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Abstract

In an interactive belief model, are the players “commonly meta-certain” of
the model itself? This paper explicitly formalizes such implicit “common meta-
certainty” assumption. To that end, the paper expands the objects of players’
beliefs from events to functions defined on the underlying states. Then, the
paper defines a player’s belief-generating map: it associates, with each state,
whether a player believes each event at that state. The paper formalizes what
it means by: “a player is (meta-)certain of her own belief-generating map” or
“the players are (meta-)certain of the profile of belief-generating maps (i.e.,
the model).” The paper shows: a player is (meta-)certain of her own belief-
generating map if and only if her beliefs are introspective. The players are
commonly (meta-)certain of the model if and only if, for any event which some
player i believes, it is common belief that player i believes the event. This
paper then asks whether the “common meta-certainty” assumption is needed
for an epistemic characterization of game-theoretic solution concepts. The pa-
per shows: if each player is logical and (meta-)certain of her own strategy and
belief-generating map, then each player correctly believes her own rationality.
Consequently, common belief in rationality alone leads to actions that survive
iterated elimination of strictly dominated actions.
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The common knowledge assumption underlies all of game theory and much of
economic theory. Whatever be the model under discussion, whatever complete or
incomplete information, consistent or inconsistent, repeated or one-shot, cooperative
or non-cooperative, the model itself must be assumed common knowledge; otherwise
the model is insufficiently specified, and the analysis incoherent.

—Aumann (1987b)

1 Introduction

In an economic or game-theoretic model in which the players make their interactive
reasoning about their strategies or rationality, the analysts implicitly (“from outside of
the model”) assume that the players understand the model itself in a meta-sense. The
above quotation from Aumann (1987b) suggests that the analysts should assume “the
model is commonly known by the players” since otherwise “the model is insufficiently
specified, and the analysis incoherent.”

This paper has two objectives. The first is to explicitly formalize the “com-
mon knowledge” assumption of a model within the model itself. An interactive be-
lief/knowledge model formally represents players’ beliefs/knowledge about its ingre-
dients, that is, events. The model itself does not tell whether the players (commonly)
believe/know the model itself, although the analysts assume that the players (com-
monly) believe/know the model in a meta-sense. I refer to the knowledge/belief of
the model as the “meta-knowledge/meta-belief” of the model.

The second objective is to examine the role that “meta-knowledge” of a model
plays in game-theoretic analyses such as epistemic characterizations of solution con-
cepts, robustness of solution concepts, or robustness of behaviors with respect to
players’ beliefs/knowledge. For a given epistemic characterization of a game-theoretic
solution concept such as iterated elimination of strictly dominated actions, do the
outside analysts need to formally assume that the players “meta-know” an epistemic
model of a game (that describes their interactive beliefs about their strategies and
rationality)?

Are the players (commonly) meta-certain of a model itself?1 This first question
has been puzzling theorists since the pioneering work of Aumann (1976, 1987a,b,
1999) on interactive knowledge models.2 To date, one informal solution is the use of

1Since different epistemic models may feature different notions of qualitative or probabilistic
beliefs or knowledge, I use the word the “(meta-)certainty” of a model to refer generically to the
meta-knowledge or meta-belief of the model. In a probabilistic-belief model, by (meta-)certainty, it
means that the players meta-believe the model with probability one. In a model of qualitative belief
or knowledge whose degree of beliefs are stronger than probability-one belief, by (meta-)certainty, it
means that the players meta-believe the model in the absolute sense or they meta-know the model.

2For this question, see also Bacharach (1985, 1990), Binmore and Brandenburger (1990), Bran-
denburger and Dekel (1989, 1993), Brandenburger, Dekel, and Geanakoplos (1992), Brandenburger
and Keisler (2006), Dekel and Gul (1997), Fagin et al. (1999), Gilboa (1988), Myerson (1991), Pires
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a “universal” belief model in which each state encodes what the players believe at
that state and in which the differences in the players’ beliefs are all described within
the underlying states themselves (see, for example, Brandenburger and Dekel (1993),
Heifetz and Samet (1998), and Mertens and Zamir (1985)). Subsequently, the various
strands of robustness literature relax the implicit “common meta-certainty” assump-
tion of an environment among players by studying how equilibrium or non-equilibrium
solutions (or allocations) would depend on specifications of players’ interactive beliefs
on a “universal” belief model.3

The main result regarding the first objective (Theorems 1A and 1B in the contexts
of qualitative and probabilistic beliefs, respectively) in Section 4 characterizes the
“implicit common meta-certainty” assumption as follows. According to the formal
test to be discussed, the players are commonly (meta-)certain of a model if and only
if, for any event which some player i believes at some state, it is common belief
that player i believes the event at that state. A universal belief model, in which the
differences in the players’ beliefs are incorporated within the states, indeed passes the
formal test provided that the players’ beliefs are introspective. Indeed, a given belief
model is mapped to the universal belief model under the belief-preserving map, and
under certain conditions, the given belief model is isomorphic to the corresponding
subset of the universal space. The players are commonly certain of such “belief sub-
space” of the universal model within itself. However, the test itself is not directly
related to whether a given model is rich in describing the players’ interactive beliefs.
Also, the test tells for any belief model whether the players are commonly (meta-
)certain of the model itself.

Moving on to the second question, Section 5 examines the role that the “com-
mon meta-certainty” assumption plays in the epistemic characterization of iterated
elimination of strictly dominated actions (IESDA) in a strategic game. Informally, it
states: if the players are “logical,” if they are commonly meta-certain of a game, and if
they commonly believe their rationality, then the resulting actions survive any process
of IESDA. Formally, it states: if the players commonly believe their rationality and if
their common belief in their rationality is correct, then the resulting actions survive
any process of IESDA.4 The main result regarding the second objective (Theorem
2) connects these two statements. If the players’ beliefs are monotone (they believe
any logical implication of their beliefs), consistent (i.e., they do not simultaneously
believe an event and its negation), and finitely conjunctive (if they believe E and F
then they believe its conjunction E ∩ F ), and if each player is certain of her own

(1994), Roy and Pacuit (2013), Samuelson (2004), Vassilakis and Zamir (1993), Werlang (1987),
Werlang and Tan (1992), and Wilson (1987).

3For robust mechanism design, see, for instance, Bergemann and Morris (2005), Heifetz and
Neeman (2006), and Neeman (2004). For robustness of solution concepts, see, for example, Weinstein
and Yildiz (2007) in the context of rationalizability.

4The formal statement is taken from Fukuda (2020, Theorem 3), which holds irrespective of
the nature of beliefs. For seminal papers on implications of common belief in rationality, see, for
example, Brandenburger and Dekel (1987), Stalnaker (1994), and Tan and Werlang (1988).
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strategy and the part of her own belief-generating process in the model (each player
is not necessarily certain of how the opponents’ beliefs are generated in the model),
then each player correctly believes her own rationality, and hence they have correct
common belief in their rationality. Thus, if the players are “logical” and each of them
is meta-certain of the part of the model that governs her own beliefs, then common
belief in rationality leads to actions that survive any process of IESDA.

Now, I formally introduce a (belief) model described in Section 2. The model
consists of the following three ingredients. The first is a measurable space of states
of the word (Ω,D). Each state ω ∈ Ω is a list of possible specifications of what the
world is like, and the collection D of events (i.e., subsets of Ω) are the objects of the
players’ beliefs. The second is the players’ monotone belief operators (Bi)i∈I . Player
i’s belief operator Bi associates, with each event E, the event that player i believes
E. Iterative application of belief operators unpacks higher-order interactive beliefs.
Monotonicity means that if player i believes E at a state and if E implies (i.e., is
included in) F , then she believes F at that state. To focus on the (meta-)certainty
of a model and to separate it from reasoning ability, this paper assumes that each
player believes any logical implication of her own beliefs. The third is a common belief
operator C, which associates, with each event E, the event that E is common belief
among the players. Under certain assumptions on the players’ beliefs, an event E is
common belief if and only if everybody believes E, everybody believes that everybody
believes E, and so on ad infinitum.

This framework nests various models of qualitative and probabilistic beliefs and
knowledge. Broadly, the framework nests the following two standard models of belief
or knowledge (or combinations thereof). First, the framework nests a possibility
correspondence model of qualitative belief or knowledge when each player’s belief or
knowledge is induced by a possibility correspondence.5 The possibility correspondence
associates, with each state, the set of states that she considers possible. The player
believes an event E at a state whenever the possibility set at ω implies (i.e., is included
in) the event E. Second, the framework nests a Harsanyi (1967-1968) type space when
each player’s probabilistic beliefs are induced by her type mapping. The type mapping
τi associates, with each state ω, her probability measure τi(ω) on the underlying
states at that state. The type mapping τi of player i induces her p-belief operator Bp

τi

(Monderer and Samet, 1989): it associates, with each event E, the event that (i.e., the
set of states at which) player i believes E with probability at least p (i.e., p-believes
E). Certain properties of p-belief operators (Bp

τi
)p∈[0,1] reproduce the underlying type

mapping τi (Samet, 2000).
With the framework in mind, I formalize the (meta-)certainty of a model in two

steps. In the first step, Section 3.1 expands the objects of the players’ beliefs from
events to functions defined on the underlying states. Examples of such functions are
random variables, strategies, and type mappings. Any such function x has to be

5See, for instance, Aumann (1976, 1999), Brandenburger, Dekel, and Geanakoplos (1992), Dekel
and Gul (1997), Geanakoplos (1989), and Morris (1996).
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defined on the state space Ω, but the co-domain X can be any set such as the set
R of real numbers (a random variable), a set Ai of player i’s actions (her strategy),
and the set ∆(Ω) of probability measures on (Ω,D) (a type mapping). I call the
function x : Ω → X a signal if its co-domain X has “observational” contents X
(where “observation” is broadly construed as being an object of reasoning): it is a
collection of subsets of X such that each F ∈ X is deemed an event x−1(F ). A signal
(mapping) is a function x : (Ω,D) → (X,X ) with the “measurability” condition
x−1(X ) ⊆ D. Player i is certain of the value of the signal x at a state ω if, for
any observational content F that holds at ω (i.e., ω ∈ x−1(F )), player i believes the
event x−1(F ) at ω (i.e., ω ∈ Bi(x

−1(F ))). Player i is certain of x if she is certain of
the value of x at every state. For example, let x be the strategy of player i and let
every singleton action be observable; then, player i is certain of her own strategy if,
wherever she takes an action x(ω), she believes that she takes action x(ω). Having
defined individual players’ (meta-)certainty, the players are commonly certain of the
value of the signal x at a state ω if, for any observational content F that holds at
ω, the event x−1(F ) is common belief at ω (i.e., ω ∈ C(x−1(F ))). The players are
commonly certain of the signal x if they are commonly certain of its value at every
state.

In the second step, Section 3.2 formulates a players’ “belief-generating map” as a
signal that associates, with each state, her beliefs at that state. By the second step,
I can apply the formalization of certainty and common certainty in the first step to
the ingredients of a given model (i.e., players’ belief-generating maps). To that end,
take player i’s belief operator Bi from the model. I define a qualitative-type mapping
tBi : it associates, with each state, whether player i believes each event or not at
that state (formally, a binary set function from the collection of events to the binary
values {0, 1} where 1 indicates the belief of an event). The qualitative-type mapping
is a binary “type” mapping analogous to a type mapping τi that represents player
i’s probabilistic beliefs at each state in the context of probabilistic beliefs. That is,
the type mapping τi assigns, to each state ω, her probabilistic beliefs τi(ω) ∈ [0, 1]
on (Ω,D) at ω. In a similar manner, the qualitative-type mapping tBi associates,
with each state ω, her qualitative belief tBi(ω) ∈ {0, 1} (where tBi(ω)(E) = 1 if
and only if ω ∈ Bi(E)) on (Ω,D) at ω. The qualitative-type mapping tBi is player
i’s belief-generating mapping. Since the belief operator Bi and the qualitative-type
mapping tBi are equivalent means of representing player i’s beliefs, a model means the
profile of qualitative-type mappings. Thus, the formal test for whether the players
are commonly certain of a given belief model is whether the players are certain of the
profile of their qualitative-type mappings.

Before asking when a player is certain of all the players’ qualitative-type map-
pings (i.e., the model), Section 3.3 characterizes when a player is certain of her own
qualitative type-mapping in terms of her introspective properties of beliefs. Roughly,
Propositions 1A and 1B show that each player is certain of her own qualitative-type
mapping if and only if her belief is introspective. These results distinguish the fact
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that player i is certain of her own qualitative-type mapping and the fact that player
i is (or the players are commonly) certain of the profile of the type mappings.

Section 3.4 provides an alternative characterization of the fact that player i is
certain of a signal x : (Ω,D)→ (X,X ) in terms of her reasoning of the signal. If she
is certain of the signal x, then she would be able to rank the underlying states based
on the collection of observational contents that hold at each state. Call a state ω at
least as informative as a state ω′ (according to the signal x) if, for any observational
content F that holds at ω′, it holds at ω. Section 3.4 then characterizes properties of
beliefs and the certainty of a mapping in terms of the notion of informativeness. In
the literature on type spaces such as Mertens and Zamir (1985), a player is “certain”
of her own type if, at each state ω, she believes, with probability one, the set of states
indistinguishable from (i.e., equally informative to) ω. I show that such “Harsanyi”
property holds if and only if the player is (meta-)certain of her own type mapping in
the strongest sense. Hence, I characterize the original idea behind Harsanyi (1967-
1968) that each player “is certain of” her own type mapping.

To the best of my knowledge, this is the first paper which systematically for-
malizes the statement that the players are (commonly) (meta-)certain of any given
belief model within the model itself. The main result on this question, nevertheless,
is related to Gilboa (1988). He constructs a particular syntactic model in which the
statement that the model is common knowledge is incorporated within itself. He
formulates the sense in which the model is commonly known from Positive Introspec-
tion of common knowledge: if a statement is common knowledge then it is commonly
known that the statement is common knowledge. In Theorems 1A and 1B, in con-
trast, the players are commonly certain of a given model if and only if, at each state
and for any event which some player believes at that state, it is common belief that
the player believes the event at that state. Thus, in this paper, the key criteria is the
positive introspective property of common belief with respect to each player’s beliefs.
Whenever some individual player believes some event, it is common belief that she
believes it. Bacharach (1985, 1990), in the context of partitional possibility corre-
spondence models, formalizes the event that a player has an information partition by
regarding it as a function.

The paper is organized as follows. Section 2 defines the basic framework of the
paper, i.e., a belief model. Section 3 characterizes the sense in which each player is
certain of how her belief is generated in a model. Section 4 examines the sense in
which the players are commonly certain of a model itself (i.e., how the players’ beliefs
are generated in the model). Section 5 studies how the assumption that the players
are commonly certain of a model itself can make game-theoretic analyses coherent.
Section 6 provides concluding remarks. The proofs are relegated to Appendix A.
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2 Framework

Throughout the paper, let I denote a non-empty finite set of players. The framework
represents players’ interactive beliefs by belief operators on a state space so that it can
capture various forms of qualitative and probabilistic beliefs and knowledge. Section
2.1 first defines a belief model. Section 2.2 then defines properties of beliefs.

2.1 A Belief Model

A belief model (of I) is a tuple
−→
Ω := 〈(Ω,D), (Bi)i∈I , C〉, where: (i) (Ω,D) is a non-

empty measurable space of states of the world (call Ω the state space); (ii) Bi : D → D
is player i’s (monotone) belief operator ; and (iii) C : D → D is a (monotone) common
belief operator to be defined in Expression (1) below.

While Ω constitutes a non-empty set of states of the world, each element E of
D is an event about which the players reason. The assumption that (Ω,D) forms a
measurable space accommodates players’ qualitative and probabilistic beliefs in the
same framework. Conceptually, the assumption means that: (i) any form of tautology
Ω is an object of beliefs; (ii) if E is an object of beliefs, then so is its complement Ec

(denote it also by ¬E); and that (iii) if (En)n∈N are objects of beliefs, then so are its
union

⋃
n∈NEn and its intersection

⋂
n∈NEn.6

For each event E, the set Bi(E) denotes the event that (i.e., the set of states at
which) a player i believes E. Thus, the player i ∈ I believes an event E ∈ D at
a state ω ∈ Ω if ω ∈ Bi(E). I assume that each player’s belief operator satisfies
Monotonicity : E ⊆ F implies Bi(E) ⊆ Bi(F ). It means that if player i believes some
event then she believes any of its logical consequences.

Since the players’ beliefs are monotone, I introduce the common belief operator
C : D → D following Monderer and Samet (1989). Call an event E publicly evident
(e.g., Milgrom (1981)) if E ⊆ BI(E) :=

⋂
i∈I Bi(E). That is, everybody believes E

whenever E is true. Denote by JBI the collection of publicly-evident events. An event
E is common belief at a state ω if there is a publicly-evident event that is true at ω
and that implies the mutual belief in E: that is, ω ∈ F ⊆ BI(E) for some F ∈ JBI .
Now, C is assumed to satisfy that the set of states at which E is common belief is an
event for each E ∈ D:

C(E) := {ω ∈ Ω | there is F ∈ JBI with ω ∈ F ⊆ BI(E)}. (1)

6Technically, one can assume that (Ω,D) forms a κ-complete algebra and that I is a non-empty
set with |I| < κ, where κ is a (regular) infinite cardinal or a symbol∞ that plays a role of λ <∞ for
any cardinal λ. The assumption on I ensures that mutual beliefs are well-defined. The pair (Ω,D) is
a κ-complete algebra if Ω ∈ D and if D is closed under complementation and under any intersection
of a collection of events with cardinality strictly less than κ. It is an (∞-)complete algebra if Ω ∈ D
and if D is closed under complementation and under arbitrary intersection. In this formulation, a
measurable space is an ℵ1-complete algebra, where ℵ1 is the least uncountable cardinal.
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Since players’ beliefs are monotone and since D is closed under countable intersection,
if E is common belief, then everybody believes E, everybody believes that everybody
believes E, and so forth ad infinitum: C(E) ⊆

⋂
n∈NB

n
I (E). The converse (set

inclusion) holds, for example, when the mutual belief operator BI satisfies Countable
Conjunction:

⋂
n∈NBI(En) ⊆ BI(

⋂
n∈NEn), meaning that everybody believes the

countable conjunction of events whenever everybody believes each of them (also, BI

satisfies Countable Conjunction if every player’s belief operator Bi satisfies it). Hence,
if, for example, the mutual belief operator satisfies Countable Conjunction, then C is
always a well-defined operator without incorporating it into the assumption.

