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ABSTRACT

We show how to build a cross-section of asset returns, that is, a small set of basis assets that capture
complex information contained in a given set of stock characteristics. We use decision trees to
generalize the concept of conventional sorting and introduce a new approach to the robust recovery
of a low-dimensional set of portfolios that span the stochastic discount factor (SDF). Constructed
from the same pricing signals as conventional double- or triple-sorted portfolios, our cross-sections
have on average 30% higher Sharpe ratios and pricing errors relative to the leading reduced-form
asset pricing models. They include long-only investment strategies that are well diversified, easily
interpretable, and that could be built to reflect many characteristics at the same time. Empirically,
we show that traditionally used cross-sections of portfolios and their combinations often present
too low a hurdle for candidate asset pricing models, as they miss a lot of the underlying information
from the original returns.
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Introduction

We develop a new way of building cross-sections of asset returns that are based on a set of

characteristics. Our method is rooted in the idea of decision trees and builds up on the appeal

of standard double and triple sorts. Unlike the classical approach, however, it is able to handle a

larger number of characteristics and their interactions at a time and deliver a set of basis assets

that reliably capture the underlying information, while staying interpretable and easy to construct.

We generalize the notion of sorting by building Asset Pricing Trees (AP-Trees) that capture all

the important information contained in the characteristics. A simple decision tree is constructed

based on a sequence of consecutive splits. For example, one could start by dividing the universe

of stocks into two groups based on the individual stock’s market cap, then within each group –

by their value, then by size again, and so on. Naturally, the nodes of such a tree correspond to

managed portfolios, created based on stock characteristics, and what is important, reflecting their

conditional impact in a simple and easily measurable way. Furthermore, relying on a different

order of the splits, or list of the variables employed, one could end up with a completely different

composition of a portfolio. As a result, a collection of all the possible decision trees forms a high-

dimensional and diverse set of possible investment strategies, with their features providing a direct

mapping into the pattern of expected returns. In other words, they form a potential set of basis

assets that span the stochastic discount factor (SDF) in an efficient and easily interpretable manner.

Sorting plays a dual role in asset pricing, providing not only the building blocks for the candidate

risk factors but also test portfolios that are used to evaluate their performance and discriminate

among the models. Many structural asset pricing frameworks are defined through a set of moment

conditions. This makes their estimation on the unbalanced noisy panel of the individual stocks with

their time-varying exposure to the SDF, often infeasible. As a result, relying on a low-dimensional

and interpretable cross-section of portfolios is often the only way to estimate the model and identify

its limitations. However, the test of the model can only be as good as the assets that represent

the underlying information set. For example, portfolios sorted by size and value are the right

benchmark to evaluate the setting aiming to capture these cross-sectional effects, if they really

reflect the information contained in the underlying characteristics. After all, if the cross-section

itself does not represent these patterns, there is little hope that the SDF, built from these portfolios,

or spanning them, will do a better job.

Inspired by the empirical success of machine learning techniques, we develop a new approach

to pruning a large set of potential portfolios and end up with a cross-section that is sparse, in-

terpretable, well-diversified, and informative about the impact of the underlying characteristics.

This means we obtain a small number of tree portfolios that can span the SDF projected on these

characteristics. Our paper generalizes the robust approach of Kozak, Nagel, and Santosh (2020) to

the SDF recovery and relies on dual shrinkage in the variance and mean to find an optimal solution.

In a large scale empirical application, we build a set of 36 cross-sections for different combina-

tions of firm-specific characteristics, and compare their performance and informational content to

that achieved by conventional triple-sorted portfolios in each of the cases. While AP-Trees could
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be used to reflect a larger set of characteristics, our main results are focused on the combinations of

three variables at a time, since this is empirically a limit for conventional sorting-based procedures

and provides a natural benchmark against which to judge our cross-sections.

We find that for every single cross-section, relative to triple sorts, the test assets constructed with

AP-Trees have dramatically higher Sharpe ratios, sometimes up to a factor of three. Importantly,

this does not come from higher loadings on conventional sources of risk: The difference in these

returns is not spanned by leading asset pricing models, and remains significant – both statistically

and economically, even when the cross-section is pitted against 11 candidate risk factors. The

resulting portfolios are well-diversified and do not load on the extreme deciles of the cross-sectional

sorts. In fact, their construction with decision trees enforces a stable and balanced composition

by default, making them fully comparable and often more diversified than triple sorts of the same

depth. Finally, we create small-dimensional (e.g., 10 – 50 assets) cross-sections of portfolios that

reflect the information contained in all 10 characteristics. Compared to an optimal use of decile-

sorted portfolios (100 assets) it doubles both the Sharpe ratio achieved out-of-sample and the alphas

associated with the SDF spanned by these portfolios. Relative to the best combinations of the size

including double-sorted portfolios,1 it offers roughly a 30% increase in both Sharpe ratios and the

SDF alpha. Most importantly, our method provides a general flexible way of building the most

informative and still interpretable cross-sections subject to various constraints which can include

the number of desired portfolios, the degree of interactions among characteristics, and restrictions

on the minimum number of shares or their total market cap, among others.

All our results are obtained out-of-sample. Martin and Nagel (2019) highlight a potentially

stark difference between the in-sample predictability reflected by traditional statistical tests and

its feasible, out-of-sample counterpart. In spirit with their work, we focus on the out-of-sample

Sharpe ratio and the alphas of the SDF, not spanned by the traditional risk factors. We show

that the main driving forces behind the superior performance of AP-Trees is a) their ability to

efficiently capture the interactions among characteristics and b) creating a set of optimally pruned

overlapping basis functions to better reflect the patterns in expected returns. We find that triple

sorts, while largely reflecting some of the true patterns in the data, present a very coarse structure

of the cross-section, and they often fail to reflect the underlying stocks.

So, how do we build a cross-section of portfolios that reflect multiple characteristics at once,

remain a feasible testing playground for structural models, and retain interpretability at the same

time? In other words, what are the basis assets?

The first key observation lies in using conditional sorts to span the universe of managed portfolios

and the diversity of “building blocks” that it naturally provides. This is particularly true for

characteristics that are cross-sectionally correlated, as changing the order of the variables used for

splits will lead to potentially different sets of basis assets. Conditional portfolio sorts, based on

a selected set of characteristics, are intuitive to build and interpret within the setting of decision

trees. First, we categorize firms into two equally sized groups according to the high/low value of a

1This is the combination of 25 size-value portfolios + 25 size-momentum portfolios + etc.
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Figure 1. Example of a conditional tree based on size and value
The figure presents an example of an AP-Tree of depth 3 based on size and book-to market. The first 50/50 split is done by size,
the second by value, and the last one by size again. The portfolio label corresponds to the path along the tree that identifies
it, with “1” standing for going left, while “2” stands for going right.

characteristic variable, for example, size. Then within each group, stocks are further split into two

smaller groups of the same dimension based on the value of some other variable, for example, value,

creating four groups in total. This step can be repeated until the desired depth of the tree d is

reached, obtaining 2d groups of stocks in total, each of the size N
2d

, where N is the total number of

stocks. The stocks in each group can then be combined into an equally or value-weighted portfolio.

Figure 1 gives an example of a conditional tree of depth 3, where stocks are first sorted by size,

then value, and then size again.

Figure 2 illustrates the difference between the kind of portfolios one could get with conditional

trees and double sorting based on the information contained in probably the most well-known

pair of characteristics: size and value. We build simple conditional trees of the same depth as

the double-sorted portfolios (i.e., each node constructed with AP-Trees contains at least 1/16 of

all the stocks at any given point of time). The outcome is staggering: The type of patterns and

strategies one could span with conditional splits, using the same level of granularity as double sorts,

is unquestionably richer. Furthermore, it directly incorporates the joint cross-sectional distribution

of characteristics: Since AP-Trees rely on sequential splits, the cutoffs are internally chosen to

give the balanced, equally populated set of assets and could never end up with empty portfolios.

Building the whole universe of potential basis assets is important, but so is reducing their dimension

to eliminate redundant strategies and identify the informative ones.

We introduce a novel way to extract a small set of basis assets capturing the key pricing infor-

mation from a large set of portfolios by carefully selecting the basis functions that span the SDF.

Finding the weights of these securities is equivalent to finding the tangency portfolio in the mean-

variance space, that is the portfolio with the highest Sharpe ratio. We find a sparse representation

of the SDF weights by including shrinkage in the mean-variance optimization problem. As our
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(a) Conditional trees (b) Double-sorting

Figure 2. Cross-sectional quantiles of the portfolio splits based on conditional trees and double
sorting with size and value.
The figure shows the unconditional quantiles in the space of characteristics (size and book-to-market) that define the portfolio
construction in AP-Trees (left) and the double-sorted cross-section (right). AP-Trees are constructed up to depth 4, that is
allowing at most four consecutive splits, based on (repeating two) characteristics, i.e., all the portfolios have at least 1/16 of all
the stocks. The figure reflects the quantiles of both final and intermediate nodes. The number of double-sorted portfolios (16)
is chosen to match the depth of the trees based on the granularity of the splits.

optimal mean-variance portfolio with shrinkage could potentially include any final or intermediate

nodes of the trees, we prune a large set of assets both in the choice of splits and their depth. Intu-

itively, applying our estimator to tree portfolios corresponds to choosing an optimal bandwidth in

a nonparametric regression, with the decision to use a finer set of nodes in spanning the SDF being

equivalent to choosing a smaller bandwidth in the characteristic space. Instead of the conventional

bias-variance trade-off for parameter estimation, however, we set up a global objective motivated

by the fundamental nature of the problem.

Our shrinkage estimator for the SDF is grounded in economic theory. We first construct a

robust mean-variance efficient frontier that accounts for uncertainty in the mean and variance

estimation, and then we trace it out to find the tangency portfolio. This approach combines three

crucial features: (a) it diminishes the contribution of the assets that do not explain enough of

common variation, (b) it includes a lasso-type term to obtain a sparse representation of the SDF,

that is selecting a small number of managed portfolios, and (c) it shrinks the estimated mean of

the tree-based sorts toward the average return. The last feature is crucial, as sample means are

characterized by massive estimation errors, and their large absolute values are often likely to be

due to noise, rather than reflecting a fundamental property of the data.

The rest of the paper is organized as follows. Section I highlights the role of sorting as a simple

nonparametric conditional estimator of expected returns and introduces conditional trees as the

collection of alternative basis assets. In Section II we describe the methodology behind Asset Pricing
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Pruning based on the shrunk mean-variance optimization. We illustrate the basic properties of our

approach with a simple simulation setup in Section III, and we provide empirical results in Section

V. Finally, Section VI concludes. Additional empirical results, as well as alternative simulation

setups, are delegated to the Appendix. The extensive Internet Appendix shows that all the main

findings generalize to other cross-sections.

Related Literature

Our paper contributes to the growing literature in asset pricing that tackles the “multidi-

mensional challenge,” as formulated by Cochrane (2011) in his AFA Presidential Address. On a

fundamental level this literature extracts basis assets with statistical and economic models that

span the SDF. The asset pricing equation has a left-hand side with the test assets that need to

be explained and a right-hand side with the asset pricing model spanned by basis assets. In the

correct formulation, both sides of the equation should include all basis assets that can span the

SDF or at least the projection of the SDF on the information set under consideration. So far this

literature has almost exclusively focused on the right-hand side of the asset pricing equation with

factor models as the most important class of asset pricing models. However, the test assets on the

left-hand side of the asset pricing equation impose a higher hurdle, as it is not sufficient to only

span the SDF, but the test assets should ideally be interpretable and long-only assets. Hence, even

if a set of statistical factors, for example based on PCA, captures the asset pricing information in

certain characteristics, it might not provide a good set of test assets, as it lacks the interpretability

of our AP-Trees. In this sense, our approach is complementary to the effort of estimating asset

pricing factors, as it pursues a different objective.

Our paper contributes to the literature of extracting the SDF. Most of these models estimate

factors by applying a version of PCA to characteristic-sorted or characteristic-projected data, which

does not offer the same interpretability as AP-Trees.2 Our shrunk mean-variance optimization

generalizes the approach suggested by Kozak, Nagel, and Santosh (2020), who estimate a small

number of SDF basis assets by solving an efficient frontier optimization problem with a lasso penalty

that selects their subset and a ridge component that shrinks the contribution of lower order principal

component assets. Our approach generalizes their estimator by applying an additional shrinkage

in the mean, the degree of which we choose optimally. As a result, we can show empirically that

the special case of Kozak, Nagel, and Santosh (2020) can be improved.3 The second differentiating

2Lettau and Pelger (2020) extend the standard principal component analysis to include a cross-sectional pricing
restriction that helps to identify weak factors, and our paper is based on a similar intuition, relying on a no-arbitrage
criterion to select the optimal tree portfolios. Kelly, Pruitt, and Su (2019) and Fan, Liao, and Wang (2016) explicitly
model stock loadings on the SDF as a function of its characteristics, and as a result apply PCA to managed portfolios
that represent linear (and nonlinear) projections of asset returns on characteristics.

3In a related paper, Garlappi, Uppal, and Wang (2007) find that estimation uncertainty has a first–order impact
on the empirical performance of the portfolio strategy, and show a unique map between different types of shrinkage
and the corresponding priors on the return distribution (for a Bayesian investor), and parameter uncertainty sets
(for a robust version of the mean-variance approach). We build on their insights and demonstrate that the methods
are tightly linked to each other within a global portfolio selection problem and can efficiently enhance each other’s
impact when used jointly.
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factor is the use of trees instead of simple sorted portfolios, linear long-short factors, or their

principal components. Shrunk tree basis functions offer an interpretable alternative to PCA. For

example, consider building a cross-section based on size and value using PCA on double-sorted

portfolios. The resulting factors are typically a market portfolio, a long-short size factor, a long-

short value factor, and some higher-order PCs capturing convexity effects in the two characteristics.

Instead, we will select long-only portfolios based on different tree cuts. One basis asset can be

the market portfolio, which is just the original node of the tree. One cut in the size dimension

results in small cap and large cap portfolios, and similar with value and growth. However, if the

relevant pricing information requires the interaction between size and value, an additional cut in

the interaction dimension would result in small value stock portfolios and other combinations (see

Figure 2). As a result, one can always trace a particular asset back to stock fundamentals. Hence,

our AP-Trees combine the advantages of PCA methods of grouping similar stocks together with

our requirement of obtaining interpretable, long-only basis assets.

A lot of pathbreaking contributions have recently been made to studying the impact of charac-

teristics on returns directly, without imposing an underlying risk model or a no-arbitrage condition.

Freyberger, Neuhierl, and Weber (2020) estimate conditional expected returns as a function of char-

acteristics with adaptive group lasso, allowing for a high-dimensional structure with nonlinearities,

but rule out the crucial interaction effects between characteristics. DeMiguel, Martin-Utrera, No-

gales, and Uppal (2019) and Feng, Giglio, and Xiu (2020) focus on characteristics–based factor

selection with a lasso-type penalty, while Gu, Kelly, and Xiu (2020b) use machine learning tech-

niques, like neural networks, to estimate asset pricing models that account for general functional

forms including interactions. Chen, Pelger, and Zhu (2019) and Gu, Kelly, and Xiu (2020a) com-

bine economic model restrictions with the flexibility of neural networks to estimate an SDF. None

of these papers, however, offers the same portfolio interpretability as our AP-Trees.

To the best of our knowledge, Moritz and Zimmerman (2016), Gu, Kelly, and Xiu (2020b), and

Rossi (2018) are the only papers relying on decision trees in estimating conditional moments of stock

returns. Moritz and Zimmerman (2016) apply tree-based models to studying momentum, while

Gu, Kelly, and Xiu (2020b) use random forest to model expected returns on stocks as a function

of characteristics. Rossi (2018) uses Boosted Regression Trees to form conditional mean-variance

efficient portfolios based on the market portfolio and the risk-free asset. Since we use decision trees

not for a direct prediction of returns but for constructing a set of basis assets that span the efficient

frontier, none of the standard pruning algorithms available in the literature is applicable in our

setting because of its global optimization nature. Section II highlights this difference further and

introduces an alternative criterion we develop for pruning.

Naturally, our paper expands the literature on constructing optimal test assets. Lewellen,

Nagel, and Shanken (2010) argue that conventional double-sorted portfolios, exposed to a small

number of characteristics, often present a low hurdle for asset pricing models due to their strong

embedded factor structure, and they recommend mixing them with other cross-sections. For a

given set of characteristics we offer an alternative set of test assets that is harder to price, as it
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extracts additional information due to inherent interactions and nonlinearities in both the impact

of characteristics on asset returns, and the distribution of the assets in the cross-section. Ahn,

Conrad, and Dittmar (2009) use return correlation to group stocks into portfolios and find that it

substantially decreases the estimation error of constructing the efficient portfolio frontier and other

objects of interest. Nagel and Singleton (2011) introduce optimal managed portfolios based on a

General Method of Moment (GMM) argument that essentially builds a set of optimal instruments

for a particular pair of the null and alternative models. Our test assets are long-only portfolios

chosen as a robust span of the SDF, projected on a given space of characteristics. As a result, while

incorporating the information about both expected returns and their comovement, they are not

designed to improve the power of the test when making inference for a particular parameter and/or

factor, but rather try to answer the question of whether a given set of basis assets is representative

of the information contained in the original stocks and their characteristics.

Finally, our pruning approach also contributes to the econometrics literature of shrunk mean-

variance estimation and nonparametric mean estimation. We offer a new perspective of mean-

variance optimization by solving the Markowitz optimization problem, that is minimizing the vari-

ance for a specific target mean return, with an elastic net penalty, and treating the target mean as

a tuning parameter. We show that this corresponds to tracing out a robust efficient frontier and

finding the portfolio with the highest Sharpe ratio under parameter uncertainty. As a result, our

estimator has three different statistical interpretations. First, it can be interpreted as robust mean-

variance optimization under uncertainty bounds on the estimated mean and variance. Second, it

has the flavor of a regression with a ridge–type shrinkage in the variance and mean, and a lasso

penalty to obtain a sparse set of coefficients. In particular, a conventional elastic net regression

(Zou and Hastie (2005)) is a special case of our approach with a different weighting in the ridge

penalty and without the mean shrinkage. Last but not least, by extending the findings of Kozak,

Nagel, and Santosh (2020), our estimator can be viewed from the Bayesian perspective as imposing

a specific prior on the mean.

