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Abstract

We put forward a simple new approach to robust filtering of state-space models, motivated by the idea

that the inclusion of only a small fraction of available highly precise measurements can still extract

most of the attainable efficiency gains for filtering latent states, estimating model parameters, and

producing out-of-sample forecasts. The new class of particle filters we develop aims to achieve a degree

of robustness to outliers and model misspecification by purposely randomizing the subset of utilized

highly precise but possibly misspecified or outlier contaminated data measurements, while treating the

rest as if missing. The arising robustness-efficiency trade-off is controlled by varying the fraction of

randomly utilized measurements or the incurred relative efficiency loss from such randomized utilization

of the available measurements. As an empirical illustration, we consider popular state space models for

inflation and equity returns with stochastic volatility and document favorable performance of our robust

particle filter and density forecasts on both simulated and real data. More generally, our randomization

approach makes it easy to robustly incorporate highly informative but possibly contaminated modern

“big data” streams for improved state-space filtering and forecasting.
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1. Introduction

State-space models play an important role in fields as diverse as engineering, medicine, economics,

and finance. It is well known that the successful use of state-space models in empirical work,

particularly in forecasting applications, can be quite sensitive to even a small degree of model

misspecification, which can be induced, for example, by the presence of outliers in collected

measurement data. As such, the growing data availability and processing capabilities has motivated

the development of novel methods for filtering of state-space models with specific focus on robustness

to potentially complex data imperfections. One approach imposes heavy-tailed distributional

assumptions as in Durbin and Koopman (2000) or Harvey and Luati (2014). Another approach

adds thresholding or an outlier detection step as in Calvet, Czellar, and Ronchetti (2015), Crevits

and Croux (2017), Màız, Molanes-Lòpez, Mı̀guez, and Djuric̀ (2012), among others.

In this paper we propose a simple new approach to robust filtering of state-space models.

It builds on intuitive insights from the well-established literature on handling missing data

measurements in state space models. In particular, we note that in many cases only a small fraction

of available highly precise measurements can extract much of the attainable efficiency gains for

filtering latent states, estimating model parameters, and producing out-of-sample forecasts. Thus,

there is often only marginal incremental value from including all highly precise measurements.

This opens the possibility to exclude subsets of the available measurements to achieve a degree of

robustness without much efficiency loss.

Motivated by this important property of state-space models, we develop a new class of

particle filters that achieve a degree of robustness to outliers and model misspecification by

purposely randomizing the subset of included highly precise but possibly somewhat misspecified

or outlier contaminated data measurements while treating the rest as if missing. The arising

robustness-efficiency trade-off in our robust filtering framework can thus be controlled either by

varying the fraction of randomly included measurements, or by varying the target loss of efficiency

with respect to the infeasible case of fully utilizing all available measurements in the absence of

misspecification.

First, as a motivating example, we revisit the case of exogenously missing measurements
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to illustrate how even a fairly sparse subset of highly precise measurements may often suffice to

attain considerable efficiency gains. Next, we lay down a fully Bayesian framework for probabilistic

inclusion of collected data measurements for the sake of improving robustness without incurring

much of an efficiency loss. In its simplest form, our approach to robust particle filtering assumes

a fixed unconditional probability that the measurement would be treated as missing. In its more

generalized forms, our approach can infer a posteriori the probability that an outlier is present

through specifying the distribution of distorted measurements.

On the theory side, we build upon a widely used and applicable state space model (SSM)

specification. We assume that there are two types of observations available. One that is not very

precise but always reliable, and another one that is highly precise but is more prone to substantial

measurement distortions inducing model misspecification. The high precision of these observations

can be accommodated by using adapted sampling methods such as the Auxiliary Particle Filter

from Pitt and Shephard (1999). However, in this setting incorporating all observations distorts

the signal about latent states. As we do not directly observe which observations are unreliable,

we introduce a new latent variable in the system that governs the informativeness of data

measurements by probabilistically designating each observation as either informative or as missing.

We then demonstrate how this randomization approach can robustify the filtering, and hence the

model-implied out-of-sample forecasts, to the possible presence of data imperfections.

As such, the missing data randomization approach we propose is akin to but different

from classical resampling methods for robust forecasting such as bootstrap aggregating (bagging)

originally developed by Breiman (1996). First, most of the existing literature on bagging has

dealt with cross-sectional settings rather than time series models. Second, a handful of studies

that have considered the benefits of bootstrapping and bagging in a time-series context have done

so either by resampling the full-sample residuals to assess estimation uncertainty such as Stoffer

and Wall (1991) or by resampling blocks of dependent observations to robustify forecasts as in

Inoue and Kilian (????) and Bergmeir, Hyndman, and Beńıtez (2016). By contrast, our approach

probabilistically induces randomly missing individual data measurements as a way to generate a

mixture distribution that guards against possible misspecification. This makes it possible to alleviate

ex-ante any major tensions between the model and the full data sample to improve out-of-sample
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forecasting performance.

On the empirical side, we consider popular state space models for inflation and equity returns

with stochastic volatility and document favorable performance of our robust particle filter and

density forecasts both on simulated and real data. In our first empirical illustration we apply

our robustification framework to the classical unobserved components (UC) model for estimating

inflation trends. It has been well documented by Stock and Watson (2007) and Stock and Watson

(2016), among others, that the forecasting performance of the UC model is hindered by the presence

of time-variation in the precision of inflation rate measurements and additional measurement

distortions due to outliers. We therefore study a robustly filtered version of the classical UC model

based on our missing data randomization approach vis-à-vis the unobserved components/stochastic

volatility outlier-adjustment (UCSVO) model that was put forward by Stock and Watson (2016) as

another way to minimize the detrimental impact of outliers by way of subjecting them to particular

distributional assumptions. We find that our robustly filtered UC model can offer some gains in

terms of out-of-sample forecasting performance, perhaps thanks to avoiding any stringent parametric

assumptions on the outliers as in the UCSVO model. The favorable forecasting results we obtain

for our robustly filtered UC model thus further underscore the findings in Stock and Watson (2007)

and Stock and Watson (2016) regarding the need for time-series inflation forecasts to address the

presence of potentially complex inflation measurement imperfections.

Our second empirical illustration considers filtering stochastic volatility (SV) models in the

presence of realized volatility (RV) measures. The filtering of SV models in state space form has

traditionally been based solely on daily return measurements. However, it has long been noted for

example by Polson and Roberts (1994) and Barndorff-Nielsen and Shephard (2002) that more precise

RV measurements of the latent volatility states can greatly improve filtering efficiency. In practice,

this requires accounting also for potential finite sample biases and outliers in the RV measures due

to imperfectly suppressed microstructure noise and jumps encountered in high-frequency intraday

returns entering the RV measures. One strain of such filtering approaches considered by Takahashi,

Omori, and Watanabe (2009), Koopman and Scharth (2013), Creel and Kristensen (2015) among

others is to model the variance of the RV measurements as homoscedastic with variance estimated

from the data rather than explicitly given by the so called realized quarticity (RQ) measures as
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implied by the feasible asymptotic theory for RV measures. The obtained estimates of the variance

of the RV measurements by such filtering approaches tend to be much bigger than the average

RQ-implied variances in accordance with the underlying asymptotic theory, thereby pointing to

the presence of outliers or a degree of model misspecification. Another approach considered by

Dobrev and Szerszen (2010) is to directly specify the variance of the RV measurements to be driven

by RQ measures as implied by the underlying asymptotic theory for sufficiently large intraday

return samples. However, the presence of outliers or model misspecification then tends to lead

to substantially different parameter estimates and poor out-of-sample forecast performance with

statistically significant differences in comparison to the baseline model without RV measurements.

As such, none of the existing approaches for filtering SV models in the presence of RV measures

appear to directly address the inherent need for robust filtering. By contrast, our new filtering

approach based on intentional probabilistically reduced use of the RV measurements allows us to

impose RQ-driven variances of the RV measurements in line with the underlying asymptotic theory,

while at the same time attaining meaningful improvement in out-of-sample multi-horizon return

density forecasts in comparison to the baseline model without RV measurements. In this sense,

our robust filtering approach is able to sufficiently alleviate distortions due to data imperfections

or model misspecification when estimating SV models in the presence of RV measures. More

generally, also in many other data-rich settings our randomization device can make it easy to

robustly incorporate highly informative but possibly contaminated modern “big data” streams for

improved state-space filtering.

The rest of the paper is organized as follows. Section 2 illustrates the principles motivating

our robust filtering approach through a simple motivating example. Section 3 lays down the setup

and theoretical framework for our robust particle filter. Section 4 provides empirical illustrations

on simulated and real data. Section 5 draws a summary and conclusions.