While a possibility correspondence model often allows any subset of Ω to be an
event, I represent the players’ beliefs on a measurable space (Ω,D) instead of the
power set algebra (Ω,P(Ω)) so that I can analyze players’ qualitative and probabilistic
beliefs (such as the possibility correspondence and type space models) under the same
framework. I will analyze the players’ (countably-additive) probabilistic beliefs on a
measurable space (Ω,D) by p-belief operators (Monderer and Samet, 1989).7 For
each p ∈ [0, 1], player i’s p-belief operator Bp

i : D → D associates, with each event E,
the event that player i believes E with probability at least p (she p-believes E). I will
also introduce the common p-belief operator Cp. Samet (2000) specifies conditions
on p-belief operators under which a player’s beliefs are equivalently represented by
a type mapping τi : Ω → ∆(Ω) that associates, with each state of the world, the
player’s probabilistic beliefs at that state, where ∆(Ω) denotes the set of countably-
additive probability measures on (Ω,D). I will also analyze both qualitative and
probabilistic beliefs at the same time: for example, in an extensive-form game with
perfect information, each player has knowledge about players’ past moves while she
has beliefs about the future moves of the opponents.8

2.2 Properties of Beliefs

Next, I introduce additional eight properties of beliefs. Various possibility correspon-
dence models of qualitative beliefs and knowledge are represented as belief models
that satisfy certain properties specified below. Fix a player i. I first introduce the
following five logical properties of beliefs.

1. Necessitation: Bi(Ω) = Ω.

2. Countable Conjunction:
⋂
n∈NBi(En) ⊆ Bi(

⋂
n∈NEn) (for any events (En)n∈N).

3. Finite Conjunction: Bi(E) ∩Bi(F ) ⊆ Bi(E ∩ F ).

7While one can analyze finitely-additive or non-additive beliefs, for ease of exposition I focus on
countably-additive probabilistic beliefs when it comes to quantitative beliefs.

8Moreover, the framework could naturally be extended to generalized state space models of
unawareness (e.g., Heifetz, Meier, and Schipper (2006, 2013)). A state space Ω consists of multiple
sub-spaces, and D is the collection of events (in their contexts). Players’ belief and common belief
operators are defined on the collection of events.
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4. The Kripke property : Bi(E) = {ω ∈ Ω | bBi(ω) ⊆ E}, where bBi(ω) :=
⋂
{E ∈

D | ω ∈ Bi(E)} is the set of states player i considers possible at ω.

5. Consistency : Bi(E) ⊆ (¬Bi)(E
c).

First, Necessitation means that the player believes a tautology such as E ∪ Ec. Sec-
ond, as discussed, Countable Conjunction means that if the player beliefs each of
a countable collection of events, then she believes its conjunction. In the proba-
bilistic environment, if the player believes En with probability one for each n ∈ N,
she believes the intersection

⋂
n∈NEn with probability one. Third, Finite Conjunc-

tion is weaker than Countable Conjunction: if the player believes E and F then she
believes its conjunction E ∩ F . Fourth, to discuss the Kripke property, the player
considers ω′ possible at ω if, for any event E which she believes at ω, E is true at
ω′. The Kripke property provides the condition under which i’s belief is induced
by her possibility correspondence bBi : Ω → P(Ω): she believes E at ω if and only
if (hereafter, iff) her possibility set bBi(ω) at ω implies E. In fact, Bi satisfies the
Kripke property iff Bi is induced by some possibility correspondence bi : Ω→ P(Ω):
Bi(E) = Bbi(E) := {ω ∈ Ω | bi(ω) ⊆ E} (Fukuda, 2019a). Under the Kripke
property, Bi = BbBi

and bi = bBbi , i.e., the belief operator Bi and the possibility cor-
respondence are equivalent representations of beliefs. The Kripke property implies
the previous three properties as well as Monotonicity. Fifth, Consistency means that
the player cannot simultaneously believe an event E and its negation Ec.

Next, I move on to truth and introspective properties.

6. Truth Axiom: Bi(E) ⊆ E (for all E ∈ D).

7. Positive Introspection: Bi(·) ⊆ BiBi(·) (i.e., Bi(E) ⊆ BiBi(E) for all E ∈ D).

8. Negative Introspection: (¬Bi)(·) ⊆ Bi(¬Bi)(·).

Sixth, Truth Axiom says that the player can only “know” what is true. Truth Axiom
turns belief into knowledge in that knowledge has to be true while belief can be false.
Truth Axiom implies Consistency. While knowledge satisfies Truth Axiom, qualitative
and probabilistic beliefs are often assumed to satisfy Consistency. Seventh, Positive
Introspection states that if the player believes some event then she believes that she
believes it. Eighth, Negative Introspection states that if the player does not believe
some event then she believes that she does not believe it. Truth Axiom and Negative
Introspection yield Positive Introspection (e.g., Aumann (1999)).

Three remarks are in order. First, the introspective properties will play important
roles in whether a player is (meta-)certain of a belief model. Intuitively, Positive
Introspection provides the sense in which the player believes her own belief (at least
at face value) while Negative Introspection yields the sense in which the player believes
the lack of her own belief. To see these points formally, an event E is self-evident
to i if E ⊆ Bi(E). That is, i believes E whenever E is true. Positive Introspection
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means that i’s belief in E is self-evident to i, and Negative Introspection means that
i’s lack of belief in E is self-evident to i. Denote by JBi the collection of self-evident
events to i.

Second, the last four properties can be restated in terms of bBi under the Kripke
property: Bi satisfies Consistency iff bi is serial (i.e., bBi(·) 6= ∅); Bi satisfies Truth
Axiom iff bBi is reflexive (i.e., ω ∈ bBi(ω) for all ω ∈ Ω); Bi satisfies Positive Intro-
spection iff bBi is transitive (i.e., ω′ ∈ bBi(ω) implies bBi(ω

′) ⊆ bBi(ω)); and Bi satisfies
Negative Introspection iff bBi is Euclidean (i.e., ω′ ∈ bBi(ω) implies bBi(ω) ⊆ bBi(ω

′)).
Third, various models of probabilistic and qualitative beliefs and knowledge take

different sets of axioms. The framework accommodates possibility correspondence
models of qualitative beliefs and knowledge when Bi satisfies the Kripke property. A
partitional model of knowledge corresponds to the case when Bi satisfies Truth Axiom,
Positive Introspection, and Negative Introspection.9 A reflexive and transitive (non-
partitional) possibility correspondence model is characterized by Truth Axiom and
Positive Introspection.10 When it comes to fully-introspective qualitative beliefs, bBi
is serial, transitive, and Euclidean iff Bi satisfies Consistency, Positive Introspection,
and Negative Introspection.

The probability 1-belief operator B1
i (that maps each event E to the event that

player i believes E with probability one) would satisfy Necessitation, Countable Con-
junction (thus Finite Conjunction), Consistency, and possibly Positive Introspection
and Negative Introspection. With the framework defined in this section, for a model
of (qualitative or probabilistic) belief or knowledge, I will study the formal sense in
which the players are certain of the model.

3 When Is a Player Certain of Her Belief-Generating

Mapping?

The previous section has defined a belief model, in which the objects of beliefs are
events. Here, Section 3.1 first extends an object of beliefs in a model from an event
to a function (“signal”) defined on the state space. That is, the subsection formu-
lates the statement that a player is certain of a function defined on the state space.
Next, Section 3.2 represents a player’s “belief-generating mapping” as a signal which
associates, with each state, whether she believes each event or not. Then, Section
3.3 asks the sense in which she is certain of her own belief-generating mapping in
terms of the introspective properties. Finally, Section 3.4 relates the introspective

9In fact, Truth Axiom, Negative Introspection, and the Kripke property yield all the other prop-
erties defined in this section.

10The literature on non-partitional possibility correspondence models studies information process-
ing errors that lead to the failure of Negative Introspection. See, for example, Bacharach (1985),
Binmore and Brandenburger (1990), Dekel and Gul (1997), Geanakoplos (1989), Lipman (1995),
Pires (1994), Samet (1990), and Shin (1993).
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properties to a notion of “informativeness” derived from a signal. Section 4, based
on this formalization, provides a test by which the outside analysts can determine
whether the players are (commonly) certain of a belief model.

3.1 Functions as Objects of Players’ Beliefs

I start with defining a notion of a signal mapping. A signal mapping is any function
x defined on the state space Ω with “observational” contents. For a non-empty
set X and a non-empty subset X of P(X), call x : (Ω,D) → (X,X ) a signal
(mapping) if x−1(X ) ⊆ D. Mathematically, x : (Ω,D) → (X,X ) is a signal if
x : (Ω,D) → (X, σ(X )) is measurable. Examples include strategies, action/decision
functions, random variables, state-contingent contracts, conditional expectations, and
so on. A signal is interpreted as a mapping from the underlying state space Ω into
the space of “observation” X endowed with “observational” contents X . By obser-
vation, it means that each F ∈ X is deemed an object of reasoning. That is, each
“observational” content F ∈ X can be regarded as an event x−1(F ) ∈ D through
inverting the mapping.

The main purpose of this subsection is to define the statement that a player is
certain of a signal. A player i is certain of the value of a signal x : (Ω,D)→ (X,X )
at ω, if she believes any observational content F (i.e., believes x−1(F )) at ω whenever
it is true: x(ω) ∈ F . She is certain of the signal x : (Ω,D) → (X,X ) if she is
certain of its value at every ω. Likewise, the players are commonly certain of the
value of the signal x : (Ω,D) → (X,X ) at ω, if the players commonly believe any
observational content F at ω whenever it is true. The players are commonly certain
of the signal x : (Ω,D) → (X,X ) if they are certain of its value at every ω. Note
that the word “certainty” is not necessarily related to probability-one belief. This
terminology is used generically to refer to various probabilistic or non-probabilistic
belief and knowledge (recall footnote 1). Formally:

Definition 1. Let
−→
Ω be a belief model, and let x : (Ω,D) → (X,X ) be a signal

mapping.

1. (a) Player i is certain of the value of the signal x : (Ω,D) → (X,X ) at ω if
ω ∈ Bi(x

−1(F )) for any F ∈ X with x(ω) ∈ F .

(b) Player i is certain of the signal x : (Ω,D)→ (X,X ) if she is certain of the
value of the signal x at any state.

2. (a) The players are commonly certain of the value of the signal x : (Ω,D) →
(X,X ) at ω if ω ∈ C(x−1(F )) for any F ∈ X with x(ω) ∈ F .

(b) The players are commonly certain of the signal x : (Ω,D) → (X,X ) if
they are commonly certain of the value of the signal x is at every state.

11



For ease of terminology, player i is certain of (the value of) the signal x : Ω→ X
(at ω) with respect to X if she is certain of (the value of) the signal x : (Ω,D) →
(X,X ) (at ω). Likewise, the players are commonly certain of (the value of) the signal
x : Ω → X (at ω) with respect to X if they are commonly certain of (the value of)
the signal x : (Ω,D)→ (X,X ) (at ω).

Six remarks on Definition 1 are in order. First, Remark 1 below restates the fact
that a player is certain of a signal in terms of self-evidence. Part (1) states that
player i is certain of a signal x : (Ω,D)→ (X,X ) iff any observational content F ∈ X
(i.e., any event x−1(F ) ∈ D) is self-evident to i. Part (2) states that the players
are commonly certain of the signal x : (Ω,D)→ (X,X ) iff any observational content
F ∈ X is publicly-evident. Consequently, Part (3) says that the players are commonly
certain of a signal iff every player is certain of it. Hence, for the outside analysts to
assert that the players are commonly certain of a certain signal, it suffices to show
that each player is certain of it.11

Remark 1. Let x : (Ω,D)→ (X,X ) be a signal.

1. Player i is certain of the signal x iff x−1(X ) ⊆ JBi .

2. The players are commonly certain of the signal x iff x−1(X ) ⊆ JBI .

3. The players are commonly certain of the signal x iff every player i is certain of
the signal x.

Second, Remark 2 below shows that, when x : (Ω,D) → (X,X ) is a player’s
strategy, Definition 1 formalizes the statement that the player is certain of the strategy
in the literature on characterizations of solution concepts of games in state space
models such as Brandenburger, Dekel, and Geanakoplos (1992) and Geanakoplos
(1989). To see this, assume that X contains a singleton {x(ω)} to reason about the
action taken at ω. That is, the set of states [x(ω)] := x−1({x(ω)}) = {ω′ ∈ Ω |
x(ω′) = x(ω)} at which player i takes the same action as she does at ω is an event.
Since Bi satisfies Monotonicity, player i is certain of her action x(ω) (i.e., the value
of the signal x) at ω iff ω ∈ Bi([x(ω)]), that is, player i believes that her action is
x(ω) at ω. In fact:

Remark 2. Let X be a set of actions available to player i, and let x : Ω → X be a
strategy of player i with respect to X = {{x(ω)} | ω ∈ Ω}: the set of actions that
could have been taken at each state. Then, Definition 1 states that player i is certain
of her strategy iff [x(ω)] is self-evident at every ω ∈ Ω.

Definition 1 also subsumes the formulation of the certainty of the strategy by
Aumann (1987a) in the (countable) partitional state space model of knowledge. Let

11In contrast, it is not necessarily the case that each player is certain of a signal at a state ω iff
the players are commonly certain of the signal at ω. See Remark A.2 in Appendix A for an example.
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(bBi(ω))ω∈Ω be a countable partition on Ω. In Aumann (1987a), the player “knows”
her own strategy x iff the strategy x is measurable with respect to the partition (which
turns out to be equivalent to bBi(·) ⊆ [x(·)]). Since the partition is countable, the
σ-algebra generated by the partition is equal to the self-evident collection: JBi =
σ({bBi(ω) ∈ D | ω ∈ Ω}). Hence, player i is certain of her strategy x : (Ω,D) →
(X,X ) iff x : (Ω,JBi)→ (X, σ(X )) is measurable.

Third, Remark 3 below states that if player i is certain of a signal x : Ω → X
with respect to the collection of singletons {{a} | a ∈ X}, then she is certain of x, in
the strongest sense, with respect to P(X). To see this, it can be shown that if player
i is certain of x : (Ω,D) → (X,X ), then she is certain of x : Ω → X with respect to
the collection of unions of X : {

⋃
λ∈Λ Fλ ∈ P(X) | {Fλ}λ∈Λ ⊆ X}.

Remark 3. Player i is certain of a signal x : (Ω,D) → (X,P(X)) iff she is certain
of x : Ω → X with respect to the collection of values of x: {{x(ω)} | ω ∈ Ω}. For
example, player i is certain of her strategy x : (Ω,D) → (X,P(X)) in the strongest
sense iff she is certain of her strategy with respect to the actions {{x(ω)} | ω ∈ Ω}
that she could have taken.

Fourth, Remark 4 provided conditions on beliefs under which a player is certain
of a signal x : (Ω,D)→ (X,X ) iff she is certain of x : (Ω,D)→ (X, σ(X )).

Remark 4. Under the following conditions on player i’s belief operator Bi (in ad-
dition to Monotonicity), player i is certain of a signal x : (Ω,D) → (X,X ) iff she is
certain of x : (Ω,D)→ (X, σ(X )).

1. Bi satisfies Consistency, Countable Conjunction, Positive Introspection, and
Negative Introspection.

2. Bi satisfies Truth Axiom and Negative Introspection.

In Part (1), the collection of i’s beliefs Bi := {Bi(E) ∈ D | E ∈ D} forms a
sub-σ-algebra of D. The conditions in Part (2) imply those in Part (1). In Part
(2), Bi coincides with the self-evident collection JBi . Interestingly, fully-introspective
qualitative or probability-one beliefs satisfy the conditions in Part (1), and fully-
introspective knowledge satisfies the conditions in Part (1).

Fifth, Remark 5 below shows that each player i satisfies Necessitation iff she is
certain of any constant signal. Likewise, the common belief operator C satisfies Ne-
cessitation (equivalently, every Bi satisfies Necessitation) iff the players are commonly
certain of any constant signal.

Remark 5. 1. Player i’s belief operator Bi satisfies Necessitation iff she is certain
of any constant signal.

2. The common belief operator C satisfies Necessitation iff the players are com-
monly certain of any constant signal iff she is certain of any constant signal.
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In light of the certainty of a signal, Necessitation allows the players to be certain
of any constant “random” variable that does not depend on the realization of a state.
For example, consider whether player i is certain that an event Bj(E) is equal to an
event F in a belief model. The outside analysts determine whether player i believes
that player j believes an event E at a state ω by examining whether ω ∈ BiBj(E)
since player j’s belief Bj(E) itself is an event. The (implicit) assumption in any
(semantic) belief model is that E = F implies Bi(E) = Bi(F ). Thus, if two events
are extensionally the same (e.g., E is the set of 1 and −1, and F is the set of real
solutions of x2 = 1) then each player’s belief in the two events are the same.12 To
assess player i’s belief about player j’s belief about E, how can the outside analysts
justify the fact that player i is able to equate Bj(E) with another event (say, F )?
Since either Bj(E) = F or Bj(E) 6= F , player i is certain that Bj(E) is an event
F if player i is certain of the indicator function IBj↔F , where (Bj(E) ↔ F ) :=
((¬Bj)(E)∪F )∩((¬F )∪Bj(E)). If player i’s belief operator Bi satisfies Necessitation
and if Bj(E) = F , then player i is certain of the constant indicator function IBj↔F .
Thus, under Necessitation, player i is certain that Bj(E) = F if it is indeed the case.
This argument justifies that, under Necessitation, the outside analysts can say that
the players are certain of equating two extensionally equivalent events (say, Bj(E) and
F ) if they are indeed extensionally equivalent. As discussed in footnote 12, one can
construct a rich belief model in which the identification of two events is minimized.
This argument states that, somewhat differently from such construction, the players
are certain of the the identification of two events. Section 3.3.2 also provides another
example of an implication of Necessitation.