I. Conditional Sorting and Trees

A conventional view of the impact of characteristics on asset returns is that they proxy for

the underlying exposure to the systematic sources of risk.4 While the characteristics of individual

companies and hence, their risk exposure can rapidly change over time, sorting-based portfolios

provide a time-varying rotation from individual securities to their baskets, not only diversifying

the idiosyncratic risk but also providing (hopefully) a time-invariant exposure to the underlying

4Fan, Liao, and Wang (2016) and Kelly, Pruitt, and Su (2019) model the conditional exposure to common risk
factors in the following way:

rext︸︷︷︸
N×1

= βt−1︸︷︷︸
N×K

Ft︸︷︷︸
K×1

+εt = g(Ct−1)Ft + εt,

where Ft are K × 1 common factors and conditional factor loadings βt−1 = g(Ct−1) are functions of a N ×L matrix
of characteristics Ct−1.
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risk factors. While it certainly restricts the functional dependency of expected returns on char-

acteristics, the ultimate goal is to move away from the individual assets and focus on the stable

underlying factor structure in the characteristic space. In this setting sorting can also be viewed

as a nonparametric estimator of expected returns on individual stocks, with a particular choice of

a kernel that corresponds to cross-sectional quantiles (see Cochrane (2011)). Cattaneo, Crump,

Farrell, and Schaumburg (2019) formalize this intuition further and derive the optimal portfolio

splits for estimating expected returns in the case of a single characteristic.

What are the shortcomings of conventional sorting-based procedures? Traditional sorting-based

methods to create portfolios rarely capture more than two or three firm-specific characteristics at the

same time. Indeed, simple intersections of unconditional sorts that form a set of nonoverlapping base

assets, quickly lead to a curse of dimensionality. For example, 25 Fama-French portfolios are based

on the intersection of two unconditional sorts, each into five groups (by size and value), and then

take the intersections to generate 25 groups. For three characteristics (keeping the depth constant),

the same approach would attempt to already create 125 portfolios, some of which are poorly

diversified or even empty. In practice, this type of method never goes beyond triple sorting since

the number of stocks in each group decreases exponentially with the number of sorting variables.

The only feasible alternative is to stack a set of double-sorted cross-sections against each other,

which rapidly increases the dimensionality and has no fundamental basis behind it. In other words,

the standard methodology finds it challenging to create a set of assets that not only adequately

reflects the information contained in a prespecified list of characteristics, especially when one needs

to specify their joint impact on the underlying structure of expected returns.

Our novel methodology of AP-Trees alleviates the curse of dimensionality and provides an al-

ternative, more informative set of basis assets. First, we use a large set of conditional sorts to define

all the potential “building blocks” that form the base of the SDF. This is a natural extension of

the standard sorting-based methodology and works particularly well when the underlying charac-

teristics have a complex joint distribution, characterized by substantial cross-sectional dependence.

Then, we use a shrinkage-based approach to globally prune the trees and find an interpretable,

sparse, and stable subset of the assets spanning the SDF. The second step is crucial: an optimal

cross-section of portfolios depends not only on the spread of the expected returns identified through

characteristic-based sorting, as well as their joint dynamics and comovement. This interplay be-

tween the first and second moments is fundamental for our objective and sets it apart from the

standard prediction-based literature.

Conditional portfolio sorts, based on a selected set of characteristics, are intuitive to build and

interpret within the setting of decision trees. Figure 1 gives an example of a conditional tree of

depth 3, where stocks are first sorted by size, then value, and then size again. Conditional splits

are built using the information at time t, and hence, similar to double sorting, can easily handle an

unbalanced panel of stocks. At time t, all the stocks that have valid size and value information from

t− 1 (or previous periods), are first sorted into groups 11 and 12 based on their size at t− 1. Then

group 11 is further split into 111 and 112, and group 12 is split into 121 and 122. The key point here
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is that the marginal splitting value for groups 11 and 12 might not be equal to the unconditional

median, since they are based on the conditional information of the previous size split. Lastly, the

four groups 111, 112, 121, and 122 are each further split into two portfolios each, to form eight

level-three portfolios. The notation of each node is therefore reflecting a chosen path along the tree

with a specified list and order of the split criteria.

If stock-specific characteristics are independent, the order of the variables used for splits does

not matter, and we end up with the same quantiles for splits as double sorting. Unconditionally,

the cumulative density function of each characteristic has a uniform distribution. However, it is

well known empirically that characteristics have a complicated joint relationship that question the

validity of coarse double sorting as an appropriate tool to reflect expected returns. For example,

Figure E.1, Panel A, shows the sample distribution of characteristics in the cross-section of stocks

and their conditional and unconditional impact on expected returns for two examples: size/value

and size/accruals. On average, there seems to be a negative cross-sectional correlation between

size and book-to-market with a clear clustering around the north west and south east corners.5

As a result, double-sorted portfolios are heavily unbalanced across the characteristic spectrum.

Depending on the pair of characteristics, their joint distribution could exhibit very different shapes

and relationships that are far from a simple linear correlation structure.

However, it is not only the dependence structure of the characteristics that substantially affects

sorting-based portfolios but also their price impact, which is often highly nonlinear and full of inter-

actions.6 For example, it is well known that the value effect is not homogenous across the different

size deciles of the securities, and it is particularly strong for the smallest stocks. At the same time,

the impact of accruals is almost flat for large stocks. However, medium and small securities reveal

a striking inverted U-shape pattern. Figures E.1 and E.2 in the Appendix further demonstrate dif-

ferent cross-sectional distributions of characteristics and their conditional and unconditional effect

on expected returns, which sometimes are parallel to each other, speaking to the additive nature

of the data-generating process, but often are not.

Since characteristics are generally dependent and have a nontrivial joint impact on expected

returns, the order of the variables used to build a tree and generate conditional sorts matters. In

fact, each sequence used for splitting the cross-section generates another set of 2d portfolios. If we

denote the number of sorting variables by M , then there are Md different combinations of splitting

choices, and we end up with Md · 2d (overlapping) portfolios, each consisting of N
2d

stocks (which

does not depend on M). Naturally, these portfolios (both final and intermediate leaves of the tree)

can capture at most d-way interactions between sorting variables.

To sum up, in case of independent characteristics, conditional trees lead to creating portfolios

in line with the double sorting methodology. However, if the underlying distribution is in fact

5In part, this is mechanically arising due to the market size of the company being in the denominator of the B/M
fraction.

6See, e.g. Freyberger, Neuhierl, and Weber (2020) for the use of adaptive group lasso to estimate the nonlinear
impact of characteristics on expected returns, Gu, Kelly, and Xiu (2020b) and Chen, Pelger, and Zhu (2019) for the
machine learning approach.
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dependent, the collection of all possible conditional splits delivers a multitude of basis assets that

are fundamentally different from those created with double sorting, that, as a result, could span a

different type of SDF.

II. Asset Pricing Pruning

AP-Trees form the set of basis assets that reflect the relevant information conditional on char-

acteristics and could be used to build the SDF. However, using all the potential portfolios is often

not feasible due to the curse of dimensionality: Their number grows exponentially with the depth

of the tree. For example, two characteristics in a tree of depth 3 produce 23 subtrees, each having

23 portfolios, and a total set of 64 overlapping basis functions. Using three characteristics with

the depth of 3 (4) results in 33 · 23 = 216 (1296) nodes. Finally, with 10 characteristics and depth

of 3, the total number of basis portfolios explodes to 8,000, which makes it impossible to use in

some applications and creates a lot of redundancy in others. Hence, we introduce a technique to

shrink the dimension of the basis assets, with the key goal of retaining both the relevant information

contained in characteristics and portfolio interpretability.

Despite the existence of many conventional ways to prune a tree, available in the machine-

learning literature, they are not applicable in our setup. Fundamentally, the key reason for that is

that asset pricing is a global problem and cannot be handled by local decision criteria. For example,

in a mean-variance optimization problem, the optimal weights can only be found by considering

the complete covariance matrix of assets and not just expected returns and correlations between

two individual securities. The conventional way to prune a tree, a bottom-up approach, would

work only if the current split does not affect the process of decision-making in other nodes or in

the language of mean-variance optimization if tree portfolios from different parts of the tree are

uncorrelated, which is, of course, generally not the case.

Our new approach,“Asset Pricing Pruning”, selects the AP-Tree basis functions with the most

non-redundant pricing information that could span the SDF. Since the problem is generally equiv-

alent to finding the tangency portfolio with the highest Sharpe ratio in the mean-variance space,

we focus on its sparse representation. Importantly, we consider both final and intermediate nodes

of the trees, which leads to an SDF representation that adapts its degree of sparsity in both depth

and types of the splits.

A. Robust SDF Estimation

We find SDF weights by solving a mean-variance optimization problem with elastic net shrinkage

applied to all final and intermediate nodes of AP-Trees. This approach combines three crucial

features7:

7Including shrinkage is also necessary to deal with the challenge that the number of portfolios N is large relative to
the number of time periods T . In this case, it is well-known that the naively estimated tangency portfolio can deviate
significantly from the true population weights. One fundamental problem is the estimation of a large dimensional
covariance matrix where the number of parameter is of a similar order as the convergence rate based on T . Hence, the
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1. It shrinks the contribution of the assets that do not help in explaining variation, implicitly

penalizing the impact of lower order principal components.

2. It shrinks the sample mean of tree portfolios towards their average return, which is crucial,

since estimated means with large absolute values are likely to be very noisy, introducing a

bias.

3. It includes a lasso-type shrinkage to obtain a sparse representation of the SDF, selecting a

small number of AP-Tree basis assets.

We summarize the properties of AP-Pruning in Propositions 1 to 3. The formal mathematical

statements, detailed derivations and description of the implementation are in Appendix A.

The search of the tangency portfolio can effectively be decomposed into two separate steps.

First, we construct a robust mean-variance efficient frontier using the standard optimization with

shrinkage terms. Then, we select the optimal portfolio located on the robust frontier: we find the

tangency portfolio on the validation data set which has not been used in the first step.

Consider the whole cross-section of excess returns on the portfolios built with AP-Trees, and

denote their sample estimates of mean and variance-covariance matrix by µ̂ and Σ̂. For each

target expected return µ0, we find the minimum variance portfolio weights ω̂robust with an elastic

net penalty. This is the classical Markowitz problem with additional shrinkage. All the tuning

parameters, that is the target mean µ0, the lasso weight of λ1, and ridge with λ2 are treated as

fixed at this step, and chosen separately on the validation data set. In other words, the estimation

proceeds as follows8:

DEFINITION 1: 1. Mean-variance portfolio construction with elastic net:

For a given set of values of tuning parameters µ0, λ1 and λ2, use the training dataset to solve

minimize
1

2
w>Σ̂w + λ1||w||1 +

1

2
λ2||w||22

subject to w>1 = 1

w>µ̂ ≥ µ0,

where 1 denotes a vector of ones, ‖ω‖22 =
∑N

i=1 ω
2
i and ‖ω‖1 =

∑N
i=1 |wi|, and N is the

number of assets.

estimation errors in each entry become non negligible when inverting the sample covariance matrix. The literature
has proposed several ways to deal with this issue, including a low rank factors structure, e.g., in Fan, Liao, and
Mincheva (2011), shrinkage of the covariance matrix to a diagonal matrix, e.g., Ledoit and Wolf (2004), or using a
lasso-type penalty in the mean-variance estimation to obtain sparse portfolio weights, e.g., Ao, Yingying, and Zheng
(2018). Fundamentally, all these approaches reduce the dimensionality of the parameter space. In our setup the
variance shrinkage to a diagonal matrix by the ridge penalty and the sparse SDF weights due to lasso take care of
the large N and T issues. Note that the sparse structure in our SDF weights puts us implicitly into a small N and
large T environment that circumvents the dimensionality issues.

8Note that the two-step approach for finding a robust tangency portfolio is a method that is not specific to using
tree-based basis assets, but can be applied to any potential cross-section. However, we argue that it is particularly
appealing when using AP-Trees, as it obtains a small number of interpretable basis assets, which are selected from a
larger set of potentially highly correlated portfolios. While there are other techniques that could efficiently handle a
case of highly correlated securities, like PCA, they often lack interpretability, and hence, investigating a failure of a
given candidate model to price them could be challenging at best.
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2. Tracing out the efficient frontier: Select tuning parameters µ0, λ1 and λ2 to maximize the

Sharpe ratio on a validation sample of the data.

Without imposing any shrinkage on the portfolio weights for the SDF, the problem has an

explicit solution, ω̂naive = Σ̂−1µ̂. Our estimator is a shrinkage version as specified in Proposition 1.

PROPOSITION 1 (Robust Mean-Variance Optimization): Tracing out the efficient frontier (with-

out an elastic net penalty, λ1 = λ2 = 0) out-of-sample to select the tangency problem is equivalent

to applying conventional in-sample mean-variance optimization but with a sample mean shrunk

toward the cross-sectional average. It results in the weights

ω̂robust = Σ̂−1 (µ̂+ λ01) ,

with a one-to-one mapping between the target mean µ0 and mean shrinkage λ0. The robust port-

folio is equivalent to a weighted average of the naive tangency portfolio and the minimum-variance

portfolio.

Tracing out the robust efficient frontier out-of-sample that it includes a ridge penalty (i.e.,

no lasso penalty, λ1 = 0, but general λ2) is equivalent to conventional in-sample mean-variance

optimization but with a shrunk sample mean and a sample covariance matrix shrunk toward a

diagonal matrix. It has the weights

ω̂robust =
(

Σ̂ + λ2IN

)−1
(µ̂+ λ01) .

Our approach generalizes the SDF estimation approach of Kozak, Nagel, and Santosh (2020) by

including a mean shrinkage to the variance shrinkage and sparsity. We show that tracing out the

whole efficient frontier is generally equivalent to different levels of shrinkage on the mean return,

and generally does not have to be zero, which is imposed in Kozak, Nagel, and Santosh (2020).

In fact, using cross-validation to find the optimal value of this shrinkage for a set of 36 different

cross-sections we build in the empirical application, we find that it in most cases it is not equal to

0. Intuitively, since the estimation of expected returns is severely contaminated with measurement

error, it is likely that extremely high or low rates of return (relative to their peers) are actually

overestimated/underestimated simply due to chance, and, hence, if left unchanged, would bias the

SDF recovery.9

PROPOSITION 2 (Robust SDF Recovery): The robust mean-variance optimization in Definition

1 generalizes the robust SDF recovery of Kozak, Nagel, and Santosh (2020). It is equivalent to

applying the robust SDF recovery to the sample covariance matrix and the sample mean vector

shrunk toward the cross-sectional average mean. It is identical to the SDF recovery of Kozak,

9The same reasoning underlines the use of the so-called adjusted stock betas by Bloomberg that shrink their
sample estimates toward 1, the average in the overall cross-section:

β̂adj = 0.67× β̂sample + 0.33× 1.

12



Nagel, and Santosh (2020) for the mean shrinkage of λ0 = 0 or if the sample covariance matrix is

a diagonal matrix. In the second case, the robust SDF weights equal10

ω̂robust =
(

Σ̂ + λ2IN

)−1
(µ̂− λ11)+ .

In the general case of a non-diagonal sample covariance matrix the solution on the active set, that

is for the non-zero values of ωi are characterized by the following:[(
Σ̂ + λ2IN

)
ω̂robust

]
i

= µ̂i + λ0 − λ1sign(ω̂robust,i) for i in the active set.

For the special case of λ0 = 0 this is identical to the corresponding first order condition of Kozak,

Nagel, and Santosh (2020). The robust SDF of Kozak, Nagel, and Santosh (2020) can be interpreted

as a portfolio on the robust efficient frontier, which is not necessarily the tangency portfolio.

Our estimator can also be interpreted as a robust approach to the mean-variance optimization

problem, when there is estimation uncertainty about the mean and variance-covariance matrix of

returns. Each type of shrinkage has a one-to-one correspondence to a specific type of uncertainty

in the estimation.11

PROPOSITION 3 (Robust Estimation Perspective): The robust mean-variance optimization in

Definition 1 is equivalent to finding the mean-variance efficient solution under a worst case outcome

for estimation uncertainty. Given uncertainty sets for the achievable Sharpe ratio SSR, estimated

mean Sµ and estimated variance SΣ, the robust estimation solves

min
w

max
µ,Σ∈SSR∩Sµ∩SΣ

w>Σw s.t. w>1 = 1, w>µ̂ = µ0.

Each shrinkage has a direct correspondence to an uncertainty set: Mean shrinkage provides robust-

ness against Sharpe ratio estimation uncertainty, variance shrinkage governs robustness against

variance estimation uncertainty, and lasso controls robustness against mean estimation uncer-

tainty. A higher mean shrinkage can also be interpreted as a higher degree of risk aversion of

a mean-variance optimizer.

In summary, splitting the original optimization problem into two steps has three different sta-

tistical interpretations. First, there is the actual shrinkage in the estimated mean relative to the

naive solution of the tangency problem. Second, it can be interpreted as a robust estimation un-

der parameter uncertainty. Finally, since our approach generalizes the logic of Kozak, Nagel, and

Santosh (2020), we also benefit from their Bayesian interpretation of building the SDF.

10We define (x)+ = max(x, 0), and sign(x) is the sign of x.
11Individually, lasso, ridge, and shrinkage to the mean, have been successfully motivated with both robust control

and a Bayesian approach to portfolio optimization with a specific choice of uncertainty sets/priors, and have led to
empirical gains in a number of applications (see, e.g., Garlappi, Uppal, and Wang (2007) or Fabozzi, Huang, and
Zhou (2010) for a review).
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B. A Toy Simulation

We are illustrating the effect of shrinkage with a simple simulation example that considers

only mean shrinkage. Recall that shrinking the cross-section of expected returns towards their

mean is equivalent to shrinking the in-sample tangency portfolio toward the minimum variance

one, which is easiest to see without any additional types of shrinkage (i.e., λ2 = λ1 = 0): ω̂robust =

αµ0ω̂naive + (1− αµ0)ω̂var. The weights ω̂naive correspond to the naive tangency portfolio and ω̂var

to the minimum variance portfolio. Note that there is a one-to-one mapping between αµ0 , the

mean shrinkage λ0 and the target return µ0. As with other shrinkage estimators, the main idea

underlying the use of this weighting is a trade-off between the mean and the variance: Whenever

the estimation error in expected returns is large enough, using naive optimal sample weights will

lead to a substantial instability, especially out-of-sample. It could therefore be optimal to shrink

the SDF weights toward a more feasible portfolio that does not rely on the poorly estimated returns

– the minimum variance portfolio. As long as the original measurement error is large, relative to

the actual spread in returns, decreasing the variance through shrinkage to the mean will lead to a

gain in the overall Sharpe ratio, moving the frontier closer to the actual optimum.

To illustrate the impact of shrinkage explicitly, we shut down all the additional sources of

uncertainty, and focus on the case where there is a cross-section of n independent portfolio returns

with known variance, however, different (and unknown to the investor) expected returns as follows:

R ∼ i.i.d. N(µi, nσ
2), i = 1, ..., n,

where µi ∼ U [0, 1] and σ = 1. The variance of the returns is scaled by n, the number of stocks, to

make sure that it does not disappear for a well-diversified portfolio of stocks.

After observing the sample of Ttrain return realizations on the training dataset, an investor

uses the estimated sample mean to make his portfolio decision, which we evaluate out-of-sample.12

Note, that while on average the sample mean estimates are unbiased, in a given cross-section of

n stocks some of them will be biased upward, while others downwards, which in case of the naive

asset allocation will overweight and underweight the assets accordingly. We consider the following

set of potential asset allocations:

ω̂naive =
1

1>µ̂
µ̂, ω̂true =

1

1>µ
µ, ω̂robust = (1− α)ω̂naive + αω̂var = (1− α)

1

1>µ̂
µ̂+ α

1

1>1
1

for a range of α ∈ {0.2, 0.5, 1}. Once the allocations are fixed, we observe a different realization of

returns over the out-of-sample period Ttest.

