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Abstract

We derive the revenue maximizing mechanism for a risk-neutral seller who

faces Yaari’s [1987] dual risk-averse bidders. The optimal mechanism offers “full-

insurance” in the sense that each agent’s utility is independent of other agents’

reports. The seller excludes less types than under risk neutrality, and awards the

object randomly to intermediate types. Subjecting intermediate types to a risky

allocation while compensating them when losing allows the seller to collect larger

payments from higher types. Relatively high types are anyway willing to pay more,

and their allocation is efficient. Finally, a first-price auction maximizes revenue

within the class of standard auctions.

Keywords: Auction Design, Yaari Preferences, Rank Dependent Utility, Non-Linear Probability

Weighting

1 Introduction

We introduce non-linear probability weighting to the analysis of optimal auctions. Specif-

ically, we derive the revenue maximizing auction for a risk-neutral seller who faces (risk-
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averse) bidders with preferences respecting the axioms underlying Yaari’s [1987] dual

theory of choice under risk. The informational assumptions are standard, and follow the

independent, private values paradigm.

Yaari’s dual theory replaces the classical von Neumann-Morgenstern independence ax-

iom behind the expected utility (EU) functional with another axiom concerning mixtures

of comonotonic random variables. The mixture is along the payoff axis instead of the

probability axis - hence the name dual - and the resulting utility functional uses a non-

linear function to asses probabilities.1 Equivalently, it weights each payoff by a weight

that is decreasing in the size of the payoff, and thus Yaari’s functional is a rank-dependent

(or anticipated) utility functional a la Quiggin [1982]. Among other desirable properties,

it disentangles attitudes towards risk from the marginal utility of money, that is constant.

This property makes it rather appealing for auction settings where stakes are moderate:

linearity of the bidders’ utilities in monetary transfers can then coexist with any degree

of risk aversion.

Our first main result is that, with dual risk-averse bidders, the search for an optimal

procedure can be confined to the class of full-insurance mechanisms, where the utility of an

agent is only a function of his type: it depends neither on the types of other agents, nor on

the realization of other randomizations within the mechanism. In particular, this means

that losing buyers must be compensated in order to make them indifferent to winning.

The main technical insight behind this result is that comonotonic random variables have

the largest sum in the convex stochastic order (and hence the highest variability) within

the class of random variables with given marginals (see Meilijson and Nadas [1979]). We

use this insight to show that, when agents are dual risk-averse, the incentive to deviate is

minimal in a full-insurance mechanism among the class of all mechanisms which provide

the agent with a given interim value.

With dual risk-averse bidders, the expected revenue becomes a concave function of

the reduced-form allocation, and its maximization must be approached by variational

methods. We first derive the optimal mechanism for a single bidder: instead of a classical

take-it-or-leave offer for a risk-neutral buyer, we find that the seller awards the object ran-

domly to intermediate types. Subjecting these types to a risky lottery while compensating

them when they do not get the object allows the seller to collect larger payments from

higher types, which is ultimately profitable. High types receive the object with probability

1EU assumes that if the random variable X is preferred to X ′ then receiving X with probability 1
2

and Y with probability 1
2 is preferred to the equivalent mixture of X ′ and Y . Yaari preferences assume

that if X is preferred to X ′ and Y is comonotonic with X and X ′ then getting 1
2 the payoff of X and 1

2
the payoff of Y is preferred to the equivalent weighted sum of payoffs of X ′ and Y .
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one, as distorting their allocation is too costly. This is related to a monopolistic screening

problem a la Mussa and Rosen [1978]2: even if the cost of producing any quality is zero,

it is sometimes optimal for the monopolist to sell intermediate types a “damaged” good

(that sometimes malfunctions) plus a full-insurance warranty. This class of contracts is

consistent to observations from real-life insurance markets where even moderate risks are

often fully insured: Cohen and Einav [2007] (house insurance) and Sydnor [2010] (car

insurance), among others, empirically show that assuming EU yields implausibly large

measures of risk parameters for a range of moderate risks. Most customers in their stud-

ies purchase low deductibles - de facto warranties - despite costs that are significantly

above the expected value.

We next consider the n-agent allocation problem. Since the expected revenue is here

concave in the probability with which an agent of a given type receives an object, it fol-

lows that, in symmetric n-bidder settings, the optimal mechanism is symmetric. The main

complication of the n-bidder case relative to the single-bidder case is the feasibility con-

straint, binding across types, that restricts the reduced form allocation, i.e., the expected

probability of obtaining an object for each bidder type (see Border [1991]).3 Incorpo-

rating this constraint in the maximization exercise yields a variational obstacle problem

that can be solved via the infinite-dimensional version of the Kuhn-Tucker theorem (see

Luenberger [1997]).

The optimal allocation has features similar to that in the single-bidder case: in particu-

lar, even when the object is allocated, it is not always allocated efficiently, and payments

are computed to yield full insurance. Moreover, the expected revenue increases when

bidders become more risk-averse and when there are more bidders.

A well-known example of auctions where (some) losers are compensated are the so-

called premium auctions: in such auctions the seller rewards one, or more, high losing

bidders. Premium auctions have been around since the Middle Ages, and are still used

today to sell houses, land, large equipment (e.g., boats, planes, machines) and inventories

of insolvent businesses (see Goeree and Offerman [2004]). Although in practice not all

losers who bid above a threshold are compensated (as would be required in our full

insurance mechanisms), we note that the implied compensation in our mechanisms for

low and intermediate types is relatively small because their chance of winning is also

small. Thus, in our optimal mechanism only high-type losing bidders get substantial

compensation, which is broadly consistent with the practice of premium auctions.

2This problem was analyzed by Matthews and Moore [1987] for a risk-averse agent with EU preferences.
3The current maximization problem is concave. See Gershkov et al. [2019] for the analysis of a convex

revenue maximization problem (with the same obstacle) via the Fan-Lorentz integral inequality.
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Since full-insurance mechanisms as described above may be sometimes difficult to im-

plement in practice, we also look at standard auctions where the seller cannot compensate

losing bidders and where, conditional on allocating the object, the allocation is efficient.

Within this standard class we show that a first-price auction with a reserve price is optimal

(while other standard auction formats are not!).

In the first-price auction a bidder is uncertain whether he will win the object, a feature

shared by all standard auctions. But, he does not have to pay in case of losing, as in an

all-pay auction. Moreover, conditional on winning, the price is deterministic and equals

his bid, contrasting the random price determined by other bidders, as in a second-price

auction. These risk-reducing features yield the optimality of the first-price auction when

facing dual risk-averse bidders.

1.1 Related Literature

There is ample empirical evidence both from stock markets (Kliger and Levy [2009])

and sport bets studies (see Snowberg and Wolfers [2010], and Andrikogiannopoulou and

Papakonstantinou [2013]) that agents do use non-linear probability weighting.

Barseghyan et al [2016] find that stable Yaari and rank-dependent utility preferences

cannot be rejected for the majority of households in a data set of car and home-insurance

choices.4 Several laboratory experiments also illustrated similar findings(see Bruhin, Fehr-

Duda and Epper [2010] and, in particular, Goeree, Halt and Palfrey [2002] who find

support for a quadratic probability weighting.)

Guriev [2001] offers a “microfoundation” for Yaari preferences. He shows that a risk

neutral (expected utility) agent who faces a bid-ask spread in the credit market will behave

as if he were a dual risk averse decision maker: bad outcomes where he will need to borrow

are more heavily weighted than good outcomes where he will be able to save. The same

happens for an agent that is linearly taxed on gains but not on losses.

The symmetric, independent and private values auction model with bidders whose

preferences respect Yaari’s axioms has been first analyzed by Volij [2002]. He studied

standard auctions and established a “payoff equivalence” result for a class of mechanisms

with deterministic allocation and transfers that includes the first-price, second-price and

all-pay auctions. It is important to note that, with risk-averse buyers (stemming either

from EU or from Yaari preferences), payoff equivalence for bidders does not imply rev-

4Looking at households that purchase property insurance Barseghyan et al [2011] reject the hypothesis
that subjects have stable expected utility preferences for more than 3/4 of the households.This finding is
confirmed for insurance coverage and 401(k) investment decisions in Einav et al[2012] .
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enue equivalence, and the latter does not hold. Moreover, when bidders use non-linear

probability weighting, the expected revenue of a mechanism implementing a given re-

duced form allocation rule is non-linear in the allocation probabilities. The combination

of these two features requires an approach to revenue maximization that is different from

the classical one under risk neutrality due to Myerson [1981] and Riley and Samuelon

[1983]. There payoff equivalence implies revenue equivalence, and, moreover, revenue is

linear in allocation probabilities. Even under standard expected utility preferences, the

derivation of the revenue-maximizing auction mechanism is very complex unless bidders

are risk-neutral and an explicit solution to the general problem is not known (see Maskin

and Riley [1984]).

Almost all papers studying auctions where bidders have non-expected utility typically

compare the performance of specific selling formats, e.g., the early contributions of Neilson

[1984] and Karni and Safra [1989] and, more recently, Che and Gale [2006]. This last paper

shows that, for a large class of risk-averse bidder preferences, including Yaari’s, a first price

auction yields a higher revenue than a second-price auction. These authors do not discuss

optimal mechanisms.