Necessitation also follows from the fact that player i is certain of a signal x :
(Ω,D)→ (X,X ) when X =

⋃
F∈X F . Thus, for example, if player i is certain of her

strategy x : (Ω,D)→ (X, {{a} | a ∈ X}), then Bi satisfies Necessitation.
Sixth, Remark 6 below shows that player i is certain of a profile of signals (e.g., a

strategy profile) iff she is certain of each of them. Observe that if ϕ : (X,X )→ (Y,Y)
satisfies ϕ−1(Y) ⊆ X , then the composite ϕ ◦ x : (Ω,D)→ (Y,Y) is a signal. Then:

Remark 6. Let A be a non-empty set, and let xα : (Ω,D) → (Xα,Xα) be a signal
for each α ∈ A. Let X :=

∏
α∈AXα, and let πα : X → Xα be the projection.

Every xα : (Ω,D) → (Xα,Xα) is a signal iff x : (Ω,D) → (X,X ) is a signal, where
X :=

⋃
α∈A{(πα)−1(Fα) ∈ P(X) | Fα ∈ Xα}. It can be seen that player i is certain of

x : (Ω,D) → (X,X ) iff she is certain of every xα : (Ω,D) → (Xα,Xα). Under either
condition in Remark 4, player i is certain of x : (Ω,D)→ (X, σ(X )) iff she is certain
of every xα : (Ω,D)→ (Xα,Xα), where σ(X ) is the product σ-algebra if each Xα is a
σ-algebra.

12 Although such identification of events are implicitly assumed for any (semantic) belief model,
one can construct a canonical (“universal”) semantic model from a syntactic language which maxi-
mally distinguishes the denotations of events. In the canonical model, such identification of events
can be minimized in a way such that two events are equated only when they are explicitly assumed
to be equivalent by the outside analysts (see Fukuda (2019c) for a formal assertion).
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Remarks 1 and 6 imply that the players are commonly certain of a profile of signals
iff every player is certain of every signal.

3.2 A Qualitative-Type Mapping that Represents a Player’s
Beliefs

In order to formulate a test under which the outside analysts can examine whether the
players are commonly certain of a belief model, I define the “belief-generating map,”
which I call the qualitative-type mapping, of a player. Given the belief operator of
the player, the qualitative-type mapping associates, with each state, a binary value
indicating whether the player believes each event in an analogous manner to the type
mapping in the type-space literature.13

To that end, recall the notion of probabilistic types. A (probabilistic-)type is a
σ-additive probability measure ν ∈ ∆(Ω). A (probabilistic-)type mapping is a mea-
surable mapping τi : (Ω,D) → (∆(Ω),D∆), where D∆(Ω) is the σ-algebra generated
by βpE := {ν ∈ ∆(Ω) | ν(E) ≥ p} for all (E, p) ∈ D× [0, 1] (Heifetz and Samet, 1998).
It associates, with each state ω, the player’s probabilistic beliefs τi(ω) ∈ ∆(Ω) at that
state. Given the type mapping τi, define player i’s p-belief operator Bp

τi
: D → D as

Bp
τi

(E) := τ−1
i (βpE). Thus, ω ∈ Bp

τi
(E) iff τi(ω)(E) ≥ p. As in Samet (2000), the type

mapping τi and the collection of p-belief operators (Bp
τi

)p∈[0,1] are equivalent, that is,
a type space of the form 〈(Ω,D), (τi)i∈I〉 is equivalent to 〈(Ω,D), (Bp

τi
)(i,p)∈I×[0,1]〉.

With this in mind, let M(Ω) be the set of binary set functions µ : D → {0, 1}
(i.e., M(Ω) ⊆ {0, 1}D) that satisfy a given set of logical properties of beliefs defined
in Section 2.2 (these properties will be shortly expressed in terms of µ). Call each
µ ∈M(Ω) a qualitative-type. Interpret µ(E) = 1 as the belief in an event E ∈ D. Once
M(Ω) ⊆ {0, 1}D is defined as the set of qualitative-types that satisfy the given set of
logical properties of beliefs, I represent player i’s beliefs by a qualitative-type mapping
ti : Ω → M(Ω) satisfying a certain measurability condition specified below. It is a
measurable mapping which associates, with each state ω ∈ Ω, player i’s qualitative-
type ti(ω) ∈M(Ω) at ω. Thus, player i believes an event E at ω if ti(ω)(E) = 1.

Now, I define the logical properties of µ in an analogous way to the corresponding
logical properties of belief operators. Fix µ ∈ {0, 1}D.

0. Monotonicity : E ⊆ F implies µ(E) ≤ µ(F ).

1. Necessitation: µ(Ω) = 1.

2. Countable Conjunction: minn∈N µ(En) ≤ µ(
⋂
n∈NEn).

3. Finite Conjunction: min(µ(E), µ(F )) ≤ µ(E ∩ F ).

4. The Kripke property : µ(E) = 1 iff
⋂
{F ∈ D | µ(F ) = 1} ⊆ E.

13Fukuda (2017, Section 6) constructs a universal knowledge space consisting of hierarchies of
qualitative-types that dictate players’ interactive knowledge.
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5. Consistency : µ(E) ≤ 1− µ(Ec).

The interpretations of the above properties are similar to those in Section 2.2. For
Countable Conjunction, if En is believed (i.e., µ(En) = 1) for every n ∈ N, then⋂
n∈NEn is believed (i.e., µ(

⋂
n∈NEn) = 1). The Kripke property characterizes the

condition under which player i’s beliefs are induced by a possibility correspondence
when every qualitative-type ti(ω) satisfies it. Whether all of these properties are
assumed or not depend on the model that the outside analysts study. For example,
if the outside analysts examine a partitional possibility correspondence model, then
since Bi satisfies all the logical properties, M(Ω) is the set of qualitative-types that
satisfy all the logical properties. In contrast, if the outside analysts study a belief
model in which only Monotonicity is assumed, then M(Ω) is the set of qualitative-
types that satisfy Monotonicity.

I formally define the measurability condition of a qualitative-type mapping. A
qualitative-type mapping is a measurable mapping ti : (Ω,D) → (M(Ω),DM) which
satisfies given (logical and) introspective properties of beliefs, where DM is the σ-
algebra generated by the sets of the form βE := {µ ∈M(Ω) | µ(E) = 1} for all E ∈ D.
Note that ti : Ω → M(Ω), by construction, satisfies given logical properties because
any element in M(Ω) satisfies them. For example, if every µ ∈ M(Ω) satisfies the
Kripke property, then every ti(ω) satisfies it. Denote bti(ω) :=

⋂
{E ∈ D | ti(ω)(E) =

1} for each ω ∈ Ω.
The measurablity condition of ti requires each t−1

i (βE) = {ω ∈ Ω | ti(ω)(E) =
1} to be the event that player i believes E. Next, I define Truth Axiom and the
introspective properties of ti.

6. Truth Axiom: ti(ω)(E) = 1 implies ω ∈ E.

7. Positive Introspection: ti(ω)(E) = 1 implies ti(ω)({ω′ ∈ Ω | ti(ω′)(E) = 1}) = 1
(i.e., ti(ω)(t−1

i (βE)) = 1).

8. Negative Introspection: ti(ω)(E) = 0 implies ti(ω)({ω′ ∈ Ω | ti(ω′)(E) = 0}) =
1 (i.e., ti(ω)(¬t−1

i (βE)) = 1).

So far, a qualitative-type mapping ti : (Ω,D) → (M(Ω),DM) is introduced. Fi-
nally, I demonstrate that a belief operator and a qualitative-type mapping are equiv-
alent. A given belief operator Bi induces the qualitative-type mapping tBi by

tBi(ω)(E) :=

{
1 if ω ∈ Bi(E)

0 otherwise
.

Conversely, a given qualitative-type mapping ti induces the belief operator Bti defined
as Bti(E) := t−1

i (βE). It can be seen that BtBi
= Bi and ti = tBti .
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3.3 Certainty of Own Type Mapping

I apply the certainty of a signal to a qualitative- and probabilistic-type mapping. The
main results of this subsection are Propositions 1A and 1B. Roughly, they state that a
player is certain of her own qualitative- and probabilistic-type mapping iff her beliefs
are introspective, respectively. Hereafter, “A” and “B” in Proposition, Theorem, and
Remark refer to the case with qualitative and probabilistic beliefs, respectively.

3.3.1 Certainty of Own Qualitative-Type Mapping

I start with the certainty of a qualitative-type mapping.

Proposition 1A. Let
−→
Ω be a belief model, and let tBi : Ω → M(Ω) be player i’s

qualitative-type mapping.

1. (a) Player i is certain of tBi with respect to {βE | E ∈ D} iff Bi satisfies
Positive Introspection Bi(·) ⊆ BiBi(·).

(b) Player i is certain of tBi with respect to {¬βE | E ∈ D} iff Bi satisfies
Negative Introspection (¬Bi)(·) ⊆ Bi(¬Bi)(·).

(c) If player i is certain of tBi : (Ω,D) → (M(Ω),DM), then Bi satisfies
Positive Introspection and Negative Introspection.

2. (a) Let Bi satisfy Truth Axiom. Player i is certain of tBi : (Ω,D)→ (M(Ω),DM)
iff Bi satisfies (Positive Introspection and) Negative Introspection.

(b) Let Bi satisfy Consistency and Countable Conjunction. Player i is certain
of tBi : (Ω,D) → (M(Ω),DM) iff Bi satisfies Positive Introspection and
Negative Introspection.

While Part (1) characterizes the certainty of the qualitative-type mapping tBi
with respect to the possession or lack of beliefs, Part (2) examines the sense in which
player i is certain of her qualitative-type mapping tBi : (Ω,D) → (M(Ω),DM) in a
model of knowledge (i.e., Part (2a)) and belief (i.e., Part (2b)).

Part (1a) states that player i is certain of her qualitative-type mapping tBi with
respect to the possession of beliefs iff her belief operator Bi satisfies Positive Intro-
spection. Parts (1a) and (1b) jointly state that Bi satisfies Positive Introspection and
Negative Introspection iff player i is certain of her qualitative-type mapping tBi with
respect to {βE | E ∈ D} ∪ {¬βE | E ∈ D}.

I discuss three additional implications of Proposition 1A. First, the proposition
sheds light on the literature of non-partitional knowledge models in which Negative
Introspection fails. The question is, when a player commits an information-processing
error leading to the failure of Negative Introspection, is she certain of her own pos-
sibility correspondence?14 The dichotomous answer leads to the following issue. If

14See, for instance, Brandenburger, Dekel, and Geanakoplos (1992), Dekel and Gul (1997), and
Geanakoplos (1989)
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the player is certain of her own possibility correspondence, then she is “certain” that
she commits the information-processing error and yet she fails to overcome the lack
of Negative Introspection. If she is not certain of her own possibility correspondence,
where do her beliefs come from?

Part (1) provides the following eclectic answer: player i is not fully certain of
her qualitative-type mapping. That is, without imposing Negative Introspection,
player i is not certain of her own qualitative-type mapping with respect to DM (or
{βE | E ∈ D}∪{¬βE | E ∈ D}). Rather, she takes her own information at face value
in the sense that she is only certain of her qualitative-type mapping with respect to
her own beliefs {βE | E ∈ D}. Proposition 1A formalizes the very sense in which
“she takes her own information at face value.”

In contrast, Proposition 1A (2a) shows that, in a partitional possibility corre-
spondence model of knowledge, the axioms of Truth Axiom, (Positive Introspection)
and Negative Introspection characterize the sense in which a player is fully certain of
her possibility correspondence. While the proposition does not necessarily require Bi

to satisfy the Kripke property, consider a model of knowledge in which Bi satisfies
Truth Axiom and the Kripke property, i.e., Bi is induced by the reflexive possibility
correspondence bBi . Then, player i is certain of her “knowledge-generating” mapping
iff Bi satisfies (Positive Introspection and) Negative Introspection.

Likewise, Proposition 1A (2b) demonstrates that, in a serial possibility correspon-
dence model, the axioms of Consistency, Positive Introspection and Negative Intro-
spection characterize the sense in which a player is fully certain of her possibility
correspondence (note that the Kripke property implies Countable Conjunction).

In the above arguments, I have identified the statement that player i is certain of
her possibility correspondence bBi with the one that she is certain of her qualitative-
type mapping tBi . Since the belief operator Bi and the possibility correspondence
bBi are equivalent (under the Kripke property) and since the belief operator Bi and
the qualitative-type mapping tBi are equivalent representations of beliefs, bBi and tBi
are equivalent. More directly, one can restate Proposition 1A in terms of player i’s
possibility correspondence bi : Ω → P(Ω) (where bi is induced from either ti or Bi),
under the Kripke property: bi satisfies b−1

i ({F ∈ D | F ⊆ E}) ∈ D for all E ∈ D. For
example, player i is certain of bi : (Ω,D)→ (P(Ω), {{F ∈ P(Ω) | F ⊆ E} | E ∈ D})
iff Bbi satisfies Positive Introspection. Likewise, player i is certain of bi : (Ω,D) →
(P(Ω), {{F ∈ P(Ω) | Ec ∩ F 6= ∅} | E ∈ D}) iff Bbi satisfies Negative Introspection.

Second, Proposition 1A also sheds light on the identification of events discussed
in Section 3.1. The belief operator Bi of player i associates, with each event E, the
event Bi(E) that she believes E. Since the players’ beliefs themselves are events,
player i can reason about player j’s belief in E: BiBj(E). However, the question is
how does player i evaluate another player j’s belief in E? The implicit assumption is
again that “the belief model is commonly certain among the players.”

In Proposition 1A, Positive Introspection and Negative Introspection pertain to
every event E including E = Bj(F ) for some F ∈ D. This means that if player i is
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certain of her qualitative-type mapping tBi with respect to {βE | E ∈ D} then she is
also certain of such qualitative-type mapping as tBiBj with respect to {βE | E ∈ D},
where tBiBj is the qualitative-type mapping associated with the operator BiBj (i.e.,
tBiBj(ω)(E) = 1 iff ω ∈ BiBj(E)). That is, if player i is certain of her own belief-
generating mapping, then she is also certain of the mapping that generates i’s belief
about j’s belief about events. Although it is implicitly assumed in the belief model
that player i figures out what Bj is,15 the fact that each i is certain of tBiBj could
possibly be a justification for why the outside analysts can assume that “i is certain
of j’s belief operator in i’s mind.” Section 4 studies the question whether the outside
analysts can assume that each player i is certain of each other’s qualitative-type
mapping tBj (note that here I ask whether each player i can be certain of how she
herself can evaluate an opponent’s belief-generating process through studying whether
player i is certain of the mapping tBiBj that generates the beliefs of player i about
player j’s beliefs).

Third, I can Proposition 1A to the case where a player has qualitative belief
and knowledge. Consider a belief model 〈(Ω,D), (Ki)i∈I〉 where Ki : D → D is
player i’s (monotone) knowledge operator (for simplicity, omit the common-knowledge
operator). Now, for each player i, let Bi : D → D be her (monotone) qualitative-
belief operator. Let tBi be player i’s qualitative-type mapping that represents Bi,
and ask whether player i is certain of her qualitative-type mapping tBi : (Ω,D) →
(M(Ω),DM). Proposition 1A (2a) implies that player i is certain of tBi : (Ω,D) →
(M(Ω),DM) iff Ki satisfies Positive Certainty (with respect to Bi): Bi(·) ⊆ KiBi(·)
and Negative Certainty (with respect to Bi): (¬Bi)(·) ⊆ Ki(¬Bi)(·). Whenever player
i believes an event, she knows that she believes it. Whenever player i does not believe
an event, she knows that she does not believe it. In fact, these two properties are
often assumed in a model of belief and knowledge, and Proposition 1A (2a) justifies
the assumptions in terms of the certainty of one’s knowledge about her own beliefs.16

3.3.2 Certainty of Own Probabilistic-Type Mapping

Next, I study when a player is certain of her own (probabilistic-)type mapping. As in
the previous discussion, a belief operator Bi satisfies Positive Certainty (with respect
to Bp

τi
) if Bp

τi
(·) ⊆ BiB

p
τi

(·). Likewise, Bi satisfies Negative Certainty (with respect to
Bp
τi

) if (¬Bp
τi

)(·) ⊆ Bi(¬Bp
τi

)(·).
15Recalling footnote 12, this pertains to the assumption in any (semantic) belief model that if

E = F then Bi(E) = Bi(F ). Such identification of events can be minimized in the “universal” belief
model, which is constructed from a syntactic language in a way such that two events are identified
only when they are explicitly assumed to be equivalent by the outside analysts.

16In a model of knowledge and belief, often Entailment Ki(·) ⊆ Bi(·) is also assumed. However,
it is well-known that if the knowledge and belief operators Ki and Bi fully introspective, i.e., if
Ki satisfies Truth Axiom, (Positive Introspection), and Negative Introspection, and if Bi satisfies
Consistency, Positive Introspection, and Negative Introspection, then Positive Certainty, Negative
Certainty, and Entailment yield Ki = Bi (e.g., Lenzen (1978)). Proposition 1A does not yield or
presuppose Entailment Ki(·) ⊆ Bi(·) in a model of knowledge and qualitative belief.
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Proposition 1B. Let
−→
Ω be a belief model, and let τi : Ω → ∆(Ω) be player i’s type

mapping.

