−1
F Ft − 2 · δ

T
Λ>j Σ−1

Λ Γmiss, S, cov
Λ,F,j,t Σ−1

Λ Σ−1
F Ft

+
δ

T
Λ>j Σ−1

Λ Γmiss,S
F,t Σ−1

Λ Λj +
δ

N
Λ>j Σ−1

Λ Γobs,S
F,t Σ−1

Λ Λj

)
, (10)

where Γmiss, S, cov
Λ,F,j,t =

(
Ir ⊗ (F>t Σ−1

F Σ−1
Λ )
)
Φcov,S
j,t (Λj ⊗ Ir), and Φcov,S

j,t is defined in Assumption

GC3.5.

The distribution results have the same general structure as in Theorem 2. However, there are

two key differences. First, the outer matrices in the variance of F̃St are Σ−1
Λ while they depend

on the observational pattern in Σ−1
Λ,t in Equation (7). Second, the middle terms Γobs,S

F,t and Γmiss,S
F,t

may depend on P (Wit = 1|Si). The same structure carries over to the common component. In

the case of generalized least squares regressions, it is straightforward to compare the asymptotic

covariances for different weights and to determine an efficient estimator. With missing observations,

the problem becomes more challenging as the asymptotic covariances depend on two matrices for

the factor estimates and three terms for the common components. For the general models in

Theorems 2 and 3 we cannot state which estimator is more efficient without imposing additional

structure. However, for the simplified model, we can rank the efficiency of the two estimators.

Corollary 2. Suppose Assumptions S1, C1, S2, S3.2, and C3 hold and N,T →∞. For the weights

ω, ωj and ωjj defined in Assumption S3 it holds for every j and t:

1. For
√
N/T → 0, the distribution of the factors in formula (9) simplifies to

√
δ(H>F̃St − Ft)

d−→ N
(

0,
δ

N
Σobs,S
F +

δ

T
(ω − 1)Σmiss,S

F,t

)
,
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Σobs,S
F,t =Σ−1

Λ ΣΛ,S,tΣ
−1
Λ σ2

e ,

Σmiss,S
F,t =Σ−1

Λ

(
Ir ⊗ (F>t Σ−1

F Σ−1
Λ )
)

(ΣΛ ⊗ ΣΛ) ΞF (ΣΛ ⊗ ΣΛ)
(
Ir ⊗ (Σ−1

Λ Σ−1
F Ft)

)
Σ−1

Λ .

2. The distribution of the common components in formula (10) simplifies to

√
δ(C̃Sjt − Cjt)

d−→ N
(

0,
δ

T

[
F>t

(
ωjj · Σobs

Λ + (ωjj − 1) · Σmiss
Λ,j

)
Ft + (ω − 1) · Λ>j Σmiss,S

F,t Λj

− 2(ωj − 1)Λ>j Σmiss, S, cov
Λ,F,j,t Ft

]
+

δ

N
Λ>j Σobs,S

F,t Λj

)
,

Σmiss, S, cov
Λ,F,j,t = Σ−1

Λ

(
Ir ⊗ (F>t Σ−1

F Σ−1
Λ )
)
(ΣΛ ⊗ ΣΛ)ΞF (Λj ⊗ ΣΛ)Σ−1

Λ Σ−1
F .

3. F̃St is weakly less efficient than F̃t, if S is independent of Λ. In the case of only one factor, i.e.

r = 1, F̃St is weakly less efficient than F̃t for any S.

An interesting observation is that Σmiss,S
F,t and Σmiss, S, cov

Λ,F,j,t depend neither on the observation

pattern nor on S. This is because 1
P (Wit=1|Si) removes the asymptotic dependency between Wit and

Λi. Hence, this part of the asymptotic distribution has a complete separation between the missing

observation pattern captured by the weights ω, ωj and ωjj and distribution terms that depend only

on the factor model. However, Σobs,S
F,t depends on P (Wit = 1|Si) as this component comes from a

probability weighted least square regression of the population loadings on the observed entries in

Y , which is different from the corresponding OLS regression in Corollary 1.1.

The key observation is that F̃St and as a consequence also C̃Sit seem to be in many cases less

efficient than F̃t and C̃it, which means that the asymptotic variances of the all-purpose estimator

are less than or equal to those of the propensity weighted estimator. In the case of only one factor

it holds that Σmiss,S
F,t = Σmiss

F,t . Not surprisingly, it holds that Σobs,S
F,t ≥ Σobs

F,t as in the case of i.i.d.

errors, an OLS regression is the most efficient linear estimator. This result can also be derived from

ΣΛ,S,t/Σ
2
Λ ≥ 1/ΣΛ,t, which follows from the Cauchy-Schwartz inequality. In the case of multiple

factors, we take advantage of the concavity of the average weighted by 1/P (Wit = 1|Si) to prove

the efficiency relationship. In simulations we confirm that when the loadings depend on S, it is

possible that Σmiss,S
F,t < Σmiss

F,t , which can result in minor efficiency gains for F̃St . For a general

residual covariance matrix, the efficiency results are more complex. Pelger and Xiong (2020b) show

that for fully observed data under certain assumptions, the optimal weight in the factor regression

is the inverse residual covariance matrix or equivalently PCA, applied to a covariance matrix re-

weighted by the square-root of the inverse residual covariance matrix, is the most efficient estimator.

Hence, if the propensity weight is close to the inverse residual covariance matrix, it lowers the first

term Σobs,S
F,t . However, the effect on the second term is more complex, and hence there are in

general cases where F̃St can be more efficient than F̃t. In simulations, we show that for a correctly

specified model, the estimates of F̃t and F̃St are close, but F̃t is generally more precise. However,

the “doubly-robust” estimator F̃St seems to be less affected by various forms of misspecification,

e.g., omitted factors, weak factors, or a nonlinear factor model. Hence, F̃St might be appealing
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because it is more robust but not based on efficiency arguments.

6 Feasible Estimator of the Probability Weighting

We provide feasible estimators for P (Wit = 1|Si) which we need in Equation (4) to estimate

the factors, and we show that the asymptotic distribution of factors is not affected by using the

estimated instead of population weights. While in (stratified) randomized experiments, researchers

decide and therefore know the treatment assignment probability given covariates, P (Wit = 1|Si),
the probability distribution of the missing pattern in observational studies needs to be estimated

in general, which can affect the distribution theory for the latent factor model. Here we provide

conditions under which the previously derived results continue to hold with a feasible estimator.

To simplify notation denote by pit = P (Wit = 1|Si) the propensity score and its estimate by

p̂it = P̂ (Wit = 1|Si). The feasible estimator for the factors F̂St replaces pit by p̂it in Equation (4),

which yields the following decomposition:

F̂St =

(
N∑
i=1

Wit

p̂it
Λ̃iΛ̃

>
i

)−1( N∑
i=1

Wit

p̂it
YitΛ̃i

)
= F̃St +

(
1

N

N∑
i=1

Wit

pit
Λ̃iΛ̃

>
i

)−1(
1

N

N∑
i=1

pit − p̂it
p̂it

Wit

pit
YitΛ̃i

)

+

(
1

N

N∑
i=1

Wit

pit
Λ̃iΛ̃

>
i

)−1(
1

N

N∑
i=1

p̂it − pit
p̂it

Wit

pit
Λ̃iΛ̃

>
i

)
· F̂St .

Under weak assumptions on p̂it, that are satisfied for feasible estimators of the most empirically

relevant observation patterns, the additional term F̂St − F̃St can be neglected in the asymptotic

distribution.

Theorem 4. We replace the propensity score in pit in Equation (4) by its estimate p̂it.

1. The estimates of the loadings do not depend on the propensity score. Hence, Theorem 1 and the

asymptotic distribution of the loadings in Theorem 3 continue to hold independently of p̂it.

2. The following holds for the distribution of the factors and common components.

(a) If maxi |p̂it− pit| = oP (1), then the factors and common components are estimated consis-

tently pointwise under the assumptions of Theorem 3.

(b) If maxi |p̂it − pit| = oP

(
1

N1/4

)
, then Theorem 3 continues to hold as it is.

