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Abstract

This paper studies the optimality of matched-pair designs in randomized controlled trials (RCTs). Matched-

pair designs are examples of stratified randomization, in which the researcher partitions a set of units into

strata basedon their observed covariates and assign a fractionof units in each stratum to treatment. Amatched-

pair design is such a procedure with two units per stratum. Despite the prevalence of stratified randomization

in RCTs, implementations differ vastly. We provide an econometric framework in which, among all stratified

randomization procedures, the optimal one in terms of the mean-squared error of the difference-in-means esti-

mator is a matched-pair design that orders units according to a scalar function of their covariates and matches

adjacent units. Our framework captures a leading motivation for stratifying in the sense that it shows that the

proposed matched-pair design additionally minimizes the magnitude of the ex-post bias, i.e., the bias of the

estimator conditional on realized treatment status. We then consider empirical counterparts to the optimal

stratification using data from pilot experiments and provide two different procedures depending on whether

the sample size of the pilot is large or small. For each procedure, we develop methods for testing the null hy-

pothesis that the average treatment effect equals a prespecified value. Each test we provide is asymptotically

exact in the sense that the limiting rejection probability under the null equals the nominal level. We run an

experiment on the AmazonMechanical Turk using one of the proposed procedures, replicating one of the treat-

ment arms in DellaVigna and Pope (2018), and find the standard error decreases by 29%, so that only half of

the sample size is required to attain the same standard error.

keywords: Matched-pair design, stratified randomization, randomized controlled trial, ex-post bias, treat-

ment effect, stratification, pilot experiment, matched pairs

jel classification codes: C12, C13, C14, C90

*I am deeply grateful for the encouragement and guidance from my advisors Azeem Shaikh, Stephane Bonhomme, Alex Torgovitsky,
and LeonardoBursztyn. I thankMarinhoBertanha,Wooyong Lee, Joshua Shea, andMaxTabord-Meehan for extensive feedback on earlier
drafts of the paper. I would also like to thank seminar participants at many institutions for helpful comments on the paper. I gratefully
acknowledge the financial support from the William Rainey Harper/Provost Dissertation Year Fellowship.

mailto:yuehaob@umich.edu


1 Introduction

This paper studies the optimality of matched-pair designs in randomized controlled trials (RCTs). Matched-

pair designs are examples of stratified randomization, in which the researcher partitions a set of units into

strata based on their observed covariates and assigns a fraction of units in each stratum to treatment. A

matched-pair design is a stratified randomization procedure with two units in each stratum. Stratified random-

ization is prevalent in economics andmore broadly the sciences. A simple searchwith the keyword “stratified”

in the AEA RCT Registry reveals about 500 RCTs. The procedures in these papers, however, differ vastly in

terms of variables being stratified on, how strata are formed, and numbers of strata. Among these procedures,

matched-pair designs have recently gained popularity. 56% of researchers interviewed in Bruhn andMcKenzie

(2009) have used matched-pair designs at some point in their research. Moreover, more than 40 ongoing ex-

periments in the AEARCTRegistry use matched-pair designs. See Section 1.1 for a list of papers. Despite the

popularity of matched-pair designs, there is little theory justifying their use in RCTs. We provide an econo-

metric framework in which a certain form of matched-pair design emerges as optimal among all stratified ran-

domization procedures. As will be explained below, an attractive feature of our framework is that it captures a

leading motivation for stratifying in the sense that it shows that the proposed matched-pair design minimizes

the second moment of the ex-post bias, i.e., the bias of the estimator conditional on realized treatment status.

We then provide empirical counterparts to the optimal procedure and illustrate one of the proposed procedures

by conducting an actual experiment on the Amazon Mechanical Turk (MTurk). In particular, we replicate one

of the treatment arms from the experiment in DellaVigna and Pope (2018) and show that the standard error

decreases by 29% compared to original results, which means that only half of the sample size is required to

attain the same level of precision as in the original paper.

Webegin by studying settingswhere treated fractions are identical across strata. In such settings, it is natu-

ral to estimate the average treatment effect (ATE) by the difference in means of the treated and control groups.

The properties of the difference-in-means estimator, however, vary substantially with stratifications. In the

main text, we further restrict treated fractions to be 1
2 within each stratum, but in the appendix, we provide

extensions to settings where treated fractions are identical across strata but not equal to 1
2 and where they are

in addition allowed to vary across a fixed number of subpopulations. Our first result shows the mean-squared

error (MSE) of the difference-in-means estimator conditional on the covariates is remarkably minimized by a

matched-pair design, where units are ordered by their values of a scalar function of the covariates and paired

adjacently. The scalar function is defined by the sum of the expectations of potential outcomes if treated and

not treated conditional on the covariates. To the best of our knowledge, our result is the first to character-

ize the optimal one among all stratified randomization procedures, and additionally, it holds under almost no

assumption on the distributions of potential outcomes. In a closely related paper, Barrios (2013) considers

minimizing the variance of the difference-in-means estimator. Despite having “optimal stratification” in the

title of his paper, he only shows that a certain matched-pair design is optimal among all matched-pair designs,

instead of all stratified randomization procedures. Although intuitively attractive, it is not alwayswithout loss

of generality to restrict attention to matched-pair designs in the first place. Example E.7 shows that under a

minimax criterion the optimal stratification might not be a matched-pair design. We show, however, that we

could restrict attention to matched-pair designs if the criterion is MSE. In fact, we show that the optimality of
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matched-pair designs holds under any expected utility criterion, and even any criterion convex in the distribu-

tion of treatment status. See Remark 3.4 for more details. Moreover, Barrios (2013) assumes a homogeneous

treatment effect and uses only information about untreated potential outcomes in his analysis, while our op-

timality result instead holds under heterogeneous treatment effects. Finally, as explained below, we provide

novel results relating the MSE to the ex-post bias, as well as novel results on the large sample properties of

empirical counterparts to the optimal procedure as well as formal results on inference.

We then study the properties of empirical counterparts to this optimal stratification, in which we replace

the unknown scalar function with estimates based on pilot data. Pilot experiments are frequently available

in practice. Around 350 out of 3000 experiments in the AEA RCT Registry have pilot experiments. For more

examples, see Karlan and Zinman (2008), Karlan and Appel (2016), Karlan andWood (2017), DellaVigna and

Pope (2018), and papers cited in Section 1.1. We first consider a plug-in procedure that estimates the scalar

function using data from a pilot experiment and matches the units in the main experiment into pairs based on

their values of the estimated function. Under aweak consistency requirement on the plug-in estimator, ormore

precisely, that it isL2-consistent for the scalar function, we show that as the sample sizes of both the pilot and

the main experiments increase, the limiting variance of a suitable normalization of the difference-in-means

estimator under the plug-in procedure is the same as that under the infeasible optimal procedure. Equiva-

lently, under such a normalization, the limiting MSE of the estimator is the same as that under the optimal

stratification. The consistency requirement is satisfied by a large class of nonparametric estimation methods

including machine learning methods in high-dimensional settings, i.e., when the dimension of covariates is

large. In this sense, when the sample size of the pilot is large, the plug-in procedure is optimal. Of course, this

property no longer holds when the sample size of the pilot is small. But even then, researchers may well be

content with the plug-in procedure because it results in smaller limiting variance of the difference-in-means

estimator than many alternatives. That said, we may be concerned that a poor estimate of the scalar function

leads to a matched-pair design under which the MSE of the estimator is large. Therefore, we additionally con-

sider a penalized procedure under which, according to simulation studies with small pilots, the MSE of the

estimator is often smaller than those under plug-in and other commonly-used procedures. The procedure is

named so because it can be viewed as penalizing the plug-in procedure by the standard error of the plug-in esti-

mate. Another attractive feature of the penalized procedure is that it is optimal in integrated risk in a Bayesian

framework with Gaussian priors and linear conditional expectations of potential outcomes.

For each procedure, we develop methods for testing the null hypothesis that the ATE equals a prespecified

value. Inference for matched-pair designs is challenging because of the difficulty of consistently estimating

the limiting variance of the ATE. Indeed, this is the main reason why Athey and Imbens (2017) suggest not to

usematched-pair designs. We get around this problem by a novel standard error adjustment and Lipschitz con-

ditions that guarantee the smoothness of conditional expectations of potential outcomes given the covariates.

This condition, together with the observation that paired observations become close in terms of the pairing co-

variate in the limit, enables us to estimate the limiting variance consistently. Therefore, each test we provide

is asymptotically exact in the sense that the limiting rejection probability under the null equals the nominal

level. Our results extend those in Bai et al. (2019) to settings where units are matched according to (random)

functions of their covariates instead of the covariates themselves. A special feature of inference under the

2



plug-in procedure is that the same test is valid regardless of the sample size of the pilot. Inference methods

under both the plug-in and the penalized procedures are computationally easy.

Our results on optimal stratification formalizes the motivation for using stratified randomization by show-

ing that minimizing the conditional (on covariates) MSE is equivalent to minimizing the conditional second

moment of the ex-post bias, i.e., the bias of the estimator conditional on both the covariates and realized treat-

ment status. Furthermore, the two problems are both equivalent to minimizing the conditional variance of

the ex-post bias. To illustrate the intuition behind this minimization problem, it is instructive to consider the

special case where there is a single binary covariate. Consider an RCTwith 100 units, composed of 50 women

and 50men. The intuitive motivation for stratifying by gender is as follows: if all the units are in one stratum,

then it could happen that 40 women are treated while only 10 men are so, so that a large part of the difference

in treated and control units could be from the difference in gender instead of the treatment itself; on the other

hand, if we stratify by gender, then we always end up treating 25 women and 25 men. The intuitive motiva-

tion is formalized by the comparison of the ex-post bias. Since the ex-post bias only depends on howmanymen

and women treated instead of their identities, it varies across realized treatment status if all the units are in

one stratum, but is identical if we stratify by gender. As a result, the conditional variance of the ex-post bias

is positive if all the units are in one stratum but zero if we stratify by gender. When there are more covari-

ates or when some of them are continuous, it is hard to see only by inspection which stratification minimizes

the second moment or the variance of the ex-post bias, but the solution is given by the optimal stratification.

Our results could also be viewed as formalizing the discussion about which covariates should be stratified on,

e.g., the recommendation in Bruhn and McKenzie (2009) and Glennerster and Takavarasha (2013) for using

covariates most correlated with the outcome.

Onemight be tempted to think that stratification onlymatters in finite sample, or that the limiting distribu-

tion of the difference-in-means estimator should be the same no matter how units are stratified. We show that

this is not the case. Specifically, we show that under any stratification with a fixed number of strata, the limit-

ing variance of the estimator is weakly greater than and typically strictly greater than that under the optimal

stratification. See Remark 5.8 below for more details. In addition, different matched-pair designs lead to dif-

ference limiting variances of the estimator. Although Bai et al. (2019) show the same limiting variance when

units are matched not according to our optimal stratification but to minimize the sum of Euclidean distances

of the covariates themselves, their result holds with a fixed number of covariates, while both our optimality

result and our plug-in procedure allows the number of covariates to grow with the sample size. See Remark

5.1 below for more details. Sometimes researchers do not stratify but run covariate adjustments afterwards,

i.e., regress the outcome on the treatment and some observed covariates. Although the most flexible covariate

adjustment could lead to the same limiting variance, they usually require higher order smoothness conditions

and a sufficiently fast convergence rate of the nonparametric adjustment component, while we only require

the L2-consistency of the estimator. See Remark 5.2 below and Rothe (2020) for more details.

While pilot experiments are common in RCTs, there are scenarios in which they are either not available or

are performed on a different population from units in the main experiment. For those scenarios, we study a

minimax problem that does not rely on pilot data, where we assume the data generating process is chosen by

nature adversarially among a large class of distributions that could be characterized by bounded polyhedrons.
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In particular, we minimize the variance of the ex-post bias of the difference-in-means estimator conditional

on the covariates under the worst possible distribution in this class by choosing across matched-pair designs.

The framework accommodates many common shape restrictions on the conditional expectations of potential

outcomes given the covariates, including Lipschitz continuity, monotonicity, and convexity. We then rewrite

the minimax problem into a mixed integer linear program (MILP) which is computationally easy. Simulation

evidence further suggests although theminimaxmatched-pair design is in general notminimax-optimal among

all stratifications except when the there is a single covariate, it is often close to being so.

The remainder of the paper is organized as follows. In Section 2, we introduce the setup and notation. We

study the optimal stratification in Section 3. In Section 4, we consider empirical counterparts to the optimal

stratification, using data from pilot experiments. We consider the plug-in procedure with large pilots and the

penalized procedure with small pilots. Section 5 includes asymptotic results and methods for inference for

ATE. In Section 6, we illustrate the properties of different procedures in a small simulation study. Section

7 discusses results from the MTurk experiment using the penalized procedure. The experiment shows a 29%

reduction in standard error compared to results in the original paper, whichmeans that we need only half of the

sample size to attain the same standard error. Section 8 briefly discusses the minimax procedure, the details

of which are included in Appendix E. We conclude with recommendations for empirical practice in Section 9.

1.1 Related literature

This paper is most closely related to Barrios (2013) and Tabord-Meehan (2020). Barrios (2013) considers

minimizing the variance of the difference-in-means estimator but assumes a homogeneous treatment effect

and uses only information about untreated potential outcomes in his analysis. Despite having “optimal strati-

fication” in the title, his paper only shows that a certainmatched-pair design is optimal among allmatched-pair

designs, instead of all stratifications. We instead show that a certain matched-pair design is optimal among

all stratifications, without assuming a homogeneous treatment effect. Moreover, we provide novel results re-

lating the MSE to the ex-post bias. We also provide formal results on the large sample properties of empirical

counterparts to the optimal procedure as well as formal results on inference. Tabord-Meehan (2020) consid-

ers optimality within a specific class of stratifications, which is a certain class of stratification trees. Since

the number of strata is fixed in his asymptotic framework, his paper precludes matched-pair designs. We in-

stead provide analytical characterization of the optimal one among the set of all stratifications. Remark 5.9

elaborates the details of the comparison between the two papers, and in particular, notes that it is straightfor-

ward to combine the procedures in both papers. Under the combined procedure, the asymptotic variance of the

fully saturated estimator is no greater than and typically strictly smaller than that when using the procedure

in Tabord-Meehan (2020) alone.

Recent examples of stratified randomization in development economics include Aker et al. (2012, page

97), Alatas et al. (2012, page 1211), Ashraf et al. (2010, page 2393), Dupas and Robinson (2013, page 168),

Callen et al. (2014, page 133), Banerjee et al. (2015, page 31), Duflo et al. (2015, page 96), Duflo et al. (2015,

footnote 6), Chong et al. (2016, page 228), Berry et al. (2018, page 75), Bursztyn et al. (2018, page 1570),

Callen et al. (2018, page 10), Dupas et al. (2018, page 264), Bursztyn et al. (2019, footnote 15), Casaburi
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and Macchiavello (2019, page 548), Chen and Yang (2019, page 2308), Dizon-Ross (2019, page 2738), Khan

et al. (2019, page 254), and Muralidharan et al. (2019, page 1434). See Bruhn and McKenzie (2009) for

more examples in economics and Rosenberger and Lachin (2015) and Lin et al. (2015) for examples in clinical

trials. For examples of matched-pair designs, see Riach and Rich (2002), Ashraf et al. (2006), Panagopoulos

and Green (2008), Angrist and Lavy (2009), Imai et al. (2009), Sondheimer and Green (2010), List and Rasul

(2011), White (2013), Bhargava and Manoli (2015), Banerjee et al. (2015), Crépon et al. (2015), Bruhn et al.

(2016), Glewwe et al. (2016), Groh and McKenzie (2016), Bertrand and Duflo (2017), Fryer (2017), Fryer

et al. (2017), Heard et al. (2017), Fryer (2018), Bai et al. (2019), and the references therein. See Appendix F

for a list of ongoing experiments using matched-pair designs in the AEA RCT Registry. Matched-pair designs

are also implemented in leading experimental design packages, including sampsi_mcc in Stata. Imbens (2011)

and Athey and Imbens (2017) discuss the benefits of stratified randomization in a finite sample framework and

a simple example with one binary covariate. These two papers, together with Chapter 10 in Imbens and Rubin

(2015), recognize the merit of matched-pair designs in terms of estimation but suggest they come with the

cost that the asymptotic variance of the estimator is hard to estimate. Our inference procedure solves this

problem and therefore eliminates this cost. Besides Bai et al. (2019), inference under matched-pair designs

has also been studied in Abadie and Imbens (2008), who consider another adjustment of standard error, in

Fogarty (2018a) and Fogarty (2018b), who provides conservative estimators for the asymptotic variance, and

de Chaisemartin and Ramirez-Cuellar (2019), under a sampling scheme different from that in Bai et al. (2019)

and a cluster setting.

For general references on RCTs, see Duflo et al. (2007), Bruhn and McKenzie (2009), Glennerster and

Takavarasha (2013), Rosenberger and Lachin (2015), Peters et al. (2016), and the Handbook of Field Ex-

periments, Duflo and Banerjee (2017). For earlier work on the optimal design of experiments under para-

metric models with block structures, see Cox and Reid (2000), Bailey (2004), and Pukelsheim (2006). A

series of papers also examine optimal design in RCTs. Hahn et al. (2011) assume independent random sam-

pling across units, whereas stratified randomization induces dependence within each stratum. Chambaz et al.

(2015) adaptively assign treatment status for each new observation based on those of the previous units.

Kallus (2018) studies optimal treatment assignment from aminimax perspective and optimizes over treatment

assignments rather than stratifications. Freedman (2008) and Lin (2013) compare regression-adjusted esti-

mators and the difference-in-means estimator, assuming all the units are in one stratum. Re-randomization,

another commonly-usedmethod to balance covariates, is studied in parametricmodels inMorgan et al. (2012),

Morgan and Rubin (2015), Li et al. (2018), Schultzberg and Johansson (2019), and Johansson et al. (2019).

Kasy (2016) considers a Bayesian problem in a parametric model, where both the prior and the distributions

of potential outcomes are Gaussian with known parameters, and concludes that researchers should never ran-

domize. On the contrary, Wu (1981), Li (1983), and Hooper (1989), and Bai (2019) show the optimality of

certain randomization schemes in minimax frameworks. Carneiro et al. (2019) examine the trade-off between

collectingmore units andmore covariates for each unit when designing an RCT under fixed budget. A growing

literature, including Manski (2004), Kitagawa and Tetenov (2018), and Mbakop and Tabord-Meehan (2018),

considers empirical welfare maximization by assigning treatment status. Banerjee et al. (2019) study optimal

experiments under a combination of Bayesian and minimax criteria in terms of welfare.
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2 Setup and notation

Let Yi denote the observed outcome of interest for the ith unit,Di denote the treatment status for the ith unit

and Xi = (Xi,1, . . . , Xi,p)
′ ∈ Rp denote the observed, baseline covariates for the ith unit. Further denote by

Yi(1) the potential outcome of the ith unit if treated and by Yi(0) if not treated. As usual, the observed outcome

is related to the potential outcomes and treatment status by the relationship

Yi = Yi(1)Di + Yi(0)(1−Di) .

In addition, we define Wi = (Yi, X
′
i, Di)

′. For ease of exposition, we assume the sample size is even and

denote it by 2n. We assume that ((Yi(1), Yi(0), Xi) : 1 ≤ i ≤ 2n) is an i.i.d. sequence of random vectors

with distribution Q. For any random vector indexed by i, Ai, define A(n) = (A1, . . . , A2n)
′. Our parameter of

interest is the average treatment effect (ATE) underQ:

θ(Q) = EQ[Yi(1)− Yi(0)] . (1)

For ease of exposition, we will at times suppress the dependence of various quantities onQ, e.g., use θ to refer

to θ(Q). In stratified randomization, the first step is to partition the set of units into strata. Formally, we define

a stratification λ = {λs : 1 ≤ s ≤ S} as a partition of {1, . . . , 2n}, i.e.,

(a) λs

⋂
λs′ = ∅ for all s and s′ such that 1 ≤ s 6= s′ ≤ S.

(b)
⋃

1≤s≤S

λs = {1, . . . , 2n}.

Let Λn denote the set of all stratifications of 2n units. Many results in the paper will feature matched-pair

designs. Recall that a permutation of {1, . . . , 2n} is a function that maps {1, . . . , 2n} onto itself. LetΠn denote

the group of all permutations of {1, . . . , 2n}. A matched-pair design is a stratified randomization with

λ = {{π(2s− 1), π(2s)} : 1 ≤ s ≤ n} ,

where π ∈ Πn. Further define Λpair
n ⊆ Λn as the set of all matched-pair designs for 2n units.