1. (a) Player i is certain of her type mapping τi with respect to {βpE | (p, E) ∈
[0, 1]×D} iff Bi satisfies Positive Certainty: Bp

τi
(·) ⊆ BiB

p
τi

(·).

(b) Player i is certain of her type mapping τi with respect to {¬βpE | (p, E) ∈
[0, 1]×D} iff Bi satisfies Negative Certainty: (¬Bp

τi
)(·) ⊆ Bi(¬Bp

τi
)(·).

(c) If player i is certain of τi : (Ω,D)→ (∆(Ω),D∆), then Bi satisfies Positive
Certainty and Negative Certainty.

2. (a) Let Bi satisfy Truth Axiom and Negative Introspection. Player i is cer-
tain of τi : (Ω,D) → (∆(Ω),D∆) iff Bi satisfies Positive Certainty iff Bi

satisfies Negative Certainty.

(b) Let Bi satisfy Consistency, Countable Conjunction, Positive Introspection,
and Negative Introspection. Player i is certain of τi : (Ω,D)→ (∆(Ω),D∆)
iff Bi satisfies Positive Certainty and Negative Certainty.

(c) Let Bi satisfy Entailment: Bi(·) ⊆ B1
τi

. Player i is certain of τi : (Ω,D)→
(∆(Ω),D∆) iff Bi satisfies Positive Certainty and Negative Certainty.

Part (1) characterizes the statement that player i is certain of her type mapping
τi with respect to the possession of p-beliefs {βpE | (E, p) ∈ D × [0, 1]} or the lack of
p-beliefs {¬βpE | (E, p) ∈ D × [0, 1]}. It also states that if player i is certain of the
type mapping τi : (Ω,D)→ (∆(Ω),D∆) then the belief operator Bi satisfies Positive
Certainty and Negative Certainty: Bp

τi
(·) ⊆ BiB

p
τi

(·) and (¬Bp
τi

)(·) ⊆ Bi(¬Bp
τi

)(·).
The difference between Propositions 1A and 1B emerges in Part (2). In Propo-

sition 1B, player i may have two kinds of beliefs: Bi from the given belief model
and p-beliefs Bp

τi
from her type mapping. If Bi = B1

i then Proposition 1B (2c) asks
whether player i is certain of her type mapping within the type space 〈(Ω,D), (τi)i∈I〉
itself. If Bi is either a knowledge (i.e., Part (2a)) or qualitative belief operator (i.e.,
Part (2b)), then the outside analysts consider players’ knowledge or qualitative beliefs
about their probabilistic beliefs.

Part (2a) corresponds to the case when Bi is a fully-introspective knowledge oper-
ator in addition to her type mapping τi : (Ω,D)→ (∆(Ω),D∆). Similarly, Part (2b)
corresponds to the case in which Bi is a fully-introspective qualitative belief operator
in addition to her type mapping τi : (Ω,D) → (∆(Ω),D∆). When probabilistic be-
liefs and knowledge (or qualitative belief) are present, the introspective properties of
Positive Certainty Bp

τi
(·) ⊆ BiB

p
τi

(·) and Negative Certainty (¬Bp
τi

)(·) ⊆ Bi(¬Bp
τi

)(·)
are the standard assumptions (e.g., Aumann (1999)). Whenever player i believes an
event E with probability at least p, she knows that she believes E with probability at
least p. Whenever player i does not believe an event E with probability at least p, she
knows that she does not believe E with probability at least p. In this environment,
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Parts (2a) and (2b) formalize the sense in which player i is certain of her probabilistic
beliefs (her type mapping).

Part (2c) sheds light on the certainty of a type mapping in the type space (i.e.,
purely probabilistic model) when Bi is taken as the probability 1-belief operator
B1
τi

. The introspective properties of probabilistic beliefs are now formulated in terms
of probability-one belief about own beliefs: Bp

τi
(·) ⊆ B1

τi
Bp
τi

(·) and (¬Bp
τi

)(·) ⊆
B1
τi

(¬Bp
τi

)(·). That is, if player i believes an event E with probability at least p,
then she believes with probability one that she p-believes E; and if player i does
not believe an event E with probability at least p, then she believes with probability
one that she does not p-believe E. These two introspective properties are essential
in the syntactic formulation of type spaces such as Heifetz and Mongin (2001) and
Meier (2012). Part (2c) justifies the statement that player i is certain of her own type
mapping in a type space.

Three remarks on Part (2c) are in order. First, in the type space literature,
the informal assumption that each player is certain of her own type is represented
as the condition on the type mapping to put probability one on the set of types
indistinguishable from its own (Mertens and Zamir, 1985; Vassilakis and Zamir, 1993).
While Proposition 3B in Section 3.4.2 examines this condition in terms of the notion
of “informativeness” of a signal, this condition implies the above two introspective
properties and is indeed equivalent to them under a technical assumption on the state
space.

Second, Part (2c) shows that, in order for player i to be certain of her type
mapping, her beliefs in her p-beliefs have to be at least as strong as probability-one
belief B1

τi
. While Entailment (Bi(·) ⊆ B1

τi
) is often interpreted as the axiom stating

that qualitative-belief (or knowledge) is at least as strong as probability-one belief,
Part (2c) provides an alternative interpretation of Entailment: probability-one belief
is the weakest form of beliefs under which player is certain of her probabilistic beliefs.

Third, Part (2c) also justifies the structural assumption in a product type space:
player i’s type is a probability measure on an underlying set of nature states S and
the types of the opponents (Tj)j∈I\{i}. Informally, this structural assumption means
that each type of each player is certain of her own type and thus each player is certain
of her own type mapping. Formally, Part (2c) implies that, in the product type space,
each player is certain of her own type mapping. In the framework of this paper, it is
well-known that such a product type space is subsumed as a non-product type space
(referred to as a belief space by Mertens and Zamir (1985)). In the non-product
type space, the marginal of each type on the player’s own type space is the Dirac
measure, which, in turn, implies that each player’s probability-one belief operator
satisfies Positive Certainty and Negative Certainty. Hence, Part (2c) implies that, in
the formal sense, player i is certain of her own type mapping. See Appendix A.3 for
a formal discussion.

I remark on two additional implications of Proposition 1B. First, Proposition 1B
and Remark 5 allow one to formalize the sense in which each player is certain of
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her “prior.” Consider a tuple 〈(Ω,D), (τi)i∈I , (µi)i∈I〉 with the following properties:
(Ω,D) is a measurable space, τi : (Ω,D) → (∆(Ω),D∆) is player i’s (probabilistic-
)type mapping, and µi ∈ ∆(Ω) is a prior satisfying

µi(E) =

∫
Ω

τi(ω)(E)µi(dω) for all E ∈ D.

That is, the prior belief µi(E) is equal to the expectation of the posterior beliefs
ti(·)(E) with respect to the prior µi (see, for instance, Mertens and Zamir (1985)).
The model admits a common prior if µi = µj for all i, j ∈ I. If each µi would be
identified as a constant mapping µi : (Ω,D)→ (∆(Ω),D∆), then

µ−1
i (βpE) =

{
∅ if µi(E) < p

Ω if µi(E) ≥ p
.

Hence, each player i is certain of every player j’s prior. In fact, the players are
commonly certain of the priors.

Second, if the players are certain of their own type mappings, then the common
p-belief operator reduces to the iteration of mutual p-beliefs and is well-defined.

Remark 7. Let (Ω,D) be a measurable space, and let τi : (Ω,D) → (∆(Ω),D∆) be
player i’s type mapping for each i ∈ I. Let B1

τi
be player i’s probability-one belief

operator. If each player i is certain of her type mapping τi : (Ω,D) → (∆(Ω),D∆)
(according to her probability-one belief), then the common p-belief operator reduces
to the iteration of mutual p-beliefs and is well-defined: Cp(·) =

⋂
n∈N(Bp

I )
n(·) ∈ D.

To see this, Negative Certainty (¬Bp
τi

)(·) ⊆ B1
τi

(¬Bp
τi

)(·) follows from the assump-
tion. Then, player i’s p-belief operator satisfies Bp

τi
Bp
τi

(·) ⊆ Bp
τi

(·) (in fact, it holds
with equality since Bp

τi
(·) ⊆ B1

τi
Bp
τi

(·) ⊆ Bp
τi
Bp
τi

(·)). If this is the case for every
player, so does the mutual p-beliefs: Bp

IB
p
I (·) ⊆ Bp

I (·), where Bp
I (·) :=

⋂
i∈I B

p
τi

(·)
as in Section 2.1. It means that the chain of mutual p-beliefs is decreasing. Since
mutual p-beliefs are preserved for a decreasing sequence of events (i.e., if En ↓ E then
Bp
I (En) ↓ Bp

I (E)), the common p-belief operator Cp : D → D defined according to
Expression (1) reduces to the iteration of mutual p-beliefs.

3.4 Informativeness, Possibility, and Certainty

If a player is certain of a signal x : (Ω,D)→ (X,X ), then, for each state ω, she would
be able to conceive the collection of observational contents F ∈ X which hold at ω.
Comparing such collections among all states, she would be able to rank the states
according to “informativeness.” Thus, for the informational ranking on the states
induced by the given signal, if the player is certain of the signal then the information
derived from the signal must have already been incorporated in her beliefs.
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Section 3.4.1 defines the informativeness of a signal (Definition 2), and applies the
informativeness criteria to qualitative- and probabilistic-type mappings to character-
ize the sense in which a player is certain of her type mapping in terms of informative-
ness (Propositions 2A and 2B). Section 3.4.2 studies the assumption in a Harsanyi
(1967-1968) type space in terms of the informativeness (Proposition 3A and 3B): at
each state, a player assigns probability-one to the set of states indistinguishable from
(i.e., equally informative to) the state.

3.4.1 Informativeness, Possibility, and Certainty

I start with defining the informativeness of a signal:

Definition 2. For states ω and ω′ in Ω, ω is at least as informative as ω′ according
to a signal x : (Ω,D)→ (X,X ) if

{F ∈ X | ω′ ∈ x−1(F )} ⊆ {F ∈ X | ω ∈ x−1(F )}. (2)

States ω and ω′ are equally informative according to x : (Ω,D)→ (X,X ) if

{F ∈ X | ω′ ∈ x−1(F )} = {F ∈ X | ω ∈ x−1(F )}. (3)

The ideas behind Definition 2 are (i) that the informational content of a signal
mapping x : (Ω,D) → (X,X ) at ω is expressed as the collection of observational
contents {F ∈ X | x(ω) ∈ F} true at ω and (ii) that informational contents are ranked
by the implication in the form of set inclusion.17 While the notion of informativeness
(i.e., the relation induced by Expression (2)) is reflexive and transitive, the notion of
equal informativeness (i.e., the relation induced by Expression (3)) is an equivalence
relation.

If player i is certain of a signal x : (Ω,D)→ (X,X ), then the notion of possibility
derived from her beliefs is incorporated in the notion of informativeness derived from
the signal: suppose player i is certain of the signal x : (Ω,D)→ (X,X ). If she consid-
ers a state ω′ possible at a state ω (i.e., ω′ ∈ bBi(ω)) then ω′ is at least as informative
as ω according to x : (Ω,D) → (X,X ). Hence, possibility implies informativeness
according to the signal, when the player is certain of the signal. In fact:

Remark 8. Assume the Kripke property for Bi. Player i is certain of a signal
x : (Ω,D)→ (X,X ) iff possibility implies informativeness (i.e., if ω′ ∈ bBi(ω) then ω′

is at least as informative as ω according to x : (Ω,D)→ (X,X )).

Three additional remarks are in order. First, when X is not necessarily closed
under complementation, Definition 2 does not take into account the collection of

17The notion of informativeness is closely related to that of information studied by Bonanno
(2002). Ghirardato (2001), Lipman (1995), and Mukerji (1997) also study (not-fully-introspective)
information processing in which informational contents are ranked by the implication in the form of
set inclusion.
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observational contents {F ∈ X | x(ω) 6∈ F} that do not hold at ω. In contrast, when
X is closed under complementation, if ω is at least as informative as ω′ according to a
signal x : (Ω,D)→ (X,X ), then ω and ω′ are equally informative. Second, somewhat
similarly, suppose that Bi satisfies Consistency, Positive Introspection, and Negative
Introspection. If ω is at least as informative as ω′ according to a signal x : (Ω,D)→
(X,X ), then ω and ω′ are equally informative. Third, under the assumption that
x−1({ω}) ∈ D for each ω ∈ Ω, the equivalence relation of equal informativeness
coincides with the one induced by the partition {x−1({x(ω)}) | ω ∈ Ω}: ω and ω′ are
equally informative iff x(ω) = x(ω′).

Next, I apply the notion of informativeness to i’s qualitative-type mapping ti :
Ω→M(Ω) with respect to {βE | E ∈ D}. That is, suppose that player i is reasoning
about the underlying states based on her possession of beliefs. For states ω and ω′

in Ω, ω is at least as informative as ω′ to i (precisely, according to ti : (Ω,D) →
(M(Ω), {βE | E ∈ D})) iff ti(ω

′)(·) ≤ ti(ω)(·) (i.e., ti(ω
′)(E) ≤ ti(ω)(E) for all E ∈

D). Likewise, states ω and ω′ are equally informative according to i iff ti(ω) = ti(ω
′).

Fix ω ∈ Ω, and let (↑ ti(ω)) := {ω′ ∈ Ω | ti(ω)(·) ≤ ti(ω
′)(·)} be the set of states

that are at least as informative to i as ω. Also, define (↓ ti(ω)) := {ω′ ∈ Ω | ti(ω′)(·) ≤
ti(ω)(·)} and [ti(ω)] := {ω′ ∈ Ω | ti(ω) = ti(ω

′)}. If ω′ ∈ [ti(ω)] then ω and ω′ are
indistinguishable to player i in that her qualitative-types (and thus the collections of
events that she believes) are exactly the same at these states. Put differently, the
equal informativeness is translated into the indistinguishability. Thus, the collection
{[ti(ω)] | ω ∈ Ω} forms a partition of Ω generated by the qualitative-type mapping
ti. Note that (↑ ti(ω)), (↓ ti(ω)), and [ti(ω)] may not necessarily be events.

Before characterizing the statement that a player is certain of her qualitative-type
mapping in terms of informativeness, I remark that if ω′ is at least as informative to
i as ω according to ti (i.e., ω′ ∈ (↑ ti(ω))), then

bti(ω
′) =

⋂
{E ∈ D | ti(ω′)(E) = 1} ⊆

⋂
{E ∈ D | ti(ω)(E) = 1} = bti(ω).

That is, the informativeness relation implies the set-inclusion between possibility sets.
Note that if ti satisfies the Kripke property, then the converse also holds: bti(ω

′) ⊆
bti(ω) implies ω′ ∈ (↑ ti(ω)). This is simply because, if ti(ω)(E) = 1 then bti(ω

′) ⊆
bti(ω) ⊆ E and thus ti(ω

′)(E) = 1. In other words, under the Kripke property,
the possibility set can alternatively be used to define the notion of informativeness:
ω′ ∈ (↑ ti(ω)) iff bti(ω

′) ⊆ bti(ω).
Now, I examine the sense in which a player is certain of her qualitative-type

mapping by studying how introspective properties imply the relations between infor-
mativeness and possibility.

Proposition 2A. Let (Ω,D) be a measurable space, and let tBi : (Ω,D)→ (M(Ω), {βE |
E ∈ D}) be player i’s qualitative-type mapping.

1. (a) Bi satisfies Truth Axiom iff (ω ∈ [tBi(ω)] ⊆)(↑ tBi(ω)) ⊆ bBi(ω) (for all
ω ∈ Ω).
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(b) If Bi satisfies Positive Introspection, then bBi(·) ⊆ (↑ tBi(·)). If Bi satisfies
the Kripke property, the converse also holds.

(c) If Bi satisfies Negative Introspection, then bBi(·) ⊆ (↓ tBi(·)). If Bi satisfies
the Kripke property, the converse also holds.

2. (a) If Bi satisfies Truth Axiom and Positive Introspection, then (↑ tBi(·)) =
bBi(·). If tBi satisfies the Kripke property, the converse also holds.

(b) If Bi satisfies Truth Axiom, (Positive Introspection), and Negative Intro-
spection, then (↑ tBi(·)) = (↓ tBi(·)) = [tBi(·)] = bBi(·). If Bi satisfies the
Kripke property, the converse also holds.

Part (1a) states that, under Truth Axiom, informativeness implies possibility.
In Part (1b), since she is certain of her qualitative-type mapping ti with respect
to {βE | E ∈ D}, the notion of possibility that comes from her beliefs is already
encoded in the notion of informativeness. That is, Part (1b) states that possibility
implies informativeness when player i is certain of her qualitative-type mapping ti :
(Ω,D)→ (M(Ω), {βE | E ∈ D}).

Hence, when player i’s qualitative-type mapping satisfies Truth Axiom and Pos-
itive Introspection as in a reflexive-and-transitive possibility correspondence model
(see footnote 10), the notions of informativeness and possibility coincide: bBi(·) = (↑
tBi(·)). A simple corollary of this argument is that, as with possibility correspondence
models, if Bi satisfies Truth Axiom and Positive Introspection as well as the Kripke
property, then bBi is reflexive and transitive.