2. Motivating Example: Missing Data and Filtering Efficiency

We motivate our randomized missing data approach to robust filtering by noting that in many

standard linear state space models the efficiency of the Kalman filter need not drop all that fast
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as the proportion of missing data measurements goes up. To give an illustrative example of this

important property, we consider the canonical case of a single autoregressive latent state xt filtered

from two different available measurements y
(1)
t and y

(2)
t as specified by the following simplified

version of a linear state space model:

xt+1 = κxt + σηηt (1)

y
(1)
t = xt + σ(1)

ε ε
(1)
t (2)

y
(2)
t = xt + σ(2)

ε ε
(2)
t (3)

where the error terms ηt, ε
(1)
t and ε

(2)
t are i.i.d. N(0, 1). We further restrict attention to the case

when the latent state xt is highly persistent and the first measurement y
(1)
t is always available (e.g.

cheap to obtain) but is characterized by a fairly weak signal-to-noise ratio ση/σ
(1)
ε , while the second

measurement y
(2)
t can be missing at random most of the time (e.g. costly to obtain) but is otherwise

characterized by a relatively strong signal-to-noise ratio ση/σ
(2)
ε .

For numerical illustration of the impact of missing measurements y
(2)
t on the efficiency of

the Kalman filter in this toy-model example, we further set κ = 0.99, ση = 0.1, σ
(1)
ε = 2, and

σ
(2)
ε = 0.2. The persistence level and signal-to-noise ratios are chosen to roughly mimic the ones

encountered when filtering stochastic volatility (aka xt) from daily absolute returns (aka y
(1)
t ) and

realized volatility measures (aka y
(2)
t ), while abstracting from non-linearities that we tackle as part

of the general framework for robust particle filtering that we lay down in section 3 below.

For illustrative purposes, we resort to the standard Kalman filter directly applicable in this

setting and further restrict attention to the case when the first type of measurements y
(1)
t are not

contaminated by outliers, while the second type of measurements y
(2)
t can be prone to outliers or

misspecified in other ways. This again mimics the case of filtering stochastic volatility models based

on daily return measurements deemed to always be reliable in conjunction with realized volatility

measurements that can be distorted by various market microstructure effects and so called “mini

flash crashes” (large but short-lived intraday price swings) that need not necessarily be consistent

with the volatility dynamics at daily and longer horizons.
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We first note that in the absence of outliers in y
(2)
t as illustrated on Figure 2 the filtered

state variance does not drop by much even when only 10% of y
(2)
t are observed (with the rest 90%

missing at random) compared to the filtered state variance when all y
(2)
t are observed. For this to

happen, it suffices that the filtered state variance in between consecutive sparse observations of the

high-precision measurements y
(2)
t does not deteriorate too fast towards the filtered state variance

based only on the much less precise measurements y
(1)
t , the way this holds for the filtered state

variances depicted on Figure 2. In this sense, the availability of even a small fraction of the more

precise measurements y
(2)
t suffices to attain substantial efficiency gains in comparison to the case of

relying only on the much less precise measurements y
(1)
t .

There are two important implications to consider. On the one hand, in applications where

the more precise measurements y
(2)
t might be costly to obtain, there appears to be clear scope for

cost-benefit analysis when deciding whether to collect all of them or only a suitably small random

fraction of them. On the other hand, in applications where the more precise measurements y
(2)
t can

be easy to obtain but might be subject to outliers, there appears to be clear scope for robustifying

the filter by purposely limiting and randomizing the use of y
(2)
t . Our focus in what follows is

on developing the latter as a randomized missing data approach to robust filtering of state space

models, while relegating the former for future research.

To illustrate this idea, we extend our motivating example by adding large outliers of size

ten standard deviations to 1% of the measurements y
(2)
t . We then set the fraction β = 10% of the

measurements that will be used and run the Kalman filter for many different uniform random draws

of a fraction β of the measurements y
(2)
t , while treating the rest as missing. Averaging the filtered

states across the different draws drastically reduces the impact of outliers on the Kalman filter as

illustrated on Figure 3.

Combining all of the above suggests that such a randomized missing data approach to filtering

state space models can help greatly limit the import of outlier-prone measurements without much

of an efficiency loss. Table 1 sheds further light on this by tabulating parameter RMSE for different

proportions β = 0%, 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% of retained

measurements y
(2)
t with the corner case β = 0% corresponding to using only y

(1)
t and not using any

of y
(2)
t and the corner case β = 100% corresponding to using y

(1)
t and all of y

(2)
t . In particular, the
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reported RMSE values in Table 1 confirm that there is indeed a pretty minimal loss of efficiency

when using relatively small fractions β of the more precise measurements y
(2)
t in the absence of

outliers, while in the presence of outliers there can be enormous efficiency gains from substantial

missing data randomization over y
(2)
t (e.g. β = 10%) compared to the two corner cases of using

only y
(1)
t (i.e. β = 0%) or using y

(1)
t and all y

(2)
t (i.e. β = 100%).

To sum up, this motivating example suggests that inducing randomized missing observations

can be pursued successfully with the Kalman filter to achieve robust filtering of state space models

without much of an efficiency loss. In the next section we show how the same idea can be exploited

much more generally and computationally efficiently in the case of particle filtering by developing

a more formal randomized missing data approach to robust particle filtering of state space models.

3. Robust Filtering via Missing Data Randomization

3.1 Setup and notation

Our state space model has two sets of parameters: a set of one or more parameters controlling

the randomization of missing data with β ∈ [0, 1] defining the target fraction of non-missing highly

precise observations, and a set Θ that includes all other SSM parameters. θ ∈ Θ is identified by the

in-sample data and is estimated using the SMC2 method of Chopin, Jacob, and Papaspiliopoulos

(2013). The value of β is not directly identified by the data and is meant to be specified by the

econometrician by controlling the robustness-efficiency trade-off resulting from inducing a fraction

1 − β of randomized missing observations. The choice β = 0 corresponds to not using any highly

precise measurements whatsoever, while the choice β = 1 corresponds to using all of them without

inducing any missing data randomization. Such corner values of β, however, would be suboptimal for

out-of-sample forecasts as long as some sufficiently sparse subsets of the highly-precise measurements

are not contaminated with the distortions encountered when using the full set of measurements.

Therefore, we choose a set of values of β on a suitable grid on the unit interval and find corresponding

parameter estimates Θ(β). Our goal is to obtain a range of non-corner values of β for which the

estimated SSM model produces better out-of-sample forecasts than those for the corner values β = 0
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and β = 1, thereby characterizing the robustness-efficiency trade-off. The out-of-sample criterion is

based only on the ability to forecast the reliable part of the data. This enables a direct comparison

to the model that only uses a single, reliable, but noisy measurement equation.

Formally, in our setup we consider a general state space model with, possibly unknown,

parameters θ ∈ Θ, and latent Markov process xt with an initial state density µθ(x1)

y
(1)
t |xt, θ ∼ f1(.|xt, θ) (4)

y
(2)
t |xt, θ ∼ f2(.|xt, θ) (5)

y
(j)
t ∼ fj(.|Y t−1) (6)

xt|xt−1, θ ∼ g(.|xt−1, θ) (7)

Ct ∼ Bernoulli(β) (8)

ŷ
(2)
t =


y

(2)
t if Ct = 1

y
(j)
t if Ct = 0

(9)

where T is the number of observations, t = 1, 2, . . . T , xt ∈ Rdx , g(xt|xt−1) is the state transition

kernel, y
(1)
t ∈ Rdy1 , y

(2)
t ∈ Rdy2 , and y

(j)
t ∈ Rdy2 . We assume that, conditional on xt and θ, y

(1)
t ,

y
(2)
t and xt are independent.1 Most importantly, f1 and f2 are observation kernels through which

the signal about the latent states xt and the parameters θ is received, while fj is the observation

kernel that is uninformative about the latent states and that does not depend on the set of model

parameters θ. The indicator variable Ct is not directly observed, and controls when the observation

ŷt is (and when it is not) informative. The observations are divided into two groups depending

on the level of precision: a low-precision set y
(1)
t observed at all times t, and a high-precision set

y
(2)
t randomly incorporated only when an indicator Ct takes unit value, and treated as missing

when Ct = 0. The property of low precision of y
(1)
t is defined by var(y

(1)
t |xt)� var(y

(2)
t |xt). Note

that when Ct = 0, y
(2)
t is a latent variable and y

(j)
t is observed but does not provide any relevant

information. Thus, if Ct = 0, the observed value ŷ
(2)
t is completely uninformative. In Figure 1,

we illustrate the block-diagram model of the dependencies in our missing data randomization SSM

specification.

1 This condition is further relaxed in our finance application by assuming dependence between conditional
distributions of xt and y

(1)
t i.e., the leverage effect.
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θ β

xt

y
(1)
t y

(2)
t y

(j)
t

Ct

ŷ
(2)
t

t = 1, 2, . . . , T

Figure 1: SSM model with possibly corrupted/uninformative second measurement

3.2 SMC - based estimation method

3.2.1. Particle Filter

Our primary goal is to infer the posterior distribution P (θ, xt|y(1),t, ŷ(2),t, α). For brevity we use

the notation Y t := (y(1),t, ŷ(2),t) to denote all observed variables up to and including t. We define

βt := P (Ct = 1|Y t−1, β). In the simplest version of our model we assume that βt is constant in

time, i.e., βt = β for all t. The posterior probability β̂t := P (Ct = 1|ŷ(2)
t , Ŷ t−1, α, β) can be derived

by the application of Bayes’ rule.