The optimality of full-insurance mechanisms appears in the context of auctions with

ambiguity-averse bidders (Bose et al. [2006])5. The maximization problem they solve is

linear in probabilities, and thus the optimal auction in their framework is obtained by

standard methods a la Myerson.

Similarly, most of the papers investigating auctions with risk-averse bidders (e.g.

Matthews [1987], Baisa [2017]) do not aim to provide a characterization of the opti-

mal mechanism. Revenue maximization with risk averse buyers under expected utility

has been studied by Maskin and Riley [1984] and by Matthews [1983]. Matthews [1983]

restricts attention to constant absolute risk aversion, and finds that the optimal mech-

anism resembles a modified first-price auction where the seller sells (partial) insurance

to bidders with high valuation, but charges an entry fee to bidders with low valuation.

Maskin and Riley [1984] allow for more general risk averse (EU) preferences and establish

several properties of an optimal auction. In particular, they show that full insurance need

not be optimal.

Maskin and Riley [1984] also show quite generally that, when buyers are risk averse

the first-price auction yields more revenue than the second-price (or English) auction, but

they do not discuss the optimality of the first-price auctions within the class of standard

5Insurance also plays a role in the robust mechanisms discussed by Bierbrauer and Netzer [2016] in
settings where agents also care about intentions.
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(or other) auctions.

The literature on premium auctions identified several potential reasons for their use.

Milgrom [2004] and Goeree and Offerman [2004] suggest that a premium auction format

is used to encourage weak bidders to compete against strong bidders, and thus to increase

the seller’s revenue. Hu, Offerman and Zou [2011] studied a two-stage English premium

auction model with symmetric, interdependent values, and showed that the use of pre-

mium is only profitable to the seller when bidders are risk-loving. Hu, Offerman and Zou

[2017] showed that, if both the seller and the bidders are risk-averse, premium auctions

allow risk sharing that may benefit all participants. All identified reasons where premium

auctions may be beneficial (bidder asymmetry, risk loving-bidders, risk sharing between

buyers and seller) are thus quite different from our insight that a risk-neutral seller can

use premium auctions to provide insurance to risk-averse bidders.

The paper is organized as follows. In Section 2 we briefly review Yaari’s dual theory.

In Section 3 we introduce the auction model and feasible mechanisms. We show that the

quest for an optimal mechanism can be restricted to the class of full-insurance mechanisms.

In Section 4 we derive the revenue-maximizing mechanism for settings with a single bidder.

The general n−bidder case is treated in Section 5, where we also derive several comparative

statics results. In Section 6 we show that the first-price auction with a reserve price is

optimal in the class of standard auctions (that do not offer insurance). Section 7 concludes.

2 Yaari’s Dual Theory of Choice Under Risk

We briefly review here Yaari’s theory. An appealing feature of the dual theory is that,

unlike expected utility, attitudes towards risk are not entangled with attitudes towards

wealth: the marginal utility of wealth is constant, but this is consistent with any attitude

towards risk.

Let X be the set of all random variables defined on some given probability space

(Ω,F ,P), with values in the interval [m,m] with −∞ < m < m <∞. The values of the

random variables are interpreted as payments, and each random variable is interpreted as

a lottery. For any two random variables x, y ∈ X and for any α ∈ [0, 1], let αx+ (1−α)y

denote the random variable that equals the weighted sum αx(ω) + (1 − α)y(ω) in every

state ω ∈ Ω.6

Two random variables, x and y, are said to be comonotonic if and only if for every

6This is NOT the probability mixture of x and y!
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pair of states, ω and ω′, it holds that

(x(ω)− x(ω′)) · (y(ω)− y(ω′)) ≥ 0.

For each x ∈ X, define the decumulative distribution function Gx by

Gx(s) = P[x > s], m ≤ s ≤ m.

Note that
∫ m
m
Gx(s)ds + m = E[x], and that the function Gx is non-increasing, right-

continuous, and satisfies Gx(1) = 0.

Axioms Yaari imposed four axioms on a complete, weak order % over X:

1. Neutrality : If Gx = Gy, then x ∼ y.

2. Continuity with respect to L1 convergence.

3. Monotonicity : If Gx ≥ Gy then x % y.

4. Dual Independence: If x, z, y are pairwise comonotonic, and if x % y then αx +

(1− α)z % αy + (1− α)z for any α ∈ [0, 1].

Neutrality says that agents are indifferent between any two random variables that

share the same outcome distribution. Continuity is a technical requirement, while mono-

tonicity reflects classical (first-order) stochastic dominance. Dual independence is the

only departure from the axiomatization of expected utility theory: instead of postulating

independence for convex combinations formed along the probability axis, it is now pos-

tulated for convex combinations along the payment axis (hence the name dual). Yaari

proved the following fundamental result:

Theorem 1 (Yaari, 1987) A complete preference relation satisfies the above axioms if

and only if there exists a continuous, non-decreasing function g, defined on the unit in-

terval, such that, for any x, y ∈ X,

x % y ⇔
∫ m

m

g(Gx(s))ds ≥
∫ m

m

g(Gy(s))ds.

Moreover, the function g is unique up to a positive affine transformation and can be

selected such that, for all 0 ≤ p ≤ 1,

[1; p] ∼ [g(p); 1] (1)
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where [s; p] denotes the lottery that yields s with probability p and the lower bound m with

probability 1− p.

Since it takes probabilities as an input, g is a “probability-evaluation” function rather

than an utility function. But, given the above result, it can be said that the function g

represents the agent’s preferences on lotteries. Throughout, we denote by g the represen-

tation of the agents’ preferences that satisfies (1), and by

U(x) = m+

∫ m

m

g(Gx(s))ds

the utility from a random variable x ∈ X.

The theorem below, which is also due to Yaari, gathers several important implications

repeatedly used below.

Theorem 2 (Yaari, 1987) Consider a decision maker (DM) with Yaari preferences rep-

resented by g:

1. The DM is indifferent between the lottery x and getting the amount U(x) with cer-

tainty.7

2. For any comonotonic random variables x, y ∈ X and any a > 0, b ∈ R such that

x+ y ∈ X and ax+ b ∈ X it holds that8

U(x+ y) = U(x) + U(y)

U(ax+ b) = aU(x) + b

3. A DM is risk averse if and only if g is convex.9

4. A DM with preferences represented by g1 is more risk averse than a DM with pref-

erences represented by g2 if and only if there exists a convex function h, defined on

the unit interval, such g1 = h ◦ g2.

7Thus, the DM choses among random variables as if he maximizes U .
8These results extend to random variables x + y that are not necessarily bounded in [m,m]. The

generalization of Yaari’s theory to unbounded random variables with finite means is in Guriev [2001].
The only additional axiom that needs to be imposed is that each random variable is bounded, from above
and from below, by some constants (in the underlying order assumed on lotteries).

9Recall that a general definition of risk aversion is the aversion to mean-preserving spreads: a pref-
erence % is risk averse if x � y whenever Gy is a mean-preserving spread of Gx. This is equivalent to
y ≥cx x, where cx denotes the convex stochastic order.
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Note that, by integration by parts (assuming the necessary conditions), we also obtain

that10

U(x) = E [xg′(Gx(x))]

Yaari’s risk-averse dual utility functional can be thus seen as multiplying each payoff x

by a weight g′(Gx(x)) that is decreasing in the quantile 1 − Gx(x) it has in the payoff

distribution. This contrasts with standard expected utility where the DM maximizes

E[u(x)]

and thus distorts payoffs according to a function u, based on their absolute value instead

of associated quantile. Quiggin’s [1982] general rank-dependent (or anticipated) utility

goes one step further and allows for both a non-linear assessment of payoffs an a quantile

dependent weighting.

Finally, a very useful probabilistic result needed for our treatment of incentive com-

patibility in auctions is a variability maximizing property of sums of comonotonic random

variables:11

Theorem 3 (Meilijson and Nadas, 1979) If the random vector (y1, ..., yN) is comono-

tonic and has the same marginals as (x1, ..., xN) then
∑N

i=1 yi ≥cx
∑N

i=1 xi, where cx

denotes the convex stochastic order.

The following useful corollary follows immediately from Theorem 2-2 and Theorem 3:

Corollary 1 If an agent with dual preferences is risk-averse, i.e. g is convex, then

U(x+ y) ≥ U(x) + U(y) .

for any two random variables x, y ∈ X.

3 The Auction Model

A risk-neutral seller has an indivisible object, and there are n ≥ 1 potential buyers.

The valuation (or type) of bidder i, θi ∈ [0, 1], is drawn according to a distribution Fi

with density fi > 0, independently of other bidders’ valuations. We assume that all

distributions Fi are twice continuously differentiable.

10U(x) = m+
∫m
m
g(Gx(s))ds =

∫m
m
sg′(Gx(s))d(−Gx(s)) = E [xg′(Gx(x))].

11See Kaas et al. [2002] for an intuitive proof.
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Bidder i′s dual preferences are represented by a convex, strictly increasing function

gi : [0, 1] → [0, 1]. Hence, we follow the independent, private value (IPV ) paradigm, but

we allow for the bidders to be risk-averse in the sense of Yaari’s dual theory.