We discuss feasible estimators for the most important cases of missing patterns which are

summarized in Table 2. Obviously, we only need to consider the case where pit varies for different

cross-sectional units as otherwise the estimator simplifies to our estimator in Equation (2). For

simplicity these examples assume that Si are i.i.d. and sub-Gaussian but can be generalized to weak

dependency patterns. The simplest case is missing at random only in the time-series dimension, that

is P (Wit = 1|Si) = p(Si) for some parametric or non-parametric function p(.). A relevant example is

the estimation of p(Si) with a logit model on the full panelW which has the convergence rate p̂(Si) =

p(Si) +OP

(
1√
NT

)
and a uniform bound of order log(NT )√

NT
. Hence, Theorem 4.2(b) applies. If p(Si)
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Table 2: Examples of feasible estimators of the probability weight

Description P (Wit = 1|Si) Estimator Asymptotic distribution Effect on
of p̂it − pit distribution

Time-series missing at random p(Si) logit on full panel W OP
(

1√
NT

)
no

(parametric)

Time-series missing at random p(Si) kernel on full panel W OP
(

1√
NTh

)
no

(non-parametric)

Cross-section and time-series pt(Si) logit on Wt OP
(

1√
N

)
no

dependency (parametric)

Cross-section and time-series pt(s) p̂t(s) =
|Os,t|
Ns

1√
Ns
N (0, pt(s)(1− pt(s))) no

dependency (discrete S)

Staggered treatment adoption pt(Si) hazard rate model OP
(

1√
N

)
no

with S (parametric)

This table shows feasible estimators for the probability of the most important cases of missing patterns. We propose
examples of feasible estimators. The asymptotic distribution for p̂it − pit is given under suitable assumptions and
for Si being i.i.d and sub-Gaussian. The main text includes additional details. The effect on distribution refers to
the asymptotic distribution of the factors and common components in Theorem 3. The exact details are described
in Theorem 4.

is estimated non-parametrically with a kernel with bandwidth h, the convergence rate is typically√
NTh with a uniform bound of order log(NTh)√

NTh
, which does not change the distribution results

if Th is sufficiently large. In the more complex model P (Wit = 1|Si) = pt(Si) the observations

probability depends on the cross-section and time-series information. A relevant example for a

parametric model is a logit model estimated on Wt for each t separately with a convergence rate

of
√
N . Under weak assumptions on Si, the uniform convergence bound in Theorem 4.2(b) holds.

An important special case are discrete values for S, that is, the covariates S take only finitely

many values. An example for a binary variable S would be gender, when male or female individuals

have different probabilities to be treated. If the probabilities for the different discrete outcomes

of S are bounded away from zero, then the estimator P (Wit = 1|Si = s) = pt(s) simplifies to

pt, but just averaged over the cross-section units for which Si = s. In more detail, consider the

estimator p̂t(s) =
|Os,t|
Ns

where Ns =
∑N

i=1 1(S = s) and Os,t = {i : Wit = 1 and S = s}. Then,
√
Ns (p̂t(s)− pt(s)) d−→ N (0, pt(s)(1− pt(s))). If Ns is sufficiently large, for example proportional

to N , then the feasible estimator does not change the distribution results in Theorem 3. These

estimators directly carry over to staggered treatment adoption. The staggered design can also

be modeled with a parametric hazard model P (Wit = 1|Si) = p(t, Si), which under appropriate

assumptions converges at the rate
√
N as well. In summary, for all these cases the distribution

results are not affected by using a feasible estimator for the propensity score.

As previously mentioned, we allow Si = Λi. This is appealing as Λ is by construction capturing

the unit-specific features and hence should account for the differences in cross-sectional observation

patterns. As the estimator Λ̂ does not depend on the probability weights, it can be used in the

estimation of P (Wit|Λi). Theorem 3 states that the estimation error of Λ̂i is of the order OP

(
1√
N

)
.

While the consistency results for the factors and common components continue to hold, we need

some additional weak assumptions on the tail behavior of the loadings and error terms to satisfy
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the uniform condition in 4.2(b).

7 Tests of Treatment Effects

The key application of our the asymptotic distribution theory is to test causal effects. The fun-

damental problem in causal inference is that we observe an outcome either for the control or the

treated data, but not for both at the same time. The unknown counterfactual of what the treated

observations could have been without treatment can be naturally modeled as a data imputation

problem. In this section, we consider the case where once a unit adopts the treatment, it stays

treated afterward, for example, the simultaneous and staggered treatment designs illustrated in

Figure 1. Given the general missing patterns that we allow for, the generalization to more complex

adoption patterns is straightforward. We denote by T0,i and T1,i the number of control and treated

time periods for unit i where their sum adds up to T0,i + T1,i = T . The superscripts (0) and (1)

denote the observations for control and treated observations.

The individual treatment effect measures the difference between the treated and control out-

comes:

τit = Y
(1)
it − Y

(0)
it for t > T0,i, i = 1, ..., N ,

where by construction for a specific time t and unit i we only observe either Y
(1)
it or Y

(0)
it , but not

both. Average treatment effects can be estimated by an average over time or the cross-section of

the individual treatment effects. We assume that the data has a factor structure which results in

a model of the form

Yit = τitDit + Λ>i Ft + eit, (11)

where Dit = 1 is a treatment indicator. Note that this model is very general and captures many

relevant models as special cases. The factor structure includes interactive fixed effects as in Bai

(2009). Simple time- and cross-sectional fixed effect are a special case for constant loadings re-

spectively factors. The factors can be either observed covariates or latent factors. One of the

main challenges in studying a treatment effect is to control for all relevant covariates. Failure in

doing so results in an omitted variable bias in the treatment effect estimation as discussed among

others in Gobillon and Magnac (2016). The strength of our latent factor model is that we can

avoid this problem by automatically including all relevant covariates in a data driven way. Note

that our latent factor model can also account for some uncertainty in the functional form of the

dependency on the factors. For example, if Yit is a polynomial function of a factor, this could

be captured by including additional latent factors as described for example in Pelger and Xiong

(2020c). A generalization of Equation (11) adds additional observed covariates Xit ∈ RK to Yit

which yields Yit = τitDit + Λ>i Ft +X>it b+ eit. If these observed covariates follow a factor structure

Xit = ΛXi
>
FXt + eXit , it puts us back into the framework of Equation (11). Otherwise it is straight-
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forward to include general observable covariates Xit by studying the residual Yit −Xitb̂, where b̂ is

estimated by a regression on the control group.14

We only observe Y
(1)
it for the treated group and could obtain the counterfactual outcome Y

(0)
it

from the imputed value Ŷ
(0)
it = Ĉ

(0)
it , where Ĉ

(0)
it is the common component estimated only from

the untreated control data. This is the same setup as in Bai and Ng (2020). Given our asymptotic

distribution theory for the common component, we can provide the asymptotic distribution of the

individual and average treatment effect analogously to Bai and Ng (2020). A shortcoming of this

approach is that the observed treated observations Y
(1)
it contain an idiosyncratic error eit. Hence,

it is not possible to test for individual treatment effects without imposing very strong additional

assumptions on the error. For T − T0 sufficiently large, this error component can be averaged out

in the average treatment effect.

We impose slightly stronger assumptions on the structure of the treatment effect which will

allow us to derive substantially stronger results. Assume that the treatment effect has also a factor

structure, that is τit = (Λτi )> F τt . In this case we can represent the problem as

Y
(1)
it =

(
Λ

(1)
i

)>
F

(1)
t + eit Y

(0)
it =

(
Λ

(0)
i

)>
F

(0)
t + eit, (12)

where the factor structure subsumes the treatment effect. Hence, the individual treatment effect is

equivalent to the difference in the common components between the treated and control:

τit = Y
(1)
it − Y

(0)
it = C

(1)
it − C

(0)
it for t > T0,i, i = 1, ..., N .

Fundamentally, we are testing if the treatment changes the underlying factor structure. Hence, we

can test if the treatment changes interactive fixed effects. This is a very general setup that allows

for time and cross-sectional heterogeneity in the treatment effect, while the treatment itself can

depend on the latent cross-sectional covariates modeled by the loadings.

In the following we consider three different treatment effects:

1. Individual treatment effect: τit = C
(1)
it − C

(0)
it

2. Average treatment effect over time: τi = 1
T1,i

∑T
t=T0,i+1 τit

3. Weighted average treatment effect: τβ,i = β
(1)
i − β

(0)
i where βi are the regression coefficients on

some covariates Z:

β
(0)
i = (Z>Z)−1Z>C

(0)
i,(T0,i+1):T and β

(1)
i = (Z>Z)−1Z>C

(1)
i,(T0,i+1):T .

Here, C
(0)
i,(T0,i+1):T =

[
C

(0)
i,T0,i+1 · · · C

(0)
iT

]>
∈ RT1,i denotes the observations for t > T0,i. The

weighted average treatment effect τβ,i generalizes the average treatment effect τi, which is a special

14Using the residuals Yit − Xitb̂ for the factor analysis and treatment effect analysis with our method generally
adds another covariance term to the asymptotic covariance matrix. This term comes from the regression to obtain b̂
and is straightforward to include. Here we focus on the conceptionally more challenging problem of dealing with the
unobserved factors.
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case for Z = ~1. Both tests for the individual treatment effect and the weighted average treatment

effect cannot be obtained with conventional estimators, but are important to answer economic

questions. For example, in our companion paper Pelger and Xiong (2020a), we test if pricing

anomalies of investment strategies as measured by their pricing errors persist after these strategies

have been published in academic journals. In this problem the treatment is the publication of an

investment strategy in a journal and the treatment effect is measured by a change in regression

coefficients. More specifically, the pricing error corresponds to the intercept in a regression of the

excess returns of the strategies on a set of benchmark risk factors. A simple average treatment

effect would not be sufficient to study this question.