β̂t := P (Ct = 1|ŷ(2)
t , Y t−1, α, β) =

βtP (ŷ
(2)
t |Ct = 1, Y t−1, α)

βtP (ŷ
(2)
t |Ct = 1, Y t−1, α) + (1− βt)P (ŷ

(2)
t |Ct = 0, Y t−1, α)

=
βtf2(ŷ

(2)
t |Y t−1, α)

βtf2(ŷ
(2)
t |Y t−1, α) + (1− βt)fj(ŷ(2)

t |Y t−1, α)

f2(ŷ
(2)
t |Y t−1, α, β) =

∫∫
xt,θ

f2(ŷ
(2)
t |xt, θ)dP (xt, θ|Y t−1, α, β)

(10)
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P (θ, xt|Y t, α, β) =
f1(y

(1)
t |xt, θ)

f1(y
(1)
t |ŷ

(2)
t , Y t−1, α)

(β̂t
f2(ŷ

(2)
t |xt, θ)

f2(ŷ
(2)
t |Y t−1, α)

+ (1− β̂t))P (θ, xt|Y t−1) (11)

To apply the SMC2 method of Chopin, Jacob, and Papaspiliopoulos (2013), we derive the

filtering procedure to estimate the latent states conditional on θ, rather than directly sample

from the joint distribution in equation (10). Specifically, given a sample from P (xt−1|Y t−1, θ),

we show how to draw from P (xt|Y t, θ). By conditioning on θ, we introduce an additional source of

information about the latent indicators Ct, that requires a slight modification of equation (10) by

the subsequent application of Bayes’ theorem:

β̂t,θ := P (Ct = 1|ŷ(2)
t , Y t−1, θ, β) =

β̂tP (θ|ŷ(2)
t , Ct = 1, Y t−1)

β̂tP (θ|ŷ(2)
t , Ct = 1, Y t−1) + (1− β̂t)P (θ|ŷ(2)

t , Ct = 0, Y t−1)

=
β̂tf2(ŷ

(2)
t |θ, Y t−1)

β̂tf2(ŷ
(2)
t |θ, Y t−1) + (1− β̂t)f2(ŷ

(2)
t |Y t−1)

(12)

This yields a mixture analogous to the formula for the joint posterior distribution in equation

(11):

P (xt|Y t, θ, β) =
f1(y

(1)
t |xt, θ)

P (y
(1)
t |ŷ

(2)
t , Y t−1, θ)

(β̂t,θ
f2(ŷ

(2)
t |xt, θ)

f2(ŷ
(2)
t |Y t−1, θ)

+ (1− β̂t,θ))P (xt|Y t−1, θ) (13)

The above can be further simplified substituting for β̂t,θ from equation (12), which yields the

conditional posterior distribution for xt:

P (xt|Y t, θ, β) =
f1(y

(1)
t |xt, θ)

P (y
(1)
t |ŷ

(2)
t , Y t−1, θ)

β̂tf2(ŷ
(2)
t |xt, θ, Y t−1) + (1− β̂t)f2(ŷ

(2)
t |Y t−1)

β̂tf2(ŷ
(2)
t |θ, Y t−1) + (1− β̂t)f2(ŷ

(2)
t |Y t−1)

P (xt|Y t−1, θ)

∝ f1(y
(1)
t |xt, θ)β̂t(f2(ŷ

(2)
t |xt, θ, Y t−1) + (1− β̂t)f2(ŷ

(2)
t |Y t−1))g(xt|xt−1, θ)P (xt−1|Y t−1, θ)

(14)
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Thus, the sequential estimation of latent states can be performed by propogating forward

with g(xt|xt−1, θ) and reweighting with:

wxt,θ,t := f1(y
(1)
t |xt, θ)β̂t(f2(ŷ

(2)
t |xt, θ, Y t−1) + (1− β̂t)f2(ŷ

(2)
t |Y t−1)) (15)

Compared to the standard bootstrap filter of Gordon, Salmond, and Smith (1993), this

procedure only requires the additional step of calculating the predictive density f2(ŷ
(2)
t |Y t−1). This

can be estimated by integrating over the joint distribution of (θ, xt−1)|Y t−1 as shown in equation

(10).

3.3 Estimation of Model Parameters: SMC2 Method

To estimate the posterior distribution of model parameters (θ) from the observations Y T , we use

the SMC2 algorithm from Chopin, Jacob, and Papaspiliopoulos (2013). This algorithm performs

Bayesian inference by sampling from the posterior distributions P (θ|Y t, β) sequentially for t =

1, 2, ..., T .

To begin, we integrate out the latent states (xt) from the posterior distribution in equation

(11).

P (θ|Y t, α, β) =
f1(y

(1)
t |θ)

f1(y
(1)
t |ŷ

(2)
t , Y t−1, α)

(β̂t
f2(ŷ

(2)
t |θ)

f2(ŷ
(2)
t |Y t−1, α)

+ (1− β̂t))P (θ|Y t−1)

∝ f1(y
(1)
t |θ)(β̂tf2(ŷ

(2)
t |θ) + (1− β̂t)f2(ŷ

(2)
t |Y t−1, α))P (θ|Y t−1, α, β)

(16)

Let wθ,t := f1(y
(1)
t |θ)(β̂tf2(ŷ

(2)
t |θ) + (1 − β̂t)f2(ŷ

(2)
t |Y t−1, α)). We can then target

P (θ|Y t) sequentially via importance sampling, using the fact that P (θ|Y t) ∝ wθ,tP (θ|Y t−1) ∝(∏t
i=1wθ,i

)
P (θ|α). In general, wθ,t is not analytically tractable. However, we can utilize the

importance weights derived in equation (15) to obtain an unbiased estimate, denoted as w̃θ,t.
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wθ,t =

∫
xt
f1(y

(1)
t |xt, θ)(β̂t(f2(ŷ

(2)
t |xt, θ, Y t−1) + (1− β̂t)f2(ŷ

(2)
t |Y t−1))dP (xt|θ, Y t−1)

=

∫
xt
wxt,θ,tdP (xt|θ, Y t−1)

w̃θ,t =

Nx∑
j=1

wxtj ,θ,t

(17)

where the above sum is calculated over Nx paths of xtj ∼ P (.|θ, Y t−1) drawn using the particle

filter in Section 3.2.1.

To avoid sample degeneration, SMC2 augments the importance sampling above with a particle

Markov Chain Monte Carlo (PMCMC) kernel. Starting with a sample of θm ∼ P (.|Y t, α, β),

the weights w̃θ,t+1, w̃θ,t+2, . . . are calculated until the implied effective sample size (ESS) of θm

drops below a pre-specified threshold at some t′ > t. The PMCMC kernel presented in Andrieu,

Doucet, and Holenstein (2010) is then used to rejuvenate the sample of θ. Since this kernel targets

P (θ|Y t′ , α, β) via an “exact approximation”, the weights are reset after rejuvenation (
∏t′

i=1wθ,i =

1). The combination of these two steps allow sampling from the filtered marginal distribution of

P (θ|Y t, β) at each t in an online manner. Moreover, since the particle filter targets P (xt|Y t, θm, β)

for each θm, the algorithm ultimately yields a sample from the joint distribution P (θ, xt|y(1)
1:t , ŷ

(2)
1:t , β).

3.4 Selection of alternate distribution

As shown in (10) and (11), the choice of fj plays a role in determining the proportion of inclusion

for the highly precise measurement y
(2)
t . It turns out that defining β as a (ŷ, Y t−1, α, β)-measurable

function is equivalent to choosing a density for fj . For example, specifying that β̂t = βt yields the

“blind” randomization from the motivating example in Section 2. This assumption is equivalent to

setting the density fj(ŷ
(2)
t |Y t−1, α) to the predictive distribution f2(ŷ

(2)
t |Y t−1, α). This is shown by

applying Bayes’ rule:

13



βt =
βtf2(ŷ

(2)
t |Ŷ t−1, α)

βtf2(ŷ
(2)
t |Ŷ t−1, α) + (1− βt)fj(ŷ(2)

t |Ŷ t−1, α)

fj(ŷ
(2)
t |Y t−1, α) = f2(ŷ

(2)
t |Y t−1, α)

(18)

In this case, there is no unconditional learning about whether the data was contaminated on

a particular day from concurrent information. To suppress outliers, a more diffuse fj will weight

against observations in the tails. For example, within the context of forecasting, one possible

candidate for fj is fj(ŷ
(2)
t |Y t−1) = f2(ŷ

(2)
t |Y t−h), where h is some horizon. Then we would have:

β̂t =
βtf2(ŷ

(2)
t |Ŷ t−1, α, β)

βtf2(ŷ
(2)
t |Ŷ t−1, α, β) + (1− βt)f2(ŷ

(2)
t |Y t−h, α, β)

=
βtP (Ŷt−h+1:t−1|ŷ

(2)
t , Ct = 1, Ŷ t−h, α, β)

βtP (Ŷt−h+1:t−1|ŷ
(2)
t , Ct = 1, Ŷ t−h, α, β) + (1− βt)P (Ŷt−h+1:t−1|Ŷ t−h, α, β)

(19)

In this way, we determine β̂t using the likelihood of our previous h observations given ŷ
(2)
t is

a valid observation.