For each bidder i, we use below the normalization gi(0) = 0 (so that the utility from

getting the object with probability zero and making a payment of zero is also zero), and

gi(1) = 1 (so that the utility of an agent with valuation θi who gets the object with

certainty and pays ti is given by θi − ti).
Note that if g is only non-decreasing, then g may be constant (and equal to zero) only

at the bottom of the interval [0, 1]. The mechanism characterized below will continue to

be optimal, but need not be unique. The special case of risk-neutral bidders corresponds

to gi(p) = p – this also coincides with standard risk neutrality under EU.

3.1 Mechanisms

In order to formally model both random allocations and random transfers that may de-

pend on the realized allocation of the object, it will be useful to explicitly specify the

probability space (Ω,F ,P) on which these random variables are defined. We assume that

all randomness in the mechanism is derived from a single random number r ∈ [0, 1] that

is drawn in addition to the draws of individual types.12

We denote by ω = (θ, r) ∈ Ω = [0, 1]n+1 a realization of types and of the random

number. We denote by P[·] the probability measure on Ω defined by drawing θi indepen-

dently according to Fi, and r independently from the uniform distribution on [0, 1]. We

denote by E[·] the associated expectation operator.

We restrict attention to direct mechanisms where each agent i only reports her type

θi. This is without loss of generality even for agents with non-expected utility preferences

as long as the designer is either restricted to static mechanisms, or as long as each agent is

sophisticated and can commit to a strategy in the mechanism.13 We make this assumption

to rule out dynamic mechanisms that exploit the agents’ time-inconsistency.14

A direct mechanism (q, t) specifies for each agent i an allocation rule qi : [0, 1]n → [0, 1]

and a transfer ti : [0, 1]n× [0, 1]→ [−m,m] .15 We require both qi and ti to be measurable

12This is without loss of generality by the general results of Halmos and von Neumann [1942].
13Under either assumption, each type of an agent can commit to follow the strategy of another type.

This means that incentive compatibility of the original mechanism implies incentive compatibility of the
direct mechanism implementing the same allocation and transfers. This is, for example, discussed in Bose
& Daripa [2009].

14See Machina (1989) for an excellent discussion of this issue.
15We need to impose an upper bound on the transfer to ensure that a bidder’s utility is bounded from

below so that her preferences are well defined. But, this upper bound can be arbitrarily large, and thus
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so that both allocation and transfer are well-defined random variables. To complete the

description of the physical allocation, we define n non-overlapping sub-intervals of the

unit interval, one for each agent i, by

Wi(θ) =

[
i−1∑
j=1

qj(θ),
i∑

j=1

qj(θ)

)
. (2)

Agent i receives an object if and only if r ∈ Wi(θ), and pays the transfer ti(θ, r). Note

that, conditional on the vector of types θ , the probability with which agent i receives the

good, is

P[r ∈ Wi(θ) | θ] = qi(θ) .

Furthermore, for any realization of (θ, r), at most one agent receives the object. Note also

that, since it depends on the random number r, the transfer ti of agent i may be random

(even conditional on the agents’ types θ and on the allocation of the good!)

Fix now a mechanism (q, t). The ex-post payoff ui : [0, 1]n+2 → [−m, 1 + m] of agent

i with type θi who reports that he has type θ
′
i while all other agents report types θ−i is

given by

ui(θi, θ
′
i,θ−i, r) = 1{r∈Wi(θ′i,θ−i)}θi − ti(θ

′

i,θ−i, r) .

We slightly abuse notation by using ui(θ, r) = ui(θi, θ−i, ri) instead of ui(θi, θi,θ−i, ri) for

the case where agent i is truthful. Note that

ui(θi, θ
′
i,θ−i, r) = ui(θ

′
i,θ−i, r) + 1{r∈Wi(θ′i,θ−i)}(θi − θ′i) .

Assume that all agents other than i report truthfully, and that agent i has type θi, but

reports type θ′i. Then i’s dual utility Vi : [0, 1]2 → [−m, 1 +m] is given by

Vi(θi, θ
′
i) = −m+

∫ 1+m

−m
gi(P[ui(θi, θ

′
i,θ−i, r) ≥ s | θi])ds .

We again slightly abuse notation by using Vi(θi) instead of Vi(θi, θi).

A mechanism (q, t) is incentive compatible if, for each agent i and for each pair of

types θi and θ′i 6= θi , it holds that:

Vi(θi) = Vi(θi, θi) ≥ Vi(θi, θ
′
i).

Whenever we want to keep track of a mechanism that may vary, we shall also use the

imposes no economically meaningful restriction.
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notation Vi(θi, q, t) instead of Vi(θi).

3.2 Full-Insurance Mechanisms

Definition 1 A full-insurance mechanism is one where the ex-post payoff of any bidder

i with type θi who truthfully reports his own type is a constant. That is, (q, t) is a full

insurance mechanism if and only if, for all i and all θi, ui(θi,θ−i, r) does not depend on

(θ−i, r).

Our first main result shows that, in order to search for the seller-optimal mechanism,

we can restrict attention to full-insurance mechanisms.16

Proposition 1 For any incentive compatible mechanism (q, t), there exists an incentive

compatible, full-insurance mechanism that implements the same allocation and the same

bidder utilities, and that is at least as profitable for the seller.

Since the seller is risk neutral and the bidders are risk-averse, full-insurance maximizes

the total social surplus. With dual risk-averse agents, full insurance also minimizes the

cost of screening: in equilibrium, the optimal mechanism provides full-insurance for all

types, but it does not provide full-insurance to those types who misreport. If a high

type misreports to be of a lower, full-insured, type, the high type is still be exposed to

risk. Since our agents distort the probability of obtaining the object according to convex

functions, a small change in a relatively high probability has a more significant effect on

utility. Thus agents have the least incentive to deviate when they can obtain a constant

outcome by being truthful.

For any allocation rule q, define now

Qi(θi) = E[qi(θi,θ−i) | θi]

to be bidder’s i induced interim probability of obtaining an object, given that he is of type

θi. Observe that, by the law of iterated expectations, Qi(θi) equals the interim probability

P [r ∈ Wi(θi, θ−i) | θi] assigned by agent i to the event where he receives an object after

observing his type θi. These expected probabilities are called reduced form allocations by

Border [1991].

A reduced form allocation Q = (Q1, Q2, ...Qn) is feasible if there exists an allocation

function q that induces it. A feasible Q is implementable if there exists an incentive

compatible mechanism (q, t) such that q induces Q.

16The following result does not hold with standard (EU) risk-averse bidders
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Lemma 1 (Implementable Reduced Form Allocations)

1. A feasible, reduced form allocation Q can be implemented via a full-insurance mech-

anism if and only if each of its components is non-decreasing.

2. Let (q, T ) be a full-insurance mechanism that implements Q. Then, agent i’s

equilibrium (Yaari) utility is given by

Vi(θi) = Vi(0) +

∫ θ

0

gi(Qi(t))dt.

and

3. The seller’s expected revenue is given by

R =
n∑
i=1

∫ 1

0

[
θiQi(θi)− gi(Qi(θi))

1− Fi (θi)
fi (θi)

]
fi (θi) dθi −

n∑
i=1

Vi(0) .

Note how the above revenue formula reduces to the standard one obtained by payoff

and revenue equivalence for the case where bidders are risk-neutral, e.g. when gi is

the identity function for each i. Note also that, classical revenue equivalence does not

generally hold in our setting! The result above, that expresses a particular revenue in

terms of the reduced-form allocation function alone, holds here only for full-insurance

mechanisms.

As our objective is to maximize the seller’s revenue, it is optimal to always leave zero

rent to the lowest type. Therefore, in the following analysis we only consider mechanisms

where Vi(0) = 0 for all i.

4 The Single-Buyer Case

In this Section we consider the single buyer case where n = 1. We drop here the subscript

i and the variables θ,Q, g, F refer here to the unique buyer. Here there is no additional

(feasibility) constraint on Q à la Border. The seller’s revenue maximization problem

becomes then

max
Q

∫ 1

0

[
θQ(θ)− g(Q(θ))

1− F (θ)

f(θ)

]
f(θ)dθ

s.t. Q ∈ [0, 1] and Q is non-decreasing

13



Assume that θ−g′(1)1−F (θ)
f(θ)

is non-decreasing. Then, we can use point-wise maximiza-

tion to solve the seller’s problem. Since g is increasing and convex, g′ is a.e. well-defined,

non-negative, and non-decreasing.

Denote by Q∗ the allocation rule that pointwise maximizes the principal’s objective

Q∗(θ) = arg max
p∈[0,1]

θp− g(p)
1− F (θ)

f(θ)
.

As θ − g′(1)1−F (θ)
f(θ)

is non-decreasing, θp− g(p)1−F (θ)
f(θ)

is super-modular in (θ, p)17: by the

monotone selection theorem, we can always pick Q∗ to be non-decreasing. Thus, Q∗ is

implementable and it constitutes the revenue maximizing allocation. Let θ∗ = inf{θ |
g′(0) < θf(θ)

1−F (θ)
} and θ∗ = inf{θ | g′(1) < θf(θ)

1−F (θ)
}.18 The first-order condition yields

Q∗ (θ) =


0 if θ < θ∗

(g′)−1
[
θf(θ)

1−F (θ)

]
if θ ∈ [θ∗, θ

∗]

1 if θ > θ∗

,

where (g′)−1 denotes the pseudo-inverse of g′.19 The revenue-maximizing transfers condi-

tional on receiving an object, Tw, and not receiving an object, T l, are given by20

T l(θ) =


0 if θ < θ∗

−
∫ θ
θ∗
g
(

(g′)−1
[

tf(t)
1−F (t)

])
dt if θ ∈ [θ∗, θ

∗]

−
∫ θ∗
θ∗
g
(

(g′)−1
[

tf(t)
1−F (t)

])
dt− g (1) (θ − θ∗) if θ > θ∗

.

and

Tw(θ) = θ − T l(θ) .