Part (1b) and (1c) jointly state that if player i considers ω′ possible at ω then the
states ω and ω′ are equally informative. The intuition is as follows. Suppose player
i considers ω′ possible at ω. Since player i is certain of her own qualitative-type
mapping ti with respect to the possession of her beliefs {βE | E ∈ D}, the state ω′ is at
least as informative as ω. However, since player i is also certain of her own qualitative-
type mapping ti with respect to the lack of her beliefs {¬βE | E ∈ D}, that is, since
she is able to reason about the informational contents F ∈ X that do not realize
at each state, she must be able to compare the collections {βE | ω′ 6∈ t−1

i (βE)}(=
{F ∈ X | ω′ 6∈ x−1

i (F )}) and {βE | ω 6∈ t−1
i (βE)}(= {F ∈ X | ω 6∈ x−1

i (F )}). Since
she is positively introspective, the former collection is a sub-collection of the latter.
However, since she is able to reason about the lack of her beliefs, if she is certain of her
qualitative-type mapping with respect to the lack of beliefs, she must be able to infer
that these two collections have to coincide. Otherwise, she must be able to update
her beliefs based on reasoning about her own qualitative-type mapping. Thus, when
x is taken as a player’s qualitative-type mapping, the conceptual distinction between
Expressions (2) and (3) is analogous to the difference in introspective abilities coming
from non-partitional (reflexive and transitive) and partitional models of knowledge
studied in Proposition 1A.

In a model of knowledge in which player i’s qualitative-type mapping satisfies
Truth Axiom, (Positive Introspection,) and Negative Introspection, either notion
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of informativeness or possibility induces the same partition {bBi(ω) | ω ∈ Ω} =
{[tBi(ω)] | ω ∈ Ω} of Ω with the following property: if ω′ ∈ [ti(ω)] = bti(ω), then, for
any event, she knows it at ω iff she knows it at ω′. In a model of qualitative belief
in which player i’s qualitative-type mapping satisfies Consistency, Positive Introspec-
tion, and Negative Introspection, ∅ 6= bBi(·) ⊆ [tBi(·)](= (↑ tBi(·)) = (↓ tBi(·))).

Next, I apply the notion of informativeness to player i’s probabilistic-type mapping
τi : Ω→ ∆(Ω) with respect to {βpE | (E, p) ∈ D× [0, 1]}. That is, player i is reasoning
about the underlying states based on her possession of p-beliefs. However, note that
since the notion of possibility comes from qualitative beliefs, I consider a model that
has both qualitative and probabilistic beliefs (implications to probabilistic-type spaces
will be discussed in Section 3.4.2).

A state ω is at least as informative as a state ω′ to i (precisely, according to
τi : (Ω,D) → (∆(Ω), {βpE | (E, p) ∈ D × [0, 1]})) iff τi(ω

′)(·) ≤ τi(ω)(·). However,
since each τi(·) is (countably-)additive, it follows that ω is at least as informative as ω′

to i iff ω and ω′ are equally informative: ω′ ∈ [τi(ω)] := {ω′′ ∈ Ω | τi(ω′′) = τi(ω)}. If
player i does not believe an event E with probability at least p at a state, then she does
believe Ec with probability at least 1− p. Since player i is able to reason about the
possession of beliefs for any event and any probability, she is also able to reason about
the lack of beliefs when her probabilistic beliefs are (countably-)additive. While one
can obtain a nuanced understanding of the relation between the informativeness and
certainty of a type mapping τi when each τi(·) is a non-additive measure (indeed, one
can analyze the statement that player i is certain of such non-additive type mapping
τi in this framework), I focus on studying the sense in which player i is certain of her
(countably-additive) type mapping τi (recall footnote 7).18

Proposition 2B. Let
−→
Ω be a belief model, and let τi : Ω → ∆(Ω) be player i’s type

mapping.

1. Either Positive Certainty Bp
τi

(·) ⊆ BiB
p
τi

(·) or Negative Certainty (¬Bp
τi

)(·) ⊆
Bi(¬Bp

τi
)(·) yields bBi(·) ⊆ [τi(·)]: possibility implies (equal) informativeness.

2. Under the Kripke property of Bi, all are equivalent: Bp
τi

(·) ⊆ BiB
p
τi

(·) iff
(¬Bp

τi
)(·) ⊆ Bi(¬Bp

τi
)(·) iff bBi(·) ⊆ [τi(·)].

3.4.2 Harsanyi Property

Next, I move on to studying the notion of informativeness in a type space. To
that end, player i’s type mapping τi : Ω → ∆(Ω) satisfies the Harsanyi property if

18In the decision theory literature, Ghirardato (2001) and Mukerji (1997) connect non-additive
beliefs and a player’s limited introspection, where informational contents of an act at each state are
ranked by set inclusion as in Expression (2). Fukuda (2019b) studies the interaction between quali-
tative and probabilistic beliefs without assuming properties on beliefs. It is shown that the additivity
of a type mapping plays a role in disentangling Positive and Negative Certainty of qualitative beliefs
with respect to probabilistic beliefs.
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[τi(ω)] ⊆ E implies ω ∈ B1
τi

(E) for any (ω,E) ∈ Ω×D. That is, whenever an event
E is implied by the set of states [τi(ω)] indistinguishable from ω, player i believes E
with probability one at ω (e.g., Meier (2008, 2012) and Mertens and Zamir (1985)).

Before I will characterize the Harsanyi property in terms of certainty and informa-
tiveness in a type space, two remarks on the relation between the Harsanyi property
and the Kripke property are in order. To that end, consider a qualitative belief model,
and recall Proposition 2B.

First, suppose qualitative and probabilistic beliefs satisfy Entailment Bi(·) ⊆
B1
τi

(·). Suppose also that player i is certain of her type mapping τi : (Ω,D) →
(∆(Ω), {βpE | (E, p) ∈ D × [0, 1]}). Thus, bBi(·) ⊆ [τi(·)] holds as in Proposition 2B.
Then, the Kripke property yields the Harsanyi property: if [τi(ω)] ⊆ E then it follows
from bBi(ω) ⊆ E that ω ∈ Bi(E) ⊆ B1

τi
(E).

Second, to examine the distinction between probability-one and qualitative beliefs
in terms of the Kripke property, especially, the conjunction property given by the
Kripke property, apply Bi = B1

τi
to Proposition 2B (2). If the probability-one belief

operator B1
τi

satisfies the Kripke property, the Kripke property for the probability-one
belief operator may be too strong because it gives an unlimited reasoning ability about
the conjunction of events: for any collection (Eλ)λ∈Λ of events with

⋂
λ∈ΛEλ ∈ D,⋂

λ∈ΛB
1
τi

(Eλ) ⊆ B1
τi

(
⋂
λ∈ΛEλ). For example, if player i believes an event Ω\{ω} with

probability one for every ω ∈ Ω, then she must believe the interaction, which is the
empty set, with probability one.

In a type space, I show that the Harsanyi property characterizes the idea that a
player is certain of her own type mapping with respect to the beliefs that she could
have been able to possess (i.e., in the strongest sense).

Proposition 3B. Let (Ω,D) be a measurable space, and let τi : Ω→ ∆(Ω) be player
i’s type mapping.

1. Suppose that [τi(·)] ∈ D. The type mapping τi satisfies the Harsanyi property
iff player i is certain of τi : Ω → ∆(Ω) with respect to her realized beliefs
{{τi(ω)} | ω ∈ Ω}.

2. Let D be generated from a countable algebra. The following are all equivalent.

(a) The type mapping τi satisfies the Harsanyi property.

(b) Player i is certain of τi : (Ω,D)→ (∆(Ω), {{τi(ω)} | ω ∈ Ω}).

(c) Player i is certain of τi : (Ω,D)→ (∆(Ω),D∆).

(d) Player i is certain of τi : (Ω,D)→ (∆(Ω), {βpE | (E, p) ∈ D × [0, 1]}).

(e) Player i is certain of τi : (Ω,D)→ (∆(Ω), {¬βpE | (E, p) ∈ D × [0, 1]}).

In Part (1), under the regularity condition [τi(·)] ∈ D, the Harsanyi property
is equivalent to τi(ω)([τi(ω)]) = 1 for each ω ∈ Ω. It states that, at each state,
player i assign probability one to the set of states indistinguishable from that state.
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The technical condition in Part (2) yields the technical condition in Part (1). It
states that the Harsanyi property is equivalent to Bp

τi
(·) ⊆ B1

τi
Bp
τi

(·) or (¬Bp
τi

)(·) ⊆
B1
τi

(¬Bp
τi

)(·). Generally, without any technical condition on D, the Harsanyi property
implies Bp

τi
(·) ⊆ B1

τi
Bp
τi

(·) and (¬Bp
τi

)(·) ⊆ B1
τi

(¬Bp
τi

)(·).
One can define the analogue of the Harsanyi property for qualitative belief: player i

believes an event E at ω if E is implied by the set [tBi(ω)] of states indistinguishable
from ω. The proposition below shows that the analogue of the Harsanyi property
characterizes the certainty of the qualitative-type mapping in the strongest sense.

Proposition 3A. Let
−→
Ω be a belief model such that [tBi(·)] ∈ D.

1. The following are equivalent.

(a) Player i is certain of her qualitative-type mapping tBi : (Ω,D)→ (M(Ω), {{tBi(ω)} |
ω ∈ Ω}).

(b) For any (ω,E) ∈ Ω×D with [tBi(ω)] ⊆ E, ω ∈ Bi(E).

2. If Bi satisfies the Kripke property, Positive Introspection, and Negative Intro-
spection, then player i is certain of her qualitative-type mapping tBi : (Ω,D)→
(M(Ω), {{tBi(ω)} | ω ∈ Ω}).

3. Under either condition in Part (1), Truth Axiom yields the Kripke property.

Proposition 3A hinges on the regularity condition [tBi(·)] ∈ D, as in Proposition
3B. Since [tBi(ω)] =

⋂
E∈D:ω∈Bi(E) Bi(E)∩

⋂
E∈D:ω∈(¬Bi)(E)(¬Bi)(E), if D is a complete

algebra then the regularity condition holds. Part (1) is similar to Proposition 3B:
under the regularity condition, the Harsanyi property states that a player is certain
of her own type mapping in the strongest sense. Part (2) states that, in a possibility
correspondence model, if a player’s belief is fully introspective then she is certain
of her qualitative-type mapping (or her possibility correspondence) in the strongest
sense. In Part (3), if either condition in Part (1) holds and if Bi satisfies Truth
Axiom, then Bi also satisfies Positive Introspection and Negative Introspection. Then,
bBi(·) = [tBi(·)].

4 When are the Players Commonly Certain of a

Bleief Model?

With the analyses in Section 3 in mind, I formalize the sense in which the players are
commonly certain of a belief model itself: the players are commonly certain of the
profile of their (qualitative- or probabilistic-)type mappings. By Remark 2 and 6, it
is sufficient to ask when every player i is certain of each player j’s (qualitative- or
probabilistic-)type mapping.
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I start with a qualitative belief model. Proposition 1A applies to the case in
which player i is certain of player j’s qualitative-type mapping. For example, if
player i is certain of player j’s qualitative-type mapping tj : (Ω,D) → (M(Ω),DM),
then Btj(·) ⊆ BiBtj(·) and (¬Btj)(·) ⊆ Bi(¬Btj)(·) hold. Proposition 1A implies:

Remark 9A. Let
−→
Ω be a belief model, and let tBj : Ω → M(Ω) be player j’s

qualitative-type mapping.

1. (a) Player i is certain of tBj with respect to {βE | E ∈ D} iff Bj(·) ⊆ BiBj(·).
(b) Player i is certain of tBj with respect to {¬βE | E ∈ D} iff (¬Bj)(·) ⊆

Bi(¬Bj)(·).
(c) If player i is certain of tBj : (Ω,D) → (M(Ω),DM), then Bj(·) ⊆ BiBj(·)

and (¬Bj)(·) ⊆ Bi(¬Bj)(·).

2. (a) LetBi satisfy Truth Axiom. Player i is certain of tBj : (Ω,D)→ (M(Ω),DM)
iff (Bj(·) ⊆ BiBj(·) and) (¬Bj)(·) ⊆ Bi(¬Bj)(·).

(b) Let Bi satisfy Consistency and Countable Conjunction. Player i is cer-
tain of tBj : (Ω,D) → (M(Ω),DM) iff Bj(·) ⊆ BiBj(·) and (¬Bj)(·) ⊆
Bi(¬Bj)(·).

Roughly, Remark 9A states that player i is certain of player j’s qualitative-type
mapping tBj if and only if (i) whenever player j believes an event E at ω, player i
believes player j believes E at ω; and (ii) whenever player j does not believe an event
E at ω, player i believes player j does not believe E at ω.

Now, I move to one of the main questions of this paper: I ask when the players
are commonly certain of the qualitative-type mappings in a belief model.

Theorem 1A. Let
−→
Ω be a belief model, and let tBi : Ω → M(Ω) be player i’s

qualitative-type mapping for each i ∈ I.

1. Assume Truth Axiom for every Bi. The players are commonly certain of the
profile of qualitative-type mappings tBi : (Ω,D) → (M(Ω),DM) iff Bi = Bj for
every i, j ∈ I, (Positive Introspection Bi(·) ⊆ BiBi(·)), and Negative Introspec-
tion (¬Bi)(·) ⊆ Bi(¬Bi)(·). In particular, Bi = C for each i ∈ I.

2. Assume Consistency and Countable Conjunction for every Bi. The players are
commonly certain of the profile of qualitative-ytpe mappings tBi : (Ω,D) →
(M(Ω),DM) iff Bi(·) ⊆ CBi(·) and (¬Bi)(·) ⊆ C(¬Bi)(·) for every i ∈ I. In
particular, C = BI .

While Part (1) studies a knowledge model, Part (2) does a belief model. I start
with discussing three implications of Part (2). In words, Part (2) states that the
players are commonly certain of their qualitative-type mappings iff (i) for any event
E which some player i believes at some state ω, it is commonly believed that player
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i believes E at ω; and (ii) for any event E which some player i does not believe at
some state ω, it is commonly believed that player i does not believe E at ω.

First, one sufficient condition for Part (2) is met in a “universal” belief model.
In the universal belief model, the differences in the players’ beliefs are not described
by the differences in their belief operators (or their qualitative-type mappings), but
are incorporated within the underlying states. In the universal belief model in which
the players are introspective, the players are commonly certain of the model. Hence,
Theorem 1A formally justifies the statement that the players are commonly certain
of a universal belief model.

Second, Part (2) sheds light on the interpretation of a state as a “complete”
description of the world. If, in a given belief model, the differences in the players’
beliefs are not described by their belief operators but are incorporated within the
states themselves, then the players with introspective beliefs are commonly certain
of the model itself. If, by “complete” descriptions, it means that each state describes
the possible ways in which the players may have possibly different beliefs, then the
statement that the players are commonly certain of the model is formally guaranteed
by Theorem 1A.19 This formalizes the informal argument of Aumann (1976) that the
players in a model are commonly certain of the model (their information partitions)
if the underlying states describe how their beliefs are given within themselves.

Third, the mutual belief and common belief operators coincide if the players are
commonly certain of their qualitative-type mappings, under the mild conditions of
Consistency and Countable Conjunction.20 This is because, for any event E which
everybody believes at some state ω, it is commonly believed that everybody believes
E at ω: BI(·) ⊆ CBI(·). Intuitively, in a model of which the players are commonly
certain, if everybody believes an event E then it is common belief that everybody
believes E. Thus, if everybody believes E then everybody believes that everybody
believes E. Hence, the first-order mutual belief itself implies any higher-order mutual
beliefs, and thus the mutual and common beliefs coincide. In a “universal” space in
which the players’ beliefs are identical, i.e., Bi = Bj for all i, j ∈ I, and in which each
Bi satisfies at least Positive Introspection in addition to Monotonicity, Bi = BI = C
for each i ∈ I.

Next, I discuss Part (1). This part provides a contrast between knowledge and
belief. In a knowledge model with Truth Axiom, for the players to be commonly
certain of the model, it is necessary that their knowledge coincides with each other.
In contrast, in a belief model without Truth Axiom, it may be the case that the

19In a syntactic model of qualitative beliefs and knowledge such as Aumann (1999), Fukuda
(2019c), and Gilboa (1988), each state consists of the set of syntactic formulas, intending to express
players’ beliefs, that hold at that state. Hence, each state encodes the statements (events) which
the players believe at that state within itself.

20The converse does not hold, i.e., C = BI does not necessarily imply that the players are certain
of the profile of their qualitative-type mappings. As a simple example, let (Ω,D) = ({ω1, ω2},P(Ω)),
B1(E) = E, and B2(E) = Ec. Then, BI(·) = C(·) = ∅, and the players are not commonly certain
of their qualitative-type mappings.
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players’ beliefs are different but they are commonly certain of their qualitative-type
mappings.21

Finally, I briefly discuss the implicit assumption that the players are commonly
certain of the qualitative-type mappings in a particular space in which the players’
beliefs may not be homogeneously given. Consider the collection of belief models
satisfying assumptions on the players’ beliefs specified in Theorem 1A (1) or (2), and

take a belief model
−→
Ω from the collection. Since there exists a “universal” belief model−→

Ω∗, there exists a unique “structure-preserving” map D :
−→
Ω →

−→
Ω∗. Under certain

conditions on the belief model
−→
Ω (namely, “non-redundancy” and “minimality;” see

Fukuda (2019c)), the image space D(Ω) is endowed with the belief structure so that
−−−→
D(Ω) is a belief model isomorphic to

−→
Ω . For the new belief model

−−−→
D(Ω), the players

are commonly certain of their qualitative-type mappings.
Moving on to probabilistic beliefs, Proposition 1B applies to the case in which

player i is certain of player j’s probabilistic-type mapping:

Remark 9B. Let
−→
Ω be a belief model, and let τj : Ω → ∆(Ω) be player j’s type

mapping.

1. (a) Player i is certain of τj with respect to {βpE | (E, p) ∈ D × [0, 1]} iff
Bp
τj

(·) ⊆ BiB
p
τj

(·).
(b) Player i is certain of τj with respect to {¬βpE | (E, p) ∈ D × [0, 1]} iff

(¬Bp
τj

)(·) ⊆ Bi(¬Bp
τj

)(·).
(c) If player i is certain of τj : (Ω,D) → (∆(Ω),D∆), then Bp

τj
(·) ⊆ BiB

p
τj

(·)
and (¬Bp

τj
)(·) ⊆ Bi(¬Bp

τj
)(·).