3.5 Optimality of the randomization parameter β

In this Section, we discuss the optimal choice of the parameter β. To setup the notation, we define

a model Mβ,fj that follows the above specifiation, making explicit its dependence on the parameter

β and the distribution of the junk states fj . When fitting the model below, we assume that there

is only a single measurement equation corresponding to y
(2)
t that might be contaminated, while the

measurement equation corresponding to y
(1)
t has no information about the latent states. We also

fit our model with the additional assumption that the observation kernel fj(ŷ
(2)
t ) = f2(ŷ

(2)
t |Y t−1),

denoting this model as Mβ. Both assumptions are made without loss of generality, in part because

we allow for the true model that generates the data, denoted D = Mβ̂,fj
, to follow an arbitrary fj .
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As an objective, we want to maximize the following expectation for the data-generating process D:

Eŷt+1(log(P (ŷt+1|ŷt,Mβ))|D) =

=

∫
ŷt+1

log
(∫

(xt,θ)
f2(ŷt+1|xt, θ)

∫
Ct

dP (Ct|β)
f2(ŷ{i:Ct

i=1}|xt, θ)
F2(ŷ{i:Ct

i=1})
dP (xt, θ)

)
dP (ŷt+1|D)

=

∫
ŷt+1

log
(∑

Ct

P (Ct|β)

∫
(xt,θ)

f2(ŷt+1|xt, θ)
f2(ŷ{i:Ct

i=1}|xt, θ)
F2(ŷ{i:Ct

i=1})
dP (xt, θ)

)
dP (ŷt+1|D) (20)

where {i : Ctt = 1} denotes the set of included observations as specified by the path of Ct.

Below we present our main theory results:

Theorem 1 (Coherence of the optimal β in the special case D = Mβ̂). Suppose that D = Mβ̂ with

β̂ ∈ [0, 1]. Then the critical point, β̄, of the expectation of the log-forecasting density (20) is β̄ = β̂.

Proof. See the Appendix.

We also verify that the critical point is a unique maximum:

Theorem 2 (Existence of an optimal β in the general case D = Mβ̂,fj
). Suppose that D = Mβ̂,fj

with β̂ ∈ [0, 1] and general fj. Then the expectation of the log-forecasting density (20) with respect

to β has a global maximum on [0, 1].

Proof. See the Appendix.

The above results are important in light of the quality of the density forecasts formulated using

our model specification. Theorem 1 states that, in the ideal case where D = Mβ, the optimal choice

of the parameter β coincides with the true value of the randomization parameter β̂. Moreover,

Theorem 2 guarentees that there is a global maximum β̄ ∈ [0, 1], even in the case where the

data-generating process has an arbitrary, possibly unknown distribution governing the junk states.

However, in this general case, it is not necessarily true that β̄ = β̂, and the optimality of β̄ is

determined by the characteristics of the true fj .
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4. Empirical Illustrations

4.1 Real data application: inflation forecasting

Market participants and central bankers alike traditionally pay considerable attention to data-driven

assessments of long-run inflation expectations. A large part of the literature on inflation forecasting

has considered alternative econometric approaches to estimating inflation trends based on time

series modelling of officially released price index data.2 Stock and Watson (2007) and Stock

and Watson (2016) provide compelling evidence for time-variation in the precision of inflation

rate measurements as well as the presence of additional measurement distortions due to outliers.

Inspired by these findings, we consider the ability of our robust filtering approach to successfully

guard against the impact of inflation measurement imperfections without the need to explicitly

model them for the purposes of improved forecasting of long-run inflation trends. In particular, we

apply our robustification framework to the classical unobserved components (UC) representation

of the IMA(1,1) “näıve” benchmark model for inflation forecasting scrutinized also by Stock and

Watson (2007). We then compare in terms of out-of-sample forecasting performance our robustly

filtered version of the classical UC model vis-à-vis the unobserved components/stochastic volatility

outlier-adjustment (UCSVO) model, which was put forward by Stock and Watson (2016) as a way

to minimize the detrimental impact of outliers by way of subjecting them to particular distributional

assumptions. For illustrative purposes we therefore follow Stock and Watson (2016) and model the

same aggregate PCE price index quarterly data series (PCE-all) from 1960Q1 to 2015Q2 with an

identical forecast evaluation period set to 1990Q1-2015Q2.3

2 Another large strand of the literature aims to exploit the predictive content of collected survey-based measures
of inflation. For a recent literature survey on inflation forecasting see for example Faust and Wright (2013).

3 We thank Stock and Watson (2016) for providing as an online supplement the data and program codes necessary
for replicating their results.
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The UC model specification we consider is given by the following set of equations:

yt|xt, θ ∼ f2(.|xt) = N(xt, σ
2
η) (5’)

y
(j)
t ∼ fj(.) = f2(ŷt|Y t−1) (6’)

xt|xt−1, θ ∼ g(xt|xt−1) = N(xt−1, σ
2
ε) (7’)

Ct ∼ Bernoulli(β), (8’)

where yt denotes the PCE inflation rate measurement at time t, xt is the latent trend component

of inflation, and Ct is the Bernoulli indicator variable inducing missing data randomization as a

key feature of our robust filtering framework specialized to the classical UC model. We compare

4, 8 and 12 quarter ahead forecasts of average inflation based on our robustly filtered UC model

specification against forecasts based on the UCSVO model specification directly taken from Stock

and Watson (2016) and document that missing data randomization applied to the basic UC model

with a suitably chosen parameter β can produce UC model forecasts that perform on par or better

than the UCSVO model forecasts favored by Stock and Watson (2016).

It is important to note that the UC model has only one observation equation with possibly

contaminated data.4 Hence, the choice of the parameter β must be determined using the forecasting

distribution of the data that might be prone to contamination, which we model by assuming its lack

of information about the latent inflation states defined in equation (6’). The favorable forecasting

results we obtain for our robustly filtered UC model thus further underscore the findings in Stock and

Watson (2007) and Stock and Watson (2016) regarding the need for time-series inflation forecasts

to address the presence of potentially complex inflation measurement imperfections. While our

robustly filtered UC model appears to be able to offer some gains in terms of forecasting performance

(perhaps thanks to avoiding any stringent parametric assumptions on the outliers as in UCSVO),

our results can also be viewed as largely corroborating the remarkably good forecasting performance

of the UCSVO model.

In Table 2, we present the parameter estimates for the robustly filtered UC model with our

missing data randomization approach for varying values of the parameter β and using the full

4 The model with a single observation equation can be viewed as a model specified in equations (4) - (8) but with
arbitrarily high measurement noise of the first measurement equation (4).
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sample from 1960Q1 to 2015Q2 for estimation of the model. It is evident that both the observation

and state equation variance increases with the increase of β. This is explained by the requirement

of the UC model to fit increasingly more and larger outliers present in the data. The increase is

more pronounced for the parameter ση that controls the precision of the observation equation. To

better illustrate the changes in the estimates of these parameters as we change the randomization

parameter β we also present the plots with their estimates in Figure 4. As it is evident from Figure

4, the low and medium values of β do not have a significant impact on the estimates of σε, while the

estimates of ση grow steadily with the values of β. Since higher values of β naturally imply that more

outliers are to be fitted by the model we should expect the variances of both the observation and

state equations to increase with this parameter. However, this effect is stronger for the observation

equation.

Next, we turn our attention to the forecasting performance of our robustly filtered UC model

with missing data randomization versus the UCSVO model. We use the Amisano and Giacomini

(2007) test statistics, ŴLR, to compare the forecasting performance of the two models. The ŴLR

statistics are computed with the comparison to the model with β = 1 that uses all data with no

randomization, which corresponds to the standard UC specification in Stock and Watson (2007).

Table 3 presents results for the UC model estimated recursively using the sample from 1960Q1 to

2005Q2 to generate forecast densities evaluated at 1-, 4-, 8-, and 12-quarter-ahead horizons starting

from 1990Q1. For brevity, we document the results for three different choices of the parameter β of

0.15, 0.25 and 0.9. It is evident that all specifications with data randomization perform better than

the benchmark UC model producing positive t-statistics with statistically significant improvements

for all horizons for the specifications with lower values of β of 0.15 and 0.25.