Define ns = |λs| and τs as the treated fraction in stratum λs. Under stratified randomization, givenX(n), λ,

and (τs : 1 ≤ s ≤ S), the treatment assignment scheme is as follows: independently for 1 ≤ s ≤ S, uniformly

at random choose nsτs units in λs and assign Di = 1 for them, and assign Di = 0 for the other units. The

treatment assignment scheme implies that

(Y (n)(0), Y (n)(1)) ⊥⊥ D(n)|X(n) . (2)

It also implies that nsτs is an integer for 1 ≤ s ≤ S. Note that the distribution of D(n) depends on λ. In

the remainder of the paper, we assume the following about the treatment assignment scheme unless indicated

otherwise:
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Assumption 2.1. The treatment assignment scheme satisfies τs ≡ 1
2 .

Assumption 2.1 implies that the size of each stratum has to be an even number. Most results below could be

extended to settings where τs ≡ τ ∈ (0, 1) or where they are in addition allowed to vary across subpopulations.

See Appendix B for more details.

We estimate the ATE by the difference in means between the treated and control groups. Formally, for

d ∈ {0, 1}, define

µ̂n(d) =

∑
1≤i≤2n YiI{Di = d}∑
1≤i≤2n I{Di = d}

=
1

n

∑
1≤i≤2n:Di=d

Yi .

The difference-in-means estimator is defined as

θ̂n = µ̂n(1)− µ̂n(0) . (3)

The difference-in-means estimator is widely used because it is simple and transparent. Under Assumption 2.1,

it coincides with the estimator from regressing the outcome on treatment status and strata fixed effects, and

the estimator from the fully saturated regression, both of which are also widely used in the analysis of RCTs.

See, for example, Duflo et al. (2007), Glennerster and Takavarasha (2013), and Crépon et al. (2015).

3 Optimal stratification

For any stratification λ ∈ Λn, our objective function is the mean-squared error (MSE) of θ̂n for θ conditional

onX(n) under λ:

MSE(λ|X(n)) = Eλ[(θ̂n − θ)2|X(n)] . (4)

Here, the subscript λ of E indicates that the expectation depends on λ, since the distribution of treatment

statusD(n) depends on λ. We consider minimizing the conditionalMSE defined in (4) over the set of all strat-

ifications:

min
λ∈Λn

MSE(λ|X(n)) . (5)

The solution will depend on features of the distribution which are generally unknown, and we will consider

empirical counterparts to the solution, in which unknown quantities are replaced by estimates using data from

pilot experiments, in Section 4. By Assumption 2.1, other aspects of the stratified randomization procedure,

especially the treated fractions, are fixed. Therefore, the stratification that solves (5) corresponds to an optimal

stratified randomization procedure among all those satisfying Assumption 2.1.

In order to describe an important result that leads to the solution to (5), we define the ex-ante bias of θ̂n for

θ conditional onX(n) as

Biasanten,λ (θ̂n|X(n)) = Eλ[θ̂n|X(n)]− θ , (6)

and the ex-post bias of θ̂n for θ conditional onX(n) andD(n) as

Biaspostn,λ (θ̂n|X(n), D(n)) = Eλ[θ̂n|X(n), D(n)]− θ . (7)
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Here, ex-ante bias refers to the bias conditional only on covariates, before treatment status is assigned; ex-

post bias refers to the bias conditional on both the covariates and treatment status, i.e, after treatment status

is assigned. By definition,

Eλ[Bias
post
n,λ (θ̂n|X(n), D(n))|X(n)] = Biasanten,λ (θ̂n|X(n)) , (8)

i.e., the expectation of the ex-post bias over the distribution of treatment status equals the ex-ante bias. Note

that by (3),

θ̂n =
1

n

∑
1≤i≤2n

(Yi(1)Di − Yi(0)(1−Di)) .

Under Assumption 2.1,

Biasanten,λ (θ̂n|X(n)) =
1

2n

∑
1≤i≤2n

(E[Yi(1)|Xi]− E[Yi(0)|Xi])− θ , (9)

so that ex-ante bias is identical across λ ∈ Λn.

To solve (5), we decompose the conditional MSE as follows. First, note that

MSE(λ|X(n)) = Biasanten,λ (θ̂n|X(n))2 +Varλ[θ̂n|X(n)] . (10)

Here,Varλ indicates that the distribution of treatment status depends on λ. By (9), the first term on the right-

hand side is identical across all λ ∈ Λn. Hence, (5) is equivalent to minimizing the second term on the right-

hand side of (10), which could be further decomposed into

Varλ[θ̂n|X(n)] = Eλ[Var[θ̂n|X(n), D(n)]|X(n)] + Varλ[E[θ̂n|X(n), D(n)]|X(n)] . (11)

By (2), conditional onX(n) andD(n), (Yi(0), Yi(1))’s are independent across i, so that for any λ ∈ Λn, the first

term on the right-hand side of (11) equals

Eλ

 1

n2

∑
1≤i≤2n

(Var[Yi(1)|Xi]Di +Var[Yi(0)|Xi](1−Di))

∣∣∣∣∣X(n)

 =
1

2n2

∑
1≤i≤2n

(Var[Yi(1)|Xi] + Var[Yi(0)|Xi]) ,

(12)

which is also identical across all λ ∈ Λn. Here, we use (2), the facts thatDi(1 −Di) = 0 for 1 ≤ i ≤ 2n, and

thatE[Di|X(n)] = 1
2 . Hence, (5) is further equivalent to minimizing the second term on the right-hand side of

(11), which equals

Varλ[Bias
post
n,λ (θ̂n|X(n), D(n))|X(n)] . (13)

Furthermore, we have

Varλ[E[θ̂n|X(n), D(n)]|X(n)]

= Eλ[(E[θ̂n|X(n), D(n)]− E[θ̂n|X(n)])2|X(n)]

= Eλ[(Bias
post
n,λ (θ̂n|X(n), D(n))− Biasanten,λ (θ̂n|X(n)))2|X(n)]
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= Eλ[Bias
post
n,λ (θ̂n|X(n), D(n))2|X(n)]− 2Eλ[Bias

post
n,λ (θ̂n|X(n), D(n)) Biasanten,λ (θ̂n|X(n))|X(n)] + Biasanten,λ (θ̂n|X(n))2

= Eλ[Bias
post
n,λ (θ̂n|X(n), D(n))2|X(n)]− 2Eλ[Bias

post
n,λ (θ̂n|X(n), D(n))|X(n)] Biasanten,λ (θ̂n|X(n)) + Biasanten,λ (θ̂n|X(n))2

= Eλ[Bias
post
n,λ (θ̂n|X(n), D(n))2|X(n)]− 2Biasanten,λ (θ̂n|X(n))2 +Biasanten,λ (θ̂n|X(n))2

= Eλ[Bias
post
n,λ (θ̂n|X(n), D(n))2|X(n)]− Biasanten,λ (θ̂n|X(n))2 , (14)

where the first equality follows from definition, the second follows from (6) and (7), the third equality follows

from expanding the square, the fourth equality follows sinceBiasanten,λ (θ̂n|X(n)) is constant conditional onX(n),

and the fifth equality follows from (8) . By (9), Biasanten,λ (θ̂n|X(n)) is the same across λ, and therefore it follows

from (10)–(14) that (5) is equivalent tominimizing the first term in (14), i.e., the secondmoment of the ex-post

bias. We summarize the results in the following lemma:

Lemma 3.1. Suppose the treatment assignment scheme satisfies Assumption 2.1. Then, the set of solutions to (5)

is the same as the set of solutions to

min
λ∈Λn

Eλ[Bias
post
n,λ (θ̂n|X(n), D(n))2|X(n)] , (15)

and the set of solutions to

min
λ∈Λn

Varλ[Bias
post
n,λ (θ̂n|X(n), D(n))|X(n)] . (16)

Remark 3.1. We have shown that minimizing the conditional MSE is equivalent to (15), i.e., minimizing the

second moment of the ex-post bias, and (16), i.e., minimizing the variance of the ex-post bias conditional on

the covariates. This equivalence holds since the mean of the ex-post bias is the ex-ante bias, which is the same

across stratifications by (9). (15) is more convenient for intuition, while (16) is easier to solve.

The following theorem contains ourmain result on optimal stratification, which shows that (5) is solved by

a matched-pair design, where units are ordered by their values of a scalar function of the covariates and paired

adjacently. In particular, define the function

g(x) = E[Yi(1) + Yi(0)|Xi = x] . (17)

For any measurable function h : Rp → R, define hi = h(Xi). Let πg ∈ Πn be such that gπg(1) ≤ . . . ≤ gπg(2n).

Define the stratification

λg(X(n)) = {{πg(2s− 1), πg(2s)} : 1 ≤ s ≤ n} . (18)

Theorem 3.1. Suppose the treatment assignment scheme satisfies Assumption 2.1. Then, λg(X(n)) defined in

(18) solves (5).

Remark 3.2. Figure 3 illustrates the optimal stratification in (18). The outline of the proof of Theorem 3.1

is as follows. Lemma C.1 shows that each stratification is a convex combination of matched-pair designs.

Therefore, one of the solutions to (5) must be a “vertex” of these convex combinations, i.e., a matched-pair

design. Using the second part of Lemma 3.1, we show that the conditional MSEs of θ̂n under matched-pair

designs differ only in terms of the sum of squared distances in g within pairs. The sum is minimized by the

9
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Figure 1: Illustration of the optimal stratification defined in (18). In the example, p = 1, i.e.,Xi’s are scalars.
The optimal stratification is {{3, 4}, {1, 5}, {2, 6}}.

stratification defined in (18), according to a variant of the Hardy-Littlewood-Pólya rearrangement inequality

for non-bipartite matching.

Remark 3.3. Note from (17) that gi is a scalar regardless of the dimension p of Xi. Moreover, (18) depends

not on the values but merely the ordering of gi, 1 ≤ i ≤ 2n. For instance, if p = 1 and we are certain that g(x)

is monotonic in x, then it is optimal to order units byXi, 1 ≤ i ≤ n and pair the units adjacently, regardless of

the values of gi, 1 ≤ i ≤ 2n.

Remark 3.4. Using similar arguments as those used to establish Theorem 3.1, it is possible to show that if

MSE in (5) is replaced by any expected utility criterion, then one of the solutions is a matched-pair design.

It is further possible to show the same conclusion holds for any criterion that is convex in the distribution

of treatment status. Therefore, the optimality of matched-pair designs holds quite generally. That said, it is

nontrivial to characterize the form of the optimal matched-pair design in those general settings and this is left

for future work.

Remark 3.5. Theorem B.1 in the appendix examines the scenario where τs ≡ τ ∈ (0, 1). Assume τ = l
k where

l, k ∈ Z, 0 < l < k, and they are relatively prime, and that the sample size is kn. Define

gτ (Xi) =
E[Yi(1)|Xi]

τ
+

E[Yi(0)|Xi]

1− τ
. (19)

Let πτ,gτ

be a permutation of {1, . . . , kn} such that gτ
πτ,gτ (1)

≤ . . . ≤ gτ
πτ,gτ (kn)

. We show that (5) is solved by

λτ,g(X(n)) = {{πτ,gτ

((s− 1)k + 1), . . . πτ,gτ

(sk)} : 1 ≤ s ≤ n} , (20)

The scalar function gτ adjusts for treatment probabilities by inverse probability weighting. For a similar de-

sign, see Bold et al. (2018).

We illustrate Lemma 3.1, and in particular (15), in a small simulation study. In this example, 2n = 100;

10



Xi = (Xi,1, Xi,2)
′;Xi,1 andXi,2 are both distributed asN(0, 1), independent from each other, and i.i.d. across

1 ≤ i ≤ 2n; and E[Yi(d)|Xi] = X ′
iβ(d) for β(0) = (0, 1.5)′ and β(1) = (0.5, 2)′. As a result, θ = 0. In Figure

2, we plot the densities of the distributions of Biaspostn,λ (θ̂n|X(n), D(n)) defined in (7) over 1000 draws of X(n)

andD(n), for different treatment assignment schemes:

Oracle stratified randomization using the infeasible optimal procedure defined by (18).

by1 stratified randomization with two strata separated by the sample median ofXi,1.

by2 stratified randomization with two strata separated by the sample median ofXi,2.

SRS Simple Random Sampling, i.e., (Di, 1 ≤ i ≤ 2n) are i.i.d. Bernoulli( 12 ).

Note that the distribution ofBiaspostn,λ (θ̂n|X(n), D(n)) underOracle is muchmore concentrated than those under

other treatment assignment schemes.

0

1

2

3

4

5

-1.5 -1.0 -0.5 0.0 0.5 1.0
Ex-post bias

D
en

si
ty

Method

Oracle
by1
by2
SRS

Figure 2: Densities of the distributions of theBiaspostn,λ (θ̂n|X(n), D(n)) over 1000 draws ofX(n) andD(n) under

all treatment assignment schemes.

4 Empirical counterparts

The optimal procedure in (18) depends on the function g defined in (17), which needs to estimated in practice.

Fortunately, pilot experiments are common in RCTs, and we could use data from pilot experiments to estimate

g. In this section, we consider empirical counterparts to the optimal procedure defined by (18), when there is

a pilot experiment. We describe the procedures in this section and comment on their asymptotic properties,

11



formally introducing asymptotic results in Section 5. For any random vector A, we denote by Ãj the corre-

sponding random vector of the jth unit in the pilot experiment. Suppose W̃ (m) = ((Ỹj , X̃
′
j , D̃j)

′ : 1 ≤ j ≤ m)

comes from the pilot experiment. We assume that ((Ỹj(1), Ỹj(0), X̃j) : 1 ≤ j ≤ m) is an i.i.d. sequence of

random vectors with distributionQ, i.e., the units in the pilot are drawn from the same population as the units

in the main experiment.

We first consider a plug-in procedure. Suppose ĝm is an estimator of g defined in (17). Concretely, ĝm
is a random function from Rp to R that depends on W̃ (m). We will abstract away from how ĝm is obtained

but directly impose conditions on ĝm itself. Recall Πn is the set of all permutations of {1, . . . , 2n} and let

πĝm ∈ Πn be such that ĝm,πĝm (1) ≤ . . . ≤ ĝm,πĝm (2n). We define the following plug-in stratification for the

main experiment:

λĝm(X(n)) = {{πĝm(2s− 1), πĝm(2s)} : 1 ≤ s ≤ n} . (21)

As Theorem 5.1 shows, the plug-in procedure enjoys the property that as the sample size of the pilot increases,

the asymptotic variance of θ̂n in (3) is that same as that under the optimal procedure defined by (18). The key

condition for the property is that ĝm is consistent for g in a certain cense. See Assumption 5.3 below for more

details. The assumption is satisfied by a large class of nonparametric estimation methods, including machine

learning methods in high-dimensional settings, i.e., when the dimension of the covariates is large.

When the sample size of the pilot is small, the plug-in procedure generally does not have the efficiency prop-

erty as in settings with large pilot. But even then, researchers may well be content with the plug-in procedure

because it results in smaller limiting variance of θ̂n than many alternatives. That said, we may be concerned

that the plug-in estimator ĝm is a poor approximation for g in (17), and as a result, that under the plug-in strati-

fication defined in (21), the conditionalMSE and the asymptotic variance of θ̂n is large. Therefore, we consider

a penalized procedure under which, according to simulation studies in Section 6, the conditional MSE of θ̂n is

often smaller than that under the stratification defined in (21). The procedure is named so because it can be

viewed as penalizing the plug-in procedure by the standard error of the plug-in estimate.

We will describe the procedure first and then explain the intuititon why it is of this particular form. For

d ∈ {0, 1}, define the least-square estimators based on the treated or control units as

β̂m(d) =

 ∑
1≤j≤m:D̃j=d

X̃jX̃
′
j

−1 ∑
1≤j≤m:D̃j=d

X̃j Ỹj , (22)

and the variance estimators assuming homoskedasticity as

Σ̂m(d) = ν̂2m(d)

 ∑
1≤j≤m:D̃j=d

X̃jX̃
′
j

−1

, (23)

where

ν̂2m(d) =

∑
1≤j≤m(Ỹj − X̃ ′

j β̂m(d))2I{D̃j = d}∑
1≤j≤m I{D̃j = d}

.

12



Further define

β̂m = β̂m(1) + β̂m(0) (24)

Σ̂m = Σ̂m(1) + Σ̂m(0) . (25)

Next, we define Rm as the result of the following Cholesky decomposition:

R′
mRm = β̂mβ̂′

m + Σ̂m , (26)

and the following transformation of the covariates:

Zi = RmXi . (27)

The penalized stratification matches units to minimize the sum of distances in terms of Zi within pairs. Com-

pared with ĝm(Xi), the main difference is that Zi is a vector of the same dimension p ofXi, instead of a scalar.

Let πpen denote the solution to the following problem:

min
π∈Πn

1

n

∑
1≤s≤n

‖Zπ(2s−1) − Zπ(2s)‖ . (28)

When the dimension p ofXi is not too large, the problem could be solved quickly by the package nbpMatching
in R. Finally, define the penalized stratification as

λpen(X(n)) = {{πpen(2s− 1), πpen(2s)} : 1 ≤ s ≤ n} . (29)

(29) can be viewed as penalizing the plug-in procedure in (21) by the variance of the plug-in estimator.

We now briefly explain the intuition behind (28). For simplicity, suppose E[Yi(d)|Xi] = X ′
iβ(d) for d ∈

{0, 1}. In addition, define β = β(1) + β(0). (28) penalizes the the plug-in stratification by the standard error

of the plug-in estimate. Indeed, the objective in (28) equals

1

n

∑
1≤s≤n

d̂
1
2 (Xπ(2s−1), Xπ(2s)) ,

where for any x1, x2 ∈ Rp,

d̂(x1, x2) = (x′
1β̂m − x′

2β̂m)2 + (x1 − x2)
′Σ̂m(x1 − x2) . (30)

If Σ̂m = 0, then (28) is solved by πĝm in the plug-in stratification in (21) with ĝm = X ′
iβ̂m. If on the other hand

Σ̂m is large, which means that β̂m is a very noisy estimate for β, then the second term in (30) dominates, and

ĝm contributes little to the solution to (28).

Remark 4.1. We now provide a further justification for (29) by discussing its optimality in a Bayesian frame-

work. To begin with, note that the problem in (28) could also be defined with the squared norm ‖Zπ(2s−1) −
Zπ(2s)‖2, and the two definitions are asymptotically equivalent. For more details, see Section 4 of Bai et al.
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(2019). This asymptotically equivalent formulation is in fact optimal in the sense that it minimizes the inte-

grated risk in a Bayesian framework with a diffuse normal prior, where the conditional expectations of poten-

tial outcomes are linear. With some abuse of notation, denote the conditional MSE in (4) byMSE(λ|g,X(n)),

where we make explicit the dependence on g. Suppose we have a prior distribution of g, denoted by F (dg),

which is normal. Let Qn
X(dx(n)) denote the distribution of X(n) and Qm

W̃
(dw̃(m)) denote the distribution of

W̃ (m). Consider the solution to following problem of minimizing the integrated risk across all measurable

functions of the form u : (w̃(m), x(n)) 7→ λ ∈ Λn:

min
u

∫∫∫
MSE(u(w̃(m), x(n))|g, x(n))Qn

X(dx(n))Qm
W̃
(dw̃(m))F (dg) . (31)

In Appendix D, we first show that the problem in (31) under any prior F is solved by a matched-pair design.

To the best of our knowledge, this is the first result showing that matched-pair designs are optimal in general

Bayesian frameworks. Next, we specialize the model by assuming E[Yi(d)|Xi] = X ′
iβ(d), define β = β(1) +

β(0), and show that F could be equivalently expressed as a distribution on β, which we further assume to be

normal. One may be tempted to conjecture that the solution to (31) is to näively match units on the the value

of X ′
iβ̄, where β̄ is posterior mean of β, i.e., β̂m in (24) shrunk towards the prior mean. We show, however,

that the solution to (31) depends not only on the posterior mean of β, but also on the posterior variance of

it. The posterior variance serves as a penalty to matching naively on the posterior mean of β: the larger the

variance, the more it penalizes matching on the posterior mean. In the end, we show that when F diverges to

the diffuse prior, the posterior mean converges to the OLS estimate, and the posterior variance converges to

the variance estimate from OLS. As a result, the solution to (31) converges to the procedure defined by (28)

with the squared norm ‖Zπ(2s−1) − Zπ(2s)‖2.