Example 1 Assume that the bidder’s type is uniformly distributed on the interval [0, 1]

and let g (p) = p2. Then θf(θ)
1−F (θ)

= θ
1−θ and g′ (p) = 2p. Therefore, the optimal allocation

17To see this, observe that the derivative with respect to p equals θ − g′(p) 1−F (θ)
f(θ) . As g′(p) ≤ g′(1)

this function is increasing in θ whenever θ − g′(1) 1−F (θ)
f(θ) is increasing.

18θ∗ and θ∗ are well-defined as g′ is almost everywhere well-defined and non-decreasing.
19Formally, (g′)−1(s) = inf{p ∈ [0, 1] | g′(p) ≤ s}.
20Note that we can define in an arbitrary way the losing payment T l(θ) for θ > θ∗(since the buyer gets

then the object with probability 1), and the winning payment Tw(θ) for θ < θ∗ (since the buyer gets
then the object with probability zero).
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is given by:

Q∗ (θ) =

1
2

θ
1−θ if θ ∈ [0, 2/3]

1 if θ > 2/3
.

Due to risk-aversion, the buyer is willing to pay in order to get insured against a random

allocation. The seller is risk-neutral, and hence she is willing to sell this insurance. This

creates incentives for the seller to induce a random allocation that allows her to bundle

the object with costly insurance, increasing revenue. If the valuation of the buyer is high

enough, the buyer’s willingness to pay in order to get the object for certain is high enough,

and it is not profitable anymore to sell insurance. The payments in case of losing and

winning are given by

T l(θ) =

−
1
4

(
(θ−2)θ
θ−1 + 2 log(1− θ)

)
if θ ∈ [0, 2

3
]

−θ + 2
3
− 1

4

(
8
3
− 2 log(3)

)
if θ > 2

3

and

Tw(θ) =

θ −
1
4

(
(θ−2)θ
θ−1 + 2 log(1− θ)

)
if θ ∈ [0, 2

3
]

+2
3
− 1

4

(
8
3
− 2 log(3)

)
if θ > 2

3

The above finding can be contrasted to the optimal allocation and transfers for a risk-

neutral bidder (g (p) = p) , given by:

Qr (θ) =

0 if θ ∈ [0, 1
2
]

1 if θ > 1/2
.

and

Twr (θ) =
1

2
and T lr(θ) = 0 .

In this case the revenue maximizing mechanism is deterministic, a take-it-or-leave-it offer

at a price θ̂ = 0.5 (see Myerson [1981] or Riley & Zeckhauser [1983]). All types above

θ̂ get the object with certainty and pay a price of θ̂, while all types below θ̂ never get the

object and do not pay. We illustrate the difference between the optimal mechanisms with

and without risk aversion in Figure 1. Note that this scheme is incentive compatible even

if the agent is dual risk-averse (as there is no uncertainty from the buyer’s perspective).

But, the seller increases her expected revenue by switching to the optimal mechanism we

calculated above.

Remark: Our model can be also interpreted as a monopoly screening model where
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Figure 1: The optimal allocation and transfers in the risk averse case g(p) = p2 (in blu)
and the risk-neutral case g(p) = p (in red) for θ uniformly distributed on [0, 1]. On the
left is the probability of receiving an object as a function of the type. On the right is
the transfer payed by the agent conditional on receiving an object (solid lines) and not
receiving an object (dashed lines).

the designer can choose different qualities and terms of trade for different types. The

standard Mussa-Rosen model with a population of (expected utility) risk averse buyers

has been analyzed by Matthews and Moore [1987] who interpret quality as the probability

of functioning. Matthews and Moore assume that the cost function is such that the

monopolist never offers the highest quality (corresponding to functioning with probability

one), and illustrate various properties of the optimal menu of offered qualities, prices, and

warranties in case of malfunction. We showed above that, even if the cost of producing

any quality is zero, in our model the monopolist sometimes provides a “damaged” good

plus a full insurance warranty to intermediate types.

5 The General n-Bidder Case

We now return to the general case with n > 1 bidders. The main additional complica-

tion is the feasibility (or “Border”) constraint on the vector of reduced form allocations

Q = (Q1, Q2, ..., Qn).

In this section we assume that the setting is symmetric in the sense that all bidders

share the same distribution of values F1 = F2 = . . . = F and the same preference over

lotteries g1 = g2 = . . . = g. The seller’s objective function

R =
n∑
i=1

∫ 1

0

[
θiQi(θi)− g(Qi(θi))

1− F (θi)

f (θi)

]
f (θi) dθi
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is concave in (Qi)i=1,2...n because, by assumption, g is convex. Thus, without loss of

generality, we can restrict our attention to symmetric mechanisms, and we also drop

below individual subscripts of interim allocation probabilities.21

In order to use a variational approach and the associated Euler-Lagrange conditions

we shall only consider below allocation functions Q that are piece-wise continuous. Define

the function H : [0, 1]2 → R as follows:

H(θ, p) =

[
θp− g(p)

1− F (θ)

f(θ)

]
f(θ).

The seller’s maximization problem over symmetric, implementable reduced-form alloca-

tion rules becomes:

(R) max
Q

n

∫ 1

0

H(θ,Q(θ))dθ,

s.t. (a) Q ∈ [0, 1] ;

(b) Q non-decreasing

(c)

∫ 1

θ

Q(t)f(t)dt ≤
∫ 1

θ

F n−1(t)f(t)dt for any θ ∈ [0, 1].

The last constraint ensures that a monotonic, symmetric reduced form allocation rule can

be indeed induced by an allocation rule q (see, for example, Maskin and Riley [1984]).

If a regularity condition (defined precisely in the next Theorem) holds, then the optimal

mechanism is a full-insurance mechanism whose reduced form allocation consists of two

parts: for lower types, the seller uses the same allocation rule as in the single-buyer case.

For higher types this becomes infeasible, and the seller allocates the object to the bidder

with the highest type. To formally state the result, we define:

θ∗ = inf

{
θ | g′(0) ≤ θf (θ)

1− F (θ)

}
θ∗n = inf

{
θ | g′(F n−1(θ)) ≤ θf(θ)

1− F (θ)

}
.

21To see this, consider, for example, the case of two bidders. Suppose there exists an optimal pair
(Q∗1, Q

∗
2) such that Q∗1 6= Q∗2. By symmetry, (Q∗2, Q

∗
1) is also optimal. But then the symmetric allocation

rule (
Q∗

2+Q
∗
1

2 ,
Q∗

2+Q
∗
1

2 ) is also feasible and it is at least as profitable for the seller (since R is concave in
(Q1, Q2)). The generalization to more bidders is straightforward.
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Theorem 4 (Optimal Allocation) Assume that the function

θ 7→ θ − g′(F n−1(θ))
1− F (θ)

f(θ)

is non-decreasing almost everywhere in [0, 1]. Then, an optimal mechanism is a full-

insurance mechanism that implements the following reduced form allocation rule:

Q∗ (θ) =


0 if θ < θ∗

(g′)−1
(

θf(θ)
1−F (θ)

)
if θ ∈ [θ∗, θ

∗
n]

F n−1(θ) if θ > θ∗n

.

The transfers in the optimal mechanism (Tw, T l) conditional on winning and not winning

an object are given by22

T l (θ) =


0 if θ < θ∗

−
∫ θ
θ∗
g
(

(g′)−1
[

tf(t)
1−F (t)

])
dt if θ ∈ [θ∗, θ

∗
n]

−
∫ θ∗n
θ∗
g
(

(g′)−1
[

tf(t)
1−F (t)

])
dt−

∫ θ
θ∗n
g (F n−1(t)) dt if θ > θ∗n

and Tw (θ) = θ − T l(θ) .

In the risk-neutral case where g(p) = p, the above regularity condition reduces to the

standard requirement that the virtual value θ − 1−F (θ)
f(θ)

is strictly increasing. We know

then from Myerson’s analysis [1981] that the optimal mechanism allocates the object

efficiently when the type of at least one agent exceeds an optimal cutoff (positive virtual

value) and keeps the object in case all agents have types below the cutoff (negative virtual

values). In particular, the allocation is deterministic.

In contrast, with dual risk averse buyers, the seller sells a “damaged” good to the

intermediate types in order to reduce the information rent earned by the higher type: the

use of random allocation is a way to minimize the cost of screening. In addition, the seller

also offers insurance to reduce the cost of exposing intermediate types to risk.

With a large number of bidders, the interval where the optimal allocation is random

vanishes:

22As in the one-bidder case we specify Tw (θ) for θ < θ∗ and T l (θ) for θ > θ∗ for the sake of complete-
ness. This transfers play no role in those cases.