For each of the three treatment effects we derive the asymptotic distribution under the null-

hypothesis of no effect, which allows us to run one-sided or two-sided hypothesis tests. For example,

the two-sided hypothesis test for the weighted average treatment effect takes the form

H0 : τβ,i = 0, H1 : τβ,i 6= 0. (13)

This is the hypothesis we test in our simulation and the empirical companion paper. The problem

formulated in Equation (12) can be solved by applying our latent factor model estimation twice:

First, we estimate C
(1)
it from the treated data with the control observations as missing values.

Second, we estimate C
(0)
it from the control data, while the treated observations are viewed as

missing. The inferential theory follows readily from Theorems 2 and 3. The asymptotic variance

for the individual treatment effect τit is the sum of the asymptotic variances of Ĉ
(0)
it and Ĉ

(1)
it and a

covariance term based on the correction terms for the control and treated. While the calculations

are tedious, they are a direct consequence of the distribution results that we have derived. The

average treatment effects follow then from the results of the individual treatment effects. In this

section, we want to focus on a special case, which we consider the most relevant from a practical

perspective.

In most causal inference applications, such as the empirical study in our companion paper

and Abadie, Diamond, and Hainmueller (2010, 2015), the majority of observations are control

observations. Hence, it might be infeasible to estimate a latent factor model only from the treated

data as required in Equation (12). For example in the simultaneous treatment case in Table 1,

we can estimate a latent factor for the control, but not for the treated. Hence, we impose the

additional assumption that the control and treated panel share the same underlying factors, while

the loadings can be different, that is,

Y
(0)
it = (Λ

(0)
i )>Ft + eit, Y

(1)
it = (Λ

(1)
i )>Ft + eit. (14)

This implies that the treatment can only affect the loadings. This is still a very general setup as

the loadings and factors are latent. For example, a model based on Equation (12) with one factor

that changes on the treated data, can be captured in Equation (14) by a two-factor model where

the corresponding loadings change on the treated data.
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First, we estimate the factor model from the incomplete control panel Y (0) and obtain C̃(0) =

(Λ̃(0))>F̃ . Second, we use an ordinary least squares regression to estimate the loadings for the

treated Λ̃
(1)
i ,15

Λ̃
(1)
i =

(∑T
t=T0,i+1 F̃tF̃

>
t

)−1∑T
t=T0,i+1 F̃tY

(1)
it , (15)

which yields an estimate for the common components for the treated panel C̃
(1)
it = (Λ̃

(1)
i )>F̃t.

The following theorem shows the asymptotic distributions for C̃
(1)
it , the individual treatment

effect, and the weighted average treatment effect. The asymptotic distributions allow us to construct

test statistics for various treatment effects.

Theorem 5. Suppose Assumptions S1, G2, G3 and G4 hold and the control and treated panel share

the same factors. Denote δi = min(N,T1,i). As δi →∞, it holds

1. The asymptotic distribution for the common component is

√
δi(C̃

(1)
it − C

(1)
it )

d−→ N
(

0,plim

(
F>t Σ−1

F

[
δi
T1,i

Γ
obs,(1)
Λ,i +

δi
T

Γ
miss,(1)
Λ,i

]
Σ−1
F Ft

+ (Λ
(1)
i )>Σ−1

Λ,t

[
δi
N

Γobs
F,t +

δi
T

Γmiss
F,t

]
Σ−1

Λ,tΛ
(1)
i − 2 · δi

T
F>t Σ−1

F Γ
miss, cov,(0),(1)
Λ,F,i,t Σ−1

Λ,tΛ
(1)
i

))
, (16)

where Γobs
F,t and Γmiss

F,t are given in Theorem 2, Γ
obs,(1)
Λ,i = ΣF,ei,

Γ
miss,(1)
Λ,i = 1

T 2
1,i

∑T
u,s=T0,i+1 FuF

>
u Σ−1

F Σ−1
Λ

(
(Σ−1

Λ,uΛ
(1)
i )> ⊗ Ir

)
Φu,s

(
(Σ−1

Λ,sΛ
(1)
i )⊗ Ir

)
Σ−1

Λ Σ−1
F FsF

>
s ,

and Γ
miss, cov,(0),(1)
Λ,F,i,t = 1

T1,i

∑T
u=T0,i+1 FuF

>
u Σ−1

F Σ−1
Λ

(
(Σ−1

Λ,uΛ
(1)
i )> ⊗ Ir

)
Φu,t

(
Ir ⊗ (Σ−1

Λ Σ−1
F Ft)

)
.

2. The asymptotic distribution for individual treatment effect is

√
δi

(
(C̃

(1)
it − C

(1)
it )− (C̃

(0)
it − C

(0)
it )
)

d−→ N
(

0, plim

(
F>t Σ−1

F Γobs,miss
Λ,i Σ−1

F Ft

+
(

Λ
(1)
i − Λ

(0)
i

)>
Γobs,miss
F,t

(
Λ

(1)
i − Λ

(0)
i

)
+ 2 · F>t Σ−1

F Γmiss,cov
Λ,F,i,t

(
Λ

(1)
i − Λ

(0)
i

)))
(17)

with Γobs
Λ,i , Γmiss

Λ,i and Γmiss, cov
Λ,F,i,t from Theorem 2, and Γobs,miss

F,t = Σ−1
Λ,t

[
δi
NΓobs

F,t + δi
T Γmiss

F,t

]
Σ−1

Λ,t,

Γobs,miss
Λ,i = δi

T Σ−1
Λ

[
Γobs

Λ,i+Γmiss
Λ,i

]
Σ−1

Λ + δi
T1,i

Γ
obs,(1)
Λ,i + δi

T Γ
miss,(1)
Λ,i − δi

T

(
Γ

miss, cov,(0),(1)
Λ,Λ,i +(Γ

miss, cov,(0),(1)
Λ,Λ,i )>

)
,

Γmiss,cov
Λ,F,i,t = δi

T

(
Σ−1

Λ Γmiss, cov
Λ,F,i,t − Γ

miss, cov,(0),(1)
Λ,F,i,t

)
Σ−1

Λ,t, and

Γ
miss, cov,(0),(1)
Λ,Λ,i = δi

T1,i

∑T
s=T0,i+1 Σ−1

Λ

(
(Λ

(0)
i )> ⊗ Ir

)
Φcov
i,s

(
(Σ−1

Λ,sΛ
(1)
i )⊗ Ir

)
Σ−1

Λ Σ−1
F FsF

>
s .

15If units switch between treatment and control, we can modify Equation (15) to Λ̃
(1)
i =(∑

t∈Si F̃tF̃
>
t

)−1∑
t∈Si F̃tY

(1)
it , where Si it the set of indices for the treated observations.
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3. If for Z ∈ RT1,i×L, Z>Z/T1,i
P−→ ΣZ and 1

T1,i

∑T
t=T0,i+1 ZtF

>
t

P−→ ΣF,Z , the asymptotic distribu-

tion for the weighted average treatment effect is√
δi

(
(β̃

(1)
i − β

(1)
i )− (β̃

(0)
i − β

(0)
i )
)

d−→N
(

0,plim

(
Σ−1
Z ΣF,ZΣ−1

F Γobs,miss
Λ,i Σ−1

F Σ>F,ZΣ−1
Z + Σ−1

Z Γmiss,∆
Z,i Σ−1

Z

+
δi
T

Σ−1
Z

[
ΣF,ZΣ−1

F Σ−1
Λ Γ

miss, cov,(0),∆
Λ,Z,i + (Γ

miss, cov,(0),∆
Λ,Z,i )>Σ−1

Λ Σ−1
F Σ>F,Z

]
Σ−1
Z

− δi
T

Σ−1
Z

[
ΣF,ZΣ−1

F Γ
miss, cov,(1),∆
Λ,Z,i + (Γ

miss, cov,(1),∆
Λ,Z,i )>Σ−1

F (ΣF,Z)>
]
Σ−1
Z

))
, (18)

where Γ
miss, cov,(0),∆
Λ,Z,i =

(
(Λ

(0)
i )> ⊗ Ir

)∑T
s=T0,i+1 Φcov

i,s

(
(Σ−1

Λ,s(Λ
(1)
i − Λ

(0)
i ))⊗ Ir

)
Σ−1

Λ Σ−1
F FsZ

>
s ,

Γ
miss, cov,(1),∆
Λ,Z,i = 1

T 2
1,i

∑T
u,s=T0,i+1 FuF

>
u Σ−1

F Σ−1
Λ

(
(Σ−1

Λ,uΛ
(1)
i )> ⊗ Ir

)
Φu,s

(
(Σ−1

Λ,s(Λ
(1)
i − Λ

(0)
i ))⊗ Ir

)
Σ−1

Λ Σ−1
F FsZ

>
s , and Γmiss,∆

Z,i = 1
T 2
1,i

∑T
u,s=T0,i+1 ZuF

>
u Σ−1

F Σ−1
Λ

(
(Σ−1

Λ,u(Λ
(1)
i − Λ

(0)
i ))> ⊗ Ir

)
Φu,s(

(Σ−1
Λ,s(Λ

(1)
i − Λ

(0)
i ))⊗ Ir

)
Σ−1

Λ Σ−1
F FsZ

>
s .