5 Asymptotic results and inference

Under matched-pair designs, it is challenging to derive asymptotic properties of the difference-in-means esti-

mator and conduct inference for ATE, because of the heavy dependence of treatment status across units. Even

if g in (17) is known, commonly-used inference procedures under matched-pair designs, including the two-

sample t-test and the “matched pairs” t-test, are conservative in the sense that the limiting rejection probabil-

ity under the null is equal to the nominal level. The issue is further complicated since g needs to be estimated,

so that the stratifications in (21) and (29) depend on data from the pilot experiment. Extending results from

Bai et al. (2019), we develop novel results of independent interest on the limiting behavior of the difference-in-

means estimator under procedures involving a large number of strata, when the stratifications depend on data

from the pilot experiment. These results enable us to establish the desired property of our proposed inference

procedures. To begin with, we make the following mild moment restriction on the distributions of potential

outcomes:

Assumption 5.1. E[Y 2
i (d)] < ∞ for d ∈ {0, 1}.

14



5.1 Asymptotic results for plug-in with large pilot

In this subsection, we study the properties of θ̂n defined in (3) under settings where the sample sizes of both

the pilot and the main experiments increase. We henceforth refer to such a setting as an experiment with a

large pilot. We first impose the following assumption on g defined in (17).

Assumption 5.2. The function g satisfies

(a) 0 < E[Var[Yi(d)|g(Xi)] for d ∈ {0, 1}.

(b) Var[Yi(d)|g(Xi) = z] is Lipschitz in z.

(c) E[g2(Xi)] < ∞.

Assumption 5.2(a)–(c) are conditions imposed on the target function g instead of the plug-in estimator ĝm.

Assumption 5.2(a) is a mild restriction to rule out degenerate situations and to permit the application of suit-

able laws of large numbers and central limit theorems. Assumption 5.2(c) is another mild moment restriction

to ensure the pairs are “close” in the limit. New sufficient conditions for Assumption 5.2(b) are provided in

Appendix C.1. The results therein about the conditional expectation of a random variable given a manifold are

new and may be of independent interest.

We additionally impose the following restriction on the estimator ĝm. Inwhat follows, we useQX to denote

the marginal distribution ofXi underQ.

Assumption 5.3. The sequence of estimators {ĝm} satisfies∫
Rp

|ĝm(x)− g(x)|2QX(dx)
P→ 0

asm → ∞.

Assumption 5.3 is commonly referred to as the L2-consistency of the ĝm for g. When p is fixed and suitable

smoothness conditions hold, L2-consistency is satisfied by series and sieves estimators (Newey, 1997; Chen,

2007) and kernel estimators (Li and Racine, 2007). In high-dimensional settings, when p increases with n at

suitable rates, it is satisfied by the LASSO estimator (Bühlmann and Van De Geer, 2011; Belloni et al., 2012,

2014; Chatterjee, 2013; Bellec et al., 2018), regression trees and random forests (Györfi et al., 2006; Biau,

2012; Denil et al., 2014; Scornet et al., 2015; Wager and Walther, 2015), neural nets (White, 1990; Chen

andWhite, 1999; Chen, 2007; Farrell et al., 2018), and support vector machines (Steinwart and Christmann,

2008). The results therein are either exactly as stated in Assumption 5.3 or one of the following:

(a) sup
x∈Rp

|ĝm(x)− g(x)| P→ 0 asm → ∞.

(b) E[|ĝm(x)− g(x)|2] → 0 asm → ∞.

It is straightforward to see (a) impliesAssumption5.3. (b) also impliesAssumption5.3 byMarkov’s inequality.
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The next theorem reveals that under L2-consistency of the estimator ĝm, the asymptotic variance of θ̂n
under the plug-in procedure is the same with that under the infeasible optimal procedure defined by (18).

Theorem 5.1. Suppose the treatment assignment scheme satisfies Assumption 2.1,Q satisfies Assumption 5.1, g

satisfies Assumption 5.2. Then, under λg(X(n)), as n → ∞,

√
n(θ̂n − θ(Q))

d→ N(0, ς2g ) ,

where

ς2g = Var[Yi(1)] + Var[Yi(0)]−
1

2
E[(g(Xi)− E[Yi(1) + Yi(0)])

2] . (32)

In addition, suppose ĝm satisfies Assumption 5.3. Then, under λĝm(X(n)) defined in (21), asm,n → ∞,

√
n(θ̂n − θ(Q))

d→ N(0, ς2g ) .

Remark 5.1. Bai et al. (2019) studies the scenario where units are matched to minimize the sum of the Eu-

clidean distance in terms of their covariates, and show that the limiting variance of θ̂n is equal to ς2g in (32).

The results there, though, are derived assuming that the number of covariates p is fixed. Instead, we could

allow for p to increase with the sample size n, as long as ĝm is L2-consistent for g.

Remark 5.2. In analysis of randomized controlled trials researchers sometimes choose not to stratify but run

regressionswith covariate adjustments afterwards, ormore precisely, regress outcomes on treatment and some

observed covariates of the units. With the most flexible adjustment, the “efficiency bound” of θ̂n is equal to ς2g
in (32). Unfortunately, in order to attain this bound, higher order smoothness conditions are usually required.

L2-consistency of the estimator seldom suffices, and the estimators are often required not only to be uniformly

consistent, but also to have a sufficiently fast convergence rate. See Rothe (2020) formore details. As a result,

in practice, researchers often opt to use only linear covariate adjustments. In constrast, the only assumption

we require for Theorem 5.1 to hold is the L2-consistency of ĝm. Furthermore, it is straightforward to com-

bine stratification with covariate adjustments. By using a conventional argument in partitioned regression,

one could show that with the same covariate adjustments, stratification will always lead to a weakly smaller

limiting variance of θ̂n. A further observation is that sometimes the optimal stratification λg(X(n)) in (18) is

known without any need for estimation. For example, if Xi is a scalar and g(x) is known to be monotonic in

x, then we could simply match units acccording to Xi’s, and this would attain ς2g in (32). On the other hand,

with covariate adjustments we still need to nonparametrically estimate g at a sufficiently fast rate.

5.2 Inference under plug-in procedure

Next, we consider inference for the ATE. For any prespecified θ0 ∈ R, we are interested in testing

H0 : θ(Q) = θ0 versusH1 : θ(Q) 6= θ0 (33)

16



at level α ∈ (0, 1). In order to do so, for d ∈ {0, 1}, define

σ̂2
n(d) =

1

n

∑
1≤i≤2n:Di=d

(Yi − µ̂n(d))
2 .

Define

ρ̂n =
2

n

∑
1≤j≤⌊n

2 ⌋

(Yπĝm (4j−3) + Yπĝm (4j−2))(Yπĝm (4j−1) + Yπĝm (4j)) (34)

and define ς̂ ĝmn such that

(ς̂ ĝmn )2 = σ̂2
n(1) + σ̂2

n(0)−
1

2
ρ̂n +

1

2
(µ̂n(1) + µ̂n(0))

2 . (35)

The test is

ϕĝm
n (W (n)) = I{|T ĝm

n (W (n))| > Φ−1(1− α

2
)} , (36)

where

T ĝm
n (W (n)) =

√
n(θ̂n − θ0)

ς̂ ĝmn
, (37)

and Φ−1(1− α
2 ) denotes the (1−

α
2 )-th quantile of the standard normal distribution. Although the right-hand

side of (35) is possibly negative, its limit in probability must be positive under assumptions imposed below.

By Remark 5.5 below, we could always adjust it to be positive. Therefore, we assume all quantities like (35)

are positive for the rest of the paper.

We start by studying the limiting behavior of the test defined in (36) with a large pilot. The following

theorem shows that the test defined in (36) is asymptotically exact in the sense that when the sample sizes

of both the pilot and the main experiments increase, the limiting rejection probability is equal to the nominal

level.

Theorem 5.2. Suppose the treatment assignment scheme satisfies Assumption 2.1,Q satisfies Assumption 5.1, g

satisfiesAssumption5.2, and ĝm satisfiesAssumption5.3. Then, underλĝm(X(n))defined in (21), asm,n → ∞,

(ς̂ ĝmn )2
P→ ς2g .

Thus, for the problem of testing (33) at level α ∈ (0, 1), ϕĝm
n (W (n)) defined in (36) satisfies

lim
m,n→∞

E[ϕĝm
n (W (n))] = α ,

whenQ additionally satisfies the null hypothesis, i.e., θ(Q) = θ0.

Remark 5.3. The studentization by (35) is crucial for the asymptotic exactness of (36). Commonly-used tests

including the two-sample t-test (Riach and Rich, 2002; Gelman and Hill, 2006; Duflo et al., 2007) and the

“matched pairs” t-test (Moses, 2006; Hsu and Lachenbruch, 2007; Armitage et al., 2008; Athey and Imbens,

2017) are asymptotically conservative in the sense that the limiting rejection probabilities under the null are

no greater than and typically strictly less than the nominal level. See Bai et al. (2019) for more details.

Remark 5.4. In order for ĝm to satisfy Assumption 5.3, the following selection on observables condition is
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usually required on the pilot experiment:

(Ỹ (m)(1), Ỹ (m)(0)) ⊥⊥ D̃(m)|X̃(m) ,

The condition is satisfied by a large class of treatment assignment schemes, including simple randomsampling,

covariate-adaptive randomization, re-randomization, etc. For more details, see Bugni et al. (2018) and Bai

et al. (2019).

Remark 5.5. In finite sample one might be worried that the right hand side of (35) is negative. Furthermore,

we always have access to an asymptotically conservative estimator for the limiting variance, for example,

ς̂2n = σ̂2
n(1) + σ̂2

n(0), whose probability limit is weakly greater than ς2g . So even though the right hand side of

(35) is positive, it might be larger than ς̂2n in finite sample. To get over both problems, we could simply redefine

the variance estimator to be ς̂2n if the right hand side of (35) is less than or equal to 0, and the smaller one of

the right hand side of (35) and ς̂2n otherwise.

Next, we consider settings where the sample size of the main experiment increases while that of the pilot

experiment is allowed to be fixed. We henceforth refer to such a setting as an experiment with a small pilot. We

show that test defined in (36) is again asymptotically exact in the sense that the limiting rejection probability

under the null is equal to the nominal level when the sample size of the main experiment increases, regardless

of the sample size of the pilot. The restrictions that we put on ĝm, however, aremore likely to be satisfiedwhen

ĝm is constructed using simple methods such as least squares. We impose the following restriction in addition

to Assumption 5.1:

Assumption 5.4. The estimator ĝm satisfies

Q{ĝm ∈ H} = 1 ,

whereH is the set of all measurable functions h : Rp → R such that

(a) 0 < E[Var[Yi(d)|h(Xi)]] for d ∈ {0, 1}.

(b) E[Y r
i (d)|h(Xi) = z] is Lipschitz in z for r = 1, 2 and d = 0, 1.

(c) E[h2(Xi)] < ∞.

Assumption 5.4 is imposed on the distributions of potential outcomes conditional on ĝm, where ĝm is viewed

as a fixed function given data from the pilot experiment. In fact, with small pilots, Assumption 5.4 contains

the same set of conditions as those in Assumption 5.2, the only difference being that they are imposed on ĝm

instead of g. In the definition ofH, (a) is a mild restriction to rule out degenerate situations and to permit the

application of suitable laws of large numbers and central limit theorems, and (c) is another mild moment re-

striction to ensure the pairs are “close” in the limit. New sufficient conditions for (b) are provided in Appendix

C.1. Note, in particular, that (b) is more likely to be satisfied when ĝm is constructed using simple estimation

methods such as least squares.
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The following theorem shows that the test defined in (36) is asymptotically exact in the sense that as the

sample size of the main experiment increases, the limiting rejection probability under the null is equal to the

nominal level. Note, in particular, that the sample size of the pilot is allowed to be fixed.

Theorem 5.3. Suppose the treatment assignment scheme satisfies Assumption 2.1, Q satisfies Assumption 5.1,

and ĝm satisfies Assumption 5.4. Suppose Q additionally satisfies the null hypothesis, i.e., θ(Q) = θ0. Then,

under λĝm(X(n)) defined in (21), for the problem of testing (33) at level α ∈ (0, 1), ϕĝm
n (W (n)) defined in (36)

satisfies

lim
n→∞

E[ϕĝm
n (W (n))] = α .

Remark 5.6. Note that we use the same test ϕĝm
n with large (Theorem 5.2) and small (Theorem 5.3) pilots, and

it is asymptotically exact either way. When m increases at a rate such that Assumption 5.3 is satisfied, the

asymptotic variance of θ̂n asm,n → ∞ is ς2g , which equals the asymptotic variance under the infeasible optimal

procedure defined by (18). Yetwhenm is fixed, the asymptotic variance of θ̂n asn → ∞ is generally larger than

ς2g . Moreover, as previously commented, the assumptions in the two settings are non-nested. Assumption 5.4

ismore likely to be satisfiedwhen the plug-in estimator ĝm is constructed using simple estimationmethods, but

does not require ĝm to be consistent for g in any sense. On the other hand, Assumptions 5.2 and Assumption

5.3 could potentially allow for more complicated estimation methods but require ĝm to be L2-consistent for g.

Remark 5.7. In fact, the asymptotic exactness of ϕĝm
n (W (n)) holds conditional on data from the pilot experi-

ment, i.e.,

lim
n→∞

E[ϕĝm
n (W (n))|W̃ (m)] = α (38)

with probability one for W̃ (m). See the proof of Theorem 5.3 in the appendix for more details. Furthermore, it

follows from the proof that the test is also asymptotically exact under

λh(X(n)) = {{πh(2s− 1), πh(2s)} : 1 ≤ s ≤ n} , (39)

where hπh(1) ≤ . . . ≤ hπh(2n) and h is a fixed function satisfying h ∈ H forH defined in (5.4).

Remark 5.8. As an intermediate step in the proof of Theorem 5.3, we derive the limiting variance of θ̂n under

λh(X(n)) defined in (39), where h is a fixed function satisfying h ∈ H. The limiting variance equals

ς2h = Var[Yi(1)] + Var[Yi(0)]−
1

2
E[(E[Yi(1) + Yi(0)|h(Xi)]− E[Yi(1) + Yi(0)])

2] . (40)

Comparing (40) with (32), we could show theminimum of ς2h over h ∈ H occurs when h = g, and theminimum

is unique unless there exists and h ∈ H for whichE[Yi(1)+Yi(0)|h(Xi)] = E[Yi(1)+Yi(0)|Xi]with probability

one. This result enables us to compare the limiting variance of θ̂n across a large class of stratifications, and

in particular, all stratifications with a fixed number of large strata. Indeed, all such stratifications could be

defined by a discrete-valued function h : Rp → {1, . . . , R} for a fixed integer R, and therefore ς2h ≥ ς2g unless

E[Yi(1) + Yi(0)|h(Xi) = r] = E[Yi(1) + Yi(0)|Xi] with probability one, i.e, when E[Yi(1) + Yi(0)|Xi] is the

same within each stratum. Another corollary is that if h ∈ H and hc is a constant function, then the stratifi-

cation λhc(X(n)) = {{1, . . . , 2n}} with all units in one stratum satisfies ς2hc
≥ ς2h, unless again the degeneracy
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condition holds, this time requiringE[Yi(1) + Yi(0)|h(Xi)] to be a constant. Any ĝm withQ{ĝm ∈ H} = 1 is a

constant function inH conditional on the pilot data W̃ (m), so in this sense, almost all stratifications are better

than not stratifying at all, because it results in a weakly smaller and typically strictly smaller limiting variance

of θ̂n. See Theorem B.2 for more details. By direct calculation we could also show that for any h ∈ H, ς2h is

weakly less than and typically strictly less than the limiting variance of θ̂n under simple random sampling, i.e.,

when treatment status is determined by i.i.d. coin flips.

Remark 5.9. Sometimes political or logistical considerations or estimation of subpopulation treatment effects

require researchers to prespecify different treated fractions across subpopulations. In those settings, as dis-

cussed in Appendix B, θ̂n is no longer consistent for θ in (1). Instead, it is natural to use the estimator from

the fully saturated regression with all interaction terms of treatment status and strata indicators, i.e., θ̂satn de-

fined in (62). Appendix B discusses straightforward extensions of the optimality result in Theorem 3.1 and

empirical counterparts including that in (21). These results are closely related to Tabord-Meehan (2020), who

considers stratification trees which lead to a small number of large strata. In particular, Remark B.1 discusses

a way to combine his procedure and procedures in this paper, under which the asymptotic variance of θ̂satn is

no greater than and typically strictly less than that under his procedure alone.

5.3 Inference under penalized procedure

We now consider inference under the penalized procedure defined by (29) with a small pilot. This subsection

follows closely the exposition in Section 4 of Bai et al. (2019). Since in general Z defined in (27) is not a

scalar, the correction term in (34) could no longer be defined as before since it relies on πĝm , where ĝm is a

scalar. Instead, we need tomatch the pairs to ensure that the two pairs matched are close in terms ofZ. Define

Z̄s =
Zπpen(2s−1) + Zπpen(2s)

2
,

and π̄ as the solution of the following problem:

min
π∈Πn

1

n

∑
1≤j≤⌊n

2 ⌋

‖Z̄π(2j−1) − Z̄π(2j)‖ .

Let π̃pen ∈ Πn be such that for 1 ≤ s ≤ n,

π̃pen(2s− 1) = πpen(2π̄(s)− 1) and π̃pen(2s) = πpen(2π̄(s)) .

In other words, π̃pen matches the pairs defined by πpen based on the midpoints of pairs. Since π̃pen rearranges

πpen in (29) while preserving the units in each stratum, it follows that for λpen(X(n)) defined in (29), we have

λpen(X(n)) = {{π̃pen(2s− 1), π̃pen(2s)} : 1 ≤ s ≤ n} .
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We then define the test similarly to (36), with πĝm replaced by π̃pen. In particular, define

ρ̂penn =
2

n

∑
1≤j≤⌊n

2 ⌋

(Yπ̃pen(4j−3) + Yπ̃pen(4j−2))(Yπ̃pen(4j−1) + Yπ̃pen(4j))

and let ς̂penn be such that

(ς̂penn )2 = σ̂2
n(1) + σ̂2

n(0)−
1

2
ρ̂penn +

1

2
(µ̂n(1) + µ̂n(0))

2 .

The test is

ϕpen
n (W (n)) = I{|T pen

n (W (n))| > Φ−1(1− α

2
)} , (41)

where

T pen
n (W (n)) =

√
n(θ̂n − θ0)

ς̂penn
, (42)

and Φ−1(1− α
2 ) denotes the (1−

α
2 )-th quantile of the standard normal distribution.

Under the penalized procedure, we impose the following assumption onQ:

Assumption 5.5. (a) 0 < E[Var[Yi(d)|RmXi]] for d ∈ {0, 1}.

(b) E[Y r
i (d)|RmXi = z] is Lipschitz in z for r ∈ {1, 2} and d ∈ {0, 1}.

(c) The support of RmXi is compact.

Assumption 5.5(a)–(b) are the counterparts to Assumption 2.1(a) and (c) of Bai et al. (2019). Assumption

5.5(c) is also imposed in Section 4 of Bai et al. (2019). The following theorem establishes the asymptotic

exactness of the test defined in (41), in the sense that the limiting rejection probability under the null equals

the nominal level. Note, in particular, that the sample size of the pilot is allowed to be fixed.

Theorem 5.4. Suppose the treatment assignment scheme satisfies Assumption 2.1 and Q satisfies Assumptions

5.1 and 5.5. SupposeQ additionally satisfies the null hypothesis, i.e., θ(Q) = θ0. Then, underλpen(X(n)) defined

in (29), for the problem of testing (33) at level α ∈ (0, 1), ϕpen
n (W (n)) defined in (36) satisfies

lim
n→∞

E[ϕpen
n (W (n))] = α .

Remark 5.10. In some setups, it may be possible to improve the estimator ĝm by imposing shape restrictions

on g. See, for instance, Chernozhukov et al. (2015) and Chetverikov et al. (2018).

5.4 Inference with pooled data

So farwe have disregarded data from the pilot experiment in the test defined in (36) exceptwhen computing ĝm.

We end this section by describing a test that combines data from the pilot and the main experiments. Define

θ̃m = µ̃m(1)− µ̃m(0) ,
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where

µ̃m(d) =

∑
1≤j≤m ỸjI{D̃j = d}∑
1≤j≤m I{D̃j = d}

for d ∈ {0, 1}. We define the new estimator for θ(Q) as

θ̂combined
n =

m

m+ 2n
θ̃m +

2n

2n+m
θ̂n .

We define the test as

ϕcombined
n (W (n), W̃ (m)) = I{|T combined

n (W (n), W̃ (m))| > Φ−1(1− α

2
)} , (43)

where

T combined
n (W (n), W̃ (m)) =

√
m+ 2n(θ̂combined

n − θ0)√
m

m+2n ς̃
2
pilot,m + 2n

m+2n2(ς̂
ĝm
n )2

, (44)

and Φ−1(1− α
2 ) denotes the (1−

α
2 )-th quantile of the standard normal distribution.