18



Corollary 2 Assume that

θ 7→ θ − g′(F n−1(θ))
1− F (θ)

f(θ)

is non-decreasing almost everywhere in [0, 1]. When n→∞, the interval where the opti-

mal allocation is random, [θ∗, θ
∗
n] , vanishes, and the limit optimal allocation rule assigns

the object efficiently above a cutoff. Moreover, the limit interval of excluded types [0, θ∗]

is a subset of the interval of excluded types under risk neutrality, [0, θrn∗ ].

The first statment follows because θ∗n is non-increasing in n, and because limn→∞ θ
∗
n =

θ∗. The second statement follows because θr∗ solves the equation 1 = θf(θ)
1−F (θ)

(that is

independent of n) and because g′(0) ≤ 1 for any increasing and convex g such that

g(0) = 0 and g(1) = 1. In particular, no type is excluded if g′(0) = 0

While the interval of types obtaining a random allocation depends on n, the probability

with which each intermediate type gets the object is independent of the number of the

bidders. The needed randomization may be difficult to implement in practice since the

seller needs commitment power. Imagine, for example, a realization where all bidders

have intermediate types. Then, with positive probability, no bidder gets the object, and

all bidders get positive transfers - but the seller actually prefers to sell to a single bidder.

It is of course difficult to ex-post verify that a randomization was performed with the

pre-committed probabilities. Yet, recall that the optimal mechanism above was specified

in terms of an interim randomization. As we know from Theorem 3 in Gutmann et. al.

[1991], or from Chen et. al. [2019], there exists a feasible and deterministic allocation rule

q with given marginals Q∗. This means that one can always achieve revenue maximization

via a mechanism that does not involve any randomization.

Our final Lemma in this Section shows that, under the increasing hazard rate condi-

tion, the regularity condition always holds as n→∞ if g′′ is not too large.

Lemma 2 Assume that g′′ < e. Then, for any distribution F with an increasing hazard

rate there exists n̄ such that for all n ≥ n̄, the function

θ − g′(F n−1(θ))
1− F (θ)

f(θ)

is non-decreasing almost everywhere in [0, 1]. Hence, the monotonicity requirement of

Theorem 4 holds.
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5.1 Comparative Statics

We show here that the seller always (weakly) prefers to have more bidders.

Lemma 3 The seller’s expected revenue is non-decreasing in the number of bidders.

In addition, we compare the expected (optimal) revenues from agents with different

risk-attitudes, and show that the seller prefers to have bidders who are more risk averse.

Lemma 4 Assume that g1 represents preferences with a higher risk aversion than g2,

and fix an implementable allocation rule q with monotonic, reduced-form allocation rule

Q. Let Tgi (θ) , i = 1, 2, be the full-insurance transfer implementing Q for the preferences

represented by g
i

with T lgi (0) = 0. Then it holds that

Twg1 (θ) ≥ Twg2 (θ) and T lg1 (θ) ≥ T lg2 (θ) for any θ ∈ [0, 1]

In particular, the optimal expected revenue when facing agents with risk preference g1 is

higher than that obtained when facing agents with risk preference g2.

6 The Optimal Auction without Insurance

In many practical applications (e.g., public procurement), we observe the use of standard

auctions (such as first-price, second-price, etc..) where the seller is obliged to award

the object to the highest bidder (if she assigns the object at all), and where she is not

allowed to compensate losing bidders. Thus, it is of interest to understand how such

auctions perform when bidders are risk-averse in Yaari’s dual sense. A first step in this

direction has been made by Volij [2002] who proved a payoff equivalence result in a class of

deterministic mechanisms. But, as already noted above, payoff equivalence is not the same

as revenue equivalence. Recall that Che and Gale [2006] have shown that the first-price

auction revenue outperforms the second-price auction in our symmetric model with dual

risk averse bidders. In this section, we show that the first-price auction is actually revenue

optimal in the class of standard auctions. We consider the general class of mechanisms

where the seller makes no transfers to agents who do not receive an object.

Definition 2 A mechanism (q, t) is a no-insurance mechanism if an agent i who does

not receive the object receives no transfer from the principal

r /∈ Wi(θ)⇒ ti(θ, r) ≥ 0 .
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Lemmas 6 and 7 in the Appendix show that, if the seller cannot make non-negative

transfers to agents that do not receive an object, then the quest for the optimal auction

can be confined to mechanisms where monetary transfers occur only between the seller and

the agent who gets the object, and where this transfer is deterministic and independent

of the types of the other agents. This result allows us to refine our search of the optimal

mechanism to this particular class of mechanisms, for which the following lemma holds.

Lemma 5 Suppose that the seller employs a mechanism of the form (q, τ ) where

τi(θ, r) =

τ̃wi (θi) if r ∈ Wi(θ)

0 else
.

and where the payment made by agent i conditional on winning, τ̃wi (θi), depends only on

his own type. Then:

1. A feasible, reduced form allocation Q is implementable by such a mechanism if and

only if each of its components is non-decreasing.

2. In any mechanism (q, τ ) as above that implements Q, agent i’s equilibrium (Yaari)

utility is given by

Vi(θi) = Vi(0) +

∫ θ

0

gi(Qi(t))dt.

3. In addition, if the lowest type obtain zero utility, then the seller’s revenue in (q, τ ) is

given by:

R = n

∫ 1

0

[
θiQi(θi)−

Qi(θi)

gi(Qi(θi))

∫ θi

0

gi(Qi(t))dt

]
fi(θi)dθi .

The above revenue formula, which holds only for this particular class of mechanisms,

can be used to show that a first price auction is optimal among all no-insurance auctions.

Proposition 2 Assume that bidders are symmetric, and that the common distribution

of types F has an increasing hazard rate. Assume also that, conditional on awarding the

object, the seller allocates it efficiently. That is, she implements Q such, that for every i,

Qi = Q where

Q(θ) =

F n−1(θ) if θ ≥ s

0 else
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for some s ∈ [0, 1]. Then, a first-price auction with a reserve price s that solves

−sF n−1(s)f(s) + g(F n−1(s))

∫ 1

s

F n−1(t)

g(F n−1(t))
f(t)dt = 0.

is revenue-maximizing within the class of no-insurance mechanism.

Conditional on winning, the price in a first-price auction is deterministic and equals

the winner’s bid. This contrast a random price determined by other bids (as in a second-

price auction). Contrasting an all-pay auction, in the first-price auction a bidder does

not have to pay in case of losing. Without insurance, a bidder gets a lower payoff when

he loses than when he wins. Therefore, he assigns a higher weight to the probability of

losing, relative to the probability of winning. Thus, not having to pay when he loses also

decreases the degree of exposure to risk. These kind of risk-reducing features together

yield the optimality of the first-price auction within the class of standard auctions that

do not offer insurance.

Example 2 Consider uniformly distributed types on the interval [0, 1], and let gi (p) =

g(p) = p2. Then23

R′(s) = −sn + s2n−2
∫ 1

s

1

tn−1
dt = −sn + s2n−2

[
− t2−n

n− 2

]1
s

= −sn − s2n−2

n− 2
+

sn

n− 2
= − s

2n−2

n− 2
− snn− 3

n− 2
.

Hence, for n ≥ 3, the revenue is decreasing in a reserve price s, and the optimal reserve

price is zero.24 The first-price auction with no reserve price (which is here optimal) yields

23The calculation below applies for n ≥ 3. The analysis of the case n = 2 is similar and involves a
logarithmic term.

24In the risk neutral case we obtain that

R′(s) = −sFn−1(s)f(s) + Fn−1(s)(1− F (s))

Then s = 0 is a local minimum. If the standard virtual value is monotonic, there is another solution to

the F.O.C s = 1−F (s)
f(s) that maximizes revenue.
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an expected revenue of

n

∫ 1

0

[
θQ(θ)− Q(θ)

g(Q(θ))

∫ θ

0

g(Q(t))dt

]
f(θ)dθ

=n

∫ 1

0

[
θθn−1 − θn−1

(θn−1)2

∫ θ

0

(tn−1)2dt

]
dθ

=
4n2 − 4n

2(n+ 1)(2n− 1)

The optimal full insurance mechanism always allocates the object efficiently (that is, in

this example θ∗n = θ∗ = 0) and yields an expected revenue of

n

∫ 1

0

[
θQ(θ)− g(Q(θ))

1− F (θ)

f (θ)

]
f (θ) dθ

=n

∫ 1

0

[
θθn−1 −

(
θn−1

)2
(1− θ)

]
dθ

=
4n2 − 3n− 1

2(n+ 1)(2n− 1)

The difference between the above expected revenues clearly goes to 0 as n → ∞, but can

be significant when n is small. For instance, when n = 2, the optimal full-insurance

mechanism yields an expected revenue of 1/2, 12.5% more than that of the optimal no-

insurance mechanism that yields 4/9. Note that, in this example, the allocation rule is

identical in both cases! Hence, the loss of revenue in a first-price auction is solely due to

the inability of offering insurance to risk-averse bidders.

7 Conclusion

We have explicitly derived the revenue maximizing mechanism in a framework where

bidders use a non-linear probability weighting function and are risk-averse. In particular,

bidders are not expected utility maximizers. The non-linearity in probabilities requires a

relatively more complex maximization approach, focused on the limited supply constraint.

Our main results showed how the optimal mechanisms bundles the allocation of the

physical good with the sale of insurance in order to increase revenue. Within the class

of standard auctions that do not offer insurance, we showed that a first-price auction,

augmented by a reserve price, outperforms any other mechanism.