Figure 3 shows the distribution of the out-of-sample Sharpe ratios, achieved by different allo-

cation strategies simulating each time-series for 1,000 times. The risk-return trade-off, achieved by

12Note that in this simple simulation setup the estimates of the expected returns can be simulated as µ̂i ∼
µi + 1√

Ttrain

N(0, nσ2). Similarly, the average returns over the out-of-sample period Ttest can be simulated as

µ̂i ∼ µi + 1√
Ttest

N(0, nσ2).
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Figure 3. Distribution of out-of-sample Sharpe ratios, achieved with shrinkage-based allocations.
The figure presents the out-of-sample distribution of Sharpe ratios for investment strategies, designed to reflect the tangency
portfolio. The empirical densities characterize the oracle investment strategy (true tangency, denoted by purple), the naive one
(based on the in-sample estimates of average returns, denoted by orange), and the set of shrinkage based-strategies that rely
on shrinking the in-sample average returns toward their cross-sectional average (20%, 50%, and 100%, correspondingly). 100%
shrinking corresponds to the minimum variance portfolio. Ttrain = 100, Ttest=1000, n = 50, with the densities computed for a
sample path.

naive, in-sample weights for the tangency portfolio, is generally subpar to both the shrinkage-based

strategies, and obviously, the true tangency portfolio. Note, that while a modest amount of shrink-

age (20-50%) helps to get closer to the unbiased estimates of the Sharpe ratio, a strong degree of

it is harmful, since such an asset allocation disregards all the information in expected returns.

Empirically, the optimum amount of shrinkage (toward the mean, as well as lasso and ridge)

are chosen on the validation dataset, keeping all the parameter estimates (portfolio weights, as a

function of shrinkage) constant. As a result, it essentially searches across the out-of-sample scenarios

and picks the optimal values that get closer to the actual, infeasible, fully unbiased estimation.

C. Pruning Depth

Our portfolio selection approach prunes the AP-Tree in both depth and width, since we include

all the intermediate and final nodes in the robust mean-variance portfolio selection. Hence, our

selected tree portfolios can be higher-level nodes without further splits. As an example consider a

univariate sorting with only one characteristic and depth 2. If only high values of the characteristics

have an effect on mean returns, the low level of characteristics can be grouped together in one large

portfolio. In this example, a possible selection could be a subtree of depth 1 for lower values that

has 50% of the observations and two subtrees of level four for high values that each have 25% of

the stocks.

Figures 4 and E.6a further illustrate the importance of pruning in depth of the tree, which

amounts to selecting larger, denser portfolios. In the case of a single characteristic, simple univariate

sort with the same population density as the tree of depth 3, would yield eight portfolios that are
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equally spaced from each other in the characteristic space, similar to the standard decile-sorted

portfolios. In contrast, depending on the data-generating process, pruning the tree could yield a

simple cross-section of a smaller set of assets, some of which are retained from original octiles, while

others come from the intermediate nodes of the tree, essentially merging higher level nodes, as long

as there is not enough informational gain from doing such a split.13 In the particular example of

the selection in Figure 4, the algorithm ended up including only one node based on the single octile

of the stock distribution, while the rest of the portfolios were much denser, including two, four, or

eight times more stocks than the original selection. Why does it happen?

Panel A: A cross-section of octile-sorted portfolios

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
cross-sectional

quantile

Portfolio 1

Portfolio 2

Portfolio 3

Portfolio 4

Portfolio 5

Portfolio 6

Portfolio 7

Portfolio 8

Panel B: A cross-section of octile-sorted portfolios after pruning

0 1/8 2/8 3/8 4/8 5/8 6/8 7/8 1
cross-sectional

quantile

Portfolio 1 Portfolio 3Portfolio 2

Portfolio 4

Portfolio 5 (the whole market)

Figure 4. Selection of basis portfolios through pruning
The figure presents an example of the depth of pruning for a set of eight portfolios, sorted by a single characteristic. Standard
double-sorting (Panel A) corresponds to the quantiles that form eight equispaced portfolios and eight test assets correspondingly.
Panel B presents one of the potential outcome from applying pruning, resulting in five portfolios with portfolio sizes that range
from 1/8 to 100% of all the stocks.

The problem of split selection fundamentally reflects the trade-off between the estimation error

and bias. Tree portfolios at higher (intermediate) nodes are more diversified, naturally leading to a

smaller variance of their mean estimation, and so forth, while more splits allow to capture a more

complex structure in the returns at the cost of using investment strategies with higher variance.

To mitigate this trade-off, we use the weighting scheme inspired by the properties of the GLS

estimator. The idiosyncratic noise in each of the tree portfolios is diversified at the rate 1
Ni

where

Ni is the number of stocks in tree portfolio i. Hence, the optimal rate to weight each portfolio is
√
Ni. An equivalent approach would be to simply weight each portfolio by 1√

2di
, where di is the

depth of portfolio i in the tree.14

The selection of depth in an AP-Tree can be interpreted as the choice of bandwidth in a non-

13An illustration of potential pruning output for the case of two characteristics can be found in Figure E.6.
14Note that the number of stocks in each month is time-varying and, hence, the depth is the most natural invariant

statistic to account for differences in diversification.
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parametric estimation. Our AP-Tree chooses the optimal bandwidth based on an asset pricing

criterion. If lower level splits are removed in favor of a higher-level node, it implies that the split

creates redundant assets. It can be interpreted as choosing a larger bandwidth, which reduces the

variance. Removing higher-level nodes and splitting the portfolios into finer level, corresponds to

a smaller bandwidth,which reduces the bias.

AP-Pruning is based on a similar insight as PCA but offers alternative basis assets that are

interpretable while sharing the key features of PCA. The first node in our AP-Tree is always a

value-weighted market portfolio. The first split results in portfolios with 50% of the stocks whose

returns are multiplied by 1√
2

to account for the higher variance. Note that this re-weighting relies

on the similar arguments as the PCA weighting in Kozak, Nagel, and Santosh (2020), where all the

assets are multiplied by the eigenvectors of the covariance matrix, and, hence, portfolio selection

is done in the PCA space. The first PC is usually an equally weighted market factor and is scaled

by
√
N , as the market affects by construction most of the N assets in the sample. A PC loading

on only half of the stocks is then naturally scaled by
√

N
2 , similar to our tree portfolios of depth 1.

In other words, the presence of higher order nodes have the same effect as higher-order PCs: They

offer a chance at achieving a high rate of return, however, at a cost of larger estimation error and

noise. In contrast to the PCs, however, tree-based asset returns are long-only portfolios, which are

easy to trace back to the fundamentals and interpret.15

In summary, rescaling tree portfolios by the efficient weight ensures an optimal trade-off between

the bias and variance and the selection of higher-order nodes, whenever additional splits are not

beneficial overall, and it works by grouping together stocks that have the same exposure to the

SDF.

III. Illustrative Simulation Example

We illustrate the benefits of using tree-based portfolios in uncovering the patterns of expected

returns in the characteristic space and the efficiency of our pruning approach with a simple simu-

lation that is designed to capture some of the stylized features of the data.

Suppose there is a single factor that drives expected returns on a cross-section of stocks, with

loadings being a function of two stock-specific characteristics, as follows:

Ret+1,i = βt,iFt+1 + εt+1,i.

In our simple model the factor follows Ft
i.i.d.∼ N (µF , σ

2
F ) and the idiosyncratic component εt,i

i.i.d.∼
N(0, σ2

e). In the main text, we model the risk loadings as a linear function of characteristics

βt,i = C
(1)
t,i +C

(2)
t,i . Motivated by a wide range of empirical patterns in the joint empirical distribution

of characteristics and their impact on expected returns, we consider nonlinear formulations for the

15Alternatively, one could compare our pruning in depth approach to switching between lasso and group lasso,
where, depending on the underlying characteristics, the algorithm automatically switches between selection among
the underlying variables and their groups.
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Panel A: Beta patterns, spanned by double-sorted portfolios
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Panel B: Beta patterns, spanned by AP-Trees

Figure 5. SDF loadings (betas and expected returns) as a function of characteristics in a linear
model.
Loading function β as a function of the two characteristics in the linear model for different levels of correlation in the character-
istics. The top plots show the loadings estimated with double-sorted portfolios and the bottom plots the corresponding results
with pruned AP-Trees.

risk-loadings in Appendix B, which lead to the same insight as the simple linear model.

We model stock characteristics as quantiles of the cross-sectional distribution and allow for their

potential dependence, as follows:

(C
(1)
t−1,i, C

(2)
t−1,i)

i.i.d.∼ Corr-Uniform[0, 1, ρ],

where Corr-Uniform[0, 1, ρ] denotes a pair of uniformly distributed random variables that have

correlation ρ and marginal densities U [0, 1]. To model the impact of characteristic dependence on

the portfolio structure, we consider three cases: ρ ∈ {0, 0.5, 0.9}. The details for other parameters

are in Appendix B.

We build double-sorted portfolios (DS), based on two characteristics distributed on a 4×4 grid,

which creates a cross-section of 16 portfolios. Similarly, we build AP-Trees with a depth of 4, so

that each portfolio consists of at least 1/16th of all the stocks and has a similar granularity as

the double-sorted cross-section. We set cross-sectional dimensions to N = 800, T = 600. In line

with the strategy used for our empirical applications, we rely on the first Ttrain = 240 time series

observations for training, the next Tval = 120 for parameter validation, and the last Ttest = 240

observations to form the actual dataset for studying model performance. Once all the portfolios
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have been constructed (and in the case of AP-Trees, pruned to the set of 20 potentially overlapping

basis assets) we estimate stock betas spanned by these basis assets.

Our focus is the estimation of the stock loadings βt,i on the SDF, because they incorporate all

the relevant information for asset pricing. Figure 5 presents the scaled version of the estimated

SDF betas (and hence, conditional expected returns) for different basis assets. Similar to the way

portfolio buckets are used to estimate expected returns, we compute security betas by averaging

the stock betas that belong to the same portfolios (and in case of the trees, averaging across the

overlapping portfolios). The pattern in expected returns is quite striking. Ideally, it should be

close to the one used to generate the data (Figure E.4, left two plots). However, in practice there

is a substantial difference between the type of shapes and figures one could get with double-sorted

portfolios relative to those reflected by conditional trees. The difference remains substantial even in

the simplest case of independent characteristics, where both tree-based portfolios and double-sorted

ones are most similar to each other, having 1/16 of all the stocks. Clearly, averaging betas across

conditional basis assets allows tracking the underlying SDF loadings in a the characteristic space.

Why does the correlation between characteristics matter? Double-sorted portfolios are based on

the unconditional quantiles of the cross-sectional distribution of characteristics, and, hence, could

naturally lead to rather unbalanced composition of the basis assets. For example, for the case of

ρ(C
(1)
i , C

(2)
i ) = 0.9, the joint density of stocks located in the north west and south east corners of

the characteristic space is particularly low, therefore, averaging expected returns of these securities

produces a much noisier estimate compared to the other areas of the grid. In contrast, conditional

quantiles, similar to the nearest neighbor predictor in nonparametric econometrics, adapt their

bandwidth to the density of the data. This explains the difference in shapes across the AP-Trees

basis assets as we change the correlation between characteristics.

For the sake of brevity, we have discussed here results for the case of linear factor loadings and

present additional findings in the Appendix. To summarize, even for the case of factor loadings,

linear in characteristics we find that: (1) Overall, conditional sorts build portfolios that provide a

substantially more accurate reflection of expected returns in the characteristic space and remain

fully interpretable. (2) The higher is the correlation among characteristics, the larger is the benefit

of using conditional sorts.

IV. Data

We obtain monthly equity return data for all securities on CRSP and construct decision tree-

sorted portfolios using firm-specific characteristics variables from January 1964 to December 2016,

yielding 53 years total. One-month Treasury bill rates are downloaded from the Kenneth French

Data Library as the proxy for the risk-free rate to calculate excess returns.

To build the sorting variables for the decision trees, we have constructed 10 firm-specific char-

acteristics as defined on the Kenneth French Data Library.16 All these variables are constructed

16We are currently working on extending the results to 45 characteristics.
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from either accounting variables from the CRSP/Compustat database or past returns from CRSP.

Monthly updated variables are updated at the end of each month for use in the next month. Yearly

updated variables are updated at the end of each June following the Fama-French convention. The

full details on the construction of these variables are in the Appendix.

AP-Trees can naturally deal with missing values and do not require a balanced panel of firm

characteristics or returns. Since we have collected all available data, it is not surprising that

there will be missing values either due to database errors or other technical issues. For our tree

portfolios sorted on a set of M characteristics variables, any stock that has a valid return on time

t, market capitalized at the end of t − 1 (for value-weighting purpose), and all M characteristic

variables observable by the end of t − 1 are included to construct the portfolio return at time

t. For example, the tree portfolios return at time t sorted on two characteristics BEME and OP

requires return information on time t and valid LME, BEME, and OP at t − 1. A stock missing

Investment information at t − 1 will still be included in such tree portfolios. By this construction

with unbalanced panel data, we avoid not only the bias introduced from imputation but also

partially alleviate the survivorship bias.

Our main analysis focuses on triple-interacted characteristics, because this is the only case

where we have a natural counterpart in creating a cross-section: triple-sorted portfolios. We report

the results for size interacted with any of the two other characteristics, which results in a total of

36 cross-sections.

V. Empirical Results

A. Estimation and Hyperparameter Tuning

To minimize the possibility of overfitting, we divide all the data into three samples: training,

validating, and testing datasets. By fixing the portfolio structures estimates from the training

sample, and by optimally choosing the tuning parameters on the validating dataset, we focus on

the out-of-sample behavior of triple-sorted portfolios vs. those produced by pruned AP-Trees, and

the SDFs, spanned by different basis assets. We consider a cross-section of portfolios, constructed

with AP-Trees with depth 4, and its closest analogue in the standard methodology: 32 and 64

triple-sorted portfolios.17 All the portfolios are value-weighted. For additional robustness, we also

exclude all the level 4 nodes that are sorted only on one characteristic to avoid going into extreme

tails of the distribution without interaction with other variables. As an example, from the set of

tree portfolios generated for size, value, and turnover, we exclude all the nodes corresponding to a

single 1/16th quantile of any of these characteristics.

Training sample. We use the first 20 years of data (1964 – 1983, or 240 monthly observations)

to form AP-Trees of depth 4, and estimate the vector of average returns and the covariance matrix

for both final and intermediate nodes that are then used to construct an efficient frontier with

1732 triple-sorted portfolios consider only a 50/50 split based on size, while 64 portfolios reflect all three charac-
teristics in a similar way, and hence could provide a somewhat more justified benchmark for AP-Trees.
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Figure 6. Timeline of the empirical strategy

The SDF weights and portfolio components are estimated on the training data (first 20 years). The shrinkage
parameters are chosen on the validation data (10 years). All performance metrics are calculated out-of-sample on
the testing sample (23 years).

elastic net. For different levels of shrinkage (lasso and ridge) and target expected return, we find

the optimal test assets and the SDF spanned by them with the corresponding weights. The same

is done for triple-sorted portfolios, where we also use the elastic net to construct robust portfolio

weights to mitigate the impact of estimation noise and sample variation. In other words, we

allow triple-sorted portfolios to also benefit from the stability of shrinkage. This makes the overall

comparison more fair and allows us to focus on the direct impact of using different basis assets to

span the SDF.

Validating sample. The middle 10 years (1984 – 1993, 120 monthly observations) of returns

serve as the validation set for hyperparameter tuning: We pick the model based on Sharpe ratio of

the tangency portfolio on the validation dataset, fixing the SDF weights at their training values.

Table ?? reports the hyperparameters we used for the SDF construction. For each combination

of (λ0,K, λ2) the lasso penalty λ1 is chosen such that the number of non-zero weights reaches the

target number K. In particular, we tune the value of λ1 for AP-Trees to select 40 portfolios, which

makes the dimension of pruned trees comparable to Fama-French triple-sorted 32 and 64 portfolios.

Testing sample. The last 23 years of monthly data are used to compare basis assets, recovered

by AP-Trees and triple-sorting. We fix portfolio weights and their selection at the values, estimated

on the training sample, and tuning parameters chosen with the validation, making, therefore, all the

performance metrics effectively out-of-sample. We focus on Sharpe ratios and portfolio performance

in the spanning tests, and compute all the statistics on the testing sample only.

B. Evaluation Metrics

Our main goal is to compare the performance of tree-based portfolios with the information

spanned by triple-sorted portfolios. Therefore, we focus on the following cross-sections:

• AP-Trees: The pruned version of AP-Trees, consisting of 40 basis assets, selected from the

final and intermediate nodes, based on conditional sorting with depth 4;

• TS (32): The 32 triple-sorted portfolios are constructed the same way as Fama-French triple-

sorted portfolios for the combinations of three characteristics, that is, by combining a single

cut on size and two splits in the other two characteristics.

• TS (64): The 64 triple-sorted portfolios that have two splits on all three characteristic di-

mensions, leading to a set of 4× 4× 4 basis assets.
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We evaluate the pricing information of these basis assets in two different dimensions: First,

how much of the investments opportunities are spanned by different basis assets?18 Second, how

well can these basis assets be priced by conventional factor models, that is whether achievable

Sharpe ratio really comes from loading on the conventional sources of risk, or something that is not

spanned by them. We run the standard asset pricing tests of different cross-sections built on the

same characteristics against the most popular reduced form models:

• FF3: Fama-French three-factor model with a market, size and value factor;

• FF5: Fama-French five-factor model, which adds an investment and profitability factor to

FF3;

• XSF: a cross-section specific model that includes the market factor, and three long-short

portfolios, corresponding to the three characteristics used to build a cross-section. In order

to build the factors, we use the same approach as used in constructing HML, momentum, or

other conventional long-short portfolios.

• FF11: an 11-factor model, consisting of the market factor and all 10 long-short portfolios,

based on the full list of characteristics.

For each combination of characteristics (36 cross-sections) we report the following:

1. SR: The out-of-sample Sharpe ratio of the SDF constructed with AP-Trees, TS(32), and

TS(64). In each case we use the mean-variance efficient portfolio with optimal shrinkage.

2. α: The t-statistics of the SDF pricing error α, obtained from an out-of-sample time-series

regression of the corresponding SDF on different factor models. Note that since the mean of

the SDF is generally not identified, we focus on the t-statistics, corresponding to its alpha,

which leads to a more balanced comparison across different cross-sections.

3. αi: Pricing errors for individual basis assets that are estimated from a time series regression

of portfolio returns on a set of candidate factors. Note that these pricing errors are specific

to a choice of cross-section, portfolio, and test model.

4. XS-R2 The cross-sectional R2 is the adjusted cross-sectional pricing error for the basis assets

defined as

R2 = 1− N

N −K

∑N
i=1 α

2
i∑N

i=1E[Ri]2
.