The following theorem shows that the test defined in (43) is asymptotically exact as the sample sizes

of both the pilot and the main experiments increase. The main additional requirement is that as m → ∞,
√
m(θ̃m − θ(Q)) converges in distribution to a normal distribution whose variance is consistently estimable.

The assumption is satisfied by many treatment assignment schemes, including simple random sampling and

covariate-adaptive randomization. See Bugni et al. (2018) and Bugni et al. (2019) for more details.

Theorem 5.5. Suppose the treatment assignment scheme satisfies Assumption 2.1, Q satisfies Assumptions 5.1,

g satisfies Assumption 5.2, and ĝm satisfies Assumption 5.3. Suppose in addition that as m → ∞,
√
m(θ̃m −

θ(Q))
d→ N(0, ς2pilot), ς̃

2
pilot,m

P→ ς2pilot , and that asm,n → ∞,

m

m+ 2n
→ ν ∈ [0, 1] .

Then, under λĝm(X(n)) defined in (21), asm,n → ∞,

√
m+ 2n(θ̂combined

n − θ(Q))√
m

m+2n ς̃
2
pilot,m + 2n

m+2n2(ς̂
ĝm
n )2

d→ N(0, 1) .

Thus, for the problem of testing (33) at level α ∈ (0, 1), ϕcombined
n (W (n), W̃ (m)) in (43) satisfies

lim
m,n→∞

E[ϕcombined
n (W (n), W̃ (m))] = α ,

wheneverQ additionally satisfies the null hypothesis, i.e. θ(Q) = θ0.

Remark 5.11. Although Theorem 5.5 is stated under λĝm(X(n)) in (21), it is straightforward to establish sim-

ilar results when λĝm(X(n)) in the main experiment is replaced by other stratifications, e.g., (29).
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6 Simulation

In this section, we examine the properties of the procedures discussed in Section 4 in a small simulation study.

For d ∈ {0, 1} and 1 ≤ i ≤ 2n, potential outcomes are generated according to the equation:

Yi(d) = µ(d) +md(Xi) + σd(Xi)ϵi(d) ,

where µ(d),md(Xi), σd(Xi), and ϵi(d) are specified in each model as follows. In each of the following specifi-

cations, 2n = 200; ((Xi, ϵi(0), ϵi(1)) : 1 ≤ i ≤ 2n) are i.i.d.;Xi, ϵi(0), ϵi(1) are independent; and µ(0) = 0. For

each model, we generate data from a very small pilot experiment of sample size m = 20, in which half of the

units are treated.

Model 1 p = 2;Xi,1 ∼ Beta(2, 2), Xi,2 ∼ Beta(2, 2);md(Xi) = X ′
iβ(d) and ϵi(d) ∼ N(0, 1) for d ∈ {0, 1};

β(1) = β(0) = (1, 1)′; σ0(Xi) = σ1(Xi) = 0.1.

Model 2 as in Model 1, but β(1) = β(0) = (3, 0.1)′.

Model 3 as in Model 1, but σ0(Xi) = σ1(Xi) = 1 and ϵi(d) ∼ Unif
[
− 1

2 ,
1
2

]
for d ∈ {0, 1}.

Model 4 as in Model 2, but σ0(Xi) = σ1(Xi) = 1 and ϵi(d) ∼ Unif
[
− 1

2 ,
1
2

]
for d ∈ {0, 1}.

Model 5 as in Model 1, but m1(Xi) = m0(Xi) = X2
i,1, σ0(Xi) = σ1(Xi) = 0.1, and ϵi(d) ∼ N(0, 1) for

d ∈ {0, 1}.

Model 6 as in Model 5, butm1(Xi) = m0(Xi) = X2
i,1 +X2

i,2.

Model 1 is a symmetricmodelwith small variances in error terms. Model 2 differs fromModel 1 in thatXi,1

is the predominant component in potential outcomes. Models 3 and 4 are similar to Models 1 and 2, the only

difference being that the error terms have larger variances. Models 5 and 6 are non-linear and are designed

to study properties of the plug-in and the penalized procedures under misspecification. In Model 5, only Xi,1

affects the potential outcomes, whileXi,1 andXi,2 are symmetric in Model 6.

We consider the following procedures:

Oracle matched-pair design with the infeasible optimal stratification in (18).

Plug-in matched-pair design with the plug-in stratification in (21) with ĝm(x) = x′β̂m for β̂m in (24).

Pen matched-pair design with the penalized stratification in (29).

MPeuc matched-pair design minimizing the sum of Euclidean distances within pairs.

by1 stratified randomization with two strata separated by the sample median ofXi,1.

by2 stratified randomization with two strata separated by the sample median ofXi,2.

MP1 matched-pair design usingXi,1 only, i.e., stratification in (21) with ĝm(x) = x1.
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MP2 matched-pair design usingXi,2 only, i.e., stratification in (21) with ĝm(x) = x2.

Stratifications in Pen and MPeuc are computed using the package nbpMatching in R.

Wefirst present results on the conditionalMSEof θ̂n defined in (4). In these results, we setµ(1) = µ(0) = 0,

so that θ(Q) = 0 aswell. By Lemma 3.1 and in particular (16), the conditionalMSEs of θ̂n under stratifications

differ only in terms of the variance of the ex-post bias conditional on the covariates. Therefore, for a given

stratification λ, a set of covariates X(n), and the function g defined in (17), we define a constant multiple of

the objective in (16) as the loss:

L(λ|g,X(n)) = 4n2 Varλ[E[θ̂n|X(n), D(n)]|X(n)] . (45)

Table 1 displays the summary statistics of the values of the loss defined in (45) for different stratifications

across 1000 draws of X(n). We label the columns according to the procedures. In each model, we calculate

ratios of values of the loss for each procedure against those for Oracle, and present the quartiles and means of

the ratios across the 1000 draws ofX(n).

Model Oracle Plug-in Pen MPeuc by1 by2 MP1 MP2

1 25% 1.00 2.50 3.69 22.51 2344.62 2353.34 885.77 903.36
50% 1.00 8.46 5.76 35.86 3852.52 3848.06 1455.54 1435.83
75% 1.00 28.03 9.93 55.50 5853.40 5866.36 2238.42 2183.49
Mean 1.00 25.07 8.22 40.76 4281.19 4293.87 1653.90 1641.51

2 25% 1.00 2.08 4.33 67.39 3238.83 10723.31 6.89 5192.29
50% 1.00 5.34 5.96 86.24 4211.93 14112.38 8.48 6954.55
75% 1.00 15.21 9.53 108.13 5239.90 17414.65 10.57 8640.57
Mean 1.00 12.85 8.14 89.26 4305.93 14377.14 8.90 7169.01

3 25% 1.00 16.28 8.57 22.52 2329.58 2340.74 894.50 902.57
50% 1.00 68.97 14.04 35.55 3835.03 3850.74 1455.64 1466.20
75% 1.00 230.33 25.64 54.02 5734.63 5783.08 2230.34 2226.22
Mean 1.00 205.52 21.42 40.65 4288.67 4299.91 1650.97 1662.17

4 25% 1.00 8.86 10.27 67.58 3266.09 10924.10 6.91 5440.39
50% 1.00 43.88 15.49 87.50 4125.96 13824.46 8.57 6847.59
75% 1.00 131.81 26.43 109.16 5197.76 17364.76 10.65 8744.17
Mean 1.00 104.72 22.07 89.41 4291.05 14343.10 8.97 7168.34

5 25% 1.00 27.39 71.83 415.34 19128.24 57595.61 1.00 27631.81
50% 1.00 116.62 103.72 501.70 22248.95 66572.16 1.00 32579.67
75% 1.00 333.13 176.04 599.89 26430.16 77215.74 1.00 38871.75
Mean 1.00 318.20 150.85 520.67 23158.28 68653.31 1.00 34162.98

6 25% 1.00 244.36 115.27 214.18 27727.82 11878.77 13124.19 1424.60
50% 1.00 342.09 150.88 265.06 32936.14 14190.12 15817.15 1726.21
75% 1.00 517.14 197.98 328.09 39810.35 17243.41 18864.44 2118.38
Mean 1.00 424.81 168.61 276.24 34031.92 14659.61 16327.06 1798.22

Table 1: Summary statistics for ratios of the values of the loss in (45) under all stratifications against those

under the infeasible optimal stratifications (Oracle), over 1000 draws ofX(n), in Models 1–6.

Unsurprisingly, Oracle always has the smallest values of the loss. Ad-hoc procedures including by1, by2,

MP1, MP2 perform miserably most of the time. Although MP1 performs well under Models 2, 4, and 5, it is

because thereXi,1 is a predominant element of potential outcomes. In particular, Model 5 is an example where
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g defined in (17) is a monotonic function of the first covariate, so that MP1 solves (5) and has the same values

of loss with Oracle. We separately discuss the remaining three procedures, Plug-in, Pen, and MPeuc:

Plug-in: In most models, Plug-in outperforms ad-hoc procedures including by1, by2, MP1, MP2, which

is somewhat surprising since the sample size of pilot is onlym = 20. InModels 1–2, where the variances

of ϵi(d)’s are small, Plug-in also improves upon MPeuc, and the improvement is pronounced in Model 2.

But when the variances of ϵi(d)’s are large, it performs worse than Pen andMPeuc, as could be seen from

Models 3–6.

Pen: In Models 1–4, Pen is the best among all procedures. In all models, it performs better than Plug-

in and MPeuc, remarkably so than Plug-in in Models 3–6. The improvement upon MPeuc is most pro-

nounced in Models 2 and 4, where Xi,2 contributes little to potential outcomes. These are examples in

which MPeuc assigns equal weights to two covariates while regression-based methods could detect that

one of them dominates. Evenwhen potential outcomes are non-linear (Models 5–6), the values of its loss

are smaller than those under MPeuc.

MPeuc: In all models, it is not as poor as the ad-hoc procedures including by1, by2, MP1, MP2, but is

obviously worse than Pen. In Models 2 and 4, where only Xi,1 matters, it is obviously worse than Pen

and Plug-in, because the pilot informs us thatXi,1 is much more important thanXi,2, which is not taken

into account by Euclidean matching.

Next, for θ0 = 0, we consider the problem of testing (33) at level α = 0.05. For Models 1–6, we compute

the rejection probabilities of suitable tests under stratifications mentioned previously, when µ(0) = 0 and

θ = µ(1) = 0, 0.0.1, 0.02, 0.04. In particular, we use the following tests under each stratification:

Oracle: test in (36) with ĝm = g for g defined in (17).

Plug-in: test in (36) with ĝm(x) = x′β̂m for β̂m defined in (24).

Pen: test in (41).

MPeuc: test in (41) with Z replaced byX.

by1: test in (36) with ĝm(x) = I{x1 > med(Xi,1 : 1 ≤ i ≤ 2n)}.

by2: test in (36) with ĝm(x) = I{x2 > med(Xi,2 : 1 ≤ i ≤ 2n)}.

MP1: test in (36) with ĝm(x) = x1.

MP2: test in (36) with ĝm(x) = x2.

Table 2 displays the rejection probabilities for Models 1–6 under all stratifications using tests described

above. Note that loss properties in Table 1 translate into power properties in Table 2. Indeed, while all tests

under all stratifications have correct sizes, the test in (41) under the penalized stratification in (29) has higher
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power than most other tests under other stratifications, except that under Oracle. In Models 1–2, the corre-

sponding tests under Plug-in and Pen have higher power than that under MPeuc, while being comparable in

other models, except inModel 6, where potential outcomes are highly non-linear. The comparison is most pro-

nounced in Model 2, where g in (17) depends mostly on x1, because Plug-in and Pen incorporate information

from the pilot whileMPeuc doesn’t. The test under Pen performs better than that under Plug-in inModels 1–5.

Finally, note that tests under matched-pair designs, including Plug-in, Pen, and MPeuc usually perform much

better than tests under stratifications with a small number of large strata, including by1 and by2.

Model Oracle Plug-in Pen MPeuc by1 by2 MP1 MP2

1 θ = 0 5.63 5.15 5.61 5.48 5.02 5.27 5.44 5.45
θ = 0.01 11.21 10.63 11.2 11 6.34 6.41 6.15 6.24
θ = 0.02 30.26 28.32 29.76 27.31 8.02 8.19 9.83 9.6
θ = 0.04 79.44 76.86 79.98 75.4 17.71 18.12 20.87 23.19

2 θ = 0 5.43 5.05 5.12 5.24 5.37 5.47 5.32 5.88
θ = 0.01 11.72 10.84 11.06 9.68 5.54 5.57 10.96 5.53
θ = 0.02 28.52 27.45 27.88 20.5 7.35 5.6 27.14 5.81
θ = 0.04 79.82 76.23 78.6 62.6 11.98 6.79 77.77 7.19

3 θ = 0 5.08 5.61 5.32 5.34 5.51 5.7 5.37 5.26
θ = 0.01 5.69 6.11 6.33 5.58 5.93 5.46 5.51 5.57
θ = 0.02 8.22 7.49 8.18 8.43 6.92 6.92 7.27 7.67
θ = 0.04 17.52 16.66 16.94 16.84 11.82 12.31 12.67 12.84

4 θ = 0 5.69 5.55 5.7 5.31 5.43 5.16 5.2 5.14
θ = 0.01 6.31 6.2 6.69 5.98 5.72 5.49 6.32 5.72
θ = 0.02 8.1 7.98 8.13 7.87 6.97 5.91 8.05 5.88
θ = 0.04 16.73 16.77 17.02 16.75 9.69 7.28 16.81 7.28

5 θ = 0 5.33 5.26 5.66 5.5 5.47 5.38 5.6 5.16
θ = 0.01 11.44 10.93 11.57 11.5 7.78 6.56 11.64 6.5
θ = 0.02 30.34 28.2 30.02 28.44 14.36 9.28 30.02 9.23
θ = 0.04 80.81 77.12 79.89 77.46 40.39 20.83 80.52 21.93

6 θ = 0 5.15 5.47 3.51 4.94 5.57 5.78 5.78 5.72
θ = 0.01 6.77 6.84 4.44 6.46 5.72 5.7 5.62 6.52
θ = 0.02 12.41 11.49 8.72 11.22 6.79 7.91 6.69 10.55
θ = 0.04 31.94 29.34 24.37 29.18 10.45 16.31 10.94 25.43

Table 2: Rejection probabilities for Models 1–6 under all stratifications using tests in Section 4.

7 Empirical application

To illustrate our procedures in practice, we replicate part of the experiment in DellaVigna and Pope (2018) on

Amazon Mechanical Turk (MTurk) and the TurkPrime Prime Panels, using the penalized procedure defined

by (29). MTurk is an online crowdsourcing platform widely used to conduct economic and behavioral experi-

ments. For more information about running experiments on Amazon MTurk, see Horton et al. (2011), Mason

and Suri (2012), Paolacci and Chandler (2014), Kuziemko et al. (2015), and Litman et al. (2017). Prime

Panels is another online platform with over 30 million participants and their reliable demographics.

DellaVigna and Pope (2018) run a large-scale experiment to compare the effectiveness of multiple incen-

tives for efforts in one setting, as well as compare experimental results with expert forecasts. The 18 treat-
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ments include various monetary and behavioral incentives. We focus on one of the treatments, which is a

monetary incentive. In the experiment, subjects are asked to alternately press the “a” and “b” buttons on

their keyboard as quickly as possible in 10 minutes. One alternate press counts as 1 point. All subjects are

paid some base rate upon finishing the experiment. In the treatment we replicate, subjects in the treated group

are paid an extra $0.01 for every 100 points they score, while subjects in the control group receive no extra

payment. InDellaVigna and Pope (2018), the base payment is $1, butwe use about $1.25 in the pilot and $2 in

the main experiment to minimize attrition. In our notation, the outcome Y is the points scored, the treatment

D indicates whether the subject receives extra payment (D = 1) or not (D = 0). The covariates X include

a constant term, age, gender, ethnicity, education, and income. We re-index gender and ethnicity as binary

variables and regard the rest as continuous.

The sample size in the original experiment in DellaVigna and Pope (2018) is 1098. In the original experi-

ment, all the units are in one stratum and the treated fraction is approximately 1
2 . There is a pilot experiment

in the preregistration stage but the results used in neither designing the main experiment nor analysis in their

paper. In our replication, we perform the pilot experiment on Prime Panels and themain experiment onMTurk.

The sample size of the pilot experiment ism = 44, and that of the main experiment is 2n = 176. We could not

replicate the original experiment with 1098 units because of the budget constraint.

After collecting data from the pilot experiment, we calculate the penalized stratification defined in (29),

and conduct inference on the ATE in two ways: disregarding data from the pilot experiment as in (41), and

combining data from the pilot and main experiments as in (43). We compare the results with the original ones

in DellaVigna and Pope (2018). For a meaningful comparison, we also present the scaled-up version of the

original standard errors in DellaVigna and Pope (2018) to match the sample size in our replication. Table 3

lists the sample sizes and difference-in-means estimates, standard errors, and t-statistics. Since there is only

one stratum in DellaVigna and Pope (2018), the two-sample t-test is asymptotically exact in their setup. The

columns correspond to the following:

Pen penalized stratification in (29) and the test statistic in (42).

Combined penalized stratification in (29) and the test statistic in (44).

Original (scaled) results inDellaVigna and Pope (2018), with sample size scaled down to 2n+m and standard

error scaled up accordingly.

Original results in DellaVigna and Pope (2018) and the two-sample t-statistic.

We see that the standard error under Combined is 29% smaller than that under Original (scaled). Equiva-

lently, to attain the same standard error, Combined requires only about half the sample size of that under the

stratification in DellaVigna and Pope (2018).
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Pen Combined Original (scaled) Original

sample size 176 220 220 1098

θ̂n 644 624 - 499

s.e. 108.16 92.05 129.95 58.70

t-statistic 5.95 6.78 - 8.50

Table 3: Summary statistics from DellaVigna and Pope (2018) and our replication.

8 Minimax procedure

Finally, we discuss alternative procedures without reliable pilot data. In some experiments pilot data is not

available, or even if there is a pilot experiment, the units might not be drawn from the same population as the

main experimental units. On the other hand, the procedure in Theorem 3.1 is optimal in population, which

translates into optimality with large pilots in Theorem 5.1, while the penalized procedure in (29) is based on

optimality in integrated risk in a Bayesian framework, assuming linearity and normality. It is then natural

to ask about finite sample optimality without linearity and normality. To answer the question, we introduce

a minimax problem. We briefly highlight the results and leave all details to Appendix E. By Lemma 3.1 and

in particular (16), the conditional MSEs of θ̂n under stratifications differ only in terms of the variance of the

ex-post bias conditional on the covariates, and hence we define a constant multiple of it as the loss in (45).

Moreover, we have

L(λ|g,X(n)) = 4n2 Varλ[E[θ̂n|X(n), D(n)]|X(n)] =
∑

1≤s≤S

1

ns − 1

∑
i,j∈λs,i<j

(gi − gj)
2 . (46)

Consider the following minimax problem to find the stratification λ that has the best worst-case performance

in terms of the loss in (46), where the worst-case is among a class of functions G.

min
λ∈Λ

max
h∈G

L(λ|h,X(n)) . (47)

Our framework requires G to have a bounded polyhedron structure, in the sense made precise by Assumption

E.1. The assumption is satisfied by a large class of shape restrictions on G, including Lipschitz continuity,

monotonicity, and convexity.

Our first result shows that when p = 1, under a Lipschitz model, (47) is solved by matching on X di-

rectly. It reflects the intuition to match on the covariate itself when little information is available on how

the covariate affects potential outcomes. For more details, see Theorem E.1. Unfortunately, such a result no

longer holds when p > 1. Indeed, Example E.7 shows that matched-pair designs may not even be minimax-

optimal. We show, however, that under Assumption E.1 it is possible to reformulate (47) into a mixed-integer

linear program. The reformulation is based on the special structure in (46), which enables us to rewrite (47)

into a problem in graph theory, related to but more complicated than what is known in the literature as the

clique partitioning problem. The program is computationally intensive, and therefore we consider a relaxation

which replaces λ ∈ Λ in the minimization in (47) with λ ∈ Λpair. The resulting program, related to what

28



is known in the literature as the minimum-weight perfect matching problem, is computationally much easier

and could be computed using modern solvers such as Gurobi. In Appendix E, we compute the solutions in a

simulation study. Simulation evidence suggests that although the minimax matched-pair design is in general

not minimax-optimal among all stratifications, it is often close to optimal in a sense we make precise in the

appendix.