We expect that our approach will be useful in other optimal mechanism design frame-

works for agents who use a non-linear probability weighting function and other types of

23



non-expected utility.

8 Appendix

Proof for Proposition 1: For an incentive compatible mechanism (q, t) associated

with equilibrium utilities V1(·, q, t), . . . , Vn(·, q, t), we define another mechanism (q,T )

such that the allocation rule remains the same, while the transfers in the new mechanism

(q,T ) only depend on whether agents receive the object or not. Moreover, once the agent

knows her type, her utility in (q,T ) is a constant:

Ti(θ, r) =

θi − Vi(θi, q, t) if r ∈ Wi(θ)

−Vi(θi, q, t) else
.

By construction, the mechanism (q,T ) is a full-insurance mechanism. As the Yaari utility

of a constant equals that constant25, we obtain that, if (q,T ) is incentive compatible, then

it yields the same utility for each agent (given her type) as (q, t):

Vi(θi, q,T ) = Vi(θi, q, t).

We show below that:

(a) (q,T ) is incentive compatible and

(b) (q,T ) is at least as profitable for the seller as (q,T ).

To show (a), we note that the agent’s ex-post payoff from deviating in the original

mechanism (q, t) and reporting θ′i instead of θi equals

ui(θi, θ
′
i,θ−i, r; q, t) = 1{r∈Wi(θ′i,θ−i)}θi − ti(θ′i,θ−i, r)

= 1{r∈Wi(θ′i,θ−i)}θ
′
i − ti(θ′i,θ−i, r) + 1{r∈Wi(θ′i,θ−i)}(θi − θ′i)

= ui(θ
′
i,θ−i, r; q, t) + 1{r∈Wi(θ′i,θ−i)}(θi − θ′i) .

The first part of the above sum is exactly the ex-post payoff agent i would obtain if her

type would be truly θ′i. Using Corollary 1, we obtain that the value Vi(θi, θ
′
i) of agent i

when she is of type θi, but reports to be of type θ′i satisfies

Vi(θi, θ
′
i; q, t) ≥ Vi(θ

′
i; q, t) +

∫ 1+m

−m
gi(P[1{r∈Wi(θ′i,θ−i)}(θi − θ′i) ≥ s | θi])ds−m.

25This follows by Yaari’s charaterization result together with the assumptions gi(0) = 0 and gi(1) = 1.
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As the original mechanism (q, t) is incentive compatible we have that

Vi(θi; q, t) ≥ Vi(θ
′
i; q, t) +

∫ 1+m

−m
gi(P[1{r∈Wi(θ′i,θ−i)}(θi − θ′i) ≥ s | θi])ds−m.

By construction, the agent’s utility if everyone reports truthfully is the same in the mech-

anisms (q, t) and (q,T ). This yields

Vi(θi; q,T ) ≥ Vi(θ
′
i; q,T ) +

∫ 1+m

−m
gi(P[1{r∈Wi(θ′i,θ−i)}(θi − θ′i) ≥ s | θi])ds−m

=

∫ 1+m

−m
gi(P[Vi(θ

′
i; q,T ) + 1{r∈Wi(θ′i,θ−i)}(θi − θ′i) ≥ s | θi])ds−m.

where the last equality holds by Theorem 2-2. Since the right-hand-side is exactly the

value the agent obtains from deviating in the mechanism (q,T ), we have thus shown that

(q,T ) is incentive compatible.

(b) The ex-post payoff in mechanism (q, t) can be written as

ui(θ, ri; q, t) = ui(θ, r; q,T ) + Ti(θ, r)− ti(θ, r) .

As the ex-post payoff in the mechanism (q,T ) is independent of θ−i and r, we obtain by

Theorem 2-2 that

Vi(θi; q, t) = Vi(θi; q,T ) + Ui
(
Ti(θ, r)− ti(θ, r)

)
As Vi(θi; q, t) = Vi(θi; q,T ) by construction, it must hold that

0 = Ui
(
Ti(θ, r)− ti(θ, r)

)
.

Note that the right-hand-side equals Yaari’ utility from the random variable Ti(θ, r) −
ti(θ, r). As the Yaari preference displays risk aversion (since gi is convex), an upper bound

on this value is given by the expectation of the random variable Ti(θ, r)− ti(θ, r) :

0 = Ui
(
Ti(θ, r)− ti(θ, r)

)
≤ E[Ti(θ, r)− ti(θ, r) | θi] .

We have thus established that the new mechanism (q,T ) leads to a weakly higher expected

revenue than the original mechanism (q, t).

Proof for Lemma 1 (1) (Sufficiency) Assume that Q = (Q1, Q2, ...Qn) is feasible, and
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that each Qi is non-decreasing. For any q that induces Q, we construct a payment rule:

Ti(θ, r) =

−Vi(0) + θi −
∫ θi
0
gi(Qi(t))dt if r ∈ Wi(θ)

−Vi(0)−
∫ θi
0
gi(Qi(t))dt else

.

By construction, (q,T ) is a full-insurance mechanism and

Vi(θi) = Vi(0) +

∫ θi

0

gi(Qi(t))dt. (3)

As argued in the proof of Proposition 1, for any θi and θ′i we have

Vi(θi, θ
′
i) = Vi(θ

′
i) +

∫ 1+m

−m
gi(P[1{r∈Wi(θ′i,θ−i)}(θi − θ′i) ≥ s | θi])ds−m

= Vi(θ
′
i) + (θi − θ′i)g(Qi(θ

′
i)) .

Assume that θi > θ′i.
26. Since Qi and gi are increasing, the expression for Vi given in (3)

implies

Vi(θi)− Vi(θ′i) =

∫ θi

θ′i

gi(Qi(t))dt ≥
∫ θi

θ′i

gi(Qi(θ
′
i))dt = (θi − θ′i)gi(Qi(θ

′
i)),

or, alternatively, that

Vi(θi) ≥ Vi(θ
′
i) + (θi − θ′i)gi(Qi(θ

′
i)) = Vi(θi, θ

′
i) .

Thus, truth-telling is optimal and Q is implementable.

(Necessity) Truthtelling requires that, for any θi and θ′i, it holds that

Vi(θi, θ
′
i) = Vi(θ

′
i) + (θi − θ′i)gi(Qi(θ

′
i)) ≤ Vi(θi)

and that

Vi(θ
′
i, θi) = Vi(θi) + (θ′i − θi)gi(Qi(θi)) ≤ Vi(θ

′
i).

Assuming θi > θ′i , we obtain

gi(Qi(θi))(θi − θ′i) ≥ Vi(θi)− Vi(θ′i) ≥ gi(Qi(θ
′
i))(θi − θ′i).. (4)

26The case with θi < θ′i is similar.
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Since g is increasing with gi(0) = 0, the above expression immediately implies that Qi

must be non-decreasing.

(2) Assuming θi > θ′i, inequality (4) can be rewritten as follows: For any δ ∈ [0, 1−θ′]

δgi(Qi(θ
′
i + δ)) ≥ Vi(θ

′
i + δ)− Vi(θ′i) ≥ δg(Qi(θ

′
i))..

Since both Qi and gi are non-decreasing, gi ◦ Qi is also non-decreasing. Since g is also

bounded, gi ◦Qi is Riemann integrable. Letting δ → 0 yields

Vi(θi) = Vi(0) +

∫ θi

0

g(Qi(t))dt..

(3) In a full-insurance mechanism implementing Q we have

Ti(θ, r) =

Twi (θi) = θi −
∫ θi
0
gi(Qi(t))dt− Vi(0) if r ∈ Wi(θ)

T li (θi)−
∫ θi
0
gi(Qi(t))dt− Vi(0) else

.

The results follows by the following chain of equalities:

R +
n∑
i=1

Vi(0) =
n∑
i=1

∫ 1

0

[
Qi(θi)T

w
i (θi) + (1−Qi(θi))T

l
i (θi)

]
fi (θi) dθi

=
n∑
i=1

∫ 1

0

[
Qi(θi)

(
θi −

∫ θi

0

gi(Qi(t))dt

)]
dθi

+
n∑
i=1

∫ 1

0

[
(1−Qi(θi))

(
−
∫ θi

0

gi(Qi(t))dt

)]
fi (θi) dθi

=
n∑
i=1

∫ 1

0

[
θiQi(θi)−

∫ θi

0

gi(Qi(t))dt

]
fi (θi) dθi

=
n∑
i=1

∫ 1

0

[
θiQi(θi)− gi(Qi(θi))

1− Fi (θi)
fi (θi)

]
f (θi) dθi.

Proof for Theorem 4: Note that Q∗(θ) satisfies constraints (a)-(c) of Problem (R).

Therefore, in order to show that Q∗ constitutes the solution to Problem (R), it suffices

to show that it is the solution to the following, relaxed problem where we ignore the
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monotonicity constraint

(R′) max
Q

n

∫ 1

0

H(θ,Q(θ))dθ,

s.t. (a) Q ∈ [0, 1] ;

(c)

∫ 1

θ

Q(t)f(t)dt ≤
∫ 1

θ

F n−1(t)f(t)dt for any θ ∈ [0, 1].