Following our results in Theorems 1 and 2, an optimal β exists for any given forecast

horizon. In Figures 5 and 6, we present the results discussing in more detail the optimality of

β for different choices of the forecasting horizons of 1, 4, 8, and 12 quarters ahead. In order to

avoid look-ahead bias, we design our analysis such that it does not use any future observations

to determine model parameters, states and the randomization parameter β when forecasts are

formulated using expanding windows. Figure 5 presents the results for the full sample spanning the

full period from 1960Q1 to 2015Q2 with the mean (across time) forecasting log-densities for each
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point on the considered grid of β(s) and each forecast horizon. As expected, the log-densities take

higher values at shorter horizons. The optimal β(s) that produce the best forecast performance

for each horizon, i.e., the peak values for each curve, take values that allow for significant missing

data randomization, and with the peak values of β decreasing with forecast horizons. Hence, the

forecasts made for longer horizons prefer a higher degree of missing data randomization naturally

alleviating the presence of outliers.

In Figure 6 we present only the derived maxima for each considered forecast horizon derived

similar to those in Figure 5, but with varying terminal day of the sample available for forecasting,

and with the last point on each curve coinciding with the maxima in Figure 5. As it is visible

from Figure 6, the optimal β(s) tend to take higher values early in the sample when the sample

size is small and decrease with the amount of available data as forecasts are formulated using the

expanding windows. The optimal β(s) also tend to take smaller values as the forecast horizon

increases.

In Figures 7 and 8 we further present a comparison of the forecasting performance of our

robustly filtered UC model with missing data randomization to the standard UC model (β = 1),

and to the UCSVO model of Stock and Watson (2016). The latent states, parameters and β are

estimated from 1960Q1 to 2015Q2 in an on-line fashion, and the results for the mean forecasting

densities (Figure 7) and mean squared forecast errors (MSFE) (Figure 8) are formed from 1990Q1

onward. The analysis is performed for each forecast horizon with optimal β determined in a feasible

fashion similar to Figure 6. Hence, for each model, the curves correspond to the average (across

time) path of evaluated forecasting densities along the path of β(s) derived as in Figure 6, i.e.,

on each day and for each model the posterior distribution of parameters and the optimal values

of beta are updated over time as the new information arrives. As it is visible in Figure 7, all UC

models that allow for data randomization are capable of outperforming the standard UC model at

all forecasting horizons irrespective of what the chosen criterion for the optimal β is (ranging from

maximizing the performance of forecast densities from 1 up to 12 quarters ahead). The MSFEs

in Figure 8 clearly show similar pattern to the one documented in Figure 7 but also allow for a

direct comparison with the results obtained for the UCSVO model in Stock and Watson (2016).

All models allowing for missing data randomization dominate the classical UC model and perform
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better than the UCSVO model (with the exception of the model targeting a 1-quarter ahead forecast

objective). Summing up, our results indicate that our robust filtering approach via missing data

randomization can significantly improve the forecasting performance of the classical UC model by

naturally safeguarding against overfitting outliers as a new viable alternative to the UCSVO model.

4.2 Simulation Results: Nonlinear SSM

In this Section, we present simulation-based results for a stochastic volatility model defined by the

following observation and state equations:

y
(1)
t |xt, θ ∼ f1(.|xt) = N(0, exp(

xt
2

)) (4”)

y
(2)
t |xt, θ ∼ f2(.|xt) = N(xt, σ

2
2,t) (5”)

y
(j)
t ∼ fj(.) = f2(.|xt) s.t. |y(j)

t − xt| > 5σ2,t (6”)

xt|xt−1, θ ∼ g(xt|xt−1) = N(κxθx + (1− κx)xt−1, σ
2
x) (7”)

Ct ∼ Bernoulli(β). (8”)

and with the rest of the model assumptions following the specification in equations (4) - (9). We

assume that the contaminated data are sampled from a truncated normal distribution with the

same mean as in equation (5”), but the error term is at least 5 standard deviations in either of

the tails.5 As it is standard in the asset pricing literature, we assume that normal innovations in

equations (4”) and (7”) are correlated with correlation ρx, the so called leverage effect. Without

loss of generality, the variance σ2
2,t is set at the constant implied by the asymptotic variance factor

given by 2.96/78 for 5-minute returns and the MedRV variance measure from Andersen, Dobrev,

and Schaumburg (2012).6 Observations y
(1)
t are interpreted as low-frequency asset returns, and

observations ŷ
(2)
t are high-frequency volatility measures obtained using intra-day returns. Hence,

the first observation equation is called the return equation, and the second is called the volatility

5 Our specification of the contaminated observations ensures that there is very limited information content about
latent states contained by these data points. In the next version of the paper the analysis will be extended to
allow for other contamination specifications.

6 Alternative jump-robust variance measures include most notably the bipower and multipower variation
measures introduced by Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen and Shephard (2005b), and
Barndorff-Nielsen, Shephard, and Winkel (2006). For more details see Section 2.2 of Dobrev and Szerszen (2010).
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measurement equation. The state equation is a standard AR(1) process with mean reversion rate

κx, mean θx, and volatility of volatility parameter σx. If Ct = 0 for all t, there is only a single

return equation in the model, so the model falls into the class of stochastic volatility models that

has been widely applied in the finance and asset pricing literature.7 On the other hand, the model

with additional volatility measurement equation, Ct = 1 for all t, has also been studied in the more

recent strain of this literature, see for example Creel and Kristensen (2015), Koopman and Scharth

(2013), Dobrev and Szerszen (2010) and Takahashi, Omori, and Watanabe (2009). We consider a

more general specification allowing for unreliable volatility measurement observations with equation

(8”).

Table 4 presents estimation results for the model specification with slow mean reversion (high

persistence) of kx = 0.0132. The slow mean reversion is consistent with the S&P 500 index return

data. All other model parameters are also set at a level reflecting the range of values typically

found for S&P 500 index returns. To generate the data, we draw a sample of T = 1260 observations

(i.e., 5 years of daily data) and then perform the estimation discussed in Section 3.3 using the

particle filter from Section 3.2.1. The estimations are performed at various levels of parameter β

of 0, 0.01, 0.1, 0.9, and 1. In the table the first three columns present the posterior medians and

associated high credibility (95%) intervals (HCIs) for the model with perfectly reliable volatility

measurements. The middle three columns present the estimation results in a similar setting and

with a rate of 10% of volatility measurement observations that are unreliable and contaminated.

The last three columns present the results for the case of very highly contaminated data with 90%

of volatility measurement observations that are unreliable.

For the models that use uncontaminated data shown in the left three columns, the estimation

results show a reasonable level of estimation precision for all values of β. As found in Dobrev and

Szerszen (2010), we can also expect the model with β = 1 to outperform other models as it allows

for all precise measurements to be fully utilized. Dobrev and Szerszen (2010) document that the

parameters ρx and σx show the biggest efficiency gains, which also translates into better estimates

of other coefficients, including the mean reversion coefficient κx, which naturally requires a long

sample, i.e., a large T , to be precisely estimated.

7 See Andersen, Benzoni, and Lund (2002), Eraker, Johannes, and Polson (2003), Jacquier, Polson, and Rossi
(2002), Jacquier, Polson, and Rossi (2004) and Jones (2003), among many others.
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In contrast to the fully reliable data, the model estimated with a high proportion of unreliable

ŷ
(2)
t observations shows very large biases for high levels of β 0.9 and 1, and very good performance at

lower values of β. For the presented levels of contamination of 10% and 90%, and a level of β higher

than the proportion of reliable data, the unreliable observations contribute to the overestimation of

the volatility of volatility parameter σx. The parameter ρx is also estimated with a bias that reduces

the leverage effect. These findings are consistent with the models fitting the outliers produced by the

unreliable volatility measurements ŷ
(2)
t . The biases are mostly eliminated for the lower values of β

of 0, 0.01 and 0.1 for the model with 90% contamination, and for β = 0, 0.01, 0.1, 0.9 for the model

with 10% contamination.8 The positive bias in σx can be explained by inspecting the posterior

quantiles and mean of the latent volatility states xt shown in Figures 9 and 10. Since the higher

values of β allow the distorted ŷ
(2)
t observations to have a bigger impact on the volatility estimates,

they contribute to the much higher volatility of volatility estimates. An interesting feature of the

model is mixing between the high-frequency information content and the daily-data content for

the non-extreme values of the parameter β, clearly visible in the posterior variance of the latent

volatility states presented in Figure 11. The spikes in the variance of latent volatility states indicate

a high discrepancy between both sources of information.

As discussed in Section 3.1, the parameter β is not identified by the in-sample data. However,

we can find the level of β that produces optimal out-of-sample forecasts. We use the test of

Amisano and Giacomini (2007) for comparing the out-of-sample forecast performance of two models.