Suppose Assumptions S1, C1, G2, GC2, GC3 and GC4 hold. The above three results hold for the

propensity weighted estimator after replacing Γobs
F,t , Γobs

Λ,i , Γmiss
F,t , Γmiss

Λ,i , Φt, Φcov
t and ΣΛ,t with Γobs,S

F,t ,

Γobs,S
Λ,i , Γmiss,S

F,t , Γmiss,S
Λ,i , ΦS

t , Φcov,S
t and ΣΛ.

The results of Theorem 5 are a consequence of Theorems 2 and 3. The challenge arises from

correctly capturing the asymptotic covariance between the estimated treated and control common

components. This additional covariance term is due to the correction terms from the missing

observations. In Theorem 5, we impose the additional Assumption G4 for the general estimator and

Assumption GC4 for the probability-weighted estimator. Both simply state that the conventional

central limit theorems based on the weak dependencies in the errors apply to the subset of treated

time periods. These conditions are automatically satisfied in our simplified model and thus can be

neglected, as stated in the following proposition.

Proposition 3. Assumptions G4 and GC4 are satisfied in the simplified model. Specifically, As-

sumptions S1, S2 and S3 imply Assumption G4. Similarly, Assumptions S1, C1, S2, S3.2, C2 and

C3 imply Assumption GC4.

8 Feasible Estimation and Testing

Theorems 2, 3 and 5 are formulated with respect to the asymptotic covariances based on the

population model. In order to use them in practice we need feasible estimators for the covariance

terms. We propose to use the plug-in estimators F̃t, Λ̃i and ẽit = Yit − Λ̃>i F̃t for (H−1)>Ft, HΛi

and eit. All moments are based on these three objects. For example Σ̂F := 1
T F̃
>F̃ consistently

estimates (H−1)>ΣF (H−1). The rotation matrix H can be ignored in the estimated covariances of
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the common components and the treatment effects as it cancels out. It is only the distribution of

the loadings and factors that are estimated up to a rotation matrix. The challenge is to deal with

the time and cross-sectional dependency in the residuals. We impose the additional assumption

that the time-series and cross-section covariance matrices of the errors eit are sparse in the sense

that only a finite number of row elements are non-zero and we know the indices of the non-zero

elements. More specifically we define

Et = {i, j : E[eitejt] 6= 0} E = {i, j, s, t : E[eitejs] 6= 0}

and assume that |Et| = O(N) and |E| = O(NT ). The estimator for HΓobs
Λ,jH

> and HΓobs
F,tH

> depend

on the dependency structure in the residuals and we propose the plug-in estimator based on only

the non-zero moments of the residuals:

Γ̂obs
F,t =

1

N

N∑
i=1

N∑
j=1

WitWjtΛ̃iΛ̃
>
j ẽitẽjt1{i,j∈Et}

Γ̂obs
Λ,j =

T

N2

N∑
i=1

N∑
k=1

Λ̃iΛ̃
>
i

1

|Qij ||Qkj |
∑

t,s∈Qij

F̃tF̃
>
s Λ̃kΛ̃

>
k ẽitẽks1{i,k,s,t∈E}.

The estimators are analogous for the probability-weighted estimator. A special case is the

estimation approach in Bai (2003) that assumes independence of the residuals over time and the

cross-section and hence only uses the diagonal entries of the residual covariance and autocovariance

matrix. Instead of assuming knowledge of the non-zero entries, it is possible to generalize the

estimator similar to Fan, Liao, and Mincheva (2013) and estimate the non-zero entries with a

thresholding estimation approach. We propose a HAC estimator for Φi, Φcov
i,t and Φt to account

for the time-series dependency in the factors similar to Bai (2003).

Proposition 4. Suppose that the assumptions of Theorems 2, 3 or 5 hold. In addition, we as-

sume that the time-series and cross-section covariance matrices of the errors eit are sparse in the

sense that |Et| = O(N) and |E| = O(NT ) and we know the non-zero elements. Then, the plug-in

estimators of the asymptotic covariances in Theorems 2, 3 and 5 are consistent and the asymptotic

statements in the respective theorems continue to hold with the estimated covariance matrices.

Hence, the treatment effects normalized by their estimated standard deviations follow asymptot-

ically a standard normal distribution, and we obtain feasible test statistics for the various treatment

effects.

9 Generalization of the Missing Patterns

Our results can be generalized to the case where the number of observed entries is not proportional

to N or T but grows at a strictly smaller rate. The general arguments of the proofs stay the same

but we need to carefully account for the convergence rates of each term based on the set Qij . The
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mean squared consistency of the estimated loadings in Theorem 1 generalizes to

1

N

N∑
j=1

∥∥∥Λ̃j −HΛj

∥∥∥2
= Op

(
max

(
1

N
,

1

N2

N∑
i=1

N∑
j=1

1

|Qij |

))
.

Moreover, we can show the asymptotic normality of the estimated loadings Λ̃, factors F̃ from the

equally weighted regression (3), and common components C̃ under similar assumptions as those in

Theorem 2. The estimated loadings Λ̃j are asymptotically normal with convergence rate

H−1Λ̃j − Λj = Op

([
max

(
1

N

N∑
i=1

1

|Qij |
,

1

N2

N∑
i=1

N∑
l=1

|Qij ∩Qlj |
|Qij ||Qlj |

)]1/2
)
,

where the second term is closely related to ωjj defined in Assumption S3. The estimated factors

F̃t are asymptotically normal with convergence rate

H>F̃t − Ft = Op

([
max

(( 1

N

N∑
i=1

Wit

)−1
,

1

N4

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

|Qij ∩Qkl|
|Qij ||Qkl|

)]1/2
)
,

where the second term is closely related to ω defined in Assumption S3. Similarly, by combining the

rates of estimated factors and loadings, the estimated common components C̃it have an asymptotic

normal distribution with rate

C̃jt − Cjt =Op

([
max

(
1

N

N∑
i=1

1

|Qij |
,

1

N2

N∑
i=1

N∑
l=1

|Qij ∩Qlj |
|Qij ||Qlj |

,
( 1

N

N∑
i=1

Wit

)−1
,

1

N4

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

|Qij ∩Qkl|
|Qij ||Qkl|

,
1

N3

N∑
i=1

N∑
k=1

N∑
l=1

|Qij ∩Qkl|
|Qij ||Qkl|

)]1/2
)
.

The last term is closely related to ωj defined in Assumption S3. The expression for the asymptotic

covariances of the estimators become more complex. The proofs for the consistency and asymptotic

normality for the general case, when observed entries are not proportional to N and T , are very

similar to the proofs of Theorems 1 and 2, but just require carefully keeping track of the convergence

rates of each term.16

We illustrate the more general convergence rates in the simultaneous treatment observation

pattern in Table 1a, where we can provide explicit expressions for the different rates. The mean

square consistency result of the loadings simplifies to

1

N

N∑
j=1

∥∥∥Λ̃j −HΛj

∥∥∥2
= Op

(
max

(
1

N
,
N0

NT0
,

1

T

))
.

16The proofs are available upon request.
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We obtain two different convergence rates for the estimated loadings:

H−1Λ̃j − Λj =

OP
(

1√
T0

)
j ≤ N0

Op

(
max

(√
N0
NT0

, 1√
T

))
j > N0.

Similarly, the estimated factors have two different convergence rates depending which time block

we consider:

H>F̃t − Ft =

OP
(

max
(

1√
N
, N0

N
√
T0
, 1√

T

))
t ≤ T0

OP

(
max

(
1√

N−N0
, N0

N
√
T0
, 1√

T

))
t > T0.

This results in four different convergence rates for each block for the estimated common components:

C̃jt − Cjt =



OP

(
max

(
1√
N
, 1√

T0

))
j ≤ N0, t ≤ T0

OP

(
max

(
1√
N
,
√

N0
NT0

, 1√
T

))
j > N0, t ≤ T0

OP

(
max

(
1√

N−N0
, 1√

T0

))
j ≤ N0, t > T0

OP

(
max

(
1√

N−N0
,
√

N0
NT0

, 1√
T

))
j > N0, t > T0.

This simple example is exactly the case for which the block estimator of Bai and Ng (2020) is opti-

mized for and similar to them we obtain different convergence rates for each block.17 More complex

observation patterns, for example a staggered treatment design, correspond to more “blocks” where

each block could have a different convergence rate with our estimator.

10 Simulation

10.1 Asymptotic Distributions

In this section, we demonstrate the finite sample properties of our asymptotic results for both the

observed entries and the missing entries. We confirm the theoretical distribution results for the

estimated factor, loadings, common components, and treatment effects. We generate the data from

a one-factor model Xit = ΛiFt + eit, where Ft
i.i.d.∼ N(0, 1), Λi

i.i.d.∼ N(0, 1) and eit
i.i.d.∼ N(0, 1). The

observation pattern depends on unit-specific characteristics Si = 1(Λi ≥ 0), which are a function

of the factor loadings. We study two observation patterns which are illustrated in Figure 2:

1. Missing at random: Entries are observed independently with probability 0.75 if Si = 1, and

0.5 if Si = 0.