We use the uncentered version of R2 to make sure it captures the pricing errors that are not

only relative to the other assets but also specific to the overall cross-section of securities, so

it reflects both common and asset-specific levels of mispricing.

18Alternatively, we could also measure the information content of different cross-sections by the Hansen-
Jagannathan distance (or entropy), relative to some of the basic models, e.g., Consumption-CAPM.
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Figure 7. Sharpe ratios of SDFs spanned by pruned AP-Trees (40 portfolios), triple sorts, and
XSF. Cross-sections are sorted by the SR achieved with AP-Trees.
The figure displays the monthly out-of-sample Sharpe ratio of the robust mean-variance efficient portfolios spanned by pruned
AP-Trees (40 portfolios), triple-sorts, and XSF (market and the three cross-section specific characteristics). The SDF based on
triple sorts is based on either 32 or 64 assets and considers mean and variance shrinkage.

C. 36 Cross-Sections of Expected Returns

We start by comparing the SDFs spanned by cross-sections with different basis assets. Figure 7

summarizes their Sharpe ratios, when using AP-Trees, TS(32), or TS(64), as the “building blocks”

of the SDF, along with the set of cross-section-specific long-short portfolios, accompanied by the

market factor.

AP-Trees obtain considerably higher out-of-sample Sharpe ratios compared to the triple-sorted

portfolios or conventional long-short factors. These 36 cross-sections are arranged according to

the out-of-sample Sharpe ratio achieved with AP-Trees, with their labels and corresponding values

reported in Table D.1. The differences in Sharpe ratios are striking. Compared to the case of simple

long-short factors, our basis assets are able to deliver SR that are up to three times higher. As

the Sharpe ratio measures the mean-variance efficiency of the SDF constructed with different basis

assets, it implies that our AP-Trees extract more pricing information compared to the conventional

benchmark basis assets. These results are particularly strong for such characteristics as investment,

idiosyncratic volatility, and profitability.19

Where does this superior performance come from? First, note that cross-section-specific factors

have around half of the Sharpe ratios spanned by triple sorts, that is the linear factors already miss

information. This is expected, since even by construction the long-short factors cannot efficiently

account for the interactions between the characteristics, while triple sorting can reflect their impact

19The only cross-sections where triple-sorting achieves a similar performance to AP-Trees are those related to
short-term reversal. In Section V.F we show that this is due to instability in the portfolio weights, and even for those
cases, AP-Trees outperform triple-sorted SDF weights when they are estimated on a rolling window.
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(a) t-stat of the robust SDF alpha (w.r.t the Fama-French 5 factor model)

(b) R2 within cross-sections (w.r.t the Fama-French 5 factor model)

Figure 8. Pricing errors of the SDFs spanned by AP-Trees (40 portfolios) and triple sorts, and
R2 within cross-sections.
The top figure displays the out-of-sample t-statistics of the pricing errors of the robust mean-variance efficient portfolios spanned
by pruned AP-Trees (40 portfolios), triple sorts, and XSF (market and the three cross-section-specific characteristics). The
bottom figure reports the adjusted cross-sectional R2 for the 40 AP-Tree basis assets, respectively, 32, and 64, triple-sorted
basis assets with respect to the five Fama-French factors. The SDF based on triple sorts is based on either 32 or 64 assets and
considers mean and variance shrinkage. All the cross-sections are sorted by the SR achieved with AP-Trees.

at least to a partial extent. Having one or two splits in the size dimension, that is, 32 or 64 triple

sorted portfolios, does not seem to have a substantial impact either.

Could it be that the difference in SR is simply driven by a higher loading on conventional risk

factors? This does not seem to be the case: Tree-based portfolios are substantially harder to price

using any standard factor model. Indeed, Figure 8 confirms that pricing error of the robust SDF,

constructed from AP-Trees, is the highest among different basis assets. In fact, the pattern in

these pricing errors aligns exactly with the total SR achieved for different characteristics. While
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the Fama-French five-factor model successfully spans some of the cross-sections built with triple

sorts, it fails to capture the information reflected in AP-trees. Consider, for example, the case of

size, value, and profitability (cross-section 2). The SDF, spanned by triple-sorted portfolios, does

not have a significant alpha, when pitted against Fama-French five factors, while the one built from

AP-trees has a t-statistics of 8. In other words, pricing conventional triple-sorted cross-sections,

or spanning the factors that explain them, may be too low of a hurdle and has a real chance of

missing important information contained in the original universe of stocks.

These findings are robust to the choice of benchmark factors. They are almost identical to

the t-statistics obtained with cross-section-specific factors (see Figure E.7a in the Appendix), and

survive even when faced with a whole set of 10 long-short portfolios built from all the characteristics

used in our application, as well as the market (Figure E.7b). Interestingly, even when using all 11

cross-sectional factors, our AP-Trees have uniformly significant pricing errors. In contrast, around

one-third of the triple sorts can be explained by the large set of factors. This again provides a

strong support for using AP-trees as more informative test assets.

Cross-sectional R2 is another benchmark often used to check whether the candidate model

spans asset returns, and they confirm our alpha-based findings, as conventional factor models fail

to explain the cross-section of expected returns constructed from AP-Trees. Figure 8b presents the

pricing ability of the Fama-French five-factor model to span different sets of basis assets. Typically,

cross-sections that obtain an R2 of more than 80% would be considered as being well-explained by

the set of factors, and this is largely the case for triple sorts. In contrast, one hardly gets the fit of

over 50% on AP-Trees, if at all positive. This again illustrates that conventional sorting does not

provide a sufficiently high hurdle for asset pricing models. This finding is robust to the choice of

risk factors, with additional results reported in the Appendix.

D. How Many Portfolios?

In the previous section we chose the same number of portfolios to prune the AP-Trees in order

to make results comparable across different cross-sections, without the additional contamination

by the degrees of freedom. However, in practice, increasing the number of portfolios may not

always be beneficial: as always, it represents the trade-off between the bias and variance: larger

number of portfolios could generally yield a higher rate of return, highlighting the areas of the

SDF in the portfolio space that are particularly challenging to price, or generally heterogenous in

their implied risk exposure. However, doing so often leads to a more fragmented nature of the

SDF, potentially unnecessary duplicating some of the data features. Moreover, depending on the

information, reflected in a given set of characteristics, a simple and rather parsimonious structure

could often be enough to capture all the properties of the SDF projected on them. This naturally

raises the question of sparsity: How many basis assets are enough to capture most of the stylized

features of the data? The use of lasso penalty as a tuning parameter, governing the number of

chosen basis assets, provides a natural way to investigate this question.

We find that for most of the cross-sections, all the empirical results largely carry through even
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Figure 9. Sharpe ratios of the SDFs spanned by pruned AP-Trees (10 portfolios), triple sorts,
and XSF. Cross-sections are sorted by the SR achieved with AP-Trees.
The figure displays the monthly out-of-sample Sharpe ratio of the robust mean variance efficient portfolios spanned by pruned
AP-Trees (10 portfolios), triple sorts, and XSF (market and the three cross-section specific characteristics). The SDF based on
triple-sorts is based on either 32 or 64 assets and considers mean and variance shrinkage.

for a relatively small number of basis assets. Figure 9 demonstrates monthly out-of-sample Sharpe

ratios and pricing errors of the SDFs spanned by only 10 portfolios, based on trees, relative to

those of triple sorts (32/64 portfolios) and the corresponding long-short factors. For most of the

cross-sections, using only 10 portfolios is enough to retain roughly 90% of the original Sharpe ratio

and its alpha relative to standard Fama-French five-factor model.20 Of course, some characteristics

are more heterogenous in their impact than others, and generally the optimal number of portfolios

will differ, depending on the complexity of the conditional SDF, projected on these characteristics,

and could be chosen optimally based on the validation sample or other data-driven techniques. The

general point we would like to highlight is that the number of portfolios used to build a cross-section

is often a poor reflection of the underlying information captured by that set of assets, with effective

degrees of freedom quite often different from the sheer number of such portfolios. Naturally, simple

measures of fit are not robust to recombining assets into larger, denser portfolios, and, as a result,

are prone to a substantial bias.

The key reason behind the ability of AP-Trees to retain a large amount of information in a

small number of assets lies in the pruning methodology outlined in Section II.C. Since our method

is designed to select portfolios not only in the type and value of the characteristics used for splitting

but also the depth of the latter, it will naturally yield portfolios that contain a larger number of

securities (both in count and market cap), effectively merging smaller assets together, as long as

the reduction in variance is large enough to compensate for a potential heterogeneity in returns.

Indeed, we find that intermediate nodes of the trees, and often the market itself, constitute a

substantial fraction of the chosen basis assets and contribute to the expected return, its variance,

20These results largely remain the same for other asset pricing models and are presented in the Appendix.
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Table I Cross-sections based on size, operating profitability, and investment

Type of the cross-section
AP-Trees (10) AP-Trees (40) TS (32) TS(64)

SDF SR 0.65 0.69 0.51 0.53

α

FF3 0.94 0.90 0.75 0.84
[10.11] [11.03] [7.40] [8.13]

FF5 0.81 0.76 0.47 0.61
[8.76] [9.60] [5.57] [6.73]

XSF 0.81 0.76 0.46 0.61
[8.77] [9.46] [5.39] [6.69]

FF11 0.89 0.80 0.37 0.65
[9.12] [9.60] [4.29] [6.91]

XS R2
adj

FF3 18.0% 51.0% 82.0% 82.0%
FF5 11.0% 64.0% 91.0% 90.0%
XSF 28.0% 65.0% 91.0% 90.0%
FF11 – 42.0% 92.0% 87.0%

The table presents the aggregate properties of the cross-sections based on size, investment, and operating profitability, created
from AP-Trees (pruned to 10 and 40 portfolios correspondingly) and triple sorts (32 and 64 portfolios). For each of the
cross-section, the table reports its monthly Sharpe ratio on the test sample, along with the alpha of the SDF spanned by
the corresponding basis portfolios. Alphas are computed relative to the Fama-French three- and five-factor models, cross-
section-specific factors (market and long-short portfolios, reflecting size, investment, and operating profitability), and the
composite FF11 model that includes the market portfolio, along with the 10 long-short portfolios, based on the cross-sectional
characteristics.

and the pricing error of the tangency portfolio spanned by these combinations of stocks.

We now turn to a particular example of the cross-section to investigate further the structure

of the SDF, spanned by AP-Trees, the characteristics of the optimal basis assets, and the patterns

they reveal in expected returns.

E. Zooming into the Cross-Section

We focus on representative cross-sections to better understand the source of the pricing per-

formance of AP-Trees. In the main text we consider the set of portfolios that could be built

to reflect size, investment, and operating profitability. The results generalize to the other cross-

sections. The Appendix illustrates that the results generalize to the cross-sections based on size,

value, and idiosyncratic volatility, while the Internet Appendix collects the detailed results for all

36 cross-sections.

Table I presents the summary statistics for cross-sections, built with AP-Trees and triple sorts.

As we have already observed, the AP-Trees have higher SR and generally larger pricing errors α (or,

equivalently, lower cross-sectional R2
adj) than the conventional portfolios, based on the unconditional

quantiles. Interestingly, almost all of the information, relevant for asset pricing, is already contained

in the set of 10 portfolios. A small number of assets is intuitively appealing and allows easily

analyzing the source of the model performance. Table D.3 in the Appendix confirms that the

results extend to the other set of characteristics.

The selection of 10 portfolios, while seemingly surprising, is supported by the data, with both

the validation and testing sample suggesting that having 10 portfolios is enough to capture most of
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(a) Number of portfolios (validation sample) (b) Number of portfolios (testing sample)

(c) Mean and variance shrinkage (validation) (d) Mean and variance shrinkage (testing)

Figure 10. SR as a function of tuning parameters, ex ante (validation) and ex post (oracle).

The figure shows the validation and out-of-sample Sharpe ratio as a function of tuning parameters for AP-Trees built on size,
investment, and operating profitability. Subplots (a) and (b) present the SR as function of the number of portfolios using
the optimal mean and variance shrinkage. Subplots (c) and (d) depict the SR as a function of mean (λ0) and variance (λ2)
shrinkage for 10 portfolios. Yellow regions correspond to higher values. The optimal validation shrinkage is indicated by the
red dot. We use the mean µ̂+ λ0µ̄1.

the variation in asset returns, without introducing the danger of overfitting (see Figure 10a). This

decision is therefore in line with the traditional approach of choosing the optimal tuning parameter

with one standard deviation of the one maximizing the cross-validation of some criteria. Inherently,

both methods aim at selecting a sparse set of parameters/portfolios that give a performance very

similar to that of the first best.

The heat-map of the tuning parameters indicates the range of shrinkage that was chosen as

optimal on the validation dataset (Figure 10c). In this particular case, the impact of L2 penalty

(ridge) on the composition of the cross-section was rather small; however, the model performance

crucially depends on the choice of the shrinkage to the mean, λ0. This value, which out-of-sample,

could have been even higher, corresponds to the shrinkage of extreme sample returns towards the

average in the cross-section, reflecting the intuition that returns both too high and too low relative

to the benchmark, are probably due to a statistical error and will revert back at some point in the

future. In this particular case, the chosen value of λ0 was 0.15, corresponding to an important, but

not excessive, shrinkage toward the minimum variance portfolio induced by the estimation error in

expected returns.
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Optimal amount and type of shrinkage can be different for each cross-section. Consider, for

example, portfolios based on size, value, and idiosyncratic risk (see Figure E.15 in the Appendix).

As before, 10 basis assets summarize most of the pricing information. However, for these portfolios,

variance shrinkage seems to be more relevant than mean shrinkage. Note that on the test dataset

which is not available for the choice of tuning parameters, some degree of mean shrinkage would in

general have been beneficial. For both sets of cross-sections optimal mean and variance shrinkage

matters, as it can increase the Sharpe ratio on the test data between 5% to 10%, but it is not

the driver of the large differences between AP-Trees and triple-sorted cross-sections. Even without

mean and variance shrinkage, AP-Trees clearly outperform conventional sorting.

What are these 10 portfolios, left after pruning the tree? Table II, Panel A, provides the

description of these basis assets, and their main properties: The relative fraction of stocks, which

goes into their creation, and their value-weighted quantiles, based on the market cap of the securities

that go into a corresponding portfolio, as well the pricing errors, associated with the leading asset

pricing models. Out of 10 selected portfolios, only five correspond to the final nodes of the trees,

and contain just over 6% of all the stocks; other assets include trading strategies that can be

constructed from only one or two splits based on the characteristics, and even the market itself.

For example, 1221.1111 is created by taking the bottom 50% of the stocks based on their size

(LME) and within them, the lowest quartile based on investment, as a result, containing 12.5% of

the stocks at all the time periods. This portfolio presents a challenge to all the baseline tradable

asset pricing models, which is significant not only statistically but economically as well, yielding a

monthly alpha of about -30 b.p. Similarly, a portfolio 3331.12221, which is constructed by taking

1/8 of the stocks, highest in investment, and then choosing the half of them, smallest by the market

cap, has an alpha of 41-86 bp, depending on the underlying model.

Figure 11 displays the structure of the SDF, conditional on characteristics and the pricing

errors for each of the individual basis assets with respect to XS-specific factors, with the candlestick

denoting 5% confidence intervals. Overall six of the chosen 10 tree-based portfolios have consistently

significant alphas. These portfolios are not just reflecting extreme quantiles of the underlying

characteristics but are in fact characterized by a complex interaction structure. The prevalence of

pricing errors, and the diversity of the stocks that go into such portfolios, are robust to the choice of

risk factors, as almost the same pattern persists when basis assets are priced with the Fama-French

5, or 11 cross-sectional factors (see Table II, Panel A). Examining conventional triple sorts, in turn,

reveals a completely different pattern (see Figure 11, Panel (d)) with generally substantially smaller

pricing errors that are largely subsumed by standard risk factors. Exactly the same pattern holds

for the other cross-sections, as illustrated by Figure E.16 in the Appendix.

Table II, Panel B, lists the top 10 portfolios from the cross-section of 64 triple-sorted assets

that are most difficult to price, according to the most comprehensive FF11 model. While there are

obviously substantial alphas associated with some of these portfolios, the sheer number of them is

somewhat misleading: Most of these portfolios consist of a small number of stocks (usually about

1.5%) and often reflect securities that are very similar to each other in terms of characteristics:
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Table II Portfolios in the cross-sections

Portfolio ID Portfolio construction % of stocks WV qLME αFF3 αFF5 αXSF αFF11

Panel A: 10 AP-Tree portfolios

1111.1 Market 100% 0.95 – – – –

1111.121 LME(0.5-0.75) 25% 0.71 -0.03 -0.37 -0.05 -0.03
[-0.34] [-0.36] [-0.40] [-0.26]

3111.11 OP(0-0.5) 50% 0.94 0.03 -0.11∗∗ -0.11∗∗ -0.11∗∗

[-0.54] [-2.33] [-2.20] [-2.46]
3111.11111 Inv(0-0.5) → LME(0-0.125) 6.25% 0.07 1.49∗∗∗ 1.32∗∗∗ 1.32∗∗∗ 1.63∗∗∗

[6.14] [5.33] [5.33] [6.47]
3211.1121 Inv(0-0.5) → OP(0.5-1) → LME(0-0.5) 12.5% 0.51 0.23∗∗∗ 0.09 0.07 0.06

[2.95] [1.19] [0.66] [0.83]
1221.1111 LME(0-0.5) → OP(0-0.25) 12.5% 0.37 -0.37∗∗∗ -0.34∗∗∗ -0.34∗∗∗ -0.29∗∗

[-2.81] [-3.00] [-3.01] [-2.41]
2221.11111 OP(0-0.25) → LME(0-0.5) 6.25% 0.19 -0.16 -0.22 -0.21 -0.05

[-0.717] [-0.95] [-0.89] [0.21]
3331.12221 Inv(0.875-1) → LME(0-0.5) 6.25% 0.45 -0.82∗∗∗ -0.62∗∗∗ -0.62∗∗∗ -0.46∗∗∗

[-5.86] [-4.81] [-4.78] [-3.75]
2122.11111 OP(0-0.5) → LME(0-0.5) → OP(0-0.25) 6.25% 0.27 -0.37∗ -0.43∗∗ -0.42∗∗ -0.20

[-1.95] [-2.21] [-2.13] [-1.00]
3133.12122 Inv(0.5-1) → LME(0-0.5) → Inv(0.75-1) 6.25% 0.48 -0.84∗∗∗ -0.64∗∗∗ -0.64∗∗∗ -0.50∗∗∗

[-5.92] [-4.84] [-4.81] [-3.92]

Panel B: Top 10 portfolios from TS (64)

122 LME(0-0.25) × OP(0.25-0.5) × Inv(0.25-0.5) 1.91 % 0.17 0.97∗∗∗ 0.84∗∗∗ 0.84∗∗∗ 0.95∗∗∗

[6.61] [5.60] [5.54] [6.01]
214 LME(0.25-0.5) × OP(0-0.25) × Inv(0.75-1) 1.55 % 0.40 -0.93∗∗∗ -0.61∗∗∗ -0.61∗∗∗ -0.66∗∗∗