Under the null hypothesis of equal performance, the test statistic, ŴLR, has a standard normal

distribution. We choose the model using only noisy y
(1)
t observations (β = 0) as a baseline

specification to which we compare other model specifications (β = 0.01, 0.1, 0.9, 1). Positive test

statistics indicate better performance of the competing model, and negative values indicate better

performance of the baseline model.

The Amisano and Giacomini (2007) test statistics, ŴLR, are presented in Table 5 for five

forecasting horizons of 1, 2, 5, 10 and 22 days. We first turn our attention to the estimation with

uncontaminated and fully reliable additional measurements ŷ
(2)
t . As it is evident from the Table, all

models that use additional information content of ŷ
(2)
t observations (β > 0) outperform the baseline

8 In the next version of the paper we plan to show to what extent the biases are reduced by running a high number
of independent replications of the data.
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model that uses only the much noisier measurement equation y
(1)
t (β = 0). In contrast, the models

with high values of β (0.9, 1) perform much worse than the baseline model when the data is highly

contaminated (90% contamination), producing negative test statistics.

Most importantly, even in the case of highly contaminated 90% proportion of the data, the

model with β = 0.01, 0.1 that incorporates information from the additional measurement equation

performs well at shorter forecast horizons assuming highly persistent volatility states. For the model

with only 10% of contaminated data, the improvements over the baseline model are found for all

considered forecasting horizons ranging from 1 day, up to 22 days (1 month) and for the non-extreme

values of β of 0.1 and 0.9. This can be explained by a better ability to filter highly persistent latent

states even if a smaller proportion of highly informative observations is reliable.

4.3 Real data application: S&P 500 return density forecasting

Next we consider a real data application of the above stochastic volatility model defined in equations

(4”) - (8”) to S&P 500 return density forecasting. Following up on the convention set up in

the previous Section, the daily open-to-close S&P 500 index return observations are denoted as

y
(1)
t , and high-frequency based daily open-to-close volatility measure observations are denoted as

ŷ
(2)
t . In addition, assuming 78 5-minute intraday returns within each day, we also directly observe

σ2
2,t = 2.96ÎQt

78ÎV
2

t

.9 We split the analysis and consider three sample periods each covering approximately

7 years of data: the first covering the data from 1998-01-02 to 2004-11-11, the second covering the

period from 2004-11-12 to 2011-06-07, and the third covering the most recent data from 2011-06-08

to 2017-12-29. Our goal is to show that the results hold for all data sets irrespective of the studied

sample periods.

Similar to Section 4.2, we first present the parameter estimates. In Table 6 the posterior

medians are reported for each of the model parameters for different values of the parameter β. The

small values of κx indicate that volatility is a highly persistent process. At lower values of β (0,

0.01 and 0.1), we find strong evidence for a leverage effect with negative values of the estimates of

ρx ranging from -0.84 to -0.71 for the sample starting in 1998, from -0.37 to -0.29 for the sample

9 For further details see Section 2.2 of Dobrev and Szerszen (2010).
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starting in 2011, and with the estimates for the sample starting in 2004 taking intermediate values

ranging from -0.5 to -0.3. In contrast to the findings for small values of β, however, we find vastly

different and lower (in absolute value) estimates of the leverage effect ρx and higher volatility of

volatility σx estimates for higher values of the parameter β of 0.9 and 1. These results are similar

to the simulation results with unreliable and contaminated observations in Section 4.2 suggesting

that the high frequency measures, despite providing a very precise information about the latent

volatility states, might be prone to instabilities driving a wedge between a model estimated using

only daily returns (β = 0), and the model with high frequency volatility measures and high values

of β. The simulation results in Section 4.2 also suggest the upward bias in the estimates of the

parameter σx. Our results for the S&P 500 data confirm this finding, as the estimates of volatility

of volatility σx are much higher for higher values of the parameter β. This finding is consistent with

the filtered estimates of the latent volatility presented in Figures 12 - 14 for each of the studied

subsamples. In the figures, as the values of parameter β increase, we can see more pronounced

outliers in the posterior means of the volatility estimates and higher volatility of volatility, due to

possible high-frequency data imperfections, and much smaller variance of the posterior distribution

due to very precise ŷ
(2)
t measurements. Hence the model with high values of β must fit characteristics

of volatility that are not necessarily consistent with the daily data, corresponding to the estimation

with β = 0, that shows less pronounced peaks and troughs.

An important feature of our model is that it allows for mixing between using and shutting

down the information content of the possibly contaminated measurements ŷ
(2)
t on the posterior

distributions of parameters and states. Hence, it does not simply exclude the observation, but allows

for learning about the consistency of the additional, high-frequency based observation equation, with

the daily return data y
(1)
t . The posterior estimates of the Ct mixing variable are presented in Figures

15 - 17. It is evident that the posterior means are close to the unconditional levels of the assumed

values of the parameter β, with occasional spikes and troughs. The most notable spikes of the mixing

variable can be found during the financial crisis of late 2007 and 2008, and hence the model learns

about rapid changes in volatility estimates during turbulent market events. A closer inspection of

the posterior distributions of the indicator Ct in Figures 15 - 17 and volatility xt in Figures 12 -

14 indicates that the spikes and troughs seen in the filtered distribution of Ct often coincide with
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the spikes of the variance of the filtered volatility estimates for the non-extreme values of β, i.e.,

when the model is mixing between the inclusion or rejection of the high-frequency data. Hence, the

model is sensitive to the discrepancy between the signals about the latent volatility coming from

the daily data or the high frequency data.

The out-of-sample forecasting results are presented in Table 7. Similar to Table 5, the results

are presented for each assumed value of the parameter β and the Amisano and Giacomini (2007)

test statistics, ŴLR, are computed for the comparison against the baseline model that uses only

daily return data with β = 0. Our results for the S&P500 returns in Table 7 closely resemble the

results in Table 5 for the unreliable and contaminated ŷ
(2)
t observations. The models with higher

values of β, 0.9 and 1, perform equally well or worse in the out-of-sample forecasts than the baseline

model using only daily return data (β = 0) at longer forecasting horizons of 5 days and more, and

offer a slight improvement only at 1-day forecast horizon. The better performance at 1-day horizon

for the model using all high-frequency data can be explained by the forecast naturally relying on the

most-recent (although contaminated) volatility estimates, rather than model (biased) parameters

that determine the model’s performance at longer horizons. Most importantly our proposed model

is able to improve upon the forecasts based on daily data assuming a lower value of β = 0.1, which

corresponds to utilizing only 10% of the high-frequency volatility measures, which performs better

than the model with the lowest value of β = 0.01 and proves the importance of the high frequency

measurement equation. The improvements are most pronounced at shorter forecast horizons of 1

to 10 days, although the improvements can also be seen at the longest time horizon of 22 days for

the most recent samples. The value of β = 0.1 enforces a large probability of shutting down the

information content of the high-frequency volatility measures, ŷ
(2)
t , but still allows for the model

to learn from the high frequency data when volatility changes sharply during the financial crisis

and the post-crisis period. Hence, the model can robustify against high-frequency based volatility

measure imperfections and outliers, while still allowing to learn about latent volatility states that

translates into the observed improvements in out-of-sample density forecasts.
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5. Conclusions

We put forward a simple new approach to robust filtering of state-space models, motivated by

the idea that the inclusion of only a small fraction of available highly precise measurements

can still extract most of the attainable efficiency gains for filtering latent states, estimating

model parameters, and producing out-of-sample forecasts. The new class of particle filters we

develop aims to achieve a degree of robustness to outliers and model misspecification by purposely

randomizing the subset of utilized highly precise but possibly misspecified or outlier contaminated

data measurements, while treating the rest as if missing. The arising robustness-efficiency trade-off

is controlled by varying the fraction of randomly utilized measurements or the incurred relative

efficiency loss from such randomized utilization of the available measurements. As an empirical

illustration, we consider popular state space models for inflation and equity returns with stochastic

volatility and document favorable performance of our robust particle filter and density forecasts

on both simulated and real data. More generally, our randomization approach makes it easy to

robustly incorporate highly informative but possibly contaminated modern “big data” streams for

improved state-space filtering and forecasting.
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A. Full online derivation of posterior distribution

In this section, we show how to derive the distribution P (θ, xt|Ŷ t, α, β), using equations (6), (8),

and (9). First, we consider the full joint posterior of all unknown variables.