9 Conclusion and recommendations for empirical practice

This paper provides a framework under which a certain matched-pair design is optimal among all stratified

randomization procedures. To the best of our knowledge, this is the first formal justification in the literature

on the use of matched-pair designs based on optimality results. We show it is optimal tomatch units according

to the sumof expectations of potential outcomes if treated anduntreated conditional on the covariates. We then

provide empirical counterparts to the optimal stratification and study their properties. In particular, we provide

different procedures under large and small pilots, as well as inference procedures under each of them. From the

theoretical point of view, stratifying impacts the estimation efficiency ofRCTs in termsof the ex-anteMSE, i.e.,

before treatment status is assigned, and the ex-post bias, i.e., after treatment status is assigned. Lemma 3.1

shows that ex-post bias translates into ex-ante MSE, and hence impacts the estimation of treatment effects in

an RCT. From a practical point of view, matched-pair designs weakly improve estimation and typically strictly

do so, as long as the function used in matching satisfies the regularity conditions laid out in Assumption 5.4.

Therefore, we recommend researchers to consider usingmatched-pair designs, or corresponding procedures in

Appendix B, when treated fractions are identical across strata but not 1
2 and when they are in addition allowed

to vary across subpopulations.

Both our theoretical and simulation results suggest that the efficiency for estimation of ATE could be im-

proved, often notably, by incorporating information from pilot data. Therefore, we recommend researchers to

perform pilot studies, on the same population as the main experiment. Based on Theorem 5.2, we recommend

researchers to use flexible nonparametric estimation methods to estimate the target function in (17) when the

pilot is large. When the pilot is small, researchers could still use the plug-in procedure with simple estimators

such as least squares, but could also consider the penalized procedure.
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A Proof of main results

For the rest of the appendix we introduce the following definition for the convex combination of matched-pair designs.

Definition A.1. For λ, λ′ ∈ Λpair
n and δ ∈ [0, 1], define δλ

⊕
(1− δ)λ′ as the randomization between λ and λ′ such that λ is

implemented with probability δ. Define the convex hull formed by all convex combinations of any matched-pair designs as

co(Λpair
n ) =

 ⊕
1≤j≤J

δjλ
j : λj ∈ Λpair

n and δj ≥ 0 for 1 ≤ j ≤ J,
∑

1≤j≤J

δj = 1, 1 ≤ J < ∞

 . (48)

A.1 Proof of Theorem 3.1

Define V (λ) as the objective in (16) multiplied by n2. We have

V (λ) = n2 Varλ[E[θ̂n|X(n), D(n)]|X(n)]

= Varλ

 ∑
1≤i≤2n

[DiE[Yi(1)|Xi]− (1−Di)E[Yi(0)|Xi]]

∣∣∣∣∣X(n)


= Varλ

 ∑
1≤i≤2n

Di(E[Yi(0)|Xi] + E[Yi(1)|Xi])

∣∣∣∣∣X(n)


= (g(n))′ Varλ[D

(n)]g(n) .

Recall fromSection2 thatΛpair
n is the set of allmatched-pair designs. For anyλ = {{π(1), π(2)}, . . . , {π(2n−1), π(2n)}} ∈

Λpair
n ,

V (λ) =
1

4

∑
1≤s≤n

(gπ(2s−1) − gπ(2s))
2 . (49)

By Lemma C.2, we have V (λg(X(n))) ≤ V (λ).

Recall the definition of convex combinations of matched-pair designs fromDefinition A.1. To conclude the proof, note

that by Lemma C.1, for any λ ∈ Λwe have

λ =
⊕

1≤j≤J

δjλ
j ,

where λj ∈ Λpair
n and δj ≥ 0 for 1 ≤ j ≤ J ,

∑
1≤j≤J δj = 1, and 1 ≤ J < ∞. Then,

MSE(λ|X(n)) =
∑

1≤j≤J

δj MSE(λj |X(n)) ≥ min
1≤j≤J

MSE(λj |X(n)) ≥ MSE(λg(X(n))|X(n)) ,

where the last inequality follows because λg(X(n))minimizesMSE(λ|X(n)) over Λpair
n . The theorem therefore follows.

A.2 Proof of Theorem 5.3

First, note that the assumptions in Lemma C.4 hold because of Lemma C.7 and Assumption 5.4, and that ĝm is a fixed

function conditional on W̃ (m). Hence, by Lemma C.4 with τ = 1
2
, with probability one for W̃ (m), as n → ∞,

sup
t∈R

∣∣∣Q{
√
n(θ̂n − θ(Q)) ≤ t|W̃ (m)} − Φ(z/ςĝm)

∣∣∣ → 0 , (50)
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where

ς2ĝm = Var[Yi(1)] + Var[Yi(0)]−
1

2
E[(E[Yi(1) + Yi(0)|ĝm(Xi), W̃

(m)]− E[Yi(1) + Yi(0)])
2] . (51)

On the other hand, note that the assumptions in Lemma C.5 hold because of Lemma C.7 and Assumption 5.4, and that

ĝm is a fixed function conditional on W̃ (m). Hence, by LemmaC.5with τ = 1
2
, with probability one for W̃ (m), for all ϵ > 0,

as n → ∞,

Q{|(ς̂ ĝmn )2 − ς2ĝm | > ϵ|W̃ (m)} → 0 . (52)

The conditional convergence in (38) follows immediately from (50) and (52). Since the conditional convergence holdswith

probability one for W̃ (m), and ϕĝm
n (W (n)) ∈ [0, 1], the unconditional convergence follows from the dominated convergence

theorem.

A.3 Proof of Theorem 5.1

The first assertion follows from Lemma C.4 with h = g and τ = 1
2
. We now show that under λĝm(X(n)) defined in (21),

√
n(θ̂n − θ(Q))

d→ N(0, ς2g ) for ς
2
g defined in (32) as m,n → ∞. By repeating arguments in the proof of Lemma C.4, we

write
√
n(θ̂n − θ(Q)) = An −Bn + Cn −Dn ,

where

An =
1√
n

∑
1≤i≤2n

(Yi(1)Di − E[Yi(1)Di|g(n), D(n)])

Bn =
1√
n

∑
1≤i≤2n

(Yi(0)(1−Di)− E[Yi(0)(1−Di)|g(n), D(n)])

Cn =
1√
n

∑
1≤i≤2n

(E[(Yi(1) + Yi(0))Di|g(n), D(n)]−DiE[Yi(1) + Yi(0)])

Dn =
1√
n

∑
1≤i≤2n

(E[Yi(0)|g(n), D(n)]− E[Yi(0)]) .

Note that unlike in Lemma C.4, the quantities above are conditioned on g(n) for g defined in (17), instead of ĝ(n)
m . Note that

by Assumptions 5.2(c), 5.3, and Lemma C.8,

1

n

∑
1≤s≤n

(gπĝm (2s−1) − gπĝm (2s))
2 P→ 0 . (53)

Since Assumption 5.2(a)–(b) and (53) hold, by repeating arguments in the proof of Lemma C.4 with τ = 1
2
, it is straight-

forward to establish that asm,n → ∞,
√
n(θ̂n − θ(Q))

d→ N(0, ς2g ) , (54)

Note that (53) is enough to derive the asymptotic representation for Cn so that we need not impose Lipschitz conditions

on E[Yi(d)|g(Xi)].
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A.4 Proof of Theorem 5.2

In light of Theorem 5.1, we only need to show that (ς̂ ĝmn )2
P→ ς2g asm,n → ∞. Similar arguments as those used in Lemma

C.5 go through if (53) holds and
1

n

∑
1≤j≤⌊n

2
⌋

|gπĝm (4j−k) − gπĝm (4j−l)|
2 P→ 0 (55)

for k ∈ {2, 3} and l ∈ {0, 1}. Since (55) follows from Assumptions 5.3 by Lemma C.8, the proof is concluded.

A.5 Proof of Theorem 5.5

To begin with, note that we need only establish that asm,n → ∞,

√
m+ 2n(θ̂combined

n − θ(Q))
d→ N(0, νς2pilot + (1− ν)2ς2) , (56)

and the rest follows from Slutsky’s lemma. We prove (56) by contradiction. Suppose (56) does not hold. Then, there exists

a subsequence still denoted by {m,n} for notational simplicity, along which asm,n → ∞,

sup
t∈R

∣∣∣√m+ 2n(θ̂combined
n − θ(Q))− Φ(z/

√
νς2pilot + (1− ν)2ς2)

∣∣∣ → c , (57)

where c > 0, and
m

m+ 2n
→ ν ∈ [0, 1] .

Now consider this subsequence. Since the two convergences in the Lemma C.8 hold in probability, there exists a further

subsequence along which they hold with probability one. By repeating the proof of Theorem 5.2, we could see that along

this subsequence, asm,n → ∞, with probability one for W̃ (m),

sup
t∈R

∣∣∣Q{
√
n(θ̂n − θ(Q)) ≤ t|W̃ (m)} − Φ(z/ςg)

∣∣∣ → 0 . (58)

Along the subsequence we construct, since m
m+2n

→ ν, by (58), Slutsky’s lemma and Lemma C.3,

√
m+ 2n(θ̂combined

n − θ(Q))
d→ N(0, νς2pilot + (1− ν)2ς2) ,

which is a contradiction to (57). The theorem therefore holds.

A.6 Proof of Theorem 5.4

Follows from Theorem 4.2 in Bai et al. (2019) and by repeating arguments in the proof of Lemma C.4.

B Supplementary results

The next theorem shows that the infeasible optimal stratification has a similar structure to (18) when τ 6= 1
2
.

TheoremB.1. Suppose the sample size iskn fork ∈ Zand the treatment assignment scheme satisfies τs ≡ τ = l
k
, where l ∈ Z,

0 < l < k, and k and l are relatively prime. Then, (5) is solved by λτ,g defined in (20), where gτ
πτ,gτ (1)

≤ . . . ≤ gτ
πτ,gτ (kn)

for gτ defined in (19).
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proof of theorem b.1. First, note that

θ̂n =
1

kn

∑
1≤i≤kn

(
1

τ
Yi(1)Di −

1

1− τ
Yi(0)(1−Di)

)
.

Next,

MSE(λ|X(n)) = (Eλ[θ̂n|X(n)]− θ(Q))2 +Varλ[θ̂n|X(n)] .

By repeating arguments in the proof of Lemma 3.1,

Eλ[θ̂n|X(n)]− θ(Q) =
1

kn

∑
1≤i≤kn

(E[Yi(1)|Xi]− E[Yi(0)|Xi])− θ(Q) ,

identical across allλ ∈ Λn, so thatwe need only consider conditional variances of θ̂ givenX(n) which could be decomposed

as in (11). By repeating arguments in the proof of Lemma 3.1, for any λ ∈ Λn, the first term of the right-hand side of (11)

equals
1

k2n2

∑
1≤i≤kn

(
Var[Yi(1)|Xi]

τ
+

Var[Yi(0)|Xi]

1− τ

)
,

again identical across all λ ∈ Λn. Therefore, we need only consider

Varλ[E[θ̂n|X(n), D(n)]|X(n)] .

By repeating arguments in the proof of Lemma C.1, a stratum of size kl where l > 1 is a convex combination of stratifica-

tions with strata only of size k. We could therefore focus on the case where each stratum is of size k. For any stratification

of the form λ = {{π((s− 1)k + 1, . . . π(sk)} : 1 ≤ s ≤ n},

Varλ[E[θ̂n|X(n), D(n)]|X(n)] ∝
∑

1≤s≤n

∑
(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 ,

where gτi is defined in (19) and

ḡτs =
1

k

∑
(s−1)k+1≤j≤sk

gτπ(j) .

To see this, first note that units are independent across strata, so that by repeating arguments in the proof of Lemma 3.1,

Varλ[E[θ̂n|X(n), D(n)]|X(n)] ∝
∑

1≤s≤n

Varλ

 ∑
(s−1)k+1≤j≤sk

gτπ(j)Dπ(j)

 .

Next,

Varλ

 ∑
(s−1)k+1≤j≤sk

gτπ(j)Dπ(j)


=

1(
k
l

) ∑
(s−1)k+1≤j1<...<jl≤sk

 ∑
1≤ι≤l

gτπ(jι) − lḡτs

2

=
l

k

∑
(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 +

1(
k
l

) ∑
(s−1)k+1≤j1<...<jl≤sk

∑
1≤ι1 ̸=ι2≤l

(gπ(jι1 ) − ḡτs )(gπ(jι2 ) − ḡτs )

=
l

k

∑
(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 +

(
k−2
l−2

)(
k
l

)
 ∑

(s−1)k+1≤j≤sk

gτπ(j) − kḡτs

2

−
∑

(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2
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∝
∑

(s−1)k+1≤j≤sk

(gτπ(j) − ḡτs )
2 ,

where the first equality holds by definition, the second holds by expanding the square, the third holds by accounting for

cross product terms, and the fourth holds because the first term inside the square bracket on the fourth line is 0. Therefore,

the problem is reduced to optimal univariate clustering of kn units on the real line where each cluster is of size k, and the

conclusion follows by arguing similarly to in the proof of Lemma C.2.

For a measurable function h : Rp → R, let πh be a permutation of {1, . . . , kn} such that hπτ,h(1) ≤ . . . ≤ hπτ,h(kn).

Define

λτ,h(X(n)) = {{πτ,h((s− 1)k + 1), . . . πτ,h(sk)} : 1 ≤ s ≤ n} . (59)

Further define h̄τ
s = 1

k

∑
(s−1)k+1≤j≤sk hπτ,h(j).

Assumption B.1. h satisfies

(a) 0 < E[Var[Yi(d)|h(Xi)]] for d ∈ {0, 1}.

(b) E[Y r
i (d)|h(Xi) = z] is Lipschitz for r = 1, 2 and d = 0, 1.

(c)
1

n

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk

|hπτ,h(j) − h̄τ
s |2

P→ 0.

The next theorem is the limiting counterpart to Theorems 3.1 and B.1. It shows that across all stratifications defined

by (59) for h satisfying Assumption B.1, the asymptotic variance of θ̂n is minimized by choosing h = gτ defined in (19).

Theorem B.2. Suppose h : Rp → R be a measurable function that satisfies Assumption B.1. Then,

ς2τ,gτ ≤ ς2τ,h ,

for ς2τ,gτ and ς2τ,h defined in (64) and gτ defined in (19). Moreover, the inequality is strict unless E
[

Yi(1)
τ

+ Yi(0)
1−τ

∣∣∣∣h(Xi)

]
=

gτ (Xi)with probability one underQ.

proof of theorem b.2. By the definition of ς2τ,h in (64), minimizing ς2τ,h with respect to h is equivalent to maximizing

E

[(
E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2
]

.

Next, note that

E

[(
gτ (Xi)−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2
]

= E

[(
gτ (Xi)− E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
+ E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2
]

= E

[(
gτ (Xi)− E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

])2
]
+ E

[(
E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2
]

,

(60)

≥ E

[(
E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2
]

. (61)
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where the last inequality is strict except unlessE
[

Yi(1)
τ

+ Yi(0)
1−τ

∣∣∣∣h(Xi)

]
= gτ (Xi)with probability one underQ. To show

(60), note that

E

[(
gτ (Xi)− E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

])(
E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))]
= E

[
E

[
gτ (Xi)− E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

] ∣∣∣∣h(Xi)

](
E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))]
= 0 ,

where the second equality holds because

E[gτ (Xi)|h(Xi)] = E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
by the law of iterated expectation. The lemma is thus proved.

If τs’s are allowed to differ across s, then θ̂n is generally inconsistent for θ. In such settings researchers often use the

estimator from the fully saturated regression in Bugni et al. (2019). For 1 ≤ s ≤ S and d ∈ {0, 1}, define

µ̂n,s(1) =
1

nsτs

∑
i∈λs:Di=1

Yi

and

µ̂n,s(0) =
1

ns(1− τs)

∑
i∈λs:Di=0

Yi .

The estimator is

θ̂satn =
∑

1≤s≤S

ns

n
(µ̂n,s(1)− µ̂n,s(0)) . (62)

Note that θ̂satn and θ̂n coincide whenever τs ≡ τ ∈ (0, 1). See Bugni et al. (2018), Tabord-Meehan (2020), and Bugni

et al. (2019) for more details. By repeating arguments used in the proof of Theorem 3.1 and Theorem B.1, we could find

the stratification that minimizes MSE(θ̂satn |X(n)), which is defined as in (4) with θ̂n replaced by θsatn . The solution is as

follows: we first calculate the stratification defined in (20) with τ , g, andX(n) defined separately for each subpopulation,

and then take the union of those stratifications. Moreover, the next theorem enables us to derive feasible procedures similar

to (21)when treated fractions are allowed to vary across subpopulations. In particular, it reveals any plug-in estimator that

satisfies the regularity conditions in Assumption B.1 leads to a procedure under which the asymptotic variance of θ̂satn is

no greater than and typically strictly less than that under procedures with each subpopulation as a stratum.

Theorem B.3. Suppose the sample size is n. Define a function f : Rp → {1, . . . , R} where R ≥ 1 is an integer. Define Nr =

{i : f(Xi) = r}, XNr = (Xi : i ∈ Nr), nr = |Nr|, and p(r) = Q{f(Xi) = r}. Define λlarge =
⋃

1≤r≤R

Nr . For 1 ≤ r ≤ R,

let τr be the treated fraction in Nr . Define functions hr : Rp → R for 1 ≤ r ≤ R. Define λsmall =
⋃

1≤r≤R

λτr,h
r

(XNr ),

where λτr,h
r

(XNr ) is defined in (59). Suppose Q satisfies Assumption 5.1. Then, under λlarge, for θ̂satn defined in (62), as

n → ∞,
√
n(θ̂satn − θ(Q))

d→ N(0, ς2large) ,

where

ς2large = E

[
Var[Yi(1)]

τfi
+

Var[Yi(0)]

1− τfi
− τfi(1− τfi)E

[(
E

[
Yi(1)

τfi
+

Yi(0)

1− τfi

∣∣∣∣f(Xi)

]
−

(
E[Yi(1)]

τfi
+

E[Yi(0)]

1− τfi

))2
]]

.
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Suppose in addition that hr, 1 ≤ r ≤ R satisfy Assumption B.1, under Q restricted to {x ∈ Rp : f(x) = r}. Then, under

λsmall, for θ̂satn defined in (62), as n → ∞,

√
n(θ̂satn − θ(Q))

d→ N(0, ς2small) ,

where

ς2small = E

[
Var[Yi(1)]

τfi
+

Var[Yi(0)]

1− τfi
− τfi(1− τfi)E

[(
E

[
Yi(1)

τfi
+

Yi(0)

1− τfi

∣∣∣∣hfi(Xi)

]
−

(
E[Yi(1)]

τfi
+

E[Yi(0)]

1− τfi

))2
]]

.

In addition, ς2small ≤ ς2large, where the inequality is strict unless

E

[
Yi(1)

τfi
+

Yi(0)

1− τfi

∣∣∣∣hfi(Xi)

]
= E

[
Yi(1)

τfi
+

Yi(0)

1− τfi

∣∣∣∣f(Xi)

]
with probability one under Q. Moreover, among all choices of (hr : 1 ≤ r ≤ R), ς2small is minimized by setting hr = gτr ,

where gτr is defined in (19).

Remark B.1. Tabord-Meehan (2020) considers stratification trees, which leads to a small number of large strata, with

different treated fractions in each stratum. Using results from Theorem B.3, it is straightforward to combine his procedure

with procedures in this paper. The asymptotic variance of θ̂satn under the combinedprocedure is no greater than and typically

strictly less than that under his procedure alone. The combined procedure is as follows: First, perform the procedure in

Tabord-Meehan (2020), which produces a finite number of strata with a target treated fraction for each stratum. Second,

we view each stratum as a subpopulation and calculate the stratification in (59) either with a fixed function h or some

plug-in estimate, with τ equal the target treated fraction. Finally, we take the union of these stratifications. The desired

property now follows from Theorem B.3.

proof of theorem b.3. The first convergence holds by Theorem 3.1 of Bugni et al. (2019). For the second conver-

gence, note that 
√
n1(µ̂n,1(1)− µ̂n,1(0))

...
√
nR(µ̂n,R(1)− µ̂n,R(0))

 d→ N
(
0, diag(ς2τr,hr : 1 ≤ r ≤ R)

)
.

Meanwhile, note that nr
n

P→ p(r) for 1 ≤ r ≤ R. The convergence then follows by the Slutsky’s lemma. The last two

results could be shown similarly to Theorem B.2.

C Auxiliary Lemmas

In the rest of the appendix, we use a ≲ b to denote that there exists c ≥ 0 such that a ≤ cb.

Lemma C.1. If the treatment assignment scheme satisfies Assumption 2.1, then Λn ⊆ co(Λpair
n ).

proof of lemma c.1. We first prove that λ0 = {{X1, . . . , X2n}} is a convex combination of matched-pair designs.

Indeed,

λ0 =
1

|Λpair
n |

⊕
λ∈Λ

pair
n

λ ,
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where

|Λpair
n | =

(
2n
n

)
n!

2n
.