[-5.27] [-3.60] [-3.61] [-3.77]
132 LME(0-0.25) × OP(0.5-0.75) × Inv(0.25-0.5) 1.03 % 0.17 0.39∗ 0.40∗ 0.38∗ 0.77∗∗∗

[1.93] [1.90] [1.74] [3.65]
121 LME(0-0.25) × OP(0.25-0.5) × Inv(0-0.25) 1.9 % 0.17 0.59∗∗∗ 0.45∗∗ 0.44∗∗ 0.66∗∗∗

[3.38] [2.48] [2.45] [3.56]
112 LME(0-0.25) × OP(0-0.25) × Inv(0.25-0.5) 1.66 % 0.17 0.24 0.25 0.24 0.49∗∗∗

[1.45] [1.45] [1.38] [2.79]
123 LME(0-0.25) × OP(0.25-0.5) × Inv(0.5-0.75) 1.47 % 0.17 0.38∗∗ 0.32∗∗ 0.32∗∗ 0.43∗∗∗

[2.56] [2.10] [2.08] [2.71]
222 LME(0.25-0.5) × OP(0.25-0.5) × Inv(0.25-0.5) 1.95 % 0.40 0.46∗∗∗ 0.35∗∗∗ 0.34∗∗∗ 0.28∗∗

[4.69] [3.52] [2.98] [2.69]
244 LME(0.25-0.5) × OP(0.75-1) × Inv(0.75-1) 1.18 % 0.41 -0.57∗∗∗ -0.47∗∗∗ -0.49∗∗ -0.34∗∗

[-3.44] [-3.18] [-2.65] [-2.28]
334 LME(0.5-0.75) × OP(0.5-0.75) × Inv(0.75-1) 1.08 % 0.66 0.35∗∗ 0.34∗∗ 0.32∗ 0.37∗∗

[2.33] [2.18] [1.77] [2.25]
111 LME(0-0.25) × OP(0-0.25) × Inv(0-0.25) 5.04 % 0.16 0.42∗ 0.21 0.22 0.48∗∗

[1.89] [0.95] [0.97] [2.19]

The table presents the properties of the portfolios, spanning the impact of size, investment, and operating profitability on
asset returns. Panel A presents the set of 10 portfolios, created from trees of depth 4 (that exclude the extreme portfolios,
representing 1/16 of the stocks sorted by the same characteristic) and their features: The average percentage of currently
available stocks, included in the portfolio, their value-weighted quantile based on size, and alphas with respect to Fama-French
three- and five-factor models, the model that includes cross-section-specific factors in addition to the market, and the FF11
model (market and 10 long-short portfolios based on all the available characteristics), with the corresponding t-stats in the
brackets. ∗, ∗∗, and ∗∗∗ correspond to 10%, 5%, and 1% significance levels, respectively. Panel B presents the same statistics
for 10 portfolios out of 64, created by triple-sorting, that are the most challenging to price, according to the composite FF11
model.

Small in size and profitability, high in investment. Since our pruning algorithm selects the basis

assets in both characteristics and depth, these portfolios are actually often grouped together by

AP-Trees, bundling these securities together. This pattern is particularly visible if you compare the

structure of the SDF, spanned by different portfolios (see Figure 11, Panels a) and b)). For example,
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(a) SDF spanned by AP-Trees (10) (b) SDF spanned by TS (64)

(c) Alphas of AP-Trees (10) portfolios, controlling for cross-section specific factors (XSF)

(d) Alphas of 64 triple-sorted portfolios, controlling for cross-section specific factors (XSF)

Figure 11. SDF weights and pricing errors for basis assets with 10 AP-Tree and 64 TS.
Composition of conditional SDF with 10 AP-Trees and 64 TS basis assets and corresponding pricing errors for each basis asset.
Subplots (a) and (b) show the SDF weight as a function of the size, profitability, and investment quantile. Subplots (c) and (d)
present the pricing errors relative to the cross-section-specific factors (XSF) with significance levels (candlestick=5%, dashed
line=1%, box=10%).

31



the stocks that are generally high in investment (the top layer of the three-dimensional graph in

Panel a)) are roughly grouped together and present the same exposure to the SDF, compared to

six separate portfolios spanning the same characteristic space in triple sorting. Naturally, since

the tree-based assets are constructed with both conditional and unconditional quantiles, the actual

space of returns could be somewhat different, but the general pattern remains: There is often not

enough signal in the data to warrant such a granular split.

While some of the general patterns of loadings are shared across the cross-sections, it is imme-

diately clear that AP-Trees reflect a more sophisticated data-generating process that triple sorts

aim to capture only with a very coarse grid. The ability of conditional sorts to map the finer reso-

lution of returns in the characteristic space without heavily loading on poorly diversified portfolios,

allows us to uncover different long-short patterns in the data and could present a new challenge

for structural models. Overall, it seems that the triple-sorted portfolios aim to capture roughly the

same underlying patterns in returns, but they lack the ability to flexibly adapt the weights, based

on the incremental information.

The excessive granular nature of the triple-sorted portfolios can also mask the true fit of the

leading asset pricing models. Suppose that there is a group of portfolios that are perfectly spanned

by a given set of risk factors and that do not command a separate risk premia, or provide an

alternative exposure to these risk factors. Treating them as a separate group of assets does not

yield better investment opportunities and does not reveal an informative pattern in returns. Yet,

the sheer number of these perfectly priced portfolios will substantially increase the quality of cross-

sectional fit, leading to higher R2, based on the simple OLS estimates. This is precisely why

for many popular cross-sections using GLS to evaluate the model performance often leads to a

substantially lower measure of fit (see, e.g., Lewellen, Nagel, and Shanken (2010)), since treating

separately these assets does not provide an incremental Sharpe ratio, which is reflected in the GRS

statistic and other quantities that target investment opportunities, rather than a linear measure of

fit.

Our main empirical results are unlikely to be driven by micro-caps. First, in constructing the

trees, we specifically eliminated extreme groups of stocks that are heavily loading on a single char-

acteristic, for example, size. We excluded all the splits that use the same characteristic to make

the splits (e.g., 16 portfolios sorted only by size). Second, not only are tree-based portfolios gen-

erally composed of a larger number of stocks, efficiently diversifying the idiosyncratic noise, and

endogenously grouping similar securities together, they are often comparable, if not better, to the

triple sorts in terms of the actual market cap of the stocks that drive most of the difference in per-

formance. Table II presents the value-weighted (since the portfolios are value-weighted themselves)

size quantile of the stocks, that comprise each of the basis assets. Compared to the triple sorts,

there is only one portfolio that loads heavily on the small caps (bottom 50% on investment and

bottom 12.5% on the size within), and the rest have the same market cap as those based on triple

sorts or larger.

Table III summarizes additional robustness checks. First, taking advantage of the intuitive and
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Table III Size, operating profitability, and investment: Cross-sections without small caps

Panel A: Portfolios with size quantile above 0.4 Panel B: Stocks with market cap above 0.01%

AP-Trees (10) AP-Trees (40) TS (32) TS(64) AP-Trees (10) AP-Trees (40) TS (32) TS(64)

SDF SR 0.48 0.45 0.25 0.40 0.30 0.22 0.17 0.17

α

FF3 0.68 0.73 0.47 0.76 0.70 0.89 0.77 0.82
[7.51] [7.64] [2.30] [6.00] [5.04] [4.27] [2.74] [2.78]

FF5 0.45 0.47 -0.11 0.54 0.32 0.37 0.16 0.25
[5.70] [6.11] [-0.72] [4.44] [3.87] [2.57] [0.72] [1.00]

XSF 0.44 0.47 -0.11 0.54 0.31 0.36 0.14 0.22
[4.76] [5.04] [-0.74] [4.21] [3.75] [2.49] [0.65] [0.88]

FF11 0.43 0.43 -0.25 0.34 0.29 0.36 0.18 0.38
[5.37] [5.27] [-1.62] [2.76] [3.71] [2.45] [0.83] [1.55]

XS R2
adj

FF3 62.0% 73.0% 76.0% 86.0% 42.0% 96.0% 91.0% 90.0%
FF5 70.0% 85.0% 91.0% 93.0% 70.0% 98.0% 95.0% 93.0%
XSF 76.0% 85.0% 92.0% 93.0% 71.0% 98.0% 95.0% 93.0%
FF11 – 86.0% 84.0% 94.0% – 98.0% 95.0% 93.0%

The table presents the aggregate properties of the cross-sections based on size, operating profitability and investment, created
from AP-Trees (pruned to 10 and 40 portfolios, correspondingly) and triple sorts (32 and 64 portfolios). Panel A is based only
on the basis portfolios that have a value-weighted size quantile greater than 0.4, while Panel B describes cross-sections created
only from stocks with market capitalization greater than 0.01% of the total market capitalization, i.e., currently around top 600
stocks in the U.S. For each of the cross-section the table reports its monthly Sharpe ratio on the test sample, along with the
alpha of the SDF spanned by the corresponding basis portfolios. Alphas are computed relative to the Fama-French three- and
five- factor models, cross-section-specific factors (market and long-short portfolios, reflecting size, operating profitability, and
investment), and the composite FF11 model that includes the market portfolio, along with the 10 long-short portfolios, based
on the cross-sectional characteristics.

adaptive structure of the trees, we removed all the nodes that have an average size quantile below

40%, thus implicitly not allowing for splits that lead to portfolios with too many small-cap stocks

(Panel A).21 We find that AP-Tree portfolios are still harder to price and remain more informative

about the SDF, even after removing portfolios consisting of small cap stocks. Second, we also

built different types of cross-sections using only stocks with a market capitalization above 0.01%

of the total market, which currently corresponds to the universe of roughly 600 largest stocks in

the United States (Panel B). This removes not only micro-, but also many small- to medium-cap

stocks. As expected, Sharpe ratios and pricing errors become significantly lower than using the

whole dataset, but the qualitative difference between AP-Trees and conventional sorting remains.

For example, an out-of-sample Sharpe ratio of the SDF, spanned by 10 AP-Tree portfolios, is almost

double that of triple sorts. Furthermore, all SDF alpha of AP-Trees remains significant even at

1%, while triple sorts are routinely spanned by conventional factors. Similar results for another

example, cross-sections based on size, value, and idiosyncratic risk, could be found in the Appendix

(Table D.4).

Finally, we can check whether most of the superior performance of the SDFs based on AP-

Trees is coming at the expense of an unrealistically high turnover, which could prove it impossible

to implement the strategies empirically (Table IV). For the baseline case of monthly rebalancing,

an SDF portfolio, spanned by AP-Trees, achieves a monthly turnover in the range of 20–35%,

21The results for other cutoff levels are similar and available upon request. Furthermore, the tree-based approach
naturally allows to incorporate any other restriction on the portfolios.
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Table IV Portfolio turnover

AP-Trees (10) XSF Operating Profitability Investment

SR
Monthly 0.65 0.30 0.10 0.08
Yearly 0.27 0.29 -0.07 -0.10

Turnover+
Monthly 0.28 0.24 0.35 0.35
Yearly 0.13 0.13 0.11 0.12

Turnover-
Monthly 0.24 0.24 0.28 0.28
Yearly 0.09 0.11 0.09 0.09

Sharpe ratios and portfolio turnovers are converted to a monthly scale. The table compares the performance of the SDF,
spanned by AP-Trees, with the one captured by cross-sectional factors (used individually, or as a combination). For AP-Trees
and XSF, we fix the weights at the portfolio level and track the performance of the strategy with monthly or yearly rebalancing.
Portfolio turnover is reported for the long and short legs separately.

depending on the leg, which is generally comparable to investing in the corresponding long-short

factors, while providing a higher Sharpe ratio. With annual rebalancing Sharpe ratio naturally

declines but remains substantial, contrary to many passive long-short strategies. Pricing errors,

cross-sectional fit, and other empirical results remain similar to the baseline case and are available

upon request.

F. Additional Robustness Checks

All of our results so far assumed a constant projection of the SDF on the set of basis assets.

To investigate the role of time variation in these weights, we fix portfolio selection, based on the

training and validating datasets, and estimate the optimal robust combination of the basis assets

on a rolling window of 20 years. Figure 12 summarizes our main results across all 36 cross-sections.

First, time variation in the SDF seems to be quite important empirically for both triple sorts and

AP-Trees. Allowing for the time variation in portfolio weights definitely improves the performance

of the robust tangency portfolio, as for almost all of the cross-sections it achieves a higher Sharpe

ratio. The difference is large not only statistically but economically as well: For some of the

cross-sections, Sharpe ratio with AP-Trees is double that achieved with constant weights. Second,

using AP-Trees with flexible weights clearly dominates either version of the triple sorts. With fixed

weights, there have been only three cross-sections, where triple sorting yielded the same or slightly

higher Sharpe ratio, with all of them including short-term reversal (Figure 12, cross-sections 30, 4,

and 11). However, with portfolio weights allowed to be time-varying, there is a clear advantage to

AP-Trees.

Second, we tried to identify the sensitivity of these empirical results with respect to particular

types of shrinkage used. Our main results are reported in Figures E.10 and E.11 in the Appendix.

To investigate this issue, we compare the effect of mean and variance shrinkage on the Sharpe

ratio for the time-varying SDF weights. Both AP-Trees and triple sorts benefit from shrinkage

to the mean, which substantially stabilizes the SDF weights. These effects are not homogeneous

across different cross-sections: For many sets of basis assets, the effect is rather small (with a

magnitude of 1–5%), but for some cross-sections, mean shrinkage leads to large improvements on a
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Figure 12. Sharpe ratios of the SDF estimated on a rolling window
The figure displays the monthly out-of-sample Sharpe ratio of the robust mean-variance efficient portfolios with time-varying
weights estimated on a rolling window of 20 years and constant weights. The basis portfolios are the pruned AP-Trees (40 and
10 portfolios) and triple sorts. The AP-Tree portfolios are selected on the training data and kept the same. The variance and
mean shrinkage is selected optimally on the validation data.

magnitude of up to 10–50%. A combination of mean and variance shrinkage results in the largest

performance gains relative to the absence of any shrinkage at all.22 In the Internet Appendix we

also report the same results using a fixed mean and variance shrinkage, that is, if we don’t choose

the penalty parameters optimally for each cross-section on the validation data set, but instead

pre-specify them to a fixed value. Using a combination of the mean and variance shrinkage leads

to better results than no shrinkage or only variance shrinkage, even if the tuning parameters are

chosen non-optimally. In fact, the various shrinkage results are very close for optimally chosen

tuning parameter or a non-optimal shrinkage. Hence, the robust SDF construction is relatively

robust to the choice of tuning parameters, and it is often more important to include some degree

of shrinkage than choosing the optimal one.

In short, better empirical performance of AP-Trees seems to be mainly driven by the construc-

tion of the new basis assets, not a particular choice of tuning parameters, as the large differences

between conventional sorting and our novel AP-Trees are not explained by the shrinkage. However,

both types of the portfolios benefit from constructing a robust SDF, using ridge and shrinkage to

the mean.

G. A 10-Characteristic Cross-Section

Since our methodology relies on conditional splits, and the AP-Tree portfolios can generally

reflect a large number of characteristics, it provides a general way to build cross-sections based

22Note that we estimate the mean and/or variance shrinkage tuning parameters optimally on the validation data,
which can lead to different mean or ridge penalties if considered in isolation or combined.
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Figure 13. Sharpe ratios of the SDFs spanned by AP-Trees and combining double/univariate
sorts based on 10 characteristics.
Out-of-sample Sharpe ratios of SDFs based on 10 characteristics as a function of the number of basis assets constructed with
AP-Trees (based on 36 AP-Trees with 10, respectively, and 40 portfolios in each), 10 quintile sorts, 10 decile sorts, combination
of double sorts based on size and the other characteristic (either 6 or 25 double sorted assets per specific portfolio). We apply
robust shrinkage with lasso to all basis assets and choose the optimal validation mean and variance shrinkage.

on a relatively large (compared to what could naturally be handled by double- or triple-sorting)

number of characteristics. In this section we describe the cross-section of portfolios, based on 10

characteristics at the same time.

Historically, there has been only one way to build a set of test assets that reflects more than

two or three characteristics at the same time: Bundling several separate cross-sections together,

usually either as a combination of several double or single sorts (e.g., 25 portfolios, sorted by size

and value augmented by 10 portfolios sorted by momentum, five portfolios sorted by short-term

reversal, five portfolios sorted by accrual). With an exploding dimension of such a cross-section,

not only it is hard to make sure existing portfolios are fully reflecting the underlying characteristics

and their interactions but also whether the portfolios challenging to price are actually economically

different: If containing roughly the same stocks, treating them separately will not reflect the real

economic advantage, which could also be captured out-of-sample within the SDF framework).

To provide a reasonable benchmark against which to compare the performance of tree-based

portfolios, we consider several alternatives to generate the set of basis assets: a) Sets of 10 quintile

portfolios, uniformly sorted by characteristics (50 assets altogether), b) Sets of 10 decile portfolios

(100 assets), c) A combination of six double-sorted portfolios, with each based on size and some

other characteristic (54 assets), and d) A combination of 25 double-sorted portfolios, with each

based on size and some other characteristic (225 assets). Tree-based portfolios are constructed

based on combining selected assets (10/40 portfolios) from each of the 36 cross-section we described

in Section V.C (360 and 1,440 assets, correspondingly).23 Empirically, most papers focus on pricing

23We have also implemented tree construction based on 10 characteristics from first principles, optimizing the orig-
inal set of portfolios. However, we have found that considering four-way interactions does not provide a significant
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the cross-sections of no more than 60 portfolios; hence, the combination of all the available decile

or double sorts, if anything, overrepresents the set of assets used in most papers.

Figure 13 presents the Sharpe ratio for the optimal mean-variance strategies, spanned by differ-

ent basis assets. As before, to make the results comparable, we apply optimally selected shrinkage

to each of the cross-sections, selected on the validating dataset, and study their performance out-of

sample. Therefore, the only source of difference in the performance of the portfolios is the way they

have originally been constructed (e.g., standard sorting vs. AP-Trees).

There are several important empirical observations. First, quintile-sorted portfolios that rep-

resent various anomalies, represent probably the least informative cross-section one could in good

faith build based on the 10 characteristics we consider. While in general, univariate sorts are con-

sidered to be the staple of the empirical literature of anomalies, doubling the depth of the analysis

(e.g., moving from five to potentially 10 portfolios based on the same characteristics) easily doubles

the out-of-sample Sharpe ratio and presents a more realistic picture of the informational content of

the same characteristics. Using only six double-sorted portfolios for each of the non-size anomalies

(i.e. a potential cross-section of 54 assets) does not reflect most of the investment opportunities

either: Ultimately the Sharpe ratio one could get is either comparable to or lower than that of

relying on the quintiles.