Since

max
Q

n

∫ 1

0

H(θ,Q(θ))dθ ≤ max
Q

n

∫ θ∗n

0

H(θ,Q(θ))dθ + max
Q

n

∫ 1

θ∗n

H(θ,Q(θ))dθ

it suffices to show that Q∗ is the solution to the two problems below:

(I) max
Q

n

∫ θ∗n

0

H(θ,Q(θ))dθ,

s.t. (a) Q ∈ [0, 1]

and

(II) max
Q

n

∫ 1

θ∗n

H(θ,Q(θ))dθ,

s.t. (c)

∫ 1

θ

Q(t)f(t)dt ≤
∫ 1

θ

F n−1(t)f(t)dt for any θ ∈ [0, 1].

Note, that we further relaxed our problem by ignoring the feasibility constraint in (I) and

by ignoring the constraint that Q ∈ [0, 1] in (II).

Problem (I): By the same arguments used in the single buyer case, it can be verified

that any feasible QI satisfying

QI (θ) =

0 if θ < θ∗

(g′)−1
[
θf(θ)

1−F (θ)

]
if θ ∈ [θ∗, θ

∗
n]
.

solves Problem (I). So Q∗ is also a solution to Problem (I), as desired.

Problem (II): The proof consists of two main steps.
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Step 1: First, we show that, if Q solves Problem (II), then it must satisfy∫ 1

θ∗n

Q(t)f(t)dt =

∫ 1

θ∗n

F n−1(t)f(t)dt .

By the definition of θ∗n , and by the assumption that θ − g′(F n−1(θ))1−F (θ)
f(θ)

is non-

decreasing, we obtain that, for any θ > θ∗n ,

∂H(θ, p)

∂p
|p=Fn−1(θ)= θ − g′(F n−1(θ))

1− F (θ)

f(θ)
> 0

Since H is concave in Q, we also obtain

∂H(θ, p)

∂p
> 0

for any θ > θ∗n and for any Q(θ) ≤ F n−1(θ). This implies that, for any feasible Q that

satisfies ∫ 1

θ∗n

Q(t)f(t)dt <

∫ 1

θ∗n

F n−1(t)f(t)dt,

we can construct another feasible Q̃ such that Q̃(θ) = 0 for θ < θ∗n, Q(θ) < Q̃(θ) ≤ F n−1(θ)

on a set of positive measure in [θ∗n, 1], and Q̃(θ) = Q(θ) otherwise. As ∂H(θ,p)
∂p

> 0 for any

θ > θ∗n and for any Q ≤ F n−1(θ), it follows that, for any θ > θ∗n, it holds that

H(θ,Q(θ)) ≤ H(θ, Q̃(θ))

with strict inequality on a set of positive measure. This implies that

n

∫ 1

θ∗n

H(θ,Q(θ)dθ < n

∫ 1

θ∗n

H(θ, Q̃(θ)dθ

Thus, any such Q cannot be a solution to Problem (II).

Step 2: In view of the above step, the solution to Problem (II) can be found by

solving the same problem augmented with an additional equality constraint:∫ 1

θ∗n

Q(t)f(t)dt =

∫ 1

θ∗n

F n−1(t)f(t)dt

This means that the seller has to assign the object if all bidders’ types are above θ∗n
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∈ [0, 1). We show that Q∗(θ) is indeed a solution to:

(II ′) max
Q

n

∫ 1

θ∗n

H(θ,Q(θ))dθ,

s.t. (c)

∫ 1

θ

Q(t)f(t)dt ≤
∫ 1

θ

F n−1(t)f(t)dt for any θ ∈ [0, 1]

(d)

∫ 1

θ∗n

Q(t)f(t)dt =

∫ 1

θ∗n

F n−1(t)f(t)dt.

Problem (II ′) can be now transformed into a standard calculus of variations problem.

Define

σ(θ) ≡
∫ 1

θ

Q(t)f(t)dt

to obtain

σ′(θ) = −f(θ)Q(θ), and that Q(θ) = −σ
′(θ)

f(θ)
.

Let

h(θ, σ′(θ)) =

[
−θσ

′(θ)

f(θ)
− g
(
− σ′(θ)

f(θ)

)1− F (θ)

f (θ)

]
f (θ)

= −θσ′(θ)− g
(
− σ′(θ)

f(θ)

)
(1− F (θ)) .

Then, Problem (II ′) becomes

max
σ

J(σ) =

∫ 1

θ∗n

h(θ, σ′(θ))dθ s.t.

(1) σ(θ) ≤
∫ 1

θ

F n−1(t)dF (t) for any θ

(2) σ(θ∗n) =

∫ 1

θ∗n

F n−1(t)f(t)dt and σ(1) = 0

To solve it, we apply the (infinite-dimensional) generalized Kuhn-Tucker Theorem (see

for example Luenberger, 1969, p.249). The Lagrangian is

L(θ, σ, σ′, λ) = −h(θ, σ′) + λ

(
σ −

∫ 1

θ

F n−1(t)dF (t)

)
.

Suppose that σ∗ maximizes L.27 Then there exists a multiplier λ : [0, 1]→ R+ such that

27Note that σ∗ must be a regular point since there is only one inequality constraint.
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(σ∗, λ) have to satisfy the following four necessary conditions:

1. The boundary conditions: σ(θ∗n) =
∫ 1

θ∗n
F n−1(t)f(t)d and σ(1) = 0.

2. The Euler–Lagrange condition (wherever it is well-defined):

∂L
∂σ

(θ, σ(θ), σ′(θ), λ(θ))− d

dθ

[
∂L
∂σ′

(θ, σ(θ), σ′(θ), λ(θ))

]
= 0 . (5)

3. λ(θ) ≥ 0.

4. The complementary slack condition λ(θ)
(
σ(θ)−

∫ 1

θ
F n−1(t)dF (t)

)
= 0.

We note that ∂L
∂σ

= λ and ∂L
∂σ′

= − ∂h
∂σ′

= θ − g′(−σ′(θ)
f(θ)

)1−F (θ)
f(θ)

. The second condition

thus simplifies to

λ(θ) =
d

dθ

[
θ − g′(Q(θ))

1− F (θ)

f(θ)

]
. (6)

If the function θ−g′(F n−1(θ))1−F (θ)
f(θ)

is non-decreasing almost everywhere on [0, 1], then

it is easy to verify that any feasible QII satisfying QII(θ) = F n−1(θ) for all θ > θ∗n fulfills

all four necessary conditions listed above. Moreover, this function is on the boundary of

the convex feasible set of functions σ such that σ(θ) ≤
∫ 1

θ
F n−1(t)dF (t) for any θ > θ∗n,

i.e., the inequality constraint is binding for all θ ≥ θ∗n.

From the above reasoning, we obtain that any such QII is a local maximizer in Problem

(II). To prove global optimality, we note that, by the convexity of g,

∂2h

∂2σ′
= −1− F (θ)

f 2(θ)
g′′
(
−σ

′(θ)

f(θ)

)
≤ 0 .

It follows that, for any σ1, σ2, and for any α ∈ [0, 1]

J(ασ1 + (1− α)σ2) =

∫ 1

θ∗n

h(θ, ασ′1 + (1− α)σ′2(θ))dθ

≥ α

∫ 1

θ∗n

h(θ, σ′1(θ))dθ + (1− α)

∫ 1

θ∗n

h(θ, σ′2(θ))dθ

= αJ(σ1) + (1− α)J(σ2)

Thus the functional J is also concave in σ. Then, by Proposition 1, Section 7.8, in

Luenberger (1969), Q∗ is also a global maximizer for Problem (II).

Having shown that Q∗ is the solution to both the relaxed Problem (I) and the relaxed

Problem (II), we conclude that it is also the solution to the original Problem (R).
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Proof for Lemma 2: Taking the derivative of the function

θ − g′(F n−1(θ))
1− F (θ)

f(θ)

yields

1− g′(F n−1(θ))

[
1− F (θ)

f(θ)

]′
− (n− 1)F n−2(θ)g′′(F n−1(θ))[1− F (θ)]

As we have assumed a monotone hazard rate, the second terms is always non-negative.

We now show that, for n large enough,

(n− 1)F n−2(θ)g′′(F n−1(θ))[1− F (θ)] ≤ 1

holds for any θ ∈ [0, 1], which implies the result. Note that, over p ∈ [0, 1],

(n− 1)pn−2(1− p)

is maximized at p = n−2
n−1 . Plugging in p = n−2

n−1 yields that

max
p∈[0,1]

(n− 1)pn−2(1− p) ≤
(
n− 2

n− 1

)n−2
.

Hence

lim
n→∞
{(n− 1)F n−2(θ)g′′(F n−1(θ))[1− F (θ)]}

< e · lim
n→∞

(
n− 2

n− 1

)n−2
= 1

as desired.

Proof for Lemma 3: Let Qn be the optimal reduced form allocation with n bidders,

i = 1, ..., n. Assume now that there are n + 1 bidders, i = 1, ..., n, n + 1. Using the

allocation Qn for bidders 1, ..., i− 1, i+ 1, ..., n+ 1 while completely excluding bidder i is

a feasible (i.e., incentive compatible and individually rational mechanism) in the n + 1

bidder problem. Each of these proposed asymmetric allocations yields the same revenue

as the optimal mechanism for the n bidder problem. Averaging these n + 1 asymmetric

allocations yields a symmetric, feasible allocation for the n + 1 bidder problem. By the

concavity of the revenue, the symmetric average allocation yields a higher revenue than

each asymmetric one. In particular, the optimal allocation for the n + 1 bidder problem
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(that is known to be symmetric) yields as least as much revenue as the optimal allocation

for the n bidder problem.