2. (a) Let Bi satisfy Truth Axiom and Negative Introspection. Player i is cer-
tain of τj : (Ω,D) → (∆(Ω),D∆) iff Bp

τj
(·) ⊆ BiB

p
τj

(·) iff (¬Bp
τj

)(·) ⊆
Bi(¬Bp

τj
)(·).

(b) Let Bi satisfy Consistency, Countable Conjunction, Positive Introspection,
and Negative Introspection. Player i is certain of τj : (Ω,D)→ (∆(Ω),D∆)
iff Bp

τj
(·) ⊆ BiB

p
τj

(·) and (¬Bp
τj

)(·) ⊆ Bi(¬Bp
τj

)(·).

As in Remark 9A, Remark 9B roughly states that player i is certain of player
j’s probabilistic-type mapping iff (i) whenever player j believes an event E with
probability at least p at ω, player i believes that player j believes an event E with
probability at least p at ω; and (ii) whenever player j does not believe an event E
with probability at least p at ω, player i believes that player j does not believe an
event E with probability at least p at ω.

21As a simple example, take (Ω,D) = ({ω1, ω2},P(Ω)). Let Bi(∅) = Bi({ω3−i}) = ∅ and
Bi({ωi}) = Bi(Ω) = {ωi} for each i ∈ I = {1, 2} (that is, bBi

(·) = {ωi}). The belief operators
satisfy the conditions in Theorem 1A (2).
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Now, I ask one of the main questions of this paper in the context of probabilistic-
type mappings: when are the players in a belief model commonly certain of their
probabilistic-type mappings?

Theorem 1B. Let
−→
Ω be a belief model, and let τi : Ω → ∆(Ω) be player i’s type

mapping for each i ∈ I. Assume Consistency and Countable Conjunction for every
Bi. The players are commonly certain of the profile of type mappings τi : (Ω,D) →
(∆(Ω),D∆) iff Bp

τi
(·) ⊆ CBp

τi
(·) and (¬Bp

τi
)(·) ⊆ C(¬Bp

τi
)(·) for every (i, p) ∈ I×[0, 1].

If Bi = B1
τi

is taken for every i ∈ I, then C1 = B1
I , where B1

I (·) :=
⋂
i∈I B

1
τi

(·) is the
mutual 1-belief operator.

Theorem 1B roughly states: the players are commonly certain of their probabilistic-
type mappings iff (i) for any event E which some player i believes with probability at
least p at some state ω, it is commonly believed that player i believes E with prob-
ability at least p at ω; and (ii) for any event E which some player i does not believe
with probability at least p at some state ω, it is commonly believed that player i does
not believe E with probability at least p at ω. If the belief operators in the belief
model is taken as probability-one belief operator, then the probability-one common
belief operator reduces to the probability-one mutual belief operator.

Since the implications of Theorems 1A (2) and 1B are conceptually similar, I
discuss Theorem 1B for only one point (however, the other points also apply here).
Namely, the theorem also formally justifies the statement that the players are com-
monly certain of a “universal” belief model (or a “universal” type space), provided
the players are introspective.

To conclude this section, I provide two discussions on Theorems 1A and 1B. First,
I study an implication of Theorems 1A and 1B (the “common meta-certainty” of a
belief model) to the certainty of a signal. Suppose that the players are commonly
certain of a belief model. If player i is certain of a signal x : Ω→ X, then is player j
certain of the signal x, too? While the players’ beliefs may not be homogeneous, the
proposition below shows that this is the case.

Proposition 4. Let
−→
Ω be a belief model such that each Bi satisfies Consistency. Let

x : (Ω,D)→ (X,X ) be a signal such that, for any F ∈ X , there exists a sub-collection
(Fλ)λ∈Λ of X with F c =

⋃
λ∈Λ Fλ.

A. i. If player i is certain of x : (Ω,D) → (X,X ) and if player j is certain of
player i’s qualitative-type mapping tBi : (Ω,D)→ (M(Ω),DM), then player j
is certain of x : (Ω,D)→ (X,X ).

ii. Suppose that the players are commonly certain of the profile of their qualitative-
type mappings tBi : (Ω,D) → (M(Ω),DM). Then, player i is certain of
x : (Ω,D)→ (X,X ) iff player j is certain of x : (Ω,D)→ (X,X ).

B. i. Let τi : (Ω,D) → (∆(Ω),D∆) be player i’s (probabilistic)-type mapping, and
assume Entailment: Bi(·) ⊆ B1

τi
(·). If player i is certain of x : (Ω,D) →
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(X,X ) and if player j is certain of player i’s type mapping τi : (Ω,D) →
(∆(Ω),D∆), then player j is certain of x : (Ω,D)→ (X,X ).

ii. Suppose that the players are commonly certain of the profile of their type
mappings τi : (Ω,D) → (∆(Ω),D∆). Suppose Entailment for every player i:
Bi(·) ⊆ B1

τi
(·) Then, player i is certain of x : (Ω,D)→ (X,X ) iff player j is

certain of x : (Ω,D)→ (X,X ).

While Part (A) asks the certainty of qualitative-type mappings, Part (B) does
that of probabilistic-type mappings. The meta-common-certainty assumption states
that if player i is certain of her own strategy and if player j is certain of player i’s type
mapping then player j is certain of player i’s strategy. In particular, if the players are
commonly certain of the profile of their type mappings and if each player is certain of
her own strategy, then it follows that the players are commonly certain of the strategy
profile. In the next section, I clarify the role of such meta-certainty assumptions on
game-theoretic solution concepts.

Second, one can also ask whether the players are commonly certain of the qualitative-
type mapping tC that represents common belief. Since the common belief operator
C satisfies Positive Introspection, the players are commonly certain of tC : (Ω,D)→
(M(Ω), {βE | E ∈ D}), equivalently, C(·) ⊆ BiC(·). Now:

Remark 10. Let
−→
Ω be a belief model, and let tC : (Ω,D) → (M(Ω),DM) be the

qualitative-type mapping that represents the common belief operator C. Suppose
that each belief operator Bi satisfies Consistency and Countable Conjunction. The
following are equivalent.

1. The players are commonly certain of tC : (Ω,D)→ (M(Ω),DM).

2. C satisfies Negative Introspection.

3. C(·) ⊆ BiC(·) for each i ∈ I.

Since each Bi satisfies Consistency and Countable Conjunction, so does the com-
mon belief operator C. Then, the players are commonly certain of tC : (Ω,D) →
(M(Ω),DM) iff C(·) ⊆ BiC(·) and (¬C)(·) ⊆ Bi(¬C)(·) for every i ∈ I. It can be
seen that the second condition is equivalent to Negative Introspection of C (establish-
ing the equivalence between Parts (1) and (2)). Also, Parts (1) and (2) are equivalent
(see, for example, Bonanno and Nehring (1998) Fukuda (2020)).

5 What Role Does the “Meta-Certainty” of a Model

Play in Game-theoretic Analyses?

Section 4 has examined when the players are commonly certain of a belief model.
Moving on to the second objective of the paper, I examine the role that the “meta-
certainty” assumption plays in game-theoretic analyses of solution concepts.
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5.1 Iterated Elimination of Strictly Dominated Actions

Specifically, I consider the solution concept of iterated elimination of strictly domi-
nated actions (IESDA) in a strategic game. Informally, an epistemic characterization
of IESDA states that, in a strategic game, if the (i) “logical” players are (ii) “com-
monly (meta-)certain of the game” and if they (iii) commonly believe their rationality,
then their resulting actions survive IESDA. Formally, in the context of the framework
of this paper, Fukuda (2020) shows that if the players commonly believe each player’s
rationality and if each of them correctly believes their own rationality, then their re-
sulting actions survive IESDA, without assuming any property on individual players’
beliefs. This paper connects these two statements as follows: first, suppose that the
players are logical in that their beliefs satisfy Consistency and Finite Conjunction in
addition to Monotonicity. Second, suppose that each of them is certain of their own
qualitative-type mapping and strategy. Third, suppose that the players commonly
believe their rationality. Then, their resulting actions survive IESDA.

Here I show that the certainty (of her own strategy and type mapping) allows
her to correctly believe her own rationality. In other words, if a player is able to
reason about informativeness of her own beliefs, she is able to correctly believe her
own rationality.

5.1.1 A Strategic Game, a Model of a Game, and Rationality

To define the notion of rationality in a game, define a (strategic) game as a tuple
Γ = 〈(Ai)i∈I , (<i)i∈I〉: Ai is a non-empty at-most-countable set of player i’s actions,
and <i is i’s (complete and transitive) preference relation on A :=×i∈I Ai.

22 Denote
by ∼i and �i the indifference and strict relations, respectively.

A (belief) model of the game Γ is a tuple 〈(Ω,D), (Bi)i∈I , C, (σi)i∈I〉 (abusing the

notation, denote it by
−→
Ω ) with the following two properties. First, 〈(Ω,D), (Bi)i∈I , C〉

is a belief model. Second, σi : Ω→ Ai is a strategy of player i satisfying the measur-
ability condition that σ−1

i ({ai}) ∈ D for all ai ∈ Ai. Denote [σi(ω)] := σ−1
i ({σi(ω)})

for each ω ∈ Ω.
Denote by [a′i <i ai] := {ω′ ∈ Ω | (a′i, σi(ω

′)) <i (ai, σ−i(ω
′))} ∈ D for any

ai, a
′
i ∈ Ai. In words, [a′i <i ai] is the event that player i prefers taking action a′i

to ai given the opponents’ strategies σ−i. The set [a′i <i ai] is an event because
[a′i <i ai] = σ−1

−i ({a−i ∈ A−i | (a′i, a−i) �i (ai, a−i)}) ∈ D. Define [a′i �i ai] and
[a′i ∼i ai] analogously.

22The assumption on the cardinality of each action set Ai is to simplify the analysis. For example,
it guarantees that each player is able to reason about any subset of action profiles and that the
rationality of each player is an event. More generally, fix a game without imposing any cardinal
restriction on I and (Ai)i∈I . Take a (regular) infinite cardinal κ with max(|A|, |I|) < κ. In a belief
space in which the collection of events D is a κ-complete algebra (recall footnote 6), the players are
able to reason about any subset of action profiles.
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Denote by RATi the event that player i is rational (see, e.g., Bonanno (2008,
2015) and Chen, Long, and Luo (2007)):

RATi :={ω ∈ Ω | ω ∈ Bi([a
′
i �i σi(ω)]) for no a′i ∈ Ai}

=
⋂
ai∈Ai

(Θ−1
i ({ai}))c ∪

⋂
a′i∈Ai

(¬Bi)([a
′
i �i ai])

 ∈ D
Let RATI :=

⋂
i∈I RATi. Player i is rational at ω ∈ Ω if there is no action a′i ∈ Ai

such that player i believes that playing a′i is strictly better than playing σi(ω) given
the opponents’ strategies σ−i. In other words, player i is rational at ω if, for any
action a′i, she always considers it possible that playing σi(ω) is at least as good as
playing a′i given the opponents’ strategies σ−i: ω ∈ (¬Bi)(¬[σi(ω) <i a

′
i]) for any

a′i ∈ Ai.
Now, the epistemic characterization of IESDA is stated as follows. Suppose that

each player i correctly believes her own rationality: Bi(RATi) ⊆ RATi for every i ∈ I.
If every player’s rationality is common belief at ω, i.e., ω ∈

⋂
i∈I C(RATi), then the

resulting actions (σi(ω))i∈I ∈ A survives any process of IESDA.23

Finally, in this section, player i is certain of her own strategy σi if she is certain
of σi : (Ω,D) → (Ai, {{ai} | ai ∈ Ai}), equivalently, [σi(·)] ⊆ Bi([σi(·)]). Note
that, under Consistency in addition to Monotonicity, if player i is certain of her own
strategy then Bi([σi(·)]) = [σi(·)], [σi(·)]c = Bi([σi(·)]c), and Bi(Ω) = Ω.24

5.1.2 The Role of Meta-certainty in Correctly Believing One’s Own Ra-
tionality

I ask under what conditions player i correctly believes her own rationality: Bi(RATi) ⊆
RATi. For qualitative belief, the standard assumptions on qualitative belief (i.e., Con-
sistency, Positive Introspection, Negative Introspection, and the Kripke property)
guarantee that Bi(RATi) = RATi (e.g., Bonanno (2008, 2015)).25 Here, I provide
a compatibility condition on belief with informativeness, under which a player cor-
rectly believes her own rationality. The compatibility condition does not hinge on a
particular form of belief, i.e., whether it is qualitative or probabilistic.

23Since each player’s belief operator Bi satisfies Monotonicity, Bi(RATI) ⊆
⋂

i∈I Bi(RATi) and
C(RATI) ⊆

⋂
i∈I C(RATi). Thus, if every player i correctly believes the rationality of the players,

then each player correctly believes her own rationality. Likewise, if it is common belief that the
players are rational, then, for every i ∈ I, it is common belief that player i is rational. Hence, I
examine the weaker condition that each player i correctly believes her own rationality.

24Thus, under Consistency and Monotonicity of Bi, the certainty of own strategy implies that if
player i is rational at ω, then she never takes a strictly dominated action at ω (if she takes a strictly
dominated action, then her belief violates Necessitation).

25It can be seen that Consistency, Positive Introspection, and the Kripke property in addition to
the certainty of i’s own strategy yield Bi(RATi) ⊆ RATi. Likewise, Negative Introspection and the
Kripke property in addition to the certainty of i’s own strategy yield RATi ⊆ Bi(RATi).
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Definition 3. Player i’s belief (operator Bi) is compatible with informativeness if
(↑ tBi(ω)) ∩ E 6= ∅ for any E ∈ D with ω ∈ Bi(E).

In words, player i’s beliefs are compatible with informativeness if, for any event
E which player i believes at some ω, there exists a state ω′ in E which is at least
as informative as ω. In the context of qualitative beliefs, if player i’s belief operator
Bi satisfies the Kripke property, Consistency, and Positive Introspection, then Bi is
compatible with informativeness.26 The compatibility with informativeness does not
necessarily imply the Kripke property (and vice versa).27 In the context of proba-
bilistic beliefs, player i’s probability-one belief operator B1

τi
is compatible with in-

formativeness under the Harsanyi property (see Proposition 5 (B) below). If player
i’s belief operator Bi is compatible with informativeness, then it satisfies Bi(∅) = ∅.
Thus, under Finite Conjunction, if Bi is compatible with informativeness, then it
satisfies Consistency.

The following proposition states that the compatibility of beliefs with informa-
tiveness is implied by the certainty of a type mapping.

Proposition 5. Let
−→
Ω be a belief model.

A. Assume: (i) (↑ tBi(·)) ∈ D; (ii) Bi satisfies Consistency and Finite Conjunction;
and that (iii) player i is certain of tBi : Ω→M(Ω) with respect to {{µ ∈M(Ω) |
µ(·) ≥ tBi(ω)(·)} | ω ∈ Ω}. Then, Bi is compatible with informativeness.

B. Let τi : (Ω,D)→ (∆(Ω),D∆) be player i’s type probabilistic-mapping on the belief

model
−→
Ω . Assume (i) [τi(·)] ∈ D; the Harsanyi property; and (iii) Entailment:

Bi(·) ⊆ B1
τi

(·). Then, Bi is compatible with informativeness.

Part (A) states that, under the regularity condition (i), if player i is logical (in
that her belief operator satisfies Consistency and Finite Conjunction) and if she is
certain of her qualitative-type mapping, then her beliefs are compatible with infor-
mativeness. Theorem 2 below establishes that if player i’s beliefs are compatible
with informativeness then she correctly believes her rationality, which is a part of the
preconditions of the epistemic characterization of IESDA.

Part (B) states that the Harsanyi property implies the compatibility with informa-
tiveness. Recall Proposition 2B: by the regularity condition (i), the Harsanyi property
holds iff player i is certain of her probabilistic-type mapping.

Now, I present the main result of this subsection. The theorem says a player
correctly believes her own rationality if: (i) she is certain of her own strategy; (ii)
her belief is compatible with the informativeness; and if (iii) her belief is (finitely)

26The proof goes as follows. For any E ∈ D with ω ∈ Bi(E), ∅ 6= E ∩ bBi(ω) ⊆ E ∩ (↑ tBi(ω)).
27Let (Ω,D) = ({ω1, ω2},P(Ω)). Define Bi as Bi(E) = E if E 6= Ω; and Bi(Ω) = ∅. While Bi is

compatible with informativeness, it does not satisfy the Kripke property. Define Bj as Bj(E) = E
if E ∈ {∅,Ω}; and Bj(E) = Ec if E ∈ {{ω1}, {ω2}}. While Bj satisfies the Kripke property, it is
not compatible with informativeness.
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conjunctive so that she can simultaneously reason about her own strategy and her
own rationality.

Theorem 2. Suppose that player i is certain of her own strategy (i.e., [σi(·)] ⊆
Bi([σi(·)])). Also, let Bi be compatible with informativeness and satisfy Finite Con-
junction. Then, player i correctly believes her own rationality: Bi(RATi) ⊆ RATi.

Proposition 5 and Theorem 2 imply that player i correctly believes her own ra-
tionality if she is logical in that her belief operator satisfies Consistency and Finite
Conjunction and if she is certain of her own type mapping and strategy. Theorem 2
states that, for the role of the meta-certainty assumption of a belief model on IESDA,
it is not necessary that each player is certain of the profile of type mappings but it
is sufficient that each player is certain of her own type mapping. In fact, one can
incorporate the assumptions that each player is certain of her own qualitative type-
mapping and strategy into the condition that she is certain of the part of the model
of a game 〈(Ω,D), (tBi , σi)〉 that dictates her beliefs and strategy.

Two remarks are in order. First, if the preconditions of Theorem 2 hold, then Bi

satisfies Consistency and Necessitation. Second, in Theorem 2, the assumptions of
the compatibility with informativeness and Finite Conjunction cannot be dropped.
See Remark A.1 in Appendix A for counterexamples.