Using the best (sparse and robust) combination of the 25×9 double-sorted portfolios is probably

the best one could do within the standard framework, allowing one to achieve monthly out-of-sample

Sharpe ratios of about 0.4-45, depending on the number of portfolios, which is already at least twice

higher than what standard empirical applications would deliver. The use of AP-Trees, however,

raises that bar even higher: On average, they provide a 0.1 increase in the Sharpe ratio relative to

the 25 × 9 double-sorted portfolios (in relative terms, this is roughly a 20% increase over 25 × 9

double sorts and a 80%–100% increase over anomaly-based deciles). Interestingly, Sharpe ratios

of strategies that are built on tree-based portfolios (based on the prior selected 10 or 40) are very

close to each other in terms of their efficiency, for almost all of the cross-sectional dimensions (e.g.

15–50 ultimately selected portfolios).

This increase in the composite Sharpe ratio is not coming from predominantly loading on the

conventional sources of risk: Figure E.9 in the Appendix illustrates the out-of-sample alphas of

the SDFs spanned by different basis assets. Almost regardless of the cross-sectional dimensions,

tree-based portfolios are considerably harder to price, and they have roughly a 20%–30% gain over

the optimal subset of the double-sorted portfolios, built from the same characteristics (25×9). The

relative order of the other types of the cross-sections often used empirically stays the same, with

the stacks of quintiles based on the anomalies being the easiest one to be priced (out-of-sample).

Our results demonstrate that, first, for a large set of potential portfolios the actual information

relevant for asset pricing (be it the composite spanning of the tangency portfolio, projected on the

characteristic space, or the alphas relative to leading asset pricing models) can be reliably reflected

contribution to the overall SDF properties or portfolio selection, and that starting from assets reflecting the infor-
mation in three characteristics achieves the same result, both quantitatively and qualitatively. Additional empirical
results are available upon request.
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in a smaller, optimally chosen subset of securities. Second, we show that using AP-Trees leads

to at least a 20%–30% gain in both the total risk-return trade-off, and the ultimate mispricing

reflected by the basis assets. Finally, we show how to construct a cross-section based on many

(10, in our case) characteristics at once. Our approach is based on the symmetric treatment of

all the information sets, the endogenous (adaptive) selection of the characteristics used for splits,

and the depth of such selection. Finally, our method is flexible enough to incorporate all the

additional constraints one could want to impose on the portfolio creation: Minimum market cap of

the companies, number of stocks included, and many others.

VI. Conclusion

We propose a novel way to build basis assets for asset pricing that capture the complex informa-

tion of a large number of cross-sectional stock return predictors. Our Asset-Pricing Tree portfolios

are a small number of long-only portfolios that (1) reflect the information in many stock-specific

characteristics allowing for conditional interactions and nonlinearities, (2) provide test assets for

asset pricing that are considerably harder to price than conventional cross-sections, and (3) act as

the building blocks for the SDF that performs well out-of-sample in various empirical applications.

Our approach generalizes the idea of characteristic-based sorting to decision trees to better cap-

ture complex interactions among many characteristics and selects a sparse set of portfolios with

the most relevant and non-redundant information. We show that conventional cross-sections do

not fully reflect the information contained in the characteristics of the underlying stocks and often

present a rather crude, if not misguided, description of the expected returns.

We encourage the use of novel test assets to discipline the discovery of asset pricing factors and

provide a better evaluation and diagnostics of the structural model performance. Existing double-

or triple-sorted cross-sections, as well as their typical combinations, not only are a poor reflection of

the underlying stock returns but also have been substantially overstudied in much of the empirical

literature, also contributing to the current problems of publication bias and the factor zoo (see,

e.g., Harvey, Liu, and Zhu (2015)).

Our cross-sections can be used as alternative test assets, providing both a more reliable repre-

sentation of the underlying stock returns and a fresh way of testing whether existing models are

really capable of explaining the impact of a given set of characteristics on returns. Compared to

PCA and other related dimension-reduction techniques, our test assets are easily interpretable and,

therefore, could be particularly useful as a diagnostic tool for the areas of model mispricing, whether

the SDF is in a linearized reduced form or coming from a structural model. We are planning to

make a public library of the new cross-sections built for the most relevant stock characteristics.
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Appendix A. Formal Statements and Derivations

Appendix A.1. Robust Portfolio Optimization (Proposition 1)

Without imposing any shrinkage on the portfolio weights for the SDF, the problem has an

explicit solution, ω̂naive = Σ̂−1µ̂. To see that our estimator is a shrinkage version of this estimator,

consider first only the impact of ridge penalty, that is, setting λ1 = 0:

min
ω
ω>Σ̂ω + λ2‖ω‖22 subject to ω>µ̂ = µ0 and ω>1 = 1.

It is easy to notice that this problem is equivalent to the conventional Markowitz problem, where

the sample covariance matrix Σ̂ is replaced by
(

Σ̂ + λ2IN

)
. Its solution is well-known in closed

form as follows:

ω̂robust = αµ0ω̂tan,λ2 + (1− αµ0)ω̂var,λ2 ,

where

ω̂tan,λ2 = ctan

(
Σ̂ + λ2IN

)−1
µ̂, ω̂var,λ2 = cvar

(
Σ̂ + λ2IN

)−1
1, αµ0 =

µ0 − µ̂>ω̂var,λ2

µ̂>ω̂tan,λ2 − µ̂>ω̂var,λ2

ctan =

(
1
>
(

Σ̂ + λ2IN

)−1
µ̂

)−1

, cvar =

(
1
>
(

Σ̂ + λ2IN

)−1
1

)−1

.

The optimal portfolio for a given target mean µ0 is a weighted combination of the tangency portfolio

ω̂tan,λ2 and the minimum variance portfolio ω̂var,λ2 . The ridge penalty λ2 affects the shape of the

efficient frontier, while the target mean µ0 pins down the location of the portfolio. The conventional

efficient frontier without ridge-shrinkage sets λ2 = 0, resulting in the weights ω̂naive = ω̂tan,0 and

ω̂var = ω̂var,0. A higher target mean µ0 increases the weight αµ0 in the tangency portfolio. Note

that if the target mean µ0 is chosen on the training data to maximize the Sharpe ratio, it naturally

yields the solution αµ0 = 1.

Relaxing the normalization of ω̂>robust1 = 1 (which can be always enforced ex post), and plugging

in the formulas, yields the shrinkage estimator

ω̂robust =
(

Σ̂ + λ2IN

)−1
µ̂+

µ̂>
(

Σ̂ + λ2IN

)
µ̂− µ01

>
(

Σ̂ + λ2IN

)
1

µ01
>
(

Σ̂ + λ2IN

)
1− µ̂>

(
Σ̂ + λ2IN

)
1︸ ︷︷ ︸

λ0

(
Σ̂ + λ2IN

)−1
1

=
(

Σ̂ + λ2IN

)−1
(µ̂+ λ01) .

Note that the shrinkage parameter λ0 is a decreasing function in µ0, that is, a lower target expected

return implies more shrinkage toward the mean. Naturally, there is a direct mapping between these

parameters, as µ0 ∈
[
µ>(Σ̂+λ2IN)µ
1>(Σ̂+λ2IN)1

,
µ>(Σ̂+λ2IN)

−1
1

1>(Σ̂+λ2IN)1

)
corresponds to λ0 ∈ [0,+∞). In particular,

using λ0 = 0 is equivalent to setting the target expected return to µ0 =
µ>(Σ̂+λ2IN)

−1
µ

1>(Σ̂+λ2IN)
−1
1

, which
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corresponds to the optimal portfolio weight of

ω̂ =
(

Σ̂ + λ2IN

)−1
µ̂.

Appendix A.2. Shrinkage Perspective (Proposition 2)

Our estimator generalizes the robust SDF recovery in Kozak, Nagel, and Santosh (2020). The

general estimator of Kozak, Nagel, and Santosh (2020) solves the following problem:

ω̂ = arg min
ω

1

2

(
µ̂− Σ̂ω

)>
Σ̂−1

(
µ̂− Σ̂ω

)
+ λ1‖ω‖+

1

2
λ2‖ω‖22.

If Σ̂ is a diagonal matrix denoted by D̂, this is conceptually equivalent to using our estimator in the

PCA space, as advocated by Kozak, Nagel, and Santosh (2020). This has the following closed-form

solution24:

ω̂ =
(
D̂ + λ2IN

)−1
(µ̂− λ11)+ ,

with (x)+ = max(x, 0) element wise. As shown below, our estimator has the explicit solution

ω̂robust =
(
D̂ + λ2IN

)−1
(µ̂+ γ1− λ11)+ ,

which coincides with that of Kozak, Nagel, and Santosh (2020) for an appropriate choice of λ1.

Hence, our estimator is equivalent to the one used by Kozak, Nagel, and Santosh (2020) in the

case of uncorrelated assets. The analytical solution for a diagonal covariance matrix is based on

the following argument. We solve the optimization problem with Lagrange multipliers:

L =
1

2
ω>D̂ω +

1

2
λ2‖ω‖22 + λ1‖ω‖1 − γ̃1

(
ω>µ̂− µ0

)
− γ̃2

(
ω>1− 1

)
.

The first order condition on the active set, that is, for the non-zero values of ωi equals

(Di + λ2) ω̂robust,i = γ̃1µi + γ̃2 − λ1sign(ω̂robust,i) for i in the active set,

which yields ω̂robust =
(
D̂ + λ2IN

)−1
(γ̃1µ̂+ γ̃21− λ11)+. As both Lagrange multipliers are func-

tions of µ0, we can reformulate the problem as ω̂robust =
(
D̂ + λ2IN

)−1 (
µ̂+ λ01− λ̃11

)
+

. Here

we have relaxed the constraint ω̂>robust1 = 1, which can be enforced ex post and substituted λ0 = γ̃2

γ̃1

and λ̃1 = λ1
γ̃1

.

In the general case of a non-diagonal sample covariance matrix Σ̂, however, the impacts of

ridge and lasso penalties cannot be separated, and, hence, the lasso penalization cannot subsume

the mean shrinkage. We, therefore, have to solve the general optimization problem with Lagrange

24See Lettau and Pelger (2020) for a derivation.
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multipliers as follows:

L =
1

2
ω>Σ̂ω +

1

2
λ2‖ω‖22 + λ1‖ω‖1 − γ̃1

(
ω>µ̂− µ0

)
− γ̃2

(
ω>1− 1

)
.

The first order condition for the general optimization problem with Lagrange multipliers on the

active set, that is, for the non-zero values of ωi, implies[(
Σ̂ + λ2IN

)
ω̂robust

]
i

= γ̃1µ̂i + γ̃2 − λ1sign(ω̂robust,i) for i in the active set,

which in turn can be formulated as follows:[(
Σ̂ + λ2IN

)
ω̂robust

]
i

= µ̂i + λ0 − λ1sign(ω̂robust,i) for i in the active set.

Note that the corresponding first order condition for Kozak, Nagel, and Santosh (2020) equals[(
Σ̂ + λ2IN

)
ω̂
]
i

= µ̂i − λ1sign(ω̂i) for i in the active set,

which shows that the solutions coincide if we use µ̂+ λ01 instead of µ̂ in their problem.

Appendix A.3. General Robust Estimation Perspective (Proposition 3)

Our estimator can also be interpreted as a robust approach to the mean-variance optimization

problem, when there is uncertainty about the mean and variance-covariance matrix of returns.

Each type of shrinkage has a one-to-one correspondence to a specific type of uncertainty in the

estimation.

We start with constructing the robust mean-variance efficient frontier. Assume that the true

mean and covariance matrix lie in an uncertainty set around their sample estimates:

SΣ =
{

Σ : Σi,j = Σ̂i,j + eσi,j ; ‖eσ‖22 ≤ κσ Σ is positive definite and κσ ≥ 0
}

Sµ = {µ : µi = µ̂i + eµi ; |eµi | ≤ κµ and κµ ≥ 0} .

The parameter κµ captures the uncertainty in the mean estimate, while κσ reflects the covariance

estimation uncertainty. The robust version of the classical mean-variance portfolio optimization is

equivalent to finding the solution under the worst case scenario as follows:

min
w

max
Σ∈SΣ, µ∈Sµ

1

2
ω>Σω − γ1

(
ω>µ− µ0

)
− γ2

(
ω>1− 1

)
.
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Concentrating out µ yields

min
w

max
Σ∈SΣ

1

2
ω>Σω − γ̃1

N∑
i=1

(ωi [µ̂i − κµsign(ωi)]− µ0)− γ̃2

(
ω>1− 1

)
= min

w
max
Σ∈SΣ

1

2
ω>Σω − γ̃1

(
ω>µ̂− µ0

)
+ γ̃1

N∑
i=1

κµ|ωi| − γ̃2

(
ω>1− 1

)
,

where sign(·) is the sign function. Concentrating out Σ yields

min
w

1

2
tr
(
ω>Σ̂ω

)
+ κσω

>ω − γ̃1

(
ω>µ̂− µ0

)
+ γ̃1

N∑
i=1

κµ|ωi| − γ̃2

(
ω>1− 1

)
.

Finally, taking λ1 = γ̃1κµ and λ2 = κσ, the problem becomes equivalent to the standard regularized

optimization with the sample mean estimates of expected returns and the covariance matrix as

follows:

min
w

1

2
ω>Σ̂ω + λ2‖ω‖22 + λ1‖ω‖1 − γ1

(
ω>µ̂− µ0

)
− γ2

(
ω>1− 1

)
.

Note that the lasso shrinkage λ1 increases with more uncertainty in the mean, while the ridge

shrinkage λ2 has a direct correspondence to the variance uncertainty. Therefore, the first stage

regularized optimization results in a robust estimation of the whole mean-variance efficient frontier,

which we trace out in the second step to find the tangency portfolio.

The mean shrinkage can be linked to uncertainty in the Sharpe ratio of the tangency portfolio.

In order to show this, we consider the equivalent problem of an investor with mean-variance utility

function and risk aversion γ. It is instructive to start with the conventional problem without any

lasso or ridge shrinkage as follows:

max
ω

ω>µ̂− γ

2
ω>Σ̂ω − γ1

(
1− ω>1

)
.

The well-known solution is a combination of the tangency portfolio and the minimum variance

portfolio ω∗ = αγω̂naive + (1 − αγ)ω̂var with αγ = 1
γ1
>Σ̂−1µ̂. Hence, each target mean µ0 in the

Markowitz problem corresponds to a risk aversion parameter γ. Consider now the problem of

mean-variance optimization with the sample mean shrunk toward its cross-sectional average µ̄ as

follows:

max
ω

ω> (δµ̂+ (1− δ)µ̄1)− γ

2
ω>Σ̂ω − γ1

(
1− ω>1

)
.

The solution is again a convex combination of the tangency and minimum variance portfolio ω∗ =

αδω̂naive + (1 − αδ)ω̂var, with weights αδ = δ
γ1
>Σ̂−1µ̂. Hence, mean shrinkage can equivalently be

formulated as a higher degree of risk aversion. Next, we consider a robust optimization problem
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with uncertainty in the Sharpe ratio. The uncertainty set25

SSR =
{
µ : (µ− µ̂)>Σ−1 (µ− µ̂) ≤ κSR; κSR ≥ 0

}
is used in the worst case optimization

max
ω

min
µ∈SSR

ω>µ− γ

2
ω>Σω − γ2

(
κSR − (µ2 − µ̂)>Σ−1 (µ2 − µ̂)

)
− γ1

(
1− ω>1

)
,

yielding the solution ω∗ = ακSRω̂naive + (1 − ακSR)ω̂var with ακSR = 1
κSR
σp

+γ
1
>Σ̂−1µ̂. Note that

σp = σp(ω
∗) = σp(κSR, γ) is the volatility of the optimal portfolio and generally can be found

as a unique solution to a higher order polynomial equation.26 However, all these problems can

easily be seen as tracing the same efficient frontier, with the one-to-one mapping between the

coefficient of risk aversion, the degree of shrinkage to the mean, and the elliptical uncertainty on

the expected returns, with the latter two equivalent to a higher value of the effective risk aversion

in the standard Markowitz optimization. Hence, robust estimation with uncertainty in the Sharpe

ratio can be motivated as a conventional mean-variance optimization with shrinkage in the mean

or a higher degree of risk aversion.

Including the variance shrinkage λ2 is straightforward. We define the uncertainty set as

SSR,Σ =

{
µ,Σ :

Σ = Σ̂ + dIN ; d ≤ κσ; Σ is positive definite and κσ ≥ 0

(µ− µ̂)>Σ−1 (µ− µ̂) ≤ κSR; κSR ≥ 0

}
,

and the solution simply replaces Σ̂ with Σ̂ + λ2IN (that is, we use ω̂tan,λ2 , ω̂var,λ2 and the corre-

sponding ακSR) and identifies κσ = λ2 in the equivalent shrinkage formulation.27 The general case

includes uncertainty in the mean resulting in the uncertainty set

SSR,Σ,µ =

{
µ,Σ :

Σ = Σ̂ + dIN ; d ≤ κσ; Σ is positive definite and κσ ≥ 0

µ = µ1 + µ2; |µ1 − µ̂| ≤ κµ; (µ2 − µ̂)>Σ−1 (µ2 − µ̂) ≤ κSR; κSR, κµ ≥ 0

}

Adding the lasso term, then, is a simple generalization of the previous results, which, however, do

not have a closed-form solution anymore. Note that the objective function becomes additive in µ1

and µ2 and after concentrating out the parameters, it is equivalent to the mean-variance utility

maximization with shrunk mean, lasso, and ridge penalty. In particular, κSR can be directly linked

to the mean shrinkage λ0, κµ to the lasso penalty λ2 and κσ to the ridge penalty λ2.

We now provide the detailed derivation for the link between mean shrinkage and the uncertainty

25The uncertainty set puts constraints on the mean return, which can be mapped into Sharpe ratio constraints.
Assume µ>Σ̂−1(µ̂−µ) ≥ 0, that is, the sample mean overestimates the mean. In this case the constraint is equivalent
to µ̂>Σ̂−1µ̂−µ>Σ−1µ ≤ κSR, which bounds the estimation error of the sample Sharpe ratio from above. In the case of
µ̂>Σ̂−1(µ−µ̂) > 0, that is, the sample mean underestimates the mean, the bound is equivalent to µ>Σ−1µ−µ̂>Σ̂−1µ̂ ≤
κSR. This is a lower bound on how much the Sharpe ratio is underestimated.

26See Garlappi, Uppal, and Wang (2007).
27Note that in this formulation we use a simpler uncertainty set than in the robust efficient frontier construction

in order to obtain the closed-form solution.
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in the Sharpe ratio of the tangency portfolio. It is instructive first to consider the case without the

restrictions that would lead to a lasso penalty, to demonstrate the argument with a closed-form

solution. The robust version of the classical mean-variance portfolio optimization is equivalent to

finding the solution under the worst case scenario as follows:

max
ω

min
Σ,µ∈SSR,Σ

ω>µ− γ

2
ω>Σω − γ2

(
κSR − (µ2 − µ̂)>Σ−1 (µ2 − µ̂)

)
− γ1

(
1− ω>1

)
.