Next, consider λ = {λ1, . . . , λS}. Let Λpair
n (λs) denote the set of all matched-pair designs of units in λs. Then,

λ =
1∏

1≤s≤S

|Λpair
n (λs)|

⊕
ξs∈Λ

pair
n (λs):1≤s≤S

⋃
1≤s≤S

ξs ,

and the conclusion follows.

Example C.1. Let n = 4 and define

λ0 = {{1, 2, 3, 4}}

λ1 = {{1, 2}, {3, 4}}

λ2 = {{1, 3}, {2, 4}}

λ3 = {{1, 4}, {2, 3}} .

We have λ0 = 1
3
λ1 ⊕ 1

3
λ2 ⊕ 1

3
λ3.

Lemma C.2. Supposem ≥ 2, and x1, . . . , x2m are real number such that x1 ≤ . . . ≤ x2m. Then, for any π ∈ Πn,

m∑
k=1

xπ(2k−1)xπ(2k) ≤
m∑

k=1

x2k−1x2k . (63)

proof of lemma c.2. We need only consider the case where there exists k1 < k2 < k3 < k4 such that at least one of

π(k1), π(k2) is greater than at least one of π(k3), π(k4) because the lemma trivially holds otherwise. Suppose without loss

of generality that π(k2) < π(k3) < π(k4) < π(k1), then it is easy to verify that

xπ(k1)xπ(k2) + xπ(k3)xπ(k4) ≤ xπ(k2)xπ(k3) + xπ(k1)xπ(k4)

so that by interchanging two indices we decrease the sum weakly. A finite number of those interchanges maps π back to

the identity operator, and hence (63) holds.

Lemma C.3. Let Xn, Yn, Zn be random variables. Suppose Yn = g(Zn)
d→ Y as n → ∞, where g : R → R is measurable

and Xn
d→ X conditional on Zn, with probability one for Zn. Furthermore, suppose the distributions of both X and Y are

continuous everywhere. Then

(Xn, Yn)
d→ (X,Y ) ,

whereX ⊥⊥ Y .

proof of lemma c.3. SinceX and Y both have continuous distribution function, we need only show for any x, y ∈ R,

P{Xn ≤ x, Yn ≤ y} → P{X ≤ x}P{Y ≤ y} .

To this end, note that

P{Xn ≤ x, Yn ≤ y} − P{X ≤ x}P{Y ≤ y}

= E[E[I{Xn ≤ x}I{Yn ≤ y}|Zn]]− P{X ≤ x}P{Y ≤ y}
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= E[E[I{Xn ≤ x}|Zn]I{Yn ≤ y}]− P{X ≤ x}P{Y ≤ y}

= E[(E[I{Xn ≤ x}|Zn]− P{X ≤ x})I{Yn ≤ y}] + E[P{X ≤ x}(I{Yn ≤ y} − P{Y ≤ y})]

= E[(P{Xn ≤ x|Zn} − P{X ≤ x})I{Yn ≤ y}] + (P{Yn ≤ y} − P{Y ≤ y})P{X ≤ x}

For the first term on the right-hand side, note that

P{Xn ≤ x|Zn} − P{X ≤ x} → 0

with probability one forZn, and hence the product inside the expectation converges to 0with probability one aswell, which

in turn implies the expectation converges to 0 by the dominated convergence theorem since probabilities are bounded. The

second term converges to 0 because of the definition of convergence in distribution and the fact that the distribution of Y

has no discontinuity.

Lemma C.4. Suppose the sample size is kn for k ∈ Z and the treatment assignment scheme satisfies τs ≡ τ = l
k
, where l ∈ Z,

0 < l < k, and they are relatively prime. Suppose Q satisfies Assumption 5.1 and h satisfies Assumption B.1. Then, under

λτ,h(X(n)) defined in (59), as n → ∞,
√
kn(θ̂n − θ(Q))

d→ N(0, ς2τ,h) ,

where

ς2τ,h =
Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− τ(1− τ)E

[(
E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2
]
. (64)

proof of lemma c.4. To begin with, note that

√
kn(θ̂n − θ(Q)) = An −Bn + Cn −Dn ,

where

An =
1√
kn

∑
1≤i≤kn

(
Yi(1)Di

τ
− E

[
Yi(1)Di

τ

∣∣∣∣h(n), D(n)

])

Bn =
1√
kn

∑
1≤i≤kn

(
Yi(0)(1−Di)

1− τ
− E

[
Yi(1)Di

τ

∣∣∣∣h(n), D(n)

])

Cn =
1√
kn

∑
1≤i≤kn

(
E

[
Yi(1)Di

τ

∣∣∣∣h(n), D(n)

]
− E[Yi(1)]

)

Dn =
1√
kn

∑
1≤i≤kn

(
E

[
Yi(0)(1−Di)

1− τ

∣∣∣∣h(n), D(n)

]
− E[Yi(0)]

)
.

Note that, conditional on h(n) andD(n),An andBn are independent and Cn andDn are constant.

We first study the limiting behavior of An. Conditional on h(n) and D(n), the terms in the sum are independent but

not identically distributed. Therefore, we proceed to verify that the Lindeberg condition holds in probability conditional

on h(n) andD(n). To that end, define

s2n = s2n(h
(n), D(n)) =

∑
1≤i≤kn

Var

[
Yi(1)Di

τ

∣∣∣∣h(n), D(n)

]
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and note that

s2n =
∑

1≤i≤kn

Var

[
Yi(1)Di

τ

∣∣∣∣h(n), D(n)

]
=

1

τ2

∑
1≤i≤kn

Di Var[Yi(1)|h(n)]

=
1

τ2

∑
1≤i≤kn:Di=1

Var[Yi(1)|h(Xi)] ,

where the second equality follows from (2) and the third follows from the fact that units are i.i.d. It follows that

τ
s2n
kn

=
1

kn

∑
1≤i≤kn

Var[Yi(1)|h(Xi)] +

1− τ

τkn

∑
1≤i≤kn:Di=1

Var[Yi(1)|h(Xi)]−
1

kn

∑
1≤i≤kn:Di=0

Var[Yi(1)|h(Xi)]

 .

(65)

By Assumption 5.1,
1

kn

∑
1≤i≤kn

Var[Yi(1)|h(Xi)]
P→ E[Var[Yi(1)|h(Xi)]] < E[Yi(1)] < ∞ . (66)

Meanwhile, ∣∣∣∣∣∣1− τ

τkn

∑
1≤i≤kn:Di=1

Var[Yi(1)|h(Xi)]−
1

kn

∑
1≤i≤kn:Di=0

Var[Yi(1)|h(Xi)]

∣∣∣∣∣∣
≲

∣∣∣∣∣∣1− τ

τkn

∑
1≤i≤kn:Di=1

hi −
1

kn

∑
1≤i≤kn:Di=0

hi

∣∣∣∣∣∣
=

1

τkn

∣∣∣∣∣∣∣
∑

1≤s≤n

∑
(s−1)k+1≤j≤sk:D

πτ,h(j)
=1

(hπτ,h(j) − h̄τ
s )

∣∣∣∣∣∣∣
≤ 1

τkn

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk:D

πτ,h(j)
=1

|hπτ,h(j) − h̄τ
s |

≲ 1

n

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk

|hπτ,h(j) − h̄τ
s |

≤

 1

n

∑
1≤s≤n

∑
(s−1)k+1≤j≤sk

|hπτ,h(j) − h̄τ
s |2

1/2

P→ 0 , (67)

where the first inequality holds by Assumption B.1(b), the second holds by using Assumption B.1(c), the third holds by

inspection, the last holds by the Cauchy-Schwarz inequality, and the equality holds by inspection. Combining (65), (66),

and (67), we have
s2n
kn

P→ E[Var[Yi(1)|h(Xi)]]

τ
> 0 , (68)

where the inequality holds by Assumption B.1(a).

We now argue that the Lindeberg condition holds in probability conditional on h(n) andD(n), i.e., for any ϵ > 0,

En =
1

s2nτ2

∑
1≤i≤kn

E[|Yi(1)Di − E[Yi(1)Di|h(n), D(n)]|2I{|Yi(1)Di − E[Yi(1)Di|h(n), D(n)]| > ϵτsn}|h(n), D(n)]
P→ 0 .

To this end, first note that for anyM > 0,

P{ϵτsn > M} → 1 (69)
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because of (68). Next, note that

E[Yi(1)Di|h(n), D(n)] = E[Yi(1)|h(Xi)]Di

because of (2). As a result, for anyM > 0

En =
1

s2nτ2

∑
1≤i≤kn:Di=1

E[|Yi(1)− E[Yi(1)|h(n), D(n)]|2I{|Yi(1)− E[Yi(1|h(n), D(n)]| > ϵτsn}|h(n), D(n)]

≤ 1

s2nτ2

∑
1≤i≤kn

E[|Yi(1)− E[Yi(1)|h(n), D(n)]|2I{|Yi(1)− E[Yi(1)|h(n), D(n)]| > ϵτsn}|h(n), D(n)]

≤ 1

s2nτ2

∑
1≤i≤kn

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)] > M}|h(n), D(n)] + op(1)

=
kn

s2nτ2

1

kn

∑
1≤i≤kn

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}|h(n), D(n)] + op(1) (70)

P→ (E[Var[Yi(1)|h(Xi)]])
−1E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}] , (71)

where the first inequality holds by inspection, the second holds because of (69) and the equality follows because (2) and

Qn = Qkn, and the convergence in probability follows from (68) and the fact that Assumption B.1(a) implies

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}]

≤ E[|Yi(1)− E[Yi(1)|h(Xi)]|2] = E[Var[Yi(1)|h(Xi)]] ≤ E[Y 2
i (1)] < ∞ .

In addition, by the dominated convergence theorem,

lim
M→∞

E[|Yi(1)− E[Yi(1)|h(Xi)]|2I{|Yi(1)− E[Yi(1)|h(Xi)]| > M}] = 0 .

To show that En
P→ 0, fix any subsequence, which we still call {n} with some abuse of notation, and we argue that there

is a further subsequence along which En converges to 0 almost surely. Indeed, for the subsequence {n}, for any fixedM ,

the preceding display is bounded by (70), which we define as Un(M). We know from above that Un(M)
P→ U(M), where

U(M) is defined as (71). Hence, there exists a further subsequence {n} along which Un(M) → U(M) almost surely. We

then choose a sequence {Mn}n≥1 such thatMn → ∞. By the dominated convergence theorem, limn→∞ U(Mn) = 0. By a

diagonalizing argument, we could construct a further subsequence {n} alongwhichUn(Mn) → 0. Along this subsequence,

since En ≤ Un(Mn) for each n, the almost sure limit of En must be zero because it is non-negative.

We now argue that

sup
t∈R

∣∣∣P{An ≤ t|h(n), D(n)} − Φ
(
t/
√

E[Var[Yi(1)|h(Xi)]]/τ
)∣∣∣ P→ 0 .

Fix any subsequence. Since En
P→ 0, there exists a further subsequence along which En → 0 with probability one

for h(n), D(n). Because of the Lindeberg condition and (68), it follows that with probability one for h(n), D(n), An
d→

N(0, E[Var[Yi(1)|h(Xi)]]/τ) conditional on h(n), D(n). But then the left-hand side of the preceding display must converge

almost surely to 0 by Pólya’s theorem. Since for any subsequence there exists a further subsequence along which it con-

verges to 0 almost surely, it must converge to 0 in probability.

A similar argument establishes that

sup
t∈R

∣∣∣P{Bn ≤ t|h(n), D(n)} − Φ
(
t/
√

E[Var[Yi(0)|h(Xi)]]/(1− τ)
)∣∣∣ P→ 0 .
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Since An and Bn are independent conditional on h(n) and D(n), it follows by a similar subsequencing argument as above

that

sup
t∈R

∣∣∣P{An −Bn ≤ t|h(n), D(n)} − Φ
(
t/
√

E[Var[Yi(1)|h(Xi)]/τ + E[Var[Yi(0)|h(Xi)]]/(1− τ)
)∣∣∣ P→ 0 . (72)

To study Cn, note that by (2),

Cn =
1√
kn

∑
1≤i≤kn

(
E

[
Yi(1)

τ

∣∣∣∣h(Xi)

]
Di − E[Yi(1)]

)
.

So we have

E[Cn|h(n)] =
1√
kn

∑
1≤i≤kn

(E[Yi(1)|h(Xi)]− E[Yi(1)]) .

Furthermore, by Assumptions B.1(b)–(c),

Var[Cn|h(n)] ∝ 1

kn

∑
1≤s≤n

(hπτ,h(i) − h̄s
τ )

2 P→ 0 ,

where the first relation could be established by repeating the arguments used in the last step of establishing Theorem B.1.

It therefore follows by Markov’s inequality that for any ϵ > 0,

P{|Cn − E[Cn|h(n)]| > ϵ|h(n)} P→ 0 ,

and since probabilities are bounded and hence uniformly integrable,

P{|Cn − E[Cn|h(n)]| > ϵ} P→ 0 ,

and hence

Cn =
1√
kn

∑
1≤i≤kn

(E[Yi(1)|h(Xi)]− E[Yi(1)]) + op(1) .

A similar proof shows that

Dn =
1√
kn

∑
1≤i≤kn

(E[Yi(0)|h(Xi)]− E[Yi(0)]) + op(1) .

and therefore

Cn −Dn =
1√
kn

∑
1≤i≤kn

(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)])) + op(1)

d→ N
(
0, E

[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2]) .

We now show by contradiction that

sup
t∈R

|P{
√
n(θ̂n − θ(Q)) ≤ t} − Φ(t/ςh)| → 0 .

Suppose not, then there must exist a subsequence along which the left-hand side of the above display converges to some

δ > 0. Along this subsequence, we could find a further subsequence along which the left-hand side of (72) converges to 0

with probability one for h(n) andD(n), i.e.,

An −Bn
d→ N

(
0,

E[Var[Yi(1)|h(Xi)]

τ
+

E[Var[Yi(0)|h(Xi)]]

1− τ

)
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with probability one for h(n) andD(n). Since Cn −Dn is constant for each h(n) andD(n), Lemma C.3 establishes that

An −Bn + Cn −Dn
d→ N

(
0,

E[Var[Yi(1)|h(Xi)]

τ
+

E[Var[Yi(0)|h(Xi)]]

1− τ
+

E
[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2]) ,

which, by Pólya’s Theorem, implies a contradiction.

Finally, note that

E[Var[Yi(1)|h(Xi)]

τ
+

E[Var[Yi(0)|h(Xi)]]

1− τ
+ E

[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2]
=

Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− Var[E[Yi(1)|h(Xi)]]

τ
− Var[E[Yi(0)|h(Xi)]]

1− τ
+

E
[
(E[Yi(1)|h(Xi)]− E[Yi(1)]− (E[Yi(0)|h(Xi)]− E[Yi(0)]))

2]
=

Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− 1− τ

τ
E[(E[Yi(1)|h(Xi)]− E[Yi(1)])

2]− τ

1− τ
E[(E[Yi(0)|h(Xi)]− E[Yi(0)])

2]

− 2E [(E[Yi(1)|h(Xi)]− E[Yi(1)])(E[Yi(0)|h(Xi)]− E[Yi(0)])]

=
Var[Yi(1)]

τ
+

Var[Yi(0)]

1− τ
− τ(1− τ)E

[(
E

[
Yi(1)

τ
+

Yi(0)

1− τ

∣∣∣∣h(Xi)

]
−

(
E[Yi(1)]

τ
+

E[Yi(0)]

1− τ

))2
]

,

and the result follows.

Assumption C.1. h satisfies
1

n

∑
1≤j≤⌊n

2
⌋

|hπh(4j−k) − hπh(4j−l)|
2 P→ 0

for k ∈ {2, 3} and l ∈ {0, 1}.

Lemma C.5. Define

ρ̂n =
2

n

∑
1≤j≤⌊n

2
⌋

(Yπh(4j−3) + Yπh(4j−2))(Yπh(4j−1) + Yπh(4j))

and

(ς̂hn)
2 = σ̂2

n(1) + σ̂2
n(0)−

1

2
ρ̂n +

1

2
(µ̂n(1) + µ̂n(0))

2 .

Suppose the treatment assignment scheme satisfies Assumption 2.1, Q satisfies Assumption 5.1, and h satisfies Assumptions

B.1 and C.1. Then, under λ
1
2
,h defined in (59),

(ς̂hn)
2 P→ ς21

2
,h .

proof of lemma c.5. To begin with, note that µ̂n(d)
P→ E[Yi(d)] and σ̂2

n(d)
P→ Var[Yi(d)] for d ∈ {0, 1}, by Lemma

6.5 in Bai et al. (2019). Next, we show that

E[ρ̂n|h(n)]
P→ ρ2 . (73)

For notational simplicity, we define µd(hi) = E[Yi(d)|h(Xi) = hi] for d ∈ {0, 1}. To see this, note that

E[(Yπh(4j−3) + Yπh(4j−2))(Yπh(4j−1) + Yπh(4j))|h
(n)]

=
1

4
(µ1(hπh(4j−3)) + µ0(hπh(4j−2)))(µ1(hπh(4j−1)) + µ0(hπh(4j)))

+
1

4
(µ1(hπh(4j−3)) + µ0(hπh(4j−2)))(µ1(hπh(4j)) + µ0(hπh(4j−1)))

+
1

4
(µ1(hπh(4j−2)) + µ0(hπh(4j−3)))(µ1(hπh(4j−1)) + µ0(hπh(4j)))
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+
1

4
(µ1(hπh(4j−2)) + µ0(hπh(4j−3)))(µ1(hπh(4j)) + µ0(hπh(4j−1)))

=
1

4
(gh(hπh(4j−3)) + gh(hπh(4j−2)))(gh(hπh(4j−1)) + gh(hπh(4j)))

=
1

4

∑
k∈{2,3},l∈{0,1}

g2h(hπh(4j−k)) + g2h(hπh(4j−l))− (gh(hπh(4j−k))− gh(hπh(4j−l)))
2 .

As a result,

E[ρ̂n|h(n)] =
∑

1≤j≤⌊n
2
⌋

E[(Yπh(4j−3) + Yπh(4j−2))(Yπh(4j−1) + Yπh(4j))|h
(n)]

=
1

2n

∑
1≤i≤2n

g2h(h(Xi))−
1

4n

∑
1≤j≤⌊n

2
⌋

∑
k∈{2,3},l∈{0,1}

(gh(hπh(4j−k))− gh(hπh(4j−l)))
2 .

(73) then follows from Assumption B.1(b), C.1, the fact that

E[g2h(h(Xi))] ≲ E[E[Yi(1)|h(Xi)]
2] + E[E[Yi(0)|h(Xi)]

2]

≤ E[E[Y 2
i (1)|h(Xi)]] + E[E[Y 2

i (0)|h(Xi)]] = E[Y 2
i (1) + Y 2

i (0)] < ∞

because of Assumption 5.1, and an application of the WLLN.

It remains to show ρ̂n − E[ρ̂n|h(n)]
P→ 0. We will prove

2

n

∑
1≤j≤⌊n

2
⌋

(Yπh(4j−2)Yπh(4j) − E[Yπh(4j−2)Yπh(4j)|h
(n)])

P→ 0 ,

and the others follow similarly. We will repeatedly use the following elementary inequalities for any a, b ∈ R and λ > 0:

|a+ b|I{|a+ b| > λ} ≤ 2|a|I{|a| > λ/2}+ 2|b|I{|b| > λ/2}

|ab|I{|ab| > λ} ≤ |a|2I{|a| >
√
λ}+ |b|2I{|b| >

√
λ} .