17For j ≤ N0, the convergence rate of C̃jt is identical to Bai and Ng (2020) (c.f. Proposition 3 in Bai and Ng
(2020)). For j > N0, the convergence rate of C̃jt is identical to Bai and Ng (2020) if at least one of the two conditions

holds: (1) N/T → 0 and T0/N0 6→ 0; (2) there exists some positive constant c > 0 such that limN,T→∞
N0/N
T0/T

≥ c.

Otherwise, the convergence rate is slower than Bai and Ng (2020). However, the proportion of units in this case
(N −N0)/N still converges to 0.
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2. Simultaneous treatment adoption: Once a unit adopts treatment, it stays treated afterward.

For the units with Si = 1, 25% randomly selected units adopt the treatment from time

0.75 · T and the remaining 75% units stay in the control group until the end. For the units

with Si = 0, 62.5% randomly selected units adopt the treatment from time 0.375 · T and the

remaining 37.5% units stay in the control group until the end. We model the treated data as

missing.

Figure 2: Observation Patterns for Simulations

(a) Missing at random (b) Simultaneous treatment adoption

These figures show the observation pattern for the benchmark simulation model. The shaded entries indicate missing
entries.

Figure 3: Histograms of Standardized Loadings, Factors, and Common Components
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(a) Yit is observed (missing at random)
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(b) Yit is missing (missing at random)
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(c) Yit is observed (simultaneous treatment adoption)
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(d) Yit is missing (simultaneous treatment adoption)

These figures show the histograms of estimated standardized loadings, factors, and common components normalized
by their estimated standard devisions, where N = 500 and T = 500. The normal density function is superimposed
on the histograms. The results are based on 2,000 Monte Carlo simulations. The Internet Appendix collects the
histograms for other specifications of N and T .

To conserve space, we report here the distribution results for the regression based estimator

based on Equation (3), but the results extend to the propensity-weighted estimator. Figure 3
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Figure 4: Histograms of Standardized Control and Treated Common Components, Individual
and Average Treatment Effects
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(a) Treatment effect τ = 0
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(b) Treatment effect τ = 0.25

These figures show the histograms of estimated control and treated common components, individual and average
treatment effect (Z = ~1) normalized by their estimated standard deviations, where N = 500 and T = 500. The
normal density function is superimposed on the histograms. The observation pattern follows the simultaneous
treatment adoption pattern. The results are based on 2,000 Monte Carlo simulations. The Internet Appendix
collects the histograms for other specifications of N and T .

shows the histograms of standardized factors, loadings, and common components for randomly

selected observed entries and missing entries based on Theorem 2. The histograms match the

standard normal density function very well and support the validity of our asymptotic results in

finite samples.

Figure 4 confirms that our treatment test in Theorem 5 has the correct size. The control data

follows our benchmark one-factor model. We assume a constant treatment effect, i.e., Λ
(1)
i = Λ

(0)
i +

τ , where τ is set to 0 or 0.25. Figure 4 shows the histograms of standardized common components

for treated and control, the individual treatment effect, and an equally weighted treatment effect

for randomly selected units and times. As expected, the histograms support the validity of our

asymptotic results in finite samples.

Table 3 demonstrates the statistical power of our tests for individual and average treatment

effects, where the null hypotheses are H0 : β
(1)
i − β

(0)
i = 0 with equal weights for all time periods,

i.e., β
(1)
i = τ

(1)
i and β

(0)
i = τ

(0)
i . The power increases with the data dimensionality (N and T ) and

the scale of treatment effect that is determined by the mean of the factor µF and the difference

between the control and treated loadings Λ
(1)
i − Λ

(0)
i . The null hypothesis implies Λ

(1)
i − Λ

(0)
i = 0,

which we use in the estimation of the asymptotic variance. This slightly improves the power, but the

results in the Internet Appendix show that we also have good power properties without imposing

the null hypothesis in the estimation of the asymptotic covariances. Moreover, the statistical power

increases with the proportion of observed entries, as shown in the comparison between Tables 3

and A.IX in the Internet Appendix.
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Table 3: Statistical Power of Treatment Effect Tests

C̃
(1)
it − C̃

(0)
it β̃

(1)
i − β̃

(0)
i

Λ
(1)
i − Λ

(0)
i 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

N T µF

100 100 0.10 0.829 0.550 0.098 0.009 0.802 0.560 0.136 0.032
1.00 0.729 0.340 0.054 0.004 0.729 0.346 0.061 0.004
0.50 0.653 0.165 0.019 0.000 0.655 0.169 0.021 0.002
1.00 0.534 0.094 0.009 0.000 0.519 0.090 0.009 0.000

250 100 0.10 0.825 0.536 0.104 0.006 0.835 0.544 0.134 0.019
1.00 0.727 0.278 0.041 0.002 0.729 0.269 0.046 0.002

500 0.10 0.428 0.046 0.000 0.000 0.442 0.069 0.017 0.011
1.00 0.236 0.030 0.000 0.000 0.228 0.021 0.000 0.000

500 500 0.10 0.390 0.025 0.000 0.000 0.409 0.042 0.002 0.000
1.00 0.195 0.013 0.000 0.000 0.191 0.013 0.000 0.000

1000 0.10 0.140 0.008 0.000 0.000 0.152 0.017 0.002 0.002
1.00 0.041 0.000 0.000 0.000 0.043 0.000 0.000 0.000

This table shows the proportion of test statistics of the treatment effect that do not reject the null hypotheses
H0 : C

(1)
it − C

(0)
it = 0 or H0 : β

(1)
i − β(0)

i = 0, where β
(1)
i = 1

T1,i

∑T
T0,i+1 C

(1)
it and β

(0)
i = 1

T1,i

∑T
T0,i+1 C

(0)
it . We

consider a 95% confidence level (the test statistics are within [−1.96, 1.96]) over 500 Monte Carlo simulations . The

test statistics normalize C̃
(1)
it − C̃

(0)
it and β̃

(1)
i − β̃

(0)
i with their estimated standard deviation from Equations (17)

and (18). The estimated standard deviations are estimated under the null hypothesis of Λ
(1)
i − Λ

(0)
i = 0. The

observation pattern follows the simultaneous treatment adoption pattern. The proportion of acceptance decreases
with N,T, µF and β̃

(1)
i −β̃

(0)
i , implying that the statistical power increases with the data dimensionality and the scale

of the treatment effect. The Internet Appendix collects additional robustness tests confirming the same findings for
different specifications and also showing that the statistical power increases with the proportion of observed entries
in the data

10.2 Comparison with Jin, Miao, and Su (2020) and Bai and Ng (2020)

In this section, we compare our benchmark regression-based estimator (denoted as XP) and propensity-

weighted estimator (denoted as XPPROP) with Jin, Miao, and Su (2020) (denoted as JMS) and Bai

and Ng (2020) (denoted as BN). These are estimators that provide the inferential theory for fac-

tors, loadings, and common components estimated from large dimensional panel data with missing

observations in an approximate factor model. Jin, Miao, and Su (2020) assume that observations

are missing at random, while Bai and Ng (2020) assume that the observation pattern has a block

structure after proper reshuffling.

We generate the data from a two-factor model Xit = Λ>i Ft + eit, where Ft
i.i.d.∼ N (0, I2),

Λi
i.i.d.∼ N (0, I2) and eit

i.i.d.∼ N (0, 1). We consider six different observation patterns. The first three

cases are (1) missing uniformly at random, (2) simultaneous treatment adoption and (3) staggered

treatment adoption. Then, we allow the observation pattern for these three cases to depend on

a unit-specific characteristic defined as Si = 1(Λi,2 ≥ 0). Hence, case four to six are (4) missing

at random conditional on Si (5) simultaneous treatment adoption conditional on Si (6) staggered

treatment adoption conditional on Si. Table 4 contains figures showing the observation patterns
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and their detailed descriptions. Note that these are all practically relevant patterns, in particular

the staggered treatment adoption that appears in our empirical companion paper and is prevalent

in empirical applications.