Proof for Lemma 4: By Lemma 1 we have that

Vgi(θi) = Vgi(0) +

∫ θ

0

gi(Q(t))dt, i = 1, 2.

Since the utility of type θ = 0 is zero, the utility in any IC full-insurance mechanism is

completely specified by the allocation Q. The implementing full-insurance transfer rule is

given by

Twgi (θ) = θi −
∫ θ

0

gi(Q(t))dt,

T lgi (θ) = −
∫ θ

0

gi(Q(t))dt, i = 1, 2.

Note that g1 = h◦g2 where h is convex. The convexity of h implies that, for any Q ∈ [0, 1],

g1 (Q) = h (g2 (Q)) = h[g2 (Q) · 1 + (1− g2 (Q)) · 0]

≤ g2 (Q) · h (1) + (1− g2 (Q)) · h(0)

= g2 (Q) ,

where the last equality follows from 1 = g1(1) = h (g2(1)) = h (1) and from 0 = g1(0) =

h (g2(0)) = h (0). Therefore, for any θ ∈ [0, 1]∫ θ

0

g2(Q(t))dt ≥
∫ θ

0

g1(Q(t))dt

Hence, for any θ ∈ [0, 1] , we obtain Twg1 (θ) ≥ Twg2 (θ) and T lg1 (θ) ≥ T lg2 (θ).

In particular, since the optimal allocation under preferences g2 is a feasible allocation

under preferences g1, the expected optimal revenue when facing agents with risk preference

g1 is higher than that obtained when facing agents with risk preference g2.

To prove Proposition 2, we first establish the following two Lemmas.

Lemma 6 For any incentive compatible, no-insurance mechanism (q, t), there exist func-

tions Twi (θi) and T li (θi) ≥ 0 such that the mechanism (q,T ) where

Ti(θ,r) =

Twi (θi) if r ∈ Wi(θ)

T li (θi) else
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is also incentive compatible, and at least as profitable for the seller as (q, t).

Proof. Fix an incentive compatible mechanism (q, t) where payments are non-negative.

Consider a mechanism of the form (q, t′) where

t′i(θ,r) =

Twi (θi) if r ∈ Wi(θ)

ti(θ, r) else

such that Twi (θi) is deterministic and defined by

Vi(θi; q, t
′) = Vi(θi; q, t).

Analogously, we construct another mechanism (q,T ) where, for all i and all θi

Ti(θ, r) =

Twi (θi) if r ∈ Wi(θ)

T li (θi) else

where T li (θi) is deterministic and defined by

Vi(θi; q, t) = Vi(θi; q, t
′) = Vi(θi; q,T ).

By the definition of a no-insurance mechanism, each ti(·, r) is a non-negative, possibly

random transfer whenever r /∈ Wi(θ). Then, each T li (θi) is non-negative by construction.

By using very similar arguments to those used in the proof for Lemma 1, we can show

that:

Vi(θi, θ
′
i; q,T ) = Vi(θ

′
i; q,T ) +

∫ 1+m

−m
gi(P[1{r∈Wi(θ′i,θ−i)}(θi − θ′i) ≥ s | θi])ds−m .

and that

Vi(θi, θ
′
i; q, t) ≥ Vi(θ

′
i; q, t) +

∫ m+1

−m
gi(P[1{r∈Wi(θ′i,θ−i)}(θi − θ′i) ≥ s | θi])ds−m. .

Since (q, t) is incentive compatible by assumption, and because Vi(θi; q, t) = Vi(θi; q, t)

by construction, it follows that, for any i, θi and θ′i it holds that

Vi(θi; q,T ) =Vi(θi; q, t)

≥Vi(θi, θ′i; q, t) ≥ Vi(θi, θ
′
i; q,T ).
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That is, (q,T ) is also incentive compatible. By using essentially the same arguments as

in the proof for Lemma 1, we also obtain that (q,T ) is at least as profitable as (q, t) for

the seller.

We next show that, within the above constructed class of mechanisms, where losing

bidders do not get positive transfers, it is also not optimal to ask losers to pay (for instance

by charging an entry fee).

Lemma 7 Consider an incentive compatible mechanism (q,T ) where, for all i and for

all θi,

ti(θ,r) =

Twi (θi) if r ∈ Wi(θ)

T li (θi) ≥ 0 else

Then, there exists an incentive compatible mechanism (q, T̃ ) where for all i and all θi

T̃i(θ,r) =

T̃wi (θi) if r ∈ Wi(θ)

0 else

that is at least as profitable for the seller as (q, t).

Proof. Fix any incentive compatible mechanism (q,T ) as in the statement of the Lemma.

Consider a mechanism (q, T̃ ) with the same allocation as the mechanism (q,T ), where

T̃i(θ,r) =

T̃wi (θi) if r ∈ Wi(θ)

0 else

and where T̃wi (θi) is implicitly defined by

Vi(θi; q, T̃ ) = Vi(θi; q,T ).

Such a mechanism clearly exists. By using very similar arguments as those used in the

proof for Lemma 1, we can show that (q, T̃ ) is incentive compatible.

The utility of bidder i with type θi in (q,T ) is the sum of a fixed amount −T li (θi)
and of a lottery that pays θi − Twi (θi) + T li (θi) with probability Qi (θi) and pays 0 with

probability 1−Qi (θi). Therefore

Vi(θi; q,T ) = −T li (θi) + gi (Qi (θi))
(
θi − Twi (θi) + T li (θi)

)
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Similarly

Vi(θi; q, T̃ ) = gi (Qi (θi))
(
θi − T̃wi (θi)

)
By construction, it holds that Vi(θi; q, T̃ ) = Vi(θi; q,T ) and hence that

−T li (θi) (1− gi (Qi (θi))) + gi (Qi (θi)) (θi − Twi (θi)) = gi (Qi (θi))
(
θi − T̃wi (θi)

)
⇐⇒

−T li (θi) (1− gi (Qi (θi))) = gi (Qi (θi))
(
Twi (θi)− T̃wi (θi)

)
This yields Twi (θi) ≤ T̃wi (θi). Furthermore, Vi(θi; q, T̃ ) = Vi(θi; q,T ) implies that

T li (θi) = gi (Qi (θi))
(
T̃wi (θi)− Twi (θi) + T li (θi)

)
≤ Qi (θi)

(
T̃wi (θi)− Twi (θi) + T li (θi)

)
(7)

where the last inequality follows because T̃wi (θi)− Twi (θi) + T li (θi) ≥ 0 , and because gi is

convex with gi (0) = 0 and gi (1) = 1. The last inequality implies that

T li (θi) +Qi (θi)
(
Twi (θi)− T li (θi)

)
≤ Qi (θi) T̃

w
i (θi)

and therefore the new mechanism is at least as profitable for the seller as (q,T ).

Proof for Lemma 5: The proofs for points 1 and 2 are essentially the same as those in

Lemma 1, and we omit here the details.

By point 2, the agent’s equilibrium utility is given by

Vi(θi) = Vi(0) +

∫ θi

0

gi(Qi(t))dt =

∫ θi

0

gi(Qi(t))dt.

On the other hand, a direct computation of the agent’s utility yields∫ θi−τ̃i(θi)

0

gi(Qi(θi))du = (θi − τ̃wi (θi))gi(Qi(θi))

We therefore obtain that:∫ θi

0

gi(Qi(t))dt = (θi − τ̃wi (θi))gi(Qi(θi))

⇒ τ̃wi (θi)gi(Qi(θi)) = θigi(Qi(θi))−
∫ θi

0

gi(Qi(t))dt

⇒ τ̃wi (θi)Qi(θi) = θiQi(θi)−
Qi(θi)

gi(Qi(θi))

∫ θi

0

gi(Qi(t))dt .
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As the agent with type θi pays the transfer τ̃wi (θi) only if he receives an object, which hap-

pens with probabilityQi(θi), the expected revenue from agent i equals
∫ 1

0
Qi(θi)τ̃

w
i (θi)f(θi)dθi

which completes the proof.

Proof for Proposition 2: By Lemmas 6 and 7, we can apply Lemma 5 and conclude

that if the seller uses an optimal no insurance mechanism that implements Q as in the

statement, then her expected revenue is given by

R(s) = n

∫ 1

0

[
θF n−1(θ)− F n−1(θ)

g(F n−1(θ))

∫ θ

s

g(F n−1(t))dt

]
f(θ)dθ

Taking the derivative with respect to s yields

R′(s) = −F n−1(s)f(s)

[
s− 1

f(s)

g(F n−1(s))

F n−1(s)

∫ 1

s

F n−1(t)

g(F n−1(t))
f(t)dt

]
Finally, we recall that Volij [2002] showed that the symmetric equilibrium bid function in

a first-price auction with reserve s is given by

β(θ) = θ −
∫ 1

s
g(F n−1(t))dt

g(F n−1(θ))

which is increasing. Thus, such an auction implements the efficient allocation whenever

the object is sold. Moreover, the payment of bidder i only depends on his type (no further

randomization). Thus, the first price auction achieves revenue R(s) and is therefore

optimal.
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