P (xt, θ, y
(2)
t , Ct, y

(j)
t |ŷ

(2)
t , Y t−1, α, β) = P (xt, θ|y(2)

t , Ŷ t−1, α)P (y
(2)
t , y

(j)
t , Ct|ŷ(2)

t , Ŷ t−1, α, β) (21)

The joint distribution of xt, θ only depends on y
(2)
t , so Ct and y

(j)
t can be integrated out to

simplify the derivations. We consider the joint distribution of variables controlled by β:

P (y
(2)
t , y

(j)
t , Ct|ŷ(2)

t , Ŷ t−1, α, β) = P (y
(2)
t |ŷ

(2)
t , Ct, Ŷ

t−1)P (y
(j)
t |ŷ

(2)
t , Ct, Ŷ

t−1)P (Ct|ŷ(2)
t , Ŷ t−1) (22)

Per our setup,

P (y
(2)
t |ŷ

(2)
t , Ct, Y

t−1) =


δ
ŷ
(2)
t

(y
(2)
t ) if Ct = 1

P (y
(2)
t |Ŷ t−1) if Ct = 0

(23)

P (y
(j)
t |ŷ

(2)
t , Ct, Y

t−1) =


P (y

(j)
t |Ŷ t−1) if Ct = 1

δ
ŷ
(2)
t

(y
(j)
t ) if Ct = 0

(24)

As before in equation (10), we define β̂t := P (Ct = 1|ŷ(2)
t , Y t−1) =

βtf2(ŷ
(2)
t |Y t−1)

βtf2(ŷ
(2)
t |Y t−1)+(1−βt)

.

27



P (y
(2)
t , y

(j)
t , Ct = 1|ŷ(2)

t , Y t−1, α, β) = β̂tδŷ(2)t
(y

(2)
t )P (y

(j)
t |Y t−1)

P (y
(2)
t , y

(j)
t , Ct = 0|ŷ(2)

t , Y t−1, α, β) = (1− β̂t)P (y
(2)
t |Y t−1)δ

ŷ
(2)
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(y
(j)
t )

P (y
(2)
t , y

(j)
t |ŷ

(2)
t , Y t−1, α, β) = β̂tδŷ(2)t

(y
(2)
t )P (y

(j)
t |Y t−1) + (1− β̂t)P (y

(2)
t |Y t−1)δ

ŷ
(2)
t

(y
(j)
t )

P (y
(2)
t |ŷ

(2)
t , Y t−1, α, β) = β̂tδŷ(2)t

(y
(2)
t ) + (1− β̂t)P (y

(2)
t |Y t−1)

(25)

This gives us the following marginal posterior:

P (xt, θ, y
(2)
t |ŷ

(2)
t , Y t−1, α, β) = P (xt, θ|y(2)

t , Y t−1, α)(β̂tδŷ(2)t
(y

(2)
t ) + (1− β̂t)P (y

(2)
t |Y t−1)) (26)

Next, we need to derive the importance weights to sample xt, θ|ŷ(2)
t , Y t−1 from xt−1, θ|Y t−1.

P (xt, θ|y(2)
t , Y t−1, α) =

f2(y
(2)
t |xt, θ, Ŷ t−1)

f2(y
(2)
t |Ŷ t−1)

P (xt, θ|Y t−1, α) (27)

Putting (27) inside of (28), we get:

P (xt, θ, y
(2)
t |ŷ

(2)
t , Y t−1, α, β) = P (xt, θ|Y t−1, α)

f2(y
(2)
t |xt, θ, Ŷ t−1)

f2(y
(2)
t |Ŷ t−1)

(β̂tδŷ(2)t
(y

(2)
t ) + (1− β̂t)f2(y

(2)
t |Ŷ t−1))

= P (xt, θ|Y t−1, α)(β̂t
f2(y

(2)
t |xt, θ, Ŷ t−1)

f2(y
(2)
t |Ŷ t−1)

δ
ŷ
(2)
t

(y
(2)
t ) + (1− β̂t)f2(y

(2)
t |xt, θ, Ŷ t−1))

(28)
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P (xt, θ|ŷ(2)
t , Y t−1, α, β) = P (xt, θ|Y t−1, α)

∫
y
(2)
t
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ŷ
(2)
t

(y
(2)
t ) + (1− β̂t)f2(y

(2)
t |xt, θ, Ŷ t−1))dy
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Finally, equation (11) is found by a simple application of Bayes’ rule via the first observation:

P (xt, θ|Ŷ t, α, β) = P (xt, θ|y(1)
t , ŷ

(2)
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(30)

B. Proof of Theorem 1 and Theorem 2

We first derive some properties of P (Ct|β). Let
∑
Ct represent the number of “successes” in the

path of Ct.

P (Ct) = β
∑
Ct

(1− β)
∑
Ct

δ

δβ
P (Ct) = β

∑
Ct−1(1− β)t−

∑
Ct−1(

∑
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δ2
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∑
Ct(2β − 1)− β2T )

(31)

Since
∑
Ct ≤ t and 2β − 1 < β2, it follows that last term in (31) is not positive. Moreover,
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we find that the equation ΣC(2β − 1)− β2T = 0 has no real roots, so for β ∈ (0, 1), the last term

in (31) is strictly negative.

We arrive at the following expression for the derivative of the expectation in equation (20)

with respect to β:

δ

δβ
Eŷt+1(log(P (ŷt+1|ŷt,Mβ))|D) =

∫
ŷt+1

δ
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log
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f2(ŷ{i:Ct

i
=1}|xt,θ)
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(32)

It is important to note that part of the density of the DGP is the same as the denominator

of the derivative of the expectation of the forecasting log-density.

P (ŷt+1|Mβ̂) =
∑
Ct

P (Ct|β̂)

∫
(xt,θ)

f2(ŷt+1|xt, θ)
f2(ŷ{i:Ct
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dP (xt, θ)P (ŷt|Mβ̂) (33)

Consequently, substituting into (32):

δ
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∫
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(34)

which is our first result.

Our second result in the general case D = Mβ̂,fj
follows by continuity of the expectation of

the log-forecasting density in equation (20) as a function of β on the compact interval [0, 1].
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Figure 2: Kalman Filter without Outliers: Filtered State Variance.
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Figure 3: Kalman Filter with Outliers: Filtered States
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Figure 4: Posterior distributions of UC parameters with different values of β estimated on quarterly inflation data
from 1960Q1 to 2015Q2. From lightest to darkest, the shaded regions correspond to the middle 50%, 90% and 98%
of the distribution.
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Figure 5: Mean log-density over different forecast horizons as a function of β estimated on quarterly inflation data
from 1960Q1 to 2015Q2.
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Figure 6: Optimal β from 1960Q1 to 2015Q2 as determined by maximizing the log-density of forecasts over 1-,4-,8-
and 12-quarter horizons with all information available at that point.
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Figure 7: Mean forecasting log-density over different horizons (higher values are better). Latent states, parameters,
and β are estimated from 1960Q1 to 2015Q2, and the mean-log forecast density is calculated with forecasts formulated
in 1990Q1 onward. Each solid curve corresponds to the horizon used to select β as in Figure 6. The UC model with
β = 1 is plotted for reference.
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Figure 8: Mean Squared Forecasting Error (MSFE) over different horizons (lower values are better). Latent states,
parameters, and β are estimated from 1960Q1 to 2015Q2, and the MSFE is calculated with forecasts formulated in
1990Q1 onward. Each solid curve corresponds to the horizon used to select β as in Figure 6. MSFEs from the UC
model with β = 1 and the UCSVO model from Stock and Watson (2016) are plotted for reference.
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Figure 9: Filtered posterior quantiles of xt, simulated with κx = 0.0132. From lightest to darkest, the shaded areas
represent the range of the middle 50%, 90%, and 98% of the distribution.
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Figure 10: Filtered posterior mean of xt, simulated with κx = 0.0132.
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Figure 11: Filtered posterior variance of xt, simulated with κx = 0.0132.
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Figure 12: Posterior filtered distribution, mean, and variance of xt from S&P-500 returns (1999-01-28 to 2004-11-11).
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Figure 13: Posterior filtered distribution, mean, and variance of xt from S&P-500 returns (2005-11-14 to 2011-06-07).

From lightest to darkest, the shaded areas represent the range of the middle 50%, 90%, and 98% of the distribution.
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Figure 14: Posterior filtered distribution, mean, and variance of xt from S&P-500 returns (2012-06-08 to 2017-12-29).

From lightest to darkest, the shaded areas represent the range of the middle 50%, 90%, and 98% of the distribution.
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Figure 15: Posterior filtered mean of Ct from S&P-500 returns (1999-01-28 to 2004-11-11) for each β.
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Figure 16: Posterior filtered mean of Ct from S&P-500 returns (2005-11-14 to 2011-06-07) for each β.
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Figure 17: Posterior filtered mean of Ct from S&P-500 returns (2012-06-08 to 2017-12-29) for each β.
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Table 1: Parameter RMSE for Kalman Filter with Missing Data Randomization.

β κ ση κ ση

0.00 0.121 0.083 0.121 0.083
0.01 0.073 0.039 0.076 0.044
0.02 0.038 0.023 0.044 0.032
0.05 0.008 0.012 0.018 0.032
0.10 0.007 0.009 0.016 0.037
0.20 0.006 0.008 0.020 0.049
0.30 0.006 0.007 0.023 0.056
0.40 0.006 0.007 0.025 0.063
0.50 0.006 0.007 0.027 0.069
0.60 0.006 0.007 0.029 0.075
0.70 0.006 0.006 0.032 0.080
0.80 0.006 0.006 0.035 0.084
0.90 0.006 0.006 0.037 0.090
1.00 0.006 0.006 0.041 0.093

Parameter RMSE
Without Outliers With Outliers

Table 2: UC model parameters estimated with different values of β from 1960Q1 to 2015Q2.