Table 4: Comparison with Jin, Miao, and Su (2020) and Bai and Ng (2020)

Observation Pattern Wit XP XPPROP JMS BN

Random obs 0.015 0.015 0.023 348.300
miss 0.015 0.015 0.021 363.885
all 0.015 0.015 0.023 352.113

Simultaneous obs 0.012 0.012 0.124 0.012
miss 0.020 0.020 0.184 0.017
all 0.014 0.014 0.139 0.013

Staggered obs 0.017 0.017 0.366 0.073
miss 0.043 0.043 0.318 0.087
all 0.027 0.027 0.347 0.078

Random obs 0.019 0.020 0.077 347.082
W depends on S miss 0.024 0.024 0.067 360.409

all 0.021 0.021 0.073 352.113

Simultaneous obs 0.032 0.040 0.703 0.141
W depends on S miss 0.231 0.256 0.521 0.279

all 0.129 0.145 0.615 0.209

Staggered obs 0.016 0.018 0.272 0.117
W depends on S miss 0.064 0.069 0.346 0.186

all 0.033 0.036 0.299 0.142

This table reports the relative MSE of XP (our benchmark method), XPPROP (our propensity-weighted method),
JMS (Jin, Miao, and Su, 2020), and BN (Bai and Ng, 2020) on observed, missing and all entries, N = 250, T = 250.
The figures on the left show patterns of missing observations with the shaded entries indicating the missing entries.
Bold numbers indicate the best relative model performance. We generate a two-factor model and a unit-specific
characteristic Si = 1(Λi,2 ≥ 0). The observation patterns are generated as follows. (1) Missing uniformly at random:
Entries are observed independently with probability p = 0.75. (2) Simultaneous treatment adoption: 50% randomly
selected units adopt the treatment from time 0.5 · T and the remaining 50% units stay in the control group until
the end. (3) Staggered treatment adoption: All units are in the control group for t < 0.1 ·T . At time 0.1 ·T ≤ t ≤ T ,
t−0.1·T

T
% units are in the treated group. The remaining 10% units stay in the control group until the end. (4)

Missing at random conditional on Si: Entries are observed independently with probability pit = 0.75 Si = 1, and
pit = 0.5 if Si = 0. (5) Simultaneous treatment adoption conditional on Si: For the units with Si = 1, 95% units
adopt the treatment from time 0.5 · T and 5% units stay in the control group until the end. For the units with
Si = 0, 50% units adopt the treatment from time 0.02 · T and 50% units stay in the control group until the end.
(6) Staggered treatment adoption conditional on Si: All units are in the control group for t < 0.02 · T . For the units
with Si = 1, at time 0.02 · T ≤ t ≤ T , t−0.02·T

T
% units are in the treated group with the remaining 2% staying in

the control group until the end. For the units with Si = 0, at time 0.02 · T ≤ t ≤ T , t−0.02·T
1.96T

% units are in the
treated group with the remaining 50% units staying in the control group until the end. We run 100 Monte Carlo
simulations. The Internet Appendix collects additional robustness results with the same findings.

Table 4 compares the performance of estimating the common components. We report the

relative mean squared error (MSE) of the four methods for observed, missing and all units defined
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as follows:

relative MSES =

∑
(i,t)∈S

(
C̃it − Cit

)2∑
(i,t)∈S C

2
it

,

where Sobs = {(i, t) : Wit = 1, where 1 ≤ i ≤ N, 1 ≤ t ≤ T}, Smiss = {(i, t) : Wit = 0, where 1 ≤
i ≤ N, 1 ≤ t ≤ T} and Sall = {(i, t) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}.

First, and most importantly, our benchmark estimator shows excellent performance for all

observation patterns. Our estimator has the smallest or at least a very similar small MSE compared

to the other methods, as indicated by the bold numbers. Hence, we view our approach as a simple

and reliable all-purpose estimator. In contrast, other estimators are designed for specific observation

patterns and might not generalize well to other patterns. Our propensity-weighted estimator is very

close to the benchmark estimator but performs slightly worse. This is in line with our theoretical

result that propensity weighting is generally less efficient.

In the case of missing at random conditional or unconditional on Si, our methods have the

smallest MSE. Jin, Miao, and Su (2020) also have a small MSE as long as the observation pattern

does not depend on Si as their method is designed for missing uniformly at random. However, the

MSE of Bai and Ng (2020) explodes as their method requires fully observed rows and columns to

estimate the factor model, and we can hardly find rows or columns with full observations in the

case of missing at random.

In the case of simultaneous treatment adoption, both our methods and Bai and Ng (2020) have

small MSE, while our methods perform better when the observation pattern depends on S. Bai

and Ng (2020) leverage the structure of the observation pattern and utilize all observed entries

when the observation pattern does not depend on S, so as expected, their method has the smallest

MSE. When the observation pattern depends on S, Bai and Ng (2020) may not use all observed

entries while our methods do, and therefore, our methods can be better. In the case of simultaneous

treatment adoption, the assumptions in Jin, Miao, and Su (2020) are violated, so not surprisingly,

their method performs worst.

Our methods have, by far, the smallest MSE for the case of staggered treatment adoption that

is prevalent in empirical applications (Athey and Imbens, 2018). This holds when the observation

pattern depends or does not depend on S. In contrast to Bai and Ng (2020), we use all observed

entries in the estimation, which provides a more efficient estimator. While the assumptions in Jin,

Miao, and Su (2020) do not allow for a staggered treatment adoption pattern, and hence their

confidence intervals might be incorrect, we can accommodate it in our general framework.

The Internet Appendix shows that the findings are robust to the size of the panel and the

parameters of the observation patterns. We also compare the MSE of the various methods after

iterations in Tables A.I-A.III in the Internet Appendix. In more detail, we first impute the missing

values with different methods. In the second step, we apply PCA to the full panel with imputed

values to estimate the factor model and update the imputed values with the estimated common

components. The observed entries stay the same. This process is repeated for multiple iterations.

Note that this iterated estimation approach is actually a different estimation approach by itself.
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The four methods provide different starting values for the same iterative estimation approach

that is based on a fixed-point argument. Importantly, there is no inferential theory for iterative

estimators under general patterns.18 Hence, if the goal is to estimate treatment effects, these

iterative estimators cannot be used. Since our methods start with a value that has a smaller MSE,

our methods, in general, converge faster (often already after three iterations) and also have a small

MSE for a fixed number of iterations. Our results are robust to the choice of N and T and we

present the corresponding results for N = 100 and T = 150 in Tables A.IV-A.VII in the Internet

Appendix. In summary, if the goal is to only minimize the imputation error without an inferential

theory, the iterative estimation generally improves the results, but the relative performance of the

different estimation approaches without iteration carries over to the iteration setup.

10.3 Misspecification and Robustness of Propensity-Weighted Estimator

In this section, we show that the propensity-weighted estimator can have desirable robustness

properties under misspecification. Our results are motivated by insights from causal inference that

propose doubly robust estimation procedures for missing values, as discussed, for example, in Kang

and Schafer (2007). In causal inference, we can use either model the relationship between the

covariates and the outcome or model the probabilities of missingness to estimate causal effects.

Doubly robust procedures combine both by using a propensity weight in regressions to mitigate the

selection bias. Their potential advantage is that they can provide reliable estimates in the case of

omitted variables. Our setup differs from classical causal inference as we estimate the covariates as

latent factors from the data. However, we can have a situation similar to omitted variables if we

estimate too few latent factors, the factors are weak, or the population model is nonlinear.

We compare our benchmark estimator (XP) and propensity-weighted estimator (XPPROP) un-

der two types of model misspecification. In Table 5, we consider the case of omitted factors. The

population model is generated by a two-factor model, but we only estimate one latent factor. In

this case, the propensity-weighted estimator can perform better than the benchmark estimator.

However, when the model is correctly specified, and we estimate two factors, the benchmark esti-

mator dominates. When the second factor is weak in the sense that its variance and corresponding

eigenvalue are very small, the situation is similar to an omitted factor. In this case, it is possible

that the propensity-weighted estimator performs better even if we estimate the correct number of

latent factors. Note that weak factors are also a form of misspecification, as discussed in Onatski

(2012). In this simulation, observations are more likely to miss if they are exposed to the omitted

or weak second factor. Hence, the robustness gains of the propensity-weighted estimator arise for

the missing data and the treatment effects.

18While Jin, Miao, and Su (2020) consider iterations, their asymptotic results only hold for missing at random. Bai
and Ng (2020) provide distribution results for a different iteration that is not making use of all observations. They
replace all the units that have not been used in the estimation by imputed values, that is, observed entries that are
in the “missing block” are never used in this iteration. This iteration has only a minor effect and is different. The
reason is that their derivation of the re-estimation results does not distinguish between observed and missing entries
in the “missing block” and replaces the whole “missing block” by the estimated common components. The MSE
results that they report in their simulations seem to use the same iterative estimator that we consider.