First, note that the objective function is monotonic in κσ; hence Σ̃∗ = Σ̂ + κσIN .28 The FOC

w.r.t. µ̃ implies µ̃∗ = µ̂ − 1
2γ̃1

Σ̃∗w, which, after substituting into the loss function and solving for

γ̃1, yields

γ

2γ̃2
1

ω>Σ̃∗ω − κ = 0 =⇒ γ̃1 =

√
γω>Σ̃∗ω

2κSR
,

and the whole problem becomes

max
w

ω>µ̂− γ

2
ω>Σ̃∗ω

[
1−

2
√
κSR

γ
√
ω>Σ̃ω

]
− γ̃2

(
1− ω>1

)
. (A1)

The solution to this optimization satisfies the following equations:

ω∗ =

(
σp√

κSR + γσp

)
Σ̃∗−1 (µ̂− γ̃21) ,

w∗>1 = 1 =⇒ γ̃∗2 =
1

1>Σ∗−11

(
µ̂>Σ∗−1

1−
√
κSR + γσp
σp

)
,

where σp ≡
√
ω∗>Σ̃∗ω∗ is the volatility of the optimal portfolio. This implies that the optimal

asset allocation is described by the following equation:

ω∗ =
σp√

κSR + γσp
Σ̃∗−1

(
µ̂− 1

1>Σ∗−11

(
µ̂>Σ∗−1

1−
√
κSR + γσp
σp

))
. (A2)

Note that σp can be found as a unique positive solution to a higher order polynomial equation (see,

e.g., Garlappi, Uppal, and Wang (2007)).

It is interesting to note that there is a one-to-one mapping between the optimal asset allocation,

solving problem (A3), and a standard mean-variance optimization problem, where expected returns

are shrunk toward their cross-sectional mean, that is, there exists α ∈ [0, 1] s.t. the portfolios choice

28To see this, note that for a positive definite quadratic form x>(Σ̂ + dIN )−1x,

∂(x>(Σ̂ + dIN )−1x)

∂d
= −Tr

(
(Σ̂ + dIN )xx>(Σ̂ + dIN )

∂((Σ̂ + dIN )−1)

∂d

)

= Tr
(

(Σ̂ + dIN )xx>(Σ̂ + dIN )
[
−(Σ̂ + dIN )−1IN (Σ̂ + dIN )−1

])
= Tr

(
(Σ̂ + dIN )xx>(Σ̂ + dIN )−1

)
= Tr

(
xx>

)
=

n∑
i=1

x2
i ≥ 0.

Hence, the optimal solution is to set d = κSR.
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in eq. (A2) coincides with the solution to the following problem:

max
w

ω> ((1− α)µ̂+ αµ̄)− γ

2
ω>Σ̃∗ω − γ̃2

(
1− ω>1

)
. (A3)

This is a standard portfolio optimization problem, with the optimal solution satisfying the following

first order conditions:

ω∗α =
1− α
γ

Σ̃∗−1

(
µ̂− γ̃2 − αµ̄

1− α
1

)
w∗>α 1 = 1 =⇒ γ̃2 − αµ̄

1− α
=

1

1>Σ∗−11

(
µ̂>Σ∗−1

1− γ

1− α

)
.

Hence,

w∗α =
1− α
γ

(
µ̂− 1

1>Σ∗−11

(
µ̂>Σ∗−1

1− γ

1− α

))
. (A4)

Finally, note that for each optimal portfolio w∗ in eq. (A2), with the known volatility σp(w
∗), there

exists a value of α∗ ∈ [0, 1]:

α∗ =

√
κSR√

κSR + γσp

such that w∗ = w∗α(α = α∗). This equivalence between two optimization problems persists in the

corner solutions as well: as κSR → 0, µ̃→ µ̂, α→ 0, and we’re back to the standard mean-variance

optimization that relies on the sample estimates of the mean. On the other hand, as κSR → ∞,

µ̃ → µ̄, and α → 1, which is equivalent to the minimum variance portfolio, and full shrinkage of

expected returns towards their cross-sectional average.

Adding the lasso term then is a simple generalization of the previous results, which, however,

do not have a closed-form solution anymore. Consider the uncertainty sets for the means and

variances of returns SSR,Σ,µ. Note that the objective function becomes additive in µ1 and µ2, and

after concentrating the parameters out, is equivalent to the following optimization:

max
w

ω>(µ̂− ψ̄sign(ω))− γ

2
ω>Σ̃∗ω

[
1−

2
√
κSR

γ
√
ω>Σ̃∗ω

]
− γ̃2

(
1− ω>1

)
= max

w
ω>µ̂− γ

2
ω>Σ̂ω

[
1−

2
√
κSR

γ
√
ω>Σ̂ω

]
− γ̃2

(
1− ω>1

)
− λ1

n∑
i=1

|ωi| − λ2

n∑
i=1

ω2
i

for certain values of λ1 > 0 and λ2 > 0. The equivalence between the solution to this optimization

and the standard mean-variance approach with elastic net (that is, both lasso and ridge penalties)

is similarly established by examining the first order conditions for the active set of {wi : wi 6= 0}.

Appendix A.4. AP-Pruning Implementation

The return of each tree portfolio is multiplied by 1√
2di

before running the mean-variance opti-

mization, where di denotes the depth of a tree portfolio. We calculate the covariance matrix Σ̂ and
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mean vector µ̂ of the reweighted assets. The cross-sectional mean is denoted by µ̄ = 1
N

∑N
i=1 µ̂i.

We obtain the SDF weights by running an elastic net regression of Σ̃ on µ̃, where

Σ̃ = Σ̂1/2 µ̃ = Σ̂−1/2 (µ̂+ λ0µ̄1)

and

ω̂robust = arg min
ω

(
µ̃− Σ̃ω

)> (
µ̃− Σ̃ω

)
+ λ2‖ω‖22 + λ1‖ω‖1.

The elastic net implementation actually simplifies to a lasso regression. Define

X =

(
Σ̃

√
λ2IN

)
y =

(
µ̃

0N

)
.

Then the problem is equivalent to the lasso regression

(y −Xω)> (y −Xω) + λ1‖ω‖1.

The algorithm requires the square root and inverse of a large dimensional sample covariance

matrix. We suggest the following steps. First, we obtain an eigenvalue-eigenvector decomposition

of the sample covariance matrix

Σ̂ = V >DV,

where V are the eigenvectors and D is a diagonal matrix of sorted eigenvalues. We keep only the

δ = min(T,M) non-zero eigenvalues where M is the number of tree portfolios and T is the length

of the training sample. Then

Ṽ = V (:, 1 : δ) D̃ = D(1 : δ, 1 : δ)

Σ̃ = Ṽ >D̃1/2Ṽ µ̃ = Ṽ >D̃−1/2Ṽ (µ̂+ λ0µ̄1) .

We implement the lasso regression with the LARS (Least Angle Regression) algorithm.

We have also considered to correct for over-shrinkage induced by double-shrinkage in the mean

through lasso and the mean shrinkage. Our modification is a convex combination of the sample

mean and cross-sectional average, that is, we use

µ̃ = Σ̂−1/2 (α0µ̂+ (1− α0)µ̄1)

in the lasso regression. The results are very close to µ̃ = Σ̂−1/2 (µ̂+ λ0µ̄1), which is our benchmark

case.
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Appendix B. Simulation

This section includes the details for Section III and additional simulation results. Suppose there

is a single factor that drives expected returns on a cross-section of stocks, with loadings being a

function of two stock-specific characteristics as follows:

Ret+1,i = βt,iFt+1 + εt+1,i.

In our simple model, the factor follows Ft
i.i.d.∼ N (µF , σ

2
F ) and the idiosyncratic component εt,i

i.i.d.∼
N(0, σ2

e). Motivated by a wide range of empirical patterns in the joint empirical distribution of

characteristics and their impact on expected returns (see, e.g. Figures E.1 – E.3), we consider two

different formulations for the risk-loadings as a function of characteristics C
(1)
i,t and C

(2)
i,t as follows:

1. Additively linear, with stock beta being simply the following sum of two characteristics:

βt,i = C
(1)
t,i + C

(2)
t,i .

2. Nonlinear, with stock beta being a nonlinear and nonadditive function of characteristics:

βt,i =
1

2
− [1− (C

(1)
t,i )2] · [1− (C

(2)
t,i )2].

We model stock characteristics as quantiles of the cross-sectional distribution and allow for their

potential dependence as follows:

(C
(1)
t−1,i, C

(2)
t−1,i)

i.i.d.∼ Corr-Uniform[0, 1, ρ],

where Corr-Uniform[0, 1, ρ] denotes a pair of uniformly distributed random variables that have

correlation ρ and marginal densities U [0, 1]. To model the impact of characteristic dependence on

the portfolio structure, we consider three cases: ρ ∈ {0, 0.5, 0.9}. The risk factor has µF = 1, σF = 2,

implying a Sharpe ratio of 0.5, and the idiosyncratic noise has a standard deviation of σe = 8 to

mimic a noisy and volatile process for stock returns. Since E(ft) = 1, the stock’s beta is exactly

equal to its expected return. Finally, we set cross-sectional dimensions to N = 800, T = 600.

Figure E.4 illustrates the resulting empirical distribution of stock returns in the characteristic space

and their true loadings on the SDF, which is equal to the expected returns up to a proportionality

constant.

We build double-sorted portfolios (DS) and AP-Trees, as described in the main text. Our focus

is the estimation of the stock loadings βt,i on the SDF, because they incorporate all the relevant

information for asset pricing. Naturally, they are equal to the conditional expected return (up to a

constant of proportionality, since the mean of estimated SDF is not identified) and could be used

to predict future stock returns. Second, a cross-sectional projection of asset returns on their betas

is a valid estimate of the SDF itself. Third, projecting out the cross-sectional space spanned by the

stock betas results in the residual component, which captures the pricing error. Hence, the recovery
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of almost all the objects of interest in asset pricing, that is, return prediction, SDF estimation, and

pricing errors, crucially relies on the precise estimates of these betas.

Figure E.5 presents the scaled version of the estimated SDF betas (and hence, conditional

expected returns) for different basis assets for the nonlinear model.29 Clearly, averaging betas

across conditional basis asset allows tracking the underlying SDF loadings in the characteristic

space. As in the linear case, the correlation between characteristics matters, as it leads to an

unbalanced composition of basis assets for conventional sorting. Table D.6 reports the Sharpe ratios

of the SDFs spanned by different assets. The AP-Tree SDF has clearly higher out-of-sample Sharpe

ratios compared to the DS approach. Note that for this particular simulation setup, obtaining just

a high SR is too low a bar. Indeed, as we mentioned earlier, in this particular setting the data is

coming from a very simple one-factor model, which drives both the time-series of returns and their

cross-sectional spread. As a result, almost any well-diversified stock portfolio (equally weighted, or

long-short in a given characteristic, or a simply first principal component) would also be loading

on the same latent factor, and, as a result, asymptotically recover both the highest SR and an

accurate SDF projection on returns. The true test of the basis assets lies in their ability to span

expected returns in the characteristic space and match its empirical counterpart, and this is where

AP-Trees really shine.

29Similar to the way portfolio buckets are used to estimate expected returns, we compute security betas by averaging
the stock betas that belong to the same portfolios (and in case of the trees, averaging across the overlapping portfolios).
For AP-Trees, we plot all the potential basis assets (both final and intermediate nodes of the trees). The pattern in
expected returns is quite striking. Ideally, it should be close to the one used to generate the data (Figure E.4, left
two plots). However, in practice there is a substantial difference between the type of shapes and figures one could
get with double-sorted portfolios relative to those reflected by conditional trees. The difference remains substantial
even in the simplest case of independent characteristics, where both tree-based portfolios and double-sorted ones are
most similar to each other, having 1/16 of all the stocks (in case of the AP-trees, there are also intermediate nodes
that contain 1/2, 1/4, and 1/8 of all the securities).
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Appendix C. List of the Firm-Specific Characteristics

Table C.1 Characteristic variables as listed on the Kenneth French Data Library

Acronym Name Definition Reference

AC Accrual Change in operating working capital per split-adjusted share from the fiscal year

end t-2 to t-1 divided by book equity (defined in BEME) per share in t-1. Operating

working capital per split-adjusted share is defined as current assets (ACT) minus

cash and short-term investments (CHE) minus current liabilities (LCT) minus debt in

current liabilities (DLC) minus income taxes payable (TXP).

Sloan (1996)

BEME Book-to-Market ratio Book equity is shareholder equity (SH) plus deferred taxes and investment tax credit

(TXDITC), minus preferred stock (PS). SH is shareholders equity (SEQ). If missing,

SH is the sum of common equity (CEQ) and preferred stock (PS). If missing, SH

is the difference between total assets (AT) and total liabilities (LT). Depending on

availability, we use the redemption (item PSTKRV), liquidating (item PSTKL), or

per value (item PSTK) for PS. The market value of equity (PRC*SHROUT) is as of

December t-1.

Basu (1983), Fama

and French (1992)

IdioVol Idiosyncratic volatil-

ity

Standard deviation of the residuals from a regression of excess returns on the Fama

and French three-factor model

Ang, Hodrick, Xing,

and Zhang (2006)

Investment Investment Change in total assets (AT) from the fiscal year ending in year t-2 to the fiscal year

ending in t-1, divided by t-2 total assets

Fama and French

(2015)

LME Size Total market capitalization at the end of the previous month defined as price times

shares outstanding

Banz (1981), Fama

and French (1992)

LT Rev Long-term reversal Cumulative return from 60 months before the return prediction to 13 months before Bondt and Thaler

(1985)

Lturnover Turnover Last month’s volume (VOL) over shares outstanding (SHROUT) Datar, Naik, and

Radcliffe (1998)

OP Operating profitabil-

ity

Annual revenues (REVT) minus cost of goods sold (COGS), interest expense (TIE),

and selling, general, and administrative expenses (XSGA) divided by book equity

(defined in BEME)

Fama and French

(2015)

r12 2 Momentum To be included in a portfolio for month t (formed at the end of month t-1), a stock

must have a price for the end of month t-13 and a good return for t-2. In addition,

any missing returns from t-12 to t-3 must be -99.0, CRSP’s code for a missing price.

Each included stock also must have ME for the end of month t-1.

Jegadeesh and Tit-

man (1993)

ST Rev Short-term reversal Prior month return Jegadeesh (1990)

Characteristic variables as listed on Kenneth French’s website with acronym, definition, and academic reference.
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Appendix D. Additional Tables

Appendix D.1. Additional Empirical Results for All Cross-Sections

Table D.1 Summary statistics of the cross-sections, built from AP-Tree

Id Char 1 Char 2 Char 3 SR αFF3 αFF5 αXSF αFF11 λ0 λ2

30 Size SRev Turn 0.24 1.03 0.98 0.7 0.64 0.40 3.16E-06

[7.36] [6.83] [6.65] [5.78]

17 Size Prof SRev 0.27 0.83 0.72 0.76 0.81 0.55 1.00E-08

[6.8] [5.81] [6.31] [6.53]

27 Size SRev LRev 0.30 0.83 0.73 0.76 0.79 0.90 1.00E-08

[10.2] [8.97] [9.55] [9.26]

4 Size Val SRev 0.30 0.98 1.03 0.92 1.04 0.90 1.00E-08

[4.88] [5.0] [6.82] [7.55]

33 Size LRev Turn 0.31 0.62 0.51 0.61 0.66 0.35 1.00E-08

[4.19] [3.37] [4.18] [4.15]

12 Size Mom LRev 0.32 0.84 0.71 0.83 0.88 0.80 1.00E-08

[5.89] [4.94] [5.82] [5.89]

22 Size Inv SRev 0.33 0.95 0.91 0.82 0.89 0.80 1.00E-07

[10.22] [9.5] [9.17] [9.43]

32 Size LRev IVol 0.33 0.79 0.74 0.79 0.83 0.05 1.00E-08

[7.46] [6.72] [7.47] [7.3]

5 Size Val LRev 0.33 1.1 1.05 0.81 0.74 0.70 1.00E-08

[8.61] [7.9] [7.91] [6.97]

28 Size SRev Acc 0.35 1.05 0.96 0.68 0.69 0.65 1.00E-08

[7.75] [6.97] [6.56] [6.22]

15 Size Mom Turn 0.35 1.12 1.17 0.82 0.83 0.15 1.00E-08

[7.38] [7.42] [8.8] [8.53]

31 Size LRev Acc 0.36 1.09 1.03 0.65 0.58 0.10 1.00E-08

[5.97] [5.42] [5.39] [4.64]

35 Size Acc Turn 0.36 1.11 1.09 0.73 0.71 0.75 1.00E-08

[6.84] [6.56] [5.98] [5.4]

13 Size Mom Acc 0.37 1.13 1.08 0.77 0.74 0.50 1.00E-08

[10.59] [9.73] [9.75] [8.92]

11 Size Mom SRev 0.40 1.12 1.08 0.67 0.64 0.85 1.00E-07

[6.95] [6.47] [6.79] [5.96]

29 Size SRev IVol 0.41 0.94 0.81 0.81 0.89 0.35 1.00E-08

[10.11] [8.76] [8.77] [9.12]

1 Size Val Mom 0.41 1.03 1.06 0.83 1.06 0.00 1.00E-08

[4.51] [4.61] [5.71] [7.31]

6 Size Val Acc 0.42 0.93 0.82 0.82 0.93 0.30 3.16E-07

[7.74] [6.93] [7.11] [7.55]

9 Size Mom Prof 0.42 0.99 0.94 0.93 1.04 0.05 1.00E-08

[8.35] [7.76] [7.89] [8.43]

10 Size Mom Inv 0.44 0.97 0.94 0.82 0.9 0.45 1.00E-08

[11.22] [10.75] [9.93] [10.67]

8 Size Val Turn 0.46 1.01 0.97 0.95 1.03 0.15 1.00E-08
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[9.12] [8.59] [8.76] [8.95]

2 Size Val Prof 0.46 0.98 1.04 0.91 0.98 0.85 1.00E-08

[5.43] [5.54] []7.55 [8.03]

36 Size IVol Turn 0.46 0.78 0.6 0.65 0.61 0.00 1.00E-08

[6.87] [5.59] [6.13] [5.45]

14 Size Mom IVol 0.47 0.96 0.84 0.85 0.91 0.00 1.00E-08

[10.17] [9.1] [9.28] [9.37]

23 Size Inv LRev 0.48 0.99 0.93 0.84 0.89 0.90 1.00E-08

[11.33] [10.41] [10.09] [10.22]

18 Size Prof LRev 0.50 0.93 0.8 0.79 0.83 0.20 1.00E-08

[9.53] [9.11] [9.56] [9.39]

19 Size Prof Acc 0.52 0.91 0.99 0.85 0.94 0.35 1.00E-08

[4.63] [4.89] [6.83] [7.09]

34 Size Acc IVol 0.54 1.06 1.12 0.93 1.07 0.05 3.16E-06

[6.11] [6.29] [7.42] [8.23]

7 Size Val IVol 0.54 1.05 1.1 0.92 1.04 0.00 3.16E-07

[6.86] [7.07] [8.86] [10.07]

21 Size Prof Turn 0.55 1.02 1.14 0.89 1.01 0.00 1.00E-08

[4.18] [4.58] [6.22] [6.62]

20 Size Prof IVol 0.59 1.01 0.93 0.95 1.02 0.05 3.16E-07

[6.54] [5.8] [6.11] [6.1]

26 Size Inv Turn 0.62 1.03 0.99 0.79 0.98 0.00 1.00E-08

[6.6] [6.14] [5.38] [6.51]

24 Size Inv Acc 0.62 0.81 0.69 0.75 0.7 0.20 1.00E-08

[4.85] [4.14] [4.84] [4.15]

25 Size Inv IVol 0.64 1.01 0.98 0.86 0.92 0.05 1.00E-08

[9.46] [8.88] [8.37] [8.62]

3 Size Val Inv 0.65 1.04 1.02 0.99 1.26 0.50 1.00E-08

[6.78] [6.37] [6.4] [7.98]

16 Size Prof Inv 0.65 1.06 1.02 0.82 0.85 0.15 1.00E-08

[10.59] [9.94] [9.95] [9.94]

The table summarizes 36 cross-sections, based on AP-Tree portfolios. For each combination of three characteristics we built the
trees of depth four, and excluded the nodes that result from using the same characteristics for splits four times. The set of final
and intermediate nodes is then pruned to 10 portfolios, with the corresponding SDF spanning them, following the approach
outlined in Sections II and II.C. The table presents the values of the optimally selected tuning parameters (λ0 for shrinkage
to the mean and λ2 for ridge, while the lasso term is set to select 10 assets). We also report the out-of-sample properties of
the SDFs spanning these portfolios: their Sharpe ratio and alphas with respect to Fama-French three- and five-factor models,
cross-section-specific factors (and market), and the ultimate FF11 model that includes the market and 10 long-short portfolios,
based on characteristics. The t-statistics are in brackets.