To begin with,

E[Yπh(4j−2)Yπh(4j)|h
(n)] =

1

2
µ1(hπh(4j−2))µ0(hπh(4j)) +

1

2
µ1(hπh(4j))µ0(hπh(4j−2))

Next, note that

2

n

∑
1≤j≤⌊n

2
⌋

E[|Yπh(4j−2)Yπh(4j) − E[Yπh(4j−2)Yπh(4j)|h
(n)]|I{|Yπh(4j−2)Yπh(4j) − E[Yπh(4j−2)Yπh(4j)|h

(n)]| > λ}|h(n)]

≤ 2

n

∑
1≤j≤⌊n

2
⌋

E[|Yπh(4j−2)Yπh(4j)|I{|Yπh(4j−2)Yπh(4j)| >
√

λ/2}|h(n)]

+ E[|E[Yπh(4j−2)Yπh(4j)|h
(n)]|I{|E[Yπh(4j−2)Yπh(4j)|h

(n)]| >
√

λ/2}|h(n)]

≤ 2

n

∑
1≤j≤⌊n

2
⌋

E[Y 2
πh(4j−2)I{|Yπh(4j−2)| >

√
λ/2}|h(n)] + E[Y 2

πh(4j)I{|Yπh(4j)| >
√

λ/2}|h(n)]

+ |µ1(hπh(4j−2))µ0(hπh(4j))|I{µ1(hπh(4j−2))µ0(hπh(4j)) > λ/2}

+ |µ1(hπh(4j))µ0(hπh(4j−2))|I{µ1(hπh(4j))µ0(hπh(4j−2)) > λ/2}

≤ 2

n

∑
1≤j≤⌊n

2
⌋

E[Y 2
πh(4j−2)(1)I{|Yπh(4j−2)(1)| >

√
λ/2}|h(n)] + E[Y 2

πh(4j−2)(0)I{|Yπh(4j−2)(0)| >
√

λ/2}|h(n)]
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+ E[Y 2
πh(4j)(1)I{|Yπh(4j)(1)| >

√
λ/2}|h(n)] + E[Y 2

πh(4j)(0)I{|Yπh(4j)(0)| >
√

λ/2}|h(n)]

+ µ2
1(hπh(4j−2))I{|µ1(hπh(4j−2))| >

√
λ/2}+ µ2

0(hπh(4j))I{|µ0(hπh(4j))| >
√

λ/2}

+ µ2
1(hπh(4j))I{|µ1(hπh(4j))| >

√
λ/2}+ µ2

0(hπh(4j−2))I{|µ0(hπh(4j−2))| >
√

λ/2}

≲ 1

2n

∑
1≤i≤2n

E[Y 2
i (1)I{|Yi(1) >

√
λ/2|}|h(Xi)] + E[Y 2

i (0)I{|Yi(1) >
√

λ/2|}|h(Xi)]

+ E[Y 2
i (1)|h(Xi)]I{E[Y 2

i (1)|h(Xi)] >
√

λ/2}+ E[Y 2
i (0)|h(Xi)]I{E[Y 2

i (0)|h(Xi)] >
√

λ/2}
P→ E[Y 2

i (1)I{|Yi(1) >
√

λ/2|}] + E[Y 2
i (0)I{|Yi(1) >

√
λ/2|}] + E[E[Y 2

i (1)|h(Xi)]I{E[Y 2
i (1)|h(Xi)] >

√
λ/2}]

+ E[E[Y 2
i (0)|h(Xi)]I{E[Y 2

i (0)|h(Xi)] >
√

λ/2}] , (74)

where the last line follows fromWLLN and the law of iterated expectation. Since by Assumption 5.1 we haveE[Y 2
i (d)] <

∞ and hence E[E[Yi(d)|h(Xi)]
2] < E[Y 2

i (d)] by Jensen’s inequality, the limit as λ → ∞ of the last line is 0, by the

dominated convergence theorem. We finish the proof by arguing by contradiction. Suppose

ρ̂n − E[ρ̂n|h(n)]

does not converge in probability to 0. There must then exist ϵ > 0 and δ > 0 and a subsequence, which for simplicity we

again denote by {n}, such that

P{|ρ̂n − E[ρ̂n|h(n)]| > ϵ} → δ (75)

along this subsequence. But because of (74), there exists a further subsequence along which the condition in Lemma 6.3

of Bai et al. (2019) holds with probability one for h(n), but then along this subsequence ρ̂n − E[ρ̂n|h(n)]
P→ 0 conditional

on h(n) with probability one for h(n), i.e., for any ϵ > 0, with probability one for h(n),

P{|ρ̂n − E[ρ̂n|h(n)]| > ϵ|h(n)} → 0 .

Since probabilities are bounded and hence uniformly integrable,

P{|ρ̂n − E[ρ̂n|h(n)]| > ϵ} → 0

along the chosen subsequence, which implies a contradiction to (75).

Lemma C.6. Suppose Ui, 1 ≤ i ≤ n are i.i.d. random variables whereE|Ui|r < ∞. Then

n−1/r max
1≤i≤n

|Ui|
P→ 0 .

proof of lemma c.6. Note that for all ϵ > 0,

P

{
n−1/r max

1≤i≤n
|Ui| > ϵ

}
= P

{
max
1≤i≤n

|Ui|r > nϵr
}

≤ nP{|Ui|r > nϵr} ≤ n

nϵr
E[|Ui|rI{|Ui|r > nϵr}] = 1

ϵr
E[|Ui|rI{|Ui|r > nϵr}] → 0 ,

where the convergence follows because of the dominated convergence theorem and that E|Ui|r < ∞.

Lemma C.7. SupposeE[h2(Xi)] < ∞. Then Assumptions B.1(c) and C.1 hold.
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proof of lemma c.7. We prove the case where τ = 1
2
and the results follow similarly for any τ ∈ (0, 1). Note that

∑
1≤s≤n

|hπh(2s−1) − hπh(2s)|
2 ≤ |hπh(2n) − hπh(1)|

2 ≤ 4 max
1≤i≤2n

h2(Xi) ,

where the first inequality follows from the definition of πh and the second inequality follows by inspection, and therefore

it follows from Lemma C.6 that

1

n

∑
1≤s≤n

|hπh(2s−1) − hπh(2s)|
2 ≤ 4

n
max

1≤i≤2n
h2(Xi)

P→ 0 .

Assumption B.1(c) thus holds. To see Assumption C.1 holds, note that

1

n

∑
1≤j≤⌊n

2
⌋

|hπh(4j−k) − hπh(4j−l)|
2 ≲ 1

n
|hπh(2n) − hπh(1)|

2 ,

and the result follows similarly as above.

Lemma C.8. Suppose g satisfies Assumption 5.2(c) and ĝm satisfies Assumption 5.3. Then, as m,n → ∞,

1

n

∑
1≤s≤n

|gπĝm (2s−1) − gπĝm (2s)|
2 P→ 0 ,

and
1

n

∑
1≤j≤⌊n

2
⌋

|gπĝm (4j−k) − gπĝm (4j−l)|
2 P→ 0

for k ∈ {2, 3} and l ∈ {0, 1}.

proof of lemma c.8. We only prove the first conclusion as the second could be shown by similar arguments. We first

show that Assumption 5.3 implies
1

n

∑
1≤i≤2n

|ĝi − gi|2
P→ 0 . (76)

Suppose Assumption 5.3 holds. For any ϵ > 0, δ > 0, there existsM > 0 such that form > M ,

P

{∫
Rp

|ĝm(x)− g(x)|2 QX(dx) >
ϵδ

2

}
≤ δ

2
. (77)

By Markov’s inequality again, if ∫
Rp

|ĝm(x)− g(x)|2 QX(dx) ≤ ϵδ

2
,

then by the independence of W̃ (m) andW (n),

P

 1

2n

∑
1≤i≤2n

|ĝi − gi|2 > ϵ

∣∣∣∣∣W̃ (m)

 ≤

E

 1

2n

∑
1≤i≤2n

|ĝi − gi|2
∣∣∣∣∣W̃ (m)


ϵ

=

∫
Rp |ĝm(x)− g(x)|2 QX(dx)

ϵ
≤ δ

2
. (78)

Then,

P

 1

2n

∑
1≤i≤2n

|ĝi − gi|2 > ϵ

 ≤ P

 1

2n

∑
1≤i≤2n

|ĝi − gi|2 > ϵ

∣∣∣∣∣W̃ (m)

P

{∫
Rp

|ĝm(x)− g(x)|2 QX(dx) ≤ ϵδ

2

}
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+ P

{∫
Rp

|ĝm(x)− g(x)|2 QX(dx) >
ϵδ

2

}
≤ δ

2

(
1− δ

2

)
+

δ

2
≤ δ ,

where the first inequality follows by definition, and the second inequality follows from (77) and (78).

Next, note that since |a+ b|2 ≤ 2(a2 + b2) for any a, b ∈ R,

1

n

∑
1≤s≤n

|gπĝm (2s−1) − gπĝm (2s)|
2

≲ 1

n

∑
1≤s≤n

|ĝπĝm (2s−1) − ĝπĝm (2s)|
2 +

1

n

∑
1≤i≤2n

|ĝi − gi|2 . (79)

Next, note that

1

n

∑
1≤s≤n

|ĝπĝm (2s−1) − ĝπĝm (2s)|
2

≤ 1

n
max

1≤i≤2n
|ĝi|2

≲ 1

n
max

1≤i≤2n
|gi|2 +

1

n
max

1≤i≤2n
|ĝi − gi|2

≲ 1

n
max

1≤i≤2n
|gi|2 +

1

n

∑
1≤i≤2n

|ĝi − gi|2 . (80)

The conclusion then follows from (76), (79), (80), Assumption 5.2(c) and an application of Lemma C.6.

C.1 Sufficient conditions for Lipschitz continuity

Let f denote the density function ofX. Recall thatC(r) is the class of functions which are rth continuously differentiable.

We impose the following assumption on h in Assumption B.1 and f .

Assumption C.2. The function h and density function f satisfy the following conditions.

(a) h ∈ C(2).

(b) ∂h(x)
∂xp

6= 0 Lebesgue a.e.

(c) f ∈ C(2).

Lemma C.9 (Theorem 24.4 of Munkres (1997)). Let O be open in Rp and f : O → R be of class C(r) for r ≥ 1. Let M be

the set of points x for which f(x) = 0 and N be the set of points x for which f(x) ≥ 0. Suppose M is non-empty and Df(x)

has rank 1 at each point ofM . Then N is a p-manifold inRp and ∂N = M .

Lemma C.10. Suppose Assumption C.2(a)–(b) hold. Then M = {x : h(x) = z} is a (p− 1)-manifold inRp.

proof of lemma c.10. For each x ∈ M , we aim at providing a coordinate patch onM about x. Indeed, by Assumption

C.2(a)–(b) and Theorem 9.2 (implicit function theorem) of Munkres (1997), there exists an open set U containing u =

(x1, . . . , xp−1), an open ball B(z) containing z and an open set O inR containing xp, and a function k : U × B(z) → Rp

of class C(2) such that h(u, k(u, z′)) = z′ for all u ∈ U , z′ ∈ B(z) and x ∈ O. Moreover, k(U × B(z)) = O. Define the

coordinate patch α(u; z) = (u, k(u, z)). The conclusion follows by Theorem 5-2 of Spivak (1965).
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Note that M = {x : h(x) = z} is a (p − 1)-manifold by Lemmas C.9 and C.10. In what follows, we will need the

definition of the integral of a function g over the manifold M . In order to do so, note that there exists a coordinate patch

as {αj : Uj ⊆ Rp−1 → Vj ⊆ M, j ∈ J }, where αj(u) = αj(u, z), and each αj(u) = (u, kj(u)) for some function

kj : U → Rwhich is of class C2, as shown in the proof of Lemma C.10, and αj(Uj) = Vj . Next, there exists a partition of

unity {ϕi : i ∈ I} dominated by the {Vj : j ∈ J }. Moreover, both I and J could be chosen to be countable, according to

Section 25 of Munkres (1997). The integral of a scalar function g over the manifold is written as∫
M

g dV =
∑
j∈J

∑
i∈I

∫
Uj

[(gϕi) ◦ αj ]V (Dαj) ,

where V (A) =
√

det(A′A) is the volume. We have

Dαj =

[
Ip−1

∂kj(u, z)

∂u

]
,

so that

V (Dαj) =

√
1 +

∂kj(u, z)

∂u′
∂kj(u, z)

∂u
=

‖∇h(u, kj(u, z))‖
|Dph(u, kj(u, z))|

,

whereDp = ∂
∂xp

, by the implicit function theorem and matrix determinant lemma. Note that on one hand, for each j ∈ J ,

only a finite number of ϕi is positive, and on the other hand, {ϕi : i ∈ I} is dominated by the coordinate patch, which

means that each ϕi is supported on a compact set inside a single Vj . As a result, the order of the above double sum could

be interchanged.

By p.345 of Bogachev (2007), the conditional expectation of a function g on the manifoldM is defined as

E[g(X)|M ] = lim
t→0

E[g(X)I{z ≤ h(X) ≤ z + t}]
P{z ≤ h(X) ≤ z + t} .

Lemma C.11. Suppose Assumption C.2(a)–(c) hold. Then

E[g(X)|M ] =

∫
M

fg

‖∇h‖ dV∫
M

f

‖∇h‖ dV

. (81)

For a continuously differentiable function h : Rp → R, x ∈ Rp is a critical point of h if ∇h(x) = 0, where ∇h(x) is

the gradient of h at x; otherwise x is a regular point of h. A value z is a critical value of h if the set {x : h(x) = z} contains

at least one critical point; otherwise z is a regular value of h.

proof of lemma c.11. By L’Hospital’s rule,

E[g(X)|M ] =
lim
t→0

E[g(X)I{z ≤ h(X) ≤ z + t}]
t

lim
t→0

P{z ≤ h(X) ≤ z + t}
t

,

and the lemma follows from Lemma A.1 of Chernozhukov et al. (2018). In particular, the denominator equals the one in

(81) directly by that lemma, while for the numerator we merely need to redefine the ʻdensity’ function as fg and the same

proof goes through.

Lemma C.12. Suppose Assumption C.2(a)–(b) hold. Let M = {x : h(x) = z}, where z is a regular value of h on Rp. Then
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for any g ∈ C(2),

∂

∂z

∫
M

g dV =

∫
M

Dpg

Dph
dV +

∫
M

g
1

‖∇h‖2
∑

1≤i≤p

DihDiph

Dph
dV −

∫
M

g
Dpph

D2
ph

dV . (82)

proof of lemma c.12. To begin with, note that

∂

∂z

∫
Uj

[(gϕi) ◦ αj ]V (Dαj)

=

∫
Uj

Dp(gϕi)
∂kj(u, z)

∂z

‖∇h‖
|Dph|

+

∫
Uj

gϕi
|Dph|
‖∇h‖

∂kj(u, z)

∂z

1

D4
ph

D2
ph

∑
1≤i≤p

DihDiph−DphDpph
∑

1≤i≤p

D2
i h

 , (83)

where Dijh = ∂i∂jh for any function h ∈ C(2). we have suppressed the arguments of h, being (u, kj(u, z)). Note that

it is legitimate to pass diffentiation inside the integral by the dominated convergence theorem. By the Implicit Function

Theorem again,
∂kj(u, z)

∂z
=

1

Dph(u, kj(u, z))
. (84)

By Theorem 7.17 of Rudin (1976), we know that ∂
∂z

∫
M

g(x) dV is the sum over i ∈ I, j ∈ J of the two terms in (83).

Using (84), the sum of the first term is

∑
j∈J

∑
i∈I

∫
Uj

(ϕiDpg + gDpϕi)
1

Dph

‖∇h‖
|Dph|

=
∑
j

∫
Uj

Dpg

Dph
V (Dαj)

=

∫
M

Dpg

Dph
dV , (85)

because
∑

i∈I ϕi = 1 and hence
∑

i∈I Dpϕi = Dp

∑
i∈I ϕi = 0. Again, the interchange of differentiation and sum is

allowed because the sum is actually over a finite number of terms, by definition of a partition of unity. The sum of the

second term is

∑
j∈J

∑
i∈I

∫
Uj

gϕi
|Dph|
‖∇h‖

1

D4
ph

∑
1≤i≤p

(DihDphDiph−D2
i hDpph)

=
∑
j∈J

∫
Uj

g
D2

ph

‖∇h‖2
1

D4
ph

∑
1≤i<p

(DihDphDiph−D2
i hDpph)V (Dα)

=

∫
M

g
1

‖∇h‖2D2
ph

∑
1≤i≤p

(DihDphDiph−D2
i hDpph) dV

=

∫
M

g
1

‖∇h‖2
∑

1≤i≤p

DihDiph

Dph
dV −

∫
M

g
Dpph

D2
ph

dV . (86)

(82) now follows from (85) and (86).

Theorem C.1. Suppose Assumption C.2 holds. If z is a regular value of h, then

∂

∂z
E[g(X)|M ] =

∫
M

Dp(fg/Dph)

‖∇h‖ dV

∫
M

f

‖∇h‖ dV −
∫
M

Dp(f/Dph)

‖∇h‖ dV

∫
M

fg

‖∇h‖ dV[∫
M

f

‖∇h‖ dV

]2 . (87)
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proof of theorem c.1. To begin with, replace g in Lemma C.12 with f
∥∇h∥ . We then have

∂

∂z

∫
M

f

‖∇h‖ dV

=

∫
M

‖∇h‖Dpf −
f
∑

1≤i≤p DihDiph

‖∇h‖
‖∇h‖2Dph

dV

+

∫
M

f

‖∇h‖3
∑

1≤i≤p

DihDiph

Dph
dV −

∫
M

fDpph

‖∇h‖D2
ph

dV

=

∫
M

DpfDph− fDpph

‖∇h‖D2
ph

dV

=

∫
M

Dp(f/Dph)

‖∇h‖ dV . (88)

By the same arguments,
∂

∂z

∫
M

fg

‖∇h‖ dV =

∫
M

Dp(fg/Dph)

‖∇h‖ dV . (89)

(87) now follows from (88) and (89) together with the quotient rule.

In general, by the Law of Iterated Expectation

E[Y r
i (d)|h(X) = z] = E[E[Y r

i (d)|X]|h(X) = z] .

Suppose h and the density function ofX, f(X) satisfy the smoothness conditions in Assumption C.2, the derivative

∂

∂z
E[g(X)|h(X) = z]

is given in Theorem C.1, where g(x) = E[Y r
i (d)|X = x] for r = 1, 2 and d = 0, 1. In particular, it is equal to

E

[
Dpg

Dph
+

gDpf

fDph
− gDpph

D2
ph

∣∣∣∣h(X) = z

]
− E

[
Dpf

fDph
− Dpph

D2
ph

∣∣∣∣h(X) = z

]
E

[
g

∣∣∣∣h(X) = z

]
= E

[
Dpg

Dph

∣∣∣∣h(X) = z

]
+Cov

[
Dpf

fDph
− Dpph

D2
ph

, g

∣∣∣∣h(X) = z

]
. (90)

Lemma C.13. Each of the following conditions imply the boundedness of (90).

1. h is linear, ‖Dpg‖∞ < ∞, ‖g‖∞ < ∞ and ‖Dp(ln f)‖∞ < ∞.

2. h is linear, supz∈R |E[Dpg|h(X) = z]| < ∞, supz∈R |E[g2|h(X) = z]| < ∞ and supz∈R |E[D2
p(ln f)|h(X) = z]| <

∞.

3. h includes linear and interaction terms,
∥∥∥Dpg

Dph

∥∥∥
∞

< ∞, ‖g‖∞ < ∞ and
∥∥∥Dp(ln f)

Dph

∥∥∥
∞

< ∞.

proof of lemma c.13. Follows from inspection.

D Details of penalized matching

In this section, we consider the solution to the Bayesian problem in (31) a particular example that motivates the penalized

matching procedure defined by (29). For simplicity, we focus on the special case under which and Yi(d) ∼ N(X ′
iβ(d), σ

2)
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for d ∈ {0, 1}. Note that the potential outcomes are homoskedastic conditional on the covariates. Define β = β(1)+β(0),

and we have g(x) = x′β. As before, we suppose W̃ (m) = ((Ỹj , X̃
′
j , D̃j)

′ : 1 ≤ j ≤ m) is available from a pilot experiment.

Suppose the prior on β(d) isGd
d
= N(η(d),Σ(d)) for d ∈ {0, 1}, being independent across d ∈ {0, 1}. The prior distribution

of β is then G(dβ)
d
= N(η(1) + η(0),Σ(1) + Σ(0)). We could show that the posterior distribution of β(d) conditional on

W̃ (m) is

Ḡd(dβ|W̃ (m))
d
= N(η̄, Σ̄) ,

where for d ∈ {0, 1},

η̄(d) =

(σ2)−1
∑

j:D̃j=d

X̃jX̃
′
j +Σ−1(d)

−1 (σ2)−1
∑

j:D̃j=d

X̃j Ỹj +Σ−1(d)η(d)


Σ̄(d) =

(σ2)−1
∑

j:D̃j=d

X̃jX̃
′
j +Σ−1(d)

−1

.

Define η̄ = η̄(1) + η̄(0) and Σ̄ = Σ̄(1) + Σ̄(0). The posterior distribution for β is

Ḡ(dβ|W̃ (m))
d
= (η̄, Σ̄) ,

sinceGd(dβ)’s are independent across d ∈ {0, 1}.

The next lemma provides the solution to the Bayesian problem in (31), where the choice set is over all measurable

functions u : (w̃(m), x(n)) 7→ λ ∈ Λn.