35



Table 5: Benchmark and Propensity-Weighted Estimator for Weak and Missing Factors

k estimated factors 1 2

[µF,1, µF,2] [1,1] [5,0.5] [1,1] [5, 0.5]
[σF,1, σF,2] [1,1] [5,0.5] [1,1] [5, 0.5]

Method XP XPPROP XP XPPROP XP XPPROP XP XPPROP

obs C
(0)
it 0.227 0.251 0.011 0.011 0.014 0.014 0.002 0.003

miss C
(0)
it 0.478 0.288 0.007 0.007 0.044 0.045 0.026 0.023

all C
(0)
it 0.314 0.264 0.009 0.009 0.024 0.025 0.014 0.012

obs C
(0)
it (S = 1) 0.184 0.254 0.755 0.761 0.013 0.013 0.122 0.125

miss C
(0)
it (S = 1) 0.046 0.261 0.751 0.769 0.019 0.019 0.123 0.132

obs C
(0)
it (S = 0) 0.304 0.268 0.001 0.000 0.016 0.016 0.001 0.001

miss C
(0)
it (S = 0) 0.721 0.308 0.003 0.002 0.059 0.059 0.025 0.022

obs C
(1)
it 0.402 0.278 0.007 0.006 0.037 0.036 0.002 0.003

C
(1)
it − C

(0)
it 0.481 0.294 0.008 0.007 0.052 0.052 0.026 0.023

β
(1)
i − β(0)

i 0.168 0.032 0.002 0.002 0.012 0.013 0.008 0.007
ATE 0.090 0.026 0.006 0.007 0.009 0.008 0.012 0.011

This table compares the percentage errors for various estimates with the benchmark estimator (XP) and the propen-
sity weighted estimator XPPROP for omitted and weak factors. The data is simulated with a two-factor model and
a simultaneous treatment adoption for different means and variances of the latent factors. For k = 1 one factor
is omitted in the estimation as the population model is a two-factor model. For [σF,1, σF,2] = [5, 0.5]

the second factor is weak. In more detail: Y
(0)
it = Λ

(0)
i,1Ft,1 + Λ

(0)
i,2Ft,2 + e

(0)
it and Y

(1)
it = Λ

(1)
i,1Ft,1 + Λ

(1)
i,2Ft,2 + e

(1)
it .

The first half of the cross-section depends on the first factor, while the second half depends on the second factor:
For i = 1, · · · , N/2, Λ

(0)
i,1 ∼ N (0, 1), Λ

(1)
i,1 = Λ

(0)
i,1 + N (0.2, 1) and Λ

(1)
i,2 = Λ

(0)
i,2 = 0, and for i = N/2 + 1, · · · , N ,

Λ
(1)
i,1 = Λ

(0)
i,1 = 0, Λ

(0)
i,2 ∼ N (0, 1) and Λ

(1)
i,2 = Λ

(0)
i,2 + N (0.2, 1). Let N = 250, T = 250 and eit

i.i.d.∼ N (0, 1). The

observation pattern depends on an observed unit specific variable defined as Si = 1(Λ
(0)
i,2 6= 0) which only depends

on the loadings of the second factor. Once a unit adopts treatment, it stays treated afterwards. For the units with
Si = 1, 50% randomly selected units adopt the treatment from time 0.5 ·T and the remaining 50% units stay in the
control group until the end. For the units with Si = 0, 90% randomly selected units adopt the treatment from time
0.5 ·T and the remaining 10% units stay in the control group until the end. We report the relative MSE for common
components for observed and unobserved treated and control common components. We also report the results con-
ditional on the characteristic Si and the relative MSE of β

(1)
i −β

(0)
i capturing the average treatment effect over time

for each unit and ATE which is the relative MSE of the overall average treatment effect
∑

(i,t):Wit=0

(
Ĉ

(1)
it − Ĉ

(0)
it

)
.

The results are generated from 1,000 Monte Carlo simulations. The results show that XPPROP can be a more robust
estimator for missing observations under misspecification (omitted or weak factors).

In Table 6 we generate the data from a non-linear one-factor model. Using a Taylor expansion

argument, we can approximate the nonlinear transformation, which in this case is an exponential

function by a linear multi-factor model. Hence, the benchmark model with three latent factors

actually performs well in spite of the misspecification. However, if we use only one or two latent

factors, the propensity-weighted estimator is more robust to the misspecification. This suggests

that the propensity-weighted estimator can be a useful alternative if the researcher suspects some

form of model misspecification.
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Table 6: Benchmark and Propensity-Weighted Estimator under Model Misspecification

k estimated factors 1 2 3 4 5

Method XP XPPROP XP XPPROP XP XPPROP XP XPPROP XP XPPROP

obs C
(0)
it 0.310 0.327 0.070 0.072 0.024 0.026 0.025 0.026 0.030 0.032

miss C
(0)
it 1.163 0.824 0.571 0.441 0.302 0.295 0.314 0.389 0.339 0.428

all C
(0)
it 0.450 0.391 0.149 0.129 0.077 0.078 0.095 0.107 0.107 0.124

obs C
(0)
it (S = 1) 0.316 0.372 0.070 0.079 0.026 0.028 0.026 0.029 0.032 0.036

miss C
(0)
it (S = 1) 0.287 0.459 0.112 0.152 0.088 0.101 0.129 0.152 0.144 0.172

obs C
(0)
it (S = 0) 0.406 0.380 0.086 0.080 0.027 0.027 0.026 0.026 0.031 0.032

miss C
(0)
it (S = 0) 1.621 0.997 0.808 0.574 0.392 0.376 0.372 0.467 0.403 0.517

obs C
(1)
it 0.580 0.617 0.283 0.286 0.142 0.149 0.134 0.139 0.131 0.135

C
(1)
it − C

(0)
it 1.160 1.063 0.652 0.598 0.337 0.342 0.324 0.387 0.332 0.398

β
(1)
i − β(0)

i 6.105 3.891 1.373 1.026 0.094 0.105 0.108 0.105 0.121 0.120

ATE 1.379 1.006 0.300 0.264 0.029 0.027 0.222 0.204 0.363 0.341

This table compares the percentage errors for various estimates with the benchmark estimator (XP) and the propen-
sity weighted estimator XPPROP for a misspecified model. The data is simulated with non-linear one-factor
model and a simultaneous treatment adoption. The control and treated panel follow Y

(0)
it = exp(Λ

(0)
i Ft) + e

(0)
it and

Y
(1)
it = exp(Λ

(1)
i Ft) + e

(1)
it , where Ft ∼ N (0, 1), Λi ∼ N (0, 0.25) Λ

(1)
i = Λ

(0)
i +N (0.2, 0.25) and eit

i.i.d.∼ N (0, 1). We

set N = 250, T = 250. The observation pattern depends on an observed state variable defined as Si = 1(Λ
(0)
i ≥ 0).

Once a unit adopts treatment, it stays treated afterwards. For the units with Si = 1, 50% randomly selected units
adopt the treatment from time 0.5 · T and the remaining 50% units stay in the control group until the end. all
units are in the control group. For the units with Si = 0, 90% randomly selected units adopt the treatment from
time 0.5 · T and the remaining 10% units stay in the control group until the end. We report the relative MSE for
common components for observed and unobserved treated and control common components for different numbers of
estimated factors. We also report the results conditional on the characteristic Si and the relative MSE of β

(1)
i −β

(0)
i

capturing the average treatment effect over time for each unit and ATE which is the relative MSE of the overall
average treatment effect

∑
(i,t):Wit=0

(
Ĉ

(1)
it − Ĉ

(0)
it

)
. The results are generated from 1,000 Monte Carlo simulations.

The results show that XPPROP can be a more robust estimator for missing observations under misspecification
(non-linear functional form).

11 Conclusion

This paper develops the inferential theory for latent factor models estimated from large dimensional

panel data with missing observations. Our paper stands out by the generality of the missing patterns

that we allow for. We propose two estimators for the latent factor model: a simple all-purpose

estimator and an extension to a probability-weighted estimator. Our all-purpose estimator is easy

to use while it performs well under a variety of missing patterns. The propensity weighted estimator

is an alternative that is less efficient for correctly specified models but can be more robust to certain

forms of misspecification. The key application of our asymptotic distribution theory is to test causal

treatment effects. We provide a test for the point-wise treatment effect that can be heterogeneous

and time-dependent under general adoption patterns where the units can be affected by unobserved

factors.
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12 Appendix

Notation. Let M < ∞ denote a generic constant. Let ‖v‖ denote the vector norm and ‖A‖ =

trace(A>A)1/2 the Frobenius norm of matrix A.

General Assumptions

Assumption G2 (Factor Model).

1. Factors: ∀ t, E[‖Ft‖4] ≤ F̄ < ∞. There exists some positive definite r × r matrix ΣF , such

that 1
T

∑T
t=1 FtF

>
t

P−→ ΣF and E
∥∥∥√T ( 1

T

∑T
t=1 FtF

>
t − ΣF

)∥∥∥2
≤M . Furthermore, for any Qij,

1
|Qij |

∑
t∈Qij FtF

>
t

P−→ ΣF and E
∥∥∥√|Qij |( 1

|Qij |
∑

t∈Qij FtF
>
t − ΣF

)∥∥∥2
≤M .

2. Factor loadings: loadings are random, independent of factors and errors. ∀ t, E[‖Λi‖4] ≤ Λ̄ <

∞. There exists some positive definite r × r matrix ΣΛ such that 1
N

∑N
i=1 ΛiΛ

>
i

P−→ ΣΛ and

E
∥∥∥√N ( 1

N

∑N
i=1 ΛiΛ

>
i − ΣΛ

)∥∥∥ ≤M .

3. Time and cross-section dependence and heteroskedasticity of errors: There exists a positive

constant M <∞, such that for all N and T :

(a) E[eit] = 0, E|eit|8 ≤M .

(b) E[eiseit] = γst,i with |γst,i| ≤ γst for some γst and all i. For all t,
∑T

s=1 γst ≤M .