6 Conclusion

This paper asked two questions. First, what does it mean by the statement that the
players in a belief model are commonly (meta-)certain of the model itself? Second,
what role does such meta-certainty assumption play in epistemic characterizations of
game-theoretic solution concepts? The paper started with expanding the objects of
the players’ beliefs from events to signals (functions) defined on the underling states.
A player is certain of the value of a signal x at a state if, the player believes, at the
state, any observational content that holds at the state. If she is certain of the value
of the signal x at every state, then she is certain of the signal. The common certainty
of the signal was analogously defined: the players are commonly certain of the value
of the signal x if the players commonly believe, at the state, any observational content
that holds at the state. The players are commonly certain of the signal x if they are
commonly certain of its value at every state. Then, the players’ belief-generating maps
(i.e., type mappings) and strategies became objects of their beliefs. A player is certain
of her own type mapping iff her belief satisfies the positive and negative introspective
properties. For probabilistic beliefs, the Harsanyi property is the strongest form of
the certainty of own type mapping.

The main result regarding the first question is: the players are commonly certain
of the profile of the players’ type mappings (i.e., the belief model) iff, for any event E
which some player i believes at some state, it is common belief that player i believes
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E at that state. I summarize three implications. First, in a “universal” space in
which the differences in the players’ beliefs are not represented through their belief
operators but are incorporated into the underlying states themselves, the players
are commonly certain of their type mappings in the formal sense. Thus, this paper
justifies the statement that, in the universal space, the players are commonly certain
of the model itself. Second, the common belief operator collapses into the mutual
belief operator when the players are commonly certain of the model. This is because,
whenever everybody believes an event, everybody believes that everybody believes
the event. Third, if the players are commonly certain of their type mappings and if
each player is certain of her own strategy, then the players are commonly certain of
their strategies.

Using the formalization of certainty of signals, the second objective was to eluci-
date the role of the common meta-certainty assumption on epistemic characterizations
of game-theoretic solution concepts. The paper studied the solution concept of iter-
ated elimination of strictly dominated actions (IESDA). Informally, if the players are
“logical,” if they are (meta-)certain of a game, and if they commonly believe their
rationality, then their resulting actions survive any process of IESDA. Formally, the
paper showed: if the players’ beliefs satisfy Consistency and Finite Conjunction, if
each player is certain of her qualitative-type mapping (or if each player’s beliefs are
compatible with informativeness), and if the players commonly believe their rational-
ity, then their resulting actions survive any process of IESDA.

A Appendix

A.1 Proofs

Proof of Remark 1. 1. Suppose that player i is certain of x : (Ω,D) → (X,X ).
Take F ∈ X . Since ∅ ∈ JBi , assume x−1(F ) 6= ∅. For any ω ∈ x−1(F ),
ω ∈ Bi(x

−1(F )). Thus, x−1(F ) ⊆ Bi(x
−1(F )), i.e., x−1(F ) ∈ JBi . Hence,

x−1(X ) ⊆ JBi . Conversely, assume x−1(X ) ⊆ JBi . For any ω ∈ Ω and F ∈ X
with ω ∈ x−1(F ), ω ∈ Bi(x

−1(F )). Thus, player i is certain of x.

2. Suppose that the players are commonly certain of x : (Ω,D) → (X,X ). Take
F ∈ X . Since ∅ ∈ JBI , assume x−1(F ) 6= ∅. For any ω ∈ x−1(F ), ω ∈
C(x−1(F )). Thus, x−1(F ) ⊆ C(x−1(F )) ⊆ BI(x

−1(F )), and hence x−1(F ) ∈
JBi . Then, x−1(X ) ⊆ JBi . Conversely, assume x−1(X ) ⊆ JBI . For any ω ∈ Ω
and F ∈ X with ω ∈ x−1(F ), ω ∈ x−1(F ) ⊆ Bi(x

−1(F )), and thus ω ∈
C(x−1(F )). Thus, the players are commonly certain of x.

3. This assertion follows because JBI =
⋂
i∈I JBi .
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Proof of Remark 4. As discussed in the main text, it suffices to show Part (1). First,
it follows from Finite Conjunction, Consistency, and Monotonicity that ∅ = Bi(E) ∩
Bi(E

c) = Bi(E ∩ Ec) = Bi(∅) ∈ Bi. Second, I show that Bi is closed under count-
able intersection. Countable Conjunction and Monotonicity imply

⋂
n∈NBi(En) =

Bi(
⋂
n∈NEn) ∈ Bi. Third, I show that Bi is closed under complementation by proving

(¬Bi)(·) = Bi(¬Bi)(·). Consistency, Positive Introspection, and Negative Introspec-
tion imply (¬Bi)(·) ⊆ Bi(¬Bi)(·) ⊆ (¬Bi)Bi(·) ⊆ (¬Bi)(·).

Proof of Remark 5. I only prove Part (1). Suppose Bi(Ω) = Ω. Take any constant
signal x : (Ω,D)→ (X,X ). Fix ω ∈ Ω. For any F ∈ X with x(ω) ∈ F , x−1(F ) = Ω.
Thus, x−1(F ) ⊆ Bi(x

−1(F )). Conversely, take ω ∈ Ω, and consider the constant
signal x : (Ω,D) → ({ω}, {{ω}}). Since player i is certain of it, Ω = x−1({ω}) ⊆
Bi(x

−1({ω})) = Bi(Ω).

Proof of Proposition 1A. 1. For (1a), i is certain of tBi with respect to {βE | E ∈
D} iff t−1

Bi
(βE) = BtBi

(E) is self-evident, i.e., BtBi
(E) ⊆ BiBtBi

(E). Likewise, for

(1b), i is certain of tBi with respect to {¬βE | E ∈ D} iff ¬t−1
Bi

(βE) = (¬BtBi
)(E)

is self-evident, i.e., (¬BtBi
)(E) ⊆ Bi(¬BtBi

)(E). Then, (1c) follows from the
previous two parts.

2. It suffices to show the “if” part of (2b). It follows from Remark 4 that Bi =
{Bi(E) ∈ D | E ∈ D} is a sub-σ-algebra of D. Since Bi satisfies Positive
Introspection, Bi ⊆ JBi . Since t−1

i (βE) = Bi(E) ∈ Bi and since Bi is a σ-
algebra, t−1

i (DM) = σ({t−1
i (βE) ∈ D | E ∈ D}) ⊆ σ(Bi) = Bi ⊆ JBi .

Proof of Proposition 1B. 1. For (1a), player i is certain of τi with respect to {βpE |
(E, p) ∈ D × [0, 1]} iff Bp

τi
(E) = τ−1

i (βpE) ⊆ Bi(τ
−1
i (βpE)) = BiB

p
τi

(E). For
(1b), player i is certain of τi with respect to {¬βpE | (E, p) ∈ D × [0, 1]} iff
(¬Bp

τi
)(E) = ¬τ−1

i (βpE) ⊆ Bi(¬τ−1
i (βpE)) = Bi(¬Bp

τi
)(E). Then, (1c) follows

from the previous two parts.

2. (a) If player i is certain of τi : (Ω,D) → (∆(Ω),D∆) then Bi satisfies Pos-
itive Certainty. Conversely, let Bi satisfy Positive Certainty. By (1a),
τ−1
i ({βpE | (E, p) ∈ D × [0, 1]}) ⊆ JBi . Since Bi satisfies Truth Axiom and

Negative Introspection, JBi is a sub-σ-algebra of D. Thus, τ−1
i (D∆) ⊆ JBi .

Hence, player i is certain of τi : (Ω,D) → (∆(Ω),D∆). Next, I show
that, since Bi satisfies Truth Axiom and Negative Introspection, Posi-
tive Certainty is equivalent to Negative Certainty. By Positive Certainty,
(¬Bp

τi
) = (¬Bi)B

p
τi

= Bi(¬Bi)B
p
τi

= Bi(¬Bp
τi

). Conversely, by Negative
Certainty, Bp

τi
= (¬Bi)(¬Bp

τi
) = Bi(¬Bi)(¬Bp

τi
) = BiB

p
τi

.

(b) It is sufficient to prove the “if” part. First, it follows from the assumptions
and Remark 4 that Bi = {Bi(E) ∈ D | E ∈ D} is a sub-σ-algebra of D.
Second, since Bi satisfies Positive Introspection, Bi ⊆ JBi . Third, I show
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that Positive Certainty, Negative Certainty, and Consistency of Bi imply
Bp
τi

(E) = BiB
p
τi

(E). Fourth, since τ−1
i (βpE) = Bp

τi
(E) = BiB

p
τi

(E) ∈ Bi and
since Bi is a σ-algebra, τ−1

i (D∆) = σ({τ−1
i (βpE) ∈ D | (E, p) ∈ D×[0, 1]}) ⊆

σ(Bi) = Bi ⊆ JBi .
It remains to show Bp

τi
(E) = BiB

p
τi

(E). The “⊆” part is Positive Cer-
tainty. Conversely, it follows from Negative Certainty and Consistency that
(¬Bp

τi
)(E) ⊆ Bi(¬Bp

τi
)(E) ⊆ (¬Bi)B

p
τi

(E). Then, BiB
p
τi

(E) ⊆ Bp
τi

(E).

(c) It suffices to prove the “if” part. First, I show that B1
τi

:= {B1
τi

(E) ∈
D | E ∈ D} is a sub-σ-algebra of D. Second, since Bi satisfies Posi-
tive Certainty, B1

τi
⊆ JBi . Third, I show that Positive Certainty, Nega-

tive Certainty, and Consistency of B1
τi

(i.e., B1
τi

(E) ⊆ (¬B1
τi

)(Ec)) imply
Bp
τi

(E) = B1
τi
Bp
τi

(E). Fourth, since τ−1
i (βpE) = Bp

τi
(E) = B1

τi
Bp
τi

(E) ∈ B1
τi

and since B1
τi

is a σ-algebra, τ−1
i (D∆) = σ({τ−1

i (βpE) ∈ D | (E, p) ∈
D × [0, 1]}) ⊆ σ(B1

τi
) = B1

τi
⊆ JBi .

Hence, I first show that B1
τi

is a sub-σ-algebra ofD. First, since τi(·)(∅) = 0,
∅ = B1

τi
(∅) ∈ B1

τi
. Second, since B1

τi
satisfies Monotonicity and Countable

Conjunction, B1
τi

is closed under countable intersection. Third, as in the
proof of Remark 4, to prove that B1

τi
is closed under complementation,

it is sufficient to show (¬B1
τi

)(·) = B1
τi

(¬B1
τi

)(·). However, this property
follows from B1

τi
(E) ⊆ (¬B1

τi
)(Ec), B1

τi
(·) ⊆ B1

τi
B1
τi

(·), and (¬B1
τi

)(·) ⊆
B1
τi

(¬B1
τi

)(·). Indeed, (¬B1
τi

)(·) ⊆ B1
τi

(¬B1
τi

)(·) ⊆ (¬B1
τi

)B1
τi

(·) ⊆ (¬B1
τi

)(·).
Next, I show Bp

τi
(E) = B1

τi
Bp
τi

(E). It follows from Positive Certainty and
Entailment that Bp

τi
(E) ⊆ BiB

p
τi

(E) ⊆ B1
τi
Bp
τi

(E). Conversely, it follows
from Negative Certainty and Entailment that (¬Bp

τi
)(E) ⊆ Bi(¬Bp

τi
)(E) ⊆

B1
τi

(¬Bp
τi

)(E). Then, it follows from Consistency of B1
τi

that B1
τi
Bp
τi

(E) ⊆
(¬B1

τi
)(¬Bp

τi
)(E) ⊆ Bp

τi
(E).

Proof of Proposition 2A. 1. (a) Since Truth Axiom yields ω′ ∈ bBi(ω
′) for all

ω′ ∈ Ω, ω′ ∈ bBi(ω′) ⊆ bBi(ω) for all ω′ ∈ (↑ tBi(ω)). Conversely, Truth
Axiom follows from ω ∈ bBi(ω) for all ω ∈ Ω.

(b) Suppose ω′ ∈ bBi(ω). For any F ∈ D with tBi(ω)(F ) = 1, it follows
from Positive Introspection that tBi(ω)(t−1

Bi
(βF )) = 1. By the supposition,

ω′ ∈ t−1
Bi

(βF ), i.e., tBi(ω
′)(F ) = 1. Thus, ω′ ∈ (↑ tBi(ω)).

Conversely, let Bi satisfy the Kripke property, and assume bBi(ω) ⊆ (↑
tBi(ω)). Suppose ω ∈ Bi(E). In order to show ω ∈ BiBi(E), it is enough
to prove bBi(ω

′) ⊆ E for all ω′ ∈ bBi(ω). Take any ω′ ∈ bBi(ω). Since
ω′ ∈ (↑ tBi(ω)) and ω ∈ Bi(E), it follows ω′ ∈ Bi(E). Thus, bBi(ω

′) ⊆ E.

(c) The proof is analogous to Part (1b). Suppose ω′ ∈ bBi(ω). Suppose to
the contrary that ω′ 6∈ (↓ tBi(ω)), i.e., tBi(ω)(F ) = 0 < 1 = tBi(ω

′)(F ) for
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some F ∈ D. By Negative Introspection, tBi(ω)(¬t−1
Bi

(βF )) = 1, and thus

ω′ ∈ ¬t−1
Bi

(βF ), i.e., tBi(ω
′)(F ) = 0, a contradiction.

Conversely, let Bi satisfy the Kripke property, and suppose bBi(ω) ⊆ (↓
tBi(ω)). If ω 6∈ Bi(E), then bBi(ω) ∩ Ec 6= ∅. In order to establish ω ∈
Bi(¬Bi)(E), it is enough to show that bBi(ω

′)∩Ec 6= ∅ for all ω′ ∈ bBi(ω).
Take any ω′ ∈ bBi(ω). Since ω′ ∈ (↓ tBi(ω)) and since tBi(ω)(E) = 0, it
follows tBi(ω

′)(E) = 0, i.e., bBi(ω
′) ∩ Ec 6= ∅.

2. (a) The assertion follows from Parts (1a) and (1b).

(b) By Part (1), [tBi(ω)] ⊆ (↑ tBi(ω)) = bBi(ω) ⊆ (↑ tBi(ω)) ∩ (↓ tBi(ω)) =
[tBi(ω)]. Then, (↑ tBi(ω)) ⊆ (↓ tBi(ω)) implies (↓ tBi(ω)) ⊆ (↑ tBi(ω)), i.e.,
(↑ tBi(ω)) = (↓ tBi(ω)). If Bi satisfies the Kripke property, then Part (1)
implies that the converse also holds.

Proof of Proposition 2B. 1. It can be seen that

[τi(ω)] =
⋂

(E,p)∈D×[0,1]:ω∈Bpτi (E)

Bp
τi

(E) =
⋂

(E,p)∈D×[0,1]:ω∈(¬Bpτi )(E)

(¬Bp
τi

)(E). (A.1)

Now, Bp
τi

(·) ⊆ BiB
p
τi

(·) implies bBi(ω) ⊆ Bp
τi

(E) for any (E, p) ∈ D × [0, 1] with
ω ∈ Bp

τi
(E). Likewise, (¬Bp

τi
)(·) ⊆ Bi(¬Bp

τi
)(·) implies bBi(ω) ⊆ (¬Bp

τi
)(E) for

any (E, p) ∈ D × [0, 1] with ω ∈ (¬Bp
τi

)(E). In either case, bBi(ω) ⊆ [τi(ω)].

2. Assume the Kripke property. Suppose bBi(·) ⊆ [τi(·)]. Take (E, p) ∈ D × [0, 1].
Since bBi(ω) ⊆ [τi(ω)] ⊆ Bp

τi
(E) for any ω ∈ Bp

τi
(E), Bp

τi
(E) ⊆ BiB

p
τi

(E). Like-
wise, since bBi(ω) ⊆ [τi(ω)] ⊆ (¬Bp

τi
)(E) for any ω ∈ (¬Bp

τi
)(E), (¬Bp

τi
)(E) ⊆

Bi(¬Bp
τi

)(E).

Proof of Proposition 3B. 1. Let τi satisfy the Harsanyi property. For any ω, ω′ ∈ Ω
with ω′ ∈ [τi(ω)], τi(ω

′)([τi(ω)]) = τi(ω)([τi(ω)]) = 1, i.e., ω′ ∈ B1
τi

([τi(ω)]).
Thus, player i is certain of τi : (Ω,D)→ (∆(Ω), {{τi(ω)} | ω ∈ Ω}). Conversely,
since ω ∈ [τi(ω)], ω ∈ B1

τi
([τi(ω)]), i.e., τi(ω)([τi(ω)]) = 1.

2. Let D be generated by a countable algebra A. Let [0, 1]Q := [0, 1]∩Q. Similarly
to Expression (A.1),

[τi(ω)] =
⋂

(E,p)∈A×[0,1]Q:ω∈Bpτi (E)

Bp
τi

(E) =
⋂

(E,p)∈A×[0,1]Q:ω∈(¬Bpτi )(E)

(¬Bp
τi

)(E) ∈ D.

Then, it follows from Part (1) that (2a) and (2b) are equivalent. Part (2b)
implies (2c), which, in turn, implies (2d) and (2e).
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Assume (2d). Fix ω ∈ Ω. For any (E, p) ∈ A × [0, 1]Q with ω ∈ Bp
τi

(E),
Bp
τi

(E) ⊆ B1
τi
Bp
τi

(E). Since A × [0, 1]Q is countable, take the intersection over
all (E, p) ∈ A× [0, 1]Q with ω ∈ Bp

τi
(E) to obtain:

[τi(ω)] =
⋂

(E,p)

Bp
τi

(E) ⊆
⋂

(E,p)

B1
τi
Bp
τi

(E) ⊆ B1
τi

 ⋂
(E,p)

Bp
τi

(E)

 = B1
τi

([τi(ω)]).