β Posterior Percentile σε ση

0.15 50% 0.350 0.144
2.5% 0.191 0.000

97.5% 0.641 0.781

0.25 50% 0.360 0.435
2.5% 0.222 0.002

97.5% 0.645 0.870

0.90 50% 0.627 1.068
2.5% 0.445 0.868

97.5% 0.841 1.290

1.00 50% 0.653 1.375
2.5% 0.467 1.205

97.5% 0.891 1.564
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Table 3: Comparison of WLR forecasting performance for different β. The UC model was run from 1960Q1
to 2005Q2, with the forecast density evaluated at 1-,4-,8-, and 12-quarter-ahead horizons starting in 1990Q1. The
Weighted Likelihood Ratio (WLR) test from Amisano and Giacomini (2007) was used to compare the forecasts of
different values of β versus β = 1.

β h ŴLR σ̂WLR t P

0.15 1 0.2981 1.75 1.71 0.95
4 0.2661 0.86 3.08 0.99
8 0.2593 0.45 5.56 0.99
12 0.2688 0.33 7.85 0.99

0.25 1 0.2748 1.52 1.82 0.96
4 0.2507 0.73 3.39 0.99
8 0.2514 0.47 5.15 0.99
12 0.2688 0.37 6.93 0.99

0.90 1 0.0403 0.26 1.58 0.94
4 0.0222 0.16 1.36 0.91
8 0.0130 0.12 1.03 0.84
12 0.0170 0.19 0.84 0.80

Table 4: Percentiles of posterior distribution of parameters with 0%, 10%, and 90% of days contaminated. Estimates
are from data simulated for T = 1260 with κx = 0.0132, ρx = −0.67, and σx = .16.

Contamination

0% 10% 90%

β Posterior Percentile κx ρx σx κx ρx σx κx ρx σx

0.00 50% 0.01 -0.66 0.15 0.02 -0.64 0.15 0.01 -0.63 0.15
2.5% 0.01 -0.77 0.11 0.01 -0.76 0.12 0.01 -0.76 0.12

97.5% 0.03 -0.50 0.19 0.03 -0.49 0.19 0.03 -0.48 0.19

0.01 50% 0.02 -0.65 0.16 0.02 -0.64 0.16 0.03 -0.49 0.24
2.5% 0.01 -0.76 0.12 0.01 -0.75 0.12 0.02 -0.64 0.19

97.5% 0.03 -0.50 0.20 0.03 -0.51 0.20 0.05 -0.34 0.32

0.10 50% 0.01 -0.64 0.15 0.01 -0.65 0.15 0.07 -0.30 0.39
2.5% 0.01 -0.74 0.12 0.01 -0.75 0.13 0.04 -0.44 0.32

97.5% 0.02 -0.54 0.18 0.02 -0.53 0.19 0.11 -0.18 0.50

0.90 50% 0.02 -0.58 0.17 0.02 -0.57 0.17 0.39 -0.10 1.02
2.5% 0.01 -0.64 0.16 0.01 -0.61 0.15 0.39 -0.16 0.99

97.5% 0.02 -0.51 0.18 0.02 -0.45 0.18 0.47 -0.07 1.05

1.00 50% 0.02 -0.56 0.17 0.05 -0.36 0.27 0.48 -0.12 1.06
2.5% 0.01 -0.62 0.16 0.03 -0.37 0.26 0.43 -0.17 1.01

97.5% 0.03 -0.52 0.19 0.05 -0.31 0.29 0.52 -0.06 1.09
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Table 5: Forecasting Weighted Likelihood Ratio (WLR) (κx = 0.0132). Forecast density was evaluated at
1,2,5,10, and 22-day horizons. The Weighted Likelihood Ratio (WLR) test from Amisano and Giacomini (2007) was
used to compare the forecasts of different values of β versus β = 0.

Contamination

0% 10% 90%

β h ŴLR σ̂WLR t P ŴLR σ̂WLR t P ŴLR σ̂WLR t P

0.01 1 0.005 0.03 3.69 0.99 0.004 0.04 2.97 0.99 -0.000 0.09 -0.11 0.45
2 0.004 0.03 3.60 0.99 0.004 0.03 2.85 0.99 -0.000 0.09 -0.06 0.47
5 0.004 0.03 3.63 0.99 0.003 0.03 2.53 0.99 -0.002 0.08 -0.78 0.21
10 0.003 0.03 2.74 0.99 0.001 0.03 1.29 0.90 -0.004 0.08 -1.22 0.11
22 0.001 0.03 0.97 0.83 -0.001 0.03 -0.57 0.28 -0.010 0.10 -2.79 0.00

0.10 1 0.020 0.13 4.15 0.99 0.019 0.14 3.78 0.99 -0.009 0.21 -1.16 0.12
2 0.019 0.14 3.79 0.99 0.017 0.14 3.42 0.99 -0.008 0.22 -1.05 0.14
5 0.018 0.13 3.79 0.99 0.016 0.14 3.27 0.99 -0.010 0.19 -1.42 0.07
10 0.013 0.12 2.96 0.99 0.010 0.12 2.40 0.99 -0.009 0.17 -1.47 0.07
22 0.010 0.13 2.13 0.98 0.007 0.13 1.49 0.93 -0.021 0.19 -2.96 0.00

0.90 1 0.032 0.26 3.40 0.99 0.034 0.27 3.50 0.99 -0.043 0.28 -4.20 0.00
2 0.027 0.27 2.72 0.99 0.027 0.27 2.76 0.99 -0.064 0.31 -5.69 0.00
5 0.029 0.24 3.31 0.99 0.028 0.25 3.13 0.99 -0.085 0.38 -6.19 0.00
10 0.014 0.20 1.92 0.97 0.013 0.22 1.66 0.95 -0.078 0.44 -4.93 0.00
22 0.014 0.18 2.08 0.98 0.012 0.19 1.77 0.96 -0.060 0.39 -4.22 0.00

1.00 1 0.033 0.26 3.42 0.99 0.036 0.27 3.67 0.99 -0.039 0.30 -3.56 0.00
2 0.027 0.27 2.71 0.99 0.027 0.26 2.88 0.99 -0.068 0.32 -5.77 0.00
5 0.029 0.24 3.26 0.99 0.029 0.23 3.46 0.99 -0.084 0.40 -5.75 0.00
10 0.014 0.20 1.84 0.96 0.011 0.20 1.46 0.92 -0.078 0.44 -4.89 0.00
22 0.013 0.18 2.02 0.97 -0.001 0.19 -0.18 0.43 -0.058 0.40 -4.02 0.00
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Table 6: Percentiles of posterior distribution of parameters estimated for three samples: 1998-01-02 to 2004-11-11,
2004-11-12 to 2011-06-07, and 2011-06-08 to 2017-12-29.

Sample Start Date
1998-01-02 2004-11-12 2011-06-08

β Posterior Percentile κx ρx σx κx ρx σx κx ρx σx

0.00 50% 0.01 -0.84 0.13 0.02 -0.50 0.18 0.08 -0.37 0.38
2.5% 0.01 -0.90 0.11 0.01 -0.61 0.15 0.05 -0.46 0.32

97.5% 0.02 -0.75 0.15 0.03 -0.37 0.22 0.10 -0.27 0.45

0.01 50% 0.01 -0.82 0.13 0.03 -0.38 0.23 0.08 -0.34 0.39
2.5% 0.01 -0.87 0.11 0.02 -0.48 0.19 0.06 -0.44 0.33

97.5% 0.02 -0.71 0.16 0.03 -0.25 0.28 0.11 -0.24 0.46

0.10 50% 0.01 -0.71 0.13 0.03 -0.30 0.23 0.07 -0.29 0.37
2.5% 0.01 -0.80 0.11 0.02 -0.39 0.18 0.05 -0.38 0.32

97.5% 0.02 -0.59 0.16 0.03 -0.15 0.27 0.09 -0.20 0.41

0.90 50% 0.09 -0.29 0.29 0.07 -0.10 0.38 0.16 -0.11 0.50
2.5% 0.07 -0.33 0.28 0.05 -0.25 0.36 0.13 -0.15 0.48

97.5% 0.11 -0.25 0.32 0.08 -0.03 0.40 0.19 -0.06 0.53

1.00 50% 0.13 -0.22 0.36 0.08 -0.12 0.42 0.20 -0.06 0.55
2.5% 0.11 -0.28 0.34 0.07 -0.12 0.41 0.17 -0.11 0.53

97.5% 0.15 -0.21 0.38 0.08 -0.11 0.42 0.21 -0.04 0.57
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