Lemma D.1. The solution to (31) maps each (w̃(m), x(n)) to λ = {{π(2s− 1), π(2s)} : 1 ≤ s ≤ n/2}, where π solves

min
π∈Πn

∑
1≤s≤n

d̄
(
xπ(2s−1), xπ(2s)

)
,

where

d̄(x1, x2) = (x′
1η̄ − x′

2η̄)
2 + (x1 − x2)

′Σ̄(x1 − x2) . (91)

proof. First note that by (9) and (12), (31) is equivalent to

min
u

∫∫∫
L(u(w̃(m), x(n))|β, x(n))Qn

X(dx(n))Qm
W̃ (dw̃(m))G(dβ) . (92)

Next, note that we could solve the problem pointwise for w̃(m) and x(n) since (92) is equivalent to

min
u

R̄(u|W̃ (m)) , (93)

where

R̄(u|W̃ (m)) =

∫
L(u(W̃ (m), x(n))|β, x(n))Ḡ(dβ|W̃ (m)) .

To solve (93), first note that since R̄(u|W̃ (m)) is linear in u, by LemmaC.1, it is solved by amatched-pair design. Next,

R̄(u|W̃ (m)) =
∑

1≤s≤n

((x′
π(2s−1)η̄ − x′

π(2s)η̄)
2 + (xπ(2s−1) − xπ(2s))

′Σ̄(xπ(2s−1) − xπ(2s))) .

As a result, minimizing it is equivalent to minimizing the sum of the distances defined in (91).
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Finally, we want the prior to be irrelevant. For the purpose, suppose that Σ = cI where I is an identity matrix. We let

the constant c → ∞, so that the prior diverges to a diffuse (uninformative) one. Then, η̄(d) converges to β̂m(d) in (22) and

Σ̄(d) converges to Σ̂m(d) defined in (23). Therefore, we define β̂m as in (24) and Σ̂m as in (25). The metric (91) converges

to the metric defined in (30).

E Minimax matching

This section describes the minimax procedure in detail. First note that L(λ|h,X(n)) depends on h only through h(n), and

hence (47) is equivalent to

min
λ∈Λ

max
h(n)∈G

L(λ|h(n)) , (94)

where

L(λ|h(n)) = L(λ|h,X(n))

and

G = {h(n) : h ∈ G, h1 = 0} .

The restriction h1 = 0 is a location normalization, since L(λ|h(n)) only depends on h(n) through pairwise differences and

is therefore shift-invariant. In order to solve (94) computationally, we impose the following requirement onG:

Assumption E.1. G is a bounded polyhedron inRn.

We now provide examples ofG that satisfy Assumption E.1.

Example E.1. Consider the class of Lipschitz functions:

G = {h(n) : |hi − hj | ≤ M‖Xi −Xj‖ for i 6= j, h1 = 0} . (95)

G satisfies Assumption E.1.

Example E.2. When p > 2, i.e.,Xi is multivariate, consider the class of functions which are Lipschitz along each dimen-

sion:

G =

h(n) : |hi − hj | ≤
∑

1≤l≤p

Ml|Xil −Xjl| for i 6= j, h1 = 0

 .

G satisfies Assumption E.1.

Example E.3. Consider the class of functions Lipschitz in a known index. For a known function w, define

G =
{
h(n) : |hi − hj | ≤ M |ν(Xi)− ν(Xj)| for i 6= j, h1 = 0

}
. (96)

G satisfies Assumption E.1.

Example E.4. Consider the class of linear functions with coefficients in a bounded polyhedron. For a bounded polyhedron

B inRp, define

G = {X(n)β −X ′
1β1n : β ∈ B} .

G satisfies Assumption E.1.
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Example E.5. Consider the class of monotonically increasing functions. Without loss of generality assume that X1 ≤
. . . ≤ Xn. ForM > 0, define

G = {h(n) : hi ≤ hj for i < j, hn ≤ M,h1 = 0} .

SinceG is bounded and defined by linear inequalities, it satisfies Assumption E.1.

Example E.6. Consider the class of convex functions. Without loss of generality assume thatX1 ≤ . . . ≤ Xn. ForM > 0,

define

G =

{
h(n) : hi ≤

Xi+1 −Xi

Xi+1 −Xi−1
hi−1 +

Xi −Xi−1

Xi+1 −Xi−1
hi+1, 2 ≤ i ≤ 2n− 1, |hn| ≤ M,h1 = 0

}
.

SinceG is bounded and defined by linear inequalities, it satisfies Assumption E.1.

Consider theminimax problem (94) withG defined in (96). The following theorem shows that without any information

of how the covariate affects potential outcomes beyond the index, the best we could do is to match on the index itself.

Theorem E.1. The solution to (94)withG defined in (96) is λν = {{πν(2s− 1), πν(2s)} : 1 ≤ s ≤ n}where νπν(1) ≤ . . . ≤
νπν(2n).

proof of theorem e.1. Without loss of generality, consider p = 1 and ν(x) = x. The general case is proved in exactly

the sameway. Weuse another expression of (46). Define∆i = gπ(i+1)−gπ(i) for i = 1, . . . , 2n−1. Forλ0 = {{1, . . . , 2n}},

L(λ0|g,X(n))

=
1

2n(2n− 1)

∑
1≤i≤2n

(2n− 1)gi −
∑
j ̸=i

gj

2

=
1

2n(2n− 1)

∑
1≤i≤2n

− ∑
1≤j≤i−1

j∆j +
∑

i≤j≤2n−1

(2n− j)∆j

2

=
1

2n(2n− 1)

 ∑
1≤i≤2n−1

2n(2n− i)i∆2
i + 2

∑
k<l≤2n−1

2n(2n− l)k∆k∆l


=

1

2n− 1

 ∑
1≤i≤2n−1

(2n− i)i∆2
i + 2

∑
k<l≤2n−1

(2n− l)k∆k∆l

 .

As a result, for a general stratification λ, the loss function (46) equals

L(λ|g,X(n)) =
∑

1≤s≤S

1

ns − 1

 ∑
1≤i≤ns−1

(ns − i)i∆2
i,s + 2

∑
k<l≤ns−1

(ns − l)k∆k,s∆l,s

 . (97)

Note that gmm(x) = Mx simultaneously maximizes (97) for every λ. But we know the stratification that solves

min
λ∈Λ

L(λ|gmm, X(n))

is the “optimal non-bipartite matching” ofX onR, i.e. λx.

For a prespecified θ0 ∈ R, consider the problem of testing (33) at level α ∈ (0, 1). We use the test in (36) by setting

ĝm = ν.
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Corollary E.1. Suppose the treatment assignment scheme satisfies Assumption 2.1 andQ satisfies Assumption 5.1 and h = ν

satisfies Assumption B.1 with τ = 1
2
. Then, for the problem of testing (33) at level α ∈ (0, 1), ϕν

n satisfies

lim
n→∞

E[ϕν
n(W

(n))] = α ,

wheneverQ additionally satisfies the null hypothesis, i.e., θ(Q) = θ0.

For other specifications ofG in (94), there does not exist a clean result as Theorem E.1, as illustrated by the following

example.

Example E.7. Let n = 4 andX1 = (0, 0)′, X2 = (1, 0)′, X3 = (0, 1)′, X4 = (1, 1)′. Let n = 4 and define

λ0 = {{1, 2, 3, 4}}

λ1 = {{1, 2}, {3, 4}}

λ2 = {{1, 3}, {2, 4}}

λ3 = {{1, 4}, {2, 3}} .

Let G be as defined in (95) with M = 1. Then λ0 solves (94). Indeed, for λ = λ1, the worst case occurs at h(n) =

(0,
√
2−1,

√
2−1,

√
2), with the loss equal to 2. For λ = λ2 or λ3, the worst case occurs at h(n) = (0, 1, 1, 0), with the loss

equal to 2. In contrast, theworst case forλ = λ0 occurs at h(n) = (0,
√
2−1,

√
2−1,

√
2), and the loss is (10−4

√
2)/3 < 2.

The key reason why (94) is hard to solve when p > 1 is that the choice set Λ is not convex. In principle, we could

convexify the problemby considering the co(Λ), the convex hull ofΛ. That amounts to allowing formixing over (potentially

a large number of) matched-pair designs, which is hard to interpret and is almost never used in practice. AlthoughΛ is not

convex, we can still provide computational strategies to solve (94). Note thatL(λ|h(n)) is convex in h(n), which combined

with Assumption E.1 implies that the innermaximum in (94) is attained on the vertices ofG, whichwe denote by V . Then,

the minimax problem is equivalent to

min
λ∈Λ

max
h(n)∈V

L(λ|h(n)) . (98)

We now apply results from graph theory to reformulate (98) into Mixed Integer Linear Programs (MILPs). We first recall

some definitions from the graph theory and connect them to the optimal stratification problem. For more details, see

Bertsimas and Tsitsiklis (1997).

An undirected graph Γ = (N,E) consists of a set of nodesN and a set of edges E. Each element of E is an unordered

pair {i, j} where i ∈ N and j ∈ N . Define qe = 1 if e ∈ E and define q = (qe)e∈E . Define qij = qi,j . The degree of i

is defined as di =
∑

j qij . The graph Γ is complete if qij = 1 for all i 6= j. A subset U of N is a clique in Γ if {i, j} ∈ E

for all i, j ∈ U . The set of induced edges by U is E(U) = {{i, j} ∈ E : i, j ∈ U, i 6= j}. A clique partition of Γ is

ΓC = (N,E(U1, . . . , US)) for E(U1, . . . , US) = ∪S
s=1E(Us) where each Us is a clique in ΓC (and Γ), and {Us}Ss=1 is a

partition ofN , i.e.,N = ∪S
s=1Us and Us

⋂
Ut = ∅ for s 6= t.

In terms of stratification, a unit is a node and an edge {i, j} ∈ E if units i and j are in the same stratum. A stratum is a

clique. A stratification λ = {λs}Ss=1 ofN = {1, . . . , n} induces a clique partition Γλ = (N,E(λ1, . . . , λS)) of Γ = (N,E)

for E = {{i, j} : i, j ∈ N, i 6= j} where the size of each clique λs is even, or equivalently the degree of each node in Γλ is

odd.
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Define ce = (hi − hj)
2 as the cost of edge e = {i, j} ∈ E, c = (ce)e∈E and C = {c : h(n) ∈ V }. By (46),

L(λ|h(n)) = L(λ|h,X(n)) =
∑

1≤s≤S

1

ns − 1

∑
i,j∈λs,i<j

(hi − hj)
2 .

If ns ≡ 2, then it equals ∑
e∈E

ceqe .

If ns > 2 for some s, then we need to introduce other binary variables to indicate ns. The minimax problem (94) is

equivalent to the following MILP which solves the cost minimization problem over size-bounded stratifications within Λ,

i.e., λwith ns ≤ 2K for all s.

min
q

z (99)

subject to
∑
e∈E

ce

 ∑
1≤k≤K

uik

2k − 1

 I{i ∈ e} ≤ z, for all c ∈ C ,

∑
l∈N

qil =
∑

1≤k≤K

(2k − 1)uik, for all i ∈ N ,

uik ∈ {0, 1}, for all i ∈ N, 1 ≤ k ≤ K ,

qe1 + qe2 − qe3 ≤ 1, for all e1, e2, e3 ∈ E , (100)

qe ∈ {0, 1}, for all e ∈ E .

We impose an upper bound on the size of each stratum, 2k. uik, k = 1, . . . ,K − 1 are binary indicators of whether the

stratum of unit i has size 2k. The first set of constraints express the loss function (46). The second set of constraints say

the degree of each node is 2k − 1, the stratum size minus one. The third set of constraints restrict uik to be binary. The

fourth and themost important set of constraints, (100), are called triangle inequalities in the clique partition literature. See

Grötschel andWakabayashi (1990). They ensure that the solution to (99) is indeed a clique partition, i.e., a stratification.

However, our problem differs from the standard clique partition problem in two ways: we only allow an even number of

units within each clique; and the final weights on each edge in the total cost depends on the degrees of either of its nodes,

rather than being a constant.

The program (99) is computationally intensive even when k = 2 and becomes prohibitive quickly as n increases.

Therefore, we consider two relaxations of it. The first relaxation is to optimize over Λp instead of Λ. For a matched-pair

design λ = {{π(2s− 1), π(2s)} : 1 ≤ s ≤ n},

L(λ|h,X(n)) =
∑

1≤s≤n

(hπ(2s−1) − hπ(2s))
2 .

As a result, we introduce the program as

min
q

z (101)

subject to
∑
e∈E

ceqe ≤ z, for all c ∈ C ,

∑
j∈N

qij = 1, for all i ∈ N ,

qe ∈ {0, 1}, for all e ∈ E .
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The solution to (101) is λmm = {e ∈ E : qe = 1}. We define the permutation πmm such that λmm = {{πmm(2s −
1), πmm(2s)} : 1 ≤ s ≤ n}. (101) is feasible even when n is large and requires substantially less computational budget

than (99). Moreover, as simulation evidence in Section in Table 4 shows, the solution to (101) is frequently the same with

(99) for a smallK and (102).

The second relaxation is the following hierarchical procedure.

Algorithm E.1.

1. Solve (101). Denote the solution by q0 and denote Λ0 = {e ∈ E : qe = 1}.

2. For k ≥ 0, repeat steps (a) and (b) below.

(a) For qk = (qkAB)A,B∈Λk,A̸=B, solve

min
qk

z

subject to
∑

A,B∈Λk

qABcAB +
∑

A∈Λk

cA ≤ z, for all c ∈ C ,

∑
B∈Λk

qkAB ≤ 1, for allA ∈ Λk ,

qkAB ∈ {0, 1}, for allA,B ∈ Λk ,

(102)

where cA = L(λ|g,XA), forXA = {Xi : i ∈ A} and cAB = cA
∪

B − cA − cB .

(b) Update

Λk+1 = {A
⋃

B : qkAB = 1}
⋃

{A :
∑

B∈Λk

qkAB = 0}

until Λk∗
= Λk∗+1. Collect Λk∗

as the solution.

Algorithm E.1 iteratively decides whether to merge pairs of strata or not. The algorithm stops when no paiswise merging

of existing strata reduces the worst-case loss.

We now study the properties of minimax matching in a small simulation study. We compare both the actual and worst-

case losses under different stratifications. In the following model, we construct a bounded polyhedronG around g(n). We

then calculate both the actual losses L(λ|g(n)) and worst-case losses max
h(n)∈G

L(λ|h(n)) across different stratifications. We

set g(x) = x′β and

G = {X(n)β : β ∈ B} ,

where B is a polyhedron such that β ∈ B.

Model MM 2n = 24; p = 2; Xi,1 = 0 for 1 ≤ i ≤ 8, Xi,2 = 1 for 9 ≤ i ≤ 24; Xi,2 ∼ N(0, 1)2 i.i.d. across i; g(x) = x′β,

β = (1, 1)′; B = B1 × B2, B1 = β1 + γ1 × [0, 1], B2 = β2 + γ2 × [−1, 1]; γ ∈ {(0.5, 0.5)′, (2, 2)′, (0, 2)′, (2, 0)′}.

We randomly generateX(n) in 100 replications and summarize

(a) ratios of the values of the actual loss against those under infeasible optimal stratifications.

(b) ratios of the values of the worst-case loss against those under size-bounded minimax stratifications with k = 2.

We consider the following stratifications:
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Oracle infeasible optimal stratification in (18).

by1 : λ1 = {i : 1 ≤ i ≤ 8}, λ2 = {i : 9 ≤ i ≤ 24}.

by2 two strata separated by the sample median ofXi,2.

2by2 four strata as the cross product of by1 and by2.

MP2 matching onXi,2 only, i.e., stratification in (21) with ĝm(x) = x1.

MPcell within each value ofXi,1, optimal matched-pair design usingXi,2.

MMpair the minimax matched-pair design in (101).

MMbdd the size-bounded minimax stratification in (99) with k = 2.

MMhier results from the hierarchical procedure in Algorithm E.1.

In Model MM, MMpair and MMhier have the same solution with MMbdd (which we know weakly dominates MMpair)

most of the time, while other stratifications which do not incorporate minimax consideration sometimes generate much

larger worst-case losses.

Oracle by1 by2 2by2 MP2 MPcell MMpair MMbdd MMhier

γ = (0.5, 0.5) 25% 1.0000 4.0109 2.3318 1.8158 1.0619 1.0256 1.0000 1.0000 1.0000
Actual 50% 1.0000 7.2394 3.8858 2.9807 1.2631 1.5291 1.0000 1.0000 1.0000

75% 1.0000 13.7890 7.7959 6.5012 1.8567 4.4629 1.0001 1.0001 1.0001
Mean 1.0000 13.6242 7.0691 7.6378 1.7480 5.5226 1.0346 1.0346 1.0346

Worst-case 25% 1.0000 4.0109 2.3381 1.7832 1.0481 1.0243 1.0000 1.0000 1.0000
50% 1.0000 6.9420 3.6908 2.8469 1.1858 1.4011 1.0000 1.0000 1.0000
75% 1.0003 11.9445 6.7125 5.9020 1.6146 3.9388 1.0000 1.0000 1.0000
Mean 1.0212 10.3183 5.4894 5.6169 1.4884 3.8240 1.0000 1.0000 1.0000

γ = (2, 2) 25% 1.0000 4.4595 2.7007 2.1185 1.0700 1.0994 1.0000 1.0000 1.0000
Actual 50% 1.0000 9.2109 4.1580 3.5446 1.3348 1.8127 1.0096 1.0096 1.0096

75% 1.0000 14.5268 6.8864 6.9304 1.8268 4.0986 1.3038 1.3038 1.3038
Mean 1.0000 13.5257 7.3036 6.3795 1.7873 3.8773 1.2997 1.2997 1.2997

Worst-case 25% 1.0000 3.8897 2.2736 1.8008 1.0408 1.0315 1.0000 1.0000 1.0000
50% 1.0126 6.2500 3.1816 2.6923 1.1604 1.4000 1.0000 1.0000 1.0000
75% 1.2516 10.1048 5.0563 4.3542 1.6279 2.8357 1.0000 1.0000 1.0000
Mean 1.2390 8.5778 4.9668 3.9661 1.4436 2.2735 1.0000 1.0000 1.0000

γ = (0, 1) 25% 1.0000 4.1720 2.5479 1.8497 1.0397 1.1857 1.0000 1.0000 1.0000
Actual 50% 1.0000 7.4458 3.8469 3.3647 1.2599 1.7892 1.0135 1.0135 1.0135

75% 1.0000 14.1891 7.6734 6.3794 1.7666 3.1199 1.1199 1.1199 1.1199
Mean 1.0000 12.4138 6.8864 5.5793 1.8987 2.8784 1.1301 1.1301 1.1301

Worst-case 25% 1.0000 4.3021 2.3348 1.8989 1.0012 1.2292 1.0000 1.0000 1.0000
50% 1.0077 7.2928 3.4658 3.6051 1.0450 1.5861 1.0000 1.0000 1.0000
75% 1.1138 16.6540 6.7290 6.8655 1.2165 3.7622 1.0000 1.0000 1.0000
Mean 1.1128 12.0228 5.8405 5.4142 1.2350 2.8276 1.0000 1.0000 1.0000

γ = (1, 0) 25% 1.0000 3.5310 2.1679 2.0152 1.0654 1.0985 1.0000 1.0000 1.0000
Actual 50% 1.0000 8.5908 4.1682 3.8322 1.2567 1.9700 1.0481 1.0481 1.0481

75% 1.0000 17.9252 8.6984 8.2448 1.8296 3.6598 1.5850 1.5850 1.5850
Mean 1.0000 14.7115 8.3951 6.6366 1.6191 3.8705 1.7197 1.7197 1.7197

Worst-case 25% 1.0000 2.9528 2.4142 1.5418 1.1470 1.0000 1.0000 1.0000 1.0000
50% 1.0435 4.6975 3.3215 2.1056 1.5634 1.0211 1.0000 1.0000 1.0000
75% 1.6225 9.0650 5.4879 3.9089 2.6225 1.6384 1.0000 1.0000 1.0000
Mean 1.6231 7.8535 6.4319 3.6442 2.3219 1.8804 1.0000 1.0000 1.0000

Table 4: Ratios of values of the actual loss under all stratifications against those under the infeasible optimal

stratifications (Oracle) and ratios of values of the worst-case loss under all stratifications against those under

size-bounded minimax stratifications (MMbdd) in Model MM. Benchmarks are displayed in bold face.
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F AEA RCT Registry

The following experiments in theAEARCTRegistry usematched-pair designs: AEARCTR-0000086, 0000171, 0000293,

0000443, 0000481, 0000550, 0000578, 0000587, 0000644, 0000688, 0000721, 0000983, 0000986, 0001034, 0001097,

0001218, 0001370, 0001591, 0001607, 0001712, 0001714, 0001778, 0001992, 0001995, 0002010, 0002125, 0002132,

0002282, 0002585, 0002622, 0002664, 0002750, 0002776, 0003056, 0003076, 0003524, 0003581, 0003629, 0003648,

0003779, 0003814, 0003933, 0003994, 0004024, 0004042, 0004022.
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