(c) E[eitejt] = τij,t with |τij,t| ≤ τij for some τij and all t. For all i,
∑N

j=1 τij ≤M .

(d) E[eitejs] = τij,ts and
∑N

j=1

∑T
s=1 |τij,ts| ≤M for all i and t.

(e) For all i and j, E
∣∣∣ 1
|Qij |1/2

∑
t∈Qij (eitejt − E[eitejt])

∣∣∣4 ≤M .

4. Weak dependence between factor and idiosyncratic errors: for every (i, j),

E

∥∥∥∥∥∥ 1√
|Qij |

∑
i∈Qij

Fteit

∥∥∥∥∥∥
4

≤M.

5. Eigenvalues: The eigenvalues of ΣΛΣF are distinct.

Assumption G3 (Moments and Central Limit Theorems). For all N and T ,

1. E

[∥∥∥∥√ T
N

∑N
i=1

1
|Qij |

∑
s∈Qij φi,st (eisejs − E[eisejs])

∥∥∥∥2
]
≤ M , where φi,st = WitFs, Λi, WitΛi,

for every j and t.

2. E

[∥∥∥∥√ T
N

∑N
i=1

φit
|Qij |

∑
t∈Qij F

>
t eit

∥∥∥∥2
]
≤M for every t and for φit = Λi, Wit, WitΛi.

3.
√
T
N

∑N
i=1 ΛiΛ

>
i

1
|Qij |

∑
t∈Qij Fteit

d−→ N (0,Γobs
Λ,j) for every j.

4. 1√
N

∑N
i=1WitΛieit

d−→ N (0,Γobs
F,t ) for every t.
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5. For every i and t,

√
T

[
vec(Xi)

vec(Xt)

]
d−→ N

(
0,

[
Φi (Φcov

i,t )>

Φcov
i,t Φt

])
,

where Xi = 1
N

∑N
l=1 ΛlΛ

>
l

(
1
|Qli|

∑
t∈Qli FtF

>
t − 1

T

∑T
t=1 FtF

>
t

)
and Xt = 1

N

∑N
i=1WitXiΛiΛ

>
i .

6. E

[∥∥∥∥√ T
N

∑N
i=1

(
1
|Qli|

∑
s∈Qli FsF

>
s − 1

T

∑T
s=1 FsF

>
s

)
ΛiWiteit

∥∥∥∥2
]
≤M for every l.

Assumption G4 (Additional Assumptions on Factor Model). As T1,i →∞, it holds

1. 1√
T1,i

∑T
T0,i+1 Fteit

d−→ N (0,ΣF,ei).

2. E

[∥∥∥∥ 1√
NT1,i

∑T
t=T0,i+1

∑N
j=1WjtΛjejt

∥∥∥∥2
]
≤M and

E

[∥∥∥∥ 1√
NT1,i

∑T
t=T0,i+1

∑N
j=1 ZtF

>
t WjtΛjejt

∥∥∥∥2
]
≤M for every i, Z ∈ RT1,i×L and ‖Zt‖ ≤M .

3. For every i, vec(XT0,i+1), · · · , vec(XT ) are jointly asymptotically normal with

ACov(vec(Xt), vec(Xs)) = Φt,s for all T0,i ≤ t, s ≤ T .

Assumption GC2 (Conditional Factor Model).

1. Factor loadings: E[‖Λi‖4 |S] ≤ Λ̄ <∞. There exists some positive definite r×r matrix ΣΛ such

that 1
N

∑N
i=1

Wit
P (Wit=1|Si)ΛiΛ

>
i

P−→ ΣΛ and E
∥∥∥√N ( 1

N

∑N
i=1

1
P (Wit=1|Si)WitΛiΛ

>
i − ΣΛ

)∥∥∥ ≤M .

Assumption GC3 (Conditional Moments and Central Limit Theorems). S is independent of F

and e and E[‖Λi‖6 |S] ≤ Λ̄. For all N and T ,

1. E

[∥∥∥∥√ T
N

∑N
i=1

1
|Qij |

∑
s∈Qij φi,st (eisejs − E[eisejs])

∥∥∥∥2
]
≤M , where φi,st = WitFs

P (Wit=1|Si) , Λi,
Wit

P (Wit=1|Si)Λi,

for every j and t.

2. E

[∥∥∥∥√ T
N

∑N
i=1

φit
|Qij |

∑
t∈Qij F

>
t eit

∥∥∥∥2
]
≤M for every t and for φit = Λi,

Wit
P (Wit=1|Si)Λi.

3.
√
T
N

∑N
i=1 ΛiΛ

>
i

1
|Qij |

∑
t∈Qij Fteit

d−→ N (0,Γobs
Λ,j) for every j.

4. 1√
N

∑N
i=1

Wit
P (Wit=1|Si)Λieit

d−→ N (0,Γobs,S
F,t ) for every t.

5. For every i,

√
T

[
vec(Xi)

vec(XS
t )

]
d−→ N

(
0,

[
Φi (Φcov,S

i,t )>

Φcov,S
i,t ΦS

t

])
,

where Xi = 1
N

∑N
l=1 ΛlΛ

>
l

(
1
|Qli|

∑
t∈Qli FtF

>
t − 1

T

∑T
t=1 FtF

>
t

)
and XS

t = 1
N

∑N
i=1

Wit
P (Wit=1|Si)XiΛiΛ

>
i .

6. E

[∥∥∥∥√ T
N

∑N
i=1

(
1
|Qli|

∑
s∈Qli FsF

>
s − 1

T

∑T
s=1 FsF

>
s

)
Wit

P (Wit=1|Si)Λieit

∥∥∥∥2
]
≤M for every l.

Assumption GC4 (Additional Assumptions on Factor Model). As T1,i →∞, it holds
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1. 1√
T1,i

∑T
T0,i+1 Fteit

d−→ N (0,ΣF,ei).

2. E

[∥∥∥∥ 1√
NT1,i

∑T
t=T0,i+1

∑N
j=1

Wjt

P (Wit=1|Si)Λjejt

∥∥∥∥2
]
≤M and

E

[∥∥∥∥ 1√
NT1,i

∑T
t=T0,i+1

∑N
j=1 ZtF

>
t

Wjt

P (Wit=1|Si)Λjejt

∥∥∥∥2
]
≤M for every i, Z ∈ RT1,i×L and ‖Zt‖ ≤

M .

3. For every i, vec(XS
T0,i+1), · · · , vec(XS

T ) are jointly asymptotically normal with

ACov(vec(XS
t ), vec(XS

s )) = ΦS
t,s for all T0,i ≤ t, s ≤ T .

Assumption G2 describes an approximate factor structure and is at a similar level of generality

as Bai (2003): (1) Assumption G2.1 ensures that each factor has a nontrivial contribution to

the variation in X. (2) We assume loadings are random but independent of factors and errors

in Assumption G2.2. We could study a factor model conditioned on some particular realization

of the loadings, and the analysis would essentially be equivalent to that under the assumption

that loadings are nonrandom. (3) Assumption G2.3 allows errors to be time-series and cross-

sectionally weakly correlated. (4) Assumption G2.4 allows factors and idiosyncratic errors to be

weakly correlated. (5) Assumption G2.5 guarantees that each loading and factor can be uniquely

identified up to some rotation matrix. Additionally, we assume that these aspects also hold if we

look at a subset of all time periods (the subset is denoted as Qij in Assumption G2). Together with

Assumption C1.2, our covariance matrix estimator (1) using incomplete observations has similar

properties as the conventional covariance matrix estimator 1
TXX

> using full observations. For

example, both 1
|Qij |

∑
t∈Qij XitXjt and 1

T

∑T
t=1XitXjt are consistent estimators for Σij . Moreover,

the top r eigenvalues estimated from both matrices are consistent as shown in Lemma 4 in the

Internet Appendix, which is the foundation for developing the inferential theory of the factor

model estimated from Equation (1).

Assumption G3 is not required to show the consistency of loadings and factors but is only used

to show the asymptotic normality of the estimators. Assumption G3.1-4 are closely related to

the moment and CLT assumptions in Bai (2003). The first two parts in Assumptions G3 restrict

the second moments of certain averages. The 3rd and 4th point state the necessary central limit

theorems.
√
T
N

∑N
i=1 ΛiΛ

>
i

1
|Qij |

∑
t∈Qij Fteit

d−→ N (0,Φj) is one of the leading terms in the asymptotic

distribution of the estimated loadings Λ̃j . However, 1
|Qij |

∑
t∈Qij Fteit varies with j so we cannot

separately average over the cross-sectional and time dimension as in the conventional framework.

Point 5 is specific to the missing value problem and introduces the correction terms that appear

in the asymptotic distribution. They are due to the fact that our estimator averages over different

number of observations for different entries in the covariance matrix.

Assumptions GC2 and GC3 are the corresponding assumptions for the propensity-weighted

estimator with a similar level of generality. The additional Assumptions G4 and GC4 are only

needed for the treatment effect tests.
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