Table D.2 Selection of hyperparameters

Notation Hyperparameters Candidates

λ0 Mean shrinkage {0, 0.05, 0.1, ..., 0.9}
K Number of portfolios {10, 11, ..., 40}
λ2 Variance shrinkage {0.15, 0.15.25, ..., 0.18}

The table presents the list of hyperparameters for pruning AP-Trees, and the actual range of their values used for simulation
and empirics. The mean shrinkage is scaled by the cross-sectional average, µ̂+ λ0µ̄1.
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Appendix D.2. Results for Size, Value, and Idiosyncratic Volatility

Table D.3 Cross-sections based on size, value, and idiosyncratic volatility

Type of the cross-section

AP-Trees (10) AP-Trees (40) TS (32) TS(64)

SDF SR 0.54 0.55 0.28 0.26

α

FF3 0.95 0.94 0.73 0.94

[10.22] [11.07] [4.95] [5.50]

FF5 0.91 0.91 0.75 0.96

[9.50] [10.45] [5.01] [5.50]

XSF 0.82 0.82 0.33 0.65

[9.17] [10.05] [3.01] [4.08]

FF11 0.89 0.88 0.42 0.83

[9.43] [10.27] [3.80] [5.08]

XS R2
adj

FF3 -41.0% 10.0% 76.0% 74.0%

FF5 -93.0% 16.0% 74.0% 73.0%

XSF -22.0% 45.0% 88.0% 85.0%

FF11 – 24.0% 83.0% 79.0%

The table presents the aggregate properties of the cross-sections based on size, value, and idiosyncratic Volatility, created from
AP-Trees (pruned to 10 and 40 portfolios, correspondingly) and triple sorts (32 and 64 portfolios). For each of the cross-section
the table reports its monthly Sharpe ratio on the test sample, along with the alpha of the SDF spanned by the corresponding
basis portfolios. Alphas are computed relative to the Fama-French three- and five- factor models, cross-section-specific factors
(market and long-short portfolios, reflecting size, value and idiosyncratic volatility), and the composite FF11 model that includes
the market portfolio, along with the 10 long-short portfolios, based on the cross-sectional characteristics.
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Table D.4 Size, value, and idiosyncratic volatility: Cross-sections without small caps

Panel A: Portfolios with size quantile above 0.4 Panel B: Stocks with market cap above 0.01%

AP-Trees (10) AP-Trees (40) TS (32) TS(64) AP-Trees (10) AP-Trees (40) TS (32) TS(64)

SDF SR 0.30 0.32 0.18 0.19 0.19 0.14 0.10 0.06

α

FF3 0.70 0.74 0.32 0.70 0.58 0.82 0.59 0.66

[5.65] [6.34] [1.22] [2.79] [3.24] [3.15] [1.32] [0.80]

FF5 0.64 0.70 0.18 0.62 0.30 0.35 -0.02 -0.42

[5.20] [6.16] [0.68] [2.44] [1.81] [1.55] [-0.05] [-0.54]

XSF 0.32 0.41 -0.24 0.04 0.17 0.26 -0.14 -0.56

[4.06] [4.94] [-1.07] [0.20] [1.70] [1.57] [-0.39] [-0.78]

FF11 0.38 0.48 -0.26 0.21 0.12 0.08 -0.38 -1.08

[4.85] [5.83] [-1.08] [1.03] [1.17] [0.54] [-1.04] [-1.50]

XS R2
adj

FF3 -50.0% 31.0% 64.0% 78.0% 79.0% 88.0% 87.0% 85.0%

FF5 -85.0% 43.0% 63.0% 79.0% 94.0% 96.0% 94.0% 91.0%

XSF 55.0% 83.0% 78.0% 90.0% 98.0% 98.0% 95.0% 92.0%

FF11 – 77.0% 45.0% 86.0% – 97.0% 93.0% 91.0%

The table presents the aggregate properties of the cross-sections based on size, value and idiosyncratic volatility, created from
AP-Trees (pruned to 10 and 40 portfolios, correspondingly) and triple sorts (32 and 64 portfolios). Panel A is based only on the
basis portfolios that have a value-weighted size quantile greater than 0.4, while Panel B describes cross-sections created only
from stocks with market capitalization greater than 0.01% of the total market capitalization, i.e., currently around top 600 stocks
in the United States. For each of the cross-sections, the table reports its monthly Sharpe ratio on the test sample, along with
the alpha of the SDF spanned by the corresponding basis portfolios and cross-sectional R2

adj obtained with conventional factor

models for each of the portfolio sets. Alphas and R2
adj are computed relative to the Fama-French three- and five-factor models,

cross-section-specific factors (market and long-short portfolios, reflecting size, operating profitability, and investment), and the
composite FF11 model that includes the market portfolio, along with the 10 long-short portfolios, based on the cross-sectional
characteristics.

Table D.5 Portfolio turnover for size, investment and idiosyncratic volatility

AP-Trees XSF Invest IdioVol

SR
Monthly 0.64 0.09 0.08 0.03

Yearly 0.28 0.06 -0.10 -0.01

Turnover+
Monthly 0.82 0.36 0.35 0.66

Yearly 0.15 0.11 0.12 0.12

Turnover-
Monthly 1.00 0.31 0.28 0.65

Yearly 0.11 0.09 0.09 0.11

Sharpe ratios and portfolio turnovers are converted to a monthly scale. The table compares the performance of the SDF,
spanned by AP-Trees, with the one captured by cross-sectional factors (used individually or as a combination). For AP-Trees
and XSF, we fix the weights at the portfolio level and track the performance of the strategy with monthly or yearly rebalancing.
Portfolio turnover is reported for the long and short legs separately.
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Appendix D.3. Additional Simulation Results

Table D.6 SR and SDF recovery in a simulated environment

Corr(C
(1)
i,t , C

(2)
i,t ) = 0 Corr(C

(1)
i,t , C

(2)
i,t ) = 0.5 Corr(C

(1)
i,t , C

(2)
i,t ) = 0.9

Portfolios SRtr SRval SRtest ρ(Ft, F̂t) SRtr SRval SRtest ρ(Ft, F̂t) SRtr SRval SRtest ρ(Ft, F̂t)

Additively linear model

AP-Trees 0.74 0.55 0.45 0.94 0.74 0.55 0.43 0.92 0.76 0.50 0.42 0.92

DS 0.67 0.47 0.38 0.88 0.69 0.50 0.39 0.87 0.69 0.52 0.38 0.87

Non-linear model

AP-Trees 0.69 0.38 0.37 0.81 0.72 0.45 0.34 0.81 0.71 0.42 0.37 0.81

DS 0.65 0.38 0.34 0.78 0.64 0.42 0.32 0.78 0.64 0.46 0.30 0.75

Sharpe ratio (SR) of the SDF factor for the tree portfolios and double-sorted 16 portfolios under two different loading functions
and three different correlations of the two characteristic variables. The data is generated with an SDF factor with Sharpe ratio
SR = 0.5. N = 800, T = 600, Ttr = 240, Tval = 120 and Ttest = 240.
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Appendix E. Additional Figures

Appendix E.1. Additional stylized empirical facts

(a) Size and book-to-market (b) Size and accruals

(c) Short-term reversal and idiosyncratic vol. (d) Book-to-market and investment

(e) Operating profitability and short-term reversal (f) Momentum and operating profitability

(g) Book-to-market and idiosyncratic volatility (h) Operating profitability and long-term reversal

Figure E.1. Joint empirical distribution of characteristics in the cross-section of stocks
The graphs represent the pairwise empirical cross-sectional distribution of the characteristic quantiles across the stocks. The
frequency is computed on a quantile 20×20 grid.
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(a) Size and book-to-market (b) Size and accruals

(c) Short-term reversal and idiosyncratic vol. (d) Book-to-market and investment

(e) Operating profitability and short-term reversal (f) Momentum and operating profitability

(g) Book-to-market and idyosyncractic volatility (h) Operating profitability and long-term reversal

Figure E.2. Conditional and unconditional characteristic impact
The graphs represent the impact of a characteristic quintile on expected returns unconditionally and conditionally on the second
characteristic. For example, Panel (a) describes the average returns on stocks sorted by their idyosyncractic volatility (quintiles
1–5), both unconditionally and conditionally on belonging to quintiles 1–5 based on short-term reversal.
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(a) Size and book-to-market (b) Size and accruals

(c) Short-term reversal and idiosyncratic vol. (d) Book-to-market and investment

(e) Operating profitability and short-term reversal (f) Momentum and operating profitability

(g) Book-to-market and idiosyncratic volatility (h) Operating profitability and long-term reversal

Figure E.3. Expected return as a function of stock characteristics
The graphs represents the empirical distribution of expected returns in the pairwise characteristic space. Yellow areas denote
high expected return, while dark blue corresponds to the areas with the lowest expected returns. All the quantities are computed
on a grid on 20 × 20 unconditional quantiles by averaging historical returns on the stocks belonging to that portfolio.
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Appendix E.2. Additional Simulation Results

(a) An additively linear model

(b) A nonlinear model

Figure E.4. True factor loadings and sample average returns as a function of characteristics
Two simulation setups for the loadings β as a function of two characteristics. The figure shows the factor loadings β and the
average returns for a cross-section of stocks as a function of the characteristics. The left plots are based on the linear model

βt,i = C
(1)
t,i + C

(2)
t,i , and the right ones on the nonlinear model βt,i = 1

2
− [1− (C

(1)
t,i )2] · [1− (C

(2)
t,i )2].
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Correlation = 0 Correlation = 0.5 Correlation = 0.9

Panel A: Double-sorted portfolios

(a) Correlation = 0 (b) Correlation = 0.5 (c) Correlation = 0.9

Panel B: AP-Trees

Figure E.5. Estimated SDF loadings as a function of characteristics in the nonlinear model
Estimated loading function β as a function of the two characteristics in the nonlinear model for different levels of correlation
in the characteristics. The top plots show the loadings estimated with double-sorted portfolios and the bottom plots the
corresponding results with pruned AP-Trees.
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Appendix E.3. Pruning Illustration
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(a) Portfolios, sorted by size, value, and size
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(b) Portfolios, sorted by value, value, and size
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(c) Portfolios, sorted by size, size, and value
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(d) Portfolios, sorted by value, size, and value

Figure E.6. Portfolio selection: Original and pruned trees
The figure shows sample trees, original and pruned for portfolios of depth 3 constructed based on size and book-to-market as
the only characteristics. The fully pruned set of portfolios is based on eight trees, with Panels a) – d) illustrating potential
outcomes.
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Appendix E.4. Additional Empirical Results for All Cross-Sections

(a) SDF α: t-statistics of the pricing error relative to XS-specific factors

(b) SDF α: t-statistics of the pricing error relative to the market factor and 10 long-short portfolios

(c) XS-R2: pricing portfolios with XS-specific factors

Figure E.7. Pricing errors and XS-R2 for AP-Trees and triple sorts

Pricing errors of the SDFs spanned by AP-Trees (40 portfolios) and triple sorts and cross-sectional fit measured by XS-R2.
The t-statistics of the pricing errors are relative to the cross-section specific factors (market + 3 long-short factors) and all 11
factors (market + 10 long-short factors).
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Figure E.8. SDF α: t-statistics of the pricing errors of SDF pruned AP-Trees (10 portfolios) with
respect to 5 Fama-French factors
The figure displays the out-of-sample t-statistics of the pricing errors of the robust mean variance efficient portfolios spanned by
pruned AP-Trees (10 portfolios), triple sorts, and XSF (market and the three cross-section-specific characteristics) with respect
to the five Fama-French factors. The SDF based on triple sorts is relying on either 32 or 64 assets and considers mean and
variance shrinkage. Cross-sections are sorted by the SR achieved with AP-Trees (40).

Figure E.9. Out-of-sample SDF alpha t-statistics, based on the FF11 factor model (market
portfolio + 10 long-short portfolios) for 10 characteristics
SDF alpha t-statistics calculated on the out-of-sample robust mean-variance efficient portfolios spanned by different basis assets.
The SDFs are constructed as in Figure 13. The pricing errors are calculated with respect to all 11 factors.
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Panel A: Sharpe ratios of AP-Trees (40) with time-varying SDF portfolio weights

Panel B: Sharpe ratios of AP-Trees (10) with time-varying SDF portfolio weights

Figure E.10. Sharpe ratios of AP-Tree’s SDFs with rolling window estimates of portfolio weights
The top figure displays the monthly out-of-sample Sharpe ratio of the SDFs of pruned AP-Trees (40 portfolios) with and without
different forms of shrinkage, while the bottom figures show the results for AP-Trees (10 portfolios). The AP-Tree portfolios are
selected on the training data and kept the same. The SDF portfolio weights for both figures are estimated on a rolling window
of 20 years; that is, we allow for time-variation in the SDF portfolio weights. The tuning parameters (mean and/or variance
shrinkage) are selected optimally on the validation data.
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(a) Sharpe ratios of triple sorts (64 portfolios) with time-varying weights SDF portfolios weights

(b) Sharpe ratios of triple sorts (32 portfolios) with time-varying weights SDF portfolios weights

Figure E.11. Sharpe ratios of SDFs based on triple sorts with rolling window estimates of weights
The top figure displays the monthly out-of-sample Sharpe ratio of the SDFs of 64 triple-sorted portfolios with and without
different forms of shrinkage, while the bottom figures show the results for 32 triple-sorted portfolios. The SDF portfolio weights
for both figures are estimated on a rolling window of 20 years; that is, we allow for time-variation in the SDF portfolio weights.
The tuning parameters (mean and/or variance shrinkage) are selected optimally on the validation data.
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Appendix E.5. Additional Results for Size, Profitability, and Investment

(a) Alphas of AP-Trees (10) portfolios relative to the XSF model

(b) Alphas of AP-Trees (10) portfolios relative to the FF3 model

(c) Alphas of AP-Trees (10) portfolios relative to the FF5 model

(d) Alphas of AP-Trees (10) portfolios relative to the FF11 model

Figure E.12. Pricing errors αi for AP-Trees (10) for size, operating profitability, and investment.
The plots present the pricing errors relative to the FF3, FF5, FF11, and XSF factors with significance levels (candlestick=5%,
dashed line=1%, box=10%).
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(a) Alphas of AP-Trees (40) portfolios relative to the XSF model

(b) Alphas of AP-Trees (40) portfolios relative to the FF3 model

(c) Alphas of AP-Trees (40) portfolios relative to the FF5 model

(d) Alphas of AP-Trees (40) portfolios relative to the FF11 model

Figure E.13. Pricing errors αi for AP-Trees (40) for size, operating profitability, and investment
The plots present the pricing errors relative to the FF3, FF5, FF11, and XSF factors with significance levels (candlestick=5%,
dashed line=1%, box=10%).
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(a) Pricing errors of 64 triple-sorted portfolios, controlling for the Fama-French 3 factors

(b) Pricing errors of 64 triple-sorted portfolios, controlling for the Fama-French 5 factors

(c) Pricing errors of 64 triple-sorted portfolios, controlling for the cross-section-specific factors (market +
size, profitability, investment)

(d) Pricing errors of 64 triple-sorted portfolios, controlling for 11 cross-sectional factors

Figure E.14. Pricing errors αi for TS (64 assets) for size, operating profitability, and investment.
The plots present the pricing errors for triple-sorted portfolios relative to the FF3, FF5, FF11, and XSF factors with significance
levels (candlestick=5%, dashed line=1%, box=10%).
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Appendix E.6. Results for Size, Value and Idiosyncratic Volatility

(a) Number of portfolios (validation sample) (b) Number of portfolios (testing sample)

(c) Mean and variance shrinkage (validation) (d) Mean and variance shrinkage (testing)

Figure E.15. SR as a function of tuning parameters for size, value, and idiosyncratic volatility

The figure shows the validation and out-of-sample Sharpe ratio as a function of tuning parameters for AP-Trees on size, value,
and idiosyncratic volatility. Subplot (a) and (b) present the SR as function of the number of portfolios using the optimal mean
and variance shrinkage. Subplot (c) and (d) depict the SR as a function of mean (λ0) and variance (λ2) shrinkage for 10
portfolios. Yellow regions correspond to higher values. The optimal validation shrinkage is indicated by the red dot. We use
the mean µ̂+ λ0µ̄1.
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(a) SDF spanned by AP-Trees (10) (b) SDF spanned by TS (64)

(c) Alphas of AP-Trees (10) portfolios, controlling for cross-section-specific factors (XSF)

(d) Alphas of 64 triple-sorted portfolios, controlling for cross-section specific factors (XSF)

Figure E.16. Size, value, and idiosyncratic volatility: SDF weights and pricing errors for basis
assets with 10 AP-Tree and 64 TS
Composition of conditional SDF with 10 AP-Tree and 64 TS basis assets and corresponding pricing errors for each basis asset.
Subplots (a) and (b) show the SDF weight as a function of the size, value, and idiosyncratic volatility quantile. Subplots (c)
and (d) present the pricing errors relative to the cross-section specific factors (XSF) with significance levels (candlestick=5%,
dashed line=1%, box=10%).
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