Thus, (2a) holds. Likewise, assume (2e). Fix ω ∈ Ω. For any (E, p) ∈ A×[0, 1]Q
with ω ∈ (¬Bp

τi
)(E), (¬Bp

τi
)(E) ⊆ B1

τi
(¬Bp

τi
)(E). Since A× [0, 1]Q is countable,

take the intersection over all (E, p) ∈ A× [0, 1]Q with ω ∈ (¬Bp
τi

)(E) to obtain:

[τi(ω)] =
⋂

(E,p)

(¬Bp
τi

)(E) ⊆
⋂

(E,p)

B1
τi

(¬Bp
τi

)(E) ⊆ B1
τi

 ⋂
(E,p)

(¬Bp
τi

)(E)

 = B1
τi

([τi(ω)]).

Hence, (2a) holds.

Proof of Proposition 3A. 1. Notice that (1b) is equivalent to ω ∈ Bi([tBi(ω)])
for all ω ∈ Ω. Suppose (1a), and fix ω ∈ Ω. Since ω ∈ [tBi(ω)], ω ∈
Bi([tBi(ω)]). Conversely, suppose (1b), and fix ω ∈ Ω. For any ω′ ∈ [tBi(ω)],
ω′ ∈ Bi([tBi(ω

′)]) = Bi([tBi(ω)]).

2. Suppose [tBi(ω)] ⊆ E. Since Bi satisfies Positive Introspection and Negative
Introspection, it follows from Proposition 3A that bBi(ω) ⊆ [tBi(ω)] ⊆ E. By
the Kripke property, ω ∈ Bi(E).

3. Without loss, assume (1b). If bBi(ω) ⊆ E, then it follows from Truth Axiom of
Bi and Proposition 3A that [tBi(ω)] ⊆ bBi(ω) ⊆ E. Then, ω ∈ Bi(E).

Proof of Theorem 1A. 1. Suppose that the players are commonly certain of the
profile of qualitative-type mappings. Since player i is certain of her own qualitative-
type mapping, it follows from Proposition 1A that Positive Introspection and
Negative Introspection hold: Bi(·) ⊆ BiBi(·) and (¬Bi)(·) ⊆ Bi(¬Bi)(·). Next,
since player i is certain of player j’s qualitative-type mapping, it follows from
Remark 9A that Bj(·) ⊆ BiBj(·). Since Bj satisfies Truth Axiom and since Bi

satisfies Monotonicity, Bj(·) ⊆ BiBj(·) ⊆ Bi(·). Since i and j are arbitrary,
Bi = Bj. Conversely, it follows from the suppositions that each player i is cer-
tain of every player j’s qualitative-type mapping τBj : (Ω,D)→ (M(Ω),DM).

In fact, player i is certain of the profile of the qualitative-type mappings τ :
(Ω,D) → (M(Ω)I ,DIM), where DIM is the product σ-algebra on the product
space M(Ω)I (recall Remark 6). Then, the players are commonly certain of
τ : (Ω,D)→ (M(Ω)I ,DIM).
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Lastly, since Bi = BI for all i ∈ I and since Bi satisfies Positive Introspection,
it follows Bi = C for each i ∈ I.

2. Suppose that the players are commonly certain of the profile of qualitative-type
mappings. Since player j is certain of player i’s qualitative-type mapping, it
follows from Remark 9A that Bi(·) ⊆ BjBi(·) and (¬Bi)(·) ⊆ Bj(¬Bi)(·). Since
j is arbitrary, Bi(·) ⊆ BIBi(·) and (¬Bi)(·) ⊆ BI(¬Bi)(·). Then, Bi(·) ⊆ CBi(·)
and (¬Bi)(·) ⊆ C(¬Bi)(·). Conversely, it follows from the supposition that
Bi(·) ⊆ CBi(·) ⊆ BjBi(·) and (¬Bi)(·) ⊆ C(¬Bi)(·) ⊆ Bj(¬Bi)(·). Thus,
player j is certain of player i’s qualitative-type mapping.

In fact, player j is certain of the profile of the qualitative-type mappings τ :
(Ω,D) → (M(Ω)I ,DIM) (recall Remark 6). Consequently, the players are com-
monly certain of the profile of the qualitative-type mappings τ : (Ω,D) →
(M(Ω)I ,DIM).

Lastly, since BI(·) ⊆ Bi(·) ⊆ CBi(·) for each i ∈ I, BI(·) ⊆
⋂
i∈I CBi(·) ⊆

CBI(·), where C satisfies Countable Conjunction because each Bi satisfies it.
Then, each BI(·) itself is a publicly-evident event implying the mutual belief,
and thus C = BI .

Proof of Theorem 1B. Suppose that the players are commonly certain of the profile
of type mappings. Since player j is certain of player i’s type mapping, it follows
from Remark 9B that Bp

τi
(·) ⊆ BjB

p
τi

(·) and (¬Bp
τi

)(·) ⊆ Bj(¬Bp
τi

)(·). Since j is
arbitrary, Bp

τi
(·) ⊆ BIB

p
τi

(·) and (¬Bp
τi

)(·) ⊆ BI(¬Bp
τi

)(·). Then, Bp
τi

(·) ⊆ CBp
τi

(·)
and (¬Bp

τi
)(·) ⊆ C(¬Bp

τi
)(·). Conversely, it follows from the supposition that Bp

τi
(·) ⊆

CBp
τi

(·) ⊆ BjB
p
τi

(·) and (¬Bp
τi

)(·) ⊆ C(¬Bp
τi

)(·) ⊆ Bj(¬Bp
τi

)(·). Thus, player j is
certain of player i’s type mapping.

In fact, player j is certain of the profile of the probabilistic-type mappings τ :
(Ω,D) → (∆(Ω)I ,DI∆), where DI∆ is the product σ-algebra on the product space
∆(Ω)I (recall Remark 6). Thus, the players are commonly certain of the profile of
the probabilistic-type mappings τ : (Ω,D)→ (∆(Ω)I ,DI∆).

Lastly, since B1
I (·) ⊆ B1

τi
(·) ⊆ C1B1

τi
(·) for each i ∈ I, BI(·) ⊆

⋂
i∈I C

1Bτi(·) ⊆
C1B1

I (·), where C1 satisfies Countable Conjunction because eachB1
τi

satisfies it. Then,
each B1

I (·) itself is a publicly-1-evident event implying the mutual 1-belief, and thus
C1 = B1

I .

Proof of Proposition 4. A. I only prove (Ai). Take F ∈ X . It suffices to show
x−1(F ) ⊆ Bj(x

−1(F )). It follows from Remark 9A and Consistency of Bj that
Bi = BjBi. Take (Fλ)λ∈Λ from X with F c =

⋃
λ∈Λ Fλ. Then,

¬x−1(F ) = x−1(F c) =
⋃
λ∈Λ

x−1(Fλ) ⊆
⋃
λ∈Λ

Bi(x
−1(Fλ)) ⊆ Bi(x

−1(F c)) ⊆ (¬Bi)(x
−1(F )),
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implying x−1(F ) = Bi(x
−1(F )). It follows from Remark 9A that

x−1(F ) = Bi(x
−1(F )) = BjBi(x

−1(F )) = Bj(x
−1(F )).

B. I only prove (Bi). Take F ∈ X . It suffices to show x−1(F ) ⊆ Bj(x
−1(F )). It

follows from Theorem 1B and Consistency of Bj that Bp
τi

= BjB
p
τi

. Take (Fλ)λ∈Λ

from X with F c =
⋃
λ∈Λ Fλ. Then,

¬x−1(F ) = x−1(F c) =
⋃
λ∈Λ

x−1(Fλ) ⊆
⋃
λ∈Λ

Bi(x
−1(Fλ)) ⊆

⋃
λ∈Λ

B1
τi

(x−1(Fλ))

⊆ B1
τi

(x−1(F c)) ⊆ (¬B1
τi

)(x−1(F )),

implying x−1(F ) = B1
τi

(x−1(F )). Now, it follows from Theorem 1B that

x−1(F ) = B1
τi

(x−1(F )) = BjB
1
τi

(x−1(F )) = Bj(x
−1(F )).

Proof of Proposition 5. A. By (i) and (iii) and by observing (↑ tBi(ω)) = t−1
Bi

({µ ∈
M(Ω) | µ(·) ≥ tBi(ω)(·)}), ω ∈ (↑ tBi(ω)) ⊆ Bi(↑ tBi(ω)). If (ω,E) ∈ Ω × D
satisfies ω ∈ Bi(E), then it follows from Finite Conjunction that ω ∈ Bi(E ∩ (↑
tBi(ω))). By Consistency and Monotonicity, Bi(∅) = ∅ (note: Bi(∅) = Bi(E ∩
Ec) ⊆ Bi(E) ∩Bi(E

c) = ∅). Then, E ∩ (↑ tBi(ω)) 6= ∅.

B. Take E ∈ D with ω ∈ Bi(E). By Entailment, ω ∈ B1
τi

. If E ∩ [τi(ω)] = ∅ (observe
(↑ τi(ω)) = [τi(ω)]), then [τi(ω)] ⊆ Ec and thus ω ∈ B1

τi
(Ec), a contradiction to

Consistency of B1
τi

.

Proof of Theorem 2. Let ω ∈ Bi(RATi). Since ω ∈ Bi([σi(ω)]), it follows from Fi-
nite Conjunction that ω ∈ Bi(RATi ∩ [σi(ω)]). Next, since Bi is compatible with
informativeness, there is ω′ ∈ Ω such that ω′ ∈ (↑ tBi(ω)) ∩ RATi ∩ [σi(ω)]. If
there is a′i ∈ Ai such that ω ∈ (¬Bi)(¬[σi(ω) <i a

′
i]) = (¬Bi)(¬[σi(ω

′) <i a
′
i]), then

ω′ ∈ (¬Bi)(¬[σi(ω
′) <i a

′
i]), a contradiction. Thus, ω ∈ RATi.

Remark A.1. To see simple counterexamples, consider the two-player coordination
game represented by the left panel of Table 1. Let (Ω,D) = ({ω1, ω2, ω3},P(Ω)). Let
(σ1(ω))ω∈Ω = (a, a, b) and (σ2(ω))ω∈Ω = (a, a, c). Suppose that B1 and B2 are given
by the right panel of Table 1: B1 violates Finite Conjunction, and B2 is not consistent
with informativeness. Then, RATi = {ω1, ω2} and thus Bi(RATi) 6⊆ RATi for each
i ∈ {1, 2}.
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a b c
a 1, 1 0, 0 0, 0
b 0, 0 1, 1 0, 0
c 0, 0 0, 0 1, 1

E B1(E) B2(E)

∅ ∅ ∅
{ω1} ∅ ∅
{ω2} ∅ ∅
{ω3} ∅ ∅
{ω1, ω2} {ω2, ω3} {ω3}
{ω1, ω3} {ω1} {ω2}
{ω2, ω3} {ω2} {ω1}

Ω Ω Ω

Table 1: A Counterexample for Theorem 2. The left panel depicts the coordination
game while the right panel depicts the players’ beliefs on (Ω,D).

E ∅ {ω1} {ω2} {ω3} {ω1, ω2} {ω1, ω3} {ω2, ω3} Ω
Bi(E) ∅ {ω1} {ω1} {ω1} {ω1} {ω1} {ω2} {ω1, ω2}
C(E) ∅ {ω1} {ω1} {ω1} {ω1} {ω1} ∅ {ω1}

Table 2: Inidvidual and Common Beliefs Bi and C

A.2 Difference between Mutual and Common Certainty at a
State

Remark 1 states that if every player is certain of (the value of) a signal x : (Ω,D)→
(X,X ) (at every state) then the players are commonly certain of (the value of) x (at
every state). This appendix shows through an example that the mutual and common
certainty may differ if the players are certain of the value of the signal only at some
state. This appendix also briefly discusses the higher-order certainty of a signal at a
state.

Let Ω = {ω1, ω2, . . . , ωm} with m ≥ 3, and let D = P(Ω). Introduce the natural
order on Ω based on the indices: ωk ≤ ω` iff k ≤ `. Define each player’s belief operator
Bi as follows:

Bi(E) :=


∅ if E = ∅
{ω1} if |E| = 1

E \ {maxE} if |E| ≥ 2

.

Then, the common belief operator C is written as:

C(E) =

{
∅ if E = ∅ or |E| ≥ 2 and ω1 6∈ E
{ω1} if |E| = 1 or |E| ≥ 2 and ω1 ∈ E

.

For example, if m = 3 then the individual and common belief operators are depicted
in Table 2.
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Let (X,X ) = ({x1, x2},P(X)), and define x : (Ω,D)→ (X,X ) as follows:

x(ω) =

{
x1 if ω = ω1

x2 if ω 6= ω1

.

I show that (i) each player i is certain of x : (Ω,D)→ (X,X ) at ω2 and that (ii)
the players are not commonly certain of x : (Ω,D) → (X,X ) at ω2. Observe F ∈
{{x2}, X} satisfies ω2 ∈ x−1(F ). Indeed, x−1({x2}) = {ω2, . . . , ωm} and x−1(X) = Ω.
Then,

Bk
I (x−1({x2})) =

{
{ω2, . . . , ωm−k} if k ≤ m− 2

∅ if k > m− 2
and C(x−1({x2})) = ∅.

Also,

Bk
I (x−1(X)) =

{
{ω1, . . . , ωm−k} if k ≤ m− 2

{ω1} if k ≥ m− 1
and C(x−1(X)) = {ω1}.

In fact, one can define higher-order certainty as follows. Player i is certain that
player j is certain of the value of a signal x : (Ω,D) → (X,X ) at a state ω ∈ Ω
if, for any F ∈ X with ω ∈ x−1(F ), ω ∈ BiBj(x

−1(F )). The players are mutually
certain of the value of x : (Ω,D)→ (X,X ) at ω if, for any F ∈ X with ω ∈ x−1(F ),
ω ∈ BI(x

−1(F )). One can analogously define higher-order mutual certainty of the
value of the signal x. If the mutual belief operator BI satisfies Countable Conjunction
in addition to Monotonicity, then the players are commonly certain of the value of
x : (Ω,D) → (X,X ) at ω iff they are mutually certain of the value of x : (Ω,D) →
(X,X ) at ω, they are mutually certain that they are mutually certain of the value of
x : (Ω,D)→ (X,X ) at ω, and so forth ad infinitum.

A.3 Product Type Spaces

Fix a measurable space (S,S) of nature states. A product type space is a tuple
〈(Ti, Ti)i∈I , (mi)i∈I〉 such that each (Ti, Ti) is a measurable space of player i’s types
and that each mi : (Ti, Ti)→ (∆(T−i), (T−i)∆) is a measurable mapping, where T−i =
S ×

∏
j∈I\{i} Tj, T−i is the product σ-algebra on T−i, and (T−i)∆ is the σ-algebra

generated by {µ ∈ ∆(T−i) | µ(E) ≥ p} for some (E, p) ∈ T−i × [0, 1].
I show that a product type space 〈(Ti, Ti)i∈I , (mi)i∈I〉 are identified as a type space

〈(Ω,D), (τi)i∈I〉 with certain properties. First, a given product type space induces a
type space 〈(Ω,D), (τi)i∈I〉 as follows. Let the state space Ω be the product space
Ω := S ×

∏
i∈I Ti. Let D be the product σ-algebra on Ω. Define each player i’s

type mapping τi : Ω → ∆(Ω) as follows: for each state (s, (ωi)i∈I) ∈ Ω, let τi(ω)
be the product measure τi(ω) = mi(ωi) × δωi induced by the type mi(ωi) and the
Dirac measure δωi . Observe that δi : (Ti, Ti) 3 ωi 7→ δ(ωi) = δωi ∈ (∆(Ti), (Ti)∆)
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and mi : (Ti, Ti)→ (∆(T−i), T−i) are measurable, and hence mi × δi : (Ti, Ti) 3 ωi 7→
(mi× δi)(ωi) = mi(ωi)× δωi ∈ (∆(Ω),D∆) is measurable. Then, let τi : (Ω,D) 3 ω 7→
τi(ω) = (mi × δi)(ωi) ∈ (∆(Ω),D∆) is measurable.

Conversely, consider a type space 〈(Ω,D), (τi)i∈I〉 with the following properties:
the state space (Ω,D) is the product measurable space of (S,S) and ((Ti, Ti))i∈I ; and
each τi : (Ω,D)→ (∆(Ω),D∆) satisfies

1. τi(s, (ωj)j∈I) = τi(s̃, (ωi, ω̃−i)) for all s, s̃, ωi, ω−i, ω̃−i; and

2. τi(ω) ◦ π−1
i = δωi , where πi : Ω→ Ti is the projection.

Then, define mi : Ti → ∆(T−i) as mi(ωi) := τi(ω) ◦ π−1
−i , where π−i : Ω → T−i is the

projection. It can be seen that mi : (Ti, Ti)→ (∆(T−i), (T−i)∆) is measurable.
Now, I formally show that a player is certain of her type mapping mi in a prod-

uct type space 〈(Ti, Ti)i∈I , (mi)i∈I〉 in the sense that she is certain of her type map-
ping τi : (Ω,D) → (∆(Ω),D∆) in the corresponding type space 〈(Ω,D), (τi)i∈I〉.
Given a product type space 〈(Ti, Ti)i∈I , (mi)i∈I〉, take the corresponding type space
〈(Ω,D), (τi)i∈I〉. Since τi(ω)(E) ≥ p implies τi(ω)({ω′ ∈ Ω | τi(ω′)(E) ≥ p}) = 1
and since τi(ω)(E) < p implies τi(ω)({ω′ ∈ Ω | τi(ω′)(E) < p}) = 1, it follows that
Bp
τi

(·) ⊆ B1
τi
Bp
τi

(·) and (¬Bp
τi

)(·) ⊆ B1
τi

(¬Bp
τi

)(·). Hence, Proposition 1B (2c) implies
that player i is certain of her own type mapping τi : (Ω,D)→ (∆(Ω),D